
Messages with Implicit Destinations as Mobile Agents

Ahmad Ahmad-Kassem

Université de Lyon, INRIA

ahmad.ahmad kassem@inria.fr

Stéphane Grumbach

INRIA

stephane.grumbach@inria.fr

Stéphane Ubéda

INRIA

stephane.ubeda@inria.fr

Abstract
Applications running over decentralized systems, distribute
their computation on nodes/agents, which exchange data and
services through messages. In many cases, the provenance
of the data or service is not relevant, and applications can
be optimized by choosing the most efficient solution to ob-
tain them. We introduce a framework which allows messages
with intensional destination, which can be seen as restricted
mobile agents, specifying the desired service but not the ex-
act node that carries it, leaving to the system the task of eval-
uating the extensional destination, that is an explicit address
for that service. The intensional destinations are defined us-
ing queries that are evaluated by other agents while rout-
ing. We introduce the Questlog language, which allows to
reformulate queries, and express complex strategies to pull
distributed data. In addition, intensional addresses offer per-
sistency to dynamic systems with nodes/agents leaving the
system. We demonstrate the approach with examples taken
from sensor networks, and show some experimental results
on the QuestMonitor platform.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications—design languages,
concurrent, distributed, and parallel languages, very high-
level languages

General Terms Design, Languages

Keywords routing by content, intensional destination, declar-
ative networking

1. Introduction
Most of the applications of our everyday life (communica-
tion, search, social, etc.), as well as those of our environ-
ment (workplace, domotics, transportation, energy, etc.)rely
on complex network infrastructure. They require complex

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

AGERE! 2012, October 21–22, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1630-9/12/10. . . $10.00

distributed algorithms that are difficult to program, require
skilled programmers, and offer limited warrantee on their
behavior. The dynamics of some networks, with nodes join-
ing or leaving the networks, not to mention the various types
of failures increases further the complexity and raises con-
siderable challenges. One of the fundamental barriers to their
development is the lack of programming abstraction [28].

Such applications are decentralized and need to adapt dy-
namically to their environment in a reactive manner. They
necessitate a high-level programming paradigm that defines
a new level of abstraction and offers features such as inter-
action, reactivity, autonomy, modularity, and asynchronous
communication.

In this paper we propose a framework which allows to
program distributed applications in a message-oriented man-
ner, allowing messages as a sort of mobile agents with im-
plicit destinations, that are solved in the network while they
are traveling. The destinations of messages are abstracted
and defined by queries. The main contribution of the paper
is (i) the design of a data centric language, Questlog, which
allows to program agents exchanging messages which ad-
mit a complex semantics associated to the queries defining
their destinations, and (ii) its implementation over a simula-
tion platform. We thus distinguish between intensional des-
tinations, defined by queries, and extensional destinations,
defined by node addresses.

The idea of programming messages as active agents has
been proposed long ago in [36], where network programs are
encapsulated in active messages traveling in the network. It
provides a simple way to describe and understand distributed
programs. Mobile code such as scripts, applets, and mobile
agents is widely used [13, 20]. Our approach though is
more restricted. We propose messages that have implicit
destinations, that will be solved in the contact of other agents
while the message is traveling. Only the query defining the
destination is mobile, while the code of the agent that helps
solving it, is static.

Recently, the notion of agent-oriented abstractions is pro-
posed in [32], where a new programming paradigm provid-
ing a set of abstractions is introduced to simplify the pro-
gramming of modern applications. However, the mobility of
agents as well as the abstraction of the destinations of mes-
sages are not supported.

ha
l-0

07
53

17
7,

 v
er

si
on

 1
 -

18
 N

ov
 2

01
2

Author manuscript, published in "AGERE 2012 (2012)"

http://hal.inria.fr/hal-00753177
http://hal.archives-ouvertes.fr

Messages with implicit destination facilitate the program-
ming of a large class of applications. Publish/subscribe sys-
tems constitute a good example of such systems, with pub-
lishers who do not have to specify specific receivers, leav-
ing the system matching them. Publish/subscribe systems
constitute an appealing paradigm for developing pervasive
systems which enable the decoupling of interacting compo-
nents, separating communication from computation. How-
ever, they generally require the use of mediators to match
interest with published events. Different forms of publish/-
subscribe systems have been proposed.

Topic-basedsystems [16] rely on the notion of topics,
a static scheme with limited expressiveness.Content-based
systems [16] allow filtering on the content of an event, and
only those events that match the filter are delivered to the
subscribers. This approach might result in high numbers
of topics and potentially redundant events that increase the
overhead.Type-basedsystems [16] combine topic-based and
content-based system. The idea is to replace the topic clas-
sification form by a scheme that filters events according to
their type.Location-basedsystems [17] support location-
aware communication between participants based on posi-
tioning mechanisms, andcontext-based[19] systems capture
event context in a modular way.

The major difficulty with publish/subscribe systems rely
in the events matching mechanism, the efficient routing of
notifications to subscribers, while avoiding useless transmis-
sion of notifications that result in an extra level of complexity
[29]. Different content-based routing approaches have been
proposed to route efficiently notifications by messages based
in their content. In [12], a routing scheme is proposed based
on a combination of a traditional broadcast protocol and a
content-based routing protocol. However, it suffers from a
high communication complexity to build spanning trees to
send notifications. In [27], authors propose a new method to
provide end-to-end reliability based on the publish/subscribe
system but with the cost of increased overhead.

To facilitate programming, we propose to use intensional
destinations defined by queries, and let active agents in the
network solve them on the fly. To do so, active agents have at
their disposal programs (local agents) that give a meaning to
destinations. More precisely, adestinationis a pair specified
extensionally, by the address of the node, andintensionally,
by a Questlog query.

Declarative query languages have already been used in
the context of sensor networks. Several systems such as
TinyDB [26] or Cougar [14] offer the possibility to write
queries in SQL. These systems provide solutions to perform
energy-efficient data dissemination and query processing.A
distributed query execution plan is computed in a centralized
manner with a full knowledge of the network topology and
the capacity of the constraint nodes, which optimizes the
placement of subqueries in the network [33].

Another application of the declarative approach has been
pursued at the network layer. The use of recursive query lan-
guages has been initially proposed to express communica-
tion network algorithms such as routing protocols [24] and
declarative overlays [23]. This approach, known asdeclar-
ative networking is extremely promising. It has been fur-
ther pursued in [25], where execution techniques for Datalog
are proposed. Distributed query languages thus provide new
means to express complex network problems such as node
discovery [4], route finding, path maintenance with quality
of service [9], topology discovery, including physical topol-
ogy [8], secure networking [1], or adaptive MANET rout-
ing [22].

Declarative networking relies on the rule-based lan-
guages [5, 6, 31, 35] developed in the field of databases
in the 1980’s. Questlog follows the trend opened by declar-
ative networking [23, 25]. Declarative languages allow to
specify at a high level ”what” to do, rather than ”how” to do
it. They facilitate not only code reuse among systems, but
also the extension, and hybridization. It was shown that such
languages augmented with communication primitives, allow
to express distributed applications and communication pro-
tocols with code about two orders of magnitude shorter than
imperative programs, and with reasonable execution mod-
els. They are more declarative, so facilitate programming,
they parallelize well, so facilitate the execution, they manip-
ulate explicitly data structures, so facilitate verification of
their properties. Simple Netlog protocols for instance have
already been verified [15] using the Coq proof assistant.

Different languages have been proposed such as Overlog
[23], NDlog [25], Netlog [18], and Webdamlog [2] for high-
level programming abstraction. To our knowledge, however,
they all follow theforward chainingmechanism. They are
very successful in expressing various applications and pro-
tocols in proactive mode, but less than in reactive mode.

In contrast to Overlog [23], NDlog [25], Netlog [18], and
Webdamlog [2], Questlog has been designed topull data
from a network by firing a query. The query is associated
with a rule program composed of a set of rules in the form
head :- body that are evaluated in parallel. The program
is installed on the nodes of a network and the evaluation
of rules combinesbackwardand forward chaining. When
a node receives a query, it identifies the rules whose head
matches the query. If there are such rules, the node applies
each of them, that is it generates their body instantiated with
the variable substitution imposed by the initial query.

The Questlog language includes complex primitives such
as aggregation, non deterministic choice, etc., to facilitate
the programming of complex application. Questlog pro-
grams are compiled into sets of queries in an SQL dialect,
which are loaded on the nodes of the network.

We have developed a system which runs the Questlog
programs, and extends the Netquest virtual machine, initially
proposed in [18] to evaluate Netlog programs. The new func-

ha
l-0

07
53

17
7,

 v
er

si
on

 1
 -

18
 N

ov
 2

01
2

tionalities include (i) aQuestlog Engineto evaluate queries
and programs, and (ii) aRouterto evaluate intensional desti-
nation query that offers resilience of the system under node
failure or departure. We demonstrate the approach with ex-
amples taken from sensor networks, and show some exper-
imental results on the QuestMonitor [10] platform that al-
lows to interact with a network and visualize the behavior of
declarative protocols. The system has been tested on simple
networking protocols as well as wireless sensor networks,
WSN, applications.

The paper is organized as follows. In the next section,
we present motivating examples to explain the use of inten-
sional destinations, and introduce the rules. Questlog, with
the language’s primitives is presented through examples in
Section 3, while its procedural semantics is defined in Sec-
tion 4. Section 5 is devoted to the implementation on top
of the Netquest system, while some experimental results are
presented in Section 6.

2. Motivation
We are interested in applications running over networks,
with data fragmented over participating nodes, which in gen-
eral have no knowledge on the location of data. They com-
municate by exchanging messages with apayload, the con-
tent of the message, and adestination, the final destination.
In classical networking approaches, the flow of messages
from source nodes to destinations is driven by their addresses
(e.g. IP, MAC, etc.) assigned explicitly by the source nodes.
In an increasing number of applications however, it is de-
sirable if not necessary to be able to delay the evaluation of
the final destination of a message. Examples of such appli-
cations include:

• Distributed hash tables: A hash function is used to map
data items to nodes. Given a value (e.g. Id, address, data,
etc.), the hash function produces akey, in general over
the domain of identifiers of nodes. The destination can
then be for instance the closest node. In Chord [34] or
VRR [11] for instance, the nodes are organized in a ring
structure, and messages are routed on the ring to increas-
ing or decreasing Ids, till the closest node is reached.

• Wireless sensor networks: Such networks consist of large
numbers of sensor nodes with limited numbers of sinks,
which collect information from sensor nodes. For in-
stance, a sink can collect the positions of nodes which
have a temperature greater than some threshold. The sink
can thus send messages to subsets of nodes satisfying
some property.

• Publish-subscribe systems: Users publish services with-
out specifying specific destinations to them, while sub-
scribers express their interest to services, and receive cor-
responding messages, without knowledge of the publish-
ers. Such systems are handled by appropriate middleware
taking care of the messages.

• Social networks: Users are organized in network struc-
tures with their friends (symmetric links of Facebook) or
followers (asymmetric links of Twitter) for instance, with
whom they exchange information. Some messages can be
addressed to sets of users that are out of the knowledge
of users, or difficult to enumerate, such as the friends of
their friends. In some social matching networks, it is pos-
sible to send notifications of interest to users to be re-
ceived only by users who have sent in a symmetric man-
ner similar notification of interest to the sender. In this
example, the destinations cannot be cleared by the users
themselves.

In all these examples, it would make things easier, if it
was possible to specify the destination implicitly by a query,
defining in anintensional manner, the destination of (mes-
sage) mobile agent, which can be cleared or evaluated while
traveling in the network, in anextensionalmanner, as the ex-
plicit address of the destination nodes. In Publish-Subscribe
systems, this is done by appropriate message oriented mid-
dleware. Our objective is to let mobile agent solve inten-
sional destinations.

Let us consider the following more complex example
from wireless sensor networks. Consider an application
where some sink node monitors the positions of nodes which
have, together with their neighbors to avoid individual mea-
surement errors, a temperature higher than some threshold.
How to program such queries? How to get neighbors’ tem-
perature values dynamically?

We propose a declarative language,Questlog, which al-
lows to specify such problems in a rather declarative, data
centric manner. For simplicity, we consider a relational
model of data, with relations of some fixed schema.Quest-
log is a rule-based language withrulesof the form:

head : −body

well-adapted to complex queries as well as to reactive pro-
tocols.Questlog queriesare of a very simple form:

?R(x1, · · · , xℓ)

whereR is a relation symbolof arity ℓ, andx1, · · · , xℓ are
variables or constants. They are associated to rule programs
which define their semantics.

Let us illustrate the language on the previous WSN exam-
ple. The query can be expressed very simply by a predicate
of the form:

?WarnPos(v, x, y)

wherev is a node Id and(x, y) its positions. The meaning of
the query is defined by a program (agent), which is used to
evaluate it. Let us consider the following program:

↑ WarnPos(v, x, y) : − Pos(v, x, y),

Tmp(v, t), t > T. (1)

ha
l-0

07
53

17
7,

 v
er

si
on

 1
 -

18
 N

ov
 2

01
2

We assume that each node, sayv, stores its location(x, y)
asPos(v, x, y), and its temperature asTmp(v, t). When the
agent on a node, sayα, receives a query?WarnPos(v, x, y),
it checks if it matches the head of a rule. In this case, it
matches Rule (1). Its body,Pos(v, x, y), Tmp(v, t), t > T ,
is instantiated with local data, and the tuples(v, x, y) sat-
isfying the query are produced as answers to the query and
sent (↑ in front of the rule) to the source of the query.

Let us consider now the more complex example, of
nodesv with location(x, y), which have, together with their
neighbors, a temperature greater thanT . We assume that
each nodev also stores links to its neighbors, sayw, as
Link(v, w). The following program defines the new query.

↑ WarnPos(v, x, y) : − Pos(v, x, y), Tmp(v, t),

t > T, ∀w Link(v, w), ?HighTmp(@w). (2)

↑ HighTmp(v) : − Tmp(v, t), t > T. (3)

The program is interpreted as follows. The query now
matches Rule (2). This rule is interpreted as follows. Its body
contains factsPos(v, x, y); Tmp(v, t); as well as an expres-
sion: ∀w Link(v, w), ?HighTmp(@w). The facts are in-
stantiated locally as above. The new query?HighTmp(@w)
is generated for each neighborw of v (universal quantifier),
and sent to each neighborw (symbol ”@” in front of the
variable). Suppose that there are nodesβ andγ such that
Link(α, β) andLink(α, γ) hold onα. Thenα generates
two new queries,?HighTmp(@β) and ?HighTmp(@γ),
which have to be sent to nodeβ andγ respectively.

Suppose that nodeβ receives the query?HighTmp(β).
It matches thehead of rule (3). This matching leads to
Tmp(β, t), t > T , the body of Rule (3). If the rule is sat-
isfied, then thehead, HighTmp(β), of the rule is gen-
erated and sent toα, due to the affectation operator (↑),
whereα is the origin of the query. The evaluation of the
query?HighTmp(γ) is done in a similar fashion on node
γ. The results of the initial queryWarnPos(α, x, y) will
be computed by Rule (2) onceall the answers to the queries
?HighTmp(@w) have been obtained. This is the meaning
of the∀ symbol in front of variablew in the body of Rule
(2). Then the result is sent to the initial source of the query
?WarnPos(v, x, y).

With Questlog, complex applications and protocols can
be expressed easily. Consider for instance the following
query ?Route(α, d, y, n), searching for a next hopy, and
a lengthn, for a route from nodeα to destinationd. The
following two rules, Rule (4) and (5), define anon-demand
routing protocol, which allows to evaluate the initial query
?Route(α, d, y, n).

l Route(x,w,w, 1) : − Link(x,w). (4)

l Route(x,w, z, n+ 1) : − Link(x, z),

?Route(@z, w, u, n). (5)

When node, sayα, fires a query?Route(α, d, y, n), the
agent onα checks if it matches the head of a rule. The match-

ing results in the bodyLink(α, d). Two scenarios are then
possible. Either, with Rule (4),Link(α, d) holds on nodeα,
and the query can be answered byRoute(α, d, d, 1) (d is a
neighbor of nodeα), or Rule (5) generates a body contain-
ing a factLink(α, z) and a new query?Route(@z, d, u, n).
Suppose there is a nodeβ such thatLink(α, β) holds onα.
Then Rule (5) generates a new query,?Route(@β, d, u, n),
which has to be sent to nodeβ.

Suppose now that nodeβ receives the previous query, and
thatLink(β, d) holds onβ. The query is evaluated on node
β, in a similar fashion. The agent onβ can now run Rule (4),
and answer the query withRoute(β, d, d, 1). Two actions
are then performed. First, the result is stored in the local
store. This is due to the affectation operator (↓) in front of
Rule (4). Second, the result has to be sent toα, due to the
affectation operator (↑), whereα is theorigin of the query.
When the agent onα receives the answer from the agent on
β, it uses again Rule (5), but now in push mode to derive
the answer to the query,Route(α, d, β, 2), and stores it. As
a side effect, intermediate nodes that aggregate answers of
subqueries save routes to the destination.

Messages are formed by a payload and a destination. The
payload can consist either of data or queries. Similarly, the
destination consists of an explicit address, and an implicit
address, defined by a query. When the destination of a mes-
sage is only implicitly known as a queryQ, two strategies
are possible. Either,Q is included in the destination part of
the message, which is then handled only by node satisfying
it, or it is included in the payload, and handled by all nodes.
We will see in the sequel that it results in different evaluation
strategies.

More generally, when the destination as well as the pay-
load are represented by queries, we distinguish in messages
between two queries:

• content-query: query in the payload,

• dest-query: query in the destination.

The dest-querymight be very simple to solve. Only
if a node satisfies thedest-query, is it authorized to read
and compute thecontent-query. Interestingly, this distinc-
tion also allows to optimize the distributed computation of
queries.

3. The Questlog language
The language Questlog is used to program the behavior of
nodes. We are interested in networks, where the nodes have
initially only the knowledge of their neighbors. TheLink
relation is thus distributed over the network such that each
node has only a fragment of it. This can be done with an
agent that communicates periodically with other agents on
nodes in its transmission range to update theLink relation
upon node joining or leaving. TheQuestlogprograms are
agents and are installed on each node, where they run con-

ha
l-0

07
53

17
7,

 v
er

si
on

 1
 -

18
 N

ov
 2

01
2

currently. The computation is distributed and the nodes ex-
change information.

Agents interact with each other on the same node. They
can query and update the data on the nodes. They interact
also with agents on other nodes in the network by produc-
ing messages to send on the network. Questlog has been de-
signed to pull data from a network. As it has been shown
in Section 2, agents are used in association with a predicate,
(e.g.WarnPos in Rule (2) for instance) defining a query,
which is solved by running the associated agent.

Before describing the language, let us explain the behav-
ior of queries and agents. The evaluation of the rules com-
binesbackwardandforward chaining. Intuitively, when an
agent on a node receives a query, it identifies the rules whose
head matches the query. If there are such rules, the node ap-
plies each of them, that is it generates their body instantiated
with the variable substitution imposed by the initial query.

There are two possibilities for the body. The body might
besimple, with no subquery included, it is then evaluated lo-
cally on the node, the answer to the query is deduced by ap-
plying the rule in a forward manner, and then sent to the re-
questing node. If the body iscomplex, with subqueries, then
the part of the body without subqueries is evaluated locally.
The partial results obtained, lead to partial instantiation of
the subqueries, which are then sent to the appropriate nodes.
Some bookkeeping is performed to keep track of the initial
queries and the corresponding subqueries. When the answers
are received, the initial query can be computed, and its an-
swer sent to the requesting node.

As seen in Section 2, the Questlogqueriesare of a very
simple form:?R(x1, · · · , xℓ), whereR is a relation symbol
of arity ℓ, andx1, · · · , xℓ are variables or constants. They
are associated to ruleprogramswhich define their semantics.
Questlog programsare agents that consist of sets of rules that
are executed in parallel.

We introduce Questlog and the primitives of the language
through examples. Let us start with routing which is a fun-
damental functionality for network applications.On-demand
routingprotocols, such as AODV [30], are reactive protocols
that flood the network with a route request to find a route
from a source to some destination. When the route is found,
each node along the route saves locally the next hop to the
destination.

We have seen in Section 2, Rules (4) and (5), which ex-
press a simple route request. On-demand routing requires
some more care though. Indeed, the rules are evaluated
in parallel, and the previous two rules could lead at the
same time to an answer to the query as well as to useless
subqueries propagated to other nodes. For instance, sup-
pose that theLink relation has two facts corresponding to
Link(α, d) andLink(α, β), whered is the requested des-
tination. Then, Rule (4) leads to a factRoute(α, d, d, 1) as
an answer to the query saved locally onα and sent to the

source of the query, while Rule (5) leads to a useless sub-
query?Route(@β, d, u, n) sent to neighborβ.

To prevent propagating subqueries when an answer of a
query is found locally, we usenegation. Accordingly, the
following routing program, Rule (6) and (7), will be used
to evaluate an on-demand routing query. Rule (7) makes use
of the literal ”¬Link(x,w)” which can be interpreted as
follows: there is no link from nodex to destinationw.

l Route(x,w,w, 1) : −Link(x,w). (6)

l Route(x,w, z, n+ 1) : −¬Link(x,w), Link(x, z),

?Route(@z, w, u, n). (7)

When nodeα fires the query?Route(α, d, y, n), the
agent onα checks if it matches the head of a rule. The
matching rules, Rule (6) and (7), are loaded, and executed in
parallel to evaluate the query. The two rules are instantiated
by the instances of the variables in the query. Rule (6) leads
to the bodyLink(α, d). Suppose noded is a neighbor of
nodeα, then Rule (6) is satisfied.

The results of the rules can be either stored locally on the
node, or send to other nodes. The arrow in front of the rules
specifies it, with↓ for local storage, and↑ for results sent to
the origin of the query, andl for both. The deduced answer,
Route(α, d, d, 1), is stored in the local data store (↓ in front
of Rule (6)), and has to be sent (↑) to theorigin of the query.
However, Rule (7) generates a body that is not satisfied since
the factLink(α, d) holds on nodeα.

Intermediate nodes that aggregate answers of subqueries
save (↓) routes to the destination. It would be interesting
to use local knowledge of nodes to reduce the delay and
the complexity in both communication and computation.
An additional rule is required. The following program with
Rules (8), (9), and (10) defines the semantics of the on-
demand routing protocol.

↑ Route(x,w, ⋄y, n) : − Route(x,w, y, n). (8)

l Route(x,w,w, 1) : − Link(x,w),

¬Route(x,w, , 1). (9)

l Route(x,w, z, n+ 1) : − ¬Link(x,w),

¬Route(x,w, ,), Link(x, z),

?Route(@z, w, u, n). (10)

Suppose intermediate nodeγ has a fact,Route(γ, d, θ, 2),
saved in the routing table. Rule (8), when receiving the query
?Route(γ, d, y, n), leads to the bodyRoute(γ, d, y, n).
The rule is satisfied, then deduced resultRoute(γ, d, θ, 2)
is sent (↑) to the source of the query. In case of plu-
rality, one route can be chosen non-deterministicaly us-
ing the choice operator,⋄ in front of y. Alternatively,
the shortest route can be chosen using aggregation, (e.g.
Route(x,w, y,min(n))). The evaluation of Rule (9) leads
to the bodyLink(γ, d),¬Route(γ, d, , 1), where under-
score means ”any value”. The fact ”¬Route(γ, d, , 1)” is

ha
l-0

07
53

17
7,

 v
er

si
on

 1
 -

18
 N

ov
 2

01
2

read as follow: there is no route fromγ to d with next hop
any value and number of hop is1. The use of the negation
prevents Rules (9) and similarly for Rule (10) to be satis-
fied when a route is found locally. This concludes of the
on-demand routing protocol.

Let us now consider an example ofaggregation query
over sensor networks. Suppose that a tree rooted on a node
α has been constructed in the network. Each node, sayx,
has the relationTree(x, y) wherey is a child of x, and
stores a temperature valuet in a relationTmp(x, t). Suppose
nodeα fires the query,?ResultAvg(α, v), asking for the
average,v, of the temperature values of deployed sensors in
the network. The following program defines its semantics.

↓ ResultAvg(x, v) : − v := t/n,

?Avg(@x, n, t). (11)

↑ Avg(x, 1, t) : − ¬Tree(x,),

Tmp(x, t). (12)

↑ Avg(x,Σn+ 1,Σv + t) : − ∀y T ree(x, y),

Tmp(x, t), ?Avg(@y, n, v). (13)

whereAvg(x, n, t) stores the numbern of nodes in the tree
rooted atx with the sumt of their temperatures. When node
α initially fires the query?ResultAvg(α, v), the agent onα
checks if it matches the head of a rule. The matching leads
by Rule (11) to the bodyv := t/n, ?Avg(@α, n, t) which
gives raise to a new query?Avg(@α, n, t).

The matching of the new query leads either to the body
¬Tree(x,), Tmp(x, t) of Rule (12) ifα is a leaf (i.e. satis-
fies¬Tree(α,)), or otherwise to∀y T ree(α, y),Tmp(α, t),
?Avg(@y, n, v) by Rule (13). In this later case, a series of
queries?Avg(@y, n, v) are generated, which are sent to all
the childreny of α in the tree. The computation will recur-
sively walk down the tree until reaching the leaf nodes. Sup-
pose nodesγ andλ are two leaf nodes, and nodeβ is their
parent. When receiving the query?Avg(@γ, n, v) on node
γ, Rule (12) is satisfied, and deduced resultAvg(γ, 1, t) is
sent to the sourceβ of the query. Nodeλ evaluates similarly
the query?Avg(@λ, c, v).

The results of the query on parent nodeβ will be com-
puted by Rule (13) onceall the answers to the queries
?Avg(@y, n, v) have been obtained, according to the∀ sym-
bol in front of variabley in the body of Rule (13). After the
computation, the deduced resultAvg(β,Σn + 1,Σv + t)
is sent (↑) to the source of the query. The operator

∑
is

the functionsumand it is used to sum the number of chil-
dren as well as their temperature. Nodeβ increases by1
the number of nodes, and adds its temperature to the sum of
temperatures before sending the result to the source node.
Rule (13) will perform a converge-cast of the intermedi-
ate results. When agent on nodeα receives the answer for
the query?Avg(α, n, t), by Rule (11), it deduces the aver-
age temperature. It uses the assignment literal ”:=” together

with arithmetic operations (e.g. division ”/”). The result is
saved locally in the relationResultAvg.

Due to fragile conditions, the measured temperature value
of individual sensor nodes might be wrong. To improve the
stability of such systems, it is possible to update temperature
stored in theTmp relation on each sensor node with new
values such as the average temperature of their neighbors.
The query?Tmp(w, u) is fired from some node, sayα, with
all destinations.

↓ Tmp(x, avg(t)) : − !Tmp(x, t1), ∀y Link(x, y),

?GetNghTmp(@y, t) (14)

↑ GetNghTmp(x, t) : − Tmp(x, t). (15)

On each node, sayβ, the query?Tmp(β, u), matches the
head of Rule (14) thus leading to the body!Tmp(β, t1),
∀y Link(β, y), ?GetNghTmp(@y, u). It gives raise to
queries of the form?GetNghTmp(@y, u) sent to all neigh-
borsy. Each neighbor upon receiving the query, Rule (15),
forwards (↑) its own temperature value to the query expedi-
tor β. When all answers (according to∀) are received, Rule
(14) continues the evaluation in the push mode, results in
the head with a new valuet stored (↓) on β wheret is the
average temperature which is defined using aggregation.

The consumption operator, !, is used to delete the facts
that are used in the body of the rules from local data store.
The fact !Tmp(β, t1) is deleted upon evaluating the rule,
Rule (14), in the push mode.

In most approaches, all deployed sensor nodes are ho-
mogeneous and mono-service, and run one application at a
time (e.g. measuring the temperature). It is worth noting that
Questlog can express applications and protocols running on
heterogeneous devices with mono- or multi-services.

In the next example, we explain the use of destination
queries. Assume the sink node sends a message that contains
(i) a content-queryin the payload, and (ii) adest-queryin the
destination.

In WSN applications, data collection might involve all
nodes in a network. However, due to sensor power con-
straints, it might be preferable [21] that data collection be
performed from a subset of nodes only. Assume that the
sink node calls sensor nodes that have energy level greater
than a threshold as cluster heads, to collect data (e.g. tem-
perature) from their neighbors, aggregate the data, and then
send aggregated value with the address of the cluster head
to the sink. The sink node sends a message withcontent-
query?Collect(x, s) anddest-query?Powerful(x) in the
network. Suppose that the energy level is saved in the rela-
tionEnergy. The following program defines its semantics:

Powerful(x) : − Energy(e), e > n. (16)

↑ Collect(x, avg(s)) : − ∀y Link(x, y),

?GetData(@y, s). (17)

↑ GetData(y, h) : − Tmp(x, h). (18)

ha
l-0

07
53

17
7,

 v
er

si
on

 1
 -

18
 N

ov
 2

01
2

Each sensor node, sayν, upon receiving the message
evaluates thedest-query?Powerful(ν) using Rule (16)
after matching. If the bodyEnergy(e), e > n is satisfied,
then the sensor nodeν belongs to the destination, and is
now allowed to evaluate thecontent-query?Collect(ν, s).
Otherwise, the message is sent further.

Thecontent-querymatches the head of Rule (17), which
leads to∀y Link(x, y), ?GetData(@y, d) that gives raise
to queries?GetData(@y, s) sent to all neighborsy. Each
neighbor upon receiving the query?GetData(y, s), uses
Rule (18) after matching and returns its temperature value to
the sourceν of the query. When all answers (∀) are received,
nodeν continue the evaluation of Rule (17) in the push
mode, leading to a factCollect(ν, s) wheres is the average
temperature sent (↑) to the sink.

4. Procedural Semantics
We make little assumptions on the networks. We consider
nodes which communicate by exchanging messages as re-
stricted mobile agents. The communication is asynchronous
with no shared memory.

Each node is equipped with an embedded machine (Fig-
ure 1) which evaluates the Questlog programs. It is com-
posed of three main components: (i) arouter to handle the
communication with the network; (ii) anengineto evaluate
the queries; and (iii) a localdata storeto manage the infor-
mation (Data and Programs) local to the node. The Questlog
programs are installed on each node, and used to evaluate
Questlog queries fired by the applications or received from
other nodes through mobile agents.

Figure 1. Global architecture of the virtual machine

The evaluation may lead to data (as answers) or sub-
queries sent to other nodes in the network. Pending queries
need to be stored, some bookkeeping is thus performed in the
local data store with timeouts. When an answer of a pending
query is received, the corresponding query is retrieved and
the evaluation is resumed.

4.1 Messages and Routing

We have seen in Section 2 that a message is composed of a
payload and a destination. To define precisely the procedural
semantics, additional informations in a message are also

required. In particular, the source node address, the payload
query Id, and the TTL (time-to-live). The TTL is the number
of hops that a message is permitted to travel before being
discarded by the router. A message has thus the following
format:

msg = < src, qId, payload, dest, ttl >

Thepayload is the content of the message which may con-
tain either a query or data. It has the following format:

payload = < query | answer >

Thedest is the destination of the message. It is composed
of both extensionaland intensionaldestination. The exten-
sional destination is defined by a node address, while the
intensional destination is defined by a query. It has the fol-
lowing format:

dest = < extDest : intDest >

The Router is composed of two main modules: (i) Recep-
tion module that receives messages from the network, and
(ii) Emission module to send messages to other nodes in the
network.

When receiving a message, a node first checks the desti-
nation. Two cases have to be considered corresponding to ex-
tensional and intensional destinations. If the extensional des-
tination is equal to the node address, then the node stores the
received message in a local data structure (BookKeeping)
with a unique Id and a timeout, and transfers the payload to
the engine. Otherwise, the node address is not the destina-
tion, and the message is transferred to the emission module.
For instance, when nodeβ receives the message:

msg1 = < α, 4, payload,< β : − >, 10 >

with address specified extensionally byβ which is equal
to the node address. Then the message is stored locally
(BookKeeping), and thepayload is transferred to the en-
gine. However, ifβ receives a message withdest = < γ :
− >, then the message is transferred to the emission module
sinceγ does not match the node address.

Consider now the second case. If the extensional destina-
tion is empty, then the router evaluates the intensional desti-
nation.

msg2 = < α, 4, payload,< − : query >, 10 >

The evaluation of the intensional destinationquery passes
through the engine, and the result is a set (σAns) of node
addresses. When receiving the set of answers, the router
checks if the node address is in the set. If so, the router stores
locally (BookKeeping) the messagemsg2, and transfers
the payload to the engine to be evaluated. Otherwise, the
message is discarded.

ha
l-0

07
53

17
7,

 v
er

si
on

 1
 -

18
 N

ov
 2

01
2

At the same time, the initial messagemsg2 is transferred
to the emission module to be sent to other nodes. It is note-
worthy to mention that an alternative strategy could have
been used. For instance, instead of transferring the message
msg2 to the emission module, the router could take into con-
sideration the set of answers (e.g.α, β, etc.), encapsulates
messages based onmsg2 but with new destinations speci-
fiedextensionallyandintensionally(e.g.msg3.dest =< α :
query >,msg4.dest =< β : query >, etc.), and trans-
fers them to the emission module. The important features of
this strategy is: (i) toggling from broadcast mode into unicast
mode, and (ii) benefiting from local knowledge of a node.
The choice of the strategy can be made by an agent.

The Emission module is used to send messages to other
nodes in the network. The router fetches the next hop to the
extensional destination from the routing table and sends the
message if the next hop is found. Otherwise, the message
is discarded. Here again, other strategies can be made and
applied as for instance: (i) send the message to neighbors, or
(ii) fetch a route to the destinationd which in our approach
requires to fire the query?Route(s, d, nh, n) while s is the
node address,nh is the required next hop, andn is the
number of hops, as we have seen in Section 2.

4.2 Computation

A message may contain queries (content-query, dest-query)
or data. To evaluate a query, as seen in Figure 2, the mobile
agent collaborates with local node agents such as Program
agent, Timer agent, Strategy agent, etc. to achieve the task
and produce a new mobile agent.

Figure 2. Emission of messages seen as mobile agents

A Timer agent manages program time events and timeout.
The timer is defined as a high level specification as follows:

T imer(T imerName, Period,Occurrence, ProgName)

where the name of the timer, the period to wait before send-
ing an event, the occurrence for repetitive events, and the
name of the program are specified.

The engine is in charge of evaluating the received queries
and answers. The engine is constructed around two main
modules to evaluate them (i) the query module, and (ii) the
data module. The query module initiates the evaluation of
queries, which may result either in a direct answer to be sent
to the query origin, or to subqueries to be sent to other nodes
in the network. The data module is used to carry further
the computation, and evaluate answers and subsequently
pending queries, which may result in an answer saved locally
or sent to other nodes.

For each message, its content/dest-query is analyzed and
transferred to the corresponding module. When receiving
a query, the query module first loads the appropriate rules
from the local data store. More precisely, the received query
is matched with thehead of each rule, and only matching
rules are loaded. The rules are then evaluated in parallel. The
first step towards their evaluation is the substitution of vari-
ables by constants. Rules are instantiated by: (i) potentially
the constant values of the received query, and (ii) the local
data of the node (where the evaluation is taking place).

Rules can be of two kinds: (i) simple rules, or (ii) complex
rules. Simple rules have no subquery in their body, and
are evaluated locally on the node. Potentially, local data
might satisfy the query, resulting in an answer to be sent
to the node source of the query. However, complex rules
have subqueries in their body, and their evaluation leads to
subqueries propagated to their appropriate destinations.

After the evaluation, two kinds of outputs, either (i) a
query, or (ii) an answer can be produced.

• If the result is a query, then the destination to where
the query should be sent is extracted from the query.
The destination is the instance of the variable prepended
by @ in the subquery (e.g.?Route(@β, d, y, n)). After
that, the result is encapsulated in a message which is
stored in the local data store (BookKeeping), and then
transferred to the router. It is worth noting that subquery
with destination the source of the initial query can be
avoided either by the engine upon evaluation of the initial
query (do not send subquery to the source of the initial
query) or discarded by the router.

• If the result is an answer, as a fact (e.g.Route(β, d, γ, 2)),
then according to the affectation operator of the corre-
sponding rule, the result (i) is stored locally (↓), or (ii)
sent (↑) to the source node, or both stored and sent (l).
The result will be sent in a message, and that requires
to collect some information. In particular, the address
of the source node of the query is the destination of the
message to which the result will be sent. TheqId of the
message should be the same as the Id of the initial query.
The corresponding entry that holds these data is retrieved
from the local data store (BookKeeping). After that, the
message is encapsulated and transferred to the router.

ha
l-0

07
53

17
7,

 v
er

si
on

 1
 -

18
 N

ov
 2

01
2

The data module is used to continue the evaluation of
pending queries stored locally on a node. When receiving
an answer, the data module first loads the appropriate rules
from the local data store. More precisely, the engine knows
the messageqId, communicated by the router, with the pay-
load. The engine matches the receivedqId with each entry
in theBookKeeping data structure, and retrieves the cor-
responding Questlog rules. Then, the engine evaluates the
rules in parallel but now in the push mode. Deduced results
are again sent to their appropriate destination exactly as we
have seen previously.

5. Implementation
In this section, we present the system which supports the
Questlog queries together with their corresponding pro-
grams. The network is constituted of nodes that have a
unique identifier, Id, taken from1, 2, · · · , n, wheren is
the number of nodes. Their communication are based on
asynchronous message exchange, and have no shared mem-
ory. We make no particular assumption on the nodes/devices
which all have the same architecture and the same behavior.

The Questlog programs are transformed into a sort of
bytecode that can be smoothly handled. We compile the
Questlog programs into an SQL dialect that is executed by
the engine.

An SQL query is built for each Questlog operator (query
”?”, store ”↓”, push ”↑” and deletion ”!”) in a rule. Consider
the following rule witch contains a subquery in the body:

↑ Route(x, y, z) : − ¬Link(x, y),

Link(x, z), ?Route(@z, y, s). (19)

The compiler transforms Rule (19) into two SQL queries
corresponding to: (i) the results of the operator ”?” (body
SQL query) to be used in the pull mode for subquery, and
(ii) the operator ”↑” (head SQL query) to be used in the push
mode when receiving an answer in the body of a rule.

The first attribute in the predicate of the head of a rule
represents the node address, and it is used as a location
specifier. The negation ofLink is translated with the SQL
subquery into the sectionnot exists. It is worth noting that
the operators ”↓” and ”!” in a Questlog rule are transformed
into an insert and delete SQL query respectively.

Each node is equipped with an embedded machine as
we have seen in Section 4. We implemented an extended
version of theNetquest machine(Figure 3) presented in
[18]. Two important functionalities have been introduced (i)
a Router moduleto evaluate intensional destinations and to
communicate with the network, and (ii) aQuestlog Engine
to execute the Questlog queries and programs.

The Netquest Virtual Machine executes the bytecode,
generated by the compiler, and manipulates data and mes-
sages. It is working as a daemon in the device, and appli-
cations can use it to communicate with other devices on the
network. The virtual machine is portable and can be installed

in small devices with embedded DMS. A previous imple-
mentation was done in iMote sensors [7].

Figure 3. Architecture of the Netquest virtual machine

The Netquest Virtual Machine was initially proposed to
evaluate Netlog [18] programs. It is composed of six com-
ponents; (i) the device wrapper receives and sends data over
the network, (ii) the DMS evaluates the bytecode and manip-
ulates data, (ii) the router receives and sends Netquest mes-
sages through the device wrapper and chooses the next hop
to route a message, (iv) the Netlog engine evalutes Netlog
programs by loading the rules and evaluating them through
the DMS, (v) the timer manager creates and manipulates
timers and manages the time event of the system, and (vi)
the application API is in charge of the interaction with local
applications.

We next describe the new modules which were added to
the Netquest machine, theQuestlog Engineand theRouter,
together with their functionalities.

Figure 4. Architecture of the Quesltog engine

The Questlog engine (Figure 4) executes received queries,
either from local application or from mobile agents, based
on the Questlog programs stored in the local data store. In
the proposed model, the message is a mobile agent that may
contain a Questlog query. It interacts with local agents that
have Questlog programs at their disposition in order to exe-
cute the query. They all collaborate to achieve a task. More
precisely, the query received by mobile agent is matched
with the head of rules of an agent program, that in its turn

ha
l-0

07
53

17
7,

 v
er

si
on

 1
 -

18
 N

ov
 2

01
2

may use the timer agent, the routing agent, the neighborhood
agent, etc. to finally solve the query.

The engine maintains a data structure,BookKeeping, to
store queries and answers together with information such as
the origin of the query. The Questlog engine is composed of
four modules:

1. Preprocessing: This module analyses the incoming mes-
sages, in particular thepayloadof the messages. If the
content is a query, then the modulequery processingis
called to treat the query, otherwise the content is an an-
swer and so the moduledata processingis called.

2. Query processing: This module computes the Questlog
queries. For each query, the corresponding rules are re-
trieved from the local data store. More precisely, a match-
ing operation is performed between the received query
and the head of Questlog rules, and then the correspond-
ing SQL queries are retrieved. After that, the SQL queries
are executed through the DMS, thus resulting either in an
answer for the query, or to the generation of a subquery
to be sent to other node. In both cases, the result will be
transferred to apostprocessingmodule.

3. Data processing: This module handles data as answers
of queries. The corresponding SQL queries are retrieved
based on theqId of the received message and the query Id
stored in the BookKeeping table. Then, if the correspond-
ing rules contain forall (∀), the SQL queries will not be
executed till getting all answers. A local data structure is
used to save corresponding received answers. Otherwise,
the SQL queries are executed through the DMS and de-
duced facts are transferred topostprocessingmodule.

4. Postprocessing: This module generatespayloadsin Quest-
log form by collecting subqueries or facts, fetches their
corresponding destinations, encapsulates them in mes-
sages, and finally transfers the messages to the router.

The router handles the incoming and outgoing messages
through the device wrapper. The specification of the router
was described previously in Section 4.

Finally, to facilitate the programming of Questlog pro-
grams and to ensure their compilation, we extended the code
editor presented in [10] with Questlog syntax coloring and
error detection.

6. Simulation Results
The Questlog language is well-adapted to messages with in-
tensional destinations as well as to application queries com-
ing from an API or from external applications running in the
network. The queries are on-demand and nodes may enter
or leave the network at any time. Our objective here is to
monitor the Questlog programs at run time and show their
behavior. We thus used a platform that offers these function-
alities. The QuestMonitor [10] system is a visualization tool
that allows to interact with a network on a 2D graphical in-

terface, and visualize the behavior of declarative protocols.
It has three main components:

• The Network Editor: it allows to create groups of nodes,
display their status, and install protocols on them;

• The Network Monitor: it allows to visualize different
groups of nodes, modify the configuration (e.g. radio
range) and interact with the network at run time (e.g.
move nodes, delete links, delete nodes);

• The Node Monitor: it exhibits informations about the
node selected by the user, allows to monitor the activity,
display their data, color nodes and edges, and interact
with individual nodes.

We have modified the API of the QuestMonitor system
in order to allow a node to send Questlog queries in the
network at run time. Figure 5 shows the API where we select
a node (e.g.Node 1) that sends the query, the program to be
used (e.g.OnDemandRouting), and the appropriate query
to be sent in the network (e.g.?Route(1, 10, y, n)). Figure 6
shows a small network where node source ”1” fires a query
?Route(1, 10, y, n) to find a route to the destination ”10”.
The parametersy andn are variables corresponding to the
next hop and the number of hops respectively.

Figure 5. Application programming interface

The Questog programs are installed on each node of the
network. Upon running the query?Route(1, 10, y, n) from
the API, it is transferred to the engine of node source ”1” to
be evaluated using, as we have seen in Section 4, Rules (8),
(9), and (10). Each node propagates subqueries to neighbors
(except neighbor source of the query) if it has no link to the
destination.

Figure 6 demonstrates the propagation of queries in mes-
sages. The source node sends subqueries to its neighbors
(L1) which in turn repeat the same process (Li) if no link or
route to the destination is found. Intuitively, different routes
with different lengths will be received by the source node.
The converge-cast of answers by intermediate nodes on the
OnDemandRoutingprogram follows the same paths of sub-
queries propagation. Suppose that intermediate nodes have
no route to the destination, and that the charge is distributed
uniformly over all the nodes in the network, then the first an-
swer received by the source node will be the shortest route.

ha
l-0

07
53

17
7,

 v
er

si
on

 1
 -

18
 N

ov
 2

01
2

Figure 6. Propagation of queries/answers

In Figure 6 for instance, node5 is the first node that answers
the query.

Figure 7. Routes coloration

Intermediate nodes aggregate answers to the source of the
query. When receiving the answers, the source node1 stores
their discovered routes in the routing table as seen in Figure
8. Each time a route is built, it will be colored using the col-
oration feature of QuestMonitor, Figure 7. That allows us to
visualize the behavior of declarative network protocols upon
link or node failure or departure through direct interaction
with the network. In addition, the tab ”Statistics” in Figure
8 calculates the number and the kind of queries executed on
a node, and results on an average bound of complexity in
communication and computation.

7. Conclusion
We have developed a setting which offers messages with
implicit destinations, which can be seen as mobile agents,
with limited mobile code. They are solved when meeting lo-
cal agents which have the corresponding code and data to
find the best available destination. They ease programming
complex applications where the network is used as an active
middleware. We proposed a data-centric language, Questlog,
that allows to handle intensional destinations as queries and

Figure 8. Visualization of ItemSet route

program complex strategies to evaluate them. We have il-
lustrated the language over classical networking protocols,
such as routing, and are currently developing sensor net-
work applications as well as social network functionalities
including communication, matching, games, etc. The oper-
ational semantics of Questlog has been implemented over
the Netquest system, and we ran simple examples over the
QuestMonitor platform, whose API has been extended to
support interactive queries, and to visualize the execution of
programs.

We are currently experimenting with the different pro-
gramming strategies offered by intensional destinations,as
well as studying the resulting overhead. These strategies al-
low to balance the request between the payload and the des-
tination queries, leading to different evaluation schemes. In
particular the use of intensional destination can offer persis-
tence to data sent to nodes which have disappeared, and can
be rerouted by reevaluating the intensional destination. We
have demonstrated such techniques in another context in [3].
Social networks offer challenging reachability problems that
we plan to address using this framework in the near future.

Acknowledgments
The authors would like to thank Eric Bellemon for his con-
tribution to the first implementation prototype of the system
[10], as well as Christophe Bobineau, Christine Collet, and
Fuda Ma, for fruitful discussions. This work has been sup-
ported by the Agence Nationale de la Recherche, under grant
ANR-09-BLAN-0131-01.

References
[1] M. Abadi and B. T. Loo. Towards a declarative language and

system for secure networking. InProc. NETB’07, pages 1–6.
USENIX Association, 2007.

[2] S. Abiteboul, M. Bienvenu, A. Galland, and E. Antoine. A
rule-based language for web data management. InPODS,
pages 293–304, 2011.

[3] A. Ahmad-Kassem, E. Bellemon, and S. Grumbach. Seamless
distribution of data centric applications through declarative
overlays.BDA’11, October 2011.

ha
l-0

07
53

17
7,

 v
er

si
on

 1
 -

18
 N

ov
 2

01
2

[4] G. Alonso, E. Kranakis, C. Sawchuk, R. Wattenhofer, and
P. Widmayer. Probabilistic protocols for node discovery in
ad hoc multi-channel broadcast networks. InProc. ADHOC-
NOW’03, 2003.

[5] F. Bancilhon. Naive evaluation of recursively defined rela-
tions. InOn knowledge base management systems: integrat-
ing artificial intelligence and database technologies, 1986.

[6] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic
sets and other strange ways to implement logic programs (ex-
tended abstract). InPODS ’86: Proceedings of the fifth ACM
SIGACT-SIGMOD symposium on Principles of database sys-
tems, pages 1–15, New York, NY, USA, 1986. ACM. ISBN
0-89791-179-2.

[7] M. Bauderon, S. Grumbach, D. Gu, X. Qi, W. Qu, K. Suo, and
Y. Zhang. Programming imote networks made easy. InThe
Fourth International Conference on Sensor Technologies and
Applications, pages 539–544. IEEE Computer Society, 2010.

[8] Y. Bejerano, Y. Breitbart, M. N. Garofalakis, and R. Rastogi.
Physical topology discovery for large multi-subnet networks.
In Proc. INFOCOM’03, 2003.

[9] Y. Bejerano, Y. Breitbart, A. Orda, R. Rastogi, and
A. Sprintson. Algorithms for computing qos paths with
restoration.IEEE/ACM Trans. Netw., 13(3), 2005.

[10] E. Bellemon, V. Dubosclard, S. Grumbach, and K. Suo.
Questmonitor: A visualization platform for declarative net-
work protocols. InMSV 2011: The 8th International Con-
ference on Modeling, Simulation and Visualization Methods,
Las Vegas, USA, 2011.

[11] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and
A. Rowstron. Virtual ring routing: network routing inspired by
dhts.SIGCOMM Comput. Commun. Rev., 36:351–362, 2006.
ISSN 0146-4833.

[12] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A routing
scheme for content-based networking. InINFOCOM, 2004.

[13] B. Chen, H. H. Cheng, and J. Palen. Mobile-c:
a mobile agent platform for mobile c-c++ agents.
Softw. Pract. Exper., 36(15):1711–1733, Dec. 2006.
ISSN 0038-0644. doi: 10.1002/spe.v36:15. URL
http://dx.doi.org/10.1002/spe.v36:15.

[14] A. J. Demers, J. Gehrke, R. Rajaraman, A. Trigoni, and
Y. Yao. The cougar project: a work-in-progress report.SIG-
MOD Record, 32(4):53–59, 2003.

[15] Y. Deng, S. Grumbach, and J.-F. Monin. A framework for ver-
ifying data-centric protocols. InFORTE 2011: The 31th IFIP
International Conference on FORmal TEchniques for Net-
worked and Distributed Systems, Reykjavik, Iceland, 2011.

[16] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec.
The many faces of publish/subscribe.ACM Comput. Surv., 35
(2):114–131, 2003.

[17] P. T. Eugster, B. Garbinato, and A. Holzer. Location-based
publish/subscribe. InNCA, pages 279–282, 2005.

[18] S. Grumbach and F. Wang. Netlog, a rule-based language for
distributed programming. InPADL’10, Twelfth International
Symposium on Practical Aspects of Declarative Languages,
Madrid, Spain, 2010.

[19] A. Holzer, L. Ziarek, K. R. Jayaram, and P. Eugster. Putting
events in context: aspects for event-based distributed program-
ming. InAOSD, pages 241–252, 2011.

[20] D. Kotz, R. S. Gray, and D. Rus. Mobile agents: Future di-
rections for mobile agent research.IEEE Distributed Systems
Online, 3(8), 2002.

[21] L. Kulik, E. Tanin, and M. Umer. Efficient data collection and
selective queries in sensor networks. InGSN, pages 25–44,
2006.

[22] C. Liu, Y. Mao, M. Oprea, P. Basu, and B. T. Loo. A declara-
tive perspective on adaptive manet routing. InProc. PRESTO
’08, pages 63–68. ACM, 2008.

[23] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe,
and I. Stoica. Implementing declarative overlays. InProc.
SOSP’05, 2005.

[24] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrish-
nan. Declarative routing: extensible routing with declarative
queries. InProc. ACM SIGCOMM ’05, 2005.

[25] B. T. Loo, T. Condie, M. N. Garofalakis, D. E. Gay, J. M.
Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and
I. Stoica. Declarative networking: language, execution and
optimization. InProc. ACM SIGMOD’06, 2006.

[26] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
Tinydb: an acquisitional query processing system for sensor
networks.ACM Trans. Database Syst., 30, 2005.

[27] A. Malekpour, A. Carzaniga, F. Pedone, and G. T. Carughi.
End-to-end reliability for best-effort content-based publish/-
subscribe networks. InDEBS, pages 207–218, 2011.

[28] P. J. Marron and D. Minder.Embedded WiSeNts Research
Roadmap. Embedded WiSeNts Consortium, 2006.

[29] J. L. Martins and S. Duarte. Routing algorithms for content-
based publish/subscribe systems.IEEE Communications Sur-
veys and Tutorials, 01 2010.

[30] C. E. Perkins. Ad-hoc on-demand distance vector routing. In
In Proceedings of the 2nd IEEE Workshop on Mobile Com-
puting Systems and Applications, pages 90–100, 1999.

[31] R. Ramakrishnan and J. D. Ullman. A survey of research on
deductive database systems.Journal of Logic Programming,
23:125–149, 1993.

[32] A. Ricci and A. Santi. Designing a general-purpose program-
ming language based on agent-oriented abstractions: the sim-
pal project. InSPLASH Workshops, pages 159–170, 2011.

[33] U. Srivastava, K. Munagala, and J. Widom. Operator place-
ment for in-network stream query processing. InProc.
POCS’05, pages 250–258, 2005.

[34] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications.SIGCOMM Comput. Commun. Rev., 31,
2001.

[35] L. Vieille. Recursive axioms in deductive databases: The
query/subquery approach. InExpert Database Conf., pages
253–267, 1986.

[36] D. W. Wall. Messages as active agents. InPOPL, pages 34–
39, 1982.

ha
l-0

07
53

17
7,

 v
er

si
on

 1
 -

18
 N

ov
 2

01
2

