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Abstract

Performance in a perceptual task improves with practice, a phenomenon known

as perceptual learning. Its behavioral aspect has been receiving massive interest

for over a century, while what happens in the brain that underlies the usually

dramatic perceptual improvement remains largely unknown. Over the last two

decades, the psychophysics literature has been focusing on the properties of this

learning that can help pinning down a locus of learning. Early areas in the

visual pathway seem to be excellent candidates. Only recently, physiologists have

been applying recording techniques to look into the neural correlates of perceptual

learning in monkey, showing that fine modifications of the stimulus representation

occur in those areas.

First, we show that these patterns of neural changes are very well accounted for

in a model of unsupervised Hebbian learning relying on the prior distribution of

input stimulus.

Second, we use a population coding/decoding approach to relate physiology to

perception, and show that not much improvement can actually be achieved on

the basis of such representational changes. We discuss alternative options.
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Chapter 1

Introduction

Animals and human beings are constantly receiving sensory information from

their environment. They often have to make decisions based on what they have

just smelt, felt, seen or heard. Because our brain has been evolving over tens

of thousands of years, it may be reasonable to think that it has reached some

optimality with respect to the tasks we have to perform very often. However,

intriguing experiments show that when we train intensively in a perceptual task,

we can get better and considerably improve our decisions. This is what is called

“perceptual learning” in its broad sense. It shows that what our brain does –

from perceiving to deciding – is not naturally optimal, and that “practice makes

[it] perfect” [33].

This would not be surprising if it happened only for high level perceptual skills,

such as learning to speak, to read, to walk, for which everyone knows that new-

born babies are, on the contrary, far from being optimal. Still, perceptual learning

has been observed in adults, and for tasks involving low-level stimulus attributes,

such as position, orientation, or frequency. In this dissertation, we are mainly

interested in learning to discriminate between two differently oriented visual stim-

uli. Human beings can improve their discrimination threshold by up to 70%. The

question of what changes in the brain that yields such a behavioral improvement

is still a hot and much debated question. And it is a very challenging one. Many

researchers have studied either the psychophysical or the neurophysiological as-

pect of perceptual learning, but few people have tried to reconcile both sides: can

the observed neural changes account for the behavioral improvement?

1



2 Chapter 1. Introduction

We start this dissertation by reviewing what is known about the neurophysiology

and the psychophysics of perceptual learning (chapter 2).

We then present the framework of population coding (chapter 3), a starting point

to all the models we use in this dissertation. It describes how the information

about a sensory stimulus is encoded in large pools of cells.

In chapter 4, we first address the question of how the observed neural changes

can be accounted for, by suggesting and discussing models of learning “without

teacher”. These models are mainly based on the idea that during the course

of learning a task, one is presented the same stimulus repeatedly during hours.

The learning algorithm is therefore likely to be very sensitive to the probability

distribution of the stimulus. Furthermore, learning has been shown to occur even

when the subject is given no feedback [15, 12, 33]. We find that our models can

account for the neural changes observed in physiology, and can also interestingly

replicate the changes obtained in another model by Teich & Qian, 2003 using

completely different methods [65].

As we will see in chapter 2, most psychophysical studies lead to the conclusion

of an early locus for the underlying neural correlates: V1, V2 ? Does physiology

really agree with that ? In chapter 6, we relate the modifications of neuronal

properties to the observed psychophysical performance in the task. More specifi-

cally, we address the question of how much behavioral improvement is predicted

by the neural changes. To this end, we add to our encoding model (chapter 3)

a model of stimulus reconstruction (decoding), on the top of which we finally

have a model of perceptual decision (chapter 5). This general architecture can

be found in figure 5.2, p. 56. By considering only changes of the encoder, we

show that physiology can predict less than half of the perceptual improvement

observed in psychophysics (chapter 6). We conclude that learning the encoder is

very likely not to be the full story. We finally discuss the extent to which learning

the decoder could account for the rest of the learning.



Chapter 2

Background

2.1 Introduction

As stated in the introduction, “perceptual learning” designates a modification of

decision skills related to perception of sensory signals. Learning is in fact a major

property of our neural circuitry. Without plasticity, our brain would not be able to

evolve from birth, and the reader would certainly not be so well named. Learning

has been shaping us for long, and of course this process also crucially depends

on our environment, on what we perceive. Therefore, it may seem difficult to

extract a clear definition of perceptual learning. Is learning the understanding of

a spoken foreign language part of the perceptual learning phenomena? In fact, in

the literature, perceptual learning is restricted to very low-level tasks: learning

the discrimination of visual contrasts, learning the estimation of the direction of

an object’s motion, learning to recognize textures, faces, . . . To provide a more

formal definition of perceptual learning, let us quote [22]:

Any relatively permanent and consistent change in the perception of
a stimulus array following practice or experience with this array will
be considered perceptual learning.

Another criterion that goes the same way is that of the non-consciousness of

the learning process. Perceptual learning refers to a form of learning where the

subject eventually does not “know” anything new, explicitely. This criterion

naturally restricts the definition of perceptual learning to a narrower range of

tasks, often involving low-level characteristics of the stimulus in play.

3



4 Chapter 2. Background

Finally, perceptual learning is restricted to long-lasting modifications of the be-

havior, contrary to the “adaptation” phenomenon which stands for perceptual

changes at a smaller time scale and sets the stage for famous visual illusions (see

[7] for a review).

Perceptual learning has been observed in all modalities: vision, olfaction, so-

matosensation, audition. As we shall see later (section 2.3, page 10), the neural

correlates of the behavioral improvement are better revealed in the last three

modalities than they are for vision. Changes in the brain are dramatic in the

auditory, olfactory and somatosensory cortices, whereas they seem to be more

subtle in the primary visual cortex.

Physiological studies that we sum up in section 2.3 show that the neural rep-

resentations of basic features of the visual stimulus change during the course

of learning. At the same time, resulting behavioral changes are easily assessed.

This makes of perceptual learning a very interesting paradigm to understand the

neural code.

In this chapter, we review the psychophysical aspects of perceptual learning – with

special emphasis on orientation discrimination – before summing up the recent

discoveries related to its neural correlates. The purpose of this introductory

chapter is not to provide an exhaustive review of perceptual learning (which is

to be found, up to 2002, in [16], or in more recent reviews like [13, 14, 19, 31])

but rather to give a general feeling of the complexity of the phenomenon, as

well as a sense of the crucial questions in play, which will prove useful to the

understanding of further discussions in this dissertation. Some details about

perceptual learning in orientation discrimination are also needed, because a whole

chapter herein (chapter 6) is aimed at bridging psychophysics and physiology

within this paradigm.

2.2 Psychophysics

Perceptual learning has been studied psychophysically for decades [22]. In such

studies, a subject is trained to perform a task under a certain set of conditions,

until it reaches an asymptotically stable level of performance. Performance usu-

ally increases under this set of conditions as the subjects trains. The transfer of
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the learning to other untrained sets of conditions is then tested. Alternatively,

the same conditions are used, and the transfer to a new task is evaluated.

2.2.1 A wide range of tasks

Perceptual learning occurs in many submodalities in each sense. It has been

probed in a great variety of tasks. Most tasks involve low-level characteristics

of the stimulus. In audition, discrimination of sound frequency improves with

training [51]. In somatosensation, improvements in tactile discrimination of po-

sition [53] and frequency [50] have been reported. Vision offers a much better

control of the stimulus compared to other modalities, and has therefore received

even greater interest: visual discrimination of position [9], hyperacuity [15, 27],

orientation discrimination [54], direction of motion [3, 4] and many more.

Perceptual learning has also been studied in more complex tasks: discrimination

between novel faces in noisy contexts [25], research of a particular shape in an

array of distractors [61], or identification of its “odd element” [62]. A recent study

showed that even training in action video games is capable of altering a range of

visual skills [59].

2.2.2 Two different time scales

Learning has been observed to occur at two different time scales (see [34] for

a review). A fast learning is often reported within training sessions, and is a

matter of minutes or hours. Usually, the resulting increase of performance does

not last for long, and the subject has to start learning almost from scratch at the

beginning of the next session. “Almost” means that performance does actually

increase from session to session, following a lower time constant. This slower

form of learning seems to require “consolidation phases”, e.g. the night between

two training days [54]. In many studies, both time constants have been observed

within the same subjects.

A. Karni and G. Bertini [32] speculate that fast learning would reflect “the set-

ting up of a task-specific processing routine for solving the perceptual problem”.

On the contrary, they think of slow learning as revealing an “ongoing, perhaps

structural, modification of basic representations within the processing system”.
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2.2.3 Specificity of the learning

Learning has proved to be often specific to i) the properties of the stimulus, and

ii) the task itself. As discussed below, these two properties of perceptual learning

have major implications for our understanding of i) where learning occurs and ii)

what is actually being learnt.

Stimulus specificity

Most psychophysical studies of perceptual learning over the last decade have been

reporting that the improvement obtained after training is often restricted to stim-

uli similar to the trained stimulus. For example, in visual tasks where the stimulus

involves a given orientation (grating waveform discrimination, texture discrimi-

nation, vernier, . . . ), learning does not transfer to the orthogonal orientation.

Even more surprising is the finding in [54, 60] that performance is significantly

worse after than before, at the orthogonal orientation (in contradiction with [67]

in which an improvement is reported for the same task).

This specificity has been invoked to infer the locus of learning. If learning is

specific to a given property of the stimulus, areas where neurons are selective

to this property, and better, areas where this property is represented with the

finest resolution, are most likely to host the underlying neural modifications. For

example, the fact that orientation discrimination does not improve in untrained

locations in the visual field gives priority to areas where the retinotopy is pre-

served, and preferentially where neurons have small receptive fields. Similarly,

the specificity to the orientation of the stimulus favors areas where neurons are

orientation selective (see 2.3.2 for more details about orientation tuning).

Recently, however, [36] found that learning the discrimination of motion direction

can transfer to an untrained direction, provided the difficulty of the task is mod-

erately reduced. They hypothesize that the restriction of the learning may stem

from the extreme difficulty of the tasks usually reported in the literature. They

conclude from the observed generalization that neural correlates should also be

found in higher-level areas even in “low-level” tasks.
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Task specificity

In most cases, training in one particular task does not yield any improvement in

other tasks involving the same stimulus characteristics. For example, [9] trained

observers in a bisection task, where subjects were asked to report whether, in a

pattern of three parallel segments ‖|, the middle segment is shifted toward the

left one or toward the right one. They showed that the subjects dramatically

improved their levels of performance in this bisection task, whereas they did not

improve in an orientation discrimination task involving the same stimulus orien-

tation and position as in the trained bisection task. Similarly, no improvement

was found in a vernier discrimination with similar attributes. On the contrary,

testing the same observers in the same bisection task, in which the left and right

segments were more spaced out, revealed a significant amount of learning.

If the stimulus specificity of perceptual learning has been used to advocate in favor

of early neuronal modifications, on the contrary the task specificity suggests that

learning may in fact occur at multiple levels of visual processing [12, 9]. Indeed,

if the neural basis was to be found in early areas only, tasks involving the same

stimulus attributes (finely represented in those areas) would show at least partial

transfer of learning from one another.

In some cases, however, learning can transfer to another task. A study by N.

Matthews showed that subjects trained in a motion direction discrimination task

show better performance in orientation discrimination, (the inverse transfer is not

true, though) [39]. The same researcher demonstrated that the improvement in

orientation discrimination through training also yields better contrast sensitivity

[40].

Studying the task transferability also helps determining what the subjects are

actually learning. For example, the above mentioned subjects in [9] certainly

develop a strategy specific to a bisection task, that is not helpful in vernier or

orientation discrimination. Furthermore, the transfer to other tasks is subject to

variability across observers. This also suggests that there may not be one single

strategy to solve a perceptual task, but different possibilities, which makes the

understanding of the neural basis of perceptual learning all the more challenging.
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2.2.4 Subsequent theories

In an attempt to explain all these psychophysical findings (timing, specificity,

variability) within clean and unified frameworks, a few theories of the possible

learning mechanisms have emerged recently. They are reviewed in [14]. The

reverse hierarchy theory [1] hypothesizes that high cortical areas are the first

ones to undertake modifications, and that lower areas carry on if necessary. In

[13], M. Fahle contrasts two theories of signal detection improvement: an early

selection theory stipulating that learning a perceptual skill is about getting rid

of irrelevant signals and raising the signal-to-noise ratio as soon as possible in

the visual pathway, and a late selection theory, in which irrelevant signals are

removed in later stages of cortical information processing, relevant signals being

“selected” at those stages. Analogies with attentional processes have been also

inspiring these different alternatives.

2.2.5 Orientation discrimination

In this dissertation, orientation discrimination is a case of special interest. We

here review a couple of studies, summing up what is currently known of the

behavioral aspects of learning this type of discriminative skill.

Learning the discrimination between two slightly different orientations can be

achieved by different task paradigms. The one-interval setting consists in showing

only one oriented stimuli and asking the observer to tell whether it was rotated

clockwise or anticlockwise from a reference which is not shown [54, 49]. In the

two-intervals setting, two oriented stimuli with slightly different angles are shown

successively. The subject is to tell whether the second stimulus was rotated

clockwise or anticlockwise from the first one [56]. Alternatively, one can ask

the subject to tell whether the stimuli were tilted in the same direction from an

unshown reference [68]. Usually, auditory feedback (correct, incorrect) is provided

after each trial.

Different sorts of visual stimuli have been used. Some of them are reported in

figure 2.1. The first pattern is a simple oriented line. The second pattern has

been designed to avoid giving the subject contextual cues other than orientation

difference (luminance change at a certain screen area, rotation illusion, . . . ).
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Figure 2.1: Left: different stimuli used in orientation discrimination tasks:

a simple oriented line [67, 60, 41, 39] and a noisy grating with random

spatial phase [56]. Right: the discrimination performance increases (the

Just Noticeable Difference (JND) – see page 59 – decreases) as the subject

trains. Reprinted from [54].

In the domain of orientation discrimination, three influential studies are always

quoted: Vogels and Orban 1985 [67], Shiu and Pashler 1992 [60] and Schoups et

al. 1995 [54]. All studies showed a dramatic improvement after weeks of training

(figure 2.1, right). [60] showed that the improvement is restricted to the trained

location: when the stimulus is spatially shifted away from the trained location

in the visual field, subjects exhibit the same discrimination threshold as before

learning, and have to learn from scratch if they want to improve at that new

location. The transfer was actually tested for extreme positions in the visual

field: improvements for a stimulus positioned in one corner did not transfer to

other corners. As mentioned above (section 2.2.3, page 6), this position specificity

suggests that the underlying neural changes are more likely to be located in areas

where the retinotopy is conserved. However, according to Schoups et al., “the

precision of the retinotopy, rather than the retinotopy itself, will be relevant

in the localization of the learning effect”. Indeed, the retina is topographically

mapped into many cortical areas in the visual pathway: from V1 to up to area

TEO [6]. Furthermore, the farther the area is from the retina, the worse the

precision of the mapping. Thus, in order to pin down one of those areas, one
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would need to compare i) the minimal distance from the trained position at

which performance drops and ii) the radius of the receptive fields in the area. In

light of these considerations, [54] investigated the transfer to new positions using

a finer resolution. They showed that the interstimuli distance can be as small

as the diameter of the stimuli – stimuli abutting but not overlapping – for the

learning not to transfer. They also reported that “the trained stimulus could be

located as close as 1.6 deg from the vertical meridian without affecting the other

hemifield”. They concluded that early areas such as V1 or V2 are most likely to

host the neural changes, while V3 and V4 are certainly excluded.

The same study [54] also looked into the interocularity of the learning. They

found that training with one eye equally (or almost equally) improves performance

of both eyes. They argue that it is not in contradiction with an early locus

of learning. The first reason is that binocular cells are activated even when

the subject closes one eye, which means that potential learning effects may not

necessarily be restricted to monocular cells. The second reason it that although

some neurons exhibit strong occular dominance in V1 and V2, this feature seems

to be negatively correlated with orientation selectivity [5].

Finally, all 3 mentioned studies showed that the improvement is restricted to the

trained orientation (see above, page 6). It should be mentioned, however, that

they do not assess the transfer to the full range of orientations. Rather, they only

look at what happens at the orientation orthogonal to the trained orientation,

assuming that since it is the farthest orientation, intermediate angles would not

show less transfer. When looking at the relationships between neural changes and

behavioral performance (see chapter 6, page 61), we found that the psychophysics

literature is currently lacking a test of transfer across the full range of orientations.

2.3 Neurophysiology

As reviewed in [24], the neural substrate of perceptual learning includes changes

in cortical maps, in the temporal characteristics of neuronal responses, and in

modulation of contextual influences. The extent of these neural changes differ

between sensory modalities. First, we briefly review what happens in the audi-

tory and somatosensory cortices following practice. Second, we sum up a couple
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Figure 2.2: The reorganization of the spatial mapping of the skin surface

onto the somatosensory cortex, following intensive practice in a tactile dis-

crimination task. The dark patch on the schematic hand (left) represents

the trained area. The cortical map is topographic, hence the direct corre-

pondance between the different parts of the hand and the cortical grids.

Reprinted from [50].

of physiological studies aimed at understanding the neural basis of orientation

discrimination learning.

2.3.1 Dramatic reorganization of the cortex

Several studies by G. H. Recanzone have focused on the neural changes in the

auditory and somatosensory cortices following intensive practice in sensory tasks

[50, 51]. Their results show that these cortices are capable of large scale reor-

ganization in a way that tends to over-represent some attributes of the trained

stimulus. For example, [51] shows that, when a monkey is trained in a tac-

tile discrimination task, the area of cortex onto which the trained area of skin

on the index finger is mapped extends significantly. Thus, this skin area is over-

represented as compared to before learning (see figure 2.2). In the auditory cortex,

the representation of the trained stimulus is also made better by a densification

of the tonotopic map around the trained frequency.

This kind of topological reorganization of cortical maps has been observed even

without the need of running the subject through a supervised perceptual task.
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For example, [47] applied a coactivation protocol in which an small area on the

index finger of the subject was stimulated during 3 hours – the subject was not

attending the stimulation, and behaved as in a normal day of work. The stim-

ulation spanned all the (partially overlapping) receptive fields in the area, such

that all neurons were coactivated in a Hebbian manner, which strenghtened their

mutual interconnectedness. Before and after this coactivation process, the sub-

ject was tested in a spatial tactile discrimination task: his finger was stimulated

at two sligthly different positions, and he was to tell whether he felt one or two

stimulations. The performance in the task increased after the coactivation period,

that is, the distance threshold decreased significantly.

2.3.2 Fine-retuning in the domain of vision

Until recent years, the primary visual cortex was considered to be a fixed “hard-

wired” module of visual processing. This was largely supported by Hubel and

Wiesel’s experiments on the development of cat and monkey visual cortices, in

which they showed that if the visual cortex in young animal is still very plastic,

no dramatic reorganisation of it can occur after a certain age [29]. Recent studies

have changed this view, providing evidence for adult plasticity in these areas (see

[23] for a review).

Especially, four recent neurophysiological studies have revealed that the dramatic

changes that occur in the somatosensory or auditory cortices are not reproduced

in the visual cortex, and that neural correlates of perceptual learning in this locus,

if any, are made of more subtle changes of the neuronal tuning properties. We

here review what these tuning properties are, before summing up the physiological

reports of the four studies.

Tuning properties of visual cortical cells

In V1 (the first cortical area after the retina and the lateral geniculate nucleus

(LGN) in the early visual pathway), neurons have receptive fields covering small

continuous areas on the retina. Moreover, they are spatially organised such that

neighboring neurons in V1 have neighboring receptive fields on the retina (“retino-

topy”). As a result, the retina is topographically “mapped” onto the cortex. This
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property propagates to further areas in the visual pathway: V2, V4, MT, . . . Re-

ceptive fields of V1 neurons are smaller than in V2 and V4, where the spatial

overlap is therefore greater.

The visual cortex also shows a functional organization in “columns”. In one

column, hundreds of nearby neurons have similar “preferences” with respect to

certain properties of the visual stimulus spanning their receptive field. Thus, in

addition of being selective to spatial location due to their receptive fields, neurons

in V1, V2 and V4 are selective to contrast, color, orientation, spatial frequency, or

exhibit a preference for one of the two eyes (occular dominance). In MT, one find

neurons selective to the direction of motion, and even to faces. Preference to those

properties is changing smoothly from one column to its neighbors, resulting in a

spatial organization of selectivity called a cortical feature map. Optical imaging

techniques have allowed the measurement of such maps, one of which is given as

an example in figure 2.3.

In this dissertation, we are principally concerned by orientation selectivity. Most

neurons in the visual cortex respond maximally when the stimulus covering their

receptive field has a particular orientation. The response gradually decreases

as the stimulus angle steps away from the preferred orientation. Furthermore,

physiological recordings show that this response is inherently noisy. The average

activity in response to the full range of orientations is called an orientation tuning

curve. An example of such curve is reported in figure 2.3.

Note that this representation of the neuronal response properties assumes a “rate

code”, in which the information is encoded in firing rates (measured with a certain

time window) while the precise spike timing is not taken into account.

One-neurons studies

Several studies have provided evidence that under certain conditions, the behav-

ioral performance as well as its improvement with practice can be accounted for

by the activity of single neurons. For example, E. Zohary and coworkers recorded

the activity of single cells before and after training a monkey in a motion direc-

tion discrimination task. They also combined the recordings with psychophysical

experiments in order to get the perceptual performance and improvement. From

the recordings, they computed the “neuronal sensitivity”, that is, the hypothe-
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Figure 2.3: Left: orientation tuning in cat V1. The mean response of a

cell to a full range of orientation is plotted for different constrasts, showing

that the tuning width is constrat invariant. Taken from [28]. Right: an

orientation map in adult macaque monkey V1, taken from [5]. The map

spans a 7.5 mm × 5.5 mm area on the surface of the cortex. Each neuron

is colored according to its preferred orientation, using the color key on the

left. Preference gradually changes, forming a smooth map composed of

“iso-orientation patches”. The typical distance between two such blobs of

same orientation preference is 1 mm.
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Figure 2.4: The striking correspondance between psychophysical and neu-

ronal level of performance, as well as patterns of improvement, in a coarse

discrimination task involing the motion direction of a random dot field.

The x-axis can be understood as the level of difficulty of the task (the task

gets easier and easier as the dot coherence increases). Reprinted from [69].

sized performance of an ideal observer based on the responses of single neurons.

The neuronal sensitivity mirrored the perceptual sensitivity with a rather striking

precision (see figure 2.4).

More generally, a wide range of single neurons experiments have been carried out

in W. T. Newsome’s laboratory. One of their purposes, as stated in [45], is to

understand the link between the activity of single cells and perception. It is a

first step, in their view, to understand how information can be combined by many

cells. Their experimental data, such as that of [69] presented above, show that

“significant number of [single] neurons perform at levels that compare favorably

with the overall behavioral performance of the organism”.

No changes in receptive field properties

Contrary to what happens in audition and somatosensation, no major changes

in the basic properties of the neurons’ receptive fields (e.g. location, size, orien-

tation) have been reported in the visual cortex. R. E. Crist and coworkers found

that training monkeys in a bisection discrimination task did result in a dra-

matic perceptual improvement, while receptive fields in V1 neurons remained un-

changed. In addition, “visual topography was indistinguishable between trained
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and untrained animals” [10].

Therefore, neural changes, if any, have to be found in more subtle response prop-

erties such as the tuning amplitude or width.

Gain modulation

The first physiological investigations in the neural basis of improvements in ori-

entation discrimination have shown that specific gain modulation occur in V1

and V2. A gain depression for neurons tuned at and around the trained orienta-

tion was reported in abstract form by G. M. Ghose [20]. It was confirmed a few

months later by Schoups and collegues [55]. In contrast, no gain modulation was

found in [56] and [21], neither V1 nor in V2. Furthermore, a gain amplification

was found in V4 [68].

The contradictions between these electrophysiological recordings is also mirrored

in the domain of fMRI, where a couple of studies have shown both gain amplifi-

cation and depression in V1 (see for example [17]).

Local sharpening in V1

Further studies have focussed on the sharpness of the tuning. A. Schoups found

that, in V1, neurons tuned at and around the TO exhibited an increase in the

slope of their tuning curves at the TO (see figure 4.3, page 34). This may stem

from a sharpening of the tuning curves, although the widths of the tuning curves

after learning are not reported.

These results were challenged by another study by G. M. Ghose [21] in which “no

conclusive changes that could account for learning at the behavioral level had

been demonstrated”.

Local sharpening in V4

In V4, T. Yang and J. Maunsell reported a global sharpening of the tuning

curves, with a more prominent effect for those neurons tuned at and around the

TO. Similarly, S. Raiguel and collegues found similar patterns of changes as A.

Schoups found in V1 (see above) but more pronounced. They concluded that
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learning mainly modifies the tuning properties of the most informative neurons

in V4 [49]. Moreover, a complementary study suggested that this increase in

slope is more likely to be the result of localized and asymmetric deformations of

the tuning curves on the side of the TO than of a symmetric sharpening. This

was done by comparing the slope of the tuning curves at the trained orientation

with that of the symmetrically opposite point on the other side of the preferred

orientation, which proved to be different for neurons tuned in a range of 22 to 67

degrees away from the TO.





Chapter 3

Population encoding

3.1 Introduction

In the previous chapter (see page 12), we have described the general physiological

properties of the neurons in the visual cortex. In the following few chapters, we

need a model of these neurons that should provide a relevant basis for further

computational explorations in perceptual learning.

As we have seen, in the domain of direction of motion discrimination, several

studies have shown that under certain conditions, only one neuron can be re-

sponsible for the behavioral performance of the subject. However, we know that

information is encoded in large populations of neurons. Hence the use of a pop-

ulation coding approach. It is a simple model where we do not worry about the

underlying connectivity (unlike [65, 57]), but in which all the important elements

of the encoding problem are included: the representation is indeed distributed,

noisy, does possibly include correlations, and the response properties of each neu-

ron directly reflect what is observed in neurophysiology (tuning curves). This

model can in fact be looked on as the simplest reasonable model of encoding that

allows the use of a decoding strategy on top of it. Population decoding will be

introduced in chapter 5 and used in chapter 6 in order to relate perception to

behavior.

19
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3.2 General setting

Within the framework of a population code, one (or more) feature of the vi-

sual stimulus (here, orientation) is encoded by N neurons, through their joint

activities, taken to be a vector of firing rates.

Each cell is characterized by its mean response to a given stimulus as well as

by the variability of its response. Therefore, cell number i is modelled by two

components:

• its tuning curve, which is a bell-shaped function giving the mean firing rate

fi(θ) – number of spikes fired in a given time window – in response to a

certain orientation θ

• the probability density function pi(ri|θ) of evoking a firing rate ri given

a stimulus θ. It incorporates the stochastic aspect of the response. The

activity of the cell is thus a random variable with a dynamic mean fi(θ).

A common and often fair approximation is that of noise independence between

neurons. In this case, the probability of a stimulus with orientation θ evoking the

vector of responses r can be written as

p[r|θ] =
N∏

i=1

pi(ri|θ) (3.1)

3.3 Tuning curves

According to physiological recordings, the function fi(θ), called tuning curve,

is often well approximated by a Gaussian. In which case we have this four-

parameters model:

fi(θ) = bi + fmax

i exp

[
−(θ − θpref

i )2

2σ2
i

]
(3.2)

• θpref

i is the preferred orientation of the neuron, i.e. the stimulus that evokes

the maximum response. The distribution of θpref

i (in other words, the orien-

tation spectrum of the orientation map in V1) has been shown not to be flat:

more neurons code for the horizontal and vertical orientations (the so-called

“principal orientations”) than for others. In our simulations, nonetheless,

we often assume that preferred orientations are evenly distributed.
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Figure 3.1: Two kinds of tuning curves. Red: Gaussian (eq. 3.2), with

θpref = 10 deg, b = 10 spikes, fmax = 50 spikes, and a width at half-height

equal to 70 deg. Blue: rectified cosine (eq. 3.3), with same parameters.

• the baseline bi is the average firing rate in response to non-optimal stimuli.

Typically, it is around 10− 15 spikes per second, in monkey V1 ([68]).

• fmax
i is the maximum firing rate, such that at θ = θpref

i , the neuron fires on

average at bi + fmax
i . In monkey V1, fmax

i is about 20 spikes per second.

• σi characterizes the width of the tuning curve. It is related to the width

at half-height of the tuning curve without baseline, Wi, by the following

equation:

Wi = 2σi

√
2 log 2

It is also possible to use rectified cosine tuning curves:

fi(θ) =

 bi + fmax
i cos

[
2π

3Wi
(θ − θpref

i )
]

if |θ − θpref

i | < 3Wi

4

bi otherwise
(3.3)

Figure 3.1 (left) provides an example for both types of tuning curves.

3.4 Neural variability

When physiologists record the firing rate of cell i in response to a stimulus θ, the

observed value differs from trial to trial. The brain is indeed inherently noisy.

When recording the tuning curves, physiologists actually average over trials, so

that fi(θ) is indeed the averaged firing rate in response to orientation θ. But in
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our framework, we need to simulate trials. To capture this stochastic aspect of

the neuronal responses, we generate each trial by sampling from a distribution

centered in fi(θ). This distribution can be a Poisson distribution, for instance.

In which case :

pi(ri|θ) =
fi(θ)

ri

ri!
exp(−fi(θ)) (3.4)

Note that ri is taken to be a spike count, not rate. If one wants to work with

firing rates, ri is simply obtained by multiplying the rate by the temporal window

∆t. In this dissertation, we will only consider spike counts.

Poisson statistics describes pretty well the noise in neurons with low spike counts

in the given time window. For higher activities, the noise is better represented

by a Gaussian distribution:

pi(ri|θ) =
1

σn

√
2π

exp

[
−(ri − fi(θ))

2

2σ2
n

]
(3.5)

Poisson statistics has a Fano factor (variance to mean ratio) equal to unit, that

is, the variance equals the mean. According to neurophysiological recordings, the

Fano factor is more likely to lie between 1 and 2, which can be modelled in the

case of Gaussian noise by setting the variance σ2
n different from the mean fi(θ).

An example of a trial in a population of 100 neurons is depicted in figure 3.2.

3.5 Code accuracy

Whenever scientists work with codes, they need to have some way to assess their

accuracy. For example, in digital information transmission, the quality of the code

is given by the mutual information (also called Shannon information) between the

source and the receiver. This information is “input independent” (the variability

due to the variability in the input is indeed averaged away), and as such, is not

well-suited to population codes. When working with neural population codes,

one would like to know, given a stimulus and a subsequent response from the

population, what certainty we have about the estimate of the stimulus from the

response. Chapter 5 will present various ways of decoding the population response

(i.e. guessing the underlying stimulus), but here we want to know, independently

of the decoder, how much information about the stimulus is carried by the code.
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Figure 3.2: One “trial”, i.e. the activity of the population – generated by

the model – in response to a stimulus (here θ = 20 deg). Firing rates of

100 neurons are sampled from Gaussian distributions (eq. 3.5) with a Fano

factor equal to 1.3. Tuning curves are Gaussians with same parameters as

in figure 3.1.

An appropriate measure of this information is Fisher information. It is defined

as the expected value of the curvature of the log-likelihood of the response given

the stimulus:

IF (θ) = −
∫

p(r|θ)∂
2 log (p(r|θ))

∂θ2
dr (3.6)

Simpler expressions can be derived when we know the analytical form of the

log-likelihood, namely in the case of Poisson or Gaussian variability:

Poisson noise IF (θ) =
N∑

i=1

f ′2i (θ)

fi(θ)
(3.7)

Gaussian noise (Fano k) IF (θ) =
1

k

N∑
i=1

f ′2i (θ)

fi(θ)
+

1

2

N∑
i=1

f ′2i (θ)

f 2
i (θ)

(3.8)

The latter equation actually holds assuming that the variance of the neural re-

sponse depends linearly on its mean, for each neuron. This is a commonly used

simplifying assumption, hence the use of the Fano factor as a noise characteriza-

tion (variance = mean × Fano factor).
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A very important theorem related to Fisher information is the Cramer-Rao the-

orem. It states that

The variance of any unbiased estimator of the real value θ
has variance greater than the inverse Fisher information at
θ:

if
〈
θ̂
〉

= θ then σ2(θ) ≥ 1

IF (θ)
(3.9)

We will see that some estimators may sometimes have a lower variance than that

allowed by the bound, in which case they are actually strongly biased. As we

shall see later as well, under the assumption that the stimulus is indeed decoded

somewhere at some point in the brain, the psychophysical performance in a typ-

ical discrimination task only depends on the bias and variance of the estimator.

Therefore, provided the estimator is unbiased, Fisher information may be looked

on as a measure of discrimination performance.

In fact, a more general version of the theorem may be stated as follows ([8]):

The variance of any estimator of the real value θ has a bias
b and variance σ2 that are such that:

σ2(θ) ≥ (1 + b′(θ))2

IF (θ)
(3.10)

where b′ stands for the first order derivatives of the bias with respect
to the stimulus.



Chapter 4

A mechanistic model of neuronal

fine re-tuning

4.1 Introduction

We here want to come up with a mechanistic model of perceptual learning. More

precisely, our model should meet the following three requirements:

1. the encoder must be learnt in a way that is highly dependent on the input

distribution. Indeed, we want to further consider the idea that the distri-

bution of stimulus in the task – usually strongly biased toward the trained

orientation – plays an important role in learning

2. moreover, we want the learning algorithm to be unsupervised : no feedback

must be needed to learn the new representation. We indeed want to stay

consistent with the psychophysical finding that feedback is actually not

necessary for perceptual learning to occur

3. the re-representation of the stimulus must have the same properties as the

former representation. Particularly, neurons involved in the “output” of the

learning process must exhibit orientation selective and noisy responses, for

reasons that will become clear later (we actually want to be able to apply

the same decoding schemes – as described in chapter 5 – to evaluate the

new representation in terms of psychophysical performance).

25
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In this chapter, we first re-express the above criteria in more practical terms,

and we present a model that meets all of them. As we shall see, nonetheless,

our first attempt is not successful in generating the same patterns of neural fine

re-tuning as recorded by physiologists. We then explain how the first model must

be incremented in order to eventually predict the tuning curves modifications.

We present the experiments and results, before discussing further issues.

4.2 Our first attempt: a self-organizing string of

neurons

The architecture of the first model we use is depicted in figure 4.1. We know

that in the primary visual cortex, the encoding of the stimulus angle is very well

modelled by tuning curves and variability functions (chapter 3). We want to

incorporate this into our model. Therefore, we have a first layer equivalent to the

populations we have seen so far: a bench of neurons with preferred orientations

evenly distributed between −90 and 90 degrees. The input of the system can thus

be a mere floating point number representing the angle (stimulus). The resulting

activity of the first layer is what we called a “trial” (e.g. see figure 3.2, page 23).

Due to the neural variability, this response is always noisy.

Our model is supposed to learn the encoding of the stimulus other than this

primary encoding in V1. We thus need a second layer that will learn a new

representation of the stimulus from the first layer. We now explain our choice

for this architecture and for the learning algorithm by reformulating the criteria

expressed in the introduction.

4.2.1 Reformulating the criteria

In order to meet the third criterion as stated in the introduction, the neurons in

the second layer should be orientation selective and noisy as well. This naturally

leads us to use what is called a “self-organizing” algorithm. The second layer

auto-organizes so that, eventually, each of its neurons becomes strongly activated

by a continuous subset of neurons in the first layer. Consequently, since the

first layer is continuously orientation selective, neurons in the second layer will
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Figure 4.1: Architecture of the self-organizing string of neuron described

in the text.

be as well. Finally, the noise that comes from the first layer will naturally be

propagated forward to the second layer1. For concreteness, we assume that the

second layer is fully interconnected with the first one. We also assume, without

loss of generality, that the numbers of neurons in the first and second layers are

identical (N).

In order to meet the first criterion, the new representation learnt by the second

layer must differ from one prior distribution of inputs to another. The second

layer should therefore learn from the statistics of the first layer, which directly

reflect the statistics of the input stimulus of course. This naturally conducts us

to use Hebbian learning. To quote [11]:

In 1949, Donald Hebb conjectured that if input from neuron A often
contributes to the firing of neuron B, then the synapse from A to B
should be strengthened.

Another way to express this principle is:

[. . . ] synapses change in proportion to the correlation or covariance

1although quite attenuated because, as we shall see, the second layer acts like a filter of the
first layer.
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of the activities of the pre- and post-synaptic neurons.

Different learning rules have been designed that follow this general principle.

The learning rule we use here is added some competition between neurons, which

has both benefits of making the learning process more stable and allowing self-

organization of the second layer.

Finally, the second criterion is achieved by using an unsupervised learning rule.

4.2.2 The Self-Organizing Map

A very well suited algorithm that meets all the above is Kohonen’s Self-Organizing

Map ([35]). This algorithm2 is originally described (and more likely to be known)

in the case of two-dimensional inputs. Here we adjust it for the needs of one-

dimensional strings of neurons.

In this model, the second layer is fully connected with the first layer, and we

denote by wa the matrix of synaptic weights. When a stimulus is presented, θ,

the first layer has activity r(θ), and the subsequent activation of the second layer

a(θ) is merely the weighted sum of r(θ) using the synaptic weights:

a(θ) = wa · r(θ) (4.1)

After this activity is computed, a “winner” is picked up among neurons in the

second layer. The winner is that neuron with highest activity. The activity in the

second layer is subsequently redistributed around the winner, following a Gaussian

profile. Neurons close to the winner are thus given a strong activity, although

they were not necessarily much activated by the propagation of the input signal

only. We denote by a′(θ) this redistributed activity:

a′i(θ) = exp

[
−(i− iw(θ))2

2σ2
a

]
(4.2)

where iw(θ) is the index of the winner. The difference between i and iw(θ) should

be understood as a circular distance, since the network is toroidal. Finally, the

weights of the afferent connections are updated according to a normalized Hebbian

2we should actually say “this family of algorithms”, for the original SOM developed into
many versions. We here suggest one of them.
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learning rule:

wij =
wij + ε · rj · a′i√√√√ N∑

k=1

(wik + ε · rk · a′i)
2

(4.3)

where ε is a small learning rate. Each line of the weight matrix has unit Euclidean

norm.

The Hebbian learning rule tends to push the weight vector of the most active neu-

ron and its neighbors toward the input vector (by maximizing the dot product).

In other words, neurons become selective and get a “preferred stimulus”, learn

to better represent it, and as a result of the bell-shaped redistribution of activity,

neurons close to each other end up having similar preferred stimuli. Therefore,

this algorithm is suitable for the production of a topographically self-organized

string of neurons selective to orientation.

For computational efficiency, we normalize the response of the first layer (so that

they have unit Euclidean norm) before computing the activity in the second layer.

We also normalize in the same way the subsequent redistribution of activity in

the second layer, before applying the learning rule.

For the sake of simplicity, we bias the initial random weight matrix by reinforcing

its diagonal. Indeed, if the self-organizing algorithm ensures that the first layer

is topographically mapped down to the second layer (neighboring neurons in the

string have neighboring preferred orientations in the input space), neuron i in the

first layer will not necessarily correspond to neuron i in the second layer. Up to a

circular shift of the weight matrix, this can be the case. Therefore, without loss

of generality, we can force the system into developing a “human-readable” weight

matrix.

4.2.3 Computing the resulting tuning properties

Once the network has properly self-organized, the neurons in the second layer

become orientation-selective. Each neuron is therefore characterized by its tuning

curve and the variability of its responses around the tuning curve.

The tuning curve of neuron i in the second layer, evaluated at stimulus θ, is

denoted by fi(θ). It is computed by presenting stimulus θ to the first layer many

times (3000 here). Each time, the activity is propagated to the second layer to get
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ai(θ), and fi(θ) is obtained by averaging over trials. The variability of neuron i

is computed similarly. We think, although not show, that if the noise is Gaussian

in the first layer, it is also Gaussian in the second layer (the activity in the first

layer is a Gaussian vector, and any linear transformation of a Gaussian vector is

a Gaussian vector as well). Hence the only need of computing the variance of the

response around the mean (over trials, generated in the same way as mentioned

above).

4.2.4 Simulation

We now incorporate this learning algorithm into the architecture in figure 4.1.

We run the self-organizing process using a flat distribution of orientations, and

compute the tuning curves (termed “tuning curves before learning”) and the

variabilities as described above. Then, taking the network in its final state (no

resetting – which is supposed to correspond to the stable state of a naive pop-

ulation), we run the network using a prior probability of inputs that favors the

trained orientation. We then compute the tuning curves again (“tuning curves

after learning”). The prior is Gaussian with spread σp. We cannot give any for-

mula, since the process of sampling a stimulus is a bit more complicated than a

single Gaussian sampling because of the circularity of the variable. What actually

really matters is to know that the input distribution is biased toward the trained

orientation, and that σp is a measure of how strongly biased it is.

The parameters of the first layer population are given in the table below.

Parameter Value

N 100

Baseline 0

Amplitude 70 spikes

Fano factor 1.3

Trained orientation 0 deg.

W
(0)
i 40 deg. for all i

σr 40 deg., decreased to 5 deg.

σp 40 deg.

η 0.05, decreased to 0.01
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The learning rate is large at the beginning of the training (0.05), whereas it is

manually lowered to 0.01 after 5,000 iterations, so as to make the topographical

organization of the weights more precise. Similarly, the activity profile in the

second layer is also made broader in the beginning (σr = 40) and sharper in

the end. Every 10 iterations it is multiplied by 0.99 and saturates to 5. Stable

patterns of weights are obtained after 10,000 iterations. Simulating perceptual

learning – i.e. running the SOM algorithm with a peaky prior probability of input

stimulus – takes a bit more iterations (50,000).

4.2.5 Results

The results of the self-organizing process are shown in figure 4.2, for both flat

and peaky priors. The density of neurons tuned close to the TO increases, which

can be seen from the distortion of the weight matrix (top plot): the centers of

the bell-shaped weights profiles are attracted toward the TO.

Direct “geometrical” consequences of this neural recruitment are a sharpening of

the bell-shaped afferent weights for those neurons tuned around the TO and a

widening for neurons tuned farther from the TO3. The sharpening and broadening

propagate to the resulting tuning curves of course (see figure 4.2, bottom left).

Tuning curves are indeed a bit sharper after than before learning, for neurons

tuned at and around the TO, whereas they are much broader for other neurons.

Since the weights are normalized so that they have unit Euclidean norm, the

amplitude of these “weight blobs” drops as they get wider, and vise-versa. Sub-

sequently, in terms of activity, there is a gain amplification for central neurons

and a gain depression for peripheral ones (see the tuning curves after learning de-

picted in figure 4.2, middle left). This result is in contradiction with physiological

data, as reported in abstract form by A. Schoups in [55]. She found a decrease

of activity for those neurons.

As to the neural variability, the main effect of the peaky prior distribution of input

is a significant increase in the Fano factor for neurons tuned at and around the

TO, and a similarly important decrease for neurons tuned around the orthogonal

orientation (figure 4.2, bottom right).

3the reader may want to compare the horizontal blue area in the top or bottom rows of the
right hand side matrix in figure 4.2 with that of the central rows.
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Figure 4.2: Top left: the afferent connections from the first layer to

the second layer, when the SOM algorithm has converged (after 10,000

iterations) with a flat distribution of input stimuli. Top right: the same

connections after another 50,000 iterations with a peaky prior probability

of input centered at the TO (0 degrees here). The two plots share the

same scale. Middle left: tuning curves after learning. Tuning curves are

“normalized” in the sense that the weights were learnt from normalized

inputs and normalized redistribution of activity in the SOM algorithm, in

addition of being normalized themselves. Middle right: the shift in pre-

ferred orientation for each neuron (identified by its preferred orientation on

the x-axis). Bottom left: the width of the tuning curve of each neuron,

before learning (red) and after learning (green). Bottom right: the Fano

factor of each neuron. It is computed by averaging σ2
i (θ)/fi(θ) over θ,

where σi is the variance of the response computed as described in the text.

In addition, we have multiplied the previous quantity by the constant fmax

(amplitude of the tuning curves of the neurons in the network’s first layer).

It is therefore possible to also compare the Fano factors between layers

(Ff = 1.3 in the first layer).
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4.2.6 Comparison to physiological data

To allow a direct comparison between the new tuning curves and that reported by

[56] following intensive training in monkey (see page 16), we plot the slope of the

tuning curves at the TO for each neuron (figure 4.3, top left), as A. Schoups did.

The slope increases for all neurons tuned farther than 30 deg away from the TO.

However, contrary to the observations in [56], the slope drops after learning for

those neurons that used to have the highest slope (“most informative neurons”).

Similarly, we plot the signal-to-noise ratio at the trained orientation, for each

neuron (figure 4.3, bottom left). We observe that this quantity increases after

learning. The difference is larger for neurons tuned close to the TO. On the

contrary, Schoups and coworkers found a significant decrease.

4.2.7 Discussion

Qualitatively, the shift in orientation preference is similar to that observed in

the auditory and somatosensory cortices (as we saw in chapter 2, page 11). The

main learning effect in our model is indeed the enlargement of the area of cortex

that responds to the trained stimulus. This cortical reorganization, however,

cannot really be interpreted quantitatively. Indeed, sharpening or broadening the

prior distribution of input has been observed to induce a direct augmentation or

diminution of the shift, and the spread of the prior we use is somehow subjective.

This comment holds for all other changes reported above: the sharpness of the

prior controls the intensity of the learning effects.

We can first conclude that a self-organizing string of neurons driven by unsu-

pervised Hebbian learning can encode the prior probability of the input stimulus

through the distribution of its neurons’ stimulus preferences, thus replicating the

neural correlates of perceptual learning in audition and somatosensation modal-

ities [50, 51]. It fails, however, to fully predict the neural changes observed in

the early visual areas following intensive practice. Tuning curves do not sharpen

nor broaden in the same fashion as was reported by A. Schoups and her col-

leagues, and qualitatively confirmed by further studies [68, 49]. Hypothesized

gain modulations for neurons tuned near the TO [20, 55] are not replicated nei-

ther. Finally, the model comes up with an untested and presumably not easily
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Figure 4.3: Top left: the slope at the trained orientation of the tuning

curve of each neuron, in our simulation, before learning (red) and after

learning (green). Each neuron is represented by the distance of its preferred

orientation to the TO (Abs(PO-TO)). Bottom left: the signal-to-noise

ratio of each neuron at the trained orientation. Top and bottom right:

the same data obtained by Schoups et al. from physiological recordings.

Reprinted (and recolored) from [56].



4.3. Learning lateral connections 35

testable physiological prediction: a shift of orientation preference (cf page 15).

An optimistic reader would acknowledge, however, that the model used herein

does predict specific patterns of neuronal fine re-tuning, although these are in

partial contradiction with physiological data.

The learning rule we have used in this section meets the requirements we set

up in the introduction. Still, it has a number of shortcomings and biological

incompatibilities. Picking one winner in the whole population, for example, is

artificial. So is the redistribution of activity according to the Gaussian profile.

It has been suggested that perceptual improvement would partially stem from

a modification of the lateral interactions among neurons involved in the task

[9, 23, 24], as an alternative to – or in addition of – other top-down influences.

To quote [9]:

[The degree of specificity shown by perceptual learning] suggests that
the learning cannot be achieved by cortical recruitment alone, as pro-
posed in current models, but is likely to involve a refinement of lat-
eral interactions within the cortex and possibly a gating of lower level
changes by attentional mechanisms.

In SOM, the redistribution of activity is somehow equivalent to fixed lateral

interactions. In the next section, we investigate further the idea of learning

lateral connections.

4.3 Learning lateral connections

Our first attempt failed to fully replicate neurophysiological findings. In partic-

ular, sharpening of the tuning curves was relatively modest. The main reason

why SOM does not allow much sharpening of the tuning curves may reside in

the static aspect of the lateral connections. We here want to augment the pre-

vious model with dynamic lateral interactions. To do so, we get inspired by the

LISSOM model, described below.

4.3.1 LISSOM

LISSOM ([42, 43, 63]) stands for “Laterally Interconnected Synergetically Self-

Organizing Map”. It takes after the original SOM model described above, and
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incorporates more biologically plausible lateral interactions among neurons in

the map. These lateral interactions are also able to learn. LISSOM has proved

very good at modeling some aspects of the mammalian visual cortex, e.g. ocular

dominance, neuronal selectivity to orientation, to direction of motion, in a way

that reflects the topographic mapping of the retina onto the cortex.

Warning Shrinking SOM to a one-dimensional model with the same learning

algorithm, did not represent, in our opinion, a big change in the concept em-

bodied in SOM. SOM is indeed usually looked on as a “machine learning mech-

anism”, where a population of units learns to represent input patterns as accu-

rately as possible. Therefore, it does not really matter whether the data is one-

or two-dimensional. In contrast, LISSOM was primarily intended to model small

pieces of visual cortex, that is, sheets of neurons. Reducing LISSOM to a one-

dimensional network thus sounds a bit more ambiguous, for 2D-retinotopy is one

of the key features of the model. Instead of saying we are using LISSOM, we

would rather say we are using LISSOM’s algorithm while drastically changing its

architecture.

Again, this reduction of the LISSOM model is justified by:

• the need of having as input a stimulus value θ, as opposed to a two-

dimensional retinal pattern of activation oriented at θ

• the need of having as output a population code of the stimulus value, so as

to apply decoding strategies to assess perceptual performance as described

in chapter 5.

Although these requirements could be fulfilled by using the traditional 2D LIS-

SOM architecture, but it would obviously not be the easiest way to meet them.

It will be for future studies to work on a more realistic two-dimensional model

where LISSOM’s most powerful features would be fully exploited.

Architecture The overall mechanism is depicted in figure 4.4. In LISSOM, the

afferent connections are different from that of SOM: each neuron in the second

layer receives input only from a continuous subset of neurons in the first layer.

Neurons therefore have “receptive fields”. Furthermore, each neuron in the sec-

ond layer is connected to a continuous subset of neurons in the same layer. More
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Figure 4.4: LISSOM’s algorithm applied to one dimensional populations of

neurons.

precisely, considering one neuron, nearby neurons send excitatory input to it,

whereas neurons within a wider range send inhibitory signal. All these connec-

tions can be summarized in three weight matrices: wa for the afferent, we for the

excitatory, and wi for the inhibitory connections. Each matrix is in fact null ex-

cept within a certain radius (αa, αe or αi) from its diagonal (which corresponds to

the receptive fields). The use of matrices simplifies the notations in what follows.

Response generation Activity in the second layer is computed in two steps:

• first, the activity r in the first layer propagates to the second layer through

the afferent connections (like in SOM). The afferent activity is thus given

by

a(θ) = γa(wa · r(θ)) (4.4)
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Figure 4.5: The activation function we use. θl and θu are to be adjusted

so that the activity of each neuron stays in the linear part of the function

(no saturation). Reprinted from [44].

where γa is a constant scaling factor. The afferent weights matrix is now

denoted by wa.

• this afferent contribution is further processed by lateral connections (recur-

rent process), and the activity in the second layer settles down according

to the following equations:

First iteration a′0 = σ [a]

Iteration i a′i = σ [a + γe(we · a′i−1)− γi(wi · a′i−1)]
(4.5)

A few iterations (we used 5) are sufficient for the activity to reach a stable

state. σ is a piecewise linear approximation of a sigmoid activation function

that keeps the activity between 0 and 1 (see figure 4.5). γe and γi are

constant scaling factors that determine the relative strength of excitatory

and inhibitory connections. The fact that inhibitory connections extend to

a larger radius compared to excitatory connections is crucial to ensure the

stability of this settling process.

Learning the afferent connections The afferent connection from neuron j to

neuron i is learnt according to the same normalized Hebbian learning rule as in

SOM:

waij
=

waij
+ εa · rj · a′i√√√√ N∑

k=1

(waik
+ εa · rk · a′i)

2

(4.6)
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Learning the lateral connections The lateral connections are allowed to learn

in the same way:

wekl
=

wekl
+ εe · ηk · ηl√√√√ N∑

k=1

(wekl
+ εe · ηk · ηl)

2

(4.7)

and

wikl
=

wikl
+ εi · ηk · ηl√√√√ N∑

k=1

(wikl
+ εi · ηk · ηl)

2

(4.8)

γa, γe and γi are the learning rates for afferent, excitatory and inhibitory connec-

tions respectively.

Adapting the parameters of the activation function θl and θu (see figure 4.5)

must be updated regularly so that the neurons do not saturate. Usually, it is done

manually. Other mechanisms can achieve it in a more biologically plausible and

automatic way, such as homeostatic adaptation of the level of excitability of each

neuron [66]. During the course of the project, we investigated both possibilities.

For now, we present the results we obtained by systematically rescaling θl and

θu – at every learning iteration – so that the afferent activity stays in the good

range. Although it may not seem a very realistic option, it brought us the most

interesting results. At the end of this chapter, we discuss the implications of

using homeostatic adaptation.

4.3.2 Further simplifications

In the original LISSOM model, all the connections have a limited spatial extent

(receptive fields). Here, we choose not to restrain the receptive fields, and we ex-

plain this choice in the discussion at the end of the chapter. Therefore, all neurons

are fully interconnected, via both afferent and lateral connections. However, in

doing so, we face another problem. Lateral excitatory and inhibitory connections

learn following the same learning rule. Therefore, if they have the same spatial

extent, they will end up being completely identical. The combined interactions

(γewe − γiwi) will therefore not be a good “Mexican-hat” profile, required for

proper and stable self-organization. This is addressed by keeping the excitatory
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connections constant, and extending to a smaller radius than the expected ra-

dius of the learnt inhibitory connections (found empirically). This further implies

that we do not start the simulation with random lateral connections, but with

already well-formed Gaussian profiles, with spread σ(0)
e and σ

(0)
i . This has the

other advantage of making the self-organization process easier and faster.

These simplifications are not in contradiction with what we want to achieve. In-

deed, our purpose is not to show that self-organization can yield a one-dimensional

mapping from the first to the second layer (which has already been demonstrated

– in even more complex situations – in [44]), but to study the implications of a

peaky prior for the tuning properties of the neurons in the second layer.

4.3.3 Simulation

The parameters for the simulation are the same as in the SOM model. They were

given previously, page 30.

The parameters that are specific to the LISSOM-like model are given in the table

below.

Parameter Value

σ(0)
e 20

σ
(0)
i 25

γa 0.5

γe 0.5

γi 0.499

ηa 0.001

ηe 0

ηi 0.0001

It may be useful to recall that the simulation is done in two steps. First, the

system organizes and settles to a stable state, using a flat distribution of input

stimulus. This state is called “state before learning”, even though it is obtained

after “training”. Second, the system is kept in its final state, and further trained

with a peaky prior of input, which represents the long exposure to one single

orientation, characteristic of psychophysical experiments. The final state is called
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“state after learning”.

4.3.4 Results

The weight patterns before and after learning are reported in figure 4.6. The

afferent weights show the same kind of distortion as in the SOM model. Other

changes follow naturally from this geometrical reorganization, as explained page

31: the weight “blobs” amplify near the TO, as they get sharper. As to the

lateral interactions, they are also modified by learning. The reorganization of the

afferent weights impacts on the correlation of the activities in the second layer.

Let us consider one neuron. Since more neurons are now coding for the TO and

around, and since – due to the input distribution – they are more often activated,

this neuron is thus getting more strongly correlated with neurons closer to the

TO than him, compared to before learning. As a result, the lateral inhibitory

connections will also get the same distortion as the afferent weights (it can been

checked, although for the sake of clarity we do not plot the figure here). The

excitatory connections being fixed, the combined lateral connections end up like

in figure 4.6 (bottom right).

The resulting tuning curves and variabilities were computed as they were in the

SOM model (see page 29). In figure 4.7, we plot the tuning curves after learning.

Of course, the tuning curves before learning are uniform, with peaks evenly dis-

tributed along the x-axis. The shifts in orientation preference are more modest

than in SOM (maximum shift is 8 deg). From the right plot, we observe a clear

sharpening of the tuning curves of neurons tuned at and around the TO, and a

similar broadening for neurons tuned further away.

4.3.5 Comparison to physiological data

As we did for the SOM model, we compare the changes in the slopes of the tuning

curves, at the trained orientation, before and after learning, with the pattern of

changes found in A. Schoups’ data. This time, we get a very good correspondence

between our model and physiology (figure 4.8, top row). This correspondence is

even better as far as the signal-to-noise ratio is concerned (bottom row).
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the same data obtained by Schoups et al. from physiological recordings.

Reprinted (and recolored) from [56].
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4.3.6 Comparison to another model of perceptual learning

The tuning curve we obtain after learning are interestingly very similar to the

tuning curves obtained by A. Teich and N. Qian who used completely different

methods [65]. They used a recurrent model of orientation selectivity, in which

the sharp orientation tuning was ensured by lateral connections resembling a

Mexican-hat. There were short-range excitatory connections as well as long-

range inhibitory ones. They were also able to compute tuning curves from this

model. Tuning curves “before learning” were computed once the network had

settled to a stable state, with difference-of-Gaussian lateral connections, uniform

across neurons. “Learning”, in their model, consisted in slightly reducing the

level of excitation to neurons tuned at and around the TO. The resulting tuning

curves “after learning” are depicted in figure 4.9, where our tuning curves are

plotted against them for comparison. They obtained a similar pattern of shift in

orientation preference, as well as a similar pattern of sharpening and widening of

the tuning curves. In addition, in our model, the tuning curves of neurons tuned

around the TO “bend” toward the TO, becoming asymmetrical in addition of

becoming sharper, as they do in Reich’s model. Similarly, we observe that neurons

tuned a bit further away have tuning curves that extend toward the TO, getting

broader.

Our model does not replicate, however, the gain depression found in [65]. Rather,

we find a slight gain amplification for neurons tuned at and close to the TO, as

well as for neurons tuned at and close to the orthogonal orientation. In between,

there is a small gain depression, for those “most informative” neurons with highest

slope at the TO.

The similarity between our results and that of A. Teich can be explained quite

straightforwardly, by noticing that the distortion of the lateral inhibitory con-

nections we get have similar effects, in terms of the resulting combined lateral

interactions, than a reduction of excitation around the TO. Indeed, in figure 4.6

(bottom right), we see that the excitatory part of the weights for neurons tuned

around the TO is reduced.
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Figure 4.9: Comparison of the tuning curves after learning in our LISSOM-

like model ( left) and in Teich’s model ( right). It should be mentioned

that the tuning curves before learning were similar (though ours were a

bit broader) in both models, so that this figure allows a comparison of

the patterns of changes induced by learning. Right plots reproduced from

Teich’s matlab code.
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4.3.7 Discussion

Our simulation shows that it is possible to encode the stimulus prior probability

through fine re-tuning of the neuronal response properties of the population.

An unsupervised learning mechanism – where long-range lateral connections are

capable to learn – applied to a peaky prior of input offers results that are more

consistent with previous physiological findings than in a similar model with fixed

lateral interactions.

Nonetheless, there are a couple of feature in our model that deserve to be further

discussed. First, why did our model learn only inhibitory connections? In the

literature, the alteration of long-range connections is thought to be responsible

for a wide range of perceptual abilities and behavioral phenomena. As reviewed

in [44], they may mediate visual comparisons (object recognition, segmentation,

. . . ), perceptual filling-in (compensating for blind spots, perceptual completion

and illusory contours), as well as the tilt-aftereffect or the brightness-contrast

illusion. It seems reasonable that a phenomenon like perceptual learning, so close

in nature to these kinds of illusions, would stem from similar modifications of the

long-range connectivity. C. D. Gilbert advocates further in [23], when speculating

on the nature of the neural changes underlying perceptual learning:

The dynamic changes in visual perception resulting from context and
from experience do not operate independently, but rather show a close
interdependence. The visuotopic extent of lateral interactions can be
increased by training, as observed by the facilitation in the visibility of
a target line by a colinear line. This observation, as with the receptive
field plasticity seen with real and artificial scotomata, may involve a
potentiation in the strength of the long-range horizontal connections.

Second, the systematic adaptation of the activation function – so as to fit the

range spanned by the feed-forward contribution to the activity in the second

layer – is not well-founded. Although it happened to yield the “best” results

in terms of realistic predictions of fine re-tuning, it has been argued that a more

biologically plausible mechanism would be the homeostatic adaptation of neuronal

excitability described by J. Triesch in [66]. We worked on this hypothesis as well,

in the project, although we chose to keep the results for this discussion. For the

reader not to get bogged down, we postpone the description of its implementation

to appendix B. In the context of homeostatic adaptation, neurons adapt their

transfer function so as to fire, in average, at a fixed rate µ. The mechanism works
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properly in the first phase of our simulation: when the input distribution is even,

all the neurons end up having the same activation function, and their activities

are kept within non-saturating part. In the second phase (learning), when the

inputs follow a peaky distribution, neurons tuned at and around the TO are

naturally more often activated, therefore it become harder and harder to activate

them (because they have to keep their average firing rate constant). This results

in a gain depression for those neurons, and it is difficult to control the importance

of this depression. If the prior is not made sharp enough, other effects become

hardly noticeable, just because there is not much difference between learning and

not learning. If, on the contrary, the prior is very sharp, the depression strongly

dominates over other effects such as sharpening of the tuning curves or shift in

orientation preference. In fact, this could be, in itself, a possible mechanism for

perceptual learning, and needs to be further investigated.

If the literature of unsupervised learning has long focussed on dramatic map

reorganizations, we have shown here that more subtle alterations of the tuning

properties can also occur with such learning mechanisms. It does not only include

“geometrical” modifications of the tuning curves, but also a specific improvement

of the signal-to-noise ratio at the trained stimulus. From this study, we conclude

that the repeated exposure to one particular stimulus attribute during the course

of learning a perceptual task is very likely to be crucial for the establishment of

long-term perceptual improvement embodied by long-term neural modifications.

It sounds very challenging, however, to come up with novel psychophysical exper-

iments that would demonstrate this importance. They should show that when

a task is learnt that involves a particular orientation, and when the context is

such that the subject is exposed to evenly distributed orientations, then no or

little perceptual improvement is achieved. Such a setting would probably involve

distractors at random orientations to make up for the trained orientation, but

there would be other issues related to attention and context dependence.





Chapter 5

From neural activity to behavioral

predictions

5.1 Introduction

In the previous chapters, we have set up a model of stimulus encoding, and

we have studied the extent to which an unsupervised learning mechanism can

modify this encoding. The following two chapters are rather independent from

this first part. We want to bridge physiology and psychophysics. How much

behavioral improvement can be predicted given the neural changes reported in

[56, 21, 68, 49]? To carry out such a computational study, we need a model of

behavioral prediction, that is, a model in which the activity of the population

in response to a stimulus can be processed to assess what is perceived. One

intuitive path toward the prediction of perception is that of population decoding.

In this scheme, the stimulus is explicitly estimated from the population response.

Although it seems far from obvious (and even very unlikely) that, in achieving

a discrimination task, the involved brain areas explicitly need the value of the

stimulus at some point, it seems rather intuitive, however, that the more precise

the estimations are, the better the discrimination abilities. We therefore use this

decoding approach to assess the perceptual improvement yielded by the neural

modifications. In this chapter, we describe the methods used in the next chapter.

49
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5.2 Population decoding

Given a vector of response r (a trial) such as that of figure 3.2 page 23, the

stimulus θ responsible for this joint response is to be estimated. Several methods

can do this [48]. We briefly review the population vector decoder, before giving

more details about maximum likelihood (ML) and maximum a posteriori (MAP)

decoders.

These decoders are so-called “estimators” from a statistical viewpoint. As such,

they have two major properties: bias and variance. Imagine one single stimulus

presented repeatedly, eliciting population responses and thus estimations. The

bias is the difference between the average estimation and the true value of the

stimulus. The variance is the standard quantity used to assess the fluctuations of

the estimations around their mean, which somehow represents the confidence the

estimator has in telling its estimations. A perfect estimator would be the constant

function giving the true value of the stimulus each time. The bias and variance

would be simultaneously null. However, for real estimators, bias and variance are

subject to the so-called “bias-variance dilemma”: usually, one cannot expect to

have both low bias and variance. As we shall see in the following (section 5.3),

the derivatives of the bias with respect to the stimulus also play an important

role.

5.2.1 Population vector decoding

The certainly most obvious way to assess θ from r is to compute a sum of the

preferred orientations of all neurons, weighted by the corresponding firing rates.

Formally, this would give

θ̂PV(r) =
N∑

i=1

riθi

However, the stimulus belongs to a class of real variables called “circular vari-

ables”. Indeed, in our case, orientation is distributed on half a circle. If we

compute the standard mean, and if neurons with preferred orientations −89◦ and

89◦ (thus differing from only 2◦) have evoked the same response, their weighted

sum would be 0◦, i.e. the perpendicular orientation! Therefore, we have to do
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circular statistics in order to compute this weighted mean.

θ̂PV(r) = circular mean {(θi, ri), i = 1 . . . N} (5.1)

Practically, the circular mean is assessed by

• rescaling the θi’s to the full circle (θi ← 2θi)

• computing c =
∑

ri cos(θi) and s =
∑

ri sin(θi)

• if c > 0 and s ≥ 0, then θ̂PV ← arctan
(

s
c

)
• otherwise, if c = 0 and s > 0 then θPV ← π

2

• otherwise, if c < 0 then θ̂PV ← π + arctan
(

s
c

)
• otherwise, if c ≥ 0 and s < 0 then θ̂PV ← 2π + arctan

(
s
c

)
• otherwise θ̂PV ← 0

• finally, θ̂PV ← 1
2
θ̂PV to make up for the initial rescaling.

This method was originally developed by Georgopoulos and colleagues to infer

the direction of arm movement in monkey, from neural population recordings [18].

Later on, it was used to decode population activity in the pre-motor cortex, the

parietal area 5 and the cerebellum. In the domain of vision, it has been used

to decode the responses of parietal neurons coding for the direction of motion of

an object in the visual field, as well as the responses of inferotemporal neurons

selective to faces (see the introduction of [52] for further references).

As we shall see in the next sections, there are some other more sophisticated

methods requiring more detailed information about the response of the coding

neurons. In the case of population vector, the only thing we need to know about

the neurons is the locations of the peaks of their tuning curves. It has been shown

that PV performs as accurately as the more complex methods when the tuning

curves are best approximated by cosines [52, 64]. In practice, since tuning curves

are usually well fitted by Gaussians, the wider the tuning curves, the closer they

are to cosines, so the closer is the performance of PV to that of other optimal

methods described below.
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5.2.2 Maximum Likelihood decoding

Another possible way of estimating the stimulus that evoked response r is to

choose

θ̂ML(r) = argmax
θ

p(r|θ)

so that the likelihood of the response given the stimulus is maximized. In practice,

we maximize the log-likelihood, that is

θ̂ML(r) = argmax
θ

log [p(r|θ)] (5.2)

which leads to a computationally more stable algorithm. Indeed, no analytical

expression of θ̂ML can be derived (at least without any approximation ), and the

optimization procedure is done numerically (e.g. gradient ascent). Since the

likelihood is, in its simpler form as we shall see below, a product of N small

individual probabilities, it is a very small positive function itself, with very low

gradients. Working on its logarithm thus makes things easier. Furthermore, [30]

underlined that the log-likelihood can be approximated by a sum of the activity-

dependant contributions of all neurons in the population, thus more likely to be

implementable in the neural hardware than a product.

To perform ML decoding, we need to be able to compute the likelihood of a

response r given a stimulus θ. The conditional likelihood of a vector depends

on each individual terms pi(ri|θ), but also on the dependencies between each

neurons. In the general case, no analytical formula is available. Within the

(strong) assumption of noise independence, however, we simply have

p(r|θ) =
N∏

i=1

pi(ri|θ)

where each individual pi(ri|θ) is given by one of equations 3.4 and 3.5.

An example of such log-likelihood as a function of the stimulus is depicted in

figure 5.1. In general, provided there are enough neurons in the population, it is

a well-behaved function that peaks near the real stimulus value. We see that the

sharper the curvature of the likelihood is, the more confident we are in telling the

estimated value of the stimulus. Indeed, if the likelihood is very curved, potential

stimuli a bit further away from the peak are very quickly “dismissed” because of

evoking lower and lower likelihood values for the response vector r. The reader
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Figure 5.1: Log-likelihood p(r|θ) as a function of θ, where r is the trial

plotted in figure 3.2 (so the real stimulus was 20 deg). This curve would

slightly change with different trials for the same stimulus. The population

has 100 neurons with preferred orientations evenly distributed on half a

circle, the noise is Gaussian with Fano factor set to 1.3. Tuning curves

were the same as in figure 3.1. For information, the ML procedure applied

to this trial gives θ̂ML(r) = 19.692± 10−3.
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will like to relate this back to equation 3.6 defining Fisher information as the

expected value of this log-likelihood curvature.

A very important property of the ML estimator is that, in the limit of large

populations of neurons, it is unbiased and its variance saturates the Cramer-Rao

bound. Thus, if there are enough neurons in the population, the variance of

the ML estimator is well approximated by the inverse Fisher Information. In this

respect the ML decoder is said to be optimal. In fact, there is another asymptotic

condition for ML to be optimal: that of large spike counts in the time window

used to measure the rates.

5.2.3 Maximum A Posteriori decoding

The previous estimator, ML, maximizes the likelihood without taking the prior

probability of the stimulus into account. If we think of perceptual learning as a

process modifying the encoding of a “prior expectation” on the stimulus, then we

need to use a decoding scheme that incorporates this alternative.

One way to use the information from the prior is to maximize the posterior

probability defined as the product of the likelihood and prior. This is known as

Maximum A Posteriori (MAP). We have :

θ̂MAP(r) = argmax
θ

p(r|θ) · p(θ) (5.3)

In practice, again, we maximize the logarithm of the above quantity, so that

θ̂ML(r) = argmax
θ

(log [p(r|θ)] + log [p(θ)]) (5.4)

The difficulty lies in estimating the prior p(θ), since it is far from obvious what it

looks like before learning, and how it may be affected by numerous presentations

of the same orientation. The main idea, in our studies, is to build a prior that is

severely biased toward a rather narrow area around the trained orientation.
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5.3 Simulation of psychophysical experiments

5.3.1 Introduction

We have seen that behavioral improvement with practice has been observed for

different psychophysical tasks. Here, I review the different methods used to derive

the relevant measures of performance that I have already introduced throughout

the text: Just-Noticeable-Difference (JND), discriminability (d’), percent correct,

decision bias.

The underlying theory is called “Signal Detection Theory” (SDT). To compute

these measures of performance, we must bear in mind that the subject has to

make a decision from a perceived signal that is a stochastically encoded version

of the real stimulus, thus carrying much uncertainty. Figure 5.2 sketches out

the path leading from the stimulus to the decision. Here, we are interested in

the latest stage (decision making). In order to simulate the decision and assess

performance, we have to make an assumption on the strategy in play. SDT

provides different strategies that are optimal with respect to the different tasks,

from a probabilistic viewpoint.

Here, we are mostly interested in the two types of tasks previously mentioned in

the text: one- and two-intervals tasks. In both, the subject must choose between

two answers. They differ, however, in the number of times (called “intervals”)

in which the subject is presented a stimulus before having to decide. I will di-

rectly apply the theory to orientation discrimination, and show how we can relate

the properties of our estimators (namely their bias and variance) to behavioral

performance.

Nota This is given more as a reference than as a preliminary background for the

rest of the dissertation. A quick look at equations 5.6, 5.8, 5.10 and 5.11 would

be enough to carry on the reading of chapter 6. Most of the material presented

in this section and in appendix B was found in [37].
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Figure 5.2: From the stimulus to the decision. The last stage is the only

one that depends on the type of psychophysical task. In this model, there

are two sources of bias. The perceptual bias is the statistical bias of the es-

timator used at the population decoding stage. The decision bias is related

to the strategy used in the decision making process. In the psychophysics

literature, one may find the adjectives “liberal” or “conservative”, depend-

ing on whether the subject tends to favor high hit rates (see in the text)

or low false-alarms rates.

5.3.2 Preliminary definitions

z-transform Imagine that we have a Gaussian distribution f(s) with mean µ

and standard-deviation σ. Any value s on the s-axis can be given a “z-score”

zs =
s− µ

σ

representing the distance of s from the mean µ, in standard-deviation units. Now

assume we are given such a z-score z. We want to know the probability that a

stimulus s drawn from the same distribution has a z-score zs less than z. This

is merely the area under the normal distribution function N (0, 1) from −∞ to

z. This is only dependent on z, and defines a p-transform, function of z. Simple

integration manipulations give the following formula:

p(z) =
1

2
erfc

(
− z√

2

)

This function is monotonically increasing from 0 to 1, therefore it has an inverse,

which is called the z − transform, extensively used in SDT.

z(p) = −
√

2 erfcinv(2p)

Hits and false-alarms As mentioned above in the introduction, both task fam-

ilies we are interested in here are about choosing between two alternatives. For
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the sake of simplicity and without loss of generality, let us call them “Yes” and

“No”. In the vocabulary of SDT, a hit corresponds to reporting “Yes” while the

correct answer is “Yes”, and a false alarm amounts to reporting “Yes” whereas

the correct answer was “No”. From these definitions are defined the hit rate H

and false alarm rate F , corresponding to the frequencies at which the subject

generates a hit of a false alarm. Note that, in general, H + F 6= 1.

Discriminability A major measure of sensitivity of the observer, in SDT, is the

discriminability d′. It is defined as

d′ = z(H)− z(F ) (5.5)

where H and F are defined above, and z is the z-transform. When the observer

cannot discriminate at all, and when he/she is unbiased (does not favor hits nor

false alarms), H = F and the discriminability is null. When the observer is

optimal, d′ tends to infinity. In practice, this never happens, and d′ drops rapidly

as H increases and F decreases a bit. For example, d′ ' 4.65 when F = 0.01 and

H = 0.99.

A case of interest for us is the following. Discrimination involves making a differ-

ence between the estimates that come from orientation θ1 and those coming from

θ2. In other words, the discriminability is a measure of how separated the two

distributions of estimates are. Let us assume that θ1 < θ2. It can be shown that,

in the majority of cases, the distributions of estimations are Gaussians1. To set

things, let us say that stimulus θ1 evokes estimates following a Gaussian distri-

bution with variance σ2
1 and mean θ1 + b1 where b1 is the bias of the estimator.

The same for the estimates of θ2, with σ2
2 and b2. Is can be shown that d′ is very

well approximated by

d′ =
(θ2 + b2)− (θ1 + b1)√

σ2
1 + σ2

2

2

When θ2−θ1 is small enough, σ2
1 ' σ2

2 ' σ2. Furthermore, d′ can be reformulated

1This is in fact true when the estimates come from ML decoding (figure 5.3), and in the
limit of large populations. But in this dissertation, we assume that whatever the decoder, the
estimate ends up being normally distributed (fair approximation in practice).



58 Chapter 5. From neural activity to behavioral predictions

F
re

q
u
en

cy

Estimate

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

25 26 27 28 29 30 31 32 33 34 35

Figure 5.3: Histogram for ML estimates. We simulated 10,000 trials.

The stimulus was 30 degrees. The population had same parameters as in

previous “toy experiments” such as that of figure 3.2. In red, the Gaussian

distribution with same mean and variance is plotted for comparison. We

see that the ML estimates approximately follow a Gaussian distribution,

centered on the real value of the stimulus (ML is unbiased).

as

d′ =
(θ2 − θ1)

σ

(
1 +

(b2 − b1)

θ2 − θ1

)

=
∆θ · (1 + b′)

σ

(5.6)

Decision bias Imagine a radiologist trying to detect tumors from MRI recon-

structed images. The consequences of reporting “there is a tumor” while there

is actually no tumor are not disastrous. On the contrary, reporting “there is no

tumor” while there is one is a serious mistake. Therefore, if in doubt, the doctor

will prefer to report the presence of a tumor, thus deliberately raising both the

false-alarm rate F and the hit rate H. The subject’s willingness to say “yes” is

measured by the decision bias. In SDT, it is defined as:

c = −1

2
[z(H) + z(F )] (5.7)

In the rest of this chapter, we always assume that the subject has no decision

bias.
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Figure 5.4: JND as a function of its corresponding percent correct p(c).

Red: one-interval task; Blue: two-intervals task. The estimator is assumed

to have unit variance and null bias, to fix things.

Percent correct It is merely the frequency p(c) at which the observer gives a

correct answer. It depends on d′ in a way that is specific to the type of task as

we shall see later. It obviously depends on the difficulty of the task, that is, the

difference between the two stimuli to be discriminated.

Just Noticeable Difference A commonly accepted measure of the performance

in orientation discrimination is the Just Noticeable Difference, defined as the

orientation difference (between the two stimuli to be discriminated) that elicits a

given percent correct (usually 84%). As mentioned previously, p(c) depends on

the discriminability. Therefore, in order to compute the “JND 84%”, we have to

find d′84% corresponding to p(c) = 0.84, and then to invert equation 5.6 to obtain:

JND84% =
σ · d′84%

1 + b′
(5.8)

The dependency between the JND and the percent correct is shown in figure 5.4

for both task paradigms. The underlying equations follow in section 5.3.3.

Here, we see that behavioral performance is dependant on the bias and

the variance of the estimator we use, only. More specifically, we will see

that a high variance is often counterbalanced by a repulsive bias (b′ > 0). In the

literature, researchers have sometimes tried to assess performance with biased
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estimators, without taking b′ into account, which obviously lead to inaccurate

results.

From equation 3.10 (Cramer-Rao bound) we see that the JND is bounded by:

JND84% ≥
d′84%√

IF

(5.9)

where IF is the Fisher information.

5.3.3 How to relate p(c) and d′?

The link between the percent correct and the discriminability depends on the

task. For each task, SDT provides an optimal strategy within which one can

mathematically derive the formula linking the two quantities. Derivations of the

following two equations are given in appendix A.

One-interval task

p(c) =
1

2
erfc

(
− d′

2
√

2

)
(5.10)

Two-intervals task

p(c) =

[
1

2
erfc

(
− d′

2
√

2

)]2

+

[
1

2
erfc

(
d′

2
√

2

)]2

(5.11)



Chapter 6

Simulation of neural changes and

comparison to psychophysics

6.1 Introduction

In our attempt to bridge neurophysiological and psychophysical experiments, we

want to answer the question

To what extent can the observed neural changes account for the behav-
ioral improvement?

As we saw at the end of chapter 2, neural correlates of perceptual learning in

the early stages of visual processing are not yet well understood. Contradicting

data makes it difficult to answer the above question in a purely quantitative

fashion. Besides, there may not be only one way to model the tuning curves after

learning. Data is often focusing on what happens to the tuning curves around

the trained orientation (e.g. how does the slope change? the signal-to-noise

ratio? . . . etc), giving very few clues about how tuning is affected elsewhere by

learning. Therefore, we are going to work on idealized models of neural changes,

and investigate what are their implications in terms of behavioral predictions.

We apply decoding methods to assess performance and compare our results to

psychophysics.

First, we implement a simple sharpening model where tuning curves are merely

made narrower around the trained orientation. Second, we implement a simple

gain-modulation model where tuning curves are either positively or negatively

61
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modulated in amplitude around the trained orientation. Finally, we revisit a

model of modified tuning curves that [65] came up with by changing relevant

parameters in a recurrent model of orientation selectivity. This latter modelling

combines sharpening, gain modulation, shift in orientation preference, and asym-

metries of the tuning curves. It has the chief advantage that it fits the physiolog-

ical data found in [56] while having strong biological foundations. Furthermore,

we saw in chapter 4 that the same patterns of changes can be obtained in a dif-

ferent model based on unsupervised Hebbian learning, which gives it even more

credit.

For each of these models, we compare performance between trained and naive

populations. As we mentioned before in the introduction, a major theoretical

question is that of where learning actually occurs in the discrimination process:

is it only the encoder that changes, or does the decoder change as well ? The

available physiological data makes it straightforward to research the effects of

a modification of the encoding part. Indeed, within our model, the stimulus is

primarily encoded in the neural responses (tuning curves and variability), which

is precisely what is found to change in physiology. To relate these changes to

behavior, however, we can either use a decoder that does not change with learning,

or a decoder that adapts as the subject trains. The first type of decoder is

embodied by the PV procedure, which – provided there are no shifts in the

preferred orientations of the neurons – remains unchanged with learning. The

second category is represented by ML decoding, where the likelihood of a set of

responses is modified by learning. As we will see below, PV and ML predict

approximately the same amount of behavioral improvement, and it turns out

that predictions in terms of learning fall short of expectation when compared to

psychophysics.

6.2 Simple sharpening model

A simple way to model the change in slope at the T0 found in [56] and [49] is

to sharpen the tuning curves of neurons tuned around the T0, so that they get

steeper at the T0. We keep any other parameter constant.

Practically, the tuning curve of neuron i is given a width at half-height Wi fol-
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lowing “narrowing profile” :

Wi = W
(0)
i ·

[
1− A exp

(
−(θi − θTO)2

2σ2
w

)]
(6.1)

where A determines the percentage of narrowing, and σw its spread. W
(0)
i is the

width at half height of the tuning curve before learning, and θi is the preferred

orientation of neuron i.

In our simulations, tuning curves were Gaussian, noise was Gaussian with a con-

stant Fano factor. Here is the set of parameters (left) and the widths of the

tuning curves after learning according to equation 6.1 (right) :

Parameter Value

N 100

Baseline 10 spikes

Amplitude 50 spikes

Fano factor 1.3

W
(0)
i 70 deg. for all i

A 0.4

σw 20 deg.

θTO ≈ 20 deg.

W

Preferred orientation

Widths of the tuning curves at half-height

40

45

50

55

60

65

70

-100 -80 -60 -40 -20 0 20 40 60 80 100

Using these parameters, the slope at TO changes in roughly the same way as

observed in [56], as reported in figure 6.1. By “roughly” I mean that neurons

termed “most informative neurons” (those with highest Fisher information at TO)

are not actually the same before and after learning, but tend to move towards

neurons tuned closer to the TO, which can be seen in figure 6.1 (right). This

pitfall is addressed by the model of [65] where more complex changes in the

tuning curves are modelled.

We start investigating how performance is affected by learning under the assump-

tion that the stimulus is decoded using Population Vector (PV) or Maximum

Likelihood (ML) decoders. As we saw, performance is only dependant on the

bias and the variance of the estimator. Figure 6.2 shows these properties for both

estimators, as a function of the test orientation. Both are unbiased before learn-

ing. For ML, this is natural since it is an unbiased estimator for large populations.
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Figure 6.1: Left: slopes at the trained orientation for each neuron. Neu-

rons are referred to using their preferred orientation. Right: Fisher infor-

mation at TO for each neuron. Red: before learning, Green: after learning.

For PV, this is due to the fact that the population is initially homogeneous, cir-

cularly symmetric. After learning, however, PV becomes strongly biased. Its

bias is repulsive around the TO since its slope is positive. Therefore, although

the variance gets worse around the TO, performance is compensated by the bias.

To understand this, one can think of equation 5.8: a repulsive bias increases the

denominator (1 + b′), which in turn decreases the JND. Similarly, one can think

in terms of separability of estimation distributions: given two stimuli s1 < s2,

the means of the two distributions of estimations are all the farther from each

other as the bias is steeply increasing (the bias at s1 being then much less than

that at s2). The variance being locally flat (compared to the bias), the resulting

separability
µ2 − µ1

σ
increases, lowering the JND.

Performance before and after learning is reported in figure 6.3. Here, ML is

not significantly better than PV because tuning curves are broad (W
(0)
i = 70

deg.) which means that they can be well approximated by cosines, thus making

PV nearly optimal. Performance increases by about 24% at the TO for both

estimators. In psychophysical experiments, performance has been seen to increase

by more than 80% in monkey, and around 70% in human.

One could argue that, in our simulations, the initial level of performance is already

high (JND = 2 deg., which is quite close to the asymptotic performance reached

by well trained human beings), which could mean that there be “no room for

improvement” anymore. However, we ran the same simulations with only 30

neurons (as opposed to 100): the initial JND was consistent with the initial JND
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Figure 6.2: Bias (left column) and variance (right column) of PV (red) and

ML (blue) estimators, before (top line) and after (bottom line) learning, as

a function of the stimulus being decoded. Note that the scale of the top

plots is small, so that the biases can in fact be considered as constant, not

noisy.
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Figure 6.3: Psychophysical performance (JND) under the assumption of

PV (top left) and ML (top right) decoding. Red: before learning. Green:

after learning. The bottom-left plot compares performance of both estima-

tors after learning (blue: PV, purple: ML). The bottom-right plot reports

the amount of learning (as described by the percentage of JND improve-

ment, computed using “asymptotic Al ML”) as a function of the number

of neurons in the population. It is clearly invariant when the population is

large enough.
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in human (about 5 degrees), and the amount of improvement was of the same

order of magnitude than in previous experiments (22%). To be more precise,

the percentage of JND improvement is plotted as a function of the number of

neurons in the population (see figure 6.3, bottom right), and we notice that is is

asymptotically (and quickly) independent of N . The percentage of improvement

is defined as

p =
JNDbefore − JNDafter

JNDbefore

From equation 5.8 we see that, for an unbiased estimator, this fraction reduces

to:

p =
σbefore − σafter

σbefore

Using the Cramer-Rao bound, and assuming that the estimator is optimal, we

conclude that

p '

(
1√
IF

)
before
−
(

1√
IF

)
before(

1√
IF

)
before

From equations 3.7 or 3.8 it can be shown that Fisher information varies linearly

in N . Therefore, the 1√
N

terms in the fraction above cancel, hence the invariance.

This invariance is reassuring in the sense that real brain populations of neurons

involved in a discrimination task are likely to be much larger than the small

populations we model herein.

However, this invariance does not apply to the absolute performance (the JND

itself instead of its improvement): as mentioned above, a population of only 30

neurons can replicate the baseline performance observed in human before learning.

Conversely, a model with a biologically realistic population size would yield a

totally unrealistic JND (something like 1/1000 degree). This suggests that some

other factors would make the task harder in reality, cancelling the power of neural

pooling. A very probable one is the presence of correlations between neurons,

not modelled in this dissertation, and that could possibly decrease the number

of “degrees of freedom” among neurons, reducing the model’s predicted JND to

that of 30 independent cells.

From figure 6.3 it is also worth noticing that, at the orientation orthogonal to

the TO, performance is worse after learning than before. This result has been

observed in [56] (although it fell short of statistical significance for one of their

three human subjects).
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Figure 6.4: Performance at the TO as a function of the narrowing coef-

ficient A (left) or the gain modulation coefficient B (right) used to build

the population after learning. For each A or B, a new population is built

in which the widths of the tuning curves follow equation 6.1 or 6.2, and

the JND is computed using the “optimal ML procedure” (assuming that

Cramer-Rao bound is saturated). Note that the scales are different, so the

right plot is actually flatter than the left one.

Our experiments show that it is difficult to explain a 80% JND improvement

by only sharpening the tuning curves and using PV or ML decoding, and this,

independently on the number of neurons in the population. To make it even more

conclusive, we report in figure 6.4 the JND with increasing narrowing coefficients

(A in equation 6.1). We see that in order to reach a 50% JND improvement,

tuning curves have to be made more than 70% narrower around the TO, which

is not realistic according to neurophysiological data (A = 0.7 means that slopes

at TO for most informative neurons are multiplied by 4, whereas [56] found they

were multiplied by no more than 1.5).

6.3 Simple gain modulation

Physiological data sometimes report a specific gain modulation of the tuning

curves around the trained orientation. These data are controversial: [55] and [20]

report that the response amplitude of neurons tuned around the TO decreases in

V1, whereas [49] found an increase in V4. In this section, we research the effects

of positive and negative gain modulation. As we did in the previous section,
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performance is assessed using PV and ML.

By gain modulation, we mean that the maximum firing rate of the neuron is

raised, but the baseline remains the same, and the tuning curve is still Gaussian.

Thus, the tuning curve of neuron i is given a maximum firing rate fmax
i following

“gain modulation profile” :

fmax

i = f
max,(0)
i ·

[
1 + B exp

(
−(θi − θTO)2

2σ2
w

)]
(6.2)

where B determines the percentage of amplification or depression (following its

sign), and σw its spread. f
max,(0)
i is the width at half height of the tuning curve

before learning, and θi is the preferred orientation of neuron i. As in the narrowing

model, we took σw = 20 deg. in all our experiments.

We first apply the PV decoder to assess the perceptual improvement when learn-

ing performs a 20% gain amplification (B = 0.2), and when it does a 20% gain

depression (B = −0.2). The results are reported in figure 6.5.

First, both amplification and depression – when achieved within the bounds of

physiological realism (not more than 30%) – yield very little change in perfor-

mance. Second, amplification and depression have opposite effects on the bias and

variance of the estimator, as well as on the resulting performance: amplification

helps, depression harms.

To explain why gain modulation has a much lower impact on performance than

narrowing the tuning curves, we can relate it back to equation 3.7, that gives

Fisher information as proportional to:

IF (θTO) ∝
∑

i

f ′2i (θTO)

fi(θTO)

Narrowing the tuning curves of neurons tuned around θTO decreases the denom-

inator in any case, and so makes the code more accurate. It also increases the

numerator in some cases (if the narrowing profile is well-chosen), which makes

the effect even more remarkable. If, however, learning uses gain modulation to

maximize the TO, the result is less obvious. Decreasing fi(θTO) by gain depres-

sion causes the numerator f ′2i (θTO) to decrease even more (power of two), and

the resulting performance is then worse than before learning. Better result may

be achieved by using gain amplification, since the numerator then increases more

than the denominator, thus slightly enhancing the code accuracy.
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Figure 6.5: Black: before learning; Red: gain amplification (B = 0.2);

Blue: gain depression (B = −0.2) – Bias (top left) and variance (top

right) of PV estimator. Behavioral performance is then assessed from

them (bottom left). For comparison, performance computed with Fisher

information (ML in the limit of large N) is plotted (bottom right).
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taken from [65]. Right: the slope of the tuning curves at the trained

orientation for all neurons (each neuron being identified with its preferred

orientation). Red: before learning; Green: after learning.

As we did for the narrowing model, we report the predicted discrimination perfor-

mance as a function of B, the gain modulation coefficient (see figure 6.4). We see

that a reasonable gain modulation (from 10% to 30%, according to [20] and [55])

cannot account for the actual discrimination improvement in human or primate.

We shall now combine narrowing and gain amplification, using the tuning curves

in [65].

6.4 Revisiting Teich & Qian, 2003 [65]

In their paper, A. F. Teich and N. Qian studied perceptual learning as a mech-

anism that modifies the connection properties in a recurrent model of V1 orien-

tation selectivity. More specifically, they showed that slightly reducing the net

excitatory connections to cells tuned around the TO leads to the same patterns

of tuning curves as observed in physiology (figure 6.6, left). In particular, an

increase in the slope at the TO is found for those most informative neurons only,

consistent with the data in [56] (figure 6.6, right).

This model incorporates many different patterns of changes of the tuning curves:

narrowing and gain depression around the TO, shift in the preferred orientations

toward the TO, but also an asymmetry of the tuning curves for neurons tuned

around the TO, not specifically reported by physiological recordings. The tuning
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Figure 6.7: Performance in orientation discrimination before and after

learning, when stimulus is decoded using PV (left) and ML (right).

curves actually “bend toward the TO” (which implies the peak shift and the

asymmetry) while trying to keep their positions on the other side. It looks like a

compromise between increasing the slope of the tuning curves (hence, the Fisher

information) at the TO, and not over-covering the area around the TO.

We report the predicted behavioral performance in figure 6.7 for both PV and

ML decoders. The maximum JND improvement is obtained with the optimal ML

decoder, and reaches about 33%, which is significantly higher than what we found

in previous models. With PV, only 22% is predicted. Thus, combining multiple

neuronal effects – that have been shown to yield some perceptual improvement

(previous sections) separately – produce an even larger behavioral effect. Still,

in any case, it stays much below the behavioral improvement reported in psy-

chophysics.

It should be mentioned that the assumption of noise independence that we make

in order to compute the behavioral predictions for sure does not hold in Teich’s

model, where neurons are laterally interconnected, thus being necessarily corre-

lated.

6.5 Discussion

We have used very simple models of neural modifications in order to relate phys-

iology and psychophysics. We have shown that as far as the representation of

the stimulus can change so as to remain physiologically realistic, it is impossi-
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ble to explain the dramatic perceptual improvement characteristic of perceptual

learning in vision. Our results are consistent with previous studies (usually done

by physiologists in the same papers that describes their data) based on the idea

of “ideal Bayesian observer”, in which they also compared psychometric curves

obtained from their data.

An alternative to learning the encoder would be to learn the decoder. In the

course of this project, we have investigated the effects of a prior probability

of stimulus on the predictions of the MAP decoder (see page 54). We noticed a

“scaling issue” which, as far as we know, has never been reported in the literature.

Let us have a look at equation 5.3, page 54. On the one hand, the term p(θ)

is typically less than 1, since
∫

p(θ) should be unit. On the other hand, the

likelihood p(r|θ) is of many orders of magnitude smaller, as a product of small

quantities (equation 3.1). Therefore, the likelihood strongly dominates, and our

simulations – not reported in details here – showed no difference between ML

and MAP in this context. For the prior to have an actual effect on the maximum

of the posterior, is has to be “rescaled” to match the order of magnitude of the

prior. Even when rescaled, the prior does not really make a difference with ML in

terms of predicted behavioral improvements. In fact, the rescaled prior attracts

the stimulus that maximizes the posterior toward the trained orientation, but an

attractive bias is bad for discrimination purposes. The negative effects of the

prior was compensated by a lower variance around the TO. Hence, we found that

this alternative was not really relevant.

Another direction would be to contrast the performance of a globally suboptimal

decoder and of a locally optimal one, and assess the resulting behavioral improve-

ment. Pioneering work in this direction has been carried out by H. S. Seung, G.

Mato, and H. Sompolinsky [58, 38]. They described several linear decoders (the

“fully adaptative perceptron”, the “vector discriminator”) capable of adapting

to a particular stimulus (e.g. trained orientation) and compared them with the

suboptimal but uniformly performing ML and PV estimators. They reported “a

tradeoff between performance at the adapted stimulus and the degree of transfer”

to other stimuli.

Similarly, a whole theory of perceptual learning as a process of selective re-

weighting as been elaborated recently by A. Petrov, B. A. Dosher and Z.-L.

Lu [46]. In their framework, learning occurs only in the “read-out” connections
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to a decision unit, while the stimulus representation remains unchanged. Con-

trary to the hypothesis we made in chapter 4, namely that of perceptual learning

as a mechanism modifying the lateral interactions, Petrov’s theory relies on an

“incremental associative updating of the projection between different areas, as

opposed to updating the lateral connections within a specific area”.



Appendix A

Derivation of equations 5.10 and

5.11

A.1 One-interval task

In a “one-interval task”, only one stimulus is presented in each trial. There is no

reference offered for comparison1. In the studies we have seen, this kind of task

corresponds to the “clockwise - counterclockwise” experiments. In each trial, the

stimulus rotated clockwise or counterclockwise from the standard orientation is

presented (at random), but the reference itself is never presented again in the

trial. After seeing the stimulus, the subject has to tell either CW or CCW.

Imagine that we are to simulate the decision process. The information we have

is the estimate of the stimulus orientation, θ̂s. As we said in 5.3.2, when the

stimulus presented is CW (resp. CCW), this estimate follows a Gaussian distri-

bution centered in µCW (resp µCCW), with variance σ2
CW (resp σ2

CCW). Formally,

making a decision from this estimate amounts to determining which of these two

conditional distributions θ̂s is most likely to have been drawn from. This kind of

decision can be made on the basis of various criteria. [26] considers four decision

goals : maximizing the proportion correct, maximizing a weighted proportion of

hits and correct rejections, maximizing the expected value according to some re-

ward/punishment criterion, and testing a statistical hypothesis. Each of these 4

1Actually, this claim is very controversial within the context of training, where feedback is
given after each trial, thus providing implicit information about the reference.
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goals can actually be achieved using the same underlying test called the likelihood

ratio test. In this test, given an estimate θ̂s of the stimulus, the likelihood ratio

LRatio =
p(θ̂s|CCW)

p(θ̂s|CW)

is compared to a criterion k. If LRatio < k then the decision is CW, otherwise the

decision is CCW. In the case of two Gaussians, this test is obviously equivalent

to a simple decision boundary θt: if θ̂s < θt then we decide CW, otherwise CCW.

It can be shown that if the subject has no decision bias, then k = 1, and

θt =
µCW + µCCW

2

In which case, the percent correct measure of performance is maximized (first of

the previously mentioned goals). For what follows, we will make this assumption

of unbiased decision. The percentage correct is simply derived as follows:

p(c) = p(CW) · p(θ̂s < θt|CW) + p(CCW) · p(θ̂s > θt|CCW)

where p(CW) and p(CCW) are the prior probabilities of the two stimuli. Using the

basic properties of a Gaussian distribution, we find that

p(c) =
1

2
erfc

(
− d′

2
√

2

)
with d′ =

µCCW − µCW

σ

Note that this is not dependent on the prior probabilities anymore. This would

not be the case if the decision maker were biased, thus pushing the criterion

θt leftward or rightward. By inverting equation 5.10, we are able to assess d′

correponding to, say, p(c) = 0.84, which gives the JND84%. For an estimator

with unit variance and null bias, the JND is related to its corresponding percent

correct as depicted by the red curve in figure 5.4.

A.2 Two-intervals task

In a two-intervals task, a first stimulus is presented in the first time interval,

followed by another stimulus in the second time interval. The task might then be

for the observer to tell the order in which he saw the stimuli, or to tell whether

the stimuli were identical or not, for example.
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Here I will focus on the second task, namely “match-to-sample” or “same-different”.

It is used, for example, in [68]. There are only two different stimuli that can oc-

cur: either an orientation tilted clockwise from 45 deg. (tilt ∆s), either the

counterclockwise equivalent. Therefore, there are four possible sequences:

(CCW, CCW) (CW, CW) (CW, CCW) (CCW, CW)

Now imagine we are to simulate the decision of the observer. The observer can

make his choice from the estimates of the first stimulus θ̂1 and of the second stim-

ulus θ̂2. These estimates are drawn from two conditional distributions p(θ|CW) and

p(θ|CCW), approximately Gaussians with means µCW and µCCW and same variance

σ. Again, we assume that the observer is unbiased with respect to his choice.

Therefore, he will tell that the stimuli were identical if both estimates θ̂1 and θ̂2

lie on the same side of the boundary 1
2
(µCW +µCCW). On the contrary, he will tell

they were different if they lie on opposite sides of the boundary.

A simple derivation of the percent correct gives:

p(c) =

[
1

2
erfc

(
− d′

2
√

2

)]2

+

[
1

2
erfc

(
d′

2
√

2

)]2

The fact that it does not depend on the prior probabilities of “same” and “differ-

ent” stimuli comes from the fact that the subject is unbiased. They would matter

if the subject had a tendency to favor hits or to avoid false-alarms.

Again, equation 5.11 can be numerically inverted in order to compute the JND84%.

In order to do that, we just need to use the fact that erfc(−x) = 2 − erfc(x), so

that equation 5.11 becomes

p(c) = 1− erfc(x) +
1

2
erfc2(x)

which is a simple quadratic equation in erfc(x), with x = − d′

2
√

2
. The only valid

solution is

erfc

(
− d′

2
√

2

)
= 1 +

√
2p(c)− 1

which can be indeed inverted using the inverse erfc function.
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Homeostatic learning rule

As an alternative to the piecewise linear function used in our LISSOM-like model

(chapter 4), a smoother sigmoid function can be used to keep the activity in

the second layer within the (0,1) range. Moreover, instead of having one single

activation function for all neurons, it is more realistic to give each neuron its

own transfer function σi. Finally, the activation functions learn as well from the

activity of the neurons.

We choose to implement a form of homeostasis of the neurons’ firing rate levels

given in [66]. For neuron i, the activation function is parameterized:

σi(x) =
1

1 + exp [−(aix + bi)]

The idea is to update ai and bi so as to achieve an approximately exponential

distribution for each neuron’s firing rate. Cortical recordings have indeed revealed

that cortical cells exhibit such an exponential distribution of firing rate in response

to natural images. Besides, it can be shown that this distribution has the highest

entropy among all distributions of a non-negative random variable with a fixed

mean [2], which optimizes the ratio between the energy spent in firing and the

amount of information being transmitted.

J. Triesch [66] showed that if x is the pre-synaptic activity and y = aix + bi is

the resulting post-synaptic firing rate, then ai and bi must be updated according

79
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to the following equations:

ai ← ai + εh

[
1

ai

+ x−
(

2 +
1

µ

)
xy +

1

µ
xy2

]

bi ← bi + εh

[
1−

(
2 +

1

µ

)
y +

1

µ
y2

] (B.1)

where εh is the learning rate of the homeostatic plasticity (much smaller than εa,

εe and εi), and µ is the mean firing rate to be achieved.
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