
This is an earlier version of the paper published in
3rd IFCIS International Conference on Cooperative Information Systems (CoopIS’98), New York, Aug. 1998, pp. 310-319.

Managing Evolving Workflow Specifications*

Gregor Joeris and Otthein Herzog
Intelligent Systems Department, TZI - Center for Computing Technologies

University of Bremen, PO Box 330 440, D-28334 Bremen
joeris|herzog@informatik.uni-bremen.de

* This work was partially supported by the German Ministry for Research and Technology (BMBF) , project MOKASSIN under grant number 01 IS 601 D.

Abstract
Dynamic evolution of workflow models due to process

(re)engineering activities and dynamic changing situa-
tions of the real process is one of the most important
challenges in workflow management. In this paper, we
present an approach for the management of evolving
workflow specifications which copes with the evolution of
a workflow schema and the dynamic modification of
workflow instances. The approach is based on the inte-
grated modeling of workflow schema and instance ele-
ments, the separated definition of ‘what to do’ and ‘how
to do’ in the workflow schema, late binding of workflows
at run-time, and the versioning of the workflow schema.
On this basis, we support lazy, eager, and selective
propagation as well as local customization of instances
and their upward propagation. Furthermore, we address
the problem of managing consistent configurations of the
versioned entities of a workflow schema. In our
workflow-specific versioning approach, the consistency
of the workflow configuration is guaranteed and hence
the version mechanism is transparent to the user.

1. Introduction

Due to the heterogeneity of the involved process steps
and today’s demand on continuous process improvement,
flexibility and adaptability is one of the most challenging
requirements for a workflow management system
(WFMS) and its underlying workflow modeling language
[21]. Flexibility of a WFMS encompasses two funda-
mental aspects:

(1) The specification of a flexible execution behavior
to express in advance an accurate and less restrictive be-
havior, e.g., to support cooperative activities within a
process-centered environment (cf. [8, 16, 13]).

(2) The evolution of workflow models in order to
flexibly modify workflow specifications on schema and
instance level due to process (re)engineering activities
and dynamic changing situations of the real process (cf.
[6, 2, 9, 5]).

In this paper, we focus on the evolution of workflow
models. There are several reasons why workflow specifi-
cations evolve over time (cf. [20]). One of the most im-
portant ones is the demand for continuous process im-
provement which leads to a continuous adaptation of the
corresponding workflow specifications. Another reason is
caused by the predictability of the modeled process: in
order to support semi-structured processes a workflow
model may be refined or adjusted ad hoc to the real
world situation. Further reasons are corrections of an er-
roneous workflow model and the customization of a
workflow to the needs of a specific case.

Workflow evolution causes two main problems: first,
the management of different workflow schema versions
and the support of different change propagation strategies
to running workflow cases; second, ensuring the dynami-
cal correctness of workflow changes w.r.t. running in-
stances. The aim of this paper is to present an approach
which supports the management of evolving workflow
specifications. It is not our goal to present a minimal and
correct set of change operations since several changes are
needed to obtain a new semantically correct workflow
specification. Therefore, we are quite sure that we need to
pay more attention to the management aspect of work-
flow evolution. In particular, mechanisms which support
performing complex workflow changes such as partial
suspension of running instances, analyzing the impact of
workflow changes w.r.t. to the current execution states,
and support for different propagation policies are needed.

Our approach for managing evolving workflow speci-
fications is based on the separated modeling of ‘what to
do’ and ‘how to do’, the versioning of the workflow
schema, schema releases, late binding, and facilities for
suspending and resuming of running workflow instances.
We firmly believe that particularly version management
of a workflow schema, which can be treated as complex
design objects, is the key to support workflow evolution.
Finally, our workflow meta model tightly integrates
schema and instance elements to allow for analyzing the
impact of schema changes on their instances.

In section 2, we outline the main requirements of
workflow evolution management. Section 3 gives a brief
overview of our workflow modeling language. Section 4
introduces our approach to workflow schema versioning
and its application for the management of evolving
workflow specifications. Section 5 discusses related work,
and section 6 gives a short conclusion.

2. Requirements of Workflow Evolution

From a technical point of view, we have identified the
following main requirements for a WFMS to support the
evolution of workflow specifications:

A. Support for the management of evolving work-
flow schemata: Different workflow schema versions
have to be managed and different propagation strategies
of workflow schema changes to their workflow instances
(cf. [6, 5, 4]) have to be provided by a WFMS in order to
flexibly support the migration from one business process
to an improved one, to support alternative workflows for
process variants, and to support ad hoc changes of a
workflow. We distinguish
• lazy propagation, i.e., a workflow schema is changed

without any impact on currently enacting instances.
The new workflow schema version becomes only
relevant for all new workflow instances which are
created on the basis of the modified schema.
This policy is useful for the introduction of a new
(improved) ‘short-living’ business process.

• eager propagation, i.e., workflow schema changes are
propagated immediately to all workflow instances of
the changed workflow definition. Thus, this strategy
leads to on-the-fly changes (see below). This policy is
useful for error corrections or process improvements
of long-lived processes.

• selective propagation, i.e., workflow schema changes
are propagated immediately to a selected set of work-
flow instances of the changed workflow definition.
The selection of the workflow instances may be done
manually by the process designer or automatically by
the WFMS according to the instance execution states.
The propagation has possibly to be delayed until the
instance has reached the required state (cf. [4]). Fur-
thermore, local adjustments to some workflow in-
stances may additionally take place.

• local modifications and upward propagation: A spe-
cial case of selective propagation is the change of the
workflow definition for exactly one workflow instance
in order to locally customize the workflow structure
for a specific case (before the execution starts) or to
locally adjust it (e.g., due to exceptional situations).

This strategy is also useful in the case of processes
which cannot be planned completely in advance (e.g.,
software processes). In this case, planning and enact-
ment of processes have to be interleaved. When lo-
cally modified workflows turn out to be of general
interest, the changes have to be propagated to the
general workflow definition (which we denote as up-
ward propagation) and/or to other workflow in-
stances.

• merging: When changes have to be applied to differ-
ent workflow variants – this is the case when a
workflow schema of a locally modified workflow in-
stance is changed – we need mechanisms which sup-
port merging of different workflow specifications.

B. Consistency of workflow instance changes:
Change propagation to or local modification of running
workflow instances lead to the problem of controlling and
handling the impact of the changes to running instances
in order to avoid inconsistent execution states. In general,
unrestricted changes should be disallowed and regula-
tions/compensations may be needed to re-establish the
consistency of the execution state.

The consistency of a workflow instance depends on
the dynamical correctness of the workflow schema and
the current execution state. The dynamical correctness of
a workflow schema ensures that every execution state
within reach from the initial state is safe. Usually, analy-
sis and simulation tools are used by the workflow mod-
eler to check this property. Correspondingly, a workflow
instance is in a consistent execution state if its current
execution state is safe with respect to the new workflow
schema. Among this correctness criteria the property of
compliance defined by [5] is also important. It requires
that the whole execution trace of a workflow instance is
legal w.r.t. the new workflow schema. When this prop-
erty holds, a workflow instance can be migrated to a new
workflow schema without any regulations. Otherwise ei-
ther some activities are rolled back to make the instance
compliant, or a variant of the workflow has to be intro-
duced to which the instance is compliant and which
avoids rollbacking of activities.

Examples: The extension of the workflow schema by a new

workflow definition will not affect any workflow instances, whereas the

deletion of a control flow dependency of a workflow may result in the

re-evaluation of the execution states. The deletion of a workflow defini-

tion which is populated by instances should be prohibited anyway. Fi-

nally, the removal of a process step may require compensation activi-

ties for those instances which already have performed this step.

Let us conclude this section with two final remarks:
First, and this is an essential point when we want to in-
crease the flexibility of a WFMS by supporting dynamic

workflow modifications, we are convinced that we need a
workflow modeling language on a high level of abstrac-
tion in order to allow for a participatory design and
change of workflows. We have designed our workflow
modeling language with this requirement in mind.

 Second, we need flexible mechanisms which restrict
possible workflow changes so that the workflows are
(semantically) valid according to general business rules,
and which restrict the actors who are authorized to per-
form different types of changes based on the integration
of an organization model (cf. [4, 22]).

3. The Workflow Modeling Approach

Our process modeling language is based on object-
oriented modeling techniques, i.e., all relevant entities
are modeled as attributed, encapsulated, and interacting
objects (which does not imply an OO process modeling
method). In particular, workflow schema and workflow
instance elements are modeled as first level objects and
their relationships are explicitly maintained. Following
the principle of separation of concerns, we divide the
overall model into sub-models for tasks and workflow,
documents and their versions, resources, and organiza-
tional units (see [14] for a detailed overview). In the fol-
lowing, we focus only on the modeling of tasks and their
flow structure (as illustrated in Fig. 2) and concentrate in
the next section on the integration of the versioning con-
cept rather than on details of the modeling constructs.

3.1 Task and Workflow Definition

Functional and structural aspects: First of all, a task
definition (or task type) is separated into the definition of
the task interface which specifies ‘what is to do’, and
potentially several workflow definitions which specify
how the task may be accomplished (how to do) (see Fig.
1). The task interface is defined by a set of attribute defi-
nitions which may hold so-called workflow relevant data
(omitted in Fig. 2), a set of parameter definitions which
define the type and kind of inputs and outputs of a task, a
behavior definition which defines the external behavior
of a task (e.g., transactional or non-transactional; omitted
in Fig. 2), and a set of business rules which constraints
the valid workflow definitions (omitted in Fig. 2).

A workflow definition1 may be atomic consisting only
of a process or program description, or complex (see Fig-
ure 2). A complex workflow is defined in a process-
oriented manner by a task graph which consists of task
components, connector types (and/or/xor-splits/joins),
and data inlets and outlets. A task component is an ap-
plied occurrence of a task definition representing the in-
vocation hierarchy. The semantics of the connector types
are total, conditional, and exclusive conditional branch-
ing for and-, or- and xor-splits, respectively. The corre-
sponding join-connectors synchronize the activated
branches. A data inlet (or outlet) is a data source (or sink)
in order to realize a vertical dataflow between the pa-
rameter of the task definition and their use within the
workflow. Task components and connectors are linked by
control flow dependencies. Iterations within this task
graph are modeled by a special feedback relationship.
Furthermore, task components can be linked by dataflow
dependencies according to the input and output parame-
ters of their task definitions. Finally, task definitions can
be locally declared to another task definition restricting
their visibility to this task type. Thus, the declaration and
invocation hierarchy of task types are separated (as
known from programming languages). Both, the separa-
tion of ‘what’ and ‘how’ to do as well as the separation of
the declaration and invocation hierarchy, which are vio-
lated by several workflow modeling approaches, are fun-
damental when introducing our concept of workflow
schema versioning and integrating it with the workflow
modeling concepts.

1 Note, that we use workflow definition in a more restricted sense defining

only how a task has to be done. To avoid misunderstandings, from now
on we use workflow specification as a general term (independent from
our approach) in the usual more broader sense. Further, we use workflow
schema to denote the declaration of all workflow specifications: w.r.t. our
approach this means the declaration of all task definitions which may
contain several workflow definitions.

taskdefinition <task_def_name> [is_a <task_def_name>]

 [attribute_definition_list] //
 [parameter_definition_list] // | task

 [behavior_definition] // | interface

 [business_rule_definition_list] //
 [workflow_definition_list] // [task body

Figure 2: Structure of a task definition

performed_by

instance_of

corresponds_to

contains

sub_task

Parameter
value

Task
state

workflow instance level

contains

contains

contains

refers_to

dependency
feedback

dataflow

succ_version

succ_version

TaskDefinition

WorkflowDef.

PmtrDef.
input / output
type

Complex

workflow schema level

Component

Atomic

TaskAppl. ConnectorIn/Outlet

1:1

0:n

0:n

0:n

0:1

0:n

0:1

0:n
0:n

1:1

0:n

1:1

0:1

1:1

1:1
0:1

0:n
0:n

0:n

0:n

0:n

0:n

aggregation is_a assoziation

worklist & workspace
mangement

several interrelationships (details omitted)Class

ta
sk

 in
te

rf
ac

e
w

or
kf

lo
w

 d
ef

in
iti

on

Figure 1: Workflow part of the meta model (simplified)

The decision which workflow definition is used to
perform a task is done at run-time (late binding). Every
workflow definition has a condition, which acts as a
guard and restricts the allowed workflows according to
the current case. In a non-deterministic case, the choice
is left open to the user.

Behavioral aspects: The dynamic behavior of tasks
and of the task graph is defined by a statechart variant
and event passing among related tasks of the task graph.
Every task type inherits from a predefined statechart
which defines the fundamental states and transitions of a
task (illustrated in Fig. 3, omitting the conditions and
events which are associated with every operation). A task
can be treated as a reactive component which encapsu-
lates its internal behavior and interacts with other com-
ponents by message/event passing. Thus, we understand
the dependencies between tasks as communication chan-
nels between objects. The connector types are treated as
special tasks with specific pre-conditions and event han-
dling rules. Thus, the semantics of the control flow de-
pendencies are defined by the signals passed along them.
This leads to a combined approach which integrates the
flexibility of rule-based techniques with the high-level
constructs of task graphs. Furthermore, the inter-object
communication is a natural basis for a distributed enact-
ment of workflows.

Example: When a task is finished the event ‘predecessor_done’ is

sent to the successor tasks which will evaluate their activation condi-

tion and may perform the enable transition (see also Fig. 6 d) and e)).

When the task can be executed automatically (this is particularly the

case for connectors), the enable event which was raised by the enable

transition will trigger the start transition. Another example is the sus-

pension of a task which is signaled to all subtasks that will trigger the

disable, suspend, or abort transition of the subtasks depending on their

behavior definition and their current execution state.

3.2 Task Instances
For instantiation, neither a copy of a task definition is

created (e.g., as in the petri-net based SPADE approach
[1]) and enriched by execution-relevant information (e.g.,
assignment of start tokens) nor separated representation
formalisms for schema and instance level nets are used

(e.g., as in EPOS [12] or DYNAMITE [10]). Rather, only
the actual task instances with their execution state, their
dynamic invocation hierarchy, and their actual dataflow
are covered at instance level. Because of our focus on
collaborative and human-centered workflows, we have
integrated workspace management facilities to support
different types of data interchange (which have been
omitted in Fig. 2 and which are not addressed here; see
[13] for details).

A task instance is associated with exactly one task
definition (version), and this instance relationship is ex-
plicitly maintained in the process database (as illustrated
in Fig. 2). Further, when a workflow was chosen for exe-
cution at run-time a ‘performed_by’ relationship is in-
serted, the subtasks are created according to the chosen
workflow definition, and for every subtask the corre-
sponding component within the workflow definition is
identified. Thus, the dynamic task hierarchy is created
step-by-step.

Thus, workflow schema and instance elements are
tightly integrated. All execution-relevant structural in-
formation of a workflow schema can be accessed by the
instances, and, vice versa, changes of the workflow
schema can be analyzed according to their behavioral
consistency w.r.t. to the corresponding instances. Fur-
thermore, workflow schema changes immediately affect
all instances since the workflow engine will schedule the
task according to the changed schema. To support lazy
and selective propagation as well as local modifications
of a workflow instance, we use the schema versioning
concept which is introduced in the next section, where we
also explain how the execution state is kept consistent
when dynamic changes are performed.

The tight coupling of schema and instances is also re-
flected by our architecture. We follow an integrated ap-
proach which does not separate between build- and run-
time environments and which is the basis to support dy-
namic workflow changes. Due to space limitations we
must omit further details of our system architecture,
which is designed as a distributed object system.

4. Workflow Evolution Management Using
Schema Versioning

This section describes our approach to the manage-
ment of workflow evolution where we emphasize the
management of different workflow specification versions
rather than on the correctness of a certain change opera-
tion. We introduce our workflow schema versioning con-
cept and its integration with the separated modeling of
task and workflow definitions and describe how version-
ing can be used to support different propagation policies.

suspended active

disabled ready

donefailed

waiting

running
resume

suspend

enable

disable

finsishabort

terminated

truncatediterate

truncate start

Figure 3: Predefined statechart

4.1 Comparison to Schema Evolution and Schema
Versioning in OODB

Although the general problem of the evolution of a
schema in a OODBMS ([3, 23]) and of a workflow
schema is similar to some extent, some differences are
important: First, workflow schemata are more specific
and are treated as first level objects: Several workflow
specifications exist within a workflow dictionary in order
to provide workflow support for different processes. The
design, analysis, and management of these workflow
specifications is a main and frequent task within WFM.
Thus, according to this functionality workflow schemata
are first level objects.

Second, the problem of schema evolution in
OODBMS is based on the long-liveness of the instance
data and the need for a new structuring or a new struc-
tural view on this data. The main problem is the conver-
sion of the database to the new schema. On the other
hand, workflow schema evolution leads to the problem of
managing different change propagation strategies and the
handling of on-the-fly changes as described in Section 2.
Furthermore, the lazy propagation policy, which is useful
in many cases, shows that workflow instances are often
short-living rather than long-living entities.

Due to these differences, approaches of schema ver-
sioning in OODBMS (cf. [15, 19, 17]) differ from our
approach to workflow schema versioning. In OODBMS,
several versions of a schema can be seen as different
(structural) views on the instance data which may be also
versioned in order to fit into the different schema ver-
sions (as proposed by [17]). Different applications may
use different schema versions when accessing potentially
the same data. In a WFMS, a workflow instance is asso-
ciated with exactly one version of a workflow specifica-
tion.

4.2 The Workflow Schema Versioning Approach

A workflow schema may be treated as a complex de-
sign object which can be versioned as an ordinary object.
Therefore, workflow schema versioning is very similar to
object versioning ([11, 7]). When applying versioning to

a workflow schema we have to define how versions of an
(schema) object are represented and on what level of
granularity versioning is applied.

Further, we have to cope with the well-known problem
of managing consistent configurations of complex ver-
sioned objects which applies to the decomposition of
workflows. To the best of our knowledge, this funda-
mental problem of the management of evolving workflow
specifications has not been addressed so far.

Granularity of versioning: Versioning is usually applied
to a coarse-grained entity (e.g., document or class) which
consists of a fine-grained internal structure (e.g., docu-
ment content or attributes/methods). According to
schema versioning in OODBs, we distinguish between
the versioning of the whole workflow schema (schema
level) and the versioning of workflow specifications
(class level).

First, the versioning of the whole workflow schema is
not a reasonable solution for managing workflow evolu-
tion. Except that this solution avoids the problem of
managing configurations, it has several limitations. Even
in the case of minor changes, e.g., of the flow structure of
a workflow, all workflow specifications have to be de-
rived although they are not affected.

Second, versioning on the level of workflow specifica-
tions (in our approach task definitions) is more appropri-
ate for managing evolving workflows. Since workflow
specifications are part of or may be applied within other
workflow specifications, they are not independent from
each other. Therefore, the problem of ensuring consistent
configurations of workflow versions arises. The deriva-
tion of a new version of a workflow specification WF will
lead - in combination with supporting different propaga-
tion policies - to the (transitive) derivation of new ver-
sions of all workflow specifications where WF occurs.
Thus, in order to obtain a consistent workflow specifica-
tion, always top-level workflow specifications (with their
tree of sub-workflows) have to be derived.

Due to these problems we introduce a third and more
fine-grained level of versioning which uses the separation
of a task definition into the interface definition and the
workflow definition. Besides the versioning of complete
task definitions we also support versioning of a workflow
definition as part of a task definition version. This solu-
tion has several advantages for the management for
evolving workflows as explained in the next sub-section.
Note, that our schema versioning approach depends on
the separated modeling of task and workflow definitions,
but is in particular independent from the modeling ele-
ments which define how the flow structure is specified.
This implies that our task graphs could be replaced by,
e.g., a petri-net based approach.

TaskDefinition ‚Travel expenses report‘

WorkflowDefinition ‚DomesticTrip‘

 v1 v2

v2
v2.2.1

v3
v2.1.1

v2.2.2

v1

WorkflowDefinition ‚TripAbroad‘

v2

v4

∆1 v3

v1

 v3

v1

WorkflowDefinition
‚StandardTrip‘

∆1

: main successor version : alternative succ. version (variant)

: apply delta: copy version (∆1 delta between two versions (as graph rewriting rule))Visualization of operations:

Relationships:

Figure 4: Task and workflow definition versions

Example: In Fig. 4 three versions with a linear history of the task

definition ‘travel expense report’ are shown. Initially, this task definition

consists of two alternative workflow definitions for domestic trips and

trips abroad, respectively. Process improvement has led to new ver-

sions of both workflow definitions whereas for the migration of the ver-

sion v1 of the DomesticTrip workflow two variants were needed to cor-

rectly migrate running instances. In version v3 of travel expense report

the different workflows for domestic trips and trips abroad was given

up and only one workflow definition was designed based on the current

‘TripAbroad’ workflow definition versions.

Representation of versions: Since we use versioning for
the recording of well-defined states of evolving workflow
specifications and for managing their corresponding
workflow instances, we use an extensional (state-based)
versioning approach for the representation of task and
workflow definition versions. Every task/workflow defi-
nition version is explicitly recorded. A derivation rela-
tionship between versions covers the version history and
expresses a successor relationship between versions. This
derivation relationship forms a DAG. Thus, alternative
versions (variants) are represented as branches which
may be joined later on. Further, the DAG is structured so
that within every (sub)branch one main branch is identi-
fied. Formally, a version DAG is defined by the triple (V,
f, R) where V is a set of Versions, f : V → V a partially
defined function which defines the (main) successor revi-
sion representing the main branch, and R ⊆ V x V a re-
lation which defines the variants derived from a version
(see Fig. 4).

The decision when to derive a new version depends on
both the propagation strategy which has to be applied and
the decision of the workflow designer about what kind of
changes lead to a new version. Derivation of a new ver-
sion is orthogonal to changing it.

Version operations and configuration management: So
far, we have not addressed the problem of managing con-
sistent configurations of the versioned entities of the
workflow schema. Since our versioning approach aims at
supporting workflow evolution management, the WFMS
should automatically guarantee the consistency of the

task and workflow definition configurations and hence
configuration should be transparent to the user. Further-
more, as explained above, transitive derivations of ver-
sions w.r.t. to their composition relationship should be
avoided. Our solution is based on providing specific deri-
vation operations for task and workflow definition ver-
sions.

A) Derivation of task definition versions: When a
new task definition version is derived (i.e., a copy is
taken and a derivation relationship is inserted) the
workflow definition versions of the old task definition
version are not part of the new task definition version.
Rather, the most current workflow definition version
(i.e., the version of the main branch without any succes-
sor version) is also derived and assigned to the new task
definition version (step (1) and (2) in Fig. 5). In any case,
a workflow definition version is part of exactly one task
definition version and hence has a unique task interface.

Next, we have to handle task components which are
part of other workflow definition versions and refer to the
old task definition version (cf. Fig. 5). Every workflow
definition version WFDold which has no successor ver-
sions and which contains a task component that refers to
the old task definition version TDold is also derived (3)
and in the resulting workflow definition version WFDnew

the reference of the task component is updated to the new
task definition version TDnew (4).

B) Derivation of workflow definition versions: A
workflow definition version is always derived in the con-
text of a task definition version TD and the new work-
flow definition version WFDnew becomes part of TD. The
source workflow definition versions WFDold from which
the new one is derived must be either also part of TD or
part of a direct predecessor of TD. The latter case occurs
when a new task definition version has been derived and
one wishes to adopt the most current workflow definition
version within a branch from the old task definition ver-
sion (as explained above, this is automatically done for
the main branch when a task definition version is de-
rived). E.g., this was done in Fig. 4 for version v2.2.1 of
the workflow definition ‘DomesticTrip’. Since the task
interface is not affected by the derivation of a new

TD Bv1

WFD Yv1

TD Av1

WFD Xv1 WFD Xv2

TD Bv1

WFD Yv1

TD Av1

WFD Xv1

TD Av2

TD Bv1

WFD Yv1

TD Av1

WFD Xv1

TD Av2

WFD Xv2

TD Bv1

WFD Yv1

TD Av1

WFD Xv1

TD Av2

WFD Yv2

WFD Xv2

TD Bv1

WFD Yv1

TD Av1

WFD Xv1

TD Av2

WFD Yv2

: successor_version : referred_in : contains TD : task definition / WFD : workflow definition

(1) DeriveTaskDef. Av1 (2) DeriveWFDef. Xv1 (3) DeriveWFDef. Yv1 (4) UpdateComponent

Figure 5: Step-by-step derivation of a new task definition version

workflow definition version, the impact of this operation
remains local avoiding any configuration problems.

Among deriving a new version, a new task or work-
flow definition (version) may also be created by taking a
copy of an existing version to avoid modeling similar
processes from scratch (as done when joining the ‘Do-
mesticTrip’ and ‘TripAbroad’ workflows together into
one standard reporting workflow in Fig. 4). This copy
operation has no further semantics in our version model.

Another useful operation is the application of the dif-
ferences between two directly succeeding versions to an-
other variant in order to propagate changes to different
variants. This is particularly useful to propagate general
workflow changes to locally modified instances, which
are represented in our approach in a uniform way as vari-
ants as described below. Currently, such a delta is only
defined for task graphs. It is represented as a graph re-
writing rule which can be applied only if the variant
matches the left-hand side of the rule.

In order to use the introduced workflow schema ver-
sioning concept for realizing different propagation strate-
gies, further mechanisms are needed (re-bind of work-
flow instances and controlling of the version state) which
are introduced in the next sub-sections.

4.3 Supporting Different Propagation Strategies

Due to the tight coupling of schema and instance ele-
ments, a change of a task or workflow definition version
immediately affects all its instances (eager propagation).
On the other hand, a lazy propagation strategy can be
realized by deriving a new version which has no in-
stances after derivation.

Further, in order to support selective propagation, we
allow to re-bind workflow instances to a new version
which may be selected according to their execution state.
An instance may be re-bound to a new version if the old
and new version are equal (w.r.t. their content) and the
new version succeeds (transitively) the old version w.r.t.
the version derivation DAG. Thus, the re-bind operation

has to be performed before changes are made and there-
fore has no consequences to the workflow instances and
needs no conversion. Furthermore, when changes are
performed on the new version the impact of the modifi-
cation on the execution states can be analyzed in order to
decide whether these change are safe.

Note, that the workflow modeler usually select the
workflow instances which should be migrated on the ba-
sis of their execution state. However, when he/she makes
changes that lead to inconsistent execution states of some
instances (in particular, when the compliant property has
to be guaranteed), a variant can be created and the rele-
vant instances are re-bound to this variant which is used
to define an alternative, compliant workflow for these in-
stances. Thus, selective propagation may be iterated re-
sulting in the definition of different variant and the re-
finement of the selected instances.

Finally, local modifications of a task instance are also
realized by the uniform concept of versioning. In this
case, a variant of the current task or workflow definition
version (depending on the kind of change) is derived and
the task instance is (re)bound to this variant. Further, this
variant is locked for the use by other instances so that
changes of this variant are local to the task instance.
Thus, no additional mechanisms are needed to support
local modifications and their upward propagation. The
latter is done by releasing the variant for general use.

A re-bind may be performed for the workflow defini-
tion version only, or for a task definition version. In the
latter case, according to the configuration problem de-
scribed above and the late binding of a task instance to
the workflow definition, re-binding of task instances is
done consistently to both task and workflow definition
version.

4.4 Performing Workflow Schema Changes

After introducing how different propagation strategies
are realized by schema versioning, we present a taxon-
omy of our change primitives and sketch how on-the-fly
changes and complex change transactions are supported.

A
active

XOR

XOR

B
truncated

cond. default

A
suspended

AND

AND

B
truncated

Ípre-context
changed

A
active

B
active

iterate
enable
start

no impact

A
 done

B
active

no impact

done

disabled disabled

done
AND
done

AND
done

AND
disabled

AND
disabled

Í terminated

A
 done

B
 done

AND
done

AND
done

Í terminated

enable
start
terminate

Í terminated

Change connectors Resume enactment, start B Termination of A Termination of B, AND-join fires

resume

a) b) c) d) e)

Figure 6: Handling of dynamic changes

Handling of on-the-fly changes: Our approach to dy-
namic changes of enacting workflow instances is based
on encapsulating any basic change operation by a pre-
condition which restricts its application and by raising a
corresponding event which is handled by the affected in-
stances in order to ensure the behavioral consistency of
the execution states. Thus, the applicability of a change
operation to a task or workflow definition depends on the
execution state of all associated instances and the impact
of the operation is handled by event-trigger mechanisms.
This approach has been proposed in our previous work on
software process management ([10]).

Example: When a new task dependency is added, a corresponding

event ’dependency_added’ is sent to the relevant task instances which

react on this event as defined in their behavior specification. In gen-

eral, they will reevaluate their activation condition and probably will

trigger the enable, disable, suspend, resume or abort transition de-

pending on their current state.

Note that the pre-condition as well as the event han-
dling rules can be redefined for certain task definitions
and hence their external behavior can be adapted to its
facilities of how reacting on dynamic changes. E.g., hu-
mans which perform a manual task may react very flexi-
bly to changes of the context of task (e.g., adding a new
preceding task or change of the input parameter),
whereas a system-performed task has to be aborted and
restarted.

The following taxonomy lists the basic change primi-
tives with their pre-defined enabling condition. The tax-
onomy is classified by a) the kind of change (add,
change, or remove) which is specified only when its dis-
tinction is relevant for handling the modification, and b)
the model element that is changed.
1) add task definition: always allowed
2) delete task definition: prohibited if the task defini-

tion has yet instances or if an applied occurrence
within a workflow definition exists

3) changes of the interface of a task definition:
a) parameter definitions: allowed if no instances in

state running exists except of optional parame-
ters which may be added at any time and can be
removed if the actual parameter doesn’t yet con-
tain data.

b) behavior definition ((sub)states and state transi-
tions with their ECA rule): allowed only if the
task definition has not yet instances

c) business rules: changes of business rules do not
affect directly instances but the workflow defini-
tion which have to comply to the rules

4) changes of the workflow definitions (task body) of a
task definition:
a) add workflow definition: always allowed

b) delete workflow definition: prohibited if the
workflow definition was chosen for execution by
an instance

c) change atomic workflow definition: allowed if
no instances in state active exists

d) change complex workflow definition
i) components: add always allowed; change &

remove if no instance is in state running
ii) dependencies/dataflows: dependent on the

behavior definition of the target component;
always allowed as a matter of principle

Note, that - in the case of the application of a lazy or
selective propagation strategy - in particular changes of
the flow structure require only the derivation of a new
workflow definition version rather than of the whole task
definition. Thus, the configuration problem does not arise
for this most frequent type of change. Only, for the
change of the task interface (item 3) a whole new task
definition version has to be derived.

Performing complex changes: Whereas the structural
and behavioral consistency of a workflow change can be
ensured by an (atomic) change operation, the semantical
correctness cannot be guaranteed because the re-design of
a workflow encompasses several change operations. To
support guaranteeing the semantical correctness of
workflow changes, we introduce a life-cycle diagram for
versions, which consists of the three states changeable,
released, and expired (see Fig. 7).

The creation and execution of a workflow instance is
permitted only, if the corresponding task and workflow
definition versions are released. Thus, in the case of lazy
propagation, the creation of new instances can be de-
ferred until the new version is released. In the case of ea-
ger propagation, when the release of a task or workflow
definition version is revoked, the execution of all in-
stances is suspended (i.e., the workflow engine stops
scheduling the tasks and hence atomic tasks may still be
active; on demand, atomic tasks may be additionally sus-
pended or aborted). After probably analyzing and simu-
lating the new workflow, the version is re-released and
hence the execution of all instances is resumed. The en-
gine will update the execution state according to the
raised events and will schedule the tasks according to the
new schema because of the tight integration of schema
and instance. Note, that it is not generally forbidden to
perform workflow changes on a released task or work-

changeable released
release

redefine
expired

drop

valid

Figure 7: Version life-cycle diagram

flow definition version as described above. Rather, such a
change will directly affect all running instances (if any).

Example: In Fig. 6, a conditional branch is changed into a total

branch which requires the change of two connectors. To perform this

change, the execution of the affected components has been sus-

pended. On resuming the execution, the engine will handle the raised

events. Due to the change of the preceding component, the transition

conditions of A and B are evaluated. In this case, A is resumed and B,

which was previously not selected is activated by triggering first the

iterate and subsequently the enable and start transition.

When a task or workflow definition version is no
longer valid it enters the state expired. In this state, run-
ning instances of this version are allowed to complete
their execution but it is prohibited to create new instances
of this version. This state transition may be done manu-
ally when a new version is released or automatically
when a specified expiration date is reached.

5. Related Work

Related work on workflow evolution predominantly
concentrates on correctness issues of on-the-fly changes
(cf. [9, 5, 22]), whereas little attention has been paid to
the management of different workflow schema versions.

Our approach is based on experience in designing the
DYNAMITE approach ([10]) to software process man-
agement and therefore some basic concepts are similar to
the approach proposed in this paper. But there are several
extensions and differences to the DYNAMITE approach:
in DYNAMITE, the declaration and invocation hierarchy
is not separated, conditional branching as well as condi-
tional selection of the workflow of a task is not supported,
the schema elements are not modeled as first level ob-
jects, and schema evolution and versioning is not sup-
ported. So far, DYNAMITE focuses on interleaved plan-
ning and enacting of dynamically evolving software pro-
cesses (instances).

The work of Casati et al. [5] focuses on workflow
schema changes and is mainly concerned with correct-
ness issues. Casati et al. introduce the compliance prop-
erty and describe how different migration strategies may
be supported. On the other hand, it remains unclear how
different workflow schema versions are managed. Fur-
ther, the contribution neither discusses the decomposition
of workflows, nor the separated modeling of task and
workflow definitions, nor resulting configuration prob-
lems of the management of evolving workflow specifica-
tions. W.r.t. to the tight integration of workflow schemata
and their instance which has been presented by Casati et
al., we follow a similar approach which has been ex-
tended by late binding of the enactable workflows.

Bichler et al. [4] propose an approach, which supports
different migration strategies and transitional regulations
to migrated workflow instances. The correctness of
workflow evolution is based on a two-layered schema ap-
proach, where a business process is separated from the
workflow that implements it. Bichler et al. neither dis-
cuss the management of different schema versions nor
the decomposition of workflows. Further, only changes of
the flow structure are considered. Finally, business proc-
ess models can only be specified by object life-cycle dia-
grams which are restricted in their application.

In the EPOS approach [12] to software process man-
agement, a task instance net is built up by an AI planner
on the basis of a task and product schema and the struc-
ture of the product instances. Schema changes are mostly
handled by re-planning of the task instances nets. Ver-
sioning is applied in EPOS to the whole process model
including the schema and its instances. Fine-grained
schema versioning and different propagation strategies
are not supported. Furthermore, a product-structure inde-
pendent definition of a process as needed for workflow
management is not supported by EPOS.

In SPADE [1], which is based on a high-level petri-
net variant, populated copies of a net template are en-
acted by possibly distributed process engines. Further,
late instantiation is used for an activity which acts as a
complex transition and is defined by a petri-net. Chang-
ing a net template obviously does not affect any net in-
stances and vice versa, so that lazy propagation and local
modifications can be supported. On the other hand, eager
propagation is supported only by suspending and manu-
ally updating an instance. Template changes do not take
the execution state into account, and the versioning of the
process specifications is not supported in SPADE.

CRISTAL [18] focuses on workflow support for pro-
duct development processes and applies versioning
mechanisms to the so-called meta-objects of its integrated
product and workflow model in order to enhance the re-
use of such models. The use of workflow versioning for
handling dynamic changes is not discussed in the paper.

6. Conclusion

In this paper, we have presented a workflow schema
versioning approach, which supports the management of
evolving workflow specifications on the schema and in-
stance level. Although the versioning is applied on a
class level, no configuration problem arises for the user
of the system. The adoption of versioning concepts for
workflow schema evolution, its adaptation to the domain
of process modeling, and the integration of the versioning
mechanisms with process-specific modeling facilities like
the separation of ‘what to do’ and ‘how to do’ or like late

binding leads to a powerful concept for the management
of evolving workflow specifications.

Future work will be directed to the problem of merg-
ing of workflow specification versions, to a more general
approach of propagating changes between variants, and
to mechanisms which allow for a domain-specific defini-
tion of rules to which workflow changes have to comply.

The introduced concepts have been prototypically im-
plemented in the project MOKASSIN. A prototype has
been presented at CeBIT’98. The architecture of our sys-
tem, the problems of distribution in dynamic workflow
management and the experience we made will be dis-
cussed in a subsequent paper.

References
[1] Bandinelli, S.; Fuggetta, A.; Ghezzi, C.: "Software Proc-

ess Model Evolution in the SPADE Environment", in
IEEE Transactions on Software Engineering, Vol. 19, No.
12, 1993; pp. 1128-1144.

[2] Bandinelli, S.; Di Nitto, E.; Fuggetta, A.: "Policies and
Mechanisms to Support Process Evolution in PSEEs", in
Proc. of the 3rd Int. Conf. on the Software Process, 1994;
pp 9-20.

[3] Banerjee, J.; Chou, H.-T.; Garza, J.F., Kim, W.; Woelk,
D.; Ballou, N.; Kim, H.-J.: “Data Model Issues for Object-
Oriented Applications”, in ACM Transactions on Office
Information Systems, 5(1), Jan. 1987; pp. 3-26.

[4] Bichler, P.; Preuner, G.; Schrefl, M.: “Workflow Transpa-
rency”, in Proc. of 9th Int. Conf. on Advanced Information
Systems Engineering (CAiSE’97), Barcelona, Spain, 1997.

[5] Casati, F.; Ceri, S.; Pernici, B.; Pozzi, G.: “Workflow
Evolution”, in Proc. of 15th Int. Conf. on Conceptual
Modeling (ER’96), Cottbus, Germany, 1996; pp. 438-455.

[6] Conradi, R.; Fernström, C.; Fugetta, A.: "A Conceptual
Framework for Evolving Software Processes", ACM
SIGSOFT Software Engineering Notes, Vol. 18, No. 4,
1993; pp. 26-34.

[7] Conradi, R.; Westfechtel, B.: “Version Models for Soft-
ware Configuration Management”, to appear in ACM
Computing Surveys, 1998

[8] Ellis, C.A.; Nutt, G.J.: “Workflow: The Process Spec-
trum”, in NSF Workshop on Workflow and Process Auto-
mation in Information Systems, Athens, Georgia, 1996.

[9] Ellis, C.A.; Keddara, K.; Rozenberg, G.: “Dynamic
Change Within Workflow Systems”, in Proc. of the Int.
Conf. on Organizational Computing Systems COOCS’95,
Milpitas, CA, 1995; pp. 10-21.

[10] Heimann, P.; Joeris, G.; Krapp, C.-A.; Westfechtel, B.:
"DYNAMITE: Dynamic Task Nets for Software Process
Management", in Proc. of the 18th Int. Conf. on Software
Engineering, Berlin, Germany, 1996; pp. 331-341.

[11] Katz, R.H.: “Toward a Unified Framework for Version
Modeling in Engineering Databases”. ACM Computing
Surveys, 22(4), Dec. 1990; pp. 375-408.

[12] Jaccheri, M.L.; Conradi, R.: "Techniques for Process
Model Evolution in EPOS", IEEE Transactions on Soft-
ware Engineering, Vol. 19, No. 12, 1993, pp. 1145-1156.

[13] Joeris, G.: “Cooperative and Integrated Workflow and
Document Management for Engineering Applications”, in
Proc. of the 8th Int. Workshop on Database and Expert
System Applications, Workshop on Workflow Management
in Scientific and Engineering Applications, Toulouse,
France, 1997; pp. 68-73.

[14] Joeris, G.: “Change Management Needs Integrated Proc-
ess and Configuration Management”, in Jazayeri, M;
Schauer, H (eds.), Software Engineering - ESEC/FSE’97,
Proceedings, LNCS 1301, Springer, 1997; pp. 125-141.

[15] Kim, W.; Chou, H.-T.: “Versions of Schema for Object-
Oriented Databases, in Proc. of the 14th Int. Conf. on Very
Large Databases (VLDB), Los Angeles, USA, Morgan
Kaufmann, 1988; pp. 148-159.

[16] Kamath, M.; Ramamrithan, K.: “Bridging the gap be-
tween Transaction Management and Workflow Manage-
ment”, in NSF Workshop on Workflow and Process Auto-
mation in Information Systems, Athens, Georgia, 1996.

[17] Lautemann, S.-E.: “SchemaVersions in Object-Oriented
Database Systems”, in Proc. of the 5th Int. Conf. on Data-
base Systems for Advanced Applications, Melbourne,
Australia, 1997; pp. 323-332.

[18] McClatchey, R. et al.: “Version Management in a Distrib-
uted Workflow Application”, in Proc. of the 8th Int. Work-
shop on Database and Expert System Applications, Work-
shop on Workflow Management in Scientific and Engi-
neering Applications, Toulouse, France, 1997; pp. 10-15.

[19] Monk, S.; Sommerville, I.: “A Model for Versioning of
Classes in Object-Oriented Databses”, in Proc. of the 10th

Britisch National Conf. on Databases (BNCOD), Aber-
deen, Scotland, LNCS 618, Springer, 1992; pp. 42-58.

[20] Nguyen, M.N.; Conradi, R.: “Towards a Rigorous Ap-
proach for Managing Process Evolution”, in Montangero,
C. (Eds.), Software Process Technology – 5th European
Workshop EWSPT’96, LNCS 1149, Springer, 1996; pp.
18-35.

[21] Nutt, G.J.: “The evolution toward flexible workflow sys-
tems”, Distributed Systems Engineering, 3(4), Dec. 1996;
pp. 276-294.

[22] Reichert, M; Dadam, P.: “ADEPTflex – Supporting Dy-
namic Changes of Workflows Without Losing Control”,
Journal of Intelligent Information Systems, 10(2), 1998;
pp. 93-129.

[23] Zicari, R.: “A Framework for Schema Updates in an Ob-
ject-Oriented Database System”, in Bancilhon, F.; Delo-
bel, F.; Kanellakis, P. (eds.), Building an Object Oriented
Database System - The Story of O2, Morgan Kaufmann,
San Mateo, CA, 1992.

