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Abstract—Minimizing SONET ADM costs in single-hub SONET/WDM  The central office equipped with a digital cross-connect is re-

ring networks via traffic grooming has been discussed in a nuiper of recent  farred to as a hub and the SONET ring with a hub is referred to
works. Recent work [12] gives the exact minimum costs of urgirm traffic as a single-hub ring.

in both UPSR and BLSR/2 and proves that the BLSR/2 would nevebe a . o
more expensive than UPSR under any traffic pattern, if all waelengths In addition to the network architectures, the minimum ADM

have same capacity. cost also varies upon the traffic pattern and traffic demands. The

In this paper we consider how to groom both uniform and non-uriform : 4A.
traffic to minimize the cost of ADMs in the single-hub UPSR andBLSR/2 traffic could have some regUIar patterns such as one-to-all and

with mixed line speeds. We especially explore the grooming traffic when aII—_to—aII, or any irregular pattern. The traffic demands may be
wavelengths have two different capacitieg; = 1 and g» = 4. We showthat uniform (i.e. all traffic have the same amount of demands) or
the problem can be confined to just consider the traffic requessr; < 4 for  non-uniform. Each traffic demand itself is given as an inte-
all non-hub node:. By adopting the same cost model as in [5], i.e., ADMs b £l d (tribut t Alt tively. it
with speedg; = 1 and go = 4 cost1 and 2.5 respectively, we provide ger number of low spee ( rou a_ry) S ream_s' er_na Ively, |
optimal traffic partition and grooming for uniform traffic de” mands, and can also be represented by itaffic granularity , defined as
develop optimal or suboptimal solutions for non-uniform traffic demands, the ratio of its demand to the transmission capacity of a single
depending on the range of all demands from non-hub nodes. wavelength. A traffic is said to befall-wavelength traffic a
sub-wavelength traffior asuper-wavelength traffii its traffic
[. INTRODUCTION granularity is equal to one, greater than one, or less than one
respectively.
Coupling wavelength division multiplexed (WDM) technol- The minimum ADM problem has been discussed in a number
[E‘ recent works [2] [4] [5] [7] [8] [10] [11]. [4] and [7] stud-

ogy [9] with synchronous optical network (SONET) rings [6 . : . .
cgz [nc]>t only }éreatly increapse capacity, tf(lereby r()educ%ng[t c%j optimal grooming of arbitrary fuII-waveIengttl lightpaths.

. . . 1
amount of required fiber and allowing for more graceful up= [10] and [11]_ provided grooming of unlforré_, 4 andg-—

grades, but also potentially reduce the amount of requirg’@velength traiffic. _[5] :_;md_[8] gave some preliminary re_sults
SONET terminal equipment, the SONET Add/Drop Multiplex9n the traffic grooming in single-hub rings. In [8], an optimal

ers (ADMs), by allowing individual wavelengths to optically by_grooming of uniform one-to-all sub-wavelength traffic in single-
pass a node via a wavelength add-drop multiplexer (WADV\@“‘b UPSR rings was presented. [5] briefly discusses the criteria

rather than being electronically terminated [3]. Typically, th rusing UPS.R vs. BLSR rings ar_wd to mix two types of line
traffic demand between two nodes is low rated (e@C-3), speeds on a single SONET/WDM ring. In [12], the authors fur-

- : ther the works in [5] and [8] and provide stronger results about
and a high-rate (e.gQQC-48) SONET ring can carry a number . S .
J (e.90 ) g 4 pe ADM cost of uniform all-to-all traffic in both single-hub

of such low-speed traffic streams. With WADM, the number ¢ PSR and sinale-hub BLSR/2. Th blish Juction f
ADMs requiredin a SONET ring is equal to the numberofnodé% and singie-hu Ve hey e_sta Ish a reduction from
oming of any duplex traffic to grooming of one—to-all duplex

that are endpoints of some requests carried in this ring. Thus H{Sﬁ, qf . f Il dupl ffi
optimal grooming problem is to partition the set of communfraic, andirom grooming of one—to-all duplex traffic to groom-

cation requests into a number of groups such that each grdg?% of ane-to-all simplex raffic. Thus any optimal grooming of

can be carried in a single SONET ring and the total ADM co e-to-all simplex leads to an optimal grooming of one-to-all
is minimized. The minimum ADM cost depends on both th uplex and an optimal grooming of all-to-all duplex. There-
are, from then on we concentrate on only one-to-all simplex

underlying network architecture and the traffic pattern. Thr fie. Th I h h SR/2 al h
types of SONET self-healing rings have been defined by staffc. They also show that BLSR/2 always costs no more than

dard bodies [6]: a unidirectional path-switched ring (UPSR): PSR under any traffic and the search for optimal grooming can

two-fiber bidirectional line-switched ring (BLSR/2); afour-fibetbe Confin_ed toa narrow subset of valid groomin.gs, referreq to
as canonical groomings They then construct optimal canoni-

bidirectional line-switched ring (BLSR/4). I ! £ unif to-all traffic in both UPSR and
The SONET self-healing rings are employed in both acce groomings ot unitorm one-to-all traflic in bo ana
SR/2 rings and derive the analytic expression of the mini-

networks and in inter-office networks. In access networks, ADMSs

the traffic streams between access nodes are routed by g h is structured foll W iew th it

through the telephone company’s central office. In order to in- 1zef papet_r IS Ist “#? ured as 107lows. | ﬁ [)e;gVNVET(/eV\;eDSI\j S

crease the channel utilization, a digital cross-connect is oft'é'\l; ] (')trhop llma ral_ |cgroorrtlj|r)gg13|?g eI-I ult d112

installed in the central office to cross connect the traffic strearﬁ;?.gs With only one fine speed in Section 7. Tt was prove [12]
that the search of optimal grooming of uniform traffic in UPSR
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wavelengths have two different capacitigs= 1 andg, = 4
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in Section IIl. And we show that the problem can be confined to Let’s first consider the optimal grooming of uniform traffic in
just consider the traffic request < 4.for all non-hub nodé In  single-hub UPSR.

Section IV and Section V, we provide optimal traffic partition If r mod ¢ = 0, then the optimal canonical grooming is
and grooming for uniform traffic demands, and develop optithique in the sense that each wavelength carpnits of de-

mal or suboptimal solutions for non-uniform traffic demandsnands exclusively to some node. Thus each node contributes
depending on the range of all demands from non-hub nodes. I:| = 2” ADMs, half at the node itself and half at the hub. So

nally we conclude our paper in section VI. the total ADM cost in the working fiber is - 2 = 227 The

total ADM cost is therrr.

Now we assume thatmod g > 0. In any canonical groom-
ing, at each node there are- r mod g portion of demands car-
ried in LgJ wavelengths exclusively. These demands?xs{éij

We consider a single-hub SONET/WDM ring comprisind\DMs in the working fiber. In any optimal grooming, the re-
of n + 1 nodes numbered, 1, - - - , n,clockwise, with the hub maining demands at each node, referred teeaglue demands
placed at nod®. The traffic demand and the transmission canust use a minimum ADM cost. This can be achieved in the
pacity of each wavelength are in terms of the basic low-rate (e.ggme way as in [8]. We partition th€ nodes into
0C-3) traffic streams. We first review the result in [12] for op-
timal traffic grooming in single-hub SONET/WDM rings with [—5—]
only one line speed. Lej be the transmission capacity of a er'Ti.qJ
single wavelength.

Il. PRELIMINARIES

n

groups of at mosljerol | nodes. The residue demands of
nodes in each group are carried in a single wavelength. These

In [8], it was proved that the search of optimal groomin sidue demands totally require

of uniform sub-wavelength traffic in UPSR can be confined to
those groomings satisfying that each demand is carried in ex- n
actly one wavelength, i.e., split of a demand into more than one nt |
wavelengths is not allowed. In [12], the property is generalized
to arbitrary traffic pattern with arbitrary traffic demands in bothADMs in the working fiber. Thus the total ADMs used in the
UPSR and BLSR/2. working fiber is

Given a set of demandgry,--- ,r,} in a UPSR and the
wavelength capacity, a grooming is said to be eanonical QnL J +n+
groomingif at each nodd < i < n, its demand is carried in |—rm0ng
[“1 wavelengths, among WhchrH wavelengths each carries _ n[ 1 + n[ J T
g Units of demands to node and the remaining one, if there is |-rm0ng
any, carries’; mod ¢ units of demands to node

Given a set of demandg-,--- ,r,} in a BLSR/2 and the Let
wavelength capacity, a grooming is said to be eanonical 2nr If r mod g = 0,
groomingif at each nodel < i < n, its demand is carried  F(g,7,n) = { n[z] +n[§f’+[ o otherwise.

]

in [%] = [2“] wavelengths (counting each wavelength used L moas

in both directions as two), among whig# | = | %] wave-  Then the minimum ADM cost in the working fiber 1&g, , n),

lengths each carrie$ units of demands to node and the re- and the total ADM costi&F'(g, 7. n).

maining one, if there is any, carriesmod £ units of demands ~ Similarly, the minimum ADM cost in BLSR/2 i$({,r,n).

to nodei. The optimum canonical grooming can be constructed in the sim-
The next lemma states that when looking for optimal traffiéar way.

grooming for single-hub SONET/WDM rings with single line The next theorem summarizes the above discussions.

speed, we can pay attention to only canonical groomings. Theorem 2:The minimum ADM cost of uniform traffic de-

mand with rater in UPSR and BLSR/2 i2F(g,r,n) and

Lemma 1:[12] Given any set of demands in UPSR of'(§.r,n) respectively.

BLSR/2, there is a canonical grooming with minimum ADM

cost.

|

|—rm!(])ng

|

1.

Il. SELECT SPEEDS WITH TWOLINE SPEEDSAVAILABLE

In this section, we present optimal grooming of uniform traf-

fic in both single-hub UPSR and single-hub BLSR/2. We as- In the previous section, we assume that all SONET rings have
sume that the traffic demand from the hub to each other natie same line speed. In this case, the higher the line speed, the
is r. [8] essentially gave the optimal canonical grooming ismaller the number of ADMs. On the other hand, the higher
single-hub UPSR when < ¢. In [12], they present the optimalthe line speed, the higher the cost of the ADM. However, the
canonical grooming for arbitranyin both single-hub UPSR andcost of ADM does not increase linearly with the line speed. The
single-hub BLSR/2. For completeness, we give a review of theinst model adopted in [5] assumes that the cost ratio between an
approach to construct the optimal canonical grooming. OC-4n ADM and anOC-n ADM is 2.5. If the traffic demand is
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uniform, then the best line speed can be selected by comparinén the following, we will present some basic properties of op-
the total ADM cost for each line speed. timal traffic partitions.

However, if we allow the SONET rings to have differentline Lemma 3:1n any optimal traffic partitionf = (f1,--- , fn),
speeds, we have to partition the traffic from each node into tig < 3 for all 1 < i < n, and there is an optimal solution
SONET rings of different line speeds. After the partition, the¢ — (f,,---, f,) with f; < 2forall 1 <i < n.
traffic grooming algorithms developed in the previous sections
can be applied to the rings of any particular line speed. Thusa Proof: We prove the first part of lemma by contradic-
solution has two components, the partition of the traffic, and then. Let f = (f,,---, f.) be any optimal traffic partition
groomings of the traffic in rings of each speed. Both componeRigh f; > 3. Then in a canonical optimal grooming, there at
affect the overall cost. Because there are a very large numberefst three low-speed rings devoted exclusively to nodiwe
possible traffic partitions, it's impossible to find the bestsol move the traffic carried in any three of these low-speed rings into
tion by enumeration. This is true even if all traffic demands agge-speed ring, we sadelow-speed ADMs and uses two new
uniform. So efficient algorithms or criteria should be developéfigh-speed ADMSs, and thus decrease the cost fhis contra-
to find traffic partitions which may lead to the minimum ADMgdicts to the optimality off = (fi, -, fn). We now prove the
cost. This section is intended to address this problem. second part of lemma by contradiction. Lgt= (f1,--- , f,)

be any optimal traffic partition which contains the least number

To simplify the problem, we assume that there are only tWet entries that are more than two. Suppgse> 2 for some
line speedg,andg, with g, = 4g, as did in [5]. We also adopt 1 < j < 5. Then in a canonical optimal grooming of the traffic
the same cost model used in [5]. We assume that the cost Qfémands{fh .-+, fa} into low-speed rings, at lea$f;| + | fi
ADM of speedy, is one, and the cost of a ADM of spegd ADMs are devoted to node Now we place suclf; amount
is 2.5. A simple approach presented in [5] is that for each traj traffic from nodei into [£] new high-speed rings, i.e. set
fic demand with value, assign- mod g, traffic to the SONET ¢, — . Then in the new solution, a cost of at ledgt] + | f;] is

rings with speeg; andr —r mod g» traffic to the SONET rings saved from the rings of speed while a cost ofs [£7 is added
with speedy,. The performance of this approach comparing g the rings of speegh. As

the optimal assignment was not discussed in [5]. In this section,
more general solutions will be developed and their optimality
will also be proven. In particular, a complete optimal solution
for uniform traffic demands is obtained.

ARSTARSIE

whenf; > 2, the new solution has no more cost than the solution
f but contains one less entries which are more than two. This
A. Basic Properties contradicts to the selection gf Therefore, the lemma is true.
|

As there are only two type of speeds, we call a SONET ring . . ! _ . L .
of speedy; as a low-speed ring, and a SONET ring of speed Intuitively, if a traffic can fill a high-speed ring, it should fill
as a high-speed ring without any ambiguity. Similarly, we callfylly as many hlgh—speed_ rngs as po_s&ble to take_ advantage of
SONET ADM of speed; as a low-speed ADM, and a soNEgTihe lower cost per bandwidth of the higher speed ring. The next
ADM of speedg, as a high-speed ADM. For the simplicity oflémma verifies such intuition.
presentationg, is scaled to one and all demands are scaled ac-

cordingly. Thusg, = 1,g» = 4 and all demands are fractional Lemma4:There is an optimal traffic partiionf =
numbers or integers. (f1,--+, fo)with f; <r;mod4forall 1 <i < n.

In this section, we will study the selection of line speed in  Proof: We prove the lemma by contradiction. Lét=
UPSR in detail. The analysis can be extended to BLSR as wélfi: - - - : f) be any optimal traffic partition satisfying thft <
Because the ADM cost of the working ring is exactly the same ador all 1 < i < n and the cardinality of the set
the protection ring, we can only consider the cost of the working
ring. Assume the demand between ned@ad hub is-; for 1 <
i < n. Then any traffic partition can be represented bynan
dimensional vector

{1<i<n|f; >r;mod4}

is the smallest. Assume th#@t < r; mod 4 for some node.
Then in a canonical optimal grooming of the traffic carried in
f=U1 - fn) high-speed rings, in addition ﬂ_dj—fij high-speed rings which
are devoted exclusively to nodeone high-speed ring carries
where0 < f; < r; is the amount of the traffic between nodé¢he remainingt — f; + r; mod 4 amount of traffic from node.
i and hub placed to a low-speed ring. For any traffic partitioihis high-speed ring must also carry traffic from other nodes, for
we can groom the traffic carried in low-speed rings and the traftherwise we can we fill this ring fully with the traffic from node
fic carried in high-speed rings separately. If both the groomirgvithout any additional cost but the amount of traffic placed in
of the traffic carried in low-speed rings and the grooming of tHew-speed rings i%; mod 4, which contradicts to the selection
traffic carried in high-speed rings are canonical, we callthe ovef f = (fi,--- , f.). Letx; > 0 be the amount of the traffic car-
all grooming is canonical too. ried in this ring from nodes other than nodeThenz; > 1 for
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otherwise we can decrease the total ADM cosbliyby moving 5.5,which contradicts to the optimality of = (f1, -, fn).
x; to a dedicated low-speed ring, which again contradicts to thiew we assume thdt < r; — f; < 1. We remove the:; —
optimality of f = (f1,---, fn). AS fi amount of traffic from the high-speed ring and put it in a
dedicated low-speed ring. With this modification, at least one
4— fi+rimod4d +z; <4, high-speed ring is saved and two additional low-speed ADMs
we have are used. So the total cost is decreased by

25—-2=0.5
1<z <rimodd+zx; < f; <2

o . . which again is impossible a6 = .-+, fn) is already opti-
This implies thatz; is from only one node, say, for otherwise mal g P = (feeof) y p.
the portion of the traffic from some node is less than one anda'

again we can decrease the total ADM cost by the moving of itAS a corollary of Lemma 5, in any canonical optimal groom-

toa dgdlcated Iow-;peet_j rng. Now we Iopk at theamount .ing, any high-speed ring can carry traffic from at most three
of traffic from node: carried in low-speed rings. In a canoniy,jqes

cal optimal grooming, one ring carries the traffic of amouint

from node: only, another ring carrieg; — 1 amount of raffic e pext lemma states that, at any node, when a traffic de-
from node; and may carry additional traffic from other nodes,and from a node is at most one, it should be always put in a

Finally we relocate all traffic in these three rings as follows. Fi|bw—speed fing; and when a traffic demand is more than three, it
the high-speed ring fully with the traffic from node Fill the  ,5u1d be alwa,ys putin a high-speed ring. '

first low-speed ring fully with the traffic from nodg In the

second low-speed ring, keep the original traffic not from node | e;ryma 6: Letf = (f1, - , f) be any optimal traffic parti-
i, and place; mod 4 amount of traffic from nodé andxz; — 1 tion, Then foranyl <i < n,ifr; <1, f; = r;; and ifr; > 3,
amount of traffic from nodg. With this modification, one high- f; = 0. T

speed ADM is saved but one additional low-speed ADM is used.

So the total cost is decreasedby — 1 = 1.5, which again con- Proof: The first part follows directly from Lemma 5. Now
tradicts to the optimality of = (f1,---, fa)- B e assumethat > 3 andf; > 0. From Lemma 3 and Lemma
] ) o 5,0 < f; <1,andthus; — f; > 2. Ther; — f; amount of
From the above lemma, there is an optimal solution in WhiGfyfic from nodei must share some traffic from other nodes, for
| %] high-speed rings are dedicated— r; mod 4 amount of therwise we can put all traffic from noden the high-speed
traffic from nodei for all 1 < i < n. Thus from now on, ying and decreases the cost by at least one. From Lemma 5
we assume that; < 4 for all nodei. For any traffic partition if there is some traffic, from any node, carried in a high-speed
f=f1,--, fn) let ring, its amount is more than one. Thus the- f; amount of
. traffic from nodei share one high-speed ring with some amount,
S ={1<i<n]0<fi<r} denoted by:;, of traffic from exactly one node, sgy Note that
U(f)={1<i<n|fi=00rr}

1<z <4d—r;+ fi.

Thus the traffic from any node if(f) is carried in both low-
speed rings and high-speed rings, and the traffic from any ndsie we consider the following modification to a canonical opti-
in U(f) is carried in either low-speed rings or high-speed ringsal solution. We replace thg amount of traffic from node
but not both. in some low-speed ring by thg amount of traffic from nodg.

The next lemma states that at any node, if the traffic of thi$is may save one low-speed ADM. We then placeithe f;
node is carried in both types of rings, then the amount of traffic a dedicated low-speed ring as
carried in low-speed rings is at most one; and if there is some
traffic carried in a high-speed ring, its amount is more than one. wi — fi<4-ri <L

This adds two low-speed ADMs. Finally, we place all traffic
from nodei in the high-speed ring originally carrying the— f;
amount of traffic from nodéandz; amount of traffic from node

j. This saves one high-speed ADM. Thus after the modification,
the total ADM cost is decreased by at least— 2 = 0.5, which
contradicts to the optimality of = (fi,-- -, fn). |

Lemmab:Let f = (f1, -+, fn) be any optimal traffic par-
tition. Then for anyl < i < n, neitherl < f; < r; nor
0<r; — f; <1lispossible.

Proof: Assume thal < f; < r;. Then in a canonical
optimal grooming, the total cost of ADMs used by the traffic

is at least _— .
The above lemma implies thatif < 1 for any nodel <

2+1+25=55, i < n, then all traffic must be carried in low-speed rings. In
particular, if the traffic is uniform with amoumt the total ADM
as at leas? low-speed ADMs is needed at nodet leastl low- costisF(1,r,n). If r; > 3 for any nodel < i < n, then all
speed ADM is needed at the hub, and at Iédsgh-speed ADM traffic must be carried in high-speed rings. As in the canonical
is required at the node But if the trafficr; is entirely carried by grooming, the traffic demand from any node must be carried
a high-speed ring, the cost of ADMs is atmBsi + 2.5 = 5 < in a dedicated high-speed ring. Thiss high-speed ADMs are
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needed with cosin in total. A remarkis such cost only account\. All Traffic Demands Are at Mo%t
for the working ring, if we consider the protection as well, the

total cost should then be doubled. The next lemma states that when the traffic demand from each

node is at mosg, then we can put all traffic in the low-speed
rings.
IV. ALL TRAFFIC DEMANDS ARE AT MOST TwO ]
Lemma 8:If r; < } forall 1 < i < n, then the traffic par-
tition f = (f1,---, fn) Wheref; = r;forall1 < i < nis

In the next lemma, we show that when the traffic demand frofptimal.
each node is at most two, then there is an optimal traffic partition

in which none of them is carried in both low-speed rings and ~Proof: We proveit by contradiction. Let = (fi,-- -, fx)
high-speed rings. be any optimal traffic partition withf; = 0 or r; for all

1 < i < n and the smallest number of zero entries. Consider
any canonical optimal grooming. As any high-speed ring car-
Lemma7:1f r; < 2forall1 <4 < n, then there is an ries traffic from at most three nodes. We consider the follow-
optimal traffic partitionf with S(f) = 0. ing three cases. If a high-speed ring carries traffic from only
one node, we can use at most two new low-speed rings to carry
all traffic from this node. This modification saves two high-
speed ADMs and uses at most four low-speed ADMs. Thus the
ost is decreased hy5, which contradicts to the optimality of
rﬁl = (f1,---, fa). If a high-speed ring carries traffic from two
nodes, we can use at most three new low-speed rings to carry
|l traffic from these nodes. This modification saves three high-
speed ADMs and uses at most seven low-speed ADMs. Thus
the cost is decreased bBy5, which also contradicts to the opti-
mality of f = (f1,---, fa). If @ high-speed ring carries traffic
rom three nodes, we use at most four new low-speed rings to
rry all traffic in this high-speed ring. This modification saves
ur high-speed ADMs and uses at most ten low-speed ADMs.

Proof: We prove it by contradiction. Let = (f1,-- - , fn)

be any optimal traffic partition with the smallest(f)|. Let

i € S(f) and consider any canonical optimal grooming. Fro
Lemma50 < f; < 1andr; — f; > 1. Thus in any canonical
optimal grooming, the traffic from nodgis carried in exactly
one low-speed ring and exactly one high-speed ring. We ¢
centrate on the high-speed ring carrying the- f; amount of

traffic from nodei. It can carry traffic from at most three nodes
First of all, it must also carry some traffic from other nodes, f
otherwise we can fill it with all traffic from nodeand decreases
the cost by at least one. Secondly, it is impossible that this hi

speed ring carries the traffic from only two nodes, for otherwi i ;
P 9 y e resulting solution has the same cosifgsbut the number

we can put all traffic from these two nodes in this high-spee tries is d d by th hich tradicts o th
ring, which can also save at least one low-speed ADM. Thh 2670 entries 1S decreased by three, which contradicts fo the
election off. Therefore, the lemma is true. |

this high-speed ring must carry traffic from exactly three node&
We denote the other two nodes other than noolej andk. We
show thatj, k € U(f). Suppose to the contrary. We modify - )
the placement of the traffic from these three nodes as followng‘.?mdr < % the minimum cost of ADMs ig7(L, r, n).
We use the high-speed ring to carry the whole traffic from node

i and the whole traffic from nodg and nothing else. We addpg | Traffic Demands Are More thah

at most two new dedicated low-speed rings to carry the traffic
from nodek. We save one high-speed ADM and add at most i .

two more low-speed ADMs. Thus the modification decreases"Ve NOW consider the traffic with demands more t@aluut at
the total cost by at lea$t5, which contradicts to the optimal- most two.

ity of f. Therefore bothj andk are inU(f), that is all traffic

from nodej and nodek are carried in the high-speed ring. As -€Mma 9: Suppose thaf <r; <2forall1 <i<mn.Ifnis
ri— fi > 1, even, then the traffic partitiofi = (fi,--- , f») wheref; = 0

forall 1 <i < nisoptimal. Ifnis odd, thenforany < j <n
the traffic partitionf = (f1,---, fn) wheref; = 0 fori # j
andf; = r; is optimal.

The above lemma implies if the traffic is uniform with de-

Tj+7“kf4—(7“i—fi)<4—1:3.

So we can modify the placement of_the trafnc. from nodgs Proof: We also prove it by contradiction that there is
andk as follows. We place all the traffic from nodand nothing : ) o :

. X an optimal traffic partitionf = (f1,---, fn) with f; = 0 or
else in two new low-speed rings, and use at most three new low- ) .

. ) . r; for all 1 < ¢ < n and at most one non-zero entries. Let

speed rings to carry all traffic from nodgsandk. Then four — (f1,--- . ) be any optimal traffic partition withf; = 0
high-speed ADMs are saved, and at most ten low-speed AD’&lS e S
are added. The resulting solution has the same cogt! orr; forall 1 < i < n and the smallest number of non-zero
. L 9 . S entries. Assume that = r; andf; = r;. Consider any canon-
it contains one less nodes whose traffic are carried in both low:

. . . . . iIcal optimal grooming. There are two low-speed rings devoted
speed rings and high-speed rings. This contradicts tq 8| to noc?ei andgtwo Iovx%speed rings devoted tlg noj:le\/\?e relo-
is the smallest. Thus the lemma is true.

cate the traffic from nodé and nodej to one new high-speed
ring. This modification saves 8 low-speed ADMs and uses 3
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high-speed ADMs. The total cost is decreased by 0.5. THs r, > 2, r; +r; < 5, so arer; + rp andr; + 7. Now
contradicts to the optimality of = (fi,---, f.). Now let we relocate the traffic carried in these three low-speed rings and
f = (fi,---, fn) be any optimal traffic partition wittf; = 0 the high-speed ring as follows. We place the whole traffic from
orr; forall 1 <4 < n and at most one non-zero entries. Notaode: in the high-speed ring, place the whole traffic from node
that in any canonical optimal grooming, each high-speed rigjgand4 — r; amount of traffic from nodé in a new high-speed
must carry traffic from two nodes, for otherwise we can mowing, and place; + r;, — 4 amount of traffic from nodé in a

it to two low-speed rings and the cost would be decreased byldw-speed ring as

Thusifniseven,f; = Oforall 1 <i < n, andifn is odd, there

is exactly ond < i < nwith f; = r;. [ ] O<rj+r, —4<1.

From the above lemma, g <r; <2foralll <i < n Thex;z;andz, amountofthe traffic from other nodes are car-
we can provide optimal grooming as follows.rfis even, then ried exclusively in another low-speed ring. After the relocation,
all traffic is carried in high-speed rings, and each high-spe@ save three low-speed ADMs and add one high-speed ADM.
ring carries the whole traffic from two nodes. It requires totallpo the total cost is decreased @, which is a contradiction.
1.5n high-speed ADMs (in the working ring only) with total u
cost3.75n. If n is odd, then the traffic from one node is carried
in two low-speed rings to carry the whole traffic from a node, The following lemma states that if all traffic demands are
and the traffic from all other nodes are carried in the high-spegtkater than two, we can concentrate on those canonical groom-
rings, with each ring dedicated to a pair of nodes. Thus 4 lowtg in which exactly one node in each high-speed ring has its
speed ADMs and.5(n — 1) high-speed ADMs are used. So thevhole traffic carried in this high-speed ring.
total ADM cost is

Lemma 1l:lf r; > 2 forall1 < i < n, then there is a
canonical optimal grooming in which exactly one node in each
high-speed ring has its whole traffic carried in this high-speed
ring.

4415(m—1)-2.5=3.75n+ 1.5.

V. ALL TRAFFIC DEMANDS ARE MORE THAN TWO
Proof: We prove it by contradiction. Consider a canonical
In general, each high-speed ring can carry traffic from at mo#ptimal grooming with traffic partitiorf = (fi,--- , f,) with
three nodes. The next lemma states that if all traffic demands &re< 2 forall 1 < 7 < n. From Lemma 5,f; < 1 for all
more than two, then in any canonical optimal grooming no high-< i < n. Thus foralll <i <,
speed ring can carry traffic from three nodes.
’I“z'—fz'>2—1:1.

Lemma 10:If »; > 2 for all nodes, then in any canonical

optimal grooming each high-speed ring carries traffic from 4t high-speed carries traffic from only one node, then it must
most two nodes. carry the whole traffic from that node. Now we consider a high-

speed ring which carries traffic from two nodeg € S(f).
Proof: We prove it by contradiction. Consider a canonVVe relocate the traffic from nodeand nodej as follows. The

ical optimal grooming with traffic partitionf = (f1,--- , fn). high-speed ring carrieg; amount of traffic from nodeé, and
Assume that three nodésj andk appear in a high-speed ring.4 — r: amount of traffic from nodg. We replace the origi-
Theni, j, k € S(f) for otherwise nal f; amount of traffic from nodé in a low-speed ring byf;
amount of traffic from nodg. The cost of the result grooming
(ri — fi) +(rj — f3) + (& is not increased. We repeat such procedure for all high-speed

rings which each carry traffic from two nodes that are both in

As S(f). In the end, we come up with a grooming in which each
(ri — fi) + (r; — f5) + (r high-speed ring carries the whole traffic from at least one node.
Finally we use a canonical grooming to place all traffic carried
we have in low-speed rings. Then the resulting grooming satisfies the
requirement given in the lemma. |

fi+fi+f>ritry+ry—4>2

As fr <1, fi+ f; > 1,s0aref; + fr andf; + fr. This means )
that all the three] nodes must appear in t?wee distinct Iow—spéA(‘a'd'A‘II Traffic Demands Are More tha§‘1
rings. Assume these three rings catty «; andxz; amount of
the traffic from other nodes respectively. Then we have When all traffic demands are greater thanthe following
lemma gives an optimal traffic partition.
zitaj+ap <3—(fi+ fi+ fi) <L

Note that Lemma 12:If r; > 3 forall 1 < i < n, then the traffic

partition f = (f1,---, f.) wheref;, = 0foralll1 <i < mnis
ri+rj+r < fi+fi+f+4<7, optimal.
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Proof: We consider a canonical optimal grooming wittand how to form node pairs to appear in high-speed rings re-
the traffic partitionf = (f1,--- , f.) in which each high-speed mains open. But if the traffic is uniform, these two questions
ring carries the whole traffic from at least one node. Assunean be easily solved. We can select ary] nodes to be car-
that f; > 0 for somel < i < n. From Lemma5f; < 1. Fur- ried wholly in high-speed rings, and the pairing between those
thermore, the high-speed ring where nadgpears must carry nodes and the remaining nodes can be selected arbitrarily. Thus,
the whole traffic from another node, sgyand no other traffic. for uniform traffic with deman@ < r < g the total ADM cost

As in the working ring is
(ri — fi) +1; < 4, 3.25n+F(1,2r—4,g)
we have if n is even, and is
, — 1
fizritr;—4>1 5+3.25(17/71)+F(1,2r74,172 )
i i ; , — 1
This contradicts tgf; < 1. [ | 1754325+ F(1,2r — 4, n . )
The above lemma suggests that if all traffic demands are mare ;
5 N ; ) n is odd.
thanz, we should carry all traffic in high-speed rings. In this op-
timal traffic partition, the canonical grooming is unique and each
high-speed ring carries exclusively the whole traffic from only VI. SUMMARY
one node. Thus the minimal total ADM cost (in the working
ring) is 5. For uniform traffic demands, we have provided optimal traffic

partition and grooming, which is summarized in Table |. For
non-uniform traffic demands, optimal or suboptimal solutions
have been developed depending on the range of all demands. If
all demands are at most5, then all of them are carried in low-
Finally we consider the traffic with demands at mgsbut speed rings. If all traffic demands are greater than 1.5 but less
more than two. The next lemma states that if all traffic demangian two, then with even, all of them are carried in high-speed
are at most, then in any optimal grooming there is at most onfings and the total cost of ADMs in the working ring only is
high-speed ring which carries exclusively the whole traffic from.75,; with oddn, all of them except an arbitrary one are carried
exactly one node. in high-speed rings and the total cost of ADMs in the working
ring only is3.75n + 1.5. Such costs remain the same as long as
Lemma 13:1f r; < 5 forall 1 < i < n, thenin any optimal all demands are greater than 1.5 but less than two. If all traffic
grooming at most one high-speed ring carries exclusively ta@mands are greater tharb, all of them are carried in high-
whole traffic from exactly one node. speed rings and the total cost of ADMs in the working ring only
is 5n. Such cost also remain the same as long as all demands are
Proof: We prove it by contradiction. Consider an optimagreater than 2.5. When all traffic demands are greater than two
grooming with traffic partitionf = (f1,-- -, f») in which there pyt less than 2.5, the solution is a little complicated. We first
are two high-speed ring dedicated to nadend nodej repul-  pair up then nodes. Ifn is odd, some node is stand-alone and
sively. We relocate the traffic from nodend nodg as follows. its whole traffic is carried in a high-speed ring. For each pair
We placer; amount of traffic from nodeé, andmin{4 —r;,r;} of nodesi andj, we use a high-speed ring to carry the whole

amount of traffic from nodg on one high-speed ring, and iftraffic from nodei and the remaining capacity is used to carry
r; +r; > 4 we placer; + r; — 4 amount of traffic from nod¢  the traffic from node.

on one low-speed ring. This modification saves one high-speed
ADM and adds at most two low-speed ADMs. The cost is de-

B. All Traffic Demands Are at Most

creased by at least 0.5, which is a contradiction. | TABLE |
SELECTLINE SPEEDSFORUPSR
From Lemma 10, 11 and 13, if is even and® < r; < 2 _
forall 1 < i < n, then there is a canonical optimal grooming Range OI al’s (fi fo, - =_f")
in which half nodes have their traffic carried in high-speed rings 1(07 13] fi=r, VZ,
and the half node have their traffic carried in both high-speed (13,2];n =2k fi =0,vi
rings and low-speed ring, and each high-speddlig filled with (1%= ln=2k+1| fi=0Vi#jfi=r
the whole traffic from one node in the first half and a portion of (2,25] fric1 =0, fo5 =2r — 4
traffic from a node in the second halfifis odd an@ < r; < 2 (25,4] fi=0,Vi

forall 1 < i < n, then there is a canonical optimal grooming

in which the traffic from one node is carried exclusively in a The above argument is restricted to UPSR. However, it can
high-speed ring and the traffic from other nodes are carriedlie extended to BLSR as well. Table Il lists the optimal traffic
the same way as the number of nodes is even. However, hovpédtition of uniform traffic demands.

select the set of nodes to be carried wholly in high-speed rings
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(8]

9]

[10]

[11]

[12]

(23]

[14]

TABLE Il
SELECTLINE SPEEDSFORBLSR/2

| Rangeofalk's [ (fi,fo,- . fu) |
(0} %] fz :T,Vi
ENIEEST f, =0,V
(D Un=2k+1] fi=0Vijfi=r
(1,14] foic1 =0, fo; =2r —2
(11.2] fi =0,vi
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