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Abstract

Periodic signals can be modeled by means of second-order nonlinear ordinary differential equations (ODE’s). The right hand
side function of the ODE is parameterized in terms of known basis functions. The least squares algorithm developed for
estimating the coefficients of these basis functions gives biased estimates, especially at low signal to noise ratios. This is due
to noise contributions to the periodic signal and its derivatives evaluated using finite difference approximations. In this paper
a fully automated spectral analysis (ASA) technique is used to eliminate these noise contributions. A simulation study shows
that using the ASA technique significantly improves the performance of the least squares estimator.
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1 Introduction

Modeling of periodic signals is a fundamental problem in
many applications. Examples include vibration analysis,
overtone analysis in power networks and measurement
of linearity in electronic power amplifiers, see (Abd-
Elrady 2002, Abd-Elrady 2004, Stoica & Moses 1997).
Many systems that generate periodic signals can be de-
scribed by second-order nonlinear ODE’s with polyno-
mial right hand sides. Examples include tunnel diodes,
pendulums, negative-resistance oscillators and predator-
prey systems, see (Khalil 2002, Perko 1991).

In this paper the periodic signal is modeled as a func-
tion of the states of a general second-order ODE, and
by introducing a polynomial parameterization of the
right hand side of this ODE. Therefore, the approach of
this paper is expected to obtain highly accurate models
by estimating only a few parameters. Estimators based
on Kalman filter and extended Kalman filter (EKF)
were developed in (Wigren, Abd-Elrady & Söderström
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2003a). A least squares (LS) estimation algorithm was
derived in (Wigren, Abd-Elrady & Söderström 2003b).
Also, an algorithm based on the Markov estimate was in-
troduced in (Abd-Elrady, Söderström & Wigren 2004).

As mentioned in (Abd-Elrady et al. 2004, Wigren et al.
2003b), the LS estimator is expected to give a biased es-
timates especially at low signal to noise ratios (SNRs).
This is due to two reasons. First, the assumption on the
noise to be white is not valid. In (Abd-Elrady et al. 2004)
this problem was solved by estimating the noise co-
variance matrix and implementing a Markov estimate
based algorithm. Second, derivatives of the modeled sig-
nal evaluated using finite difference approximations are
highly contaminated with noise. Hence, the regressors
and regressed variable of the linear regression equation
are also contaminated with noise, and the problem be-
comes an error-in-variables (EIV) problem. A weighted
total least squares (TLS) algorithm was studied in (Abd-
Elrady et al. 2004) for this EIV problem but it did not
lead to improvement compared to the LS estimate at
moderate SNRs.

In this paper the automated spectral analysis (ASA)
technique, see (Pintelon & Schoukens 2001, Schoukens,
Rolain, Simon & Pintelon 2003), is used to eliminate the
noise contribution in the modeled signal and evaluating
the signal derivatives in the frequency domain. This is
expected to avoid noise amplification in the differentia-
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tion phase extending the operating region of the LS es-
timation algorithm toward low SNRs.

The paper is organized as follows. Section 2 gives the de-
tails on the model. Section 3 introduces the LS estima-
tion algorithm. The ASA technique is presented in Sec-
tion 4. Section 5 gives a comparative simulation study
between the LS algorithm using the ASA technique (LS-
ASA) and the LS algorithm using finite difference ap-
proximation. Conclusions appear in Section 6.

2 The model

2.1 Measurements

The discrete time measured signal u(kh) is given by

u(kh) = y(kh) + e(kh), (1)

where y(t) is the continuous time periodic signal to be
modeled, y(kh) its sampled value, e(kh) is the discrete
time measurement noise and h the sampling interval.

2.2 Model Structures

The idea here is to model the generation of the signal
y(t) by means of an unknown parameter vector θ an a
nonlinear ODE, i.e.

ẋ = f(x,θ), (2)

y = h(x). (3)

As shown in (Wigren et al. 2003b), and proved rigorously
in (Wigren & Söderström 2003), it can often be assumed
that the second order ODE

ÿ(t) = f
(
y(t), ẏ(t),θ

)
(4)

generates the periodic signal that is measured. Thus
choosing the state variables as follows

(
x1(t)

x2(t)

)
=

(
y(t)

ẏ(t)

)
, (5)

the model given in (2)-(3) becomes

(
ẋ1(t)

ẋ2(t)

)
=

(
x2(t)

f
(
x1(t), x2(t),θ

)

)
, (6)

y(t) =
(

1 0
)( x1(t)

x2(t)

)
. (7)

This model depends only on the parameters of the second
right hand side function of (6), a fact that should be
advantageous from a computational and performance
point of view, see (Wigren et al. 2003b) for more details.

2.3 Parameterization

The right hand side of the second state equation of (6)
is expanded in terms of known basis functions, model-
ing the right hand side as a truncated superposition of
these functions. In case of a polynomial model, a suit-
able parameterization is

f
(
x1(t), x2(t),θ

)
=

L∑

l=0

M∑

m=0

θl,mxl
1(t)x

m
2 (t), (8)

θ =
(

θ0,0 · · · θ0,M · · · θL,0 · · · θL,M

)T

. (9)

3 The least squares algorithm

In order to formulate the model in a linear regression
form, note that (6), (8) and (9) result in the model

ẋ1(t) = x2(t), (10)

ẋ2(t) = φT
(
x1(t), x2(t)

)
θ, (11)

where

φT
(
x1(t), x2(t)

)
=

(
1 · · · xM

2 (t) · · · xL
1 (t) · · · xL

1 (t)xM
2 (t)

)
.

(12)

To estimate the parameter vector θ from (11), some ap-
proximations are needed. Since x1(t), x2(t) and ẋ2(t) are
not known, their estimates should be used. In this case,
the second state equation (11) results in (at t = kh)

̂̇x2(kh) = φT
(
x̂1(kh), x̂2(kh)

)
θ + ε(kh). (13)

The expression (13) follows by performing a Taylor series

expansion of the regression vector φT
(
x1(kh), x2(kh)

)

around
(
x̂1(kh) x̂2(kh)

)T
. In (13) the combined re-

gression error, ε(kh), has been introduced. It can not
be expected to be white since the Taylor series expan-
sion in (13) produces sum of noise samples that are
measured at different sampling times. This is because
the Taylor series terms will contain differences between
x̂1(kh), x̂2(kh) and x1(kh), x2(kh), respectively, i.e.
e(kh), e(kh − h) and/or e(kh + h) depending on which
derivative approximation is used. This means that the
LS estimator will, in the end, be biased as mentioned
in Section 2. However, for good estimates of x1(kh),
x2(kh) and ẋ2(kh), and/or relatively high SNRs the
accuracy is expected to be good.

Assuming that data are available at times kh −
Nh, · · · , kh and defining the vectors and matrices

ZN =
(
̂̇x2(kh) · · · ̂̇x2(kh − Nh)

)T

, (14)
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ΦN =





φT
(
x̂1(kh), x̂2(kh)

)

...

φT
(
x̂1(kh − Nh), x̂2(kh − Nh)

)




, (15)

εN =
(

ε(kh) · · · ε(kh − Nh)
)T

, (16)

the following regression equation results

ZN = ΦN θ + εN . (17)

Hence the LS estimate θ̂
LS

N is given by, see (Söderström
& Stoica 1989)

θ̂
LS

N = (ΦT
NΦN )−1 ΦT

N ZN . (18)

The LS estimate (18) has been studied in (Wigren et al.
2003b) using x̂1(kh) = u(kh) in addition to x̂2(kh) and
̂̇x2(kh) evaluated using finite difference approximation.
It is shown in (Wigren et al. 2003b) that the LS algorithm
gives considerably accurate models at high SNRs and
further research is needed to extend the operating region
toward low SNRs. This is because of noise amplification
during the differentiation process. In this paper the ASA
technique (Schoukens et al. 2003) is used to find more
accurate estimates for the noise free periodic signal x1(t)
and its derivatives x2(t) and ẋ2(t). An accurate estimate
x̂1(t) is found by eliminating noise corruption on the
modeled signal and more accurate estimates x̂2(t) and
̂̇x2(t) are found by differentiating x̂1(t) in the frequency
domain. The ASA technique is discussed in the next
section.

4 The fully automated spectral analysis

In order to estimate the spectrum of the periodic signal
using the ASA technique the data record should contain
at least 2 full periods + 48 samples (The 48 samples are
needed to account for the shift in the FIR filter used
in the algorithm). The spectrum of the signal will be
calculated up to 0.4fs (fs = 1/h) with a relative error
smaller than 10−5 of the peak value of the spectrum.
The algorithm is explained in all details in (Schoukens
et al. 2003). Here only a brief introduction is given.

Consider the periodic signal u(t) given in (1) with basic
frequency f0 = 1/T :

u(t) =

F∑

r=−F

Ur ej2πrf0t (19)

sampled at the time instances t = kh, with f0F ≤ 0.4fs,
Ur = Ū−r is the Fourier coefficient of the rth compo-
nent (where .̄ denotes the complex conjugate). Note that

T/h is not required to be a rational number. N equidis-
tant measurements of this signal u(kh) are made over
more than 2 periods once the transients disappeared (the
steady state solution is reached). Under these conditions

the ASA technique allows to obtain estimates Ûr of the
Fourier coefficients Ur, together with an estimate of the
variance

σ2

U (r) = E
[

(Ûr − E[Ûr])(Ûr − E[Ûr])
]
, (20)

where E is the expectation operator. The procedure con-

sists of two parts. In a first step, an initial estimate T̂0

of the period length T is made using correlation meth-
ods. In a second step this initial estimate is improved by
minimizing a cost function V (T ) (cf. (23)), and eventu-
ally the corresponding Fourier coefficients are calculated
using an FFT.

4.1 Initial estimate T̂0

The initial estimate of the period length is based on the
autocorrelation Ruu(τ) of u(t). The basic idea is to de-
tect the distance between successive peaks in Ruu(τ). If
a wide band signal with a flat amplitude spectrum is an-
alyzed, this simple method gives a good estimate. How-
ever it fails in practice for a number of special cases. Since
the method should be robust, it is refined in (Schoukens
et al. 2003) to deal also with beat signals.

4.2 Improved estimate of the period length

The improved period will be obtained by minimizing a
cost function V (T ), that is defined below step by step.

1- Assume that the period of the signal is T (to be es-
timated). From the initial estimate we know that the
measurements cover more than M ∈ N periods of the
signal.

2- In the next step, we interpolate the samples with an
equidistant grid with L samples per period, such that
we get ML = 2n points in the processed record (fast
FFT calculations). The number of data points is also
chosen high enough to avoid aliasing, L > 2.5F . The
interpolated signal

ẑ(q, T ), q = 0, · · · ,ML− 1 (21)

is an estimate of u(qT/L). It is calculated starting
from the measurements u(kh) using classical upsam-
pling (Crochiere & Rabiner 1983) and interpolation
techniques (Rolain, Schoukens & Vandersteen 1998).

3- Calculate the DFT spectrum (using the FFT)

Ẑ(s, T ) =
1

ML

ML−1∑

q=0

ẑ(q, T ) e−j2π
sq

ML . (22)
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4- Define the cost function

V (T ) =

∑L

s=1

(
|Ẑ(Ms + 1, T )|2 + |Ẑ(Ms − 1, T )|2

)

∑L

s=1
|Ẑ(Ms, T )|2

.

(23)
This can be interpreted as the ratio of the power on
the nonexcited frequency lines to that on the excited
lines.

5- Define the estimate T̂ as

T̂ = arg min
T

V (T ). (24)

Remark 1: The idea behind the choice of the cost func-
tion in (23) is simple: if there is no leakage any more (the
period fits perfectly), all the power of the signal should
be at the multiples Ms. If there is leakage, a fraction of
this power leaks to the neighboring lines. The cost func-
tion measures the ratio of this fraction and the algorithm
minimizes it.

Remark 2: The minimization problem in (24) is non-
linear in T . A nonlinear line search is used, that is ini-

tialized from T̂0. Since the cost function has many local
minima, the search is split in a coarse search, scanning
the cost function around the initial guess, followed by
a fine search (based on parabolic interpolation) to get
eventually the final estimate.

4.3 Estimation of the Fourier coefficients and their
variance

Once an estimate T̂ is available, the full record is re-
sampled according to this period length and split in M
subrecords. For each subrecord the DFT spectrum is
calculated. The final estimates of the Fourier coefficients
and their variance are then obtained as the sample mean
and sample variance of the spectra of these subrecords.

Remark 3: It can be noted that the sensitivity of
the algorithm to the noise is very low and seems to
be almost the same as that of a classical DFT (FFT)
approach where the period length would be known a
priori. So, almost no price is paid for the fact that the
basic period had to be extracted from the data instead
of being given a priori.

4.4 Estimation of x1(t), x2(t) and ẋ2(t)

Once the fundamental Fourier coefficients of the periodic
signal are estimated, the estimates of the noise free pe-

riodic signal, x̂1(t), and its derivatives, x̂2(t) and ̂̇x2(t),
are evaluated as

x̂1(t) =
F∑

r=−F

Ûr e
j 2πrt

T̂ , (25)

x̂2(t) =

F∑

r=−F

j
2πr

T̂
Ûr e

j 2πrt

T̂ , (26)

̂̇x2(t) =

F∑

r=−F

(
j
2πr

T̂

)2

Ûr e
j 2πrt

T̂ . (27)

Remark 4: Note that the LS-ASA algorithm is not more
efficient than the LS algorithm due to the internal up-
sampling. This is because the cutoff frequency of the fil-
ter used is at 0.4fs, so almost the complete frequency
band passes. The reason why the LS-ASA is more effi-
cient is twofold:

• Only one frequency line in M lines is used, the others
are put to zeros (M periods measured). This leads to
a reduction of the noise power by M.

• Only the significant Fourier coefficients are used in the

estimates x̂1(t), x̂2(t) and ̂̇x2(t). Hence, an enormous
noise reduction is obtained.

5 Numerical examples

Example 1: The Van der Pol oscillator (Khalil 2002)
was selected as the underlying system in this example.
The oscillator is described by

(
ẋ1

ẋ2

)
=

(
x2

−x1 + ε(1 − x2
1)x2

)
. (28)

The Matlab routine ode45 was used to solve (28)
for ε = 2. The initial state of (28) was selected as(
x1(0) x2(0)

)T
= (0 1)T . All results below are based

on data runs of length N = 104 with a sampling inter-
val h = 0.1 s. The measured signal u(t) selected as the
first state with white noise added. The differentiated
signals x̂2(t) and ̂̇x2(t) for the LS estimation algorithm
were obtained using first order difference (Euler center
approximation) with x̂1(t) = u(t). On the other hand,
these signals were evaluated using (25)-(27) for the
LS-ASA estimation algorithm.

In this example the estimated model used second degree
polynomials (L = M = 2). Both the LS and the LS-ASA
algorithms were run for different SNRs. As a measure of
performance,

V =
‖θ̂N − θo‖2

‖θo‖2

(29)

was computed and plotted as a function of the SNR in
Fig. 1. In (29), θo denotes the true parameter vector.
The phase plots for the estimated model at SNR of 20
dB in addition to the true system are given in Fig. 2.
Also, the estimated periodic signal compared to the true
signal are given in Fig. 3. The LS algorithm using Euler
center approximation did not give stable limit cycles for
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Fig. 1. Comparison between LS-ASA estimates and LS esti-
mates for different SNRs.
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Fig. 2. True (solid) and estimated (dashed) phase plots. LS
estimate (left) and LS-ASA estimate (right) [SNR=20 dB].

SNRs below 20 dB. The LS-ASA algorithm still gives
good models for low SNRs as shown in Figures 4-5.

It can be concluded from Figures 1-5 that the LS-ASA
estimation algorithm gives significantly better estimates
than the LS algorithm using finite difference approxima-
tion.

Example 2: In this example the suggested approach of
this paper is used to model a piece of a bell sound ex-
tracted from a CD in .wav format with a sampling fre-
quency of 22.05 kHz. The LS-ASA algorithm introduced
was applied to model 200 samples of the acoustic signal.
The model of (6)-(9) with L = M = 2 was used. The
following model was obtained:

(
ẋ1

ẋ2

)
=

(
x2

−6.604 × 107x1 + 0.306 × 107x2
1

)
. (30)
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Fig. 3. True (solid) and estimated (dashed) signals. LS esti-
mate (left) and LS-ASA estimate (right) [SNR=20 dB].
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Fig. 4. True (solid) and estimated LS-ASA (dashed) phase
plots. 0 dB (left) and 10 dB (right).

The real data, the model output, the true and the es-
timated phase plots are given in Fig 6. The results of
Fig. 6 show that the approach of this paper models the
real acoustic signal very well.

6 Conclusions

A LS estimation algorithm based on fully automated
spectral analysis (ASA) technique has been introduced
for the modeling of periodic signals using a second-order
nonlinear ODE model. The ASA technique removes the
noise contributions on the modeled signal and its deriva-
tives. The suggested algorithm results in significantly
improved performance as compared to the LS estimation
algorithm using finite difference approximation.
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