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Classical tilting theory generalizes Morita theory of equivalence of module cat-
egories. The key property – existence of category equivalences between large full
subcategories of the module categories – forces the representing tilting module to
be finitely generated.

However, some aspects of the classical theory can be extended to infinitely gen-
erated modules over arbitrary rings. In this paper, we will consider such an aspect:
the relation of tilting to approximations (preenvelopes and precovers) of modules.
As an application, we will present recent connections between tilting theory of
infinitely generated modules and the finitistic dimension conjectures.

General existence theorems provide a big supply of approximations in the cate-
gory Mod-R of all modules over an arbitrary ring R. However, the corresponding
approximations may not be available in the subcategory of all finitely generated
modules. So the usual sharp distinction between finitely and infinitely generated
modules becomes unnatural, and even misleading.

A convenient tool for the study of module approximations is the notion of a
cotorsion pair. Tilting cotorsion pairs are defined as the cotorsion pairs induced by
tilting modules. We will present their characterization among all cotorsion pairs,
and then apply it to a classification of tilting classes in particular cases (e.g., over
Prüfer domains). The point of the classification is that in the particular cases, the
tilting classes are of finite type. This means that we can replace the single infinitely
generated tilting module by a set of finitely presented modules; the tilting class is
then axiomatizable in the language of the first order theory of modules.

Most of this paper is a survey of recent developments. We give complete defi-
nitions and statements of the results, but most proofs are omitted or replaced by
outlines of the main ideas. For full details, we refer to the original papers listed in
the references, or to the forthcoming monograph [51]. However, Theorems 3.4, 3.7,
4.14, and 4.15 are new, hence presented with full proofs.

In §1, we introduce cotorsion pairs and their relations to approximation the-
ory of infinitely generated modules over arbitrary rings. In §2 and §3, we study
infinitely generated tilting and cotilting modules, and characterize the induced tilt-
ing and cotilting cotorsion pairs. §4 deals with tilting classes of finite type and
cotilting classes of cofinite type, and with their classification over particular rings.
Finally, §5 relates tilting approximations to the first and second finitistic dimension
conjectures.

We start by fixing our notation. For an (associative, unital) ring R, Mod-R
denotes the category of all (right R-) modules. mod-R denotes the subcategory
of Mod-R formed by all modules possessing a projective resolution consisting of
finitely generated modules. (If R is a right coherent ring then mod-R is just the
category of all finitely presented modules).
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Let C be a class of modules. For a cardinal κ, we denote by C<κ, and C≤κ, the
subclass of C consisting of the modules possessing a projective resolution contain-
ing only < κ-generated, and ≤ κ-generated, modules, respectively. For example,
mod-R = (Mod-R)<ω. Further, lim

−→
C denotes the class of all modules that are

direct limits of modules from C. (In general, lim
−→

C is not closed under direct limits,
but it is in case C ⊆ mod-R. In that case, C = lim

−→
C ∩ mod-R provided C is closed

under finite direct sums and direct summands.)
Let n < ω. We denote by Pn (In, Fn) the class of all modules of projective

(injective, flat) dimension ≤ n. Further, P (I, F) denotes the class of all modules
of finite projective (injective, flat) dimension. The injective hull of a module M is
denoted by E(M).

We denote by Z the ring of all integers, and by Q the field of all rational numbers.
For a commutative domain R, Q denotes the quotient field of R.

For a left R-module N , we denote by N∗ = HomZ(N, Q/Z) the character module
of N . Note that N∗ is a (right R-) module.

Let M be a module. Then M is a dual module provided that M = N∗ for a left
R-module N . M is pure-injective provided that M is a direct summand in a dual
module. M is (Enochs) cotorsion provided that Ext1R(M,F ) = 0 for each F ∈ F0.
Notice that any dual module is pure-injective, and any pure-injective module is
cotorsion (The converses do not hold in general; however, flat cotorsion modules
over left coherent rings are pure-injective, [81]). The class of all pure-injective, and
cotorsion, modules is denoted by PI, and EC, respectively.

A module M is divisible if Ext1R(R/rR,M) = 0 for each r ∈ R, and torsion-free

if TorR
1 (M,R/Rr) = 0 for each r ∈ R (If R is a commutative domain, then these

notion coincide with the classical ones). The class of all divisible and torsion-free
modules is denoted by DI and T F , respectively.

1. Cotorsion pairs and approximations of modules

Cotorsion pairs are analogs of (non-hereditary) torsion pairs, with Hom replaced
by Ext. They were introduced by Salce (under the name ”cotorsion theories”) in
[69]. The analogy with the well-known torsion pairs makes it possible to derive
easily some basic notions and facts about cotorsion pairs. However, the main point
concerning cotorsion pairs is their close relation to special approximations of mod-
ules: cotorsion pairs provide a homological tie between the dual notions of a special
preenvelope and a special precover. This tie (discovered in [69], cf. 1.8.3) is a sort
of remedy for the non-existence of a duality in Mod-R.

Before introducing cotorsion pairs, we define various Ext-orthogonal classes.
Let C ⊆ Mod-R. Define C⊥ =

⋂
n<ω C⊥n where C⊥n = {M ∈ Mod-R |

Extn
R(C,M) = 0 for all C ∈ C} for each n < ω. Dually, let ⊥C =

⋂
n<ω

⊥nC

where ⊥nC = {M ∈ Mod-R | Extn
R(M,C) = 0 for all C ∈ C} for each n < ω.

1.1. Cotorsion pairs. Let R be a ring. A cotorsion pair is a pair C = (A,B)
of classes of modules such that A = ⊥1B and B = A⊥1 . The class A ∩ B is called
the kernel of C. The cotorsion pair C is hereditary provided that Exti

R(A,B) = 0
for all A ∈ A, B ∈ B and i ≥ 2.

Notice that C is hereditary iff A = ⊥B and B = A⊥. The property of C being
hereditary can easily be expressed in terms of the properties of A and B: C is hered-
itary iff A is closed under kernels of epimorphisms iff B is closed under cokernels of
monomorphisms.

Each module M in the kernel of a cotorsion pair C is a splitter, that is, M satisfies
Ext1R(M,M) = 0. We will see that the kernel of C in the tilting and cotilting cases
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plays an important role: it determines completely the classes A and B. (This
contrasts with what happens for torsion pairs: since idM ∈ HomR(M,M) for each
module M , the ”kernel” of any torsion pair is trivial.)

1.2. By changing the category, we could take a complementary point of view,
working modulo the kernel rather than stressing its role. By a result of Beligiannis
and Reiten [24], each complete hereditary cotorsion pair C = (A,B) in Mod-R
determines a torsion pair, (A,B), in the stable module category Mod-R (of Mod-R
modulo the kernel of C), cf. 1.8.3. Consequently, special A-precovers and special
B-preenvelopes are functorial modulo maps factoring through the kernel, cf. [61].

The class of all cotorsion pairs is partially ordered by inclusion in the first com-
ponent: (A,B) ≤ (A′,B′) iff A ⊆ A′. The ≤-least cotorsion pair is (P0,Mod-R),
the ≤-greatest (Mod-R, I0); these are the trivial cotorsion pairs.

The cotorsion pairs over a ring R form a complete lattice, LR: given a se-
quence of cotorsion pairs S = ((Ai,Bi) | i ∈ I), the infimum of S in LR is
(
⋂

i∈I Ai, (
⋂

i∈I Ai)
⊥1), the supremum being (⊥1(

⋂
i∈I Bi),

⋂
i∈I Bi).

For any class of modules C, there are two cotorsion pairs associated with C:
(⊥1C, (⊥1C)⊥1), called the cotorsion pair generated by C, and (⊥1(C⊥1), C⊥1), the
cotorsion pair cogenerated by C. If C has a representative set of elements S, then
the first cotorsion pair is generated by the single module

∏
S∈S S, while the second

is cogenerated by the single module
⊕

S∈S S.

The existence of cotorsion pairs generated and cogenerated by any class of mod-
ules indicates that LR is a large class in general.

For example, the condition of all cotorsion pairs being trivial is extremely re-
strictive: by [74] and [39], for a right hereditary ring R, this condition holds iff
R = S or R = T or R is the ring direct sum S ⊞ T , where S is semisimple artinian
and T is Morita equivalent to a 2 × 2-matrix ring over a skew-field. As another
example, consider the case of R = Z: by [49], any partially ordered set embeds in
LZ; in particular, LZ is a proper class.

1.3. Replacing Ext by Tor in 1.1, we can define a Tor-torsion pair as the pair
(A,B) where A = {A ∈ Mod-R | TorR

1 (A,B) = 0 for all B ∈ B} and B = {B ∈

R-Mod | TorR
1 (A,B) = 0 for all A ∈ A}. Similarly to the case of cotorsion pairs,

we can define Tor-torsion pairs generated (cogenerated) by a class of left (right)
R-modules. Tor-torsion pairs over a ring R form a complete lattice; by 1.4.3 below,
the cardinality of this lattice is ≤ 22κ

where κ = card(R) + ℵ0.
The well-known Ext-Tor relations yield an embedding of the lattice of Tor-torsion

pairs into LR as follows: a Tor-torsion pair (A,B) is mapped to the cotorsion pair
(A,A⊥1). The latter cotorsion pair is easily seen to be generated by the class
{B∗ | B ∈ B}. In this way, Tor-torsion pairs are identified with particular cotorsion
pairs generated by classes of pure-injective modules.

The following lemma says that most of the classes of modules defined above
occur as first or second components of cotorsion pairs cogenerated by sets:

Lemma 1.4. Let R be a ring and n < ω. Let κ = card(R) + ℵ0.

(1) C = (Pn, (Pn)⊥) is a hereditary cotorsion pair cogenerated by P≤κ
n . If R is

right noetherian then C is cogenerated by P≤ω
n .

(2) Let C = (A,B) be a cotorsion pair generated by a class of pure-injective
modules. Then C is cogenerated by A≤κ.

(3) Let (A,B) be a Tor-torsion pair. Then (A,A⊥1) is a cotorsion pair cogen-
erated by A≤κ, and generated by {B∗ | B ∈ B}. In particular, (Fn, (Fn)⊥)
is a hereditary cotorsion pair cogenerated by F≤κ

n .
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(4) (⊥In, In) is a hereditary cotorsion pair cogenerated by (⊥In)≤λ where λ is
the least infinite cardinal such that each right ideal of R is λ-generated.

(5) Let R be a right noetherian ring. Then the cotorsion pair cogenerated by
In is cogenerated by a set.

(6) (⊥1DI,DI) and (T F , T F⊥1) are cogenerated by sets of cardinality ≤ κ.

Proof. 1.[1] For n = 0, we apply the classical result of Kaplansky saying that each
projective module is a direct sum of the countably generated ones. For n ≥ 1, it
suffices to prove that for all M ∈ Pn and 0 6= x ∈ M there is a submodule N ⊆ M
such that N,M/N ∈ Pn, card(N) ≤ κ, and x ∈ N . This is proved by a back and
forth argument in a fixed projective resolution of M , see [1]. The noetherian case
is similar, cf. [72].

2. This is proved in [40].
3. The first statement follows by part 2. and by 1.3. The second is a particular

case of the first one.
4. By Baer test lemma for injectivity, we have M ∈ In iff Ext1R(N,M) = 0

where N runs over a representative set of all n-th syzygies of cyclic modules.
5. Since R is right noetherian, there is a cardinal µ such that any injective

module is a direct sum of ≤ µ-generated modules, and the proof proceeds in a dual
way to 1., see [1].

6. The first cotorsion pair is cogenerated by the set {R/rR | r ∈ R}. The
assertion concerning the second pair is a particular case of 3. ¤

The key property of cotorsion pairs is their relation to approximations of mod-
ules. The connection is via the notion of a special approximation, [81]:

1.5. Special approximations. Let R be a ring, M a module and C a class
of modules. An R-homomorphism f : M → C is a special C-preenvelope of M

provided that f induces a short exact sequence 0 → M
f
→ C → D → 0 with C ∈ C

and D ∈ ⊥1C. C is a special preenveloping class if each module M ∈ Mod-R has a
special C-preenvelope.

Dually, an R-homomorphism g : C → M is a special C-precover of M provided

that g induces a short exact sequence 0 → B → C
g
→ M → 0 with C ∈ C and

B ∈ C⊥1 . C is a special precovering class if each module M ∈ Mod-R has a special
C-precover.

The terminology of 1.5 comes from the fact that special preenvelopes and pre-
covers are special instances of the following more general notions, [42], [81]:

1.6. Let R be a ring, M a module, and C a class of modules. An R-homomorphism
f : M → C with C ∈ C is a C-preenvelope of M provided that for each C ′ ∈ C and
each R-homomorphism f ′ : M → C ′ there is an R-homomorphism g : C → C ′ such
that f ′ = gf .

The C-preenvelope f is a C-envelope of M if f has the following minimality
property: if g is an endomorphism of C such that gf = f then g is an automorphism.

C is a preenveloping (enveloping) class provided that each module M ∈ Mod-R
has a C-preenvelope (envelope).

The notions of a C-precover, C-cover, precovering class, and covering class are
defined dually.

A preenvelope (precover) may be viewed as a kind of weak (co-) reflection [44];
however, we do not require the assignment M 7→ C (C 7→ M) to be functorial or
unique, cf. 1.2.

However, if a module M has a C-envelope (cover) then the C-envelope (cover) is
easily seen to be uniquely determined up to isomorphism; morever the C-envelope
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(cover) of M is isomorphic to a direct summand in any C-preenvelope (C-precover)
of M , [81].

Classical examples of enveloping classes include I0 and PI, see [35] and [80],
and of covering classes, P0 in case R is a right perfect ring, and T F in case R is a
domain, see [13] and [41]. We will have many more examples later in this section.

1.7. The definitions above can be extended to the setting of an abitrary category
K (in place of Mod-R) and its subcategory C ⊆ K. In the particular case when
K = mod-R, we will say C is covariantly finite (contravariantly finite) provided that
C is preenveloping (precovering) in mod-R, cf. [12].

The following lemma connects cotorsion pairs to approximations of modules:

Lemma 1.8. Let R be a ring, M a module, and C = (A,B) a cotorsion pair.

(1) [79] Assume M has a B-envelope f . Then f is a special B-preenvelope.
So if B is enveloping then B is special preenveloping.

(2) [79] Assume M has a A-cover f . Then f is a special A-precover. So if A
is covering then A is special precovering.

(3) [69] A is special precovering iff B is special preenveloping. In this case C

is called a complete cotorsion pair.

Proof. 1. Since I0 ⊆ B, f is monic, so there is a short exact sequence 0 → M
f
→

B
g
→ C → 0. Take a short exact sequence 0 → B′ → D

h
→ C → 0 with B′ ∈ B.

Considering the pull-back of g and h, and using the minimality of the map f , we
obtain a splitting map for h, thus proving that C ∈ A.

2. This is dual to 1.

3. Let M be a module. Consider a short exact sequence 0 → M → I
f
→ J → 0

where I ∈ I0. Let g : A → J be a special A-precover of J . Then the pull-back of g
and f yields a special B-preenvelope of M . The proof of the converse implication
is dual. ¤

The following example shows that in 1.8.3, we cannot claim that A is a covering
class iff B is an enveloping one (however, by 1.10 below, the equivalence holds in
case A is closed under direct limits):

Example 1.9. [21], [22], [23] Let R be a commutative domain and C be the co-
torsion pair cogenerated by the quotient field Q. Matlis proved that C is hereditary
iff proj.dim(Q) ≤ 1 (that is, R is a Matlis domain).

The class B = {Q}⊥1 is the class of all Matlis cotorsion modules. Since B =
(Mod-Q)⊥1 , B is an enveloping class, [81]. For example, the B-envelope of a torsion-
free reduced module M coincides with the R-completion of M , cf. [46].

On the other hand, A (called the class of all strongly flat modules) is a covering
class iff all proper factor-rings of R are perfect. For example, if R is a Prüfer domain
then A is a covering class iff R is a Dedekind domain.

Cotorsion pairs C = (A,B) such that A is a covering class and B is an enveloping
class are called perfect. By 1.8, each perfect cotorsion pair is complete. There is a
sufficient condition for perfectness of complete cotorsion pairs due to Enochs. For
a proof, we refer to [42] and [81]:

Theorem 1.10. Let R be a ring, M a module, and C = (A,B) a cotorsion pair.
Assume that A is closed under direct limits.

(1) If M has a B-preenvelope then M has a B-envelope.
(2) If M has an A-precover then M has an A-cover.

In particular, C is perfect iff C is complete iff A is covering iff B is enveloping.
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1.11. Let R be a ring, and C a subclass of mod-R closed under extensions and direct
summands such that R ∈ C. Let D = lim

−→
C. Then C = D ∩ mod-R. Moreover, by

[8], the Tor-torsion pair cogenerated by C has the form (D, E) for some E ⊆ R-Mod.
By 1.4.3, there are two associated cotorsion pairs: (A,B) – the cotorsion pair

cogenerated by C, and (D,G) – the cotorsion pair generated by the class of all dual
modules in B. Clearly, (A,B) ≤ (D,G).

Assume that R is an artin algebra. By [61], if C is resolving and contravariantly
finite, then (D,G) is also generated by H = B ∩ mod-R. So (C,H) is a complete
hereditary cotorsion pair in mod-R. Moreover, G = lim

−→
H.

Let C = (A,B) be a complete cotorsion pair. It is an open problem whether A
is a covering class iff A is closed under direct limits (The ’if’ part is true by 1.10).
1.9 shows that B may be enveloping even if A is not closed under direct limits.

1.12. Invariants of modules. Assume C = (A,B) is a perfect cotorsion pair.
Then often the modules in the kernel, K, of C can be classified up to isomorphism
by cardinal invariants. There are two ways to extend this classification:

a) Any module A ∈ A determines – by an iteration of B-envelopes (of A, of the
cokernel of the B-envelope of A, etc.) – a long exact sequence all of whose members
(except for A) belong to K. This sequence is called the minimal K-coresolution of
A. The sequence of the cardinal invariants of the modules from K occuring in the
coresolution provides for an invariant of A. In this way, the structure theory of the
modules in K is extended to a structure theory of the modules in A.

b) Dually, any module B ∈ B determines – by an iteration of A-covers – a long
exact sequence all of whose members (except for B) belong to K, the minimal
K-resolution of B. This yields a sequence of cardinal invariants for any module
B ∈ B.

For specific examples to a) and b), we consider the case when R is a commutative
noetherian ring:

If C = (Mod-R, I0), then K = I0, and by the classical theory of Matlis, each
M ∈ K is determined up to isomorphism by the multiplicities of indecomposable in-
jectives E(R/p) (p a prime ideal of R) occuring in an indecomposable decomposition
of M . The cardinal invariants of arbitary modules (in A = Mod-R) constructed in
a) are called the Bass numbers. A formula for their computation goes back to Bass:
the multiplicity of E(R/p) in the i-th term of the minimal injective coresolution of
a module N is µi(p,N) = dimk(p) Exti

Rp
(k(p), Np) where k(p) = Rp/Rad(Rp), and

Rp and Np is the localization of R and N at p, respectively, cf. [63].
If C = (F0, EC), then K consists of the flat pure-injective modules: these are

described by the ranks of the completions, Tp, of free modules over localizations Rp

(p a prime ideal of R) occuring in their decomposition, [42]. The construction b)
yields a sequence of invariants for any cotorsion module N . These invariants are
called the dual Bass numbers. A formula for their computation is due to Xu [81]:
the rank of Tp in the i-th term of the minimal flat resolution of N is πi(p,N) =

dimk(p) Tor
Rp

i (k(p),HomR(Rp, N)).

In view of 1.4, the following result says that most cotorsion pairs are complete,
hence provide for approximations of modules.

For a module M and a class of modules C, a C-filtration of M is an increasing
sequence of submodules of M , (Mα | α < σ), such that M =

⋃
α<σ Mα, Mα =⋃

β<α Mβ for all limit ordinals α < σ, and Mα+1/Mα is isomorphic to an element
of C for each α < σ. A module possessing a C-filtration is called C-filtered.

Theorem 1.13. Let R be a ring and C = (A,B) a cotorsion pair cogenerated by a
set of modules S. Then C is complete, and A is the class of all direct summands of
all S ∪ {R}-filtered modules.



INFINITE DIMENSIONAL TILTING MODULES AND COTORSION PAIRS 7

Proof. [39] The core of the proof is a construction (by induction, using a push-out
argument inspired by [48] in the non-limit steps), for each pair of modules, (M,N),
of a short exact sequence 0 → M → B → A → 0 such that A is {N}-filtered and
B ∈ {N}⊥1 . By assumption, C is cogenerated by a single module, say N . For any
module M , the short exact sequence above yields a special B-preenvelope of M ,
proving that C is complete.

For a module X ∈ A, consider a short exact sequence 0 → M → F → X → 0
with F free. Let 0 → M → B → A → 0 be as above. The push-out of the maps
M → F and M → B yields a split exact sequence 0 → B → G → X → 0, and G
is an extension of F by A, hence G is {N,R}-filtered. The converse is proved by
induction on the length of the filtration. ¤

1.13 was applied by Enochs to prove the flat cover conjecture: each module has
a flat cover and a cotorsion envelope, [25]. This was generalized in [40] as follows:

Theorem 1.14. Let R be a ring and C be a cotorsion pair generated by a class of
pure-injective modules. Then C is perfect.

Proof. By 1.4, C is cogenerated by a set of modules. By 1.13, C is a complete
cotorsion pair. By a classical result of Auslander, the functor Ext1R(−,M) takes
direct limits to the inverse ones for each pure-injective module M . In particular,
⊥1{M} is closed under direct limits. So 1.10 applies, proving that C is perfect. ¤

The flat cover conjecture is the particular case of 1.14 for C generated by PI.
For Dedekind domains, we can extend 1.14 further:

Theorem 1.15. Let R be a Dedekind domain and C be a cotorsion pair generated
by a class of cotorsion modules. Then C is perfect.

Proof. Let C be a cotorsion module and f : F → C be its flat cover. Then F is
flat and cotorsion, hence pure-injective. By [40], ⊥C = ⊥F . So C is generated by a
class of pure-injective modules, and 1.14 applies. ¤

However, the possibility of extending 1.14 to larger classes of modules depends on
the extension of set theory (ZFC) that we work in. Here, one uses the well-developed
theory studying dependence of vanishing of Ext on set-theoretic assumptions. This
theory originated in Shelah’s solution of the Whitehead problem, but has many
more applications [36].

In the positive direction, Gödel’s axiom of constructibility (V = L) is useful, or
rather its combinatorial consequence called Jensen’s diamond principle ♦:

♦ Let κ be a regular uncountable cardinal, E be a stationary subset in κ,
and X be a set of cardinality κ such that X =

⋃
α<κ Xα where (Xα | α < κ)

is an increasing chain of subsets of X with card(Xα) < κ for all α < κ, and
Xβ =

⋃
γ<β Xγ for each limit ordinal β < κ.

Then there exist sets Yα (α ∈ E) such that Yα ⊆ Xα for all α ∈ E, and moreover,
for each Z ⊆ X, the set {α ∈ E | Z ∩ Xα = Yα} is stationary in κ.

(A subset E ⊆ κ is stationary in κ if E has a non-empty intersection with each
closed and unbounded subset of κ.)

The following result is proved in [40] by induction, applying ♦ in regular cardi-
nals, and Shelah’s Singular Compactness Theorem in the singular ones:

Theorem 1.16. Assume ♦. Let R be a right hereditary ring and C a cotorsion
pair generated by a set of modules. Then C is complete.

In the negative direction, Shelah’s uniformization principle UP+ is useful. Like
Gödel’s axiom of constructibility, UP+ is relatively consistent with ZFC + GCH,
but UP+ and ♦ are mutually inconsistent.
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UP+ Let κ be a singular cardinal of cofinality ω. There is a stationary subset
E in κ+ consisting of ordinals of cofinality ω, and a ladder system µ = (µα | α ∈ E)
with the following uniformization property:

For each cardinal λ < κ and each system of maps hα : µα → λ (α ∈ E) there is
a map f : κ+ → λ such that for each α ∈ E, f coincides with hα in all but finitely
many ordinals of the ladder µα.

(A ladder system µ = (µα | α ∈ E) consists of ladders, the ladder µα being a
strictly increasing countably infinite sequence of ordinals < α whose supremum is
α.)

UP+ can be used, for any non-right perfect ring R, to construct particular
free modules G ⊆ F such that M = F/G is a non-projective module satisfying
Ext1R(M,N) = 0 for each module N with card(N) < λ. The point is that in the
particular setting, a homomorphism ϕ : G → N determines a system of maps hα

(α ∈ E) as in the premise of UP+. The uniformization map f can then be used to
define a homomorphism ψ : F → N extending ϕ, thus giving Ext1R(M,N) = 0.

The following is proved in [38] (cf. with 1.15):

Theorem 1.17. Assume UP+. Let R be a Dedekind domain with a countable
spectrum, and C a cotorsion pair generated by a set containing at least one non-
cotorsion module. Then C is not cogenerated by a set of modules.

In the particular case of R = Z, there is a stronger result by Eklof and Shelah
[37], using a much stronger version of UP+ which we do not state here, but just
denote by SUP (SUP is also relatively consistent with ZFC + GCH, cf. [37]):

Theorem 1.18. Assume SUP. Denote by C = (A,B) the cotorsion pair generated
by Z. Then Q does not have an A-precover; in particular, C is not complete.

Notice that the class A in 1.18 is the well-known class of all Whitehead groups.

We finish this section by two open problems. Let R be a ring and C a cotorsion
pair.

1. Is C complete provided that C is generated by a class of cotorsion modules?
This is true in the Dedekind domain case by 1.15. Notice that for right perfect
rings, the question asks whether all cotorsion pairs are complete.

2. Is the completeness of C independent of ZFC in case C is generated by a set
containing at least one non-cotorsion module? This is true when R = Z and C

is generated by Z, cf. 1.16 and 1.18. The term ”set” is important here, since by
1.4 and 1.13, in ZFC there are many complete cotorsion pairs C = (A,B) with B
containing non-cotorsion modules.

2. Tilting cotorsion pairs

In this section, we will investigate relations between tilting and approximation
theory of modules. For this purpose, it is convenient to work with a rather general
definition of a tilting module. Our definition allows for infinitely generated modules,
and also modules of finite projective dimension > 1.

2.1. Tilting modules. Let R be a ring. A module T is tilting provided that

(1) proj.dim(T ) < ∞;
(2) Exti

R(T, T (κ)) = 0 for any cardinal κ and any i ≥ 1;
(3) There are k < ω, Ti ∈ Add(T ) (i ≤ k), and an exact sequence

0 → R → T0 → · · · → Tk → 0.

Here, Add(T ) denotes the class of all direct summands of arbitrary direct
sums of copies of the module T .
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Let n < ω. Tilting modules of projective dimension ≤ n are called n-tilting. A
class of modules C is n-tilting if there is an n-tilting module T such that C = {T}⊥.

A cotorsion pair C = (A,B) is n-tilting provided that B is an n-tilting class.

Notice that the notions above do not change when replacing the tilting module
T by the tilting module T (κ) (κ > 1). It is convenient to define an equivalence of
tilting modules as follows: T is equivalent to T ′ provided that the induced tilting
classes coincide: {T}⊥ = {T ′}⊥ (This is also equivalent to Add(T ) = Add(T ′).)

Clearly, 0-tilting modules coincide with the projective generators. Finite dimen-
sional tilting modules over artin algebras have been studied in great detail - we
refer to [4], [65] and [78] in this volume for much more on this classical case. We
will now give several examples of infinitely generated 1-tilting modules:

2.2. Fuchs tilting modules. [46], [47] Let R be a commutative domain, and
S a multiplicative subset of R. Let δS = F/G where F is the free module with the
basis given by all sequences (s0, . . . , sn) where n ≥ 0, and si ∈ S for all i ≤ n, and
the empty sequence w = (). The submodule G is generated by the elements of the
form (s0, . . . , sn)sn − (s0, . . . , sn−1) where 0 < n and si ∈ S for all 1 ≤ i ≤ n, and
of the form (s)s − w where s ∈ S.

The module δ = δR\{0} was introduced by Fuchs. Facchini [43] proved that δ
is a 1-tilting module. The general case of δS comes from [47]: the module δS is a
1-tilting module, called the Fuchs tilting module. The corresponding 1-tilting class
is {δS}

⊥ = {M ∈ Mod-R | Ms = M for all s ∈ S}, the class of all S-divisible
modules. If R is a Prüfer domain or a Matlis domain, then the 1-tilting cotorsion
pair cogenerated by δ is (P1,DI).

Example 2.3. [5] Let R be a commutative 1-Gorenstein ring. Let P0 and P1

denote the set of all prime ideals of height 0 and 1, respectively. By a classical
result of Bass, the minimal injective coresolution of R has the form

0 → R →
⊕

q∈P0

E(R/q)
π
→

⊕

p∈P1

E(R/p) → 0.

Consider a subset P ⊆ P1. Put RP = π−1(
⊕

p∈P E(R/p)). Then TP = RP ⊕⊕
p∈P E(R/p) is a 1-tilting module, the corresponding 1-tilting class being {TP }

⊥ =

{M | Ext1R(E(R/p),M) = 0 for all p ∈ P}. In particular, if R is a Dedekind
domain then {TP }

⊥ = {M | Ext1R(R/p,M) = 0 for all p ∈ P} = {M | pM =
M for all p ∈ P}.

In his classical work [67], Ringel discovered analogies between modules over
Dedekind domains and tame hereditary algebras. The analogies extend to the
setting of infinite dimensional tilting modules:

2.4. Ringel tilting modules. [67], [68] Let R be a connected tame hereditary
algebra over a field k. Let G be the generic module. Then S = End(G) is a
skew-field and dimS G = n < ω. Denote by T the set of all tubes. If α ∈ T is a
homogenous tube, we denote by Rα the corresponding Prüfer module. If α ∈ T is
not homogenous, denote by Rα the direct sum of all Prüfer modules corresponding
to the rays in α. Then there is an exact sequence

0 → R → G(n) π
→

⊕

α∈T

R(λα)
α → 0

where λα > 0 for all α ∈ T .

Let P ⊆ T . Put RP = π−1(
⊕

α∈P R
(λα)
α ). Then TP = RP ⊕

⊕
α∈P Rα is a

1-tilting module, called the Ringel tilting module. The corresponding 1-tilting class
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is the class of all modules M such that Ext1R(N,M) = 0 for all (simple) regular
modules N ∈ P .

2.5. Lukas tilting modules. [60], [62] Let R be a connected wild hereditary
algebra over a field k. Denote by τ the Auslander-Reiten translation, and by
R the class of all Ringel divisible modules, that is, of all modules D such that
Ext1R(M,D) = 0 for each regular module M .

Let M be any regular module. Then for each finite dimensional module N , Lukas
constructed an exact sequence 0 → N → AM → BM → 0 where AM ∈ M⊥ and
BM is a finite direct sum of copies of τnM for some n < ω. Letting CM = {τmM |
m < ω}, we can iterate this construction (for N = R, N = AM , etc.) and get an
exact sequence 0 → R → CM → DM → 0 where DM has a countable CM -filtration.
Then TM = CM ⊕ DM is a 1-tilting module, called the Lukas tilting module. The
corresponding 1-tilting class is R (so in contrast to 2.4, TM and TM ′ are equivalent
for all regular modules M and M ′).

Now, we will consider a simple example of an infinitely generated n-tilting mod-
ule. In §5, we will see that this example is related to the validity of the first finitistic
dimension conjecture for Iwanaga-Gorenstein rings.

A ring R is called Iwanaga-Gorenstein provided that R is left and right noe-
therian and the left and right injective dimensions of the regular module are finite,
[42]. In this case, inj.dim(RR) = inj.dim(RR) = n for some n < ω, and R is called
n-Gorenstein. Notice that 0-Gorenstein rings coincide with the quasi-Frobenius
rings.

Example 2.6. Let R be an n-Gorenstein ring. Let

0 → R → E0 → · · · → En → 0

be the minimal injective coresolution of R. Then T =
⊕

i≤n Ei is an n-tilting
module. The only non-trivial fact needed for this is that P = Pn = In = I
(= Fn = F) for any n-Gorenstein ring, cf. [42, §9].

For any tilting cotorsion pair C = (A,B), there is a close relation among the
classes A, B, and the kernel of C:

Lemma 2.7. Let R be a ring and C = (A,B) a tilting cotorsion pair. Let T be an
n-tilting module with {T}⊥ = B. Then

(1) C is hereditary and complete. Moreover, C ≤ (Pn,P⊥
n ), and the kernel of C

equals Add(T ).
(2) A coincides with the class of all modules M such that there is an exact

sequence

0 → M → T0 → · · · → Tn → 0

where Ti ∈ Add(T) for all i ≤ n.
(3) Let 0 → Fn → · · · → F0 → T → 0 be a free resolution of T and let

S = {Si | i ≤ n} be the corresponding set of syzygies of T . Then A
coincides with the class of all direct summands of all S-filtered modules.

(4) B coincides with the class of all modules N such that there is a long exact
sequence

· · · → Ti+1 → Ti → · · · → T0 → N → 0

where Ti ∈ Add(T) for all i < ω. In particular, B is closed under arbitrary
direct sums.
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Proof. 1. The first claim follows from B = {T}⊥ by 1.13, the second is clear from
T ∈ Pn. The last claim is proved in [2].

2. Since A is closed under kernels of monomorphisms, any M possessing such
exact sequence is in A. Conversely, we obtain the desired sequence by an iteration
of special B-preenvelopes (of M etc.). The fact that we can stop at n follows from
proj.dim(T ) ≤ n.

3. This follows by the characterization of A given in 1.13, since C is cogenerated
by

⊕
i≤n Si.

4. If N ∈ B then the long exact sequence can be obtained by an iteration of
special A-precovers (of N etc.). The converse uses proj.dim(T ) ≤ n once again. ¤

We arrive at the characterization of tilting cotorsion pairs in terms of approxi-
mations. We start with the case of n = 1 treated in [6]:

Theorem 2.8. Let R be a ring.

(1) A class of modules C is 1-tilting iff C is a special preenveloping torsion class.
(2) Let C = (A,B) be a cotorsion pair. Then C is 1-tilting iff C is complete,

C ≤ (P1,P
⊥
1 ), and B is closed under arbitrary direct sums.

Proof. 1. Since {T}⊥ is closed under homomorphic images and extensions for
any module T with proj.dim(T ) ≤ 1, the only-if part is a consequence of parts 1.
and 4. of 2.7 (for n = 1). For the if-part, we consider a special B-preenvelope of R;
this yields an exact sequence 0 → R → B → A → 0 with B ∈ B and A ∈ A. Then
T = A ⊕ B is a 1-tilting module with {T}⊥ = C, cf. [6].

2. The only-if part follows directly from parts 1. and 4. of 2.7. For the if-part,
note that B is closed under homomorphic images and extensions since B = A⊥1

and A ⊆ P1. So B is a torsion class, and part 1. applies. ¤

We stress that the special approximations induced by 1-tilting modules may
not have minimal versions in general (compare this with 3.9.1 below). For exam-
ple, if R is a domain and δ is the Fuchs tilting module from 2.2 then the special
{δ}⊥-preenvelopes coincide with the special divisible preenvelopes (and also with
the special FP-injective preenvelopes). However, if R is a Prüfer domain with
proj.dim(Q) ≥ 2, then the regular module R does not have a divisible envelope
(and so it does not have an FP-injective envelope), see [75].

The characterization in the general case is due to Angeleri Hügel and Coelho [2]:

Theorem 2.9. Let R be a ring and C = (A,B) be a cotorsion pair. Then C is
n-tilting iff C is hereditary and complete, C ≤ (Pn,P⊥

n ), and B is closed under
arbitrary direct sums.

Proof. The only-if part follows by 2.7. For the if-part, consider the iteration of
special B-preenvelopes of R, of Coker(f) (where f is a special B-preenvelope of R),
etc. By assumption, this yields a finite (A ∩ B)-coresolution of R, 0 → R → T0 →
· · · → Tn → 0. Then T =

⊕
i≤n Ti is n-tilting with {T}⊥ = B, cf. [2]. ¤

2.10. Many authors define a partial tilting module P as the module satisfying the
first two conditions of 2.1 (for P ). However, in general, these two conditions are not
sufficient for existence of a complement of P (= a module P ′ such that T = P ⊕P ′

is tilting and {P}⊥ = {T}⊥). For a counter-example, consider R = Z and P = Q;
then {P}⊥ is the class of all cotorsion groups which is not closed under arbitrary
direct sums.

The extra condition (E): ”{P}⊥ is closed under arbitrary direct sums” is clearly
necessary for the existence of a complement of P . We define a partial n-tilting
module P as a module of projective dimension ≤ n satisfying (E), and Exti

R(P, P ) =
0 for all 0 < i < ω. Then a complement of P always exists in Mod-R by 2.9: {P}⊥
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is an n-tilting class with an n-tilting module T such that {T}⊥ = {P}⊥, so T is a
complement of P , cf. [3]. Condition (E) is of course redundant in case P ∈ mod-R.

Let P be a finitely presented partial 1-tilting module. If R is an artin algebra
then P has a finitely presented complement by a classical result of Bongartz, cf.
[78]. However, a finitely presented complement of P may not exists even if R is a
hereditary noetherian domain, cf. [32].

Rickard and Schofield constructed artin algebras and finitely presented partial
2-tilting modules with no finitely presented complements, cf. [78].

3. Cotilting cotorsion pairs

In this section, we will consider the dual case of cotilting modules and cotilting
cotorsion pairs.

Similarly as tilting modules, the cotilting ones have first appeared in the rep-
resentation theory of finite dimensional k-algebras. There, the finite dimensional
cotilting modules coincide with the k-duals of the finite dimensional tilting modules,
so the theory is obtained by applying the k-duality.

1-cotilting modules over general rings are closely related to dualities (see [30] in
this volume for more details). Also, in §4, we will see that restricting to tilting
modules and classes of finite type, we actually have an explicit homological duality
available producing the corresponding cotilting modules and classes of cofinite type.

However, there is no explicit duality available in the general case. The problem is
that the dual of the key approximation construction of 1.13 does not work in ZFC:
by 1.18, there is an extension of ZGC + GCH with a cotorsion pair C generated by
a set such that C is not complete.

Fortunately, there is a remedy. First, for n = 1, a fundamental result of Bazzoni
says that 1-cotilting modules are pure-injective (see 3.5 below), so we can apply 1.14
directly. As shown in [2], for n > 1, the classical work of Auslander and Buchweitz
[10] makes it possible to overcome the problem.

3.1. Cotilting modules. Let R be a ring. A module C is cotilting provided that

(1) inj.dim(C) < ∞;
(2) Exti

R(Cκ, C) = 0 for any cardinal κ and any i ≥ 1;
(3) There are k < ω, Ci ∈ Prod(C) (i ≤ k), and an exact sequence

0 → Ck → · · · → C0 → W → 0,

where W is an injective cogenerator for Mod-R, and Prod(C) denotes the
class of all direct summands of arbitrary direct products of copies of the
module C.

Let n < ω. Cotilting modules of injective dimension ≤ n are called n-cotilting.
A class of modules C is n-cotilting if there is an n-cotilting module C such that
C = ⊥{C}. A cotorsion pair C = (A,B) is n-cotilting provided that A is an n-
cotilting class.

The equivalence of cotilting modules is defined as follows: C is equivalent to
C ′ provided that the induced cotilting classes coincide: ⊥{C} = ⊥{C ′} (that is,
Prod(C) = Prod(C ′).)

0-cotilting modules coincide with the injective cogenerators. In 4.12 below, we
will see that any resolving subclass of P<ω

n yields an n-cotilting class (of left R-
modules), so there is a big supply of n-cotilting modules for n ≥ 1 in general.

We will need the following version of a characterization of cotilting modules by
Bazzoni [15]. It generalizes the case of n = 1 from [29].
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Lemma 3.2. Let R be a ring, C a module, and 0 < n < ω. Then C is n-cotilting
iff ⊥{C} coincides with the class, Cogn(C), of all modules M possesing an exact
sequence 0 → M → C0 → · · · → Cn where κ is a cardinal and Ci = Cκ for all
i ≤ n.

A class C of modules is definable provided that C is closed under arbitrary direct
products, direct limits, and pure submodules, [34]. (Definability implies axiomati-
zability: definable classes are axiomatized by equality to 1 of certain of the Baur-
Garavaglia-Monk invariants. Definable classes of modules correspond bijectively to
closed sets of indecomposable pure-injective modules, cf. [34] and [64].)

It is an open problem whether each cotilting module is pure-injective. There is
a criterion of pure-injectivity of cotilting modules, [16]:

Lemma 3.3. Let R be a ring and C a cotilting module. Then C is pure-injective
iff ⊥{C} is closed under direct limits iff ⊥{C} is closed under pure submodules iff
⊥{C} is definable.

We will now introduce (almost) rigid systems in order to characterize pure-
injective cotilting modules and the corresponding cotilting classes:

Let n < ω. Consider a set S = {Mα | α < κ} of modules such that each Mα

(α < κ) is pure-injective with inj.dim(Mα) ≤ n, and Exti
R(Mα,Mβ) = 0 for all

α, β < κ and 1 ≤ i ≤ n (So in particular, each Mα is a splitter.) Then S is an
n-rigid system if all the elements of S are indecomposable. S is almost n-rigid if
M0 is superdecomposable, and all Mα (0 < α < κ) are indecomposable.

Theorem 3.4. Let R be a ring, n < ω, and C a pure-injective n-cotilting module.
Then there is an almost n-rigid system S such that C ′ =

∏
M∈S M is an n-cotilting

module equivalent to C.

Proof. By a result of Fisher [64], the pure-injective module C is of the form C =
M0⊕E where M0 is zero or superdecomposable, and E is zero or a pure-injective hull
of a direct sum of indecomposable pure-injective modules, E = PE(

⊕
0<α<κ Mα).

Then E is a direct summand in P =
∏

0<α<κ Mα, and P is a pure submodule,

hence a direct summand, in Eκ. Put C ′ = M0 ⊕P . Then ⊥{C} = ⊥{C ′}, and also
Cogn(C) = Cogn(C ′), so 3.2 gives that C ′ is an n-cotilting module equivalent to
C. It follows that S = {Mα | α < κ} is an almost n-rigid system. ¤

The pure-injectivity assumption in 3.4 is redundant in case n = 1:

Theorem 3.5. [14] Let R be a ring and C a 1-cotilting module. Then C is
pure-injective. In particular, ⊥{C} is a definable class.

Being definable, 1-cotilting classes are completely characterized by the indecom-
posable pure-injective modules they contain, cf. [64].

3.6. Assume there are no superdecomposable pure-injective modules. Then the
system S in 3.4 is n-rigid. So it only remains to determine which of the n-rigid
systems indeed yield n-cotilting modules.

This occurs when R is a Dedekind domain, or a tame hereditary algebra, for ex-
ample; in fact, in these cases the structure of indecomposable pure-injective modules
is well-known, see [34] and [59].

In the Dedekind domain case, 1-rigid systems contain no finitely generated mod-
ules. It follows from 3.4 that up to equivalence, cotilting modules are of the form
CP =

∏
p∈P Jp ⊕

⊕
q∈Spec(R)\P

E(R/q) where 0 /∈ P ⊆ Spec(R), and Jp denotes

the completion of the localization of R at p, cf. 4.14 and 4.17 below.
For the case of tame hereditary algebras, we refer to [26] and [27], or [73] in this

volume.
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Notice that by 3.7 below, in the right artinian case, each 1-rigid system yields a
partial 1-cotilting module in the sense of 3.11.

In the noetherian case, there is more to say for n = 1. We can characterize
1-cotilting classes in terms of 1-rigid systems (for a different description, in terms
of torsion-free classes in mod-R, see 3.10 below):

Theorem 3.7. Let R be a right noetherian ring.
If C is a 1-cotilting class then there is a 1-rigid system S such that C =

⋂
M∈S

⊥{M}.

Conversely, if R is right artinian and S a 1-rigid system then
⋂

M∈S
⊥{M} is a

1-cotilting class.

Proof. Let C be a 1-cotilting module such that C = ⊥{C}. By a result of Ziegler,
C is elementarily equivalent to a pure-injective envelope of a direct sum of inde-
composable pure-injective modules, hence to a direct product of indecomposable
pure-injective modules, E =

∏
α<κ Mα, cf. [64]. In particular, E is a direct sum-

mand in an ultrapower of C. Since any ultrapower of C is isomorphic to a direct
limit of products of copies of C, 3.5 yields E ∈ C. For right noetherian rings,
Baer test lemma shows that I1 is definable, so E ∈ I1 because E is elementarily
equivalent to C ∈ I1.

Since {A}⊥1 is definable for each finitely presented module A, we have C ∈ {A}⊥1

iff E ∈ {A}⊥1 . By a classical result of Auslander, Ext1R(−, I) takes direct limits
into inverse ones for any pure-injective module I. Since R is right noetherian, it
follows that C = ⊥1{C} = ⊥1{E}. In particular, E is a pure-injective splitter of
injective dimension ≤ 1, so the modules Mα form a 1-rigid system.

Conversely, by [26], ⊥{M} is closed under arbitrary direct products for any
M ∈ S. Let P =

∏
M∈S M . By 1.14 and 3.9, ⊥{P} is a 1-cotilting class. ¤

Now, we turn to relations between cotilting modules and approximations. Except
for part 3., the dual of 2.7 holds true – a proof making use of [10] appears in [2].
(In view of 3.5, one can proceed more directly for n = 1, by dualizing the proof of
2.7 with help of 1.14):

Lemma 3.8. Let R be a ring and C = (A,B) be a cotilting cotorsion pair. Let C
be an n-cotilting module with ⊥{C} = A. Then

(1) C is hereditary and complete. Moreover, (⊥In, In) ≤ C, and the kernel of
C equals Prod(C).

(2) A coincides with the class of all modules M such that there is a long exact
sequence

0 → M → C0 → · · · → Ci → Ci+1 → . . .

where Ci ∈ Prod(C) for all i < ω. In particular, A is closed under arbitrary
direct products.

(3) B coincides with the class of all modules N such that there is an exact
sequence

0 → Cn → · · · → C0 → N → 0

where Ci ∈ Prod(C) for all i ≤ n.

Theorem 3.9. Let R be a ring.

(1) A class of modules C is 1-cotilting iff C is a covering torsion-free class.
(2) Let C = (A,B) be a cotorsion pair. Then C is n-cotilting iff C is heredi-

tary and complete, (⊥In, In) ≤ C, and A is closed under arbitrary direct
products.
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Proof. 1. The proof is dual to the one for 2.8.1, using 3.5, and then 1.14 in place
of 1.13, cf. [6].

2. This is by a dual argument to the one for 2.9, see [2]. ¤

In particular, 1-cotilting classes coincide with those torsion-free classes C that
are covering. If R is right noetherian, then C is completely determined by its
subclass C ∩mod-R, and the latter is characterized as a torsion-free class in mod-R
containing R. More precisely, we have

Theorem 3.10. [26] Let R be a right noetherian ring. There is a bijective corre-
spondence between 1-cotilting classes of modules, C, and torsion-free classes, E, in
mod-R containing R. The correspondence is given by the mutually inverse assign-
ments C 7→ C ∩ mod-R and E 7→ lim

−→
E.

Proof. If C is a 1-cotilting class, then clearly C ∩ mod-R is a torsion-free class in
mod-R containing R.

Conversely, given E as in the claim, let C = lim
−→

E . By [33], C is a torsion-free

class in Mod-R. Since R ∈ E , by 1.11, there is a Tor-torsion pair of the form (C,D).
By 1.4.3 and 1.14, C is a covering class. By 3.9.1, C is 1-cotilting.

Now, E = lim
−→

E ∩ mod-R. Conversely, given a 1-cotilting class C, each M ∈ C

is a directed union of the system of its finitely presented submodules, {Mi | i ∈ I}
(because R is right noetherian). Since C is 1-cotilting, Mi ∈ C for each i ∈ I. So
C = lim

−→
(C ∩ mod-R), and the assignments are mutually inverse. ¤

We note that the corresponding result to 3.10 does not hold for 1-tilting classes.
Namely, given a right noetherian ring R and a 1-tilting (torsion) class T in Mod-R,
the class T ∩mod-R is certainly a torsion class in mod-R. Let C = lim

−→
(T ∩mod-R).

By [33], C is a torsion class in Mod-R contained in T . However, C is not 1-tilting in
general: if R is an artin algebra and T = (P<ω

1 )⊥, then C is closed under arbitrary
direct products iff P<ω

1 is contravariantly finite. The latter fails for the IST-algebra
[57], for example

(However, if R is an artin algebra and C a 1-tilting class of finite type, there is
a way of reconstructing C from C ∩ mod-R, see 4.3 below.)

3.11. Define a partial 1-cotilting module P as a splitter of injective dimension
≤ 1 satisfying the extra condition of ⊥{P} being closed under arbitrary direct
products. Then P has a complement in the sense that there is a module P ′ such
that C = P ⊕ P ′ is 1-cotilting and ⊥{P} = ⊥{C}. This follows from 3.9 and [74,
§6]. (Note that P is pure-injective by 3.5.) By [26], the extra condition is redundant
when P is pure-injective and R is right artinian.

We finish this section by two open problems:
Let R be a ring, n ≥ 1, and C be an n-cotilting module. Is C pure-injective?

(By 3.5, this is always true for n = 1. By [20], this is also true for any n ≥ 1 in
case R is countable.)

Let R be a ring. Does 3.4 hold in the stronger form, with n-rigid systems replac-
ing the almost n-rigid ones?

4. Finite type, duality, and some examples

The duality between the notions of a tilting and cotilting module can be made
explicit in case the modules are of finite and cofinite type, respectively. We start
with the tilting case:

4.1. Tilting modules of finite type. Let R be a ring.

(1) Let C be a class of modules. Then C is of finite type (countable type) provided
there exist n < ω and a subset S ⊆ P<ω

n (S ⊆ P≤ω
n ) such that C = S⊥.
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(2) Let T be a tilting module. Then T is of finite type (countable type, definable)
provided the class {T}⊥ is of finite type (countable type, definable).

Lemma 4.2. [5] Let R be a ring and C be a class of modules of finite type. Then
C is tilting and definable.

Proof. By assumption, there are n < ω and a set S ⊆ P<ω
n such that C = S⊥.

By a classical result of Brown, the covariant functor Extn
R(M,−) commutes with

direct limits for each n ≥ 0 and each M ∈ mod-R. Also, it is easy to see that
{N}⊥1 is closed under pure submodules for any finitely presented module N . It
follows that C is definable.

Let C be the cotorsion pair cogenerated by S. By 1.13, C = (A, C) is complete
and A ⊆ Pn, so 2.9 gives that C is a tilting cotorsion pair. That is, C is a tilting
class. ¤

4.2 says that there is a rich supply of tilting classes in general: any subset
S ⊆ P<ω

n (for some n < ω) determines one. A more precise general description
appears in 4.12 below; for artin algebras, there is also the following analog of 3.10:

Theorem 4.3. [60] Let R be an artin algebra. There is a bijective correspondence
between 1-tilting classes of finite type, C, and torsion classes, T , in mod-R con-
taining all finitely generated injective modules. The correspondence is given by the
mutually inverse assignments C 7→ C ∩ mod-R, and T 7→ KerHomR(−,F) where
(T ,F) is a torsion pair in mod-R.

In [5], there is a general criterion for tilting modules to be of finite type:

Lemma 4.4. Let R be a ring and T be a tilting module. Let B = {T}⊥, and (A,B)
be the corresponding tilting cotorsion pair. Then T is of finite type iff T is definable
and T ∈ lim

−→
A<ω.

The last condition of 4.4 is always satisfied for n = 1:

Lemma 4.5. Let R be a ring and M be a module of projective dimension ≤ 1. Let
(A,B) be the cotorsion pair cogenerated by M . Then M ∈ lim

−→
A<ω.

Proof. Since M ∈ P1, there is an exact sequence 0 → F ⊆ G → M → 0 where F
and G are free modules. Let {xα | α < κ} and {yβ | β < λ} be a free basis of F
and G, respectively. W.l.o.g., κ is infinite. For each finite subset S ⊆ κ let S′ be
the least (finite) subset of λ such that FS =

⊕
α∈S xαR ⊆ GS =

⊕
β∈S′ yβR. Then

F is a directed union of its summands of the form FS where S runs over all finite
subsets of κ. Let MS = GS/FS . Then MS ∈ P<ω

1 , and M = P ⊕ H where P is
free and H = lim

−→S
MS . By 1.11, it suffices to prove that H ∈ lim

−→
A<ω.

We will show that MS ∈ A<ω for each finite subset S ⊆ κ. Take an arbitrary
N ∈ B = {M}⊥. Then any homomorphism from F to N extends to G. Let ϕ be
a homomorphism from FS to N . Since FS is a direct summand in F , ϕ extends
to F , hence to G, and GS . It follows that N ∈ {MS}

⊥, so MS ∈ A<ω, and
H ∈ lim

−→
A<ω. ¤

For 1-tilting modules, 4.4 and 4.5 yield

Theorem 4.6. [19] Let R be a ring and T be a 1-tilting module. Then T is
definable iff T is of finite type iff {T}⊥ is closed under pure submodules.

It is open whether all 1-tilting modules are of finite type. However, they are
always of countable type:

Theorem 4.7. [19] Let R be a ring and T be a 1-tilting module. Then T is of
countable type.
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The proof of 4.7 uses set-theoretic methods developed by Eklof, Fuchs and Shelah
for the structure theory of so called Baer modules [36]. However, 4.7 holds in
ZFC. In this sense, 4.7 says that the structure of 1-tilting modules, and classes,
is purely an algebraic problem, depending only on the structure of countably and
finitely presented modules rather than additional set-theoretic assumptions. 4.7 is
instrumental in characterizing tilting classes over Prüfer and Dedekind domains,
see 4.16 and 4.17 below.

The counterpart of a tilting (right R-) module of finite type is a cotilting left
R-module of cofinite type:

4.8. Cotilting modules of cofinite type. Let R be a ring. Let C ⊆ R-Mod.
Then C is of cofinite type provided that there exist n < ω and a subset S ⊆ P<ω

n such

that C = S⊺, where S⊺ = {M ∈ R-Mod | TorR
i (S,M) = 0 for all S ∈ S and all 0 <

i ≤ n}.
Let C be a cotilting left R-module. Then C is of cofinite type provided that the

(cotilting) class ⊥{C} is of cofinite type.

Applying 3.9, we can dualize 4.2:

Lemma 4.9. Let R be a ring and C be a class of left R-modules of cofinite type.
Then C is cotilting and definable.

4.5 yields a characterization of 1-cotilting classes of cofinite type:

Lemma 4.10. Let R be a ring and C be a class of left R-modules. Then C is
1-cotilting of cofinite type iff there is a module M ∈ P1 such that C = {M}⊺.

Proof. For the only-if part, consider S ⊆ P<ω
n such that S⊺ = C. Put M =⊕

S∈A S where A is a representative set of elements of S. Then C = {M}⊺ =
⊥{M∗}, so M∗ ∈ I1 (because C is 1-cotilting). It follows that M ∈ F1. So
S ∈ F1 ∩ mod-R = P<ω

1 for each S ∈ A, and M ∈ P1.
For the if part, let (A,B) be the cotorsion pair cogenerated by M . Since A ⊆ P1,

it suffices to show that {M}⊺ = (A<ω)⊺. By 4.5, (A<ω)⊺ ⊆ {M}⊺. Conversely, let
N ∈ {M}⊺. Then N∗ ∈ B, so N ∈ A⊺ ⊆ (A<ω)⊺. ¤

Since classes of cofinite type are closed under direct limits, any cotilting module
of cofinite type is pure-injective by 3.3.

The bijective correspondence between tilting classes of finite type and cotilting
classes of cofinite type is mediated by resolving subclasses of mod-R. It is analogous
to the classical characterization of cotilting classes in mod-R over artin algebras due
to Auslander and Reiten [11].

Definition 4.11. Let R be a ring and S ⊆ mod-R. Then S is resolving provided
that P<ω

0 ⊆ S, S is closed under direct summands and extensions, and S is closed
under kernels of epimorphisms.

Notice that a subclass S ⊆ P<ω
1 is resolving iff S is closed under extensions and

direct summands, and R ∈ S.

Theorem 4.12. [5] Let R be a ring and n < ω. There is a bijective correspondence
among

• n-tilting classes of finite type,
• resolving subclasses of P<ω

n ,
• n-cotilting classes of cofinite type in R-Mod.

Proof. Given an n-tilting class of finite type T ⊆ Mod-R, we put S = ⊥T ∩mod-R;
conversely, given a resolving subclass S ⊆ P<ω

n , we let T = S⊥. These assignments
are mutually inverse. Similarly, given an n-cotilting class of cofinite type C ⊆
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R-Mod, we let S = ⊺C ∩ mod-R; conversely, C = S⊺. For more details, we refer to
[5]. ¤

Moreover, if T is an n-tilting module of finite type then T ∗ is an n-cotilting left
R-module of cofinite type; in the correspondence of 4.12, the n-tilting class {T}⊥

corresponds to the n-cotilting class ⊥{T ∗} = {T}⊺, cf. [5].

Lemma 4.13. [5] Let R be a left noetherian ring and C be a 1-cotilting left R-
module. Then ⊥{C} = {C∗}⊺.

Proof. By 3.5, C is pure-injective, so C is a direct summand in C∗∗. In particular,
{C∗}⊺ = ⊥{C∗∗} ⊆ ⊥{C}. Conversely, take M ∈ R-mod. If Ext1R(M,C) = 0,

then the Ext-Tor relations yield TorR
1 (C∗,M) = 0. Since R is left noetherian, if

N ∈ ⊥{C} then N is a directed union, N =
⋃

i∈I Ni, of submodules of N such that

Ni ∈
⊥{C} ∩R-mod for all i ∈ I. So Ni ∈ {C∗}⊺. Since Tor commutes with direct

limits, we have N ∈ {C∗}⊺. This proves that ⊥{C} = {C∗}⊺. ¤

4.10 and 4.13 yield a partial converse of 4.9:

Theorem 4.14. Let R be a left noetherian ring. Assume that F1 = P1 (this
holds when R is (i) right perfect or (ii) right hereditary or (iii) 1-Gorenstein, for
example). Then every 1-cotilting left R-module is of cofinite type.

Proof. Let C be a 1-cotilting left R-module. Then C∗ ∈ F1 = P1. By 4.13,
⊥{C} = {C∗}⊺. The latter class is of cofinite type by 4.10. ¤

4.14 applies to the left artinian case:

4.15. 1-cotilting classes over left artinian rings. Let R be a left artinian
ring. Then 1-cotilting classes of left R-modules are of cofinite type, hence coincide
with the classes of the form {M ∈ R-Mod | TorR

1 (S,M) = 0 for all S ∈ S} for some
S ⊆ P<ω

1 . Moreover, by 4.12, these classes correspond bijectively to the classes S ′

closed under extensions and direct summands, and satisfying P<ω
0 ⊆ S ′ ⊆ P<ω

1 .
By 3.10, they also correspond to torsion-free classes in mod-R containing R.

Assume R is an artin algebra. Then it is open whether each 1-tilting class is of
finite type. By 4.3, 1-tilting classes of finite type correspond bijectively to torsion
classes in mod-R containing all finitely generated injective modules.

In general, the converse of 4.9 does not hold: there exist Prüfer domains with
1-cotilting modules that are not of cofinite type. We are going to discuss the Prüfer
and Dedekind domain cases in detail:

4.16. Tilting and cotilting classes over Prüfer domains. [19], [70], [71], [18]
Let R be a Prüfer domain. Then all tilting modules have projective dimension ≤ 1,
and they are of finite type. Moreover, for each 1-tilting class, T , there is a set, E ,
of non-zero finitely generated (projective) ideals of R such that T consists of all
modules M satisfying IM = M for all I ∈ E (or, equivalently, Ext1R(R/I,M) = 0
for all I ∈ E). This is proved in [19] and [18], using 4.7.

Moreover, tilting classes correspond bijectively to finitely generated localizing
systems, I, of R in the sense of [45, §5.1]. (A multiplicatively closed filter I
of non-zero ideals of R is a finitely generated localizing system provided that I
contains a basis consisting of finitely generated ideals; by [45, 5.1], finitely generated
localizing systems correspond bijectively to overrings of R.) Given such system I,
the corresponding tilting class consists of all modules M satisfying IM = M for all
I ∈ I, cf. [71]. The notion of the Fuchs tilting module from 2.2 can be extended to
give a classification of all tilting modules over Prüfer domains up to equivalence –
for more details, we refer to [71].

By [20], all cotilting modules have injective dimension ≤ 1. By (the proof of)
4.12, the cotilting classes of cofinite type coincide with the classes of the form
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{M | TorR
1 (M,R/I) = 0 for all I ∈ I} where I is a finitely generated localizing

system. However, by [17], there exist maximal valuation domains R such that the
class of all Whitehead modules is 1-cotilting, but not of cofinite type.

A complete description is available for Dedekind domains:

4.17. Tilting and cotilting modules over Dedekind domains. [19] Let
R be a Dedekind domain. By 2.3, for each set of maximal ideals, P , there is
a tilting module TP = RP ⊕

⊕
p∈P E(R/p) with the corresponding tilting class

{TP }
⊥ = {M | pM = M for all p ∈ P}. Since localizing systems of ideals of R are

determined by their prime ideals, by 4.16, any tilting module T is equivalent to TP

for a set of maximal ideals P , cf. [19]. (In the particular case when R = Z, and
R is a small Dedekind domain, this result was proved assuming V = L in [50] and
[77], respectively).

By 4.12, cotilting classes of cofinite type are exactly the classes of the form
CP = {M | TorR

1 (M,R/p) = 0 for all p ∈ P} for a set, P , of maximal ideals of
R. Moreover, CP = ⊥{CP } where CP =

∏
p∈P Jp ⊕

⊕
q∈Spec(R)\P

E(R/q) is a

cotilting module. (Here, Jp denotes the completion of the localization of R at p).
By 4.14 (or 3.6), all cotilting classes are of the form CP , and all cotilting modules

are equivalent to the modules of the form CP , for a set, P , of maximal ideals of R,
cf. [40].

The analogy between modules over Dedekind domains and over tame hereditary
algebras (cf. 2.3 and 2.4) extends to the tilting and cotilting setting: we refer to
[26], [27], and [73], for more details.

We finish this section by an open problem:
Let R be a ring, n ≥ 1, and T be an n-tilting module. Is T of countable type? Is

it definable? Is it of finite type? (By 4.7, the first question has a positive answer in
case n = 1. In that case, the second and the third questions are equivalent by 4.6.)

5. Tilting modules and the finitistic dimension conjectures

Let R be a ring and C be a class of modules. The C-dimension of R is defined
as the supremum of projective dimensions of all modules in C.

If C = Mod-R then the C-dimension is called the (right) global dimension of R;
if C = P, it is called the big finitistic dimension of R. If C is the class of all finitely
generated modules in P then the C-dimension is called the little finitistic dimension
of R. These dimensions are denoted by gl.dim(R), Fin.dim(R), and fin.dim(R),
respectively.

Clearly, fin.dim(R) ≤ Fin.dim(R) ≤ gl.dim(R) for any ring R. Moreover, if R
has finite global dimension, then gl.dim(R) is attained on cyclic modules, so all the
three dimensions coincide.

If R has infinite global dimension, then the finitistic dimensions take the role
of the global dimension to provide a fine measure of complexity of the module
category. For example, if R = Zpn for a prime integer p and n > 1, then R has
infinite global dimension, but both finitistic dimensions are 0; they certainly reflect
better the fact that R is of finite representation type.

In [13], Bass considered the following assertions

(I) fin.dim(R) = Fin.dim(R)

(II) fin.dim(R) is finite

and proposed to investigate the validity of these assertions in dependence on the
structure of the ring R. Later, (I) and (II) became known as the first, and the
second, finitistic dimension conjecture, respectively.
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In the case when R is commutative noetherian, Bass, Raynaud and Gruson
proved that Fin.dim(R) coincides with the Krull dimension of R, so classical ex-
amples of Nagata can be used to provide counter-examples to the assertion (II).
In case R is commutative local noetherian, Auslander and Buchweitz proved that
fin.dim(R) coincides with the depth of R, so (I) holds iff R is a Cohen-Macaulay
ring.

Assume that R is right artinian. Then the validity of (II) is still an open problem.
However, Huisgen-Zimmermann proved that (I) need not hold even for monomial
finite dimensional algebras, [53]. Smalø then constructed, for any 1 < n < ω,
examples of finite dimensional algebras such that fin.dim(R) = 1 and Fin.dim(R) =
n, [72].

There are many positive results available: (II) was proved for all monomial
algebras in [52], for algebras of representation dimension ≤ 3 in [58] etc.

Moreover, (I) and (II) were proved for all algebras such that P<ω is contravari-
antly finite in [11] and [56]. In this section, we will use tilting approximations to give
a simple proof of the latter result. Then we will prove (I) for all Iwanaga-Gorenstein
rings.

In the rest of this section, R will be a right noetherian ring. We will denote by
C = (A,B) the cotorsion pair cogenerated by the class P<ω. By 1.13, C is complete
and hereditary; moreover, P<ω = A ∩ mod-R.

The basic relation between tilting approximations and the finitistic dimension
conjectures comes from [7]:

Theorem 5.1. Let R be a right noetherian ring. Then (II) holds iff C is a tilt-
ing cotorsion pair. Moreover, if T is a tilting module such that {T}⊥ = B, then
fin.dim(R) = proj.dim(T ).

Proof. Assume fin.dim(R) = n < ω. Then P<ω ⊆ Pn, so B is of finite type,
and C is a tilting cotorsion pair by 4.2. Conversely, if C is n-tilting then P<ω ⊆ Pn,
so (II) holds. Since fin.dim(R) is the least m such that A ⊆ Pm, we infer that
fin.dim(R) = proj.dim(T ). ¤

A dual version of 5.1 for artin algebras appears in [28].

5.2. The tilting module T in 5.1 is unique up to equivalence, and it is clearly of
finite type. In principle, T can be constructed as in the proof of 2.9: that is, by
an iteration of special B-preenvelopes of R etc. yielding an Add(T )-coresolution of
R, 0 → R → T0 → · · · → Tn → 0, and giving T =

⊕
i≤n Ti. However, little is

known of the (definable) class B in general, so this construction is of limited use.
(The construction works fine for gl.dim(R) < ∞. Then B = I0, so the Add(T )-
coresolution above can be taken as the minimal injective coresolution of R.)

In the artinian case, we can compute fin.dim(R) using A-approximations of all
the (finitely many) simple modules. This is proved in [76], generalizing [11]:

Theorem 5.3. Let R be a right artinian ring and {S0, . . . Sm} be a representative
set of all simple modules. For each i ≤ m, take a special A-preenvelope of Si,
fi : Ai → Si. Then fin.dim(R) = maxi≤mproj.dim(Ai).

Moreover, all the modules Ai (i ≤ m) can be taken finitely generated iff P<ω is
contravariantly finite. In this case (II) holds true, since P<ω = A ∩ mod-R.

Now, we will relate pure-injectivity properties of the tilting module T from 5.1
to closure properties of the class A.

A module M is pure-split if all pure submodules of M are direct summands;
M is

∑
-pure-split iff all modules in Add(M) are pure-split. For example, any∑

-pure-injective module is
∑

-pure-split, [55].
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A module M is product complete if Prod(M) ⊆ Add(M). Any product complete
module is

∑
-pure-injective, [59].

The following is proved in [7] and [8]:

Lemma 5.4. Let R be a right noetherian ring satisfying (II). Let T be the tilting
module from 5.1. Then

(1) T is
∑

-pure-split iff A is closed under direct limits.
(2) T is product complete iff A is closed under products iff A is definable.
(3) A = P iff Add(T ) is closed under cokernels of monomorphisms.

5.5. The condition A = P implies (I), since any module of finite projective dimen-
sion is then a direct summand in a P<ω-filtered module, by 1.13. In fact, when
proving the first finitistic dimension conjectures in 5.6 and 5.8 below, we will always
prove that A = P. However, (I) may hold even if A ( P, see [8].

Theorem 5.6. [7] Let R be an artin algebra such that (II) holds. Let T be
the tilting module from 5.1. Then T can be taken finitely generated iff P<ω is
contravariantly finite. In this case, (I) holds.

Proof. If P<ω is contravariantly finite, then B<ω is covariantly finite (by a
version of 1.8.3 in mod-R). As in the proof of 2.9, an iteration of the B<ω-envelopes
of R etc. yields an Add(T )-coresolution of R, 0 → R → T0 → · · · → Tn → 0. Then
T ′ =

⊕
i≤n Ti is a finitely generated tilting module equivalent to T . The converse

implication follows from [11].
If T is finitely generated then T is

∑
-pure injective, and [7] gives that Add(T ) is

closed under cokernels of monomorphisms. By 5.4.3, A = P, so (I) holds true. ¤

5.3 and 5.6 now give

Corollary 5.7. [11], [56] Let R be an artin algebra such that P<ω is contravari-
antly finite. Then (I) and (II) hold for R.

Note that all right serial artin algebras satisfy the assumption of 5.7, see [54].
However, there are finite dimensional algebras R with fin.dim(R) = Fin.dim(R) = 1
such that P<ω is not contravariantly finite, for example the IST-algebra [57]; for
those algebras, T is an infinitely generated 1-tilting module.

Finally, we turn to Iwanaga-Gorenstein rings (see 2.6). Let n < ω and R be
n-Gorenstein. Then P = I = Pn = In. In particular, there exist cotorsion pairs
D = (P,GI) and E = (GP, I). The modules in GI are called Gorenstein injective,
the ones in GP Gorenstein projective. The kernel of D equals I0, the kernel of E is
P0, cf. [42]. Clearly, Fin.dim(R) = n, so (II) holds.

By [5], also (I) holds:

Theorem 5.8. Let R be an Iwanaga-Gorenstein ring. Then (I) holds true. More-
over, the tilting module T from 5.1 can be taken of the form T =

⊕
i≤n Ii where

0 → R → I0 → · · · → In → 0 is the minimal injective coresolution of R.

Proof. By 1.4.1, the cotorsion pair D = (P,GI) is of countable type. By
[19], for each C ∈ P≤ω there is a P<ω-filtered module D such that D = C ⊕ P
where P ∈ P0. So C ∈ A, that is, A = P, and (I) holds. Since the minimal
GI-coresolution of R is actually its minimal injective coresolution, and C = D, T
can be taken as claimed by 5.2. ¤

If R in 5.8 is an artin algebra, then T is finitely generated. So by 5.6, Iwanaga-
Gorenstein artin algebras give yet another example of algebras with P<ω contravari-
antly finite, [11].
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