
Modeling TCP/RED: a dynamical approach

Hui Zhang, Mingjian Liu, Vladimir Vukadinović, and Ljiljana Trajković

Simon Fraser University, Burnaby, BC, V5A 1S6 Canada {hzhange, jliu1,

vladimir, ljilja}@cs.sfu.ca

Summary. Interaction between Transmission Control Protocol (TCP) and Ran-
dom Early Detection (RED) gateways can be captured using dynamical models.
The communication network is viewed as a discrete-time feedback control system
where TCP adjusts its window size depending on whether or not it has detected a
packet loss during the previous round trip time (RTT) interval. In this article, we
describe a discrete-time nonlinear dynamical model for interaction between TCP
and RED gateways. The model, constructed using an iterative map, captures a de-
tailed dynamical behavior of TCP/RED, including slow start, fast retransmit, and
timeout events common in TCP. Model performance for various RED parameters
is evaluated using ns-2 network simulator.

1 Introduction

Today’s Internet applications, such as World Wide Web, file transfer, Usenet
news, and remote login, are delivered via Transmission Control Protocol
(TCP). With an increasing number and variety of Internet applications, con-
gestion control becomes a key issue. Active Queue Management (AQM) in-
teracts with TCP congestion control mechanisms and plays an important role
in meeting today’s increasing demand for performance of Internet applica-
tions. Random Early Detection (RED), a widely deployed AQM algorithm, is
a gateway-based congestion control mechanism. An accurate model of TCP
with RED may help understand and predict the dynamical behavior of the
network. In addition, the model may help analyze the stability margins of the
system and provide design guidelines for selecting network parameters. The
design guidelines are important to network designers who aim to improve net-
work robustness. Therefore, modeling TCP with RED is an important step
toward improving the service provided to Internet users and the network
efficiency.

Modeling TCP performance has gained increased attention during the
last few years, due to the benefits that TCP models offer to the networking
community. Analytical TCP models enable researchers to closely examine the
existing congestion control algorithms, address their shortcomings, and pro-
pose methods for improvement. They may also be used to compare various
TCP flavors and implementations, and to determine their performance under



2 Hui Zhang, Mingjian Liu, Vladimir Vukadinović, and Ljiljana Trajković

various operating conditions. Moreover, these models help examine the inter-
actions between TCP and the queuing algorithms implemented in network
routers. Hence, they help improve the existing and design better algorithms,
such as AQM techniques. Finally, such models offer the possibility of defin-
ing TCP-friendly behavior in terms of throughput for non-TCP flows that
coexist with TCP connections in the same network.

The goal of TCP modeling is to investigate the nonlinear phenomena in
a TCP/RED system. We use an iterative map to model the system. We de-
rive a second-order discrete-time model to capture the interactions of TCP
congestion control algorithm with the RED mechanism. We use the concepts
proposed in [31] and construct a nonlinear dynamical model of TCP/RED
that employs two state variables: the window size and the average queue size.
The change of window size reflects the dynamics of TCP congestion control,
while the average queue size captures the queue dynamics in RED gateway.
The novelty of the proposed model is in capturing detailed dynamical behav-
ior of TCP/RED. The proposed model considers slow start phase and takes
into account timeout events common in TCP.

This article is organized as follows: In Section 2, we briefly describe TCP
congestion control and the RED algorithm. In Section 3 we survey related
work. A nonlinear second-order discrete-time model named S-model is intro-
duced in Section 4. In Section 5, we compare its performance to the ns-2
simulation results and to an existing model. Conclusions are given in Sec-
tion 6.

2 TCP and RED Algorithms

In this section, we describe TCP congestion control mechanisms and the RED
algorithm.

2.1 TCP Congestion Control Algorithms

To adjust the window size, the TCP congestion control mechanism employs
four algorithms: slow start, congestion avoidance, fast retransmit, and fast
recovery, as shown in Fig. 1. They were introduced by Jacobson [18], [19] and
are described in RFCs 1122 [4] and 2581 [1]. We briefly describe here their
basic characteristics.

In order to avoid congesting the network with large bursts of data, an
established TCP connection first employs the slow start algorithm to detect
the available bandwidth in the network. Typically, a TCP sender initializes
its congestion window (cwnd) to one or two segments, depending on the TCP
implementation. Upon receipt of each acknowledgment (ACK) that acknowl-
edges receipt of new data by the receiver, TCP increments cwnd by one
segment size.



Modeling TCP/RED: a dynamical approach 3

Time


SS
 - Slow start


CA - Congestion avoidance


FR
 - Fast recovery

Co

ng
es

tio
n 

w
in

do
w

 si
ze




SS
 CA
 FR
 CA
 SS


Timeout


ssthresh

ssthresh = cwnd / 2

cwnd = ssthresh + 3


Fast
 retransmit


Fig. 1. Evolution of the window size in TCP Reno. It consists of slow start, con-
gestion avoidance, fast retransmit, and fast recovery phase.

When cwnd exceeds a threshold (ssthresh), the sender’s mechanism leaves
the slow start and enters the congestion avoidance phase. During the conges-
tion avoidance, cwnd is incremented by one segment size per round trip time
(RTT). A timer is set every time a sender sends a packet. A packet loss is
detected by the timeout mechanism if the timer expires before the receipt of
the packet has been acknowledged. If a packet loss is detected by the timeout
mechanism, the TCP sender adjusts its ssthresh and switches back to the
slow start.

The fast retransmit algorithm is used for recovery from losses detected
by triple duplicate ACKs. Whenever a TCP receiver receives an out-of-order
segment, it immediately sends a duplicate ACK, which informs the sender
of the sequence number of the packet that the receiver expects. The receipt
of triple duplicate ACKs (four consecutive ACKs acknowledging the same
packet) is used as an indication of packet loss. The TCP sender reacts to
the packet loss by halving cwnd and re-transmitting the lost packet, without
waiting for the retransmission timer to expire.

The fast recovery algorithm is used to control data transmission after
fast retransmission of the lost packet. During this phase, the TCP sender in-
creases its cwnd for each duplicate ACK received. The fast recovery algorithm
recognizes each duplicate ACK as an indication that one packet has left the
channel and has reached the destination. Since the number of outstanding
packets has decreased by one, TCP sender is allowed to increment its cwnd.
When a non-duplicate ACK is received, TCP switches from the fast recovery
to the congestion avoidance phase.



4 Hui Zhang, Mingjian Liu, Vladimir Vukadinović, and Ljiljana Trajković

2.2 TCP Implementations

Older TCP implementation, released in the early 1980s, employed a simple
window-based congestion control specified in RFC 793 [34]. TCP Tahoe, re-
leased in the late 1980s, employed the slow start, congestion avoidance, and
fast retransmit algorithms. TCP Reno, introduced in the early 1990s, added
the fast recovery algorithm.

Using ns-2 simulations, Fall and Floyd [11] demonstrated that TCP Reno
exhibits poor performance in terms of link utilization whenever multiple pack-
ets are dropped from a single window of data. To alleviate this problem, they
introduced two modifications to TCP Reno: TCP New-Reno and TCP SACK
[23]. A large number of Internet Web servers still use TCP Reno and its vari-
ants [32].

Other TCP implementations, such as TCP Vegas [5] and TCP West-
wood [7], use various techniques to avoid congestion. They adjust the con-
gestion window size based on estimates of the throughput at the bottleneck.

2.3 RED Algorithm

A traditional DropTail queue management mechanism discards the packets
that arrive when the buffer is full. However, this method has two drawbacks.
First, it may allow few connections to monopolize the queue space so that
other flows are starved. Second, DropTail allows queues to be full for a long
period of time. During that period, incoming packets are dropped in bursts.
This causes severe reduction in throughput of TCP flows. One solution, rec-
ommended in RFC 2309 [2], is to deploy active queue management (AQM)
algorithms. The purpose of AQM is to react on incipient congestion, before
the buffer overflows. Active queue management allows responsive flows, such
as TCP flows, to react timely and reduce their sending rates in order to
prevent congestion and severe packet losses.

The most popular active queue management algorithm is Random Early
Detection (RED), proposed by Floyd and Jacobson [14]. The RED mechanism
calculates exponentially weighted moving average of the queue size. Let wq

be the weight factor and qk+1 be the current queue size. At every packet
arrival, RED gateway updates the average queue size as:

q̄k+1 = (1 − wq)q̄k + wq · qk+1. (1)

The average queue size is compared to two parameters: minimum queue
threshold qmin and maximum queue threshold qmax. If the average queue size
is smaller than qmin, the packet is admitted to the queue. If it exceeds qmax,
the packet is marked or dropped. If the average queue size is between qmin

and qmax, the packet is dropped with a drop probability p that is a function
of the average queue size:



Modeling TCP/RED: a dynamical approach 5

pk+1 =







0 if q̄k+1 ≤ qmin

1 if q̄k+1 ≥ qmax
q̄k+1−qmin

qmax−qmin

pmax otherwise
, (2)

where pmax is the maximum packet drop probability. The relationship be-
tween the drop probability and the average queue size is shown in Fig. 2.

1


p
max


q
min
 q
max
 q


Fig. 2. RED drop probability as a function of the average queue size.

3 Modeling Methodologies

From the viewpoint of flow characteristics, analytical TCP models can be
classified in three categories based on the duration of the TCP flows, which
determines the dominant TCP congestion control algorithms to be mod-
eled, and the aspects of TCP performance that can be captured by the
model [20]. The first category models short-lived flows, where TCP perfor-
mance is strongly affected by the connection establishment and slow start
phases [27]. These models typically approximate average latency or com-
pletion time, i.e., the time it takes to transfer a certain amount of data.
The second category models long-lived flows that characterize the steady-
state performance of bulk TCP transfers during the congestion avoidance
phase [26], [29], [31], [37]. These models approximate aspects such as the
average throughput and window size evolution. The final category includes
models for flows of arbitrary duration, i.e., those that can accommodate both
short and long-lived flows [6], [8].

From the control theoretic point of view, the developed models of TCP
and TCP/RED [16], [17], [21], [22], [28], [35], [36] can be classified into two
types: averaged models and iterative map models. An averaged model is de-
scribed by a set of continuous differential equations. It neglects the detailed
dynamics and only captures the “low frequency characteristics” of the sys-
tem. It can be used to analyze the steady-state performance and to predict



6 Hui Zhang, Mingjian Liu, Vladimir Vukadinović, and Ljiljana Trajković

low frequency slow-scale bifurcation behavior, such as Hopf bifurcations. Ex-
amples of such models are given in [16], [17], [21]. In contrast, an iterative
map model has a discrete-time form and employs a set of difference equa-
tions. It provides relatively complete dynamical information. Iterative maps
are adequate to explore nonlinear phenomena, such as period-doubling and
saddle-node bifurcations, which may appear across a wide spectrum of fre-
quencies and cause the existence of solutions in the high frequency range.
Examples of iterative maps are given in [22], [35], [36].

3.1 Survey of Related TCP/RED Models

Several models have been proposed recently in order to analyze and under-
stand the performance of packet networks. A simple steady-state model of
TCP Reno, introduced in [31], models the steady-state sending rate as a func-
tion of the loss rate and the round trip time (RTT) of a bulk data transfer
TCP flow. The model not only captures the essence of TCP’s fast retransmit
and congestion avoidance, but it also takes into account the effect of timeout
mechanism, which is important from a modeling perspective. Measurements
demonstrated that the proposed model was adequate over a range of loss
rates.

A simplified first-order discrete-time nonlinear dynamical model was de-
veloped for TCP with RED control in [22], [35], [36]. An exponentially
weighted average queue size has been used as the state variable. The model
describes the system dynamics over large parameter variations, and employs
sampling the buffer occupancy at certain time instances. This dynamical
model was used to investigate the stability, bifurcation, and routes to chaos
in a network for various system parameters. Based on the developed model,
the authors demonstrated that nonlinear phenomena, such as bifurcation and
chaos, might occur if the system parameters were not properly selected. How-
ever, this discrete-time model neglects the dynamics of TCP. The derived map
is:

qave
k+1 =







(1 − w)qave
k if qave

k ≥ qave
u

(1 − w)qave
k + w · B if qave

k ≤ qave
l

(1 − w)qave
k + w(N ·K

√
pk

−
C·d
M ) otherwise

, (3)

where
qave
k+1

.
= average queue size in round k + 1

qave
k

.
= average queue size in round k

qave
u

.
= upper bound of average queue size

qave
l

.
= lower bound of average queue size

pk
.
= drop probability at round k

w
.
= queue weight in RED algorithm

B
.
= buffer size

N
.
= number of TCP connections



Modeling TCP/RED: a dynamical approach 7

K
.
= constant [1,

√

8/3]
C

.
= link capacity

d
.
= round trip propagation delay

M
.
= packet size.

In [28], a second-order nonlinear dynamical model was developed to ex-
amine the interactions of a set of TCP flows with RED routers. The model
employs fluid-flow and stochastic differential equations. Window size and av-
erage queue length are used as state variables. From a set of coupled ordinary
differential equations, the authors develop a numerical algorithm to obtain
the transient behavior of average queue length, round trip time, and through-
put of TCP flows. This model is described by nonlinear differential equations
that employ the average values of network variables:

Ẇ (t) = 1
R(t) −

W (t)W (t−R(t))
2R(t−R(t)) p(t − R(t))

q̇(t) = N(t)
R(t) W (t) − C

, (4)

where
W (t)

.
= expectation of TCP window size

q(t)
.
= expectation of queue length

R(t)
.
= round trip time

N(t)
.
= load factor (number of TCP sessions)

p(t)
.
= probability of packet mark/drop

C
.
= link capacity.

A third-order dynamical model that describes the interaction of TCP
flows with an RED-controlled queue was developed in [21]. The state vari-
ables of the model are average queue length, instantaneous queue length,
and throughput. TCP sources are idealized to operate only in congestion
avoidance phase where congestion window follows the rule of linear increase
and multiplicative decrease. This dynamical model is used to explore vari-
ous parameter settings and observe transient and equilibrium behavior of the
system. The validity of the model is verified by comparison with simulation
results. The interaction between TCP and RED is modeled as:

d
dt s̄(t) = λ̄(t − R/2)β(q̄(t) − s̄(t))
d
dt q̄(t) = λ̄(t − R/2)(1 − πK(q̄(t)))(1 − p(s̄(t))) − µ(1 − π0(q̄(t)))
d
dt λ̄(t) = −

PL(t−R/2)
2m λ̄(t)λ̄(t − R) + (1 − PL(t − R/2)) m

R2

λ̄(t−R)

λ̄(t)

PL(t) = p(s̄(t)) + πK(q̄(t)) − p(s̄(t))πK(q̄(t))

, (5)

where
s̄(t)

.
= expectation of the exponentially averaged queue length

q̄(t)
.
= expectation instantaneous queue length

λ̄(t)
.
= expectation of TCP sending rate

PL(t)
.
= loss probability in the queue at time t



8 Hui Zhang, Mingjian Liu, Vladimir Vukadinović, and Ljiljana Trajković

πK(q̄(t))
.
= steady-state probability for the queue to be full

π0(q̄(t))
.
= steady-state probability for the queue to be empty

p
.
= drop probability

R
.
= round trip time

β
.
= queue weight in RED algorithm

m
.
= number of identical TCP sources.

In [16], [17], the authors obtained a second-order linear model for TCP
and RED by linearizing a fluid-based nonlinear TCP model. Window size and
average queue length are used as state variables of the system. The authors
performed analysis of TCP interactions with RED from a control theoretic
viewpoint. They presented design guidelines for choosing RED parameters
that lead to local stability of the system. In addition, they proposed two
alternative controllers to improve the transient behavior and stability of the
system: a proportional (P) controller that possesses good transient response
but suffers from steady-state errors in queue regulation, and a proportional-
integral (PI) controller that exhibits zero steady-state regulation error and
acceptable transient behavior. An important contribution of this paper is a
good example how to use classical control theory to solve problems in complex
communication systems. The model linearized around the operating point is
described as:

δẆ (t) = −
N

R2
0
·C

(δW (t) + δW (t − R0)) −
1

R2
0
·C

(δq(t) − δq(t − R0))

−
R0·C

2

2N2 δp(t − C)
δq̇(t) = N

R0
δW (t) − 1

R0
δq(t)

, (6)

where
δW

.
= W − W0

δq
.
= q − q0

δp
.
= p − p0

W0, q0, p0
.
= the set of operating points

W
.
= expectation of TCP window size

q
.
= expectation of queue length

R0
.
= round trip time

C
.
= link capacity

Tp
.
= propagation delay

N
.
= load factor (number of TCP sessions)

p
.
= probability of packet mark/drop.

A multi-link multi-source model [25] was used to study the stability of
a general TCP/AQM system. A local stability condition were derived for
the case of a single link with heterogeneous sources and the stability region
of TCP/RED. The state variables of this model are window size, instanta-
neous queue length, and average queue length. large link capacities. Finally,
they devised a new distributed congestion control algorithm that maintains



Modeling TCP/RED: a dynamical approach 9

local stability for arbitrary delay, capacity, and traffic load. They provided
preliminary simulation results to illustrate the model’s behavior.

4 Discrete-time Dynamical Model of TCP/RED

The basic idea behind RED is to sense impending congestion before it occurs
and to try to provide feedback to senders by either dropping or marking
packets. Hence, from the control theoretic point of view, the network may be
considered as a complex feedback control system. TCP adjusts its sending
rate depending on whether or not it has detected a packet drop in the previous
RTT interval. The drop probability of RED can be considered as a control
law of the network system. Its discontinuity is the main reason for oscillations
and chaos in the system. Hence, it is natural to model the network system as
a discrete-time model. In this article, we model the TCP/RED system using
a “stroboscopic map”, which is the most widely used type of discrete-time
maps for modeling power converters [3], [9], [10], [39]. This map is obtained by
periodically sampling the system state. In our study, the sampling period is
one RTT. Since window size and queue size behave as step functions of RTT,
one RTT is the sampling period that captures their changes [13]. Higher
sampling rate would not significantly improve the accuracy of the model. On
the other hand, lower sampling rate would ignore the changes and affect the
model accuracy.

State variables employed in the proposed S-model are window size and
average queue size. These state variables capture the detailed behavior of
TCP/RED. Variations of the window size reflect the dynamics of TCP con-
gestion control. The window size increases exponentially and linearly in slow
start and congestion avoidance phases, respectively. It multiplicatively de-
creases when loss occurs. The average queue size captures the queue dynam-
ics in RED because it is updated upon every packet arrival. In our study, we
do not consider instantaneous queue size as an independent state variable.

4.1 TCP/RED Model

We consider a simple network shown in Fig. 3. It consists of one TCP source,
two routers, and a destination. RED is employed in Router 1. A TCP Reno
connection is established between the source and the destination. Data pack-
ets are sent from the source to the destination, while traffic in the opposite
direction consists of ACK packets only.

We made several assumptions in order to construct an approximate model.
We assume that ACK packets are never lost. The connection is long-lived and
the source always has sufficient data to send. Round trip propagation delay
d between the source and destination and the data packet size M are kept
constant. The link that connects the two routers is the only bottleneck in the
network. We also assume that the timeout is caused only by packet loss and



10 Hui Zhang, Mingjian Liu, Vladimir Vukadinović, and Ljiljana Trajković

Source
 Router 1
 Router 2
 Destination


Bottleneck


Fig. 3. Topology of the modeled and simulated network.

that the duration of the timeout period is 5 RTTs [13]. The state variables
of the system are sampled at the end of every RTT period. We assume that
the queue size is constant during each sampling period. The model includes
three cases, depending on the number of packets lost in the previous RTT
period: no loss, single loss, and multiple packet losses.

4.2 Case 1: No Loss

Let Wk, qk, and q̄ be the window size, queue size, and average queue size at
the end of the sampling period k. If no packet is dropped during the last RTT
period, TCP Reno increases its window size. The window size is increased
exponentially in the slow start phase and linearly in the congestion avoidance
phase:

Wk+1 =

{

min(2Wk, ssthresh) if Wk < ssthresh
min(Wk + 1, rwnd) if Wk ≥ ssthresh

, (7)

where rwnd is the receiver’s advertised window size, i.e., the largest window
size that the receiver could accept in one round. Usually, rwnd is greater
than window size. In this case, rwnd does not affect the variations of window
size. In case when window size increases linearly and reaches the value rwnd,
window size is kept at rwnd until loss occurs in the network.

In order to calculate the average queue size given by Eq. (1), we need to
find the queue size at the sampling period k + 1. This queue size depends
on the queue size in the previous period, the current window size, and the
number of packets that have left the queue during the previous sampling
period. Therefore, the current queue size is:

qk+1 = qk + Wk+1 −
C·RTTk+1

M

qk+1 = qk + Wk+1 −
C
M (d + qk·M

C )
qk+1 = Wk+1 −

C·d
M

, (8)

where
qk+1

.
= instantaneous queue size in round k + 1

qk
.
= instantaneous queue size in round k

Wk+1
.
= current TCP window size in round k + 1

RTTk+1
.
= round trip time in round k + 1



Modeling TCP/RED: a dynamical approach 11

C
.
= link capacity

M
.
= packet size

d
.
= round trip propagation delay.

Substituting qk+1 in (1) gives the average queue size:

q̄k+1 = (1 − wq)q̄k + wq · max(Wk+1 −
C · d

M
, 0). (9)

RED updates the average queue size at every packet arrival. Hence, q̄ is
updated Wk+1 times during the current sampling period. We assume that
the queue size is constant during each period and that q̄ is given as:

q̄k+1 = (1 − wq)
Wk+1 q̄k + (1 − (1 − wq)

Wk+1) · max(Wk+1 −
C · d

M
, 0). (10)

Finally, if pkWk < 0.5, which implies that no packet loss occurred in the
previous sampling period, the state variables of the model are:

Wk+1 =

{

min(2Wk, ssthresh) if Wk < ssthresh
min(Wk + 1, rwnd) if Wk ≥ ssthresh

q̄k+1 = (1 − wq)
Wk+1 q̄k + (1 − (1 − wq)

Wk+1) · max(Wk+1 −
C·d
M , 0).

(11)

4.3 Case 2: One Packet Loss

If 0.5 ≤ pkWk < 1.5, which implies that one packet loss occurred in the
previous RTT period, the congestion control mechanism of TCP Reno halves
the window size in the current sampling period:

Wk+1 =
1

2
Wk. (12)

The average queue size is updated in a manner similar to Case 1:

Wk+1 = 1
2Wk

q̄k+1 = (1 − wq)
Wk+1 q̄k + (1 − (1 − wq)

Wk+1) · max(Wk+1 −
C·d
M , 0)

. (13)

4.4 Case 3: At Least Two Packet Losses

In this case pkWk ≥ 1.5, which implies that at least two packets are lost
in the previous RTT period. When multiple packets are lost from the same
window, TCP Reno may not be able to send a sufficient number of new
packets in order to receive three duplicate ACKs for each packet lost. TCP
source will often have to wait for the timeout before retransmitting the lost
packet [11]. During the timeout period, the source does not send packets into
the network. In S-model, window size is equivalent to the number of packets



12 Hui Zhang, Mingjian Liu, Vladimir Vukadinović, and Ljiljana Trajković

that are sent by the source during one RTT period. Hence, we assume that
the window size is zero during the timeout period.

RED mechanism updates the average queue size for each packet arrival.
However, during timeout period there are no packet arrivals. Average queue
size is not updated and has the same value as in the previous RTT period.
RED takes this “idle time” period into account when it updates the average
queue size upon the next packet arrival. However, S-model does not take
into account the “idle time”. TCP/RED system during the timeout period
is modeled as:

Wk+1 = 0
q̄k+1 = q̄k

. (14)

The pseudo code describing the S-model is shown in Algorithm 1.

Algorithm 1 S-model

Initialization:
q̄0 ← 0
q0 ← 0
p0 ← 0
for every round
calculate the product of pkWk

if pkWk < 0.5 then

compare Wk with ssthresh
if Wk < ssthresh then

Wk+1 ← min(2Wk, ssthresh)
q̄k+1 ← (1 − wq)

Wk+1 q̄k + (1 − (1 − wq)
Wk+1) max(Wk+1 −

Cd

M
, 0)

else

Wk+1 ← min(Wk + 1, rwnd)
q̄k+1 ← (1 − wq)

Wk+1 q̄k + (1 − (1 − wq)
Wk+1) max(Wk+1 −

Cd

M
, 0)

end if

calculate the drop probability using Eq. (2)
else if 0.5 ≤ pkWk < 1.5 then

Wk+1 ← 1

2
Wk

q̄k+1 ← (1 − wq)
Wk+1 q̄k + (1 − (1 − wq)

Wk+1) max(Wk+1 −
Cd

M
, 0)

calculate the drop probability using Eq. (2)
else

Wk+1 ← 0
q̄k+1 ← q̄k

end if

4.5 Properties of the S-model

The proposed second-order discrete model captures interactions between
TCP Reno congestion control algorithm and RED mechanism. It models



Modeling TCP/RED: a dynamical approach 13

the dynamics of the TCP/RED system. Unlike past models [21], [22], [31],
[35], [36], the S-model includes the slow start phase. It also takes into ac-
count timeout, common in TCP [31], which models [21], [22], [35], [36] ignore.
However, the S-model does not capture all details of the fast recovery phase.
Congestion window size in the S-model is not increased for each duplicate
ACK received after retransmitting the lost packet. Instead of “inflating” the
window we assume that TCP sender switches to the congestion avoidance
phase without performing slow start. Evolution of the window size in the
S-model is shown in Fig. 4.

Time


SS
 - Slow start


CA - Congestion avoidance


FR
 - Fast recovery


Co
ng

es
tio

n 
w

in
do

w
 si

ze



SS
 CA
 CA
 SS


Timeout


ssthresh


Fast
 retransmit


ssthresh
 =
 cwnd
/ 2

cwnd
 =
 ssthresh


Fig. 4. Evolution of the window size in the proposed model. The fast recovery
phase has been simplified.

The S-model captures the most important characteristics of the RED algo-
rithm. The average queue size is updated after each packet arrival, i.e., Wk+1

times in the sampling period k+1. In contrast, models presented in [22], [35],
[36] update the average queue size only once in every RTT period. However,
in deriving the new model, we have also made simplifications in the RED
algorithm: we ignored the counter that counts the number of packet arrivals
since the last packet drop. RED uses this counter to modify drop probability
(2). We have also ignored the “idle time” period, since it has no significant
impact on the dynamics of the system.

5 S-Model Validation and Comparison

In order to verify the accuracy of the S-model , we compare its performance
with the ns-2 simulation results. The topology of the simulated network is



14 Hui Zhang, Mingjian Liu, Vladimir Vukadinović, and Ljiljana Trajković

shown in Fig. 5. It consists of one source, one sink, and two routers: R1 and
R2. RED is employed in router R1. The link between R1 and R2 is the only
bottleneck in the network. Its capacity is 1.54 Mbps and propagation delay
is 10 ms. The capacity of the links between the source and R1 and between
R2 and the sink is 100 Mbps. This is sufficient to guarantee no congestion in
these links. Their propagation delay is 0 ms. We compared window size and
average queue size in the S-model and the ns-2 simulation results.

S1
 R1
 R2
 D1

100 Mbps

0 ms delay


1.54 Mbps

10 ms delay


100 Mbps

0 ms delay


Fig. 5. Topology of the simulated network.

The model validation is divided into four stages. First, we used default
ns-2 RED parameters. Second, we choose various queue weights wq while
keeping other system parameters constant. In the third scenario, we varied
the maximum drop probability pmax. Finally, we varied the minimum and
maximum queue thresholds qmin and qmax simultaneously, while keeping their
ratio qmax/qmin= 3. In each simulation scenario, we observed system behavior
and measured average RTT, sending rate, and drop probability.

We also compared the proposed S-model with a discrete-time nonlinear
dynamical model of TCP Reno with RED gateway proposed in [22], [35], [36],
named here M-model. The M-model is a first-order discrete-time dynamical
model with the average queue size as the state variable.

The default RED parameters are shown in Table 1. Other system param-
eters for the proposed S-model and the M-model are shown in Table 2.

Table 1. Default ns-2 RED parameters.

Packet size M (bytes) 500
Maximum drop probability (pmax) 0.1
Minimum queue threshold (qmin) (packets) 5
Maximum queue threshold (qmax) (packets) 15
Queue weight (wq) 0.002

5.1 Default RED Parameters

In order to verify that the S-model can capture the detailed information of
the system behavior, we evaluated the waveforms of the two state variables:
window size and average queue size.



Modeling TCP/RED: a dynamical approach 15

Table 2. System parameters.

S-model M-model

Link capacity C (bit/s) 1.54e+6 1.54e+6
Packet size M (bytes) 500 500
Round trip propagation delay d (ms) 22.8 22.8
Buffer size B (packets) 100
Slow start threshold size ssthresh (packets) 20
Number of TCP connection N 1 1

Constant K
√

3/2

The waveforms of the window size for various time scales are shown in
Fig. 6. The S-model and ns-2 simulation results are quite similar, especially
during the steady-state response.

The waveforms of the average queue size for various time scales are shown
in Fig. 7. The average queue size using the S-model is approximately one
packet size larger than the average queue size obtained by the ns-2 simu-
lations. This difference is due to introduced simplifications. The new model
employs packet-marking/drop probability calculated by Eq. (2), while RED
algorithm adopts a smooth packet-drop probability pa that increases slowly
as the count increases:

pa ← pb/(1 − count · pb), (15)

where pb is the drop probability given by Eq. (2) and count measures the
number of packets that have arrived since the last dropped packet. In the
S-model, pb is used as the final drop probability and the counter is ignored.
Since pb < pa, the average queue size of the S-model is larger than that
obtained via ns-2 simulations.

The statistics for the two state variables (window size and average queue
size) and comparison with ns-2 simulation results are shown in Table 3.

The M-model matches closely the ns-2 results shown in Figs. 7(c) and
(d). The time waveform of the average queue size for the M-model is shown
in Fig. 8. After the transient state, the average queue size reaches a constant
value (5.71 packets), while the average queue size in ns-2 simulations varies
around its fixed point. To the contrary, the proposed S-model captures the
dynamical characteristic of the average queue size.

5.2 Queue Weight wq

The S-model was also verified for various queue weight wq. The average queue
size during the steady-state for various values of wq is shown in Fig. 9. When
the queue weight increases, the average queue size slightly decreases in both
the S-model and in ns-2 simulation results.



16 Hui Zhang, Mingjian Liu, Vladimir Vukadinović, and Ljiljana Trajković

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

Time (sec)

W
in

do
w

 s
iz

e 
(p

ac
ke

ts
)

(a)

40 41 42 43 44 45 46 47 48 49 50
0

5

10

15

20

25

30

35

Time (sec)

W
in

do
w

 s
iz

e 
(p

ac
ke

ts
)

(b)



Modeling TCP/RED: a dynamical approach 17

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

Time (sec)

W
in

do
w

 s
iz

e 
(p

ac
ke

ts
)

(c)

40 41 42 43 44 45 46 47 48 49 50
0

5

10

15

20

25

30

35

Time (sec)

W
in

do
w

 s
iz

e 
(p

ac
ke

ts
)

(d)

Fig. 6. Evolution of the window size with default RED parameters: (a) S-model
and (b) zoom-in, (c) ns-2 simulation results and (d) zoom-in. Waveforms show good
match between the S-model and the ns-2 simulation results.



18 Hui Zhang, Mingjian Liu, Vladimir Vukadinović, and Ljiljana Trajković

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9

10

Time (sec)

A
ve

ra
ge

 q
ue

ue
 s

iz
e 

(p
ac

ke
ts

)

(a)

40 41 42 43 44 45 46 47 48 49 50
5

5.5

6

6.5

7

7.5

8

Time (sec)

A
ve

ra
ge

 q
ue

ue
 s

iz
e 

(p
ac

ke
ts

)

(b)



Modeling TCP/RED: a dynamical approach 19

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9

Time (sec)

A
ve

ra
ge

 q
ue

ue
 s

iz
e 

(p
ac

ke
ts

)

(c)

40 41 42 43 44 45 46 47 48 49 50
5

5.5

6

6.5

7

7.5

8

Time (sec)

A
ve

ra
ge

 q
ue

ue
 s

iz
e 

(p
ac

ke
ts

)

(d)

Fig. 7. Evolution of the average queue size with default RED parameters: (a) S-
model and (b) zoom-in, (c) ns-2 simulation result and (d) zoom-in. The average
queue size obtained using the S-model is higher than the average queue size obtained
using ns-2 simulations.



20 Hui Zhang, Mingjian Liu, Vladimir Vukadinović, and Ljiljana Trajković

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

Time (sec)

A
ve

ra
ge

 q
ue

ue
 s

iz
e 

(p
ac

ke
ts

)

Fig. 8. Average queue size in the M-model with default RED parameters.

1 2 3 4 5 6 7 8 9 10

x 10
−3

0

1

2

3

4

5

6

7

8

9

10

Wq

A
ve

ra
ge

 q
ue

ue
 s

iz
e 

(p
ac

ke
ts

)

S−model
M−model
ns−2

Fig. 9. Comparison of the average queue size for various wq.



Modeling TCP/RED: a dynamical approach 21

Table 3. State variables: S-model and ns-2 simulation results.

Window size (packets) Average queue size (packets)

S-model ns-2 ∆ (%) S-model ns-2 ∆ (%)

Average 15.35 15.01 2.25 7.24 5.95 21.63
Max 30 31.38 -1.20 7.69 8.14 -5.60
Min 2 2 0 0.12 0.05 77.45
Max (steady-state) 21 21.86 -3.93 7.69 6.51 18.16
Min (steady-state) 10 9 11.11 7.02 5.41 29.79

The S-model was also validated for average RTT, sending rate, and packet
loss rate. Results are summarized in Table 4. Values obtained using the S-
model and ns-2 are quite similar. Small variations in queue weight have sig-
nificant influence on RTT and packet loss rate.

As shown in Table 4, we also evaluated the M-model for the same system
variables: average RTT, sending rate, and packet drop rate. Except for wq

= 0.001, when S-model performs better, the discrepancy in predicting RTT
for two models are similar. In all cases, the S-model more accurately predicts
the sending and drop rates.

5.3 Drop Probability pmax

We also evaluated the S-model for various pmax. When the maximum drop
probability is set to a very small value, RED algorithm has small influence on
the system behavior. In this case, the system behaves as TCP with DropTail,
which leads to bursty packet losses and longer queuing delays. However, if
the value of pmax is close to one, high drop rate will cause the system to
become unstable. Simulation results are shown in Fig. 10. The average queue
size decreases as the maximum drop rate increases. Results obtained from
the S-model and ns-2 simulation results show the same trend.

Validation results for the average RTT, sending rate, and drop rate are
listed in Table 5. They show that system variables in S-model and in ns-2
simulations change in a similar manner. As expected, when the maximum
drop probability increases, the actual drop rate increases. At the same time,
the average RTT decreases indicating a lower queuing delay.

The average RTT, sending rate, and drop rate for the M-model are also
summarized in Table 5. Under various drop probabilities pmax, the S-model
better estimates the average RTT, the sending rate, and the drop rate.

5.4 Thresholds qmin and qmax

The S-model is also evaluated for various queue thresholds. Values of qmin and
qmax are varied simultaneously, while maintaining the ratio qmax/qmin=3, as



22 Hui Zhang, Mingjian Liu, Vladimir Vukadinović, and Ljiljana Trajković

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

Pmax

A
ve

ra
ge

 q
ue

ue
 s

iz
e 

(p
ac

ke
ts

)

S−model
M−model
ns−2

Fig. 10. Comparison of the average queue size for various pmax.

recommended in [2]. Simulation results for the average queue size are shown
in Fig. 11.

The average queue size increases when thresholds qmax and qmin increase.
At the same time, the average RTT increases and the drop rate decreases, as
shown in Table 6.

A comparison with the M-model suggests that the proposed S-model is
more accurate in predicting average RTT, sending rate, and drop rate.

5.5 Validation Summary

The S-model was evaluated by comparing the waveforms of its two state
variables (window size and average queue size) to the ns-2 simulation results.
While the window sizes match well, the steady-state values of the average
queue size differ. Nevertheless, the average queue size of the S-model and
ns-2 results have similar trend as the system parameters wq, pmax, qmin, and
qmax vary.

The difference in average queue size between the S-model and ns-2 is due
to simplifications to the RED’s packet discarding algorithm: S-model employs
probability pb (Eq. 2) as the final drop probability, while RED in ns-2 uses
pa (Eq. 15). If a modified drop probability pa = αpb is used, the window size
and the average queue size would evolve as shown in Figs. 12(a) and (b),
respectively. Comparison shows that the average queue size matches well the
ns-2 simulation results for modified drop probabilities with α = 1.8.



Modeling TCP/RED: a dynamical approach 23

Table 4. System variables for various wq.

Parameters Average RTT (ms)

weight (wq) S-model ∆ (%) M-model ∆ (%) ns-2

0.001 40.3 11.63 45.8 26.87 36.1
0.002 39.9 10.83 41.3 14.72 36.0
0.004 39.4 8.80 39.4 8.84 36.2
0.006 39.0 8.93 38.8 8.38 35.8
0.008 39.0 8.90 38.5 7.54 35.8
0.01 38.9 8.96 38.3 7.28 35.7

Sending rate (packets/s)

weight (wq) S-model ∆ (%) M-model ∆ (%) ns-2

0.001 384.99 0.07 325.89 -15.29 384.71
0.002 384.98 0.06 355.26 -7.67 384.77
0.004 385.11 0.08 370.04 -3.83 384.79
0.006 385.08 0.09 374.90 -2.55 384.73
0.008 385.10 0.11 377.25 -1.93 384.68
0.01 385.02 0.08 378.37 -1.65 384.70

Drop rate (%)

weight (wq) S-model ∆ (%) M-model ∆ (%) ns-2

0.001 0.55 1.29 0.67 23.39 0.54
0.002 0.56 2.56 0.70 28.21 0.55
0.004 0.59 6.12 0.71 27.70 0.56
0.006 0.60 7.91 0.71 27.70 0.56
0.008 0.61 11.11 0.71 29.33 0.55
0.01 0.61 11.72 0.71 30.04 0.55

6 Conclusions

TCP/RED system can be viewed as a complex feedback control system where
TCP adjusts its sending rate depending on the packet loss probability deter-
mined by RED. In this article, we have introduced a second-order discrete
model for interaction between TCP Reno and RED algorithms. We used an
iterative map to construct the discrete-time model of the system. The S-
model captures the dynamical behavior of TCP/RED and may be used to
study its nonlinear behavior. Unlike other models, it takes into account the
TCP slow start and timeout events. We evaluated the model by comparing
its performance to the ns-2 simulation results and an existing TCP/RED
model. Validation of the proposed model illustrates the performance of the
model for various RED parameters.



24 Hui Zhang, Mingjian Liu, Vladimir Vukadinović, and Ljiljana Trajković

Table 5. System variables for various pmax.

Parameters Average RTT (ms)

pmax S-model ∆ (%) M-model ∆ (%) ns-2

0.05 44.3 16.27 43.4 13.91 38.1
0.1 39.9 10.83 41.3 14.72 36.0
0.25 36.5 5.80 39.9 15.65 34.5
0.5 35.3 3.80 39.4 15.88 34.0
0.75 34.8 -0.85 39.2 11.68 35.1

Sending rate (packets/s)

pmax S-model ∆ (%) M-model ∆ (%) ns-2

0.05 385.13 0.11 354.23 -7.92 384.70
0.1 384.98 0.06 355.26 -7.67 384.77
0.25 384.93 0.05 356.02 -7.46 384.73
0.5 384.98 1.48 356.27 -6.09 379.37
0.75 384.63 7.60 356.33 -0.34 357.55

Drop rate (%)

pmax S-model ∆ (%) M-model ∆ (%) ns-2

0.05 0.45 -11.76 0.63 23.53 0.51
0.1 0.56 2.56 0.70 28.21 0.55
0.25 0.65 11.28 0.74 26.50 0.59
0.5 0.73 19.09 0.76 23.98 0.61
0.75 0.74 14.37 0.77 19.01 0.65

7 Acknowledgment

The authors thank I. Khalifa, W. G. Zeng, N. Cackov, B. Vujičič, S. Vujičić,
Q. Shao, and J. Chen for comments, discussions, and suggestions that helped
improve the content of the article.

References

1. M. Allman, V. Paxson, and W. Steven, “TCP Congestion Control,” Request
for Comment (RFC) 2581, Apr. 1999.

2. B. Barden et al., “Recommendations on queue management and congestion
avoidance in the Internet,” Request for Comments (RFC) 2309, Apr. 1998.

3. M. di Bernardo and C. K. Tse, “Chaos in power electronics: an overview,”
Chaos in Circuits and Systems, New York: World Scientific, pp. 317–340, 2002.

4. R. Braden, “Requirements for Internet hosts–communication layers,” Request
for Comment (RFC) 1122, Oct. 1989.



Modeling TCP/RED: a dynamical approach 25

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

qmin (packets)

A
ve

ra
ge

 q
ue

ue
 s

iz
e 

(p
ac

ke
ts

)

S−model
M−model
ns−2

Fig. 11. Comparison of the average queue size for various qmin and qmax.

5. L. Brakmo and L. Peterson, “TCP Vegas: end to end congestion avoidance on
a global Internet,” IEEE Journal on Selected Areas in Communication, vol.
13, no. 8, pp. 1465–1480, Oct. 1995.

6. N. Cardwell, S. Savage, and T. Anderson, “Modeling TCP latency,” in Proc.
IEEE INFOCOM 2000, Tel Aviv, Israel, Mar. 2000, vol. 3, pp. 1742–1751.

7. C. Casetti, M. Gerla, S. Lee, S. Mascolo, and M. Sanadidi, “TCP with faster
recovery,” in Proc. MILCOM 2000, Los Angeles, CA, USA, Oct. 2000, vol. 1,
pp. 320–324.

8. C. Casetti and M. Meo, “A new approach to model the stationary behavior of
TCP connections,” in Proc. INFOCOM 2000, Tel Aviv, Israel, Mar. 2000, vol.
1, pp. 367–375.

9. W. C. Y. Chan and C. K. Tse, “Study of bifurcation in current-programmed
DC/DC boost converters: from quasi-periodicity to period-doubling,” IEEE
Trans. Circuit and Systems I, vol. 44, no. 12, pp. 1129–1142, Dec. 1997.

10. K. W. E. Cheng, M. Liu, and J. Wu, “Chaos study and parameter-space anal-
ysis of the DC-DC buck-boost converter,” IEE Proceedings-Electric Power Ap-
plications, vol. 150, pp. 126–138, Mar. 2003.

11. K. Fall and S. Floyd, “Simulation-based comparison of Tahoe, Reno, and
SACK TCP,” ACM Communication Review, vol. 26, no. 3, pp. 5–21, July
1996.

12. K. Fall and K. Varadhan, “The ns Manual,” UC Berkeley, LBL, USC/ISI, and
Xerox PARC, June 2003: http://www.isi.edu/nsnam/ns/doc/ns doc.pdf.

13. V. Firoiu and M. Borden, “A study of active queue management for congestion
control,” in Proc. IEEE INFOCOM 2000, Tel-Aviv, Israel, Mar. 2000, vol. 3,
pp. 1435–1444.



26 Hui Zhang, Mingjian Liu, Vladimir Vukadinović, and Ljiljana Trajković

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

Time (sec)

W
in

do
w

 s
iz

e 
(p

ac
ke

ts
)

(a)

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

Time (sec)

A
ve

ra
ge

 q
ue

ue
 s

iz
e 

(p
ac

ke
ts

)

(b)

Fig. 12. Evolution of window size and average queue size under modified drop
probability.



Modeling TCP/RED: a dynamical approach 27

Table 6. System variables for various qmin and qmax.

Parameters Average RTT (ms)

qmin (packets) S-model ∆ (%) M-model ∆ (%) ns-2

3 33.4 7.40 34.1 9.65 31.1
5 39.9 10.83 41.3 14.72 36.0
10 54.7 13.72 60.8 26.40 48.1
15 67.7 12.27 83.1 37.81 60.3
20 79.1 8.36 109.1 49.45 73.0

Sending rate (packets/s)

qmin (packets) S-model ∆ (%) M-model ∆ (%) ns-2

3 383.22 0.20 366.13 -4.26 382.44
5 384.98 0.06 355.26 -7.76 384.77
10 385.10 0.06 330.94 -14.01 384.85
15 385.06 0.06 311.01 -19.19 384.83
20 385.30 0.09 296.27 -23.04 384.95

Drop rate (%)

qmin (packets) S-model ∆ (%) M-model ∆ (%) ns-2

3 0.78 10.01 0.96 35.40 0.71
5 0.56 2.56 0.70 28.21 0.55
10 0.31 -6.34 0.37 11.78 0.33
15 0.20 -10.71 0.22 -1.79 0.22
20 0.15 -5.66 0.14 -11.95 0.16

14. S. Floyd and V. Jacobson, “Random early detection gateways for congestion
avoidance,” IEEE/ACM Trans. Networking, vol. 1, no. 4, pp. 397–413, Aug.
1993.

15. S. Floyd, “RED: discussions of setting parameters,” Nov. 1997:
http://www.icir.org/floyd/REDparameters.txt.

16. C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong, “A control theoretic
analysis of RED,” in Proc. IEEE INFOCOM 2001, Anchorage, AK, Apr. 2001,
vol. 3, pp. 1510–1519.

17. C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong, “Analysis and design of
controllers for AQM routers supporting TCP flows,” IEEE Trans. on Auto-
matic Control, vol. 47, no. 6, pp. 945–959, June 2002.

18. V. Jacobson, “Congestion avoidance and control,” ACM Computer Communi-
cation Review, vol. 18, no. 4, pp. 314–329, Aug. 1988.

19. V. Jacobson, “Modified TCP congestion avoidance algorithm,”
ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail, Apr. 1990.

20. I. Khalifa and Lj. Trajković, “An overview and comparison of analytical TCP
models,” in Proc. IEEE International Symposium on Circuits and Systems,
Vancouver, BC, Canada, May 2004, vol. V, pp. 469–472.



28 Hui Zhang, Mingjian Liu, Vladimir Vukadinović, and Ljiljana Trajković

21. P. Kuusela, P. Lassila, J. Virtamo, and P. Key, “Modeling RED with idealized
TCP sources,” 9th IFIP Conference on Performance Modeling and Evaluation
of ATM and IP Networks 2001, Budapest, Hungary, June 2001, pp. 155–166.

22. R. J. La, P. Ranjan, and E. H. Abed, “Nonlinearity of TCP and instability
with RED,” in Proc. SPIE ITCom, Boston, MA, USA, July 2002, pp. 283–294.

23. Y. Lai and C. Yao, “TCP congestion control algorithms and a performance
comparison,” in Proc. 10th International Conference on Computer Communi-
cations and Networks, Scottsdale, AZ, USA., Oct. 2001, pp. 523–526.

24. S. H. Low and D. E. Lapsley, “Optimization flow control—I: basic algorithm
and convergence,” IEEE/ACM Trans. Networking, vol. 7, no. 6, pp. 861–874,
Dec. 1999.

25. S. H. Low, F. Paganini, J. Wang, S. Adlakha, and J. C. Doyle, “Dynamics of
TCP/RED and a scalable control,” Proc. IEEE INFOCOM 2002, New York,
NY, USA., June 2002, vol. 1, pp. 239–248.

26. M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior of
the TCP congestion avoidance algorithm,” ACM Computer Communication
Review, vol. 27, no. 3, pp. 67–82, July 1997.

27. M. Mellia, I. Stoica, and H. Zhang, “TCP model for short lived flows,” IEEE
Communications Letters, vol. 6, no. 2, pp. 85–87, Feb. 2002.

28. V. Misra, W. B. Gong, and D. Towsley, “Fluid-based analysis of a network
of AQM routers supporting TCP flows with an application to RED,” in Proc.
ACM SIGCOMM 2000, Stockholm, Sweden, Aug. 2000, pp. 151–160.

29. A. Misra, J. Baras, and T. Ott, “Generalized TCP congestion avoidance and
its effect on bandwidth sharing and variability,” in Proc. IEEE GLOBECOM,
San Francisco, CA, USA., Nov. 2000, vol. 1, pp. 329–337.

30. ns-2 Network Simulator: http://www.isi.edu/nsnam/ns.
31. J. Padhye, V. Firoiu, and D. F. Towsley, “Modeling TCP Reno performance:

a simple model and its empirical validation,” IEEE/ACM Trans. Networking,
vol. 8, no. 2, pp. 133–145, Apr. 2000.

32. J. Padhye and S. Floyd, “On inferring TCP behavior”, in Proc. ACM SIG-
COMM 2001, San Diego, CA, USA, Aug. 2001, pp. 287–298.

33. V. Paxson and M. Allman, “Computing TCP’s Retransmission Timer,” Re-
quest for Comment (RFC) 2988, Nov. 2000.

34. J. Postel, “Transmission control protocol,” Request for Comment (RFC) 793,
Sept. 1981.

35. P. Ranjan, E. H. Abed, and R. J. La, “Nonlinear instabilities in TCP-RED,”
in Proc. IEEE INFOCOM 2002, New York, NY, USA, June 2002, vol. 1, pp.
249–258.

36. P. Ranjan, R. J. La, and E. H. Abed, “Bifurcations of TCP and UDP traffic
under RED,” in Proc. 10 th Mediterranean Conference on Control and Au-
tomation (MED) 2002, Lisbon, Portugal, July 2002.

37. R. Roy, R. C. Mudumbai, and S. S. Panwar, “Analysis of TCP congestion
control using a fluid model,” in Proc. IEEE ICC 2001, Helsinki, Finland, June
2001, vol. 8, pp. 2396–2403.

38. W. R. Stevens, TCP/IP Illustrated, Volume 1: The protocols. New York:
Addison-Wesley, 1994.

39. C. K. Tse and M. D. Bernardo, “Complex behavior in switching power con-
verters,” Proceedings of the IEEE, vol. 90, no. 5, pp. 768–781, May 2002.


