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Abstract

Many complex and interesting phenomena in nature are due to nonlinear phenomena. The theory of nonlinear dynamical systems, also

called ‘chaos theory’, has now progressed to a stage, where it becomes possible to study self-organization and pattern formation in the

complex neuronal networks of the brain. One approach to nonlinear time series analysis consists of reconstructing, from time series of EEG

or MEG, an attractor of the underlying dynamical system, and characterizing it in terms of its dimension (an estimate of the degrees of

freedom of the system), or its Lyapunov exponents and entropy (reflecting unpredictability of the dynamics due to the sensitive dependence

on initial conditions). More recently developed nonlinear measures characterize other features of local brain dynamics (forecasting, time

asymmetry, determinism) or the nonlinear synchronization between recordings from different brain regions.

Nonlinear time series has been applied to EEG and MEG of healthy subjects during no-task resting states, perceptual processing,

performance of cognitive tasks and different sleep stages. Many pathologic states have been examined as well, ranging from toxic states,

seizures, and psychiatric disorders to Alzheimer’s, Parkinson’s and Cre1utzfeldt-Jakob’s disease. Interpretation of these results in terms of

‘functional sources’ and ‘functional networks’ allows the identification of three basic patterns of brain dynamics: (i) normal, ongoing

dynamics during a no-task, resting state in healthy subjects; this state is characterized by a high dimensional complexity and a relatively low

and fluctuating level of synchronization of the neuronal networks; (ii) hypersynchronous, highly nonlinear dynamics of epileptic seizures;

(iii) dynamics of degenerative encephalopathies with an abnormally low level of between area synchronization. Only intermediate levels of

rapidly fluctuating synchronization, possibly due to critical dynamics near a phase transition, are associated with normal information

processing, whereas both hyper—as well as hyposynchronous states result in impaired information processing and disturbed consciousness.

q 2005 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
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1. Introduction
1.1. The emergence of nonlinear brain dynamics

Recently there is an increasing interest in neurophysio-

logical techniques such as EEG and MEG that are eminently

suitable to capture the macroscopic spatial temporal

dynamics of the electro magnetic fields of the brain. The

following citation from Jones reflects this new elan: ‘Now

that neuroscientists are beginning seriously to contemplate

higher levels of brain functioning in terms of neuronal
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networks and reverberating circuits, electroencephalogra-

phers can take satisfaction in the knowledge that after some

time of unfashionability their specialty is once again

assuming a central role. As they suspected all along, there

does appear to be important information about how the brain

works contained in the empirically useful but inscrutable

oscillations of the EEG’ (Jones, 1999).

This renewed interest in EEG and MEG has two different

sources: (i) the realization that a full understanding of the

neurophysiological mechanisms underlying normal and

disturbed higher brain functions cannot be derived from a

purely reductionistic approach and requires the study of

emergent phenomena such as large scale synchronization of

neuronal networks in the brain (Bressler, 2002; Le van

Quyen, 2003; Schnitzler and Gross, 2005; Varela et al.,
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Fig. 1. Two dimensional phase portrait of the Lorenz attractor. This

attractor was discovered by Edward Lorenz in 1963 in a system of three

coupled nonlinear differential equations, representing a simplified model of

the atmosphere. The attractor is a fractal object made up of an infinite

number of lines representing the trajectory of the dynamical system. The

trajectory segment connects consecutive states of the system. Due to the

fractal geometry nearby trajectory segments come infinitely close but never

intersect. [units of X and Y axis are arbitrary]
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2001); (ii) the introduction of new techniques, concepts and

analytical tools which make it possible to extract more and

more meaningful information from recordings of brain

electro magnetic activity. Examples of such new develop-

ments are the use of combined recording of EEG and fMRI,

wavelets, analysis with artificial neural networks, and

advanced source modelling (Benar et al., 2003; Durka,

2003; Gabor and Seyal, 1992; Robert et al., 2002; Vrba

et al., 2004).

Another example of a new approach, and perhaps one of

the most ambitious attempts to decipher Jones’ ‘inscrutable

oscillations of the EEG’, is the application of concepts and

time series analysis techniques derived from nonlinear

dynamics (also called ‘chaos theory’) to the study of EEG

and MEG. The application of nonlinear dynamics to electro

encephalography has opened up a range of new perspectives

for the study of normal and disturbed brain function and is

developing toward a new interdisciplinary field of

nonlinear brain dynamics (Elbert et al., 1994; Korn and

Faure, 2003; Le van Quyen, 2003; Rey and Guillemant,

1997; Sarbadhikari and Chakrabarty, 2001; Stam, 2003).

The purpose of the present review is to provide an

introduction in the basic concepts and analytical techniques

of nonlinear EEG analysis, and to give an overview of the

most important results that have been obtained so far in the

study of normal EEG rhythms, sleep, epilepsy, psychiatric

disease and normal and disturbed cognition.

1.2. Historical background

Nonlinear EEG analysis started in 1985, when two

pioneers in the field published their first results. Rapp et al.

described their results with ‘chaos analysis’ of spontaneous

neural activity in the motor cortex of a monkey (Rapp et al.,

1985), and Babloyantz and co-workers reported the first

observations on the so called correlation dimension of

human sleep EEG (Babloyantz et al., 1985). In these early

days, super computers were required for even the most basic

types of nonlinear EEG analysis. However, the pioneering

work of Rapp and Babloyantz did not only depend upon the

availability of super computers, but also upon progress in

the physics and mathematics of nonlinear dyamical systems.

One might say that nonlinear dynamics was born in 1665

when Christiaan Huyens, lying ill in his bed, observed that

two clocks hanging from the same wall tended to

synchronize the motion of their pendulums exactly in

phase (Huygens, 1967a,b). Synchronization of dynamical

systems is a key nonlinear phenomenon, and as we will see

it has become increasingly important in recent develop-

ments in nonlinear EEG analysis. Despite Huygens’ early

observations, the status of founding father of ‘chaos theory’

is usually given to the French mathematician Henri

Poincaré, who in 1889 showed that a simple gravitational

system of three interacting bodies can display completely

unpredictable behaviour (Poincaré, 1892–1899). This

unpredictable behaviour arises despite the fact that the
(nonlinear) equations describing the system are completely

deterministic. This paradoxical phenomenon of unpredict-

able behaviour in deterministic dynamical systems is now

called ‘deterministic chaos’ (Li and Yorke, 1975). Poincaré

was far ahead of his time, and in the first decades of the

twentieth century progress in nonlinear dynamics was slow

and overshadowed by developments in relativity and

quantum physics. Important work was done by Russian

mathematicians such as Lyapunov and Kolmogorov, and the

Dutch physicist Balthasar van der Pol, but the impact of

their work only became clear later.

Things changed rapidly due to a number of developments

between 1960 and 1980. First, advances in computer

technology allowed to study nonlinear dynamical systems

with a technique called numerical integration. This

computationally demanding procedure is one of the few

ways to study the behaviour of a dynamical system when

there is no closed solution for the equations of motion. Next,

the meteorologist Edward Lorenz, studying a simple

nonlinear model of the atmosphere using numerical

integration, rediscovered Poincaré’s chaotic dynamics and

published the first graph of a strange attractor, the now

famous ‘Lorenz attractor’ shown in Fig. 1 (Lorenz, 1963).

Then Packard et al. showed how a time series of

observations could be transformed into a representation of

the dynamics of the system in a multi-dimensional state

space or phase space, and the Dutch mathematician Floris

Takens proved that the reconstructed attractor has the

same basic properties as the true attractor of the system
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(Packard et al., 1980; Takens, 1981). The final breakthrough

came in 1983 when Grassberger and Procaccia published an

algorithm to compute the correlation dimension of a

reconstructed attractor (Grassberger and Procaccia,

1983a). This made it possible to apply chaos theory to

almost any set of observations, and resulted within two

years to the first applications to EEG by Rapp and

Babloyantz. The atmosphere of enthusiasm and optimism

of the early period of chaos theory is very well captured by

Gleick, Basar and Duke and Prichard (Basar, 1990; Duke

and Pritchard, 1991; Gleick, 1987).

The early phase of nonlinear EEG analysis, roughly

between 1985 and 1990, was characterized the search for

low-dimensional chaotic dynamics in various types of EEG

signals. Around 1990 some of the limitations of various

algorithms for nonlinear time series analysis became clear,

and the method of ‘surrogate data testing’ was introduced to

check the validity of the results (Jansen and Brandt, 1993;

Osborne and Provenzale, 1989; Pijn, 1990; Pijn et al., 1991;

Theiler, 1986; Theiler et al., 1992a,b). Subsequently, early

claims for ‘chaos’ in the brain were critically re examined

and often rejected (Pritchard et al., 1995a; Theiler, 1995).

Since then, nonlinear EEG analysis has redirected its focus

in two less ambitious but more realistic directions: (i) the

detection, characterization and modelling of nonlinear

dynamics rather than strict deterministic chaos; (ii) the

development of new nonlinear measures which are more

suitable to be applied to noisy, non stationary and high-

dimensional EEG data. This approach has paid off and has

led in the late nineties of the last century to a whole new

range of EEG measures based upon phase synchronization

and generalized synchronization as well as a number of

emerging applications in the monitoring of sleep, anesthesia

and seizures. Ironically, while ‘chaos in brain?’ is no longer

an issue, research in nonlinear EEG analysis is booming

(Lehnertz and Litt, 2005; Lehnertz et al., 2000).
2. Nonlinear dynamical systems

2.1. The concept of a dynamical system

In the historical overview several concepts such as

dynamical system, nonlinear, attractor and deterministic

chaos were already mentioned. In this section the

conceptual framework of nonlinear dynamics is explained

in a more structured way. The emphasis is on an intuitive

understanding of the concepts, not on mathematical rigor.

For detailed mathematical backgrounds the reader is

referred to specialist texts (Eckmann and Ruelle, 1985;

Kantz and Schreiber, 2003; Kaplan and Glass, 1995; Ott,

1993; Schuster, 1995).

The principal concept to be dealt with is that of a

dynamical system. A dynamical system is a model that

determines the evolution of a system given only the initial

state, which implies that these systems posses memory: the
current state is a particular function of a previous state. Thus

a dynamical system is described by two things: a state and a

dynamics. The state of a dynamical system is determined by

the values of all the variables that describe the system at a

particular moment in time. Consequently, the state of a

system described by m variables can be represented by

a point in an m-dimensional space. This space is called the

state space (or phase space) of the system. The dynamics of

the system is the set of laws or equations that describe how

the state of the system changes over time. Usually this set of

equations consists of a system of coupled differential

equations, one for each of the systems variables. The actual

dynamical evolution of the system corresponds to a series of

consecutive states (points) in its state space; the line

connecting these consecutive points in state space is called

the trajectory of the system.

Various phenomena can be described as dynamical

systems. For example, the amount of interest your money is

earning in the bank, or the growth of the world’s human

population. One should also think of systems like the

weather, the sun and the planets, chemical reactions, or

electronic circuits. Even though these are very different

phenomena, they can all be modeled as a system governed

by a consistent set of laws that determine the evolution over

time, i.e. the dynamics of the systems.

Dynamical systems come in different flavours: we can

distinguish between linear and nonlinear systems, and

conservative and dissipative systems. A dynamical system

is linear if all the equations describing its dynamics are

linear; otherwise it is nonlinear. In a linear system, there is a

linear relation between causes and effects (small causes

have small effects); in a nonliner system this is not

necessarily so: small causes may have large effects. A

dynamical system is conservative if the important quantities

of the system (energy, heat, voltage) are preserved over

time; if they are not (for instance if energy is exchanged

with the surroundings) the system is dissipative. Finally a

dynamical system is deterministic if the equations of motion

do not contain any noise terms and stochastic otherwise.

These are rather technical definitions; what should concern

us in the present context is that realistic biological systems

such as the neural networks of the brain are likely to be

nonlinear dissipative systems. Whether they are more

deterministic or stochastic is one of the questions dealt

with by nonlinear analysis (Section 3).

2.2. Attractors and their properties

A crucial property of dissipative deterministic dynamical

systems is that, if we observe the system for a sufficiently

long time (after the initial transients have died out), the

trajectory will converge to a subspace of the total state

space. This subspace is a geometrical object which is called

the attractor of the system. It is called attractor since it

‘attracts’ trajectories from all possible initial conditions.

The Lorenz attractor shown in Fig. 1 is an example of such
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an attractor. In a linear dissipative deterministic system only

one type of attractor can exist: a simple point in state space

or ‘point attractor’. This implies that such a system will

converge to a steady state after which no further changes

occur, unless the system is disturbed from the outside.

In contrast, nonlinear deterministic dissipative systems

may display a much more interesting repertoire of

dynamics. Apart from point attractors, three more types of

attractor can occur: (i) limit cycles; (ii) torus attractors; (iii)

chaotic or strange attractors. Limit cycle attractors are

closed loops in the state space of the system. They

correspond to period dynamics. Torus attractors have a

more complex ‘donut like’ shape, and correspond to quasi

periodic dynamics. This type of dynamics is a superposition

of different periodic dynamics with incommensurable

frequencies. The chaotic or strange attractor is a very

complex object with a so-called fractal geometry. The

dynamics corresponding to a strange attractor is determi-

nistic chaos. Deterministic chaos is a kind of dynamics that

is on the one hand deterministic (remember we are dealing

here with nonlinear, deterministic dissipative systems) but

on the other hand seemingly random. Chaotic dynamics can

only be predicted for short time periods. A chaotic system,

although its dynamics is confined to the attractor, never

repeats the same state. This paradox is made possible by the

fractal structure of the attractor. Examples of the four basic

types of attractor are shown in Fig 2. What should have

become clear from this description is that attractors are very

important objects since they give us an image or a ‘picture’

of the systems dynamics; the more complex the attractor,

the more complex the corresponding dynamics.

2.3. Characterization of attractors

To characterize the properties of attractors, and thus of

the corresponding dynamics more exactly, several measures

are used. The first is the dimension of the attractor. The

dimension of a geometric object is a measure of its spatial

extensiveness. The dimension of an attractor can be thought

of as a measure of the degrees of freedom or the

‘complexity’ of the dynamics. A point attractor has

dimension zero, a limit cycle dimension one, a torus has

an integer dimension corresponding to the number of

superimposed periodic oscillations, and a strange attractor

has a fractal dimension. A fractal dimension is a non integer

number, for instance 2.16, which reflects the complex,

fractal geometry of the strange attractor.

Dimensions are static measures of attractors which

provide no information on the evolution of trajectories

over time. Lyapunov exponents and entropy measures on

the other hand can be considered ‘dynamic’ measures of

attractor complexity. Lyapunov exponents indicate the

exponential divergence (positive exponents) or convergence

(negative exponents) of nearby trajectories on the attractor.

A system has as many Lyapunov exponents as there are

directions in state space. Continuous dynamical systems
always have at least one exponent that is exactly zero. The

concept of entropy is closely related to that of Lyapunov

exponents. Its is defined as the rate of information loss over

time and is equal to the sum of all positive Lyapunov

exponents.

With the concepts of Lyapunov exponents and entropy it

is now possible to give more exact definitions of

conservative and dissipative dynamics and chaos. Con-

servative dynamics refers to a system with no resistance or

loss of energy over time; one can think of a frictionless

pendulum which swings in a vacuum. Conservative

dynamics has a zero entropy and the sum of all its Lyapunov

exponents is also zero. Conservative systems do not have

attractors. In contrast, dissipative systems are systems with

‘resistance’ or energy loss. One can think of a swinging

pendulum in air which will slow down the motion of the

pendulum. In such systems the sum of all Lyapunov

exponents is negative; one might say that the dynamics is

‘contracted’ in state space to a subset which is the attractor

of the system. In the case of the damped pendulum without

driving the attractor would be a point attractor correspond-

ing to the pendulum hanging motionless. In general,

dissipative systems, in contrast to conservative systems,

do have attractors. Finally chaotic dynamics can be defined

in terms of Lyapunov exponents and entropy: chaotic

dynamics is characterized by (i) the existence of at least one

positive Lyapunov exponent, or, equivalently: (ii) a positive

entropy. The positive Lyapunov exponent / entropy reflect

the tendency of small disturbances to grow exponentially.

This is what is meant by ‘sensitive dependence on initial

conditions’ of chaotic systems, and limits their prediction

horizon.

2.4. Control parameters, multi stability, bifurcations

The final concepts we need to deal with are control

parameters, multi stability and phase transitions or

bifurcations. Control parameters are those system properties

that can influence the dynamics of the system and that are

either held constant or assumed constant during the time the

system is observed. Parameters should not be confused with

variables, since variables are not held constant but are

allowed to change. For a fixed set of control parameters a

dynamical system may have more than one attractor. This

phenomenon is called multistability. Each attractor occupies

its own region in the state space of the system. Surrounding

each attractor there is a region of state space called the basin

of attraction of that attractor. If the initial state of the system

falls within the basin of a certain attractor, the dynamics of

the system will evolve to that attractor and stay there. Thus

in a system with multi stability the basins will determine

which attractor the system will end on. External disturb-

ances may ‘push’ a system out of the basin of one attractor

and move it to the basin of another attractor.

In a multi stable system the total of coexisting attractors

and their basins can be said to form an ‘attractor landscape’



Fig. 2. Examples of the four basic types of attractor [units of X and Y axis are arbitrary]. At the top left the simplest type of attractor, a single point in state space, is

shown. This point attractor corresponds to a system that remains in a single state after the initial transients have died out. At the top right a limit cycle attractor is

shown. A limit cycle is a closed loop of any shape, and corresponds to a periodic system. At the bottom left a torus attractor is shown. A torus attractor corresponds

to quasi periodic motion due to the superposition of periodic oscillations with incommensurate frequencies. In this example two oscillations, a fast and a slow one,

are superimposed producing a torus with a donut like shape. At the bottom right a strange or chaotic attractor is shown. This attractor has a fractal geometry and

corresponds to deterministic chaos in the dynamical system. A chaotic system is characterized by sensitive dependence on initial conditions, which is reflected by

the exponential divergence of nearby trajectory segments on the attractor. [Adapted from Stam, Am. J. END Technol. 2003 43: 1–17]
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which is characteristic for a set of values of the control

parameters. If the control parameters are changed this may

result in a smooth deformation of the attractor landscape.

However, for critical values of the control parameters the

shape of the attractor landscape may change suddenly and

dramatically. At such transitions, called bifurcations, old

attractors may disappear and new attractors may appear. At

first sight these concepts may seem very abstract and

esoteric. However, as we will see, current attempts to

understand how seizures can arise out of seemingly normal

brain activity make extensive use of these concepts (Lopes

da Silva et al., 2003a,b).
3. Nonlinear time series analysis
3.1. From ‘bottom up’ to ‘top down’

In the previous section we discussed dynamical systems

from a ‘bottom up’ perspective: what can be observed in

nonlinear dynamical systems if we know the set of

equations governing the basic systems variables. However,

the starting point of any investigation in clinical neurophy-

siology is usually not a set of differential equations, but

rather a set of observations in the form of an EEG or MEG

record. We do not know the nature of the underlying
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dynamics, its complexity, control parameters, sensitivity to

disturbances or closeness to a bifurcation. The way to get

from the observations of a system with unknown properties

to a better understanding of the dynamics of the underlying

system is nonlinear time series analysis. This is more or less

a ‘top down’ approach, starting with the output of the

system, and working back to the state space, attractors and

their properties.

One approach within nonlinear time series analysis is a

procedure that consists of three distinct steps: (i) reconstruc-

tion of the systems dynamics in state space; (ii) character-

ization of the reconstructed attractor; (iii) checking the

validity (at least to a certain extent) of the procedure with

‘surrogate data testing’. Here we attempt to give an intuitive

explanation of what is involved in each of the three steps,

and focus on the question what can and cannot be concluded

from the analyses. A more extensive discussion with

mathematical details can be found in a few review papers

(Grassberger et al., 1991; Schreiber, 1999) as well as some

textbooks on nonlinear time series analysis (Abarbanel,

1996; Diks, 1999; Galka, 2000; Kantz and Schreiber, 2003).

Useful information can also be found on the following

websites: http://www.ieap.uni-kiel.de/plasma/ag-pfister/

privat/galka/nonlintimserann.html and http://www.mpipks-

dresden.mpg.de/wtisean/

3.2. Embedding: reconstruction of dynamics

from observations

The first and most crucial step in nonlinear analysis is to

reconstruct, from one or a few time series of observations, an

attractor in the state space of the underlying system. The

problem is that our measurements usually do not have a one

to one correspondence with the system variables we are

interested in. For instance, the actual state space may be

determined by ten variables of interest, while we have only

two time series of measurements; each of these time series

might then be due to some unknown mixing of the true

system variables. At first sight it seems a hopeless task to

reverse this process, but the procedure of embedding allows

us to reconstruct an equivalent attractor of the underlying

dynamical system. With embedding one time series or a few

simultaneous time series are converted to a series or sequence

of vectors in an m-dimensional embedding space. If the

system from which the measurements were taken has an

attractor, and if the embedding dimension m is sufficiently

high (more than twice the dimension of the systems

attractor), the series of reconstructed vectors constitute an

‘equivalent attractor’ (Whitney, 1936). Takens has proven

that this equivalent attractor has the same dynamical

properties (dimension, Lyapunov spectrum, entropy) as the

true attractor (Takens, 1981). This result, sometimes called

‘Takens embedding theorema’ is the heart of nonlinear time

series analysis. It means that we can obtain valuable

information about the dynamics of the system, even if we

don’t have direct access to all the systems variables.
Two different embedding procedures exist: (i) time-delay

embedding; (ii) spatial embedding (for a technical review

see: Sauer et al., 1991). In the case of time-delay embedding

we start with a single time series of observations. From this

we reconstruct the m-dimensional vectors by taking m

consecutive values of the time series as the values for the m

coordinates of the vector. By repeating this procedure for

the next m values of the time series we obtain the series of

vectors in the state space of the system. The connection

between successive vectors defines the trajectory of the

system. In practice, we do not use values of the time series

of consecutive digitising steps, but use values separated by a

small ‘lag’ l. Thus time-delay embedding is characterized

by two parameters: the time lag l, and the embedding

dimension m. The proper choice of these parameters is an

important but difficult step in nonlinear analysis. A

pragmatic approach is to choose l equal to the time interval

after which the autocorrelation function (or the mutual

information) of the time series has dropped to 1/e of its

initial value, and repeat the analysis (for instance,

computation of the correlation dimension) for increasing

values of m until the results no longer change; one assumes

that is the point where mO2d (with d the true dimension of

the attractor). More sophisticated procedures have been

proposed both for choosing the lag (Rosenstein et al., 1994)

as well as choosing the embedding dimension (Kennel et al.,

1992). A comparison of different approaches to choosing

embedding parameters can be found in Cellucci et al.

(2003). Whatever approach is chosen, the important thing

about l and m is that they are interdependent. The product of

l and m, called the embedding window, is the length of the

segment of the time series used to reconstruct a single state

space vector. According to Albano and Rapp the embedding

window should be chosen as the time after which the

autocorrelation function of the time series becomes zero

(Albano and Rapp, 1993). Takens has suggested to choose l

such that it captures the smallest details of interest in the

time series, and m such that the embedding window captures

the largest phenomena of interest (Takens, personnel

communication). The procedure of time-delay embedding

is explained schematically in Fig. 3.

If we have m time series of independent measurements

instead of a single one it is also possible to use spatial

embedding to reconstruct the attractor of the system

(Babloyantz, 1989; Eckmann and Ruelle, 1985). In this

case the m coordinates of the vectors are taken as the values

of the m time series at a particular time; by repeating this for

consecutive time points a series of vectors is obtained. In

this case the embedding dimension m is equal to the number

of channels used to reconstruct the vectors. The spatial

equivalent of the time lag l is the inter electrode distance.

The advantage of spatial embedding is that it achieves a

considerable data reduction, since the dynamics of the

whole system is represented in a single state space.

The alternative would be to do a separate time delay

embedding on each of the m time series. The disadvantage

http://www.elsevier.com/locate/clinph
http://www.elsevier.com/locate/clinph
http://www.mpipks-dresden.mpg.de/~tisean/
http://www.mpipks-dresden.mpg.de/~tisean/


Fig. 3. Schematic explanation of time delay embedding. In A a small part of a time series is shown. To embed this time series in a 3-dimensional state space

(shown in B) three coordinates are needed for each point in the state space. These coordinates are obtained by taking the amplitude values of the time series at

three consecutive times x, y and z, separated by a time lag. The segment of the time series between x and z is called the embedding window. The values at x, y

and z (indicated by the black, white and grey spheres) are plotted in the three dimensional space shown in B, and give the coordinates of a single point in state

space, represented by the black square. Next, x, y and z are moved to the right one step, three new values are read from the time series, and the next point in state

space is reconstructed, shown by the next black square. By repeating this procedure for the whole time series, an equivalent attractor can be reconstructed, as

shown in C. [units of X, Y and Z axis are arbitrary]
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of this approach is that the spatial ‘lag’, that is the distance

between EEG electrodes or MEG sensors, is usually given,

and cannot be chosen in an optimal way. There is no simple

answer to the question which approach is right; it depends

strongly on the kind of question one wants to answer. For

instance if the purpose of the analysis is to study interactions

between different brain regions, it is often necessary to

employ separate time-delay embeddings for all of the time

series (see below in the discussion of synchronization

measures). Some groups have strongly advocated spatial

embedding (Lachaux et al., 1997). However, Pritchard et al.

have suggested it may not even be a valid embedding

procedure at al (Pritchard et al., 1996a; see also: Pezard

et al., 1999; Pritchard, 1999).
3.3. Characterization of the reconstructed attractor
3.3.1. Phase portraits, Poincaré sections and recurrence

plots

Once the attractor has been reconstructed with time-

delay or spatial embedding the next step is to characterize it.
The simplest way to do this is to visualize it with a phase

portrait or a Poincaré section. A phase portrait is simply a 2-

or 3-dimensional plot of the reconstructed state space and

the attractor. The graphs shown in Fig. 1 and 2 are examples

of 2-dimensional phase portraits. For higher-dimensional

attractors a visual characterization using a “simple” 2- or

3-dimensional representation of a high-dimensional object

can lead to misinterpretations depending on the chosen

projection. A Poincaré section is a 2-dimensional section

through an m-dimensional state space; it shows where the

trajectory segments of the attractor cross the plane of

section. For example, in the case of a 3-dimensional state

space with three variables x, y and z, a Poincaré section can

be obtained by plotting the values of x and y each time zZc,

with c some constant.

A more complex but very informative way to display the

reconstructed trajectory segments is the recurrence plot

(Eckmann et al., 1987; Koebbe and Mayer-Kress, 1992).

This is a 2-dimensional graph, with both axes corresponding

to time. Each point in the graph corresponds to a

combination of the two times (the values of the x and y



Fig. 4. Example of a recurrence plot. In A a time series from a Lorenz system is shown [units of X and Y axis are arbitrary] In B the recurrence plot based upon

this time series is displayed. The two axes of the recurrence plot correspond to time. Each point in the plot corresponds to a combination of two times, one on

the X-axis and one on the Y-axis. This point is made black in the plot if the two reconstructed vectors corresponding to the times on the X and Y-axis are closer

together than a small cut-off distance; otherwise it is left blank. The recurrence plot thus shows patterns of recurrence of states of the Lorenz system. Vectors are

reconstructed from the time series using time-delay embedding (as described in Fig. 3). Note that the plot is symmetric around the diagonal running from the

lower left to the upper right.
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coordinates). When the state space vectors corresponding to

these time points are closer together than some small cutoff

distance, the point is made black in the graph, otherwise no

point is plotted. Recurrence plots provide information on the

stationarity of the dynamics as well as more detailed

structure such as periodic components (Babloyantz, 1991).

A quantitative assessment of non stationarity using the

phenomenon of recurrence has been described by Rieke

et al. (2002, 2004). A modification called cross recurrence

plots has been proposed as a tool to study nonlinear

interdependencies in bivariate data sets (Marwan and

Kurths, 2002). An example of a recurrence plot is shown

in Fig. 4.
3.3.2. Classic measures: dimension, Lyapunov exponents

and entropy

Following embedding and perhaps visualization of the

reconstructed attractor the next step is to attempt to

characterize it in a quantitative way. Currently many

different algorithms are available to do this, and new

measures are introduced frequently in the physics literature.

The discussion here is intended to give a brief overview and

to focus on an intuitive understanding; mathematical details
can be found in the technical papers referred to. First we

address the three most basic measures of attractors which

were already introduced in Section 2.3: the dimension, the

Lyapunov exponents and the entropy. In Section 3.3.3 we

will discuss a number of more recent, ‘non classical’

measures, and in Section 3.3.4 we will deal with nonlinear

measures of statistical interdependencies between time

series.

The first and the most frequently used measure is the

correlation dimension D2 introduced by Grassberger and

Procaccia (1983a,b). The correlation dimension is not the

only type of dimension that can be computed, but it is

computationally simpler than for instance the information

dimension (for a tutorial review see: Pritchard and Duke,

1995). The correlation dimension is based upon the

correlation integral. The correlation integral Cr is the

likelihood that any two randomly chosen points on

the attractor will be closer than a given distance r; usually

Cr is determined for a range of values r, and plotted as a

function of r in a double logarithmic plot. The crucial point

of the Grassberger and Procaccia algorithm is that, for a

sufficiently high embedding dimension m, the slope of a

linear scaling region of log (Cr)/log (r) is an estimate of the
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correlation dimension D2. To determine what is a

sufficiently high m, the procedure is repeated for increasing

values of m until the value of the correlation dimension no

longer increases. This phenomenon is called saturation of

the correlation dimension with increasing embedding

dimension. Computation of the correlation dimension is

illustrated schematically in Fig. 5.

The algorithm to compute the correlation dimension is

deceptively simple, although it is rather time consuming.

However it has turned out that the proper computation and

interpretation of the D2 involves many pitfalls. First, the

computation of the D2 can be biased by autocorrelation

effects in the time series. This can be avoided by discarding

vector pairs with time indices less than the autocorrelation

time (Theiler, 1986). Insufficient length of the time series

can bias the dimension estimate (Eckman and Ruelle, 1992).

The computation of the correlation dimension can be

influenced by noise (Möller et al., 1989). Jedynak et al.

showed that the correlation dimension could not be
Fig. 5. Computation of the correlation integral and correlation dimension. In A the

space are reconstructed as shown in B (time-delay embedding is explained in

correlation integral Cr is the likelihood that two randomly chosen points on the

correlation integral is determined from the distribution of all pair-wise distances o

logarithmic plot, with the X-axis corresponding to log (r) and the Y-axis correspon

integral for increasing embedding dimensions, starting with mZ2 for the uppermo

corresponds to the highest embedding dimension considered. The slope of the cor

correlation dimension D2. This can be seen in a different way in D. Here the first d

the plot in C) is plotted as a function of log (r). It can be clearly seen in D that thi

dimensions and small values of log (r). The estimated value of the correlation di
computed reliably in a model system with a dimension of

five (Jedynak et al., 1994). Osborne and Provenzale showed

that certain types of noise can give rise to linear scaling

regions of the plot and saturation with increasing embedding

dimensions, spuriously suggesting the existence of a low-

dimensional attractor (Osborne and Provenzale, 1989).

Several authors have proposed modifications and

improvements of the original correlation dimension (Judd,

1992). The point correlation dimension is an algorithm that

allows to compute the dimension as a function of time

(Skinner et al., 1994). Faster and more efficient algorithms

to compute attractor dimensions were proposed by several

authors (Grassberger, 1990; Theiler, 1987; Theiler and

Lookman, 1993; Widman et al., 1998). Other modifications

were directed at the computation of correlation dimensions

from noisy or non stationary data sets or preliminary

nonlinear noise reduction (Bröcker et al., 2002; Havstad and

Ehlers, 1989; Nolte et al., 2001; Saermark et al., 1997;

Schouten et al., 1994a,b).
time series to be analyzed is shown. From this time series trajectories in state

Fig. 3). The next step is the computation of the correlation integral. The

attractor will be closed than a certain distance r, as a function of r. The

f points on the attractor. In C the correlation integral is plotted in a double

ding to log (Cr).The different lines in the plot correspond to the correlation

st plot, mZ3 for the one below it, and so on. The plot with the small circles

relation integral in the linear scaling regions corresponds to the value of the

erivative of the correlation integral (which corresponds to the local slope of

s first derivative converges to a value around two for increasing embedding

mension of this system is thus close to 2.
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The basic principle behind most algorithms to compute

Lyapunov exponents is to consider two or a small number of

nearby points on the attractor, and to quantify the

exponential increase or decrease of the inter vector

distances over time intervals. The algorithm of Wolf et al.

was one of the earliest practical implementations of this idea

(Wolf et al., 1985). Later simpler and faster algorithms to

compute the largest Lyapunov exponent were introduced by

Kantz and by Rosenstein et al. (Kantz, 1994; Rosenstein

et al., 1993). The algorithm of McCaffrey et al. is based

upon non parametric regression (McCaffrey et al., 1992).

Kowalik and Elbert proposed a modification where the

largest exponent is computed in a time-dependent way

(Kowalik and Elbert, 1995). Other algorithms aim at a

determination of the full spectrum instead of only the largest

exponent (Brown et al., 1991; Sano and Sawada, 1985).

Many of the problems involved in the computation of the

correlation dimension, such as the proper choice of

embedding parameters, length and stationarity of the time

series and noise, are also relevant for the computation of

Lyapunov exponents. Other problems such as resonance

phenomena are specific for the computation of Lyapunov

exponents (Fell and Beckmann, 1994). While a positive

largest exponent in principle is an indicator of chaotic

dynamics, it should be realized that noise time series can

also give rise to spurious positive exponents (Tanaka et al.,

1998). One way to control for this has been proposed by

Parlitz (Parlitz, 1992).

The entropy of an attractor is the rate of information loss

of its dynamics. The entropy is equal to the sum of all

positive Lyapunov exponents, and a positive entropy

indicates chaotic dynamics. A wide variety of algorithms

for the computation of entropy measures have been

introduced. Grassberger and Procaccia (1983b, 1984)

showed that the entropy can be determined from the

correlation integral. Other entropy measures that have

been suggested are the entropy based upon nonlinear

forecasting (Pezard et al., 1997; Wales, 1991), approximate

entropy (Pincus et al., 1991), maximum likelihood entropy

(Schouten et al., 1994b), coarse grained entropy rates

(Palus, 1996a, 1997) and multi resolution entropy (Torres

et al., 2001). In extended systems it is also possible to

determine a spatial entropy, defined as the loss of

information per unit length (Van der Stappen et al., 1994).

Like the other nonlinear measures, entropy estimates have

their limitations when applied to EEG recordings (Dünki,

1991). The problem of noise can be dealt with to some

extent by the approach of Nolte et al. (Nolte et al., 2001).

3.3.3. Novel measures

The classic measures described above have in common

that they allow us to draw far reaching conclusions on the

nature of the systems dynamics, for instance with regard to

its degrees of freedom, the presence of chaotic dynamics,

and the rate of information loss. However, it has now

become clear that when these measures are computed from
filtered, noisy, nonstationary time series of limited duration

and precision spurious results can occur such as a false

suggestion of low-dimensional structure or chaos (Rapp,

1993; Rapp et al., 1993). These problems can be dealt with

in three different ways (or combinations of them): (i) still

compute classic measures, but refrain from an interpretation

in terms of dimensions or deterministic chaos, and consider

them as tentative indices of different brain states; (ii) check

the validity of the results with surrogate data (this will be

discussed under 3.4); (iii) use novel nonlinear measures

which attempt to characterize some of the structure of the

reconstructed trajectories without making strong assump-

tions about the nature of the underlying dynamics. The

development and testing of new nonlinear measures is now

a major effort in nonlinear dynamics, and dozens of new

algorithms have been proposed over the last decade. It is

impossible to discuss all of these but we will attempt to

indicate the major categories, and point to the key

references for more details. A brief overview of new

measures is given in Table 1. Although any subdivision at

this stage is necessarily arbitrary, we will try to group the

new methods in the following categories: (i) nonlinear

prediction; (ii) tests for determinism; (iii) tests for

reversibility; (iv) characterization of spatio temporal

chaos; (v) other measures.

One of the earliest attempts to bypass the shortcomings

of classic nonlinear EEG measures was the algorithm of

nonlinear forecasting or prediction (for a review see: West

and Mackey, 1992). The idea was originally developed by

Farmer, and later made popular in a more simple form by

Sugihara and May (Farmer and Sidorowich, 1987; Sugihara

and May, 1990). The basic idea is to consider a point on the

attractor and to predict the future course of this point by

fitting a local linear model to the dynamics. The simplest

way to do this is to search for a number of nearest

neighbours of the reference point. This cloud of nearest

neighbours is then advanced in time, and its ‘center of

gravity’ is taken as a prediction of the future location of the

reference point. The difference between actual and

predicted future states is usually expressed as a prediction

error, which can be plotted for different values of the

prediction horizon. Nonlinear prediction has now been

widely studied (Andrzejak et al., 2001a; Gallez and

Babloyantz, 1991; Hernandez et al., 1995; Murray, 1993;

Tsonis and Elsner, 1992). It has become clear that nonlinear

forecasting can be applied to, and sometimes distinguish

between deterministic and stochastic systems. In particular,

nonlinear forecasting can be used to distinguish between

added noise and chaos (Elsner and Tsonis, 1992).

Blinowska and Malinowska have compared nonlinear

forecasting to linear forecasting (Blinowska and

Malinowski, 1991). Elsner showed that neural networks

can also be used for the nonlinear forecasting (Elsner,

1992). Nonlinear prediction was used by Dushanova and

Popivanov to analyze single trial data in a readiness

potential paradigm (Dushanova and Popivanov, 1996).



Table 1

Overview of some of the new nonlinear time series methods

Measure: Property measured: Key references:

Nonlinear forecasting Prediction of future states of the system Farmer and Sidorowich, 1987

Sugihara and May, 1990

Local deterministic properties of dynamics Local deterministic properties of dynamics Kaplan and Glass, 1992

Deterministic versus stochastic modelling Determination of optimal predictability by Gaussian

versus deterministic models

Casdagli and Weigend, 1993

Cross recurrence Zbilut et al, 1998

False nearest neighbours Determination of optimal embedding dimension Kennel et al., 1992

S Statistic for time irreversibility as indicator of

nonlinear dynamics

Diks et al., 1995

Nonlinear cross prediction Detection of amplitude and time asymmetry based on

nonlinear forecasting

Stam et al., 1998

Test for irreversibility based upon symbolic

dynamics

Daw et al., 2000

Dimension density Dimension per unit size in systems with spatiotem-

poral chaos

Zoldi and Greenside, 1997

Unstable periodic orbits Characterization of dynamics in terms of unstable

periodic orbits

So et al., 1996, 1998

Phase synchronization Interdependencies of instantaneous phases of two

time series

Rosenblum et al., 1996

Phase synchronization in multivariate systems Phase synchronization in multivariate systems Allefeld and Kurths, 2004

Cross prediction Measure of generalized synchronization Schiff et al., 1996

Le van Quyen et al., 1998

S Measure of generalized synchronization Arnhold et al., 1999

Quian Quiroga et al., 2000

Synchronization likelihood Measure of generalized synchronization Stam et al., 2002a,b

Mutual dimension Estimate of the shared degrees of freedom of two

dynamical systems

Buzug et al., 1994

Meng et al., 2001

Wojcik et al., 2001
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Palus et al. used a nonlinear prediction approach in

combination with surrogate data testing (Palus et al., 1995).

A different but closely related group of measures attempts

to detect deterministic structure in experimental time series.

Since predictability, (at least on short time scales in the case

of chaotic systems), is the hallmark of determinism, these

measures typically share some similarity with the forecasting

algorithms discussed above. Several attempts to introduce a

‘determinism’ statistic were described by Kaplan and Glass

(Kaplan, 1993, 1994; Kaplan and Glass, 1992,1995). One

approach was based on the observation that determinism is

associated with some preferred orientation of the tangents to

a trajectory in a given region of state space (Kaplan and

Glass, 1992). Closely related methods have been proposed by

other authors (Ortega and Louis, 1998; Salvino and Cawley,

1994; Wayland et al., 1993). All these methods are based on

the assumption that mathematical properties such as

parallelism, smoothness, differentiability, or continuity of

some vector field in state space indicate determinism. In their

textbook Kaplan and Glass described an approach based

upon a nonlinear prediction statistic and fitting models of

varying order to the local dynamics (Kaplan and Glass,

1995). A somewhat related approach called ‘deterministic

versus stochastic modeling’ was described by (Casdagli and

Weigend, 1993). In yet another study, Kaplan defined a

statistic for exceptionally predictable events in a time series
(Kaplan, 1994). A measure of the sensitive dependence on

initial conditions was used by Schittenkopf and Deco to

detect deterministic chaos (Schittenkopf and Deco, 1997).

Zbilut et al. used the phenomenon of cross recurrence to

search for deterministic structure (Zbilut et al., 1998). The

concept of false nearest neighbours (attractor points that are

close with an embedding dimension m, but distant with an

embedding dimension mC1) was already encountered as a

tool to determine the optimal embedding dimension in

Section 3.2 (Kennel et al., 1992). Hegger and Kantz used

this phenomenon as a basis for their test for determinism

(Hegger and Kantz, 1999). Jeong et al. devised a test

based upon the local smoothness of the trajectories in

state space and used this in combination with surrogate

data to test for deterministic structure (Jeong et al., 1999,

2002a,b).

Yet another group of nonlinear measures is based upon

the fact that linearly filtered gaussian noise is time

reversible, that is the statistical properties of such a time

series do not depend on the direction of time. Diks et al.

developed a statistic that can detect significant time

irreversibility, which can be an indication of nonlinear

dynamics in the system generating the time series (Diks

et al., 1995). Stam et al. introduced the nonlinear cross

prediction which is based upon the predictability of a time

series and its time reversed copy (Stam et al., 1998).
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A symbolic expression of the dynamics was used by Daw et

al. to search for ‘irreversibility’ (Daw et al., 2000).

In systems with a significant spatial extent and many

degrees of freedom chaotic dynamics can have spatial as

well as temporal structure (Cross and Hohenberg, 1994).

This phenomenon has been studied especially in chemical

systems (Baier and Sahle, 1998). However, neural networks

may also qualify as systems that can disply spatial temporal

chaos (Lourenco and Babloyantz, 1996). The proper

characterization of spatial temporal chaos is an especially

challenging topic (Bauer et al., 1993; Chate, 1995; Shibata,

1998). One problem is that such systems cannot be

characterized with the usual measures of dimension and

entropy, since dimension and entropy in such systems are

extensive quantities that depend upon system size (Torcini

et al., 1991; Tsimring, 1993). The alternative is to estimate

measures such as ‘dimension density’ (Zoldi and Greenside,

1997).

Many other measures have been proposed which may

share some similarity to the algorithms discussed above, but

are otherwise difficult to classify. Here we mention some of

the more interesting and important proposals. Takens

proposed to use the correlation integrals themselves, and

not derivative measures such as the correlation dimension or

entropy, to test for nonlinear structure in combination with

surrogate data (Takens, 1993). Jansen and Nyberg (1993)

used a clustering technique to measure the similarity of

trajectories. Another classification scheme was proposed by

Schreiber and Schmitz (Schreiber and Schmitz, 1997). Any

chaotic dynamical system can be thought of as the super-

position of a large number of unstable periodic orbits. This

suggest that such systems can be characterized in terms of the

unstable orbits (So et al., 1996, 1998). Identification of

unstable orbits is also an important step in controlling chaotic

systems (Ding and Kelso, 1991; Moss, 1994; Ott et al., 1990).

3.3.4. Measures of nonlinear interdependency

The brain can be conceived as a complex network of

coupled and interacting subsystems. Higher brain functions,

and in particular cognition depend upon effective processing

and integration of information in this network. This raises

the question how functional interactions between different

areas in the brain take place, and how such interactions may

be changed in different types of pathology. These questions

currently are a field of intense interest and research in

neuroscience (Glass, 2001; Schnitzler and Gross, 2005;

Varela et al., 2001). In Section 5 the concept of the brain as a

network of coupled dynamical systems is discussed in more

detail. Here we introduce various measures of synchroniza-

tion that have been introduced in the context of nonlinear

time series analysis.

3.3.4.1. Phase synchronization. The discovery of synchro-

nization between oscillating systems by Christiaan Huygens

marked one of the important early discoveries in nonlinear

dynamics. A number of recent discoveries in the theory of
synchronization have revived interest in this phenomenon

and have resulted in the introduction of a wide variety of

new measures of nonlinear interdependencies. It should be

noted here that the original rather narrow neurophysiologi-

cal definition of synchronization as two or many subsystems

sharing specific common frequencies has been replaced by

the broader notion of a process, whereby two or many

subsystems adjust some of their time-varying properties to a

common behavior due to coupling or common external

forcing (Brown and Kocarev, 2000) Overviews of the

current state of knowledge on synchronization and non-

linear interdependency can be found in a number of review

papers (Boccaletti et al., 2002; Breakspear, 2004; Rosen-

blum and Pikovsky, 2003; Rosenblum et al., 2004) and a

textbook (Pikovsky et al., 2001). In this section, we discuss

phase synchronization and in the next section we discuss

generalized synchronization.

A important breakthrough in the theory of synchroniza-

tion was the discovery that synchronization not only occurs

between regular, linear oscillators, but also between

irregular, chaotic systems (Pecora and Carroll, 1990). By

now a hierarchy of increasingly general synchronization

types has been proposed from complete synchronization via

lagged synchronization and phase synchronization to

generalized synchronization, although this concept is still

controversial (Boccaletti et al., 2002). Due to the widened

scope of the concept of synchronization, a new definition is

required. Boccaletti et al. suggest the following definition:

‘Synchronization of chaos refers to a process, wherein two

(or many) systems (either equivalent or nonequivalent)

adjust a given property of their motion to a common

behavior due to a coupling or to a forcing (periodical or

noisy)’ (Boccaletti et al., 2002). These new types of

synchronization require new tools to detect them in

empirical data.

In 1996, Rosenblum et al. showed that coupled chaotic

oscillators can display phase synchronization even when

their amplitudes remain uncorrelated (Rosenblum et al.,

1996). Phase synchronization is characterized by a non

uniform distribution of the phase difference between two

time series; in contrast to coherence it is not dependent upon

the amplitudes of the signals and may be more suitable to

track non stationary and non linear dynamics. Phase

synchronization can be computed using the Hilbert trans-

form (Mormann et al., 2000; Tass et al., 1998) or by means

of wavelets analysis (Lachaux et al., 1999). Mormann et al.

used the circular variance to characterize the distribution of

phase differences, while Tass et al. used a Shannon

information entropy measure (Mormann et al., 2000; Tass

et al., 1998). More recently it has been shown that phase

synchronization can also be used to detect the direction of

coupling between two systems (Cimponeriu et al., 2003;

Rosenblum and Pikovsky, 2001; Smirnov and Bezruchko,

2003). Witte and Schack discussed methods to study

nonlinear interactions between different frequencies (Witte

and Schack, 2003). Thanks to its high time resolution phase
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synchrony can also be used to track rapid changes in the

level of coupling between dynamical systems (Breakspear

et al., 2004; Kozma and Freeman, 2002; Van Putten,

2003a,b). Finally attempts have been made to extend the

concept of phase synchronization from the bi variate to the

multi variate case (Allefeld and Kurths, 2004).

3.3.4.2. Generalized synchronization. The concept of phase,

and as a consequence, that of phase synchronization makes

only sense in oscillatory, periodic systems. In 1995 Rulkov

et al. introduced the concept of generalized synchronization

which does not assume this property of the interacting

systems (Rulkov et al., 1995). Generalized synchronization

exists between two interacting systems if the state of the

response system Y is a function of the state of the driver

system X: YZF(X). Both Rulkov et al. and several other

groups have proposed algorithms to measure generalized

synchronization in real data sets (Le van Quyen et al., 1998;

Rulkov et al., 1995; Schiff et al., 1996). Some of these

algorithms make use of the idea of cross prediction: this is the

extent to which prediction of X is improved by knowledge

about Y. One of the most basic statistics for generalized

synchronization, the nonlinear interdependence, was pro-

posed by Arnhold et al. (Arnhold et al., 1999). However, as

the authors themselves and Pereda et al. pointed out, the

nonlinear interdependence is not a pure measure of coupling

but is also affected by the complexity or degrees of freedom

of the interacting systems (Pereda et al., 2001). The

synchronization likelihood was developed to avoid this

bias (Stam and van Dijk, 2002). Quian-Quiroga et al. also

discussed the limitations of the similarity index and proposed

modifications (Quian Quiroga et al., 2000). Since then further

improvements of algorithms for the assessment of general-

ized synchronization, and the detection of driver response

relationships have been described (Bhattacharya et al., 2003;

Feldmann and Bhattacharya, 2004; Hu and Nenov, 2004;

Terry and Breakspear, 2003). One of the attractive properties

of many measures based upon generalized synchronization is

the fact that they can detect asymmetric interactions. A

alternative approach to do this is based upon the notion of

Granger causality (Chen et al., 2004). Chavez et al. have used

the idea of Granger causality in a dynamical systems

framework, although only weak effects were found in

epileptic EEG data (Chavez et al., 2003).

A somewhat related approach makes use of the fact that

the dimension in a combined state space is lower than the

sum of the dimensions of two interacting systems if there is

there is some degree of synchronization. One of the first

implementations of this idea was the mutual dimension

described by Buzug et al. (Buzug et al., 1994). Later other

authors have proposed measures based upon the same

principle (Meng et al., 2001; Wojcik et al., 2001). One

attractive feature of this approach is that it also allows the

detection of driver (lower dimension) and response (higher

dimension) systems. However, a drawback is that these

measures are hampered by the usual problems connected to
dimension estimates from noisy, non stationary data (see

Section 3.3.2).

Finally a few other measures of nonlinear interdepen-

dencies between time series need to be mentioned, although

they do not fall in the strict categories of phase

synchronization or generalized synchronization. A non-

linear equivalent of the correlation coefficient, the nonlinear

h2, was introduced by Pijn (Pijn, 1990). This h2 allows the

determination of time lags between time series, but does not

make use of the embedding procedure. Quian-Quiroga

introduced the event synchronization which may be

particularly suited for time series with spikes or other

recurring well-defined events (Quian Quiroga et al., 2002a).

Schreiber proposed a measure for information transfer

between time series (Schreiber, 2000). Other measures are

directed at detecting the nonlinearity in the coupling

between systems (Hoyer et al., 1998; Tanaka et al., 2000).

With the availability of so many different measures to

assess the nonlinear interdependencies between time series

a natural question is whether any of these measures can be

considered superior over the others, and if so, under what

circumstances. Quian-Quiroga analysed a real data set

(epileptic EEG recorded in rats) with several synchroniza-

tion measures and could not demonstrate clear superiority of

any of the measures (Quian Quiroga et al., 2002b). David

et al. used a model of the EEG based upon the original alpha

rhythm model of Lopes da Silva to test synchronization

measures. They also concluded that most measures

performed quite well with the exception of mutual

information (David et al., 2004). Mormann et al. compared

30 univariate and bivariate measures in predicting seizures

in recordings of five subjects. Bivariate measures performed

better than univariate, but linear measures were at least as

good as nonlinear ones (Mormann et al., 2005). The authors

suggest a combination of bivariate and univariate measures

might be the most promising approach. However, more

systematic comparisons in larger data sets are still required

before any definite conclusions can be drawn.

3.4. Checking the validity of the analysis: surrogate

data testing

As indicated above (Section 3.3.3) the interpretation of

nonlinear measures can sometimes present problems since

filtered noise time series can give rise to a spurious

impression of low-dimensional dynamics and chaos

(Albano and Rapp, 1993; Rapp et al., 1993). One of the

most important tools to safeguard against this is the use of

so-called surrogate data (Schreiber and Schmitz, 2000). The

basic principle is straightforward: a nonlinear measure

(dimension, entropy, or one of the new measures) is

computed from a time series of interest and from a control

or surrogate time series. The surrogate time series is

constructed to have the same linear properties (power

spectrum / autocorrelation function) as the original time

series but no other (nonlinear) structure. If the outcome of
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the nonlinear analysis is clearly different for original and

surrogate data it can be concluded that the original data

contain some interesting nonlinear structure. The compari-

son between original and surrogate data can be subjected to

a formal statistical test by constructing not one but a whole

set of surrogate data, and by determining whether the value

of the nonlinear statistic for the original data lies within the

distribution of values obtained for the ensemble of surrogate

data. Demonstration of nonlinearity is important since only

nonlinear dynamical systems can have attractors other than

a trivial point attractor (Section 2.2). Chaos can only occur

in nonlinear dynamical systems.

An elegant way to construct surrogate data with the same

power spectrum as the original data is to perform a Fourier

transform, randomise the phases, and then perform an

inverse Fourier transform (Fig. 6). This idea was first

proposed by Pijn and Theiler et al. (Pijn, 1990; Theiler et al.,

1992a,b). Theiler et al. also proposed a slightly more

sophisticated type of surrogate data that preserve the

amplitude distribution as well as the power spectrum

(Dolan and Spano, 2001; Theiler et al., 1992a,b). In the

case of nonlinear analysis based upon spatial embedding

or using statistics sensitive to couplings between channels
Fig. 6. Illustration of phase randomised surrogates. In A, the original time series is

axis arbitrary units) on the right. The time series is a small EEG epoch with spik

constructed by (i) a Fourier transform of the signal in A; (ii) a randomization o

transform. The resulting signal with its corresponding power spectrum are show

surrogate signal in B. Also note that the power spectrum is the same in A and B.

dependent) structure in the signal, but preserves the power spectrum.
a modified type of surrogate data is required (Dolan and

Neiman, 2002; Prichard and Theiler, 1994; Palus, 1996b).

Here not only the power spectra but also the coherence

needs to be preserved. This can be achieved by adding the

same random number in each channel to the phase of a

particular frequency (different random numbers for different

frequencies).

Although surrogate data testing represents an enormous

advance compared to uncontrolled nonlinear analysis, even

surrogate data can give rise to spurious results. For instance,

if the amplitude distribution of the original data is non

Gaussian, simple phase randomisation will tend to make this

distribution Gaussian which can lead to spurious differences

between real data and surrogate data (Rapp et al., 1994).

One way to control for this is the use of amplitude adjusted

surrogate data (Theiler et al., 1992a,b). An even more

sophisticated approach has been proposed by Schreiber and

Schmitz (Schreiber and Schmitz, 1996). Here, an iterative

procedure is used to preserve both the power spectrum as

well as the amplitude distribution as good as possible.

However even this type of surrogate data has problems due

to a spuriously low variance of the test statistic in the

surrogate data set (Kugiumtzis, 1999, 2001). Another
shown on the left and the corresponding power spectrum (X-axis in Hz; Y-

e-wave discharges. From this EEG a phase randomized surrogate signal is

f all the phases of the complex Fourier transform; (iii) an inverse Fourier

n in B. Note that the spike-wave structure present in A is destroyed in the

The phase randomization procedure thus destroys all the nonlinear (phase
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problem is the issue of non stationarity. The usual surrogate

data test the null hypothesis that the original data cannot be

distinguished from linearly filtered stationary noise. Thus a

significant difference between the original data and the

surrogate data can be due to nonlinearity, non stationarity or

a combination of both. This problem has been discussed by

several authors (Popivanov and Mineva, 1999; Rieke et al.,

2003; Timmer, 1998). Surrogate data based upon wavelets

could present a possible way out (Breakspear et al., 2003a).

Another problem arises in the case of almost periodic time

series (Small and Tse, 2002; Theiler et al., 1993). One

possible solution to this problem, and possibly also to the

problem of non stationarity, is to use time reversed copies of

the original signal as ‘surrogate data’ (Stam et al., 1998).

3.5. Scope and limitations of nonlinear time series analysis

Before considering an overview of the actual appli-

cations of nonlinear analysis to EEG and MEG it may be

appropriate to briefly recapture the most salient character-

istics of this approach. First, the central and most important

step in the analysis is embedding: nonlinear analysis deals

with ‘states’ in ‘state space’ and not with amplitudes,

powers and frequencies. The motivation for this is that states

may provide more information on the underlying system

than amplitudes. Second, although there is an enormous

number of different classical and novel nonlinear measures,

almost all of them depend somehow on computing distances

between vectors (states) in states space; the notion of

recurrence-the tendency of systems to visit almost the same

state over and over again-lies at the heart of nonlinear

analysis, as some type of recurrence indicates structure in

the dynamics. Third, a strict interpretation of nonlinear

measures in terms of attractor dimensions, deterministic

chaos and entropy as bits / second is almost never justified.

However, the classic measures can still be used as ‘tentative

indices’ of different brain states, and the newer measures

often allow a less ambitious but more straightforward

interpretation. Finally, surrogate data testing, despite its

limitations, is the most important safeguard against

incorrect conclusions from the results of nonlinear analysis.

While surrogate data testing may not be necessary for all

types of analysis, it is unavoidable if conclusions are to be

drawn about the existence of nonlinear dynamics in the

underlying system.
4. Nonlinear dynamical analysis of EEG and MEG

4.1. Normal resting-state EEG

Nonlinear analysis of normal, resting-state EEG has been

primarily directed at the question what kind of dynamics

underlies the normal EEG and in particular the alpha

rhythm. Before it was realized that filtered noise can mimic

low-dimensional chaos and before surrogate data testing
was introduced as an antidote to premature enthusiasm,

many investigators considered the possibility that normal

EEG rhythms might reflect dynamics on low-dimensional

chaotic attractors (Babloyantz and Destexhe, 1988; Dvorak

et al., 1986; Mayer-Kress and Layne, 1987; Pritchard and

Duke, 1992; Rapp et al., 1989; Soong and Stuart, 1989).

With the advent of surrogate data testing these early claims

for chaos underlying the normal EEG were critically re

examined. The general conclusion that emerges from a large

number of studies is that there is no evidence for low-

dimensional chaos in the EEG (Palus, 1996c; Pritchard

et al., 1995a; Theiler and Rapp, 1996). At the same time it

has become clear from many studies that the normal EEG

does reflect weak but significant nonlinear structure

(Gautama et al., 2003; Gebber et al., 1999; Maurice et al.,

2002; Meyer-Lindenberg, 1996; Palus, 1996c; Pritchard

et al., 1995a; Rombouts et al., 1995; Stam et al., 1999;

Stepien, 2002). Some authors have suggested that the alpha

rhythm might reflect (noisy) limit cycle attractors in cortical

networks (Gebber et al., 1999; Palus, 1996c). In a study

based upon the alpha rhythm model of Lopes da Silva

(1974) it was shown that linear type I alpha epochs could be

explained by a point attractor in the model and nonlinear

type II alpha epochs by a noisy limit clycle (Stam et al.,

1999). It was also suggested that normal EEG might reflect

critical dynamics close to a bifurcation between these two

types of attractor. Further support for the existence of

critical brain dynamics comes from studies of fluctuations of

nonlinear EEG measures (Stam and de Bruin, 2004; Tirsch

et al., 2004).

A related problem is whether the statistical interdepen-

dencies between EEG signals recorded over different brain

regions reflect nonlinear interactions. A few studies using

the multivariate surrogate data proposed by Prichard and

Theiler have shown evidence for weak but significant

nonlinear coupling in multichannel EEG and MEG (Break-

spear, 2002; Breakspear and Terry, 2002a,b; Stam et al.,

2003a). Epochs with significant nonlinear coupling occurred

only infrequently and were characterized by more regular

alpha with a sharp peak in the power spectrum, suggestive

of ‘type II alpha’ (Breakspear and Terry, 2002a). In a direct

comparison of EEG and MEG recorded in the same subjects

it was shown that nonlinear interactions could be more

easily demonstrated with MEG (Stam et al., 2003a).

Relative little is known about the changes in nonlinear

dynamics with maturation and ageing. Nonlinear analysis of

the neonatal EEG has only just started (Hecox et al., 2003;

Witte et al., 2004). Meyer-Lindenberg studied resting-state

EEGs of 54 healthy children and 12 adults (Meyer-Linden-

berg, 1996). Using surrogate data testing significant non-

linear structure could be found in 60–70% of the examined

epochs, even in newborns. The correlation dimension was

shown to increase with ageing. Other studies also addressed

the relationship between ageing and ‘brain complexity’

(Anokhin et al., 1996; Anokhin et al., 2000; Choi et al.,

2000). Anokhin et al. could confirm the increase of EEG
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dimension with age, especially in frontal regions. They

interpreted this as a consequence of the increase in the

number of independent synchronous networks in the brain

(Anokhin et al., 1996).

4.2. Sleep

The first study ever published on nonlinear analysis of

the human EEG dealt with sleep recordings (Babloyantz

et al., 1985). Since then sleep has become a major research

focus in nonlinear dynamics (Coenen, 1998). Many authors

studied the correlation dimension and often also the largest

Lyapunov exponent during the various sleep stages (Cerf

et al., 1996; Fell et al., 1993; Kobayashi et al., 1999, 2001;

Niestroj et al., 1995; Pradhan et al., 1995; Pradhan and

Sadasivan, 1996; Roschke, 1992; Röschke and Aldenhoff,

1991; Röschke et al., 1993). In many of these studies it was

suggested that sleep EEG reflects low-dimensional chaotic

dynamics, but these claims were not backed up by surrogate

data testing. The general pattern that emerges from these

studies is that deeper sleep stages are almost always

associated with a ‘lower complexity’ as exemplified by

lower dimensions and lower values for the largest Lyapunov

exponent. This type of finding has suggested the possible

usefulness of nonlinear EEG analysis to obtain automatic

hypnograms.

More recently, claims for chaos and nonlinearity in the

sleep EEG have been examined with surrogate data testing.

In an analysis of an all night sleep recording Acherman

found evidence for weak nonlinear structure but not low-

dimensional chaos (Achermann et al., 1994a,b). A similar

result was obtained by Fell et al. (1996a). In two studies,

Ferri et al. (2002, 2003) used the nonlinear cross prediction

(NLCP) to search for nonlinear structure in sleep EEGs of

adults and infants. In the first study, nonlinear structure was

found during CAP (cyclic alternating pattern) stages A1 and

to a lesser extent A2 both during NREM II and slow wave

sleep (Ferri et al., 2002). In contrast, sleep EEG of young

infants showed nonlinear structure only sporadically, mostly

during quiet sleep (Ferri et al., 2003). The study of Shen

et al. also suggests that nonlinearity depends upon sleep

stage (Shen et al., 2003). These authors found the strongest

indications for nonlinear structure during NREM II.

Another way to probe the relative importance of

nonlinear sleep EEG measures is to compare them to

appropriate linear measures. Fell et al. studied the

performance of nonlinear (correlation dimension and largest

Lyapunov exponent) and spectral measures in distinguish-

ing between sleep stages (Fell et al., 1996b). The nonlinear

measures were better in discriminating between stages I and

II, whereas the spectral measures were superior in

separating stage II and slow wave sleep. This makes sense

in view of the findings of Ferri et al. and Shen et al.

mentioned above which suggests nonlinear structure may be

most outspoken in stage II. Pereda et al. compared the

correlation dimension of sleep EEG with the fractal
dimension of the EEG curve (Pereda et al., 1998). The

fractal dimension of the EEG curve (which should not be

confused with the correlation dimension) is a linear measure

which can be derived from the power spectrum (fractal

dimensions are used to characterize irregular lines of

boundaries such as coastlines). The correlation dimension

in this studied correlated strongly with the fractal

dimension, suggesting a considerable part of the infor-

mation in the sleep EEG can be captured by a linear

measure. In another study these authors also found strong

correlations between nonlinear measures and spectral band

power (Pereda et al., 1999). Shen et al. found a correlation

between the correlation dimension and the exponent of

detrended fluctuation analysis, which is a linear measure

related to the fractal dimension mentioned above (Shen

et al., 2003).

A few studies have addressed the problem of functional

interactions between different brain regions during sleep.

Pereda et al. showed that the nonlinear interdependence

proposed by Arnhold et al. (Arnhold et al., 1999) may be

influenced by changes in the complexity of the local

dynamics, and suggested to use surrogate data to obtain

unbiased estimates of coupling (Pereda et al., 2001). Using

this approach they could demonstrate nonlinear and

asymmetric coupling during slow wave sleep in infants

(Pereda et al., 2003). In this study the strength of the

coupling increased with deeper sleep stages. Terry et al.

used a comparable approach and found age-dependent

nonlinear interactions between left frontal and right parietal

regions (Terry et al., 2004).

4.3. Coma and anaesthesia

Considering the fact that many studies have shown a

systematic decrease of nonlinear measures such as the

correlation dimension and the largest Lyapunov exponent

with deeper sleep stages it might be logical to investigate the

usefulness of nonlinear EEG analysis for the characteriz-

ation of other types of impaired consciousness. However

this issue has only been addressed in a few studies so far.

The earliest study to suggest a relationship between

changes in consciousness and the correlation dimension of

the EEG was published by Nan and Jinghua (Nan and

Jinghua, 1988). Matousek et al. (1995) studied the

correlation dimension (based upon a spatial embedding) in

a small group of 14 healthy subjects aged from 1.5 to 61

years. They found an increase of the dimension during

drowsiness as compared to the awake state. Kim et al.

(1996) showed that nonlinear analysis can be used to

differentiate between normal alpha rhythm and pathological

alpha coma. Witte et al. (1999) investigated interrelations

between different EEG frequency components in sedated

patients during burst suppression episodes in the EEG. An

EEG entropy measure was used by Tong et al. to

characterize the EEG of patients after cardiac arrest (Tong

et al., 2002).
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The usefulness of nonlinear EEG analysis as a tool to

monitor anesthetic depth was first suggested by Watt and

Hamerof (Watt and Hameroff, 1988). Widman et al. showed

that the correlation dimension correlated with the estimated

level of sevoflurane in the brain (Widman et al., 2000a). The

usefulness of the correlationd dimension as an estimate of

anesthetic depth was confirmed by the PhD thesis of Van

den Broek (2003). Bruhn et al. examined various entropy

measures such as the approximate entropy and the Shannon

information entropy (Bruhn et al., 2000, 2001a,b). However,

one nonlinear measure, the bispectral index (BIS) has

dominated this field. It has been shown to be a reliable

measure for practical clinical purposes in clinical trials

(Myles et al., 2004). Its usefulness outside the operating

theatre remains to be demonstrated (Frenzel et al., 2002).
4.4. epilepsy
4.4.1. The dynamic nature of seizures

Epilepsy is probably the most important application for

nonlinear EEG analysis at this moment (Elger et al., 2000a,

b). This has to do with the fact that epileptic seizures, in

contrast to normal background activity, are highly nonlinear

phenomena. This important fact opens up the way for

localization of the epileptogenic zone, detection and

prediction of epileptic seizures. In this section we discuss
Fig. 7. This EEG time series shows the transition between inter ictal (to the left) and

ictal and ictal parts are shown at the lower left and right. The attractor correspon

synchronization in the underlying neuronal networks. In contrast, the attractor r

structure. This attractor is more low dimensional and reflects a high level of synch

the nonlinear dynamics of epilepsy is how the transition between these two types o

1–17]
the studies that deal with the dynamic nature of seizures and

the events that characterize the transition between interictal

and ictal EEG activity (Fig. 7). In the next section use of

nonlinear analysis to detect and predict seizures will be

discussed.

Babloyantz and Destexhe were the first to report on the

nonlinear analysis of an absence (3 Hz spike and wave

discharge) seizure (Babloyantz and Destexhe, 1986). The

correlation dimension of this seizure was substantially

lower than the dimension of normal waking EEG, which

suggested that epileptic seizures might be due to a

pathological ‘loss of complexity’. The decrease of the

largest Lyapunov exponent during an epileptic seizure

reported by Iasemidis et al. was in agreement with this

concept (Iasemidis et al., 1990). Frank et al. also analysed

the EEG of absence seizures and suggested the existence of

an underlying chaotic attractor (Frank et al., 1990).

However, the same data set was later re analysed by Theiler

with appropriately constructed surrogate data (Theiler,

1995). He concluded that the dynamics of spike and wave

discharges is not chaotic but could reflect a noisy limit

cycle. The idea that the regular spike and wave discharges of

absence epilepsy are related to limit cycle dynamics has

since been confirmed in a number of studies (Feucht et al.,

1998; Friedrich and Uhl, 1996; Hernandez et al., 1996;

Schiff et al., 1995). Analysis of spike wave discharges with
ictal (to the right) brain dynamics. The attractors corresponding to the inter

ding to the inter ictal state is high dimensional and reflects a low level of

econstructed from the ictal part on the right shows a clearly recognizable

ronization in the underlying neuronal networks. One of the key questions in

f dynamics takes place. [Adapted from Stam Am. J. END Technol. 2003 43:
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unstable orbits is also in agreement with this view (Le van

Quyen et al., 1997a,b).

Many studies have used some sort of surrogate data

testing to explore the nonlinear nature of seizures. As a

consequence there is now fairly strong evidence that

seizures reflect strongly nonliner brain dynamics

(Andrzejak et al., 2001b; Casdagli et al., 1997; Ferri et al.,

2001; Pijn et al., 1991, 1997; Van der Heyden et al., 1996).

Of interest, the interictal spike and waves of hypsarhythmia

show no evidence for nonlinear dynamics (Van Putten and

Stam, 2001). Epileptic seizures are also characterized by

nonlinear interdependencies between EEG channels. Other

studies have investigated the nature of interictal brain

dynamics in patients with epilepsy. Lehnertz et al. showed

that, in intracranial recordings, the epileptogenic are is

characterized by a loss of complexity as determined with a

modified correlation dimension (Lehnertz and Elger, 1995).

The localizing value of interictal complexity loss or changes

in other nonlinear measures was later confirmed in several

studies (Feucht et al., 1999; Jing and Takigawa, 2000; Jing

et al., 2002; Silva et al., 1999; Weber et al., 1998; Widman

et al., 2000b). Kowalik et al. showed that a time dependent

Lyapunov exponent calculated from interictal MEG

recordings could also be used to localize the epileptic

focus (Kowalik et al., 2001). Interestingly this interictal

complexity loss of the epileptogenic zone can be influenced

by anti epileptic drugs (Kim et al., 2002; Lehnertz and

Elger, 1997).

The fact that seizure activity is highly nonlinear and

probably low-dimensional, and interictal EEG is high-

dimensional and only weakly nonlinear raises the question

how the interictal ictal transition takes place (Le van Quyen

et al., 2000, 2003a). There are two aspects of this transition:

changes in local dynamics and changes in interregional

coupling. With respect to the first aspect the theory of

nonlinear dynamical systems suggests that this transition is

likely to be due to one or more bifurcations due to changes

in critical control parameters such as the balance between

excitation an inhibition in the neuronal networks involved

(Velazquez et al., 2003). The dynamics of seizure

generation were reviewed by Lopes da Silva et al. (2003a,

b). He proposed three different scenario’s: (i) sudden

emergence of seizure out of normal background activity;

this would be characteristic of absence seizures; (ii) reflex

epilepsy: transition to another attractor induced by an

external stimulus (Parra et al., 2003); (iii) gradual transition

from normal to seizure activity through a series of

bifurcations and an ‘pre ictal’ state. The last scenario

opens up the way for seizure prediction which will be

discussed in the next section.

Apart from changes in the local dynamics of attractors,

seizures may also be characterized by changes in the

coupling between different brain areas (Arnhold et al., 1999;

Chavez et al., 2003; Le van Quyen et al., 1998, 1999a,b;

Mormann et al., 2000; Palus et al., 2001). Here is should be

taken into account that these studies involve different (types
of) patient samples, and different synchronization measures,

which might have influenced the results. Ferri et al. showed

that nocturnal frontal lobe seizures are characterized by an

early increase in alpha band synchronization and a late,

partially post ictal, rise in delta band synchronization (Ferri

et al., 2004). Although seizures are generally characterized

by an increase in coupling between different brain areas,

there are indications that in some types of seizures there is

actually a decrease in the level of coupling preceding the

seizure (Mormann et al., 2003a,b). This phenomenon has

been replicated with experimental seizures (Netoff and

Schiff, 2002). It is currently unknown how the three

scenario’s proposed by Lopes da Silva et al. are related to

increases or decreases in interregional synchronization

predicting seizures.

4.4.2. Seizure detection and prediction

Prediction or anticipation of epileptic seizures with

nonlinear EEG analysis has become hot science. In the last

few years many reviews of nonlinear seizure anticipation

have appeared (Iasemidis, 2003; Lehnertz et al., 2001, 2003;

Le van Quyen, 2005; Le van Quyen et al., 2001a; Litt and

Echauz, 2002; Litt and Lehnertz, 2002). The importance of

seizure prediction can easily be appreciated: if a reliable and

robust measure can indicate an oncoming seizure twenty or

more minutes before it actually starts, the patient can be

warned and appropriate treatment can be installed.

Ultimately a closed loop system involving the patient, a

seizure prediction device and automatic administration of

drugs could be envisaged (Peters et al., 2001). However the

early enthusiam should not distract us from a critical

analysis of the facts (Ebersole, 2005).

In 1998, within a few months time, two papers were

published that, in restrospect, can be said to have started the

field of seizure prediction. The first paper showed that

the dimensional complexity loss L*, previously used by the

same authors to identify epileptogenic areas in interictal

recordings, dropped to lower levels up to 20 min before the

actual start of the seizure (Elger and Lehnertz, 1998; Lehnertz

and Elger, 1998). This phenomenon was most outspoken at the

electrode contacts closest to the seizure onset zone. The

second paper was published in Nature Medicine by a French

group and showed that intracranially recorded seizures could

be anticipated 2–6 minutes in 17 out of 19 cases (Martinerie et

al., 1998). Schiff spoke about ‘forecasting brainstorms’ in an

editorial comment on this paper (Schiff, 1998). The initial

results were followed up by improvements in the analysis

method (Le van Quyen et al., 1999b). It was shown that seizure

prediction was also possible with surface EEG recordings

(Le van Quyen et al., 2001b). This was a significant

observation, since the first two studies both involved high

quality intracranial recordings. Next, it was shown that seizure

anticipation also worked for extra temporal seizures (Navarro

et al., 2002). This early phase was characterized by great

enthusiasm and a hope for clinical applications (Lehnertz

et al., 2000).
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Inspired by the results of the German and French groups,

many others epilepsy centers got involved in nonlinear EEG

analysis. Several algorithms for nonlinear seizure prediction

were proposed, involving amongst others the use of

correlation integrals, correlation dimensions, Lyapunov

exponents, entropy measures and phase clustering for the

assessment of changes in the local dynamics (Iasemidis

et al., 2001, 2004; Kalitzin et al., 2002; Li et al., 2003; Litt

et al., 2001; Moser et al., 1999; Osorio et al., 2001;

Schindler et al., 2001; Schindler et al., 2002; Van Drongelen

et al., 2003; Van Putten, 2003a,b). Other approaches

focused on estimating changes in nonlinear coupling

between different brain regions with phase synchronization

(Mormann et al., 2003a,b). In some studies the focus was

more on the less ambitious but perhaps more realistic goal

of detecting rather than predicting seizures (Altenburg et al.,

2003; Celka and Colditz, 2002; Lerner, 1996; Smit et al.,

2004; Yaylali et al., 1996). Many of the results of the early

studies were discussed on a conference in Bonn in 1999

(Lehnertz et al., 2000) and in the review papers mentioned

above (Iasemidis, 2003; Lehnertz et al., 2001; Lehnertz

et al., 2003; Le van Quyen et al., 2001a; Litt and Echauz,

2002; Litt and Lehnertz, 2002).

However, the intial optimism was followed by a few

sobering experiences. The approach initially described by

Lehnertz and Elger using the complexity loss L* was

replicated by Aschenbrenner-Scheibe et al. (2003). These

authors showed that with an acceptable false positive rate

the sensitivity of the method was not very high. In the same

year the Bonn group also reported on a diminished

predictive performance of a number of their univariate

measures (including L*) when being applied to continuous

long-term recordings (Lehnertz et al., 2003). The results of

Martinerie et al. were also critically re-examined. McSharry

et al. suggested that the measure used by Martinerie et al.

was sensitive to signal amplitudes and that the good results

might also have been obtained with a linear method

(McSharry et al., 2003; for a response see: Martinerie et

al., 2003). Another group attempted to replicate the results

of Le van Quyen et al. in predicting seizures from surface

EEG recordings (De Clercq et al., 2003). These authors

could not replicate the results in their own group, although

they could predict a seizure in a data set provided by the

French group. Several explanations for the failed replica-

tion, most of a methodological nature, were suggested (Le

van Quyen et al., 2003b). Even so, it has become clear that

further progress in this field would depend upon the

development of appropriate statistical tests (for the

assessment of sensitivity and false positive rates) and

benchmarks in the form of shared data sets. Exactly these

topics were addressed at the First International Collabora-

tive Workshop on Seizure Prediction, held in Bonn in April

of 2002. Reports of this workshop can be found in a recent

issue of this journal (D’Allesandro et al., 2005; Ebersole,

2005; Esteller et al., 2005; Harrison et al., 2005; Iasemidis

et al., 2005; Jerger et al., 2005; Jouny et al., 2005; Lehnertz
and Litt, 2005; Le van Quyen et al., 2005b; Mormann et al.,

2005).

Several authors have now undertaken a direct compari-

son of one or more linear and nonlinear measures for seizure

prediction. Kugiumtzis and Larsson compared linear and

nonlinear measures of seizure prediction in a small sample

of seven subjects, and found no clear superiority of the

nonlinear measures (Kugiumtzis and Larsson, 2000).

McSharry compared a linear and a nonlinear measure and

showed under what circumstances the nonlinear measure

could be expected to provide additional information

(McSharry et al., 2002). Jerger et al. compared seven

different linear and nonlinear measures, and found

comparable results for both classes of measures (Jerger

et al., 2001). In this study seizures could be anticipated one

or two minutes before they started. Phase synchronization

seemed to be the most robust measure, probably due to its

insensitivity to amplitude effects. Winterhalder et al.

described a ‘seizure prediction characteristic’ for the

comparison of different seizure prediction algorithms

(Winterhalder et al., 2003). This seizure prediction statistic

was used to compare three nonlinear seizure prediction

methods (Maiwald et al., 2004). A statistical test for the

existence of a ‘pre ictal state’ was introduced by Andrzejak

et al. (Andrzejak et al., 2003). A new type of surrogate data,

measure profile surrogates, was introduced by the same

group to test the performance of seizure prediction measures

(Kreuz et al., 2004). With the use of comparitive tests and

statistical control methods, such as the examples mentioned

above, realistic aims can be said for the future and further

progress in predicting and detecting seizures should be

possible within the next few years.

4.5. Mental states and psychiatric disease

4.5.1. Psychopharmacology

Various pharmacological agents can influence normal

brain function. Quantitative EEG analysis is a well

established tool to characterize such effects (‘pharmaco

EEG’). A number of studies have explored the usefulness of

nonlinear EEG analysis for this purpose. One of the best

studied agents is alcohol. In a well designed study using

linear and nonlinear measures (time asymmetry, determin-

ism, and redundancy) in combination with surrogate data,

Ehlers et al. showed that the EEG in a placebo condition had

significant nonlinear structure which was significantly

decreased after the administration of ethanol (Ehlers et al.,

1998). The subjective feeling of intoxication was correlated

with the nonlinear and not with the linear measures.

Viewing alcohol pictures as compared to non alcohol

beverage pictures induced an increase in the D2 of the EEG

in social drinkers and alcoholics in the study of Kim et al.

(Kim et al., 2003). Moderate alcohol use has also been

shown to increase nonlinear coupling between EEG

channels in the theta and the gamma band (De Bruin

et al., 2004).
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Klonowski et al. used a dimension estimate based upon

the Karhunen Loeve expansion to determine the influence of

diazepam om the EEG (Klonowski et al., 1999). In the small

study with four subjects no effects could be demonstrated.

Using surrogate data Pritchard et al. found significant

nonlinearity in the EEG of healthy subjects, but no influence

of smoking (nicotine) on the nonlinear structure (Pritchard

et al., 1995b). Wackermann et al. compared a placebo

condition with different doses of Piracetam, and showed a

decrease of the global dimensional complexity (correlation

dimension determined from spatial embedding) under

influence of higher drug doses (Wackermann et al., 1993).

4.5.2. Perceptual and emotional states

In a large series of papers Aftanas and coworkers

explored almost the whole spectrum of nonlinear EEG

measures in order to characterize changes in brain function

related to emotion and affect (Aftanas et al., 1994, 1997a,b,

1998, 2002). They showed a fronto central increase in

dimension during imagination compared to perception; an

emotional condition was associated with a more posterior

increase in dimension (Aftanas et al., 1994). Using

nonlinear forecasting, negative emotions were shown to

be associated with higher EEG predictability especially in

posterior regions (Aftanas et al., 1997a). Kolmogorov

entropy and the largest Lyapunov exponent were increased

after viewing positive or negative movies compared to

viewing neutral movies (Aftanas et al., 1997b). Using the

mutual dimension Dm as a measure of nonlinear coupling

they showed that negative emotions were associated with a

left frontal decrease in coupling, whereas positive emotions

were associated with a more posterior central increase in

coupling (Aftana et al., 1998). A state of meditation was

shown to be associated with a decrease in dimensional

complexity (Aftanas and Golocheikine, 2002).

Studies by other others have used various types of

stimulation to investigate changes in brain complexity.

Kondakor et al. showed that simple visual processing (eyes-

open compared to eyes-closed) was associated with an

increase in global dimensional complexity (Kondakor et al.,

1997). Memory for personal pain was shown to be

characterized by an increase in dimensional complexity

(Lutzenberger et al., 1997). In some cases nonlinear

measures were less sensitive than linear ones. This was

the case in the study of Yagyu et al. where the effect of

chewing gum with different flavours was shown with a

linear complexity measure, but not with a correlation

dimension determined from a spatial embedding (Yagyu

et al., 1997a). Following stimulating with light and sound

the largest Lyapunov exponent was reported to decrease (Jin

et al., 2002). In another study EEG nonlinearity was shown

with surrogate data, and an increase of the EEG dimension

was found after repetitive transcranial magnetic stimulation

(Jing and Takigawa, 2002). In an experiment, where control

subjects and patients with anorexia nervosa were exposed to

gustatory stimuli, the EEG of anoreaxia patients had a
lower-dimensional complexity compared to the controls

(Toth et al., 2004).

4.5.3. Depression and schizophrenia

The potential usefulness of a nonlinear dynamical

systems framework for psychiatry was recognized in the

early nineties (Globus and Arpaia, 1994; Schmid, 1991).

This research has been directed at EEG changes in

depression and schizophrenia. In major depression, abnorm-

alities of sleep EEG and an increased predictability of

waking EEG have been described, but the number of studies

is still quite limited (Nandrino et al., 1994; Pezard et al.,

1996; Röschke et al., 1994).

In comparison, nonlinear EEG analysis in schizophrenia

has received much more attention. The majority of these

studies focused upon the question whether schizophrenia is

characterized by a loss of dynamical complexity or rather by

an abnormal increase of complexity, reflecting a ‘loosening

of neural networks’. Many and especially more recent

studies have found a lower complexity in terms of a lower

correlation dimension or lower Lyapunov exponent (Jeong

et al., 1998a; Kim et al., 2000; Kotini and Anninos, 2002;

Lee et al., 2001a; Rockstroh et al., 1997). In the only MEG

study so far similar changes were found (Kotini and

Anninos, 2002). However, increases in dimension and

Lyapunov exponent have also been reported in the older

studies (Elbert et al., 1992; Koukkou et al., 1993; Saito

et al., 1998). During sleep, nonlinear measures of complex-

ity were decreased in schizophrenic patients (Röschke and

Aldenhof, 1993). In one study it was shown that the

particular method used for embedding might explain some

of these discrepancies (Lee et al., 2001b). Lee et al. showed

that the dimension computed with time delay embedding

was increased in schizophrenic patients, whereas the

dimension determined from a spatial embedding was

decreased in patients (Lee et al., 2001b). Other consider-

ations are the type of schizophrenia and the influence of

treatment on nonlinear EEG measures (Kang et al., 2001).

One general pattern that becomes evident from the

studies is that the abnormalities are usually most outspoken

in the frontal areas, and in particular in the left hemisphere,

suggesting a left frontal dysfunction (Breakspear et al.,

2003b; Elbert et al., 1992; Jeong et al., 1998a; Kang et al.,

2001; Kim et al., 2000; Lee et al., 2001b). A few studies

used surrogate data testing to investigate the presence of

nonlinear structure in the EEG of schizophrenics (Lee et al.,

2001a). Finally, two studies used nonlinear measures of

interdependency to investigate abnormal interactions

between brain regions in schizophrenia (Breakspear et al.,

2003b; Kang et al., 2001). Using an asymmetric measure of

nonlinear coupling (mutual cross prediction) Kang et al.

(2001) showed that under influence of clozapine the driving

system was located more frontally. In the same study, the

correlation dimension and the largest Lyapunov exponent

proved to be less sensitive to the influence of clozapine on

the EEG. Breakspear et al. (2003b) investigated changes in
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nonlinear EEG interdependencies in a large study with 40

schizoprenia patients and 40 matched controls. The authors

found no evidence for a general loss of coupling between

brain regions, but nonlinear couplings tended to occur in

larger ‘clusters’ in patients compared to controls, especially

in the left hemisphere.

4.6. Normal cognition

Nonlinear EEG analysis has been applied extensively to

study the cortical dynamics underlying various types of

cognitive processing. These studies have addressed the

question whether brain dynamics becomes more or less

complex during cognitive tasks, and have attempted to

relate changes in brain dynamics complexity to the nature

and complexity of the task, as well as the intelligence of the

subject. Finally, nonlinear methods have been used to

explore changes in functional interactions between brain

regions.

Intuitively it would seem logical that performance of

some cognitive task is associated with more complex brain

dynamics. Indeed, several studies report an increase in the

correlation dimension or related complexity measures

during cognitive tasks (Bizas et al., 1999; Meyer-Linden-

berg, 1998; Micheloyannis et al., 1998, 2002; Molle et al.,

1995; Stam et al., 1996a; Tomberg, 1999). This phenom-

enon has been shown in various arithmetic tasks

(Micheloyannis et al., 1998, 2002; Stam et al., 1996a), but

also in visual tasks (Bizas et al., 1999) and a silent reading

condition (Tomberg, 1999). However, decreases in com-

plexity have also been reported, most notably during a

working memory task (Molnar et al., 1995; Sammer, 1996,

1999). Molle et al. suggested that changes in the level of

EEG complexity might be related to the particular mode

of thinking involved (Molle et al., 1996, 1997, 2000). Of

interest, work on the influence of nicotine on brain

complexity suggests the existence of a state of optimal

complexity (Houlihan et al., 1996). When nonlinear

measures are computed from narrow band filtered data,

increases as well as decreases may be found during the same

task. For instance, the multichannel correlation dimension

of EEG filtered in the lower alpha band increased and the

dimension of theta band EEG decreased during a visual

working memory task (Stam, 2000).

For those tasks which are associated with increased EEG

complexity, the level of difficulty of the task seems to be

correlated to the magnitude of the EEG complexity increase

(Gregson et al., 1990, 1992; Lamberts et al., 2000; Muller

et al., 2003). This relationship between task complexity and

brain dynamics complexity has also been shown for fMRI

data (Dhamala et al., 2002). Imagery was shown to be

related to more complex brain dynamics than perception

(Lutzenberger et al., 1992a). Jeong et al. showed that the

power spectrum of music was related to the nature of the

induced changes in brain dynamics. So-called ‘one over f’

type music decreased complexity, whereas white or
Brownian noise increased brain complexity (Jeong et al.,

1998b). The fact that various cognitive tasks induce changes

in brain complexity, which are sometime related to the

difficulty of the task of the type of thinking involved, raises

the question whether EEG complexity might be related to

intelligence. A correlation between nonlinear EEG

measures and IQ has been suggested by a few authors

(Anokhin et al., 1999; Lutzenberger et al., 1992b; Stam,

2000). In the study of Anokhin et al. a negative correlation

between IQ and EEG dimension was found, whereas

Lutzenberger et al. described a positive correlation, but

only during a resting state (Anokhin et al., 1999;

Lutzenberger et al., 1992b). In the study of Stam working

memory capacity correlated with a lower theta band

multichannel dimension (implying stronger coupling

between EEG channels!) during the no-task condition, but

only in female subjects (Stam, 2000). The latter finding

seems to be in agreement with the observation of Anokhin et

al. that theta band coherence correlated with a higher IQ

(Anokhin et al., 1999).

These observations suggest that linear and nonlinear

measures of coupling between brain regions might be more

relevant to understand cognitive processing than local

measures of complexity. In a series of investigations

Bhattacharya en co workers have shown that activities

such as listening to music, watching paintings and mental

rotation are associated with changes in functional coupling

between brain regions, especially in experts and most

outspoken in the gamma band (Bhattacharya and Petsche,

2001, 2002; Bhattarachyra et al., 2001a,b,c). The fact that

changes in functional connectivity were different in experts

as compared to non experts suggests that these changes

reflect to some extent properties of long term, possibly

implicit memory stores. Using the mutual dimension as a

nonlinear measure of coupling, Meyer-Lindenberg showed

increased coupling between both temporal regions and the

right frontal area during a mental arithmetic task

(Meyer-Lindenberg, 1998). An increase in mutual dimen-

sion during arithmetic was also shown by Stam et al. (Stam

et al., 1996a). During the retention interval of a visual

working memory task, an increase in theta band coupling

and a decrease in lower alpha band coupling was found

(Stam et al., 2002a). Micheloyannis showed increased

coupling in the gamma band during a complex visual

discrimination task (Micheloyannis et al., 2003). While

these studies are heterogeneous in several aspects, there

seems to be agreement that cognition involves complex

spatio temporal networks, and that gamma band plays an

especially important role. This issue will be taken up in the

discussion of brain dynamics in dementia, and in the general

discussion in Section 5.

4.7. Disturbed cognition and dementia

A natural extension of the use of nonlinear analysis to

study the dynamics of normal cognition is its application to
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neurological disorders characterized by disturbed cognition,

in particular dementia. An extensive review of nonlinear

EEG analysis in dementia can be found in two recent papers

by Jeong (2002, 2004). One of the pioneering studies in this

field was published by Pritchard et al. (1991). In this study,

the increase in D2 accompanying eye opening in non

demented subjects was diminished in Alzheimer patients,

which was interpreted as a ‘lack of dynamical responsivity’.

A few years later it was shown that a loss of dynamical

complexity can already be demonstrated in Alzheimer

patients in an eyes-closed resting state (Besthorn et al.,

1995; Jelles et al., 1999a; Jeong et al., 1998c, 2001a; Stam

et al., 1994, 1995; Yagyu et al., 1997b). Support for the

concept of ‘complexity loss’ underlying cognitive dysfunc-

tion in dementia comes from several studies showing

correlations between nonlinear EEG measures and perform-

ance on neuropsychological tests. In the study of Yagyu et

al. a lower global dimensional complexity of the EEG

correlated with lower scores on the MMSE and the WAIS-R

(Yagyu et al., 1997b). Ikawa et al. (2000) described two

region-specific correlations between DC (dynamical com-

plexity) and neuropsychological performance in 25 AD

patients: one between the DC value in the left frontal,

central and mid-temporal areas and intellectual function;

and another between the DC value in the left central,

parietal and post-temporal areas and verbal memory.

Nonlinear EEG analysis has also been applied to other

forms of dementia. The periodic discharges in the EEG of

patients with Creutzfeldt-Jakob disease have been shown to

reflect low dimensional, highly nonlinear dynamics

(Babloyantz and Destexhe, 1987; Stam et al., 1997).

Compared to controls patients with vascular dementia had

a higher dimension but a lower Lyapunov exponent in the

study of Jeong et al. (2001a). Babiloni et al. demonstrated a

loss of functional connectivity in patients with vascular

dementia (Babiloni et al., 2004). Parkinson patients could be

distinguished from Alzheimer patients by a higher

Lyapunov exponent of the EEG; in both PD and AD the

correlation dimension was lower than in non demented

controls (Stam et al., 1994, 1995). Anninos et al. (2000)

Studied the correlation dimension of the MEG in Parkinson

patients and found an increase in dimensional complexity

after external magnetic stimulation. Muller et al. (2001)

studied 17 Parkinson patients and 12 controls during a

resting condition and during execution or imagining of a

complex motor task. No differences were found in the

resting condition, but the dimensional complexity in PD

patients was increased compared to controls in the motor

execution/imagining task. Pezard et al. (2001) described a

higher entropy and increased nonlinearity of the EEG in

L-Dopa naive Parkinson patients.

While many of the studies mentioned above suggest

changes in nonlinear measures in various types of dementia,

it remains unclear to what extent these findings are influenced

by the linear properties of the EEG. Correlations between

nonlinear and linear measures, including the Neural
Complexity measure of Tononi et al. (1994), have been

demonstrated (Stam et al., 1994; Van Cappellen van Walsum

et al., 2003). Jelles et al. showed that the EEG in Alzheimer’s

disease has less significant nonlinear structure than in non

demented controls (Jelles et al., 1999a). Also, linear changes

might occur earlier than nonlinear changes (Jelles et al.,

1999b). Of practical interest is the question whether

combining linear and nonlinear measures might increase

the diagnostic usefulness of the EEG in distinguishing

between demented and non demented subjects. Two studies

have shown that such a combination might be effective

(Pritchard et al., 1994; Stam et al., 1996b).

Recently there is an increased interest to study

abnormal brain dynamics in Alzheimer’s disease in

terms of disturbed functional interactions between brain

regions. This approach is motivated by the hypothesis

that Alzheimer’s disease has many features of a

‘dysconnection syndrome ’ (Delbeuck et al., 2003).

Jeong et al. used the cross mutual information to study

correlations between EEG channels and found a decrease

of functional interactions over frontal and anterior

temporal regions in Alzheimer patients (Jeong et al.,

2001b). In a study using MEG lower levels of between

area synchronization were found in Alzheimer patients in

upper alpha, beta and gamma bands (Stam et al., 2002b).

Coherence analysis of the same data only showed a non

significant trend in the same direction. These results were

later confirmed in several EEG studies (Babiloni et al.,

2004; Pijnenburg et al., 2004; Stam et al., 2003b; Stam

et al., 2005) In the last study lower levels of EEG beta

band synchronization correlated with lower scores on the

MMSE. Consequently, studies of nonlinear synchroniza-

tion of MEG and EEG in Alzheimer’s disease support

the hypothesis of disturbed functional connectivity

underlying the ‘dysconnection syndrome’ of Alzheimer’s

disease.
5. The brain as network of coupled dynamical systems

In the previous sections a large number of papers have

been discussed that deal with nonlinear EEG or MEG

analysis of normal and various abnormal brain states. While

some patterns are emerging-for instance the fact that many

epileptic seizures are characterized by highly nonlinear,

synchronous brain dynamics-the overall picture is yet far

from clear. At present, there is no such thing as a general

theory of nonlinear brain dynamics. Many studies are based

on restricted and ad hoc hypotheses, such as the idea that

cognitve processing is likely to be associated with ‘more

complex’ brain dynamics. However, a general conceptual

framework might help to integrate the results of the various

studies done so far, and to point the way to future work.

Here we attempt to provide a highly preliminary-sketch of

such a framework.
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5.1. Functional sources, functional connectivity, functional

networks

Before addressing the main findings with respect to brain

dynamics in normal and abnormal brain states it is necessary

to clarify the terminology. Nonlinear analysis can be applied

to time series of brain activity, whether these are surface

recordings (EEG, MEG), measurements offield potentials, or

even single unit recordings. Nonlinear analysis can also be

applied to other types of measurements, such as fMRI BOLD

time series (Dhamala et al., 2002; Friston et al., 1995; Wang

et al., 2003). The present review was limited to EEG and

MEG, but a general framework should be able to deal with all

types of measurements. An important distinction is that

between the analysis of a local time series, and the analysis of

relations between two or more time series. With respect to the

latter type of analysis the notion of ‘functional connectivity’

has been introduced (for review see: Lee et al., 2003).

Functional connectivity is a pragmatic concept which simply

refers to any type of correlation between time series of brain

activity. The underlying assumption is that functional

connectivity reflects, as least to some extent, functional

interactions between different brain regions.

In line with this approach we can introduce two new

concepts. The first is the functional source, which is defined

as the part or parts of the brain that contribute to the activity

recorded at a single sensor. A functional source is an

operational concept, that does not have to coincide with a

well defined anatomical part of the brain, and is neutral with

respect to the problems of source localization and volume

conduction; it is simply a shorthand for denoting the part of

the brain being measured at a single recording site.

Functional connectivity can now be defined as any

correlation between the activity of two functional sources.

The second concept, that of a functional network, is then

defined as the full matrix of all pair-wise correlations

between functional sources.

In this terminology, a functional source is the lowest

level of spatial resolution of a particular type of

measurement. Evidently, functional sources of scalp

recorded EEG will be much larger than those of MEG, or

intracranial EEG recordings, with the single neuron level

constituting a natural lower bound. Consequently,

functional sources at a low level of resolution are functional

networks at a higher level of resolution. The functional

sources of this higher level of resolution, in their turn, are

the functional networks of the next level of resolution, and

so on, till the single neuron level. What constitutes a

functional source, and what a functional network, is thus

determined by the spatial resolution of the recording setup.

This feature can be called the nestedness of functional

networks. For a given level of resolution the analysis can be

directed at interactions within the functional network, or the

local dynamics of functional sources; however, the local

dynamics of a functional source is equivalent to the global

dynamics of a functional network one level down.
5.2. Complexity

Another concept that needs clarification before we can

attempt to interpret and integrate the results of nonlinear

EEG / MEG analysis is the notion of ‘complexity’.

Complexity is a frequently used, but often ill-defined

concept. However, many nonlinear EEG studies use such

notions as ‘dynamical complexity’, usually in relation to

estimates of the correlation dimension, so we need to be

clear about the interpretation. An excellent discussion of

different notions of complexity can be found in the textbook

of Badii and Politi, and the review paper of Tononi et al.

(Badii and Politi,, 1997; Tononi et al., 1998). In the paper of

Tononi et al. two notions of complexity are discussed. The

first interprets complexity as degree of randomness, or

degrees of freedom in a large system of interacting

elements. A gas at high temperature is an example of a

complex system in this sense. The second, more sophisti-

cated notion interprets complexity as a state intermediate

between randomness and order. This second concept has

been called ‘neural complexity’ by the authors and was first

described in 1994 (Tononi et al., 1994). The neural networks

in the brain, with their structure intermediate between

randomness (gas) and order (crystal) are considered an

example of complexity in this sense of the word.

Although neural complexity is the more interesting

interpretation it seems that what is being measured by

nonlinear analysis is more closely related to the first

concept. We will come back to the notion of neuronal

complexity later and will define ‘dynamical complexity’ as

the randomness or lack of interactions between the elements

of a dynamical system. This definition can be easily

translated to the functional source / functional network

terminology introduced above: ‘dynamical complexity’ of a

functional network is related to the lack of correlations

between its functional sources. Alternatively we can state:

the higher the level of synchronization between functional

sources in a functional network, the lower its dynamical

complexity.

5.3. Interpretation of nonlinear measures

With this definition of terminology we can now address

the interpretation of nonlinear measures. Here we consider a

functional source to be a dynamical system, and a functional

network a system of coupled dynamical systems. Nonlinear

measures derived from single time series provide infor-

mation on the dynamics of the functional source, and thus of

the lower level nested functional networks within this

functional source. Estimates of the correlation dimension of

a single time series thus give an indication of the ‘dynamical

complexity’ of the functional source, which is equivalent to

the randomness or degrees of freedom of the functional

network one level down. Alternatively, explicit measures of

coupling or synchronization between time series provide

information about the dynamical complexity of the highest
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level functional network. In other words: both within and

between channel analyses deal with levels of synchroniza-

tion or cooperativity, but only at different spatial scales.

Local measures of dynamical complexity are indirect, since

we cannot ‘see’ the underlying lower level functional

sources, and global measures of dynamical complexity are

explicit since we can measure the time series of all the

functional sources that constitute the functional network. As

will become clear in the following discussion, measures of

coupling in functional networks may be more reliable

estimators of synchronization levels than local estimates of

dynamical complexity.
5.4. The brain as a self-organizing dynamical system

Taking the terminology and concepts defined above as a

starting point we can now attempt to summarize what is

know about the dynamics of various brain states as

determined by nonlinear EEG or MEG analysis and

integrate these findings in a single scheme (Fig. 8). In this

discussion we will focus on three exemplary states: (i)

normal, ongoing brain activity in resting or cognitive states;

(ii) epileptic seizures; (iii) degenerative brain disease, with

an emphasis on Alzheimer’s disease.

As discussed in sections 4.1 and 4.2, ongoing brain

activity during the awake state in healthy adults is

characterized by a relatively high-dimensional complexity,

both with respect to the functional network as with respect

to the functional sources. In other words, the nested

networks of interacting dynamical systems and subsystems

characteristic of normal ongoing brain activity are
Fig. 8. Schematic illustration of a conceptual model of the relation between brain d

neurons (or groups of neurons) and their connections. Neurons receive part of the

restrict the degrees of freedom of the network. Through a process of self-organiz

process of self-organization is influenced by different control parameters, such as t

bifurcation the dynamics is critical, and different patterns are formed on all s

information processing in the awake resting state. Its dynamics can be indicated as

move to an abnormal range, and pattern formation is either excessive (hypersynch

corresponding to various types of degenerative brain disease). The emergent patter

of the individual. Part of this behaviour may influence the sensory input, thereby
characterized by a relatively weak level of synchronization

between the interacting elements. However, although the

interactions are weak, they do exist, and impose a certain

structure on spontaneous brain dynamics. This structure is

revealed in two ways: (i) ongoing brain activity during the

awake state is not random noise, but has weak nonlinear

properties, both at the level of functional networks as well as

the level of functional sources; (ii) levels of synchronization

of functional networks and functional sources are not

constant over time, but show characteristic fluctuations,

which have a scale-free character. These scale free

fluctuations of synchronization levels have been demon-

strated for local (Linkenkaer-Hansen et al., 2001; Nikulin

and Brismar, 2004, 2005) as well as global dynamics (Stam

and de Bruin, 2004), and migh be due to self-organized

criticality or critical dynamics near a phase transition. The

scale-free dynamics might even be preserved under

pathological conditions (Stam et al., 2005; Worrell et al.,

2002). The resulting image of ongoing brain dynamics

suggests a self-organizing system of nested functional

networks with high-dimensional, weakly nonlinear, critical

dynamics and constantly changing spatial patterns of

synchronization.

This basic pattern of ongoing brain dynamics can be

modulated in a physiological way by perceptual or cognitive

processing, or by changes in the level of consiousness.

Changes related to perceptual of cognitive processing can be

in the direction of increased or decreased levels of

synchronization, and may occur independently at the

functional network and functional source level. To

complicate matters further, changes can be in opposite
ynamics and selforganization. The basic elements are functional networks of

ir input from internal as well as external sensory systems. The connections

ation patterns of activity (attractors) emerge in the neuronal networks. The

he balance between excitation and inhibition. When the system is close to a

patial and temporal scales. This critical state is hypothesized to underly

‘fragile binding’. Under pathological circumstances the control parameters

ronous state characteristic of seizures) or broken down (disconnected state

ns (attractor states of neuronal networks in the brain) organize the behaviour

closing the loop.
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directions in different frequency bands. The direction and

distribution of the changes seems to depend crucially upon

the exact nature of the perceptual or cognitive task. We

should stress however that the relative changes in local and

global synchronization levels are very small compared to

the synchronization levels of ongoing brain activity.

Furthermore, it has become clear that the awake no-task

state to which ongoing brain dynamics corresponds is not a

simple ‘blank’ state of the brain, but is characterized by

intensive ongoing cognitive processing involving in

particular memory systems (Andreasen et al., 1995). This

notion has led to the concepts of ‘resting state networks’ and

‘default networks’ (Gusnard and Raichle, 2001). Conse-

quently ongoing brain dynamics with its rapidly changing

synchronous functional networks reflects intensive spon-

taneous information processing, and sensory processing or

performing a cognitive task induce only minor modifi-

cations in the basic pattern.

What happens during sleep is less clear. Analysis at the

level of functional sources seems to suggest a loss of

dynamical complexity or an increase in the level of

synchronization. However, estimates of dynamical com-

plexity based upon the correlation dimension might have

been biased by spectral changes during slow wave sleep.

Slow wave sleep is difficult to discriminate from filtered

noise, which is difficult to understand if slow wave sleep

would represent a truly hypersynchronous state. If there is

any evidence for nonlinear structure in sleep EEG it is

limited to NREM II. Assessments at the level of functional

networks during sleep suggest only minor changes in

synchronization levels. Thus sleep seems to be character-

ized primarily by ‘slowing down’, and hardly by significant

changes in synchronization levels. The significance of this

pattern is not clear, but it is of interest that sleep, like the

‘resting state’ is not a blank state of the brain but may

involve significant information processing (Hobson and

Pace-Schott, 2002). In particular it has been suggested that

sleep may involve spontaneous ‘replay’ of functional

networks activated during cognitive tasks before falling

asleep (Huber et al., 2004).

Pathological changes of brain dynamics can be divided

into two broad categories, one characterized by increased

and one by decreased levels of synchronization. Epileptic

seizures constitute the clearest example of the first category.

As discussed in Section 4.4, many studies have shown that

during epileptic seizures brain dynamics is characterized by

a loss of dynamical complexity, strong nonlinearity and

increased levels of synchronization. Hypersynchronization

has been shown at the level of functional networks and

functional sources. Transition between normal, high-

dimensional brain dynamics, and abnormal low-dimen-

sional seizures states may be abrupt, having the character of

a Hopf bifurcation, or more gradual, involving various

intermediate stages, possibly with a decrease in interregio-

nal synchronization before the seizure (Lopes da Silva et al.,

2003a,b; see also the more extensive discussion in Section
4.4). The occurrence of bifurcations suggests a critical

change in one of the systems control parameters, which

might be the ratio of excitatory to inhibitory connections.

Depending upon the type of seizure, the dynamics may

change during the course of the epileptic discharges, and

usually decreases in complexity towards to end of the

seizure (Pijn et al., 1997). Of importance, hypersynchronous

brain dynamics such as occurs during seizures may interfere

with normal information processing, and may affect the

level of consciousness. Even brief epileptiform discharges

have been implicated in transient cognitive impairment

(Binnie, 2003).

Loss of neurons in degenerative brain disease may

disrupt anatomical connectivity at the level of functional

sources and functional networks. Consequently one might

expect that brain dynamics in such disorders, in particular

Alzheimer’s disease, is characterized by a lower level of

synchronization of ongoing brain activity, and that this loss

of functional connectivity interferes with normal infor-

mation processing (Delbeuck et al., 2003). Support for the

dysconnection hypothesis of dementia has been found in

studies at the functional network level. However, at the level

of functional sources many studies have reported a loss of

dynamical complexity which would suggest increased local

levels of synchronization. The problem seems to be the

same as with the local analysis of slow wave sleep: spectral

changes, in particular an increase in slow wave activity may

bias estimates of the correlation dimension, and wrongly

suggest a loss of dynamical complexity. The results of

surrogate data testing suggest that local brain dynamics in

Alzheimer’s disease is more complex (more noise like, less

nonlinear and less synchronized) than in healthy subjects,

which is more consistent with the findings at the functional

network level (Jelles et al., 1999a). In general it seems that

coupling measures applied at the functional network level

are more reliable estimators of synchronization levels than

measures applied at the functional source level; this makes

sense since the interacting elements of the functional source

can only be assessed indirectly.

In summary, the image that arises from the analysis of

normal and disturbed brain dynamics is the following. The

brain can be conceived of as a nested network of coupled

dynamical systems. This network probably has critical

dynamics, which gives rise to constantly changing, weakly

synchronized patterns of functional networks. This dynami-

cal process of creating and distructing functional networks,

which has been designated as ‘fragile binding’, is hypoth-

esized to underly the spontaneous information processing of

the ‘resting state’. The spatio temporal dynamics of the

resting state is intermediate between randomness and order,

and may have properties consistent with the concept of

‘neuronal complexity’ discussed above. Physiological

changes in this state, whether they are related to perceptual

or cognitive performance, or to falling asleep, involve only

minimal changes in the level of synchronization, although

sleep is characterized by a general slowing. In contrast,
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significant changes in the level of synchronization always

seem to interfere with information processing, and some-

times also with consciousness. Pathological dynamics with

either abnormally high or abnormally low levels of

synchronization seems to be brought about by changes in a

critical control parameter of the neural networks in the brain.

Changes in the control parameter move the system away

from the optimal dynamics which is hypothesized to be near

the phase transition between low and high levels of

synchronization.

No doubt, this model of normal and disturbed brain

dynamics is still very crude and simple. However, it may

allow to establish a common framework to interpret the

results of the many studies on nonlinear brain dynamics in

normal and pathological conditions. And finally it may

allow the formulation of more specific hypotheses which

can serve as the starting point for future studies.
6. Conclusions and future perspectives

Progress in nonlinear dynamics and nonlinear time series

analysis has reached a stage, where fruitful applications to

EEG and MEG have become a reality. Studies in this field

have shown however that the initial hypothesis of a low-

dimensional chaotic attractor explaining brain dynamics is

too simple. The only type of brain state that comes close to

this is the brain dynamics of epileptic seizures. Other types of

normal and abnormal brain dynamics have proven to be both

more complex and less stationary than expected. Further-

more, extensive experience in applying nonlinear methods to

various types of signals, backed up by hypothesis testing with

surrogate data, is pointing the way to a proper interpretation

of these tools. In particular, measures of nonlinear coupling

between time series may allow a more straightforward

interpretation than local measures of complexity or chaos.

Several years of experience with nonlinear analysis have

shown that the proper question to be asked is not whether a

low-dimensional chaotic attractor can be identified, but to

what extent nonlinear phenomena, such as the level of

synchronization between different network elements, con-

tribute to a particular brain state.

The future of nonlinear EEG / MEG analysis will depend

upon progress in three directions: (i) development of better

tools for nonlinear time series analysis; (ii) a better theoretical

understanding of the dynamics of normal and pathological

brain states; (iii) clinical application of nonlinear analysis to

such problems as seizure anticipation / detection and diagnosis

of psychiatric and neurological disorders.

Development of new and improved methods for non-

linear time series has been a field of intense research in the

past years, and will probably continue like this in the years

to come. Development of new methods is driven by the need

to study newly discovered features of nonlinear dynamical

systems in real data. One example is the discovery of

‘generalized synchronization’ which has inspired the
development of a whole series of new measures for the

assessment of nonlinear coupling between time series. Also,

EEG and MEG time series present problems due to non

stationarity, noise levels and high dimensionality. New

methods will have to be developed that can deal with this

type of data and produce robust results wich allow a

meaningful interpretation in terms of the underlying brain

dynamics. Finally, the field of nonlinear analysis can be

broadened by applying the techniques to different measures

of brain activity, such as the fMRI BOLD time series.

At a fundamental level, nonlinear analysis aims at an

understanding of the dynamic processes underlying normal

and pathological brain states. Although some basic insights

have been obtained – in particular the importance of ‘fragile

binding’ for normal brain functioning – further work is

required to obtain a more detailed understanding of brain

dynamics. In particular, a better understanding of the

relationship between brain dynamics at the one hand, and

structural properties as well as behavioural performance on the

other hand, should be looked for. Current research using

simulated neural networks as well as animal experiments can

help to test various hypothesis concerning normal and

disturbed brain dynamics, and its relations to control

parameters such as the ratio between inhibition and excitation.

Finally, for the clinical neurophysiologist, the proof of

the pudding is the clinical application. At this stage,

nonlinear analysis is still a research field. However, several

clinical problems present suitable targets for clinical

application. In the short term, the most likely clinical

application is in the field of epileptology, in particular the

anticipation and detection of epileptic seizures. Automatic

analysis of sleep stages is also a promising field, although

the understanding of nonlinear dynamics during sleep is still

in an early stage. One of the biggest challenges for the future

is to use nonlinear analysis as a tool to better understand

cognitive dysfunction, and to aid in the diagnosis and

differential diagnosis of dementia.
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Röschke J. Strange attractors, chaotic behavior and informational aspects of

sleep EEG data. Neuropsychobiology 1992;25:172–6.
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