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HOMOTOPY OF OPERADS
&
GROTHENDIECK-TEICHMULLER GROUPS

Part I: From Operads to Grothendieck-Teichmiiller Groups

by
Benoit Fresse

This document is the first part of a research monograph in preparation on the
homotopy of operads and Grothendieck-Teichmiiller groups. The ultimate objective
of this work is to prove that the Grothendieck-Teichmiiller group is the group of
homotopy automorphisms of a rational completion of the little 2-discs operad.

The full monograph will include two volumes. This first volume includes a
comprehensive introduction to the fundamental concepts of operad theory, a survey
chapter on little discs and E,,-operads, a detailed study of the connections between
little 2-discs and braids, an introduction to the theory of Hopf algebras and the
Malcev completion of groups, and a report on the definition of the Grothendieck-
Teichmiiller group from the viewpoint of the theory of algebraic operads. Most
concepts are carefully reviewed in order to make this account accessible to a broad
readership, which should include graduate students as well as researchers coming
from various fields of mathematics related to our main topics. We conclude this
part with the definition of a map from the pro-unipotent Grothendieck-Teichmiiller
group towards the group of homotopy automorphism classes of the rationalization
of the little 2-disc operad. The proof that this map defines an isomorphism is the
subject of the second volume.

This volume covers the content of a master degree course “Operads 2012”, given
by the author at université Lille 1, from January until April 2012. See:

http://math.univ-1illel.fr/"operads/2012courses.html#Lille

This work has in part been written during stays at the Ecole Normale Supérieure
de Paris, at Northwestern University, and at the Max-Planck-Institut fiir Mathe-
matik in Bonn. The author is grateful to these institutions for outstanding working
conditions, and to numerous colleagues for their warm welcome which has greatly
eased this writing task. I thank Christine Vespa for many accurate observations on
this work. I am also grateful to the participants of the course “Operads 2012” for
invaluable feedbacks on the matter of this volume.

Lille, 31 December 2012
Benoit Fresse
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General Introduction

The first purpose of this work is to give an overall reference, starting from
scratch, on applications of algebraic topology methods to the study of operads in
topological spaces. Most definitions, notably fundamental concepts of operad and
homotopy theory, are carefully reviewed in order to make our account accessible to
a broad readership, including graduate students, and researchers coming from the
various fields of mathematics related to our subject.

Then our ultimate objective is to give a homotopical interpretation of a deep
relationship between operads and Grothendieck-Teichmiiller groups. This connec-
tion, which has emerged from research on the deformation quantization process in
mathematical physics, gives a new approach to understanding internal symmetries
of structures occurring in various constructions of algebra and topology.

We review the formal definition of an operad in the first part of this volume.
Simply recall for the moment that an operad is a structure, formed by collections
of abstract operations, which is used to define a category of algebras. In our study,
we mainly consider the example of E,-operads, n = 1,2,...,00, used to model a
hierarchy of homotopy commutative structures, from fully homotopy associative
but not commutative (n = 1), up to fully homotopy associative and commutative
(n = 00). For the reader, we should mention that the notion of an Ej-operad is
synonymous to that of an A.-operad, used in the literature when one only deals
with purely homotopy associative structures.

The notion of an E,-operad formally refers to a class of operads, rather than
to a singled out object. This class consists, in the initial definition, of topological
operads which are homotopically equivalent to a reference model, the Boardman-
Vogt operad of little n-discs D,. The operad of little n-cubes, which is a simple
variant of the little n-discs operad, is also used in the literature to provide an
equivalent definition of the class of E,-operads. We provide detailed recollections
on these notions in the second part of this volume. Nevertheless, as we explain
soon, our main purpose is not to study FE,-operads themselves, but homotopy
automorphisms groups attached to these structures.

Before explaining this goal, we survey some motivating applications of FE,,-
operads, which are not our main subject matter (we only give short introductions
to these topics), but illustrate our approach of the subject.

The operads of little n-discs D,, were initially introduced to collect operations
acting on iterated loop spaces. The first main application, which has motivated the
definition of these operads, was the Boardman-Vogt and May recognition theorems
asserting, in the most basic outcome, that any connected space equipped with an
action of D,, is homotopy equivalent to an n-fold loop space Q"X (see [25, 26]
and [134]).

vii



viii GENERAL INTRODUCTION

Recall that the set of connected components of an n-fold loop space Q"X is
identified with the nth homotopy group m,(X) of the space X, a group which is
abelian as soon as n > 1. The action of D,, on Q"X includes a product operation
w Q"X x Q"X — Q"X which, at the level of connected components, gives the
composition operation of the group 7, (X) for any n > 0. The operad D,, carries
the homotopies making this product associative (and commutative for n > 1), and
includes further operations, representing fine homotopy constraints, which we need
to form a faithful picture of the structure of the n-fold loop space Q" X.

This outline gives the initial topological interpretation of F,-operads. But this
topological picture has also served as a guiding idea for a study of E,-operads in
other domains. Indeed, new applications of F,-operads, which have initiated a
complete renewal of the subject, have been discovered in the fields of algebra and
mathematical physics, mostly after the proof of the Deligne conjecture asserting
that the Hochschild cochain complex C*(A, A) of an associative algebra A inherits
an action of an Es-operad. In this context, we deal with a chain version of the
previously considered topological little 2-discs operad Ds.

The cohomology of the Hochschild cochain complex C*(A, A) is identified in de-
gree 0 with the center Z(A) of the associative algebra A. In a sense, the Hochschild
cochain complex represents a derived version of this ordinary center Z(A). From
this point of view, the construction of an Es-structure on C*(A, A) determines, as
in the study of iterated loop spaces, a fine level of homotopical commutativity of
the derived center, beyond an apparent commutativity occurring at the cohomology
level. The first proofs of the Deligne conjecture have been given by Kontsevich-
Soibelman [106] and McClure-Smith [135]. The interpretation in terms of derived
centers has been emphasized by Kontsevich [104] in order to formulate a natural
extension of the conjecture for algebras over E,-operads, where we now consider
any n > 1.

The verification of the Deligne conjecture has yielded a second generation of
proofs, promoted by Tamarkin [169] and Kontsevich [104], of the Kontsevich for-
mality theorem giving the existence of deformation quantizations. These new ap-
proaches also involve the application of Drinfeld’s associators, which are used to
transport the Fs-structure yielded by the Deligne conjecture on the Hochschild
cochain complex to the cohomology. In the final outcome, one obtains that each
associator gives rise to a deformation quantization functor. This result has hinted
the existence of a deep connection between the deformation quantization problem
and the program, initiated in Grothendieck’s famous “esquisse” [82], which aims to
understand Galois groups through geometric actions on curves. The Grothendieck-
Teichmiiller groups are devices, introduced in this program, encoding the infor-
mation which can be captured through the actions considered by Grothendieck.
The correspondence between associators and deformation quantizations imply that
a rational pro-unipotent version of the Grothendieck-Teichmiiller group GTl(Q)
acts on the moduli space of deformation quantizations. The initial motivation of
our work was the desire to understand this connection from a homotopical view-
point, in terms of homotopical structures associated to Fs-operads. The homotopy
automorphisms of operads come into play at this point.

Recall again that an operad is a structure encoding a category of algebras. The
homotopy automorphisms of an operad P are transformations, defined at the operad
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level, encoding natural homotopy equivalences on the category of algebras associ-
ated to P. In this interpretation, the group of homotopy automorphism classes
of FEs-operads, which we actually aim to determine, represents the internal sym-
metries of the first level of homotopy commutative structures which Fs-operads
encode. In the rational setting, we establish that this group is isomorphic to the
pro-unipotent Grothendieck-Teichmiiller group GT'(Q). This result is new and
represents the main outcome of our work. In a more general context, we formulate
a conjecture relating the group of homotopy automorphism classes of Es-operads
to a Lie algebra, defined over Z, underlying a graded version of the Grothendieck-
Teichmiiller group.

Let us focus on the rational case. In this context, we naturally have to consider
a rational version of Fs-operads. Thus, to reach our result, we have beforehand to
set up a new rational homotopy theory for topological operads and to give a sense
to the rationalization of topological operads. We actually define an analogue of
the Sullivan model of the rational homotopy of spaces [166] for operads. We sim-
ply deal with cosimplicial commutative algebras (instead of Sullivan’s differential
graded algebras) in order to work out general difficulties occuring with the model
of multiplicative structures in Sullivan’s theory. We also consider cooperads, the
dual structures of operads, when we form our model. We precisely show that the
rational homotopy of an operad in topological spaces is determined by an associated
cooperad in cosimplicial commutative algebras (a cosimplicial Hopf cooperad). We
have a small model of the cooperad associated to little 2-discs given by the cochain
complex of certain Lie algebras, the Drinfeld-Kohno Lie algebras, which were ini-
tially introduced for the study of configuration spaces and pure braid groups from
an infinitesimal viewpoint.

The other main topics considered in our study include the application of Koszul
duality techniques, operadic deformation complexes and spectral sequences for the
computation of mapping spaces attached to operads. We aim to give a detailed
and comprehensive introduction to the applications of these methods for the study
of operads from the point of view of homotopy theory.






Mathematical Goals

The ultimate goal of this work, as we explain in the general introduction, is to
prove that the Grothendieck-Teichmiiller group represents, at least in the rational
setting, the group of homotopy automorphism classes of Fs-operads. This objective
can be taken as a motivation to read this book or as a guiding example of application
of our methods.

The definition of an operad is recalled with full details in the first part of this
volume. In this introductory section, we only aim to give an idea of our main results.
Let us simply recall that an operad P basically consists of a collection P(r) (r € N),
where each object P(r) parameterizes operations with r inputs p = p(x1,...,2,),
together with a multiplicative structure, which models the composition of such
operations. We can define operads in any category equipped with a symmetric
monoidal structure M. We then assume P(r) € M, and we use the tensor product
operation, given with this category M, to define the composition structure attached
to our operad. The operads in a base symmetric monoidal category form a category,
which we denote by M Op, or more simply, by Op = M Op, when this ambient
category M is fixed by the context. An operad morphism f : P — @ naturally
consists of a collection of morphisms in the base category f(r) : P(r) — Q(r)
(r € N) preserving the structures attached to operads.

For technical reasons, we have to consider operads P equipped with a distin-
guished element * € P, (0) (whenever the notion of an element makes sense), which
represents an operation with zero input (a unitary operation in our terminology).
In the set-theoretic context, we moreover assume that P (0) is a one-point set
reduced to this element. In the module context, we assume that P (0) is a one
dimensional module over the ground ring. In a general setting, we assume that
P (0) is the unit object given with the tensor structure of our base category. We
then say that P, forms a unitary operad. We use the notation Op, to refer to the
category of unitary operads. The lower-script * indicates the fixed arity zero com-
ponent assigned to this category of operads. We usually consider together both a
non-unitary operad P, which has no term in arity 0, and an associated non-unitary
operad P, where the arity zero term, spanned by the distinguished operation
x € Py(0), is added. We therefore follow the convention to use a lower-script +,
marking the addition of this term, for the notation of the unitary operad P,. We
often perform constructions on the non-unitary operad P first, and on the unitary
operad P afterwards, by assuming that the additional distinguished element (or
unit term) of P, is preserved by the operations involved in our construction. We
use the expression of unitary extension to refer to this process.

In topology, an Es-operad usually refers to an operad in the category of spaces
which is equivalent to Boardman-Vogt’ operad of little 2-discs Dy in the homotopy

xi
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category of operads. The spaces Dy (r) underlying this operad have a trivial homo-
topy in dimension * # 1, and for * = 1, we have m D2(r) = P,, where P, denotes
the pure braid group on r strands. Thus, the space Dy(r) is an Eilenberg-MacLane
space K (P,, 1) associated to the pure braid group P,. For our purpose, we consider
a rational pro-nilpotent completion of the little 2-discs operad ﬁg, for which we
have m; Dg (r) = PT, where PT denotes to the Malcev completion of the group P,.
The precise construction of such an operad D, is given in a general context in
the second volume of this work, where we define an operadic version of the Sul-
livan rationalization functor on topological spaces. We also have a simple model
of this operad D5 which is defined by elaborating on the Eilenberg-MacLane space
interpretation of the little 2-discs spaces. We give a brief outline of this approach
soon.

Homotopy automorphisms can be defined in the general setting of model cate-
gories, which provide a suitable axiomatic framework for the application of homo-
topy theory concepts to operads. In order to introduce our subject, we first explain
a basic interpretation of the general definition of a homotopy automorphism in the
context of topological operads.

We have a natural homotopy relation ~ for morphisms of operads in topolog-
ical spaces. We proceed as follows to define this concept. To a topological operad
Q, we associate the collection of path spaces Q* (1) = Mapg,,([0, 1], Q(r)), which
inherits an operad structure from Q and defines a path-object associated to Q in
the category of topological operads. Then we explicitly define a homotopy between
operad morphisms f,g : P — Q as an operad morphism A : P — QAl satisfying
doh = f, dih = g, where dy,d; : QAl — @ are the natural structure morphisms
(evaluation at the origin and at the end point) associated with our path-object QAl.
This homotopy h is intuitively equivalent to a continuous family of operad mor-
phisms h; : P — Q going from hg = f to h; = g.

In a first approximation, we take the sets of homotopy classes of operad mor-
phisms as the morphism sets of a homotopy category Ho(TopOp) associated with
the category of topological operads TopOp. In principle, we have to deal with a
suitable notion of cofibrant object in the category of operads, and to replace any
operad by a cofibrant resolution, in order to use this definition of morphism set.
The homotopy category, more properly defined after this replacement of each object
by a cofibrant resolution, is identified with a localization with respect to a class of
weak-equivalences in the category of operads. But we will explain this issue later
on. We focus on the basic definition of the morphism sets of the homotopy category
for the moment.

The groups of homotopy automorphism classes, which we aim to determine, are
the groups of automorphisms in the homotopy category Ho(TopOp). The automor-
phism group Auty,(gopop)(P) associated to a given operad P € TopOp accordingly
consists of homotopy classes of morphisms f : P — P, which have a homotopy
inverse g : P — P satisfying fg ~ id and gf ~ id, where we consider, at each level,
the operadic homotopy relation.

Note that a topological operad P gives rise to an operad object in the homotopy
category of topological spaces Ho(Top), and we could also study the automorphism
group Auty,(gopyop(P) formed in this category of homotopical operads. But these
naive automorphism groups differ from our groups of homotopy automorphisms
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and do not give the appropriate structure for the homotopy version of usual con-
structions of group theory (like homotopy fixed points). Indeed, an automorphism
of the operad P in the homotopy category of spaces Ho(Top) is just a collection of
homotopy classes of maps f(r) € [P(r), P(r)], invertible in the homotopy category
of spaces, and preserving the operadic structures up to homotopy, unlike our ho-
motopy automorphisms which preserve the operadic structures strictly. Moreover,
actual operad morphisms f,g: P — @ define the same morphism of operads in the
homotopy category of spaces Ho(Top) as soon as we have a homotopy of maps (re-
gardless of operad structures) between f(r) and g(r), for each » € N. Thus, operad
morphisms which are homotopic in the strong operadic sense determine the same
morphism of operads in the homotopy category of spaces Ho(Top), but the con-
verse implication does not hold. By associating the collection of homotopy classes
of maps f(r) : P(r) — P(r) to a homotopy automorphism f € Auty,(gopop)(P),
we obtain a mapping Autye(Topop)(P) — Authe(Top)op(P), from the group of ho-
motopy classes of homotopy automorphisms towards the group of automorphisms
of the operad in the homotopy category of spaces, but this mapping is neither an
injection nor a surjection in general.

To apply methods of algebraic topology, we associate to any operad P a whole
simplicial set of homotopy automorphisms hAuty,p,0,(P) rather than a single group
of homotopy automorphism classes. This group Autye(gopop)(P), which we primar-
ily aim to determine, is identified with the set of connected components of this
space mo(hAutg,,0,(P)). In the second volume of this work, we explain the defini-
tion of these homotopy automorphism spaces in the general context of cofibrantly
generated model categories. For the moment, we simply give a short outline of the
definition for topological operads.

First, we extend the definition of our path object, and we consider, for each
n € N, an operad PA" defined by the collection of function spaces pA” (r) =
Mapy,, (A", P(r)) on the n-simplex A™. This operad sequence P2" inherits a sim-
plicial structure from the topological simplices A™. In particular, since we obviously
have P = PAO, we have a morphism v* : PA" — P associated to each vertex v of
the n-simplex A™. The simplicial set hAutg,p0,(P) is given in dimension n by the
morphisms of topological operads f : P — PA" so that the composites v* f form ho-
motopy equivalences of the operad P = PAO, for all vertices v € A™. From this def-
inition, we immediately see that the 0-simplices of the simplicial set hAutgopo,(P)
are the homotopy equivalences of the operad P, the 1-simplices are the operadic
homotopies h : P — PA" between homotopy equivalences, and therefore, we have
a formal identity Auty,(gop0p)(P) = mo hAutg,p0,(P), between our group of homo-
topy automorphism classes Autyo(opop)(P) and the set of connected components
of hAutgopop(P).

In what follows, we adopt a common usage of homotopy theory to call space
any simplicial set regarded as a combinatorial model of a topological space. We
accordingly say homotopy automorphism space for the simplicial set hAutgo,0,(P)
which we associate to an operad P.

Besides homotopy equivalences, we consider a class of morphisms, called weak-
equivalences, which are included in the definition of a model structure on the cate-
gory of operads. We adopt the standard notation of the theory of model categories
= to refer to this class of distinguished morphisms. The notion of a model cate-
gory also includes the definition of a class of cofibrant objects, generalizing the cell
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complexes of topology, and which are well suited for the homotopy constructions
we aim to address.

To be more specific, recall that a map of topological spaces f : X — Y is
a weak-equivalence when this map induces a bijection on connected components
fe s mo(X) = m(Y) and an isomorphism on homotopy groups f, : m,(X,z) —
7« (Y, f(x)), for all * > 0, and any choice of base point € X. We define a weak-
equivalence of operads as an operad morphism f : P — @ of which underlying
maps f(r) : P(r) = Q(r) are weak-equivalences of topological spaces.

In the context of topological spaces, a classical result asserts that any weak-
equivalence between cell complexes is homotopically invertible as a map of topologi-
cal spaces. In the context of operads, we similarly obtain that any weak-equivalence
between cofibrant operads f : P = @ is homotopically invertible as an operad mor-
phism: we have an operad morphism in the converse direction g : @ — P as our
weak-equivalence f : P =5 Q such that fg ~ id and gf ~ id, where we now consider
the operadic homotopy relation (as in the definition of a homotopy automorphism
for operads).

The proof of the model category axioms for operads includes the construction
of a cofibrant replacement functor, which assigns a cofibrant operad Q equipped
with a weak-equivalence @ — P to any given operad P. The definition of the
homotopy category of topological operads in terms of homotopy class sets of mor-
phisms is actually the right one when we replace each operad P by such a cofibrant
model Q@ = P. In particular, when we form the group of homotopy automorphism
classes of an operad AutHo(qop@p)(P), we have to assume that P is cofibrant as an
operad, otherwise we tacitely assume that we apply our construction to a cofibrant
replacement of P. The general theory of model categories ensures that the obtained
group Auty,(gop0p)(P) does not depend, up to isomorphism, on the choice of this
cofibrant replacement. We have similar results and we apply similar conventions
for the homotopy automorphism spaces hAuts,,0,(P).

We go back to the little 2-discs operad. We aim to determine the homotopy
groups of the homotopy automorphism space hAutqopop(Dng) associated to the
rationalization of D5, and in the unitary operad context, which we mark by the
addition of the lower-script + in our notation. Recall that the connected com-
ponents of this space hAutgropop(Dng) correspond to homotopy classes of operad
homotopy equivalences f : Qg+ = QQ+, where Qg denotes a cofibrant model of the
rationalized little 2-discs operad Ds. In our study, we just focus on the subspace
hAut}TOpop(Dng) formed by the connected components of hAutq,,o, (D24 ) which
are associated to morphisms f inducing the identity on homology groups. The whole
group mo hAutgrOpop(Dng) is actually a semi-direct product of g hAut(}opop(Dng)
with a copy of the multiplicative group Q. Our result reads:

THEOREM A. The automorphism space of the rational pro-nilpotent completion
of the little 2-discs operad Doy satisfies

R GTY(Q), forx= 0,[7__]
T hAutil]'opOp(DQJr) = {0 ( ) ; .

where GTl(Q) denotes the rational pro-unipotent version of the Grothendieck-Tei-
chmdiller group, as defined by V. Drinfeld in [48].
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The identity established in this theorem is a new result. The ultimate goal of
this work precisely consists in proving this statement.

The superscript in the notation GTI(Q) refers, as in the expression of the
homotopy automorphism space hAutflropO p(D2+), to a version of the Grothendieck-

Teichmiiller group where a multiplicative group factor Q™ is removed (see [48]).

At the beginning of this survey, we explained that the operad of little 2-discs
D5 consists of Eilenberg-MacLane spaces K (P,, 1), where P, denotes the pure braid
group on r strands, and the associated rationalized operad D, consists of FEilenberg-
MacLane spaces K (PT, 1), where we now consider the Malcev completion of the
group P.. We have a standard model of the Eilenberg-MacLane spaces K(P,,1),
given by the classifying spaces of the groups P,.. But these spaces do not form an
operad. Nevertheless, we can adapt this classifying space approach to give a simple
model of FEs-operad. Instead of the pure braid group P,, we consider the classifying
space of a groupoid of parenthesized braids PaB(r). The morphisms of this groupoid
are braids on r strands indexed by elements of the set {1,...,r}. The parenthesiza-
tion refers to an extra structure, added to the contact points of the braids, which
define the object sets of our groupoid. Unlike the pure braid groups P, the col-
lection of groupoids PaB(r) forms an operad in the category of groupoids, and the
associated collection of classifying spaces B(PaB)(r) = B(PaB(r)) forms an operad
in topological spaces. We check, by relying on an argument of Z. Fiedorowicz, that
this operad B(PaB) is a model of Es-operad.

For the ratign\alized operad of little 2-discs Dg, vle_\also have a simple classifying
space model B(PaB), where we consider an operad PaB formed by applying a Mal-
cev completion construction to the groupoids PaB(r) underlying the parenthesized
braid operad.

The Grothendieck-Teichmiiller group G Tl(Q) can actually be identified with
an automorphlsm group associated with (a unitary extension of) this operad in
groupmds PaB and an automorphism of topological operad B¢ : (PaB)Jr =

(PaB)Jr can be associated to any element in this group ¢ € GT*(Q) by functori-
ality of the cla551fy1ng space construction. This automorphlsm lifts to a homotopy
automorphism B qu 02 = QQ on any chosen cofibrant model QQ of the rationalized
operad of little 2-discs D2, so that we have a well-defined rational homotopy auto-
morphism of Fs-operad associated to our element ¢ € G Tl(Q). Our main theorem
precisely asserts that this construction gives exactly all homotopy automorphism
classes of Fs-operads over the rationals.

We know, when we forget about operad structures, that the group of homotopy
automorphism classes of the classifying space BG of a discrete group G is identified
with the outer automorphism group Out(G). But we are not able to follow this
approach in our setting, though our operad has a model of this form B(:Eé-J\B ) where
we just consider the discrete groupoids PaB (r) instead of discrete groups. Let us
insist that we need a cofibrant model of Fs-operad in order to define our group
of homotopy automorphism classes. If we apply standard cofibrant replacement
constructions to the operad B(Iga\B), then we still get a rational cofibrant model of
Es-operad consisting of classifying spaces B(Res, FTa\B(r)), for a certain operad in
groupoids Res, .5573, but the groupoids underlying this operad Res, lga\B(r) are no
longer discrete, and we have no insight that a model, which would be both cofibrant
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and formed by classifying spaces of discrete groupoids, exists for the operad of
little 2-discs (over the rationals). Most of this work is therefore devoted to the
development of new methods from which we establish the result of Theorem A.

We actually gain our result at the level of a category of cosimplicial Hopf
cooperads ¢ HopfOpS, which we introduce as a suitable analogue of Sullivan’s model
for the rational homotopy of operads. The theorem which we obtain in this context
is also worth recording in view towards algebraic applications of Es-operads.

The superscript ¢ in the notation of this category ¢ HopfOpS refers to cooper-
ads. The subscript * refers to an adaptation of the definition of unitary structures
in the cooperad context. The prefix ¢ marks cosimplicial structures. Just say, for
the moment, that a cooperad is a structure C, dual to an operad, which essentially
consists of a collection of objects of the base category C(r) € M together with
a comultiplicative structure of a form opposite to the composition operations of
an operad. The cosimplicial Hopf cooperads C, which we consider in our study,
are cooperads in the category of cosimplicial unitary commutative algebras over Q,
and the collection C(r) underlying such a cooperad consists of objects in this cat-
egory M = cCom.

In the usual Sullivan model for the rational homotopy of topological spaces, we
deal with differential graded commutative algebras rather than cosimplicial com-
mutative algebras. In the operadic context, we delay the application of differential
graded constructions in order to work out difficulties arising from the Eilenberg-
Zilber equivalence and the general problem of constructing the model of multiplica-
tive structures on spaces.

To an operad in topological spaces P, we can associate the collection of sin-
gular complexes Sing, (P(r)) of the topological spaces underlying P, which forms
an operad in simplicial cocommutative coalgebras Sing, (P) (a simplicial Hopf op-
erad for short). To define our model for the rational completion of P, we take
k = Q as coefficient ring for the singular complexes, and we form a dual construc-
tion assigning a cosimplicial Hopf cooperad Sing;(P) to P. The obvious dual of
the singular complex does not work, because this functor from spaces to cosim-
plicial modules preserves multiplicative structures up to homotopy only, and we
need more rigidity in our construction. The idea is to define a contravariant func-
tor Singf(—) : TopOp¥ — cFHopfOpS by adjunction from the singular complex
functor Sing,(—) : P +— Sing,(P), where we regard the Hopf operad Sing,(P)
associated to any P € TopOp, as a whole. The mark § in our notation refers to
this operadic upgrade of the dual singular complex construction.

We define a functor from cosimplicial Hopf cooperads to topological operads
G(—) : cHopfOpS — TopOpl?, and we prove that, under mild finiteness assump-
tions, the image of the cosimplicial Hopf cooperad Sing(P) under a left derived
functor of G(—) returns a topological operad P = LG(Sing$(P)) connected to P
by a morphism (in the homotopy category of operads) inducing the rationalization
on homotopy groups. Thus, the composite construction P = LG(Singf(P)) gives a
suitable model for the rationalization process in the category of topological operads.

From this result, we essentially retain that the rational completion of a topolog-
ical operad is naturally built on its Hopf cooperad counterpart, and this gives our
actual reason to address rational homotopy problems about operads in the Hopf
cooperad context.
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The category ¢ HopfOpS inherits a model structure, like the category of topo-
logical operads, so that we can apply the general theory of model categories to define
groups of homotopy automorphism classes Autyo(c 3coprope)(A), as well as homotopy
automorphisms spaces hAut.scopfope (A), for any object A € ¢ HopfOpS. In the
case of topological operads, we already mentioned that homotopy automorphisms
spaces are well defined for cofibrant objects only. In the case of cosimplicial Hopf
cooperads, we have to consider both cofibrant and fibrant replacements before ap-
plying the homotopy automorphism construction.

The results obtained in our study of the rational homotopy of operads imply
that the group of homotopy automorphisms attached to the model Sing;(P) of
an operad in spaces P is isomorphic to the group of homotopy automorphisms at-
tached to the rational completion of this operad P. We actually have a homotopy
equivalence, defined at the level of homotopy automorphism spaces, and underlying
this isomorphism of groups of homotopy automorphism classes. Thus, homotopy
automorphisms of rationalized operads are computable at the level of Hopf coop-
erads.

For the little 2-discs operad P = D, the object Sing;(Dg) gives a reference
model of Ej-cooperad in cosimplicial commutative algebras. For our study, we
may consider another model. Indeed, we can use the already considered groupoids
of parenthesized braids PaB(r) to form a cosimplicial Hopf Es-cooperad C'(F/";\B)
on which the Grothendieck-Teichmiiller group acts (contravariantly). In short, this
cooperad is formed by taking continuous duals of the simplicial complexes naturally
associated to the groupoids PaB(r). In the general introduction of this work, we
mention that we have another small model of the little 2-discs operad Dy formed
by the cochain complex of certain Lie algebras, the Drinfeld-Kohno Lie algebras.
These Lie algebras actually represent an infinitesimal counterpart of the structures
defined by the pure braid groups. We also use this model to define appropriate
approximations of the parenthesized braid operad.

We obtain:

THEOREM B. Let Qo be a cofibrant and fibrant replacement of the cosimpli-
cial Hopf cooperad Singg(D2) (or of any model of cosimplicial Hopf Es-cooperad).
The homotopy automorphism space associated to this cooperad has trivial homotopy

groups @
T (hAu‘ti HopfOp§ (Q2>) =0

in dimension x >0, and the action of the Grothendieck-Teichmiiller group GTl(Q)
on parenthesized braids lifts to an isomorphism

GTl(Q)Op i> 7-‘-O(hAUtiﬂ{opf(‘)pi (Q2))

in dimension x = 0.

The assertions of this theorem have been foreseen by M. Kontsevich in [104].
First results in the direction of Theorem B also occur in articles of D. Tamarkin [170]
and T. Willwacher [179]. But these authors deal with operads within the category
of differential graded modules, forgetting about Hopf structures, and their result
actually give a stable version (in the sense of homotopy theory) of our statements.
The definition of a setting, where we can combine a model for operadic structures
and a commutative algebra model for the topology underlying our objects, is a
new contribution of this monograph. The proof of Theorem B in this context is
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also a new outcome of our work, like the result of Theorem A. In fact, we deduce
Theorem A from the statement of Theorem B, by using our rational homotopy
theory of operads.

Recall that FEs-operads only give the second layer of a full sequence of homotopy
structures, ranging from FE;, fully homotopy associative but non-commutative, up
to F, fully homotopy associative and commutative. The group of homotopy
automorphism classes of Fj-operads can easily be determined, but the result is
trivial in this case. The group of homotopy automorphisms of an F..-operad is
trivial too (and so does the group of homotopy automorphisms of an F..-cooperad).
The open question is to define analogues of the Grothendieck-Teichmiiller group for
FE,,-operads when 2 < n < oo.

To prove our theorem, we adapt constructions of [33, 35] in order to form a
spectral sequence E? = H*(Hop£Dfm( , (H*(A),H*(B))*) = m(Map, 5¢opr0pe (A B))
computing the homotopy of mapping spaces in the category of cosimplicial Hopf
cooperads Map,. 5¢o,rope (A, B) from the cohomology of a deformation complex of
graded Hopf cooperads. For the cohomology of the little 2-discs operad H*(Ds),
the cohomology of this Hopf deformation complex vanishes in degree * > 0 and
is identified with a graded version of the Grothendieck-Teichmiiller Lie algebra
grt in degree * = 0. We check that all classes of degree * = 0 in the E*-term
of our spectral sequence are hit by an actual homotopy automorphism, coming
from the Grothendieck-Teichmiiller group, to conclude that the spectral sequence
degenerates at E%-stage and to obtain the result of our theorem.

As the reader sees, the proof of our result requires the complete setting up of
new theories, like the definition of a model for the rational homotopy of topological
operads. This issue was our first motivation to write a full monograph. Besides,
for mathematicians coming from other domains and graduate students, we have
wished to give a comprehensive introduction to our subject, heading to our main
theorems as straight as possible and with minimal background.

We heavily use the formalism of Quillen’s model categories [143] which we ap-
ply to operads in order to form our model for the rational homotopy of topological
operads. For background material on Quillen’s model categories, we rely on the
modern references: Hirschhorn [88] and Hovey [89]. For rational homotopy the-
ory, we refer to Bousfield-Gugenheim’ memoir [34] which involves a model category
approach close to our needs, and to the book [54] for a more comprehensive in-
troduction of the subject. We also refer to Sullivan’s seminal article [166] for the
applications of rational homotopy theory to the study of homotopy automorphisms
of spaces.

We give a comprehensive introduction to these subjects before tackling our
own constructions. We first explain the connections between little 2-discs oper-
ads, braided operads, and Grothendieck-Teichmiiller theory, as they arise from the
works of Fiedorowicz [56], Tamarkin [170, 171], and Kontsevich [104]. We give a
comprehensive account of these topics in the first volume of this monograph, after
an introduction to the general theory of operads. We address the applications of
deformation complexes to operads in the second volume, after a comprehensive in-
troduction to the methods of homotopical algebra, the rational homotopy theory,
and the definition of our model for the rational homotopy of operads. We com-
plete the proof of our main results afterwards, in the concluding part of the second
volume.
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I. From operads to Grothendieck-Teichmiiller groups. The first volume
of this work includes a comprehensive introduction to the fundamental concepts of
operad theory, a survey chapter on little discs and FE,,-operads, a detailed study of
the connections between little 2-discs and braids, an introduction to the theory of
Hopf algebras and the Malcev completion of groups, and a report on the definition
of the Grothendieck-Teichmiiller group from the viewpoint of the theory of algebraic
operads. We conclude this part with the definition of a map from the pro-unipotent
Grothendieck-Teichmiiller group towards the group of homotopy automorphism
classes of the rationalization of the little 2-disc operad. The proof that this map
defines an isomorphism gives the subject matter of the second volume.

Part 0. The general theory of operads. We first give an account on the
general theory of operads. We devote this preliminary part of the volume to this
purpose.

Chapter 1. The basic concepts of the theory of operads. In this chapter, we
explain the definition of the notion of an operad (§1.1), we examine the application
of usual categorical constructions to operads (§1.2), and we study the categories
of algebras associated to operads (§1.3). In an appendix section (§1.4), we also
recall the definition of particular instances of colimits (filtered colimits and reflexive
coequalizers) which we heavily use in the operad context.

Chapter 2. Operads in symmetric monoidal categories. The second chapter
of the part is devoted to recollections on symmetric monoidal category concepts
and their applications to operads. We examine the definition of operads in general
symmetric monoidal categories first (§2.1). We address the definition of operads in
counitary cocommutative coalgebras as instances of the general notion of an operad
in a symmetric monoidal category afterwards (§2.2).

We use the expression of a Hopf operad to refer to this category of operads
in counitary cocommutative coalgebras. The Hopf cooperads, considered in the
summary of our mathematical objectives, are the dual structures of these objects.

We heavily use the notion of an algebra and of a coalgebra in a symmet-
ric monoidal category throughout this chapter, and we devote a preliminary sec-
tion (§2.0) to an introduction of this subject. We also devote an appendix (§2.3)
to recollections on various notions of functors associated to symmetric monoidal
categories.

Chapter 3. The definition of operadic composition structures revisited. We ac-
tually have several equivalent definitions for the notion of an operad. In §1, we just
recalled May’s definition, which is perfectly well suited for an introduction of the
subject and for the study of algebras associated to operads, but to work with op-
erads themselves, we need another definition, giving more insights into the internal

xix
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structures of our objects, and we devote this third chapter to this matter. Recall
that an operad intuitively consists of a full collection of operations associated with a
category of algebras. In a first step (§3.1), we examine the multiplicative structure
which models the composition of operations in an operad, and we check that this
multiplicative structure is, according to an observation of M. Markl, fully deter-
mined by composition operations on two factors, usually called partial composition
products in the operad literature. In a second part (§§3.2-3.4), we explain a reduced
definition of operads that govern algebra structures equipped with a prescribed unit
operation (the unitary operads).

In general, we assume that an operad consists of a sequence of terms P(r),
indexed by non-negative integers r € N, and whose elements intuitively represent
operations with r inputs indexed by the ordinal r = {1 < --- < r}. To complete
the account of this third chapter, we explain an extension of the definition of an
operad where terms P(r) indexed by arbitrary finite sets r = {41,...,%,} are con-
sidered (§3.5). In general, we can use bijections {1 < --- < 7} = {iy,...,i,} to
make the indexing by an arbitrary finite set {i1,...,i,} equivalent to an indexing
by an ordinal {1 < --- < r}. Nevertheless, certain constructions on operads pro-
duce operations with no canonical input numbering, and the extension of the input
indexing to arbitrary finite sets becomes useful in this case. (The construction of
the free operad in §II.A gives a motivating application of this concept.)

Part 1. Braids and Es-operads. The main purpose of this part is to explain
the general definition of an F,-operad, starting with the model of the little n-discs,
and in the case n = 2, to study the connection between Artin’s braid groups
and FEs-operads.

Chapter 4. The little discs model of E,-operads. This chapter includes: an in-
troductory section on the definition of little n-discs operads and E,,-operads (§4.1);
a survey section on the computation of the cohomology and homology of the little
n-discs operads (§4.2); an outlook section, where we give an overview of several
variants of the little discs operads (§4.3); and an appendix section (§4.4), where we
fix some conventions on graded modules.

Chapter 5. Braids and the recognition of Eg-operads. This chapter includes:
an introductory section on basic concepts of Artin’s braid theory (§5.0); an account
on Fiedorowicz’s definition of models of Fs-operads from contractible operads en-
dowed with an action of braid groups (§5.1); the definition of the colored braid
operad, an operad in groupoids whose classifying spaces give a working model of
an Fy-operad (§5.2); a section on the fundamental groupoid of topological operads,
where we reinterpret the definition of the colored braid operad from a topologi-
cal viewpoint (§5.3); and an outlook section on the recognition of E,-operads for
n > 2 (§5.4).

Chapter 6. The magma and parenthesized braid operad. In our introductory
chapter, we recall a general correspondence between operads and categories of al-
gebras. In the case of an operad in small categories (or groupoids), like the operad
of colored braids considered in §5, the algebras are objects of the category of small
categories, and our operad therefore governs a class of monoidal structures which
can be associated to a category. The operad of colored braids of §5 encodes the
structure defining a strict braided monoidal category, where we have a tensor prod-
uct which is associative in the strict sense. The main purpose of this chapter is
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to explain the definition of a variant of the colored braid operad, the operad of
parenthesized braids, associated to general braided monoidal category structures.

We first give a definition of an operad governing general monoidal categories
(where the tensor product is associative up to isomorphism) by elaborating on
the classical Mac Lane Coherence Theorem, of which we give an operadic inter-
pretation (§6.1). We address the definition of the operad of parenthesized braids
afterwards (§6.2).

Part 2. Completions and Grothendieck-Teichmiiller groups. The main
goal of this part is to explain the definition of the pro-unipotent Grothendieck-
Teichmiiller group as a group of automorphisms associated to a Malcev completion
of the parenthesized braid operad of §6. We first give a comprehensive survey of the
theory of Hopf algebras, on which we rely for the definition of the Malcev completion
process for groups. We then explain an extension of this Malcev completion to
groupoids and operads, and we devote the concluding chapter of the part to the
study of the Grothendieck-Teichmiiller groups themselves.

Chapter 7. Hopf algebras. This first chapter of the part includes: an intro-
ductory section, where we recall the general definition of a Hopf algebra (§7.1);
comprehensive recollections on the classical structure theorems of the theory of
Hopf algebras, namely the Poincaré-Birkhoff-Witt and the Milnor-Moore Theo-
rem (§7.2); and an in-depth study of the structure of Hopf algebras in complete
filtered modules (§7.3).

Chapter 8. The Malcev completion for groups. This chapter includes: a gen-
eral definition of a category of Malcev complete groups, which makes sense for an
arbitrary coefficient field of characteristic zero (§§8.1-8.2); a study of the Malcev
completion of free groups and of groups defined by generators and relations (§8.3),
and a proof of the identity between our category of Malcev complete groups and
the category of uniquely divisible pro-nilpotent groups in the rational coefficient
case (8.4).

Chapter 9. The Malcev completion for groupoids and operads. The Hopf al-
gebras of §7 can be identified with group objects in the category of counitary
cocommutative algebras. In this chapter, we introduce a generalization of this
notion (§9.1) in order to extend the Malcev completion process of the previous
chapter from groups to groupoids (§9.2). Then we check that this Malcev comple-
tion functor on groupoids preserves symmetric monoidal category structures, and
as a consequence, gives rise to a Malcev completion functor on the category of
operads in groupoids (§9.3).

Chapter 10. The definition of the Grothendieck-Teichmdiiller group. We give an
operadic definition of the Grothendieck-Teichmiiller group in this chapter. In the
first instance (§10.1), we review the definition of the pro-unipotent group GT*(Q),
considered in the statement of our main theorem in the foreword. We precisely
prove that this group, as defined by V. Drinfeld, can be identified with a group
of operad automorphisms associated to the Malcev completion of the operad of
parenthesized braids of §6. In a second step (§10.2), we revisit the definition of
the torsor of Drinfeld’s associators, which we regard as a set of operad isomor-
phisms connecting the operad of parenthesized braids to an infinitesimal version
of this operad, the operad of chord diagram, of which we also give the detailed
definition. The expression of chord diagram, in this context, refers to a graphical
representation of monomials occurring in the universal enveloping algebras of the
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Drinfeld-Kohno Lie algebras. To complete our account, we revisit the definition of
a graded version of the Grothendieck-Teichmiiller group GRTI(Q) also introduced
by V. Drinfeld in addition to the pro-unipotent group G Tl(Q). We precisely check
that this group GRT'! (Q) is nothing but the group of automorphisms of the chord
diagram operad (§10.3).

We conclude the chapter with an overview of the definition of the Knizhnik-
Zmolodchikov associator, the first instance of an associator effectively constructed
in the literature, which was also introduced by V. Drinfeld in his study of the
Grothendieck-Teichmiiller group (§10.4).

Recapitulation and outlook. The main purpose of this short part is to recap
the statements established in this volume in view towards the achievement of our
main mathematical objective, the setting up of a homotopy interpretation of the
Grothendieck-Teichmiiller group.

The homotopy interpretation of the Grothendieck-Teichmiiller group. We mainly
make explicit the map from the pro-unipotent Grothendieck-Teichmiiller group to-
wards the group of homotopy automorphisms associated to a rational model of
Es-operad. The definition of the Grothendieck-Teichmiiller group in §10 is purely
algebraic. We just apply the usual classifying space construction and the interpre-
tation of the little 2-discs spaces as Eilenberg-Mac Lane spaces associated to the
pure braid groups in order to go back to the topological setting. We need more
background on the homotopy of operads in order to prove that our mapping gives
all homotopy classes of homotopy automorphisms associated to the rationalization
of Es-operads. This subject matter is the purpose of the second volume.

The Grothendieck program. To conclude volume I, we also provide a brief in-
troduction to the Grothendieck program in Galois theory, and an overview of the
literature about the connections between Grothendieck-Teichmiiller groups, motivic
Galois groups, and polyzetas.

II. Homotopy of operads and deformation complexes. In this second
volume, we set up general methods for the study of the (rational) homotopy of
operads in spaces, and we give the proof of our main result: the pro-unipotent
Grothendieck-Teichmiiller group is isomorphic to the group of homotopy automor-
phism classes of the rationalization of the little 2-disc operad.

Part 0. Homotopical algebra methods. We first provide an introduction
to fundamental concepts of the theory of model categories, the formalism introduced
by Quillen to give a sense to the notion of a homotopy and of a homotopy category
in a general setting.

Chapter 1. Model categories and homotopy categories. The first chapter of this
part includes: an introductory section about the problem of defining homotopy cat-
egories (§1.0); a comprehensive account on the axioms of model categories (§1.1);
the definition of the homotopy category of a model category (§1.2); a study of map-
ping spaces and homotopy automorphism spaces in the setting of model categories
(§1.3); and an introduction to the application of model categories in the operadic
context (§1.4).

Chapter 2. Cofibrantly generated model categories. This chapter is devoted to
the notion of a cofibrantly generated model category, an abstract setting where
we have an analogue of the cell approximations of topology. The chapter in-
cludes: a section about the abstract notion of a cell complex in general model
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categories (§2.1); a section about the idea of cofibrant generation, which elaborates
on the model category axioms and gives an effective approach for the definition of
model category structures (§2.2); an account on the application of cofibrantly gen-
erated model structures for the definition of model structures by adjunction from
a reference model category (§2.3).

Part 1. The rational homotopy of operads. The aim of this part is to give
a detailed proof of the definition of a model structure on the category of operads in
simplicial sets, and to explain the definition of a model for the rational homotopy
of operads. For our purpose, we also revisit the definition of the classical Sullivan
model for the rational homotopy of spaces.

Chapter 3. Models for the homotopy of operads in simplicial sets. To start
with, we address the definition of a suitable model structure for the category of
operads in simplicial sets. We actually consider two model structures. The first
model structure, the one usually given in the literature, will be used in the context
of non-unitary operads (operads governing non-unitary algebra structures). The
second one, which we introduce in this monograph and call the Reedy model struc-
ture, is more appropriate for unitary operads (operads governing algebras with
unit), and will be used in this context. We define the model structure on non-
unitary operads first (§§3.1-3.2) and the Reedy model structure on unitary operads
afterwards (§§3.3-3.4). In each case, we use a general adjunction process (recalled
in §2.3) to deduce the definition of our model structure on operads from the defi-
nition of a model structure on a category of collections underlying our operads.

To complete the account of this chapter, we explain the application of a general
construction of simplicial resolutions, the cotriple resolution, for the definition of
cofibrant replacements in the category of operads in simplicial sets (§3.5).

Chapter 4. Models for the rational homotopy of spaces. Before studying the
rational homotopy operads, we revisit the definition of the usual Sullivan model
for the rational homotopy of spaces. The model of a space consists of a differential
graded commutative algebra, yielded by a version with rational coefficients of the
classical de Rham cochain complex of differential forms. In order to extend the
rational homotopy of spaces to operads, we need a cosimplicial analogue of the
Sullivan model, and we therefore study in detail a cosimplicial version of Sullivans’s
theory.

The plan of this chapter accordingly includes: a preliminary section about the
definition of a cofibrantly generated model structure on the category of differential
graded modules (§4.1); comprehensive recollections on (a cosimplicial version of)
the Dold-Kan equivalence, between cosimplicial and differential graded modules,
and the correlative definition of a cofibrantly generated model structure on the
category of cosimplicial modules (§4.2); an account on the Eilenberg-Zilber equiv-
alence, which formalizes the correspondence of symmetric monoidal structures be-
tween the category of cosimplicial modules and the category of differential graded
modules (§4.3); the definition of a model structure on commutative algebras in
differential graded (respectively, cosimplicial) modules by adjunction from the un-
derlying category of differential graded (respectively, cosimplicial) modules (§4.4);
and at last, the application of the model category of cosimplicial commutative al-
gebras to the definition of our model for the rational homotopy of spaces (§4.5).
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Chapter 5. Models for the rational homotopy of operads. The purpose of this
chapter is to define our model for the rational homotopy of operads. Our construc-
tion elaborates on (our cosimplicial version of) the Sullivan model of spaces. To be
explicit, recall that our model of an operad in simplicial sets consists, as we explain
in the description of our mathematical objectives, of a cooperad in the category
of unitary commutative cosimplicial algebras (a cosimplicial Hopf cooperad in our
terminology).

We devote a first section of the chapter to the definition of the notion of a
cooperad in the general setting of symmetric monoidal categories (§5.1). We then
explain the definition of a model structure on the category of cooperads in cosim-
plicial modules (§5.2), on the category of cooperads in unitary commutative cosim-
plicial algebras (§5.3), and we address the definition of an operadic version of the
Sullivan model functor afterwards (§5.4).

The functor from spaces to unitary commutative cosimplicial algebras which
gives our model for the rational homotopy of spaces in §4.5 does not preserve mul-
tiplicative structures and, as a consequence, does not carry operads to cooperads.
This functor preserves multiplicative structures up to homotopy only. The main
purpose of §5.4 is to explain the definition of an operadic upgrade of this cosimpli-
cial algebra functor, a functor which fixes the multiplicativity defects, and which
associates a cooperad in unitary commutative cosimplicial algebras to any operad
in simplicial sets.

We conclude this chapter with an account on the definition of operadic mapping
spaces at the level of our cosimplicial Hopf cooperad model of operads (§5.5).

Chapter 6. Models for the rational homotopy of unitary operads. In §5, we
focus on the study of the rational homotopy of non-unitary operads. The goal
of this sixth chapter is extend our model to unitary operads. For this aim, we
use the Reedy model structure of §3. We address the definition of an analogue of
this Reedy model structure for cooperads first, and we check afterwards that the
functor, which gives our model of non-unitary operads in §5, extends to a homotopy
preserving functor from the Reedy model category of unitary operads in simplicial
sets towards the Reedy model category of unitary Hopf cooperads.

Chapter 7. The rational model of E,-operads. To conclude the study of this
part, we make explicit a cosimplicial Hopf cooperad model of the little 2-discs
operad. We precisely prove that the cochain complexes of the Drinfeld-Kohno
Lie algebras, of which we recalled the idea in the description of our mathematical
objectives, form such a model. We will also explain, by elaborating on ideas of
D. Tamarkin, that this result can be interpreted as a formality statement for our
Sullivan model of the little 2-discs operad. The proof of this formality result relies
on the existence of Drinfeld’s associators. We actually get a mapping from the
set of Drinfeld’s associators to the set of formality weak-equivalences between our
cosimplicial Hopf cooperad model of the little 2-discs operad and the cohomology
of little 2-discs.

We conclude this chapter with a survey of similar formality results, holding
for the higher little discs operads, and which arise from works of Kontsevich and
Lambrechts-Turchin-Volic. We precisely check that the formality weak-equivalences
defined by these authors in the chain complex setting can be upgraded to formality
weak-equivalences for our cosimplicial Hopf cooperad models of operads.
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Part 2. Operadic deformation complexes. This part of the volume is
devoted to a study of deformation complexes. These objects give an approximation
of the operadic mapping spaces which we aim to understand. To begin with, we ex-
plain the definition of cosimplicial operadic deformation complexes, which naturally
occur in cosimplicial decompositions of mapping spaces. Then we explain a general
reduction process with the aim of computing the homology of these complexes.

For the rational homotopy theory of operads, we are naturally lead to study
deformation complexes of Hopf cooperads. But we will study more basic instances
of deformation complexes before tackling this case: in each chapter, we examine
the deformation complex of associative algebras and commutative algebras first,
we address the case of cooperads afterwards, and we only examining the case of
Hopf cooperads, where a commutative algebra and a cooperad structure are mixed
together, at the end of our study.

Chapter 8. Cosimplicial deformation complexes. In this chapter, we address
the definition of cosimplicial deformation complexes: for associative algebras and
commutative algebras; for cooperads; and, at last, for Hopf cooperads. The defor-
mation complex of Hopf cooperads is obtained by putting together the commutative
algebra and cooperad constructions.

Chapter 9. Differential graded reductions. In this chapter, we address the def-
inition of deformation complexes in the differential graded setting. We adopt the
same plan as in the previous chapter: we introduce differential graded deformation
complexes for associative algebras and commutative algebras first, for cooperads af-
terwards, and for Hopf cooperads at last. In each case, associative algebras, commu-
tative algebras, cooperads, and Hopf cooperads, we define a comparison morphism
between the cosimplicial and the differential graded versions of our deformation
complexes. In each case, we prove that our comparison morphism induces an iso
at the cohomology level, and we interpret this result a reduction of the cosimplicial
deformation complexes, which we aim to compute, to differential graded objects.

Chapter 10. Koszul reductions and applications to E, -operads. The deforma-
tion complexes of the Hopf cooperads considered in this book inherit extra weight
decompositions because the commutative algebras defining our Hopf cooperads are
naturally graded, with homogeneous generators in degree 1, and we have an analo-
gous homogeneous structure when we regard the cooperad as a whole. The purpose
of this chapter is to explain that, in good cases, the homology of the deformation
complexes is located in certain top homogeneous components with respect to the
extra weight grading. In this situation, the computation of the homology of our de-
formation complex reduces to the computation of the homology of a small complex,
which is precisely formed from the top components of our weight decomposition.
We explain this process in the context of commutative algebras, operads and co-
operads first, and again, we get the case of Hopf cooperads afterwards, by putting
together the commutative algebra and cooperad constructions.

The reduction to the small homogeneous complex does not give the right result
in all cases. The class of good algebras (respectively, operads, cooperads) for which
this reduction can be applied are called Koszul algebras (respectively, operads,
cooperads) in the literature. Therefore, we coin the term of Koszul reduction to refer
to this second step of our reduction process, occurring after the differential graded
reduction examined in the previous chapter. The cohomology of an FE,-operad
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gives an instance of a Hopf cooperad formed by a sequence of Koszul commutative
algebras, and which is also Koszul as a cooperad.

In the concluding section of the chapter, we prove, by applying the Koszul
reduction, that the deformation complex of the cohomology of little 2-discs, viewed
as a Hopf cooperad, completely collapses in degree > 0. In the next part, we will use
intermediate results on deformation complexes of Fo-operads rather than this latter
outcome, because we need some finer computation to complete the determination
of the homotopy automorphism space of the little 2-discs operad. On the other
hand, the result obtained in the next part implies that all degree 0 classes in the
deformation complex correspond to actual homotopy automorphisms of the little
2-discs operad over the rationals, and this observation is worth recording.

Part 3. Spectral Sequences for operadic mapping spaces. In general,
the deformation complexes studied in the previous part only give, as previously
mentioned, approximations of the mapping and automorphism spaces that one
would like to determine. In this third part of the volume, we explain processes,
encoded by spectral sequences, to determine the homotopy of an automorphism
space from the computation of an associated deformation complex. The general
background of these constructions is not new, but this book is the first work ex-
plicitly dealing with the application of these obstruction spectral sequences to Hopf
cooperads.

Chapter 8. General obstruction theory for operads in spaces. To begin with,
we review a general theory, due to Bousfield and Kan, for the construction of set-
theoretic spectral sequences from cosimplicial spaces. By applying this general
construction in the operad context, we obtain a spectral sequence computing the
homotopy of an operadic mapping space from the cohomology of the operadic de-
formation complexes considered in the previous part. Recall that our homotopy
automorphism spaces consist of invertible connected components of such mapping
spaces.

In the case of an Es-operad, this spectral sequence collapses at the second stage,
because the cohomology of the operadic deformation complex vanishes in degree
> 0 when we take the full Hopf cooperad structure into account, and we can check
that all classes of degree 0 correspond to actual morphisms. This latter verification
requires a technical analysis of the correspondence between classes on the E'-page
of the spectral sequence and morphisms on the abutment. For this aim, we need
another spectral sequence construction which returns, from the second page, the
same outcome as our general spectral sequence. This construction gives the subject
matter of the next chapter.

Chapter 9. The Drinfeld-Kohno tower and the associated spectral sequence.
In §1.5, we explain the definition of models of an Fs-operad from categories of
colored braids. In the rational context, we can use a rationalized version of the
lower central series of braid groups to form a tower of operads with the Malcev
completion of the little 2-discs operad as limit term. This tower of operads gives
rise to a new spectral sequence, which we analyze completely in order to complete
the proof of our result on the homotopy of the space of homotopy automorphisms
of Es-operads.

Outlook. The initial motivation for the study of connections between Gro-
thendieck-Teichmiiller groups and Fs-operads has been provided by works of D.
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Tamarkin and M. Kontsevich on the deformation quantization problem. To con-
clude the book, we will give a short survey of applications of Fs-operads in de-
formation quantization, following the work of these authors, and we will revisit
Tamarkin’s and Kontsevich’s approaches, based on the theory of Drinfeld associ-
ators, for the construction of an action of the Grothendieck-Teichmiiller group on
the moduli space of deformation quantizations. To be more specific, we will give
a homotopy theoretic interpretation of this group action by using our result on
the homotopy automorphisms of Es-operads, and parallel results obtained by T.
Willwacher [179] in the chain complex setting. Then we will give new motivations,
arising from our own works on the cohomology of iterated loop spaces, for further
research on the homotopy automorphisms of E,-operads, where we now consider
any n > 2.

Appendices. The appendices are devoted to the study of the structure of
free operads and cofree cooperads. We crucially use the constructions of these
appendices in our analysis of deformation complexes.

Appendiz A. The construction of free operads. This appendix includes: a com-
prehensive account on the formalism of trees (§A.1), which is heavily used in operad
theory; the definition of treewise tensor objects associated to operads (§A.2); the
construction of free operads, in the general case first (§A.3), in the case of connected
operad structures and unitary operads afterwards (§5A.4-A.5).

Appendiz B. The connected free operad monad. In this appendix, we study
composition structures associated with the free operad functor. To simplify, we
restrict our analysis to connected operads. In §B.1, we introduce a notion of tree
morphism, which we use afterwards, in §§B.2-B.3, to give a description of the
two-fold composite of the free operad functor. The free operad functor inherits a
monad structure, which, in abstract terms, consists of an associative monoid object
structure in the composition category of functors. In §B.4, we give a description
of this monadic multiplication, by using the result of the previous section, and
we prove that the notion of an operad can be defined in terms of the free operad
monad. In the language of category theory, this result asserts that the category
of operads is monadic. To complete the account of this appendix, we also explain
the definition of a simplicial resolution of operads, the cotriple resolution, from the
monad structure of the free operad functor (§B.5).

Appendiz C. The construction of cofree cooperads. In this appendix, we exam-
ine a dualization of the constructions of §§A-B with the aim of giving an explicit
definition of cofree objects in the category of cooperads. In categorical terms, the
dualization process implies the replacement of colimits by limits. This process cre-
ates difficulties since the tensor product, involved in all structure definitions, does
not commute with all limits, and this problem can hardly be overcome in general.
But, under our general connectedness assumption, we still have a simple construc-
tion of the cofree cooperad. In short, we observe that the categorical dualization
can be performed incompletely when we deal with connected structures: we con-
struct our cofree cooperad with the same underlying functor as the free operad, and
with colimits yet, but we provide the obtained object with a cooperad coproduct
structure instead of an operadic composition structure. The crux of our argument
line lies in the observation that the colimits occurring in our construction reduce
to finite coproducts. To be precise, this statement implies that our construction
of the cofree cooperad returns the obvious cofree object when the ground category
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is additive. In general, we still get a structure, which can serve to define cofree
objects, but we do not get a cooperad in the obvious sense of the term.

In order to achieve our construction, we devote a preliminary section to a
thorough analysis of operadic decomposition of trees, which we use in a second
section to define the coproduct structure of the cofree cooperad. Then, to complete
our results, we study a natural comonad structure on the cofree cooperad, dual to
the monad structure considered in §B for the free operad, and we establish the dual
of the result of §B.4 (the category of cooperads is comonadic).

Appendiz D. The construction of cooperad pullbacks. In §§A-C, we study free
operads and cofree cooperads in an absolute setting. The purpose of this short
technical appendix is to give an effective construction of pushouts along morphisms
of free objects in the category of operads, and an effective construction of pullbacks
along morphisms cofree objects in the category of cooperads. We use these con-
structions in the verification of the model category axioms for operads in §3 and
for cooperads in §§5-6.



Foundations and Conventions

The reader is assumed to be familiar with the language of category theory and
to have basic knowledge about fundamental concepts (like adjoint and representable
functors, colimits and limits, categorical duality), which we freely use throughout
this work. The reader is also assumed to be aware on the applications of colim-
its and limits in basic examples of categories (including sets, topological spaces,
and modules). Nonetheless, we will review some specialized topics, like reflexive
coequalizers and filtered colimits, which are considered in applications of category
theory to operads.

We use single script letters (like C, M, ...) as general notation for abstract cat-
egories. We use script expressions (like Mod, As, Op, ...) for particular instances
of categories (like modules, associative algebras, operads, ...). We soon explain
that the formal definition of the higher structures remains the same in any instance
of base category M and essentially depends on a symmetric monoidal structure
given with M. We generally assume that the category M, to which we assign the
role of a base category, is equipped with enriched hom-bifunctors Homy(—, —). We
give more detail recollections on this notion in §§0.12-0.13.

In practice, we take our base category M among the category of sets Set, the
category of simplicial sets 8imp, the category of topological spaces Top, a category
of k-modules Mod (where k refers to a fixed ground ring), or a variant of these
categories. To be precise, besides plain k-modules, we have to consider categories
formed by differential graded modules dg Mod (we usually say dg-modules for short),
graded modules g Mod, simplicial modules s Mod, and cosimplicial modules ¢ Mod.
The first purpose of this preliminary chapter is to quickly recall the definition of
these categories (at least, in order to fix our conventions). By the way, we also recall
the definition of the category of simplicial sets 8imp, which we use along with the
familiar category of topological spaces Top.

To complete our account, we will recall the general definition of a symmetric
mononoidal category, and we explain some general constructions attached to this
structure. The explicit definition of the monoidal category structure on dg-modules,
simplicial modules, cosimplicial modules, is put off until we tackle the applications
of these categories.

In the module context, we assume that a ground ring K is given and fixed once
and for all. In certain constructions, we have to assume that this ground ring K is
a field of characteristic 0.

0.1. Graded and differential graded modules. The category of differential graded
modules dg Mod (dg-modules for short) consists of k-modules equipped with a
decomposition K = @, ., Ky, running over Z, and with a morphism ¢ : K — K,
the differential of K, such that 62 = 0 and 6(K,,) C K,,_1, for all n € Z. Naturally,

XXix
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a morphism of dg-modules is a morphism of k-modules f : K — L which commutes
with differentials and satisfies f(K,) C Ly, for all n € Z.

In textbooks of homological algebra (like [176]), authors mostly deal with the
equivalent notion of chain complex, of which components are split off into sequences
of k-modules K,, connected by the differentials ¢ : K,, — K, _1 rather than being
put together in a single object. The idea of a dg-module (used for instance in [121])
is more natural for our purpose and is also more widely used in homotopy the-
ory. Our convention is to keep the terminology of chain complex for specific con-
structions, like the normalized chain complex of simplicial sets, or the deformation
complex attached an algebraic structure.

The category of graded modules g Mod consists of k-modules equipped with a
decomposition K = P, ., K, running over Z, but no differential. A morphism of
graded modules is a morphism of k-modules f : K — L such that f(K,) C L,, for
all n € Z.

We have an obvious functor (—), : dgMod — g Mod defined by retaining the
single graded structure of dg-modules and forgetting about the differential. We
consider the underlying graded module of dg-modules, which this forgetful process
formalizes, when we address the definition of quasi-free objects. The other way
round, we can embed the category of graded modules g Mod into the category of
dg-modules dg Mod, by viewing a graded module as a dg-modules equipped with a
trivial differential § = 0. We use this identification at various places.

Recall that the homology of a dg-module K is defined by the quotient k-module
H.(K) = ker 6/ im ¢ which inherits a natural grading from K. The homology defines
a functor Hy(—) : dg Mod — gMod. The morphisms of dg-modules which induce an
isomorphism in homology are the weak-equivalences of the category of dg-modules.
The expression of weak-equivalence actually refers to the general formalism of model
categories. In most references of homological algebra, authors use the terminology
of quasi-isomorphism rather than this expression of weak-equivalence.

We generally use the mark = to refer to the class of weak-equivalences in
a model category (see §II.1) and we will naturally use the same notation in the
dg-module context.

0.2. Degrees and signs of dg-algebra. The component K,, of a dg-module (re-
spectively, graded module) K defines the homogeneous component of degree n
of K. To specify the degree of a homogeneous element = € K,,, we use the expres-
sion deg(x) = n. We adopt the standard convention of dg-algebra to associate a
sign (—1)dee(@)dee(¥) to each transposition of homogeneous elements (z,%). We do
not specify such a sign in general and we simply use the notation + to refer to it.
We explain soon that the introduction of these signs is forced by the definition of
the symmetry isomorphism of the tensor product of dg-modules.

We usually consider lower graded dg-modules, but we also have a standard
notion of dg-module equipped with a decomposition in upper graded components
K =@, .7 K" so that the differential satisfies §(K™) C K™*!. Certain construc-
tions (like the duality of k-modules and the conormalized complex of cosimplicial
spaces) naturally produce upper graded dg-modules. In what follows, we apply the
relation K_,, = K™ to identify an upper graded with a lower graded dg-module.

0.3. Simplicial and cosimplicial objects, simplicial and cosimplicial modules.
The simplicial category A, which models the structure of simplicial and cosimplicial
objects, is defined by the collection of finite ordinals n = {0 < --- < n}, n € N, as
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objects together with the non-decreasing maps u: {0 < --- <m} > {0 <--- < n}
as morphisms. In short, a simplicial object X in a category € is a contravariant
functor X : A°? — C that assigns an object X, € C to each n € N and a morphism
u* : X, — X, to each non-decreasing map u. Dually, a cosimplicial object in € is
a covariant functor X : A — C which assigns an object X™ € € to each n € N and
a morphism wu, : X" — X" to each non-decreasing map u. Naturally, we define a
morphism of simplicial objects f : X — Y (and a morphism of cosimplicial object
similarly) as a sequence of morphisms f : X,, — Y,, in the ambient category €
commuting with the action of simplicial operators v* on X and Y.

We generally use the expression s C to denote the category of simplicial objects
in a given ambient category C and the expression ¢ C for the category of cosimplicial
objects in €. We only use a specific notation 8imp for the category of simplicial
sets, which formally consists of the simplicial objects in the category of sets.

The simplices A", n € N, are the fundamental examples of simplicial sets,
defined, as simplicial objects, by the representable functors Mora(—,n), where we
use the notation Mora (m,n) to refer to the morphism sets of the simplicial cate-
gory A. The collection of n-simplices A", n € N, forms itself a cosimplicial object
in the category of simplicial sets, with the covariant action of non-decreasing maps
us : A™ — A™ defined by the composition on the target in the morphism set
representation of A”™.

In the case of a simplicial set X, an element o € X,, is called an n-dimensional
simplex (or more simply, an n-simplex) in X. The definition of the n-simplex A™ as
a morphism set A™ = Mora (—, n) implies that we have the relation Morg,,, (A", X) =
X, for any simplicial set X € 8imp, where we use the notation Morg;m,(—, —) for
the morphism set of the category Simp. To make this correspondence explicit, we
consider the n-simplex, denoted by A, € (A™),, which corresponds to the iden-
tity of the object n in the simplicial category A. The morphism o, : A™ — X,
associated to any n-simplex o € X,,, is precisely characterized by the relation
0:(Ay) =o0.

The topological n-simplices A}, = {(to,...,t,)[0 <t; <1, to+ -+ 1, =1}
form another fundamental instance of a cosimplicial object, defined in the category
of topological spaces. The cosimplicial structure map wu, : A" — AP  associ-

top top
ated to any u € Mora(m,n) assigns an element (s, ...,s,) € A}l to the point
(to,....tn) € A, such that t; =37 ) _; sk

0.4. Faces and degeneracies in a simplicial object. The maps d* : {0 < --- <
n—1} = {0<---<n},i=0,...,n, such that

; T, for x < i,
(a) d*(x) = .
x+1, forxz>i,

and the maps s/ : {0 <---<n} = {0<---<n+1}, j=0,...,n, such that

. f < 4
(b) Fa)y=4" o=
xz—1, forz>j,

generate the simplicial category in the sense that any non-decreasing map u : {0 <
coo<m} = {0 < -+ < n} can be written as a composite of maps of that form.
Moreover, any relation between these generating morphisms can be deduced from
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generating relations
dd = d'd L, for i < j,
disi=' fori<j,
(c) sTdt =< id, fori=j,j+1,
di=tsi, fori> j,
s1st =57 fori < j.

The structure of a cosimplicial object is, as a consequence, fully determined by
a sequence of objects X™ € € together with morphisms d’ : X" ' — X", i =
0,...,n, and 8/ : X" — X" j = 0,...,n, for which these relations (c) hold.
The morphisms d* : X"~' — X" i = 0,...,n, which represent the image of the
maps d’ under the functor defined by X, are the coface operators of the cosimplicial
object X (in general, we simply say the cofaces of X). The morphisms s/ : X"+ —
X", j=0,...,n, which represent the image of the maps s/ are the codegeneracy
operators of X (or, more simply, the codegeneracies of X).

Dually, the structure of a simplicial object is fully determined by a sequence
of objects X, € C together with morphisms d; : X,, - X,,—1, ¢ =0,...,n, and
sj: Xp = Xny1, 7 =0,...,n, for which relations

didj = dj—ldia for i < 7,

ijldia for i < 7,
(d) disj = § id, fori=75,5+1,
dei—h for i > 7,

SiSj = Sj+1Si, for 4 S j

opposite to (¢) hold. The morphisms d; : X,, = X,,—1, 4 =0, ..., n, which represent
the image of the maps d’ under the contravariant functor defined by X, are the
face operators of the simplicial object X, and the morphisms s; : X,, = Xy41,
j =0,...,n, which represent the image of the maps s7, are the degeneracy operators
of X.

0.5. Topological realization of simplicial sets and singular complex of topolog-
ical spaces. Recall that a topological space |K]|, traditionally called the geometric
realization of K, is naturally associated to each simplicial set K € Simp. This
space is defined by the coend

neA
|K\:/ K, x A}

top*

where each set K, is viewed as a discrete space and we consider the topological n-
simplices Af,, (of which definition is recalled in §0.3). The coend process amounts
to performing a quotient of the coproduct [[,, Kn x A%, = [T, {[1,ex, {0} x AL}

top top
under relations of the form

(u (a), (to, - -y tm)) = (0, us(to, - -, tm)),

for u € Mora(m,n), o € K,, and (to,...,tm,) € AP . The definition of the

top-*
map u. : Ay, — Af, ) associated to each u € Mora(m,n) involves the cosimplicial

structure of the topological n-simplices A7 . One easily checks that the realization

of the n-simplex A" = Mora (—, n) is identified with the topological n-simplex Af, .
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In the converse direction, we can use the singular complex construction to
associate a simplicial set Sing,(X) to any topological space X. This simplicial set
Sing,(X) consists in dimension n of the set of continuous maps o : A}, — X
going from the topological n-simplex Af,, to X. The composition of simplices
o A}, — X with the cosimplicial operator u, : A}, — Af, associated to any
u € Mora(m,n) yields a map u* : Sing, (X) — Sing,,(X) so that the collection of
sets Sing, (X) = Morg,,(Af,,, X), n € N, inherits a natural simplicial structure.

The geometric realization | — | : K — |K]| obviously gives a functor | — | :
S8imp — Top. The singular complex construction gives a functor in the converse
direction Sing, : Top — S8imp, which is actually a right adjoint of the geometric
realization functor | — | : Simp — Top (see [78, §1.2]).

0.6. Simplicial modules, cosimplicial modules, and homology. The category of
simplicial modules s Mod is the category of simplicial objects in the category of k-
modules Mod. Thus, a simplicial module K can be defined either as contravariant
functors from the simplicial category A to the category of k-modules Mod, or,
equivalently, as collections of k-modules K, n € N equipped with faces d; : K,, —
K,_1,1=0,...,n, and degeneracies s; : K, = K,41, j = 0,...,n, satisfying the
simplicial relations.

The category of cosimplicial modules ¢ Mod similarly consists of the cosimpli-
cial objects in K-modules.

To any simplicial module K, we associate a dg-module N, (K), called the nor-
malized complex of K, and defined by the quotient N,,(K) = K,,/soK,,—1 + -+ +
Sn—1Kp—1 in degree n, together with the differential § : N,,(K) — N,,_1(K) such
that 6 = Y7 ,(—1)d;. This normalized chain complex construction naturally gives
a functor N, : sMod — dgMod. The homology of a simplicial module K is de-
fined as the homology of the associated normalized complex N, (K). For simplicity,
we use the same notation for the homology functor on simplicial modules and on
dg-modules. Hence, we may write H, (K) = H,(N.(K)), for any K € s Mod.

0.7. Normalized complex and homology of simplicial sets. We will consider the
functor k[—] : Simp — s Mod which maps a simplicial set X to the simplicial module
K[X] generated by the set X,, in dimension n, for any n € N, and which inherits an
obvious simplicial structure. We also have a contravariant functor A® : 8imp°? —
¢Mod which maps a simplicial set X to the cosimplicial module A*(X) = kX ,
dual to k[X], and defined in dimension n by the collection of set-theoretic maps
u: X, — Kk

We use the notation N,(X) for the normalized complex of the simplicial k-
module k[X] associated to a simplicial set X. We retrieve the classical homology
of simplicial sets by considering the homology of these simplicial modules. We also
use the notation H,(—) for the homology functor on simplicial sets, and we may
write H,(X) = Ho(N. (X)), for any X € Simp.

The normalized complexes of the simplices A™, n € N, naturally form a simpli-
cial object in the category of dg-modules N, (A®). For a given simplicial module K,
we have a coend formula

neA
N*(K):/ K, @ N.(A™),

and the normalized complex construction of §0.6 can be regarded as a dg-module
version of the topological realization of simplicial sets.
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0.8. Symmetric monoidal categories and the structure of base categories. In the
introduction of this chapter, we mention that our base categories M = Set, Top, Mod, . ..
are all instances of a symmetric monoidal categories.

By definition, a symmetric monoidal category is a category M equipped with a
tensor product ® : M x M — M satisfying natural unit, associativity and symmetry
relations. These relations are expressed by structure isomorphisms which have to
be given along with the category:

(a) The unit is given by an object 1 € M together with a natural isomorphism
X®1~X~1®X, associated to each X € M.

(b) The associativity relation is given by a natural isomorphism (X®Y)®Z ~
X ® (Y ® Z), associated to every triple of objects X,Y,Z € M, satisfying
a pentagonal coherence relation (Mac Lane’s pentagon relation) and two
additional triangular coherence relations with respect to the unit isomor-
phism (we refer to [122, §XI.1] for the expression of these constraints).

(¢) The symmetry relation is given by a symmetry isomorphism X ® Y ~
Y ® X, associated to every pair of objects X,Y &€ M, satisfying hexag-
onal coherence relations (Drinfeld’s hexagon relation) and two additional
triangular coherence relations with respect to the unit isomorphism (see
again [122, §X1.1] for details).

In the case of k-modules Mod, the monoidal structure is given by the usual ten-
sor product of k-modules, taken over the ground ring, together with the ground ring
itself as unit object. The definition of the tensor product of dg-modules, simplicial
modules, cosimplicial modules is reviewed later on, when we tackle applications of
these ground categories. In the category of sets Set (respectively, topological spaces
Top, simplicial sets 8imp), the tensor product is simply given by the cartesian prod-
uct ® = X together with the one-point set 1 = pt as unit object. In what follows,
we also use the general notation * for the terminal object of a category, and we may
write pt = * when we want to stress that the one point-set actually represents the
terminal object of the category of sets (respectively, topological spaces, or simplicial
sets).

The unit object and the isomorphisms that come with the unit, associativity
and commutativity relations of a symmetric monoidal category are part of the
structure. Therefore, these morphisms have, in principle, to be given with the
definition. But, in our examples, we can assume that the unit and associativity
relations are identities, and usually, we just make explicit the definition of the
symmetry isomorphism ¢ = ¢(4,B) : A@ B = B® A.

0.9. Tensor products and colimits. In many constructions, we consider sym-
metric monoidal categories M equipped with colimits and limits and so that the
tensor product of M preserves colimits on each side. To be explicit, we use:

(a) The canonical morphism colimyeg(Xo ® Y) — (colimaeg Xo) ® Y associ-
ated to a diagram X, € M, a € J, is an iso for all Y € M, and similarly as
regards the canonical morphism colimgeg(X ® Y3) = X ® (colimgey Y3)
associated to a diagram Yz € M, B € J, where X is now a fixed object

of M.
This requirement is fulfilled by all categories which we take as base categories M =
Set,Top,Mod, . .. and is required for the application of categorical constructions to

operads and algebras over operads. The category of coalgebras, of which we recall
the definition soon, satisfies (a) whenever the base category does, because colimits
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of coalgebras are created in the underlying base category (see §1.2.0.3). On the
other hand, we will also consider instances of categories which do not satisfy this
colimit condition (a).

0.10. Symmetric groups and tensor permutations. We use the notation X, for
the group of permutations of {1,...,r}. Depending on the context, we regard a
permutation s € X, as a bijection s : {1,...,r} — {1,...,7}, or as a sequence
s = (s(1),...,s(r)), equivalent to an ordering on the set {1,...,r}. In any case,
we will use the notation id = id, for the identity permutation in 3,.. We drop the
lower-script r, indicating the permutation cardinal, when we do not need to specify
this information.

In a symmetric monoidal category equipped with a strictly associative tensor
product, we can form r-fold tensor products T'= X; ® - -- ® X,. without care, and
drop unnecessary bracketings. Then we also have a natural isomorphism

X1®®Xri>Xé(1)®®Xs(7)a

associated to each permutation s € ¥, and so that the standard unit and associa-
tivity relations id* = id and t*s* = (st)* hold. To construct this action, we use
the classical presentation of X,., with the transpositions t; = (i ¢ + 1) as generating
elements, and the identities

(a) t? =id, fori=1,...,n—1,
(b) tit]‘:t]‘ti, for i,jzl,...,ﬂ—l, with |Z—]|22,
(C) titi-i-lti = ti—i—ltiti—i-l, for i = 1, ey — 2,

as generating relations. To begin with, we assign the morphism
X109 0X0Xm® X, X190 0XineX;® @ X,

induced by the symmetry isomorphism ¢(X;, X;41) : X; @ X411 = X1 ® X,
to the transposition ¢; = (i ¢ + 1). The axioms of symmetric monoidal categories
imply that these morphisms satisfy the relations (a-c) attached to the elementary
transpositions in ¥,.. Hence, we can use the presentation of ¥,. to coherently extend
the action of the transpositions ¢; € ¥, on tensor powers to the whole symmetric
group.

0.11. Tensor products over arbitrary finite sets. In our constructions, we often
deal with tensor products ®ike£ Xi,, running over an arbitrary set r = {i1,..., i}
(not necessarily equipped with a canonical ordering). In fact, we effectively realize
such a tensor product & X, as an ordered tensor product X 1) ® -+ ® Xy,

ik Er
which we associate to the choice of a bijection u : {1,...,7} = r. The tensor
products associated to different bijection choices u,v : {1,...,r} = r differ by a

canonical isomorphism s* : X1y @ -+ @ Xy = Xop1) ® -+ @ Xy(y Which we
determine from the permutation s € ¥, such that v = u-s, by using the just defined
action of symmetric groups on tensors.

In principle, the tensor product ®ik€r X, is only defined up to these canonical
isomorphisms. However, we can adapt the general Kan extension process to make
this construction more rigid, at least, when we work in a symmetric monoidal cat-
egory M equipped with fixed colimit functors. Formally, we define the unordered
tensor product as the colimit &) X, = colimu Xou1) ® - @ Xy

ir€r {l,..r}—r

running over the category formed by the bijections w : {1,...,r} =5 r as objects,
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and the permutations s € ¥, such that v = u - s as morphisms. The colimit pro-
cess automatically performs the identification of the tensors associated to different
bijection choices.

This construction can be regarded as an instance of a Kan extension process
which we will apply to structures, called symmetric sequences, underlying operads
(see §1.3.5).

0.12. Enriched category structures of base categories. The morphism sets of a
category C will always be denoted by More(X,Y). But many categories that we

consider €, including the base categories themselves M = Set, Top, Mod, . .., come
equipped with a hom-bifunctor Home (—, —) : €% x € — M, with values in one of our
base symmetric monoidal categories M = Set, Top, Mod, ..., and which provides C

with an enriched category structure.

The structure of an enriched category includes operations that extend the clas-
sical composition structure attached to the morphism sets of plain categories. In
the usual setting, the units of the composition are given by identity morphisms
idx € More(X, X) associated to all objects X € €. In the case of an enriched
category, the units of the composition are morphisms

(a) idxllﬁHOme(X,X),

given for all objects X € €, and defined on the tensor unit of the base category 1.
The composition products are morphisms

(b) o : Home(Y, Z) ® Home(X,Y) — Home (X, Y),

given for all XY, Z € C, and where we consider the tensor product of hom-objects
in the base category instead of the cartesian product of morphims sets. These com-
position products are assumed to satisfy obvious analogues, now expressed in terms
of commutative diagrams, of the unit and associativity relations of the composition
in plain categories. Each of our base categories M = Set, Top, Mod, . .. is enriched
over itself. In the case of sets Set, we trivially take Homget(—, —) = Morset(—, —).
In the case of topological spaces Top, the hom-objects Homg,,(X,Y") are given by
the morphism sets Morg,,(X,Y) equipped with the usual compact-open topology.
In the case of modules Mod, the hom-objects Homygoq(A, B) are similarly given by
the morphism sets of the category Mory,q(A, B), which come naturally equipped
with a module structure (the usual one). In our remaining fundamental examples
M = Simp, dgMod, ..., the hom-objects Homyc(A, B) consist of maps satisfying
some mild requirements, extending the definition of a morphism in these cate-
gories. We give the explicit definition of these hom-objects later on, when we begin
to use these categories.

In all these examples, we actually take hom-objects which fit a adjunction re-
lation with respect to the symmetric monoidal structure (authors say that our base
categories are instances of closed monoidal categories). We review this connection
in a next paragraph.

0.13. The general notion of an enriched category, morphisms and homomor-
phisms. In general, an enriched category structure is given as an extra structure as-
sociated with a plain category €, and we deal with both morphism sets More(—, —),
from which the category C is basically defined, and hom-objects Home(—, —), with
values in a given symmetric monoidal category M (not necessarily a base cate-
gory). We use an expression like category enriched over M when we need to specify
this category where our hom-objects are defined. We assume that the hom-objects
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are equipped with unit and composition morphisms §0.12(a-b) formed within our
symmetric monoidal category M.

In our setting, where enriched categories arise as extra-structures associated
with an underlying plain category €, we also naturally assume that the hom-objects
form a bifunctor Home(—, —) : €% x € — M so that we have morphisms

(a)  fi«:Home(—,X) — Home(—,Y) and f*:Home(Y,—) — Home(X, —),

associated to any f € More(X,Y). The unit morphisms and the composition op-
erations §0.12(a-b) have to be left invariant under these actions of morphisms on
hom-objects.

In our basic examples, where hom-objects are made from point-sets, we can
identify the actual morphisms of the category f € More(X,Y) with particular el-
ements of the hom-objects Home (X, Y). The general elements u € Home (X, Y) are
conversely identified with maps u : X — Y satisfying some mild requirements,
generally extending the definition of a morphism of the category (as alluded to in
the previous paragraph in the case of our base categories of simplicial sets, graded
modules, dg-modules, ...). In this setting, we use the noun of homomorphism to
refer to the general elements of the hom-objects Home (X, Y") as opposed to the mor-
phisms, which refer to the elements of the morphism sets More (X, Y'). But we may
use the arrow notation v : X — Y when we want to regard such a homomorphism
u € Home(X,Y) as a map. In this case, the belonging category of the arrow wu is
specified by the context. The composition on hom-objects also usually extends the
composition on morphisms, and the morphisms (a), making the hom-objects into
a bifunctor, are generally identified with the left (respectively, right) composition
with the homomorphism associated to f € More(X,Y).

In a general setting, a correspondence between morphisms and homomorphisms
can be formalized in terms of morphisms

(b) t : 1More(X,Y)] — Home(X,Y),

where the expression 1[More(X,Y)] denotes the coproduct, running over the set of
morphisms f € More(X,Y), of copies of the unit object 1. We develop this formal-
ism in the case of Hopf categories (categories enriched in counitary cocommutative
coalgebras) in §1.9.

0.14. Closed symmetric monoidal categories. In the case of our base categories
M = Set,Top,Mod, ..., we actually take hom-bifunctors that fit in an adjunction
relation Mory (X ® Y, Z) ~ Mory(X,Homy (Y, Z)) with respect to the symmet-
ric monoidal structure of the category. The bijection which gives this adjunction
relation is also assumed to be natural in XY, Z € M.

In general, a symmetric monoidal category M is said to be closed when the
tensor product ® : M x M — M has a right adjoint Homp¢(—, —) : MP x M — M
fitting in an adjunction relation of this form

(a) Mory (X ®Y, Z) ~ Mory (X, Homy (Y, Z)),

for X,Y,Z € M. Note that the existence of this adjoint forces the colimit preser-
vation requirement of §0.8.

The hom-objects Homy(X,Y) defined by an internal hom-functor naturally
inherit an evaluation morphism

(b) Homy (X,Y)® X 5 Y,



xxxviii FOUNDATIONS AND CONVENTIONS

representing the augmentation of the adjunction (a), and which generalizes the
usual evaluation of maps in the category of sets. In addition to the evaluation
morphism, we have a morphism

(c) X 5 Homy (Y, X ®Y)

giving the unit of the adjunction.

The hom-objects of a closed symmetric monoidal category automatically inherit
composition units idx : 1 — Home(X, X), given by the right adjoint of the unit
isomorphisms 1 ®X =» X of the symmetric monoidal structure, as well as compo-
sition operations o : Home(Y, Z) ® Home(X,Y) — Home(X,Y), given by the right
adjoint of the composite evaluation morphisms Homy¢ (Y, Z) ®@Homy (X, Y)®X 44 Be,
Homy( (Y, Z) ® Y = Z. Thus, any closed symmetric monoidal category is automat-

ically enriched in the sense of §0.12.

Besides, we have tensor product operations Homyi(A, B) ® Homy(X,Y) 2

Homy((A ® X, B®Y), given by the right adjoint of the composites Homy( (4, B) ®

Homy((X,Y) ® A ® X ~ Homp(4,B) ® A ® Homp(X,Y) @ X 2% B®Y, where
we apply the symmetry operator of M and we form the tensor product of the eval-
uation morphisms associated to the hom-objects. This tensor product operation
gives an extension, at the level of enriched hom-objects, of the tensor product of
morphisms and satisfies the same unit, associativity, and symmetry relations.

0.15. The notation of colimits, limits and universal objects. We adopt the fol-
lowing conventions for the notation of colimits, limits, and universal objects in
categories. We generally use the unbased set notation () for the initial object of a
ground category, the notation II for coproducts, and the notation * for the terminal
object. We use additive category notation when we deal with additive structures,
or when our ground category consists of modules. We then write 0 for the initial
object of the category (the zero object). We also use @ as a generic notation for
the coproduct in the additive case.

When we deal with a category of objects equipped with a multiplicative struc-
ture (algebras, operads, ...), we generally adopt the base set notation V, for the
coproduct V, but we do not follow any general convention for the notation of the
initial object in this setting. In each instance of multiplicative structure, we can
actually identify the initial object of our category with a particular object of the
base category, of which we therefore take the notation up. We use a similar conven-
tion for coproducts, and other universal constructions, which we can deduce from
a structure operation given with our base category. We then take up the notation
of the underlying operation of the base base category for our universal objects. For
instance, we generally use the tensor product notation to refer to coproducts in
categories of unitary commutative algebras, because we observe in §1.2.0.2 that the
coproduct is realized by the tensor product in this case.
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CHAPTER 1

The Basic Concepts of the Theory of Operads

The purpose of this chapter is to explain the definition of an operad and some
basic concepts associated with this notion.

We give the formal definition of an operad in the first section of the chap-
ter (§1.1). We also explain the definition of an algebra over an operad in this sec-
tion and we give some basic examples in sets to illustrate the fundamental concepts
of the theory. We examine the application of standard constructions of category
theory (like free objects, colimits, limits) to operads and to algebras over operads
in the second and third sections (§1.2-§1.3), We check by the way that the usual
categories of algebras (associative algebras, commutative algebras, Lie algebras)
are identified with categories of algebras associated to operads. We also devote an
appendix section (§1.4) to a short survey of the definition of particular colimits
(reflexive coequalizers and filtered colimits), which we use in our constructions on
operads.

The basic definition of an operad, given in the next section, makes sense in the
general setting of a symmetric monoidal category M, where we only assume the
existence of a tensor product ® : M x M — M satisfying the unit, associativity and
symmetry axioms of §0.8. In many applications however, we need the additional
requirement that the tensor product preserves colimits on each side (see §0.8). In
certain cases, we also need the existence of an internal-hom bifunctor Homy(—, —) :
M x M — M providing the base category M with a closed symmetric monoidal
category structure (see §§0.8-0.14). To simplify, we assume for the moment that
we deal with a base category M which fulfils all these assumptions. We take our
examples among the category of sets M = Set, simplicial sets M = Simp, topological
spaces M = Top, modules over the ground ring M = Mod, or among a variant of
these categories. We will just devote a few remarks to technical issues arising from
the non-preservation of colimits by the tensor product.

The preservation of colimits by the tensor product is explicitly used in §§1.2-
1.3, when we examine the application of categorical constructions to operads and
to algebras over operads. The preservation of colimits is also a necessary condition
for the existence of an internal-hom (see §0.14). Therefore, as soon as we deal with
internal hom-objects (in §§1.1.11-1.1.15) we also implicitly assume that our colimit
requirement is fulfilled.

Recall that we generically use the unbased set notation @ for the initial object
of our base category, the notation * for the terminal object, and the notation II for
coproducts. We just move to additive category notation when we deal with additive
structures, or when the ground category consists of modules. We then write 0 for
the zero object (giving the initial object of the category), and @ for the coproduct.

In §8§1.2-1.3, we explain that the category of operads and the categories of
algebras associated to an operad have all limits and colimits. The limits of operads

5
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and algebras are created in the underlying ground category in general, as well as
some particular colimits, but not coproducts (see §§1.2-1.3). Therefore, we keep
the notation of the ground category for limits in the category of operads and in
categories of algebras over operads, but we will adopt another style of notation (the
base set notation V) for coproducts.

The definition of an operad recalled in this chapter is borrowed from May’s
monograph [134]. Besides this reference, we should cite Boardman-Vogt’ work [26]
for another approach of the notion of an operad, and Ginzburg-Kapranov’ arti-
cle [75], from which we borrow the definition free operads and the definition of
operads by generators and relations. Reference books on operads, emphasizing
various aspects of the theory, include [60] about modules and algebra categories
associated to operads, [112] about operads and higher categories, [120] focusing
on algebraic operads and the Koszul duality theory, and [131] providing an overall
introduction to operads and to the Koszul duality of operads. Most definitions and
statements of this introductory chapter are covered by these reference, and we do
not make any claim of originality at this stage of our work.

1.1. The notion of an operad and of an algebra over an operad

The purpose of this section, as we just explained, is to introduce the defini-
tion of an operad and of an algebra over an operad. We have several approaches
available. In this introductory chapter, we mostly deal with May’s definitions [134],
which has the advantage of giving a direct and simple interpretation of operadic
structures in terms of operations acting on algebras. In §3, we explain the equiv-
alence between May’s approach and a more combinatorial definition of operads,
involving an interpretation of operadic composition structures in terms of trees.
To prepare this subsequent revision of the definition, we give a first introduction
to the tree representation of operads in this section. We will also heavily use the
formalism of trees in our study of deformation complexes of operads.

Intuitively, an operad P consists of a collection of objects P(r) collecting ab-
stract operations of r variables p = p(x1,...,x,) with a variable number r running
over N. The notion of an operad is formally defined as a structure given by such a
collection together with composition products modeling the composition of opera-
tions. From this viewpoint, an operad can be regarded as a particular instance of
analyzer, a notion introduced by Lazard in [109] in order to generalize the power
series operations used in the theory of formal Lie groups.

In the literature, the number of variables r in an operation p = p(z1,...,z;,)
(not necessarily related to an operad) is sometimes referred to as the arity of p. In
the operadic context, we use the term of arity to refer to the number r indexing
the terms of an operad and of any related structure. For the moment, we focus on
operad terms P(r) indexed by non-negative integers r € N, but in §3.5, we consider
an extension of the definition of an operad where terms P(r) indexed by all finite
sets r = {i1,...,4,} are considered. In this setting, we use the term of arity to refer
to the cardinal of the set r = {41, ...,4,} (either regarded as a non-negative integer,
or as a class of finite sets in bijection to each other).

The explicit definition of an operad, beyond the intuitive approach, is quite
intricate. In fact, this definition is recursive in nature, because it implicitly relies
on a primitive operad structure on permutations. In the logical order, we should
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id @(t1®--®t,)

P(r)®P(n1)®--®P(n,) P(r)®P(n1)®--®@P(n,)
Iz Iz
P(ni+4---+n,) oot P(ni+4---+n,)

s®(id ®---Qid)

P(r)®P(n1)®--®@P(n;) P(r)®P(n1)®--®@P(n;)
id ®s*i"‘ iu
P(r)®@P(ngs(1))®--Q@P(ns(ry) P(ni+-+n,)

P(nsay++nsm)

FIGURE 1.1. The equivariance axioms of operads, required to hold
for all arities r > 0, ny,...,n, > 0, and all permutations s € X,
and t; € Enl,...,tr S EnT~

explicitly define the operations underlying the composition structure of the permu-
tation operad first, and introduce the general definition of an operad afterwards.
But, we will proceed differently in order to bring out the ideas underlying the def-
inition. In a first stage, we only define the shape of the structure of an operad.
This incomplete account is enough to fully explain the intuitive interpretation of
the operad formalism, which we do next. Then we give the missing part of our defi-
nition, which amounts to the definition of the alluded-to primitive operad structure
on permutation groups.

1.1.1. The structure of an operad. Formally, an operad in a base category M
consists of a sequence of objects P(r) € M, r € N, where P(r) is equipped with an
action of the symmetric group on r letters 3., together with

(a) a unit morphism n: 1 — P(1),
(b) and a composition structure, defined by morphisms

for r > 0 and ny,...,n, >0,

so that natural equivariance, unit and associativity relations, expressed by the
commutativity of the diagrams of Figure 1.1, 1.2, and 1.3, hold. The definition
of the permutations t; @ - -- @ t, and s.(ny,...,n,), occurring in the equivariance
relations of Figure 1.1, is put off until §1.1.7.

In principle, we assume that the action of the symmetric group on the compo-
nents of an operad is given on the left, and our equivariance axioms are formulated
accordingly. This convention is used by most authors.

The morphism 7 in the above definition is referred to as the unit morphism of
the operad, and the morphisms p as the composition products. In what follows, we
also use the terminology of full composition product to distinguish these morphisms
p from partial composition operations which we introduce later on. In general,



8 1. THE BASIC CONCEPTS OF THE THEORY OF OPERADS

id i ®r
1®P(H)LP(1)®P(H) P(r)®l®TVLP(T)®P(1)®r
\ J/M \ i/—‘
P(n) P(r)

FIGURE 1.2. The unit axioms of operads, required to hold for
all » > 0 and all n > 0.

{P(r) ® P(s1)®-®P(s:)} ® {P(n})@--@P(ni")} L P(r) @ {P(s1)®P(n])®--®P(ni")}
® - — ® .

®@ {P(n;)®--®P(n;")} ® {P(s:)@P(n;)®--@P(n;")}
n®id ®--~®idl \Lid QU Qu
P(si++s.) @ P(n])®--®@P(n;') P(r) ® P(nj+-+nit)
g P(7‘z.i)®"~®P(niT) g P(7-l-£+-"+ﬂff)

S A

P(nj+-tng! tng e dnin)

FIGURE 1.3. The associativity axiom of operads, required to hold
for all arities r > 0, sq,...,s, > 0, and all n > 0.

we specify an operad by the notation of the underlying collection P, and we use
the letters n and p as generic notation for the corresponding unit and product
morphisms. We simply add a lower-script ) = np (respectively, u = pup) specifying
the operad to which this unit (respectively, product) morphism is attached when
necessary.

1.1.2. The category of operads. We naturally define an operad morphism ¢ :
P — @ as a sequence of morphisms in the base category ¢ : P(r) — Q(r), r € N,
commuting with the action of symmetric groups and preserving the unit and the
composition structure of the operads. When we work within a fixed base category
M, we use the notation Op to refer to the category formed by operads in M and this
natural class of morphisms. When we need to specify the base category in which
our operads are defined, we simply add this category as a prefix to our notation,
and we write Op = BaseOp. To give an example, we may use the notation TopOp
to refer to the category of topological operads (corresponding to the case of operads
in topological spaces).

In §3.2, we introduce a variant of the category operads, where the symmetric
group action is replaced by another internal structures, encoded by an action of a
certain category A. Our general convention is to add the notation of this category
A as a prefix to the expression Op in order to get the notation of this variant of
the category of operads. Under this convention, we may use the expression X Op
(rather than Op) to refer to the operad category of §1.1.1, because we adopt the
notation ¥ for the category, formed by the disjoint union of the symmetric groups,
which models the internal symmetric structure of these operads.
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s@(t1® - ®t,)

P(r)®P(n1)®--®@P(n;) P(r)®P(n1)®--®@P(n;)
id @s™ |~ m
P(r)®P(ns1))®--Q@P(ng(r) P(ni+--+n,)

\ s(t1,--5tr)

P(ng1y+-+ng))

FIGURE 1.4. The equivariance axioms of operads, put in a single

diagram, where s(t1,...,¢) € Y, +...4n, is actually an operadic
composite of the given permutations s € ¥, and t; € ¥,,,,...,1, €
Y,

The category of non-symmetric operads, considered in the literature, is an-
other variant of the category of operads defined by forgetting about the action of
symmetric groups and the equivariance axioms in §1.1.1. The expression of sym-
metric operads, referring to the symmetric group actions, is used by some authors
to specify the operad structures which we precisely define §1.1.1. But we do not
use non-symmetric operads in this book. The category of symmetric operads is our
category of plain operads, and therefore, the adoption of the short notation Op for
that category Op = ¥ Op is natural for us too.

We may also consider variants of the category of operads where we drop the
term of arity zero from the definition. We use the expression of non-unitary operad
to refer to this category of operads. When the tensor product preserves colimits,
we can identify a non-unitary operad with an operad, in the sense of the defini-
tion §1.1.1, where the arity zero term is the initial object of the base category. We
then regard the category of non-unitary operads as a subcategory of our category
of operads §1.1.1. We heavily use the concept of non-unitary operad, and we shall
devote subsequent paragraphs of this section to this notion.

1.1.3. Miscellaneous remarks on the definition of an operad. We may note that,
in the case r = 0, the composition product of §1.1.1(b) involves an empty set of
factors P(n;). This product therefore reduces to an endomorphism of P(0). The
(right) unit axiom of Figure 1.2 actually forces this endomorphism to be the identity
of P(0). Thus, the consideration of a composition product for r = 0 in §1.1.1 does
not add anything to the structure of an operad. Nevertheless, the formulation of
the associativity axiom in full generality in Figure 1.3, requires to integrate this
degenerate case in our definition.

The equivariance axioms of Figure 1.1 can also be put together in a sin-
gle equivalent commutative diagram, displayed in Figure 1.4. The permutation
s(t1,...,t,) occurring in this diagram is given by the composite s(ty,...,t.) =
L1 @ Dt se(n1,...,n,) of the permutations t; - -- ¢, and s.(nq,...,n.), oc-
curring in our initial equivariance axioms. Soon (in Proposition 1.1.9), we identify
this composite permutation s(ty, ..., t,) as the outcome of an operadic composition
product on permutations.

Intuitively, the object P(r) in the definition of an operad collects abstract op-
erations p = p(x1,...,2,) in a given arity r € N (as we explain in the introduction
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of this section). The composition structure of §1.1.1(a-b) reflects a natural com-
position structure attached to operations of this form, and the definition of our
operations t1 @ - - - @ t, and s.(n1,...,n,) on permutations reflects this interpreta-
tion of the composition structure. Thus, we explain this interpretation first, from
the shape of our axioms, and we explicitly define the permutations ¢t; ®--- @, and
s«(ny,...,n,) afterwards.

1.1.4. The interpretation of an operad structure. In a point set context, we may
use the notation p(q1,...,q¢.) € P(n1,...,n,) for the image of a tensor p®(¢1 ®- - -®
gr) € P(r)®P(n1)®---® P(n,) under the composition product §1.1.1(b). The unit
morphism of §1.1.1(a) is also equivalent to the definition of a distinguished element
1 € P(1), referred to as the unit of the operad. In many constructions, we consider
partial composition operations o; : P(m) ® P(n) — P(m +n — 1) determined from
the composition product by the formula po; ¢ = p(1,...,1,¢,1,...,1) where the
operation ¢ € P(n) is plugged in the ith input of p € P(m). Operad units are
assigned to the remaining inputs of p.

In the intuitive interpretation of elements p € P(r) in terms of abstract op-
erations p = p(x1,...,x,), the action of permutations s € ¥, on P(r) models a
permutation of inputs

sp = P(Ts(1)s- > Ts(r)),
and the operadic composition process models the definition of composite operations
of the form

p(le ERRE) qT) = p(Q1(‘rk1+17 s 7xk1+n1)7

Q2(xk2+17 s ’xk2+n2)>

G (Thyg1s - Thygm, )
where we set k; = nq + -+ + n;—1. (We have by convention k1 = 0 when ¢ =
1.) Thus, in the expression of the composite p(q,...,q,), the variables are split
into groupings attached to each plugged operation ¢;. Similarly, the operadic unit
represents an identity operation (of one variable) 1 = id(z1) and a partial composite
po;q=p(l,...,1,q,1,...,1) can be identified with a composite operation of the
form
Poiq=p(@1,- s Ti1,q(Tis -, Tin—1)s Titns -+ Tmtn—1)-

In these point set representations, the unit axioms read 1(p) = p, p(1,...,1) = p,
and the associativity axiom reads

p(ql,...,qr)(ﬂi,..., fl,...ﬁi,...,ﬂﬁr) :p(ql(G},...,9;1),...,q,n(Hi,...,Hﬁr)),

where we assume p € P(r), ¢ € P(s1),...,q, € P(s;) and ¢/ € P(n). The
equivariance axioms come from the identities

p(tiqe, .. trqr)

= p(‘h (Ik1+t1(1)a v 7Ik1+t1(n1))7 o 7q7“(l‘kr+tr(1)7 ce 7IkT+tr(nT)))a
sp(qlv cee 7(]1”)
= p(qs(l)(xk.e(1)+1v EERE) mk.§(1)+ns(1))7 <o Gs(r) (xk.e(r)+1’ s 7xks(7‘)+ns(7‘)))'

The permutations t1 ®- - -®t, and s«(nq, ..., n,), which we formally define in §1.1.7,
correspond to the input permutations occurring in these formulas.
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Note that the composition product can be written in terms of partial compos-
ites. Indeed, the unit and associativity axioms imply that the composition product
satisfies p(q1,...,qr) = (++* (P Oky+1 1) Oky41 " *) Ok, 41 gr, for any p € P(r) and all
@1 € P(ny),...,qr € P(n,.), where we set k; =ny+---+mn;_1 fori =1,...,r. This
observation is fully developed in §3.1, where we give another definition, in terms of
the partial composition operations, of the composition structure of an operad.

1.1.5. The graphical representation of operad elements. To gain intuition, we
may also use a box picture

T iy

to represent operations of the form collected by an operad p € P(r). The ingoing
edges of the box represent the inputs of the operation and the outgoing edge is used
to symbolize the output.

In this picture, the composition products of an operad model composition pat-
terns of the following form

where we plug the outputs of the upper level operations ¢; € P(n1),...,q- € P(n,)
in the inputs of the lower level operation p € P(r) to obtain a composite operation
p(q1y---,qr) € P(n1 + -+ 4+ n,) with as much inputs as the upper level operations
together and one final output. In the sequel, we use the above picture to represent
the tensor p® (1 ® - ® ¢q,) € P(r) ® P(n1) ® - - ® P(n,), to which the operadic
composition product is applied, instead of the outcome of the process.

For the moment, as long as we assume that operad terms are indexed by finite
ordinals r = {1 < --- < r}, we can assume that the ingoing edges of a box in
such a figure are arranged in the plane according to the input ordering of the
corresponding operation p € P(r). However, we can make a convenient use of
indices attached to ingoing edges of boxes in our figures. Namely, we can use the
indices of ingoing edges to mark operations on the inputs of operations. For this
purpose, we take the convention that edges represent a bijection, not necessarily
the identity one, between an indexing set and the input set of an operation. In
the picture of composite operations for instance, we associate the indices ji =
ny+---+mni—1+%k k =1,...,n4, corresponding to the input indexing of the
composite operation p(qi, ..., q.), with the ingoing edges of the box ¢;, i =1,...,r.

To identify equivalent indexings, we simply apply the relation

ITREEEERE B Gs1) is(r)
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when we apply a permutation s € X, to the inner operation p € P(r). This formal-
ism is fully explained in §3.5, where we consider operad components associated to
all finite sets.

1.1.6. The graphical representation of an operad structure. The representation
of the previous paragraphs can be applied to operad components (instead of ele-
ments), and under our conventions, the composition products of an operad can be
depicted as morphisms

where the tree-wise arrangement of operad components formally represents the
tensor product of these objects.

The unit and associativity relations of operads correspond in the tree-wise rep-
resentation to the composition schemes of Figure 1.5-1.6. In these representations,
we identify the application of operadic units and operadic composition products
with internal operations on factors forming our tree-wise tensor product. In gen-
eral, we use the notation 7, and pu., symbolizing the performance of internal oper-
ations on tree-wise tensors, for these mappings. The factors to which we apply the
operation can in principle be determined from the internal structure of the source
and target tree of our mapping.

1.1.7. Fundamental operations on permutations. We now define the permuta-
tions t; ® -+ ® ¢, and s.(ni,...,n,) occurring in the equivariance relations of
Figure 1.1. We use the notation k; = ni + -+ 4+ n;_1 introduced in the previ-
ous paragraphs. To make our definition more explicit, we use that a permutation
of (1,...,r) is equivalent to an ordered sequence w = (w(1),...,w(n)) in which
each value k = 1,...,r occurs once and only once. In some cases, we can also use
the standard table representation

_ 1 DRI n
e - wn)
The direct sum of permutations ¢; € ¥,,,...,t, € ¥, is the permutation
of {1,...,n1+---+n,} given by the action of ¢; on the interval {k;+1,..., k;+n;} C

{1,...,n1 + -+ + n,} through the canonical bijection of ordered sets {1 < --- <
n;} = {k; +1 < --- <k;+n;}. This permutation is represented by the sequence

1@ @t = (ki +ta(1),.... k1 +ti(na), ke (1), ke 0 (n0))

formed by the concatenation of the sequences t; = (¢;(1),...,t;(n;)) associated to
the permutations t;, i = 1,...,r, together with the index shifts k;. For instance, in
the case of a pair of permutations s € ¥, and t € X,,, we obtain the identity:

GO sy ) = () T LT e,

s t
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FIGURE 1.6. The tree-wise representation of the associativity re-
lations of operads, where, to shorten notation, we set n; = n} +
e niifori=1,...,r,and s=s14+---+ s, n=n1 4+ +n,.
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The block permutation s.(ni,...,n,) associated to a permutation s € X,
where ny,...,n, > 0 is any collection of natural numbers, is given by the permu-
tation, under s, of the intervals

n, = (k2+1,]€1+2,,k1+n2)

in the ambient set {1,...,n7 +---+n,}. In the sequence representation, the block
permutation s.(ni,...,n,) is defined by the sequence
se(n1y. ., np) = (ﬂs(l)’ s 7ﬂs(r)>

formed by the concatenation of the blocks n; ordered according to the permuta-
tion s. For instance, the block permutation t.(m,n) associated to a transposition
t = (1 2) € 33 has the form:

m+1 -+ m+4n 1 m

(m+1,...,m+n71,...7m):( 1 n a4l o n-l—m)'

ty(m,n)
The following proposition follows from easy verifications:

ProprosITION 1.1.8. Let ny,...,n, > 0. In the symmetric group Xy, 1...4n,.,
we have the relation

81@"'@8r't1@"'@trZ(Sltl)@"'@(srtr)

for all r-tuples of permutations (s1,...,8r), (t1,...,tr) € Xy, X -+ X By, , the rela-
tion
Se(n1, .oy r) LNy, -+ o () = (88)w (01,00 ).

for every s,t € ¥, and the relation
L@ Dty - se(na, ., np) = 5u(n1, 000, 0p) ~Lg1) - DLy
for every s € ¥ and all (t1,...,t.) € Xy, X -+ X 3y . O
Then we obtain:

ProPOSITION 1.1.9. The collection of symmetric groups X, n € N, forms an
operad in sets so that:

(a) the action of the symmetric group on each X, is given by left translations;

(b) and the composition product pn @ Xp X (Zp, X -+ X Bp ) = Tpigeogn,
maps a collection s € Xy, (t1,...,t.) € Ly X -+ X X, to the product
permutation s(ty,...,t,) =t1 @ Dty - se(n1,...,0p).

PrOOF. Easy verification from the relations of Proposition 1.1.8. (]

This proposition explains our remark that the operations t; @ --- @ ¢, and
s«(n1,...,n,), which occur in the general definition of an operad, come themselves
from a primitive operadic composition on the collection of symmetric groups. The
definition of the composite s(t1,...,t,.) in Proposition 1.1.9 is forced by the equiv-
ariance axioms of operads and the requirement id,(id,,,...,idy,, ) = idp,+tn,,
where we use the notation id,, for the identity permutation of the set {1,...,n}
(see §0.10). In this sense, the result of Proposition 1.1.9 expresses the internal
coherence of the definition of an operad.

To give another (more) simple example, we can readily see that:
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PROPOSITION 1.1.10. The collection of one-point sets pt(r) = pt form an op-
erad in sets. The symmetric group action is trivial in each arity, and we take
identities of one-point sets to define the composition unit and the composition prod-
ucts of the operad. O

In §2, we define a generalization of this one-point set operad in the context of
symmetric monoidal categories.

Soon (see §§1.1.16-1.1.18), we explain that the permutation operad, as defined
in Proposition 1.1.9, is identified with the operad of associative monoids, and the
one-point set operad is identified with the operad of commutative monoids. But
before studying operads associated to basic algebraic structures, we explain the
definition of universal operads End 4 associated to the objects A of the base category
M.

1.1.11. Endomorphism operads. The operad End 4 associated to an object A €
M is called the endomorphism operad of A. The definition of this endomorphism
operad involves the internal hom-bifunctor of the base category Hompy(—,—) :
M x M — M. For short, we may also use the notation Hom(—, —) = Homp(—, —)
for this hom-bifunctor.

Basically, the endomorphism operad of A € M is defined by the collection of
hom-objects

End4(r) = Hom(A®", A),

where we form the tensor powers of A in the base category M. By functoriality,
the hom-objects End 4 (r) = Hom(A®", A) inherit an action of symmetric groups from
the tensor powers A®" and this gives the symmetric structure of the endomorphism
operad.

By adjunction, the composite evaluation morphisms

Hom(A®", A <® Hom(A®™ A ))®A®"

=5 Hom(A®", A (®Hom (A% A)® A®"i>

< Hom(A®", A) @ A®" 5 A

yield operadic composition operations

Hom(A®", A) ® <® Hom(A®"",A)) LN Hom(A®" A),
i=1
forallr > 0, ny,...,n, > 0, and where we write n = n;+- - -+n,.. These operations

define the composition structure of the endomorphism operad. By adjunction too,
the symmetric monoidal unit 1 ® A ~ A gives a morphism

1 % Hom(A, A)

providing the collection End 4 with an operadic unit.
The reader can easily check that the axioms of §1.1.1 are fully satisfied in End 4,
and hence we have a well defined operad structure on Endy4.
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1.1.12. Endomorphism operads in basic ground categories. In the basic example
of sets M = Set, the endomorphism operad of an object X € Set consists of the
map sets Endx (r) = {f : X" — X}, we have the pointwise formula

Sf(I‘l, cee ,$n> = f(xs(l)a v axs(n))

for the action of permutations, where the variables z; now refer to actual elements
of X, and the pointwise formula

f(gh s vg’f‘)(‘rlv v 7xn1+"'+n7‘) = f(gl(xk1+1a s 7xk1+n1)7
92(xk2+1a s 7xk2+n2)>
Gr (T, 4155 Thoytem,. )

for the composition (where we still set k; = ny + -+ n;_1). The operadic unit is
the identity of X.

In the context of topological spaces M = Top, we have the same identification of
the endomorphism operad Endy since the map sets Endx (r) = {f : X*" — X} are
also equipped with a topology which identify them with the internal hom-objects
of the category of spaces Top.

In the module context M = Mod, the terms of the endomorphism operad
Endg, K € Mod, consist of morphisms f : K®" — K by construction of hom-
objects in Mod. Such morphisms f : K" — K are equivalent to r-linear maps
f:(z1,...,z.) = f(x1,...,2,), and the action of permutations and operadic
composition structures on such maps are given by the same pointwise formulas as
in the context of sets.

1.1.13. The structure of an algebra over an operad. An algebra over an op-
erad P (a P-algebra for short) is an object of the ground category A € M together
with morphisms

(a) P(r)® A®" 2 A,

given for all » > 0, and such that equivariance, associativity and unit relations,
formalized by the commutative diagrams of Figure 1.7-1.9, hold. In applications
of this definition, we usually say that the morphisms (a) define the action of the
operad P on the object A € M. We also say that these morphisms (a) are the
evaluation morphisms attached to the P-algebra A when we consider an object A
equipped with a fixed P-action.

In general, we refer to a P-algebra by the expression of the underlying object
A and we use the letter A\ as a generic notation for the morphisms (a) defining the
action of the operad on A. As in the operad case (see §1.1.1), we simply add the
expression of the algebra as a lower-script to this notation A = A4 when we need
to specify it.

The P-algebras form a category with, as morphisms, the morphisms of the
ground category f : A — B which preserve the P-actions on A and B. In what
follows, we usually convert the notation of the operad P into calligraphic letters P
in order to get the notation of the category of algebras associated to P. If necessary,
then we write P = M P to specify the base category M.
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s®id iv-
P(r)BA®T s®1 P(r)@A®T FI'GURE 1..7. The equiv
ariance axiom for operad
id ®s*i~ ik actions, required to hold
Pr) AP ] for all.r > 0, and all per-
A mutations s € >,.
id
104 e P)®A
\ iA FIGURE 1.8. The unit axiom
A for operad actions.
{P(r) ® P(n1)®@P(n,)} ® A" ——> P(r) ® {P(n1)®A®"1}®.@{P(n,)RA% "}
u®id®ni \Lid RN - QA
P(nit-4n,) @ A®" P(r) @ A®"

FIGURE 1.9. The associativity axiom for operad actions, required
to hold for all » > 0, nq,...,n, > 0, and where we set n = ny +
e _|_ Ny

1.1.14. The interpretation of the structure of an algebra over an operad in the
point set context. In the point set context, we use the notation p(aj,...,a.) € A
for the image of a tensor p ® (a1 ® -+ ® a,) € P(r) ® A®" under the evalua-
tion morphism §1.1.13(a). In the interpretation of operads given in §1.1.4, this
evaluation morphism §1.1.13(a) amounts to the evaluation of abstract operations
p = p(z1,...,z,) on actual elements ay,...,a, € A.

In the point-set representation, the unit axiom reads 1(a) = a for a € A, the
associativity axiom reads

1 ni 1 n
@1y qr)(ag, ... ,alty o an, AT

y=plalag,...,ad), ..., q-(ar, ..., as"))
for p € P(r), ¢1 € P(n1),...,q- € P(n,) and af € A, and the equivariance axiom
reads

sp(alv SRR ar) = p(as(l)a sy as(r))

for p e P(r) and aq,...,a, € A.

The graphical representation of §1.1.5 can also be applied to depict the action
of operads on algebras. In short, we mark the ingoing edges of our black-boxes
with algebra elements aq,...,a, € A, which we take as inputs for the operation
represented by the black-box, and we mark the outgoing edge with the result of the
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operation b = p(aq,...,a,). Thus, we get the following picture:

al . o aT

In the context of a closed monoidal category, the morphisms §1.1.13(a), defining
the action of an operad P on an object A € M are, by adjunction, equivalent to
morphisms

¢ : P(r) — Homy(A®", A)
defined for all 7 > 0. The equivariance, unit and associativity axioms of operad
actions in §1.1.13 are actually equivalent to the observation that these morphisms
define an operad morphism from P towards the endomorphism operad associated
to A. Hence, we obtain the following result:

ProPOSITION 1.1.15. The action of an operad P on an object A € M is equiva-

lent to an operad morphism ¢ : P — End 4, where End 4 s the endomorphism operad
of A. O

The evaluation morphisms € : Homy(A®", A)® A®" — A actually give an action
of the endomorphism operad Ends on A. In the equivalence of Proposition 1.1.15,
this action corresponds to the identity morphism of End4. The assertion of the
proposition can be interpreted as the claim that the endomorphism operad End 4
represents the universal operad acting on A in M.

In a point-set context, the morphism ¢ : P — End4 associates a map p :
A®" — A to any operation p € P(r). In the formalism of §1.1.14, we are simply
considering the map p : (a1,...,a,) — p(ay,...,a,) associated to a fixed element
p € P(r). The mapping ¢ is usually omitted in the notation of that map since
the expression p : A®" — A already specifies that we consider a map associated to
p € P(r) and not the abstract operation itself p = p(z1,...,x,).

1.1.16. Ezamples of operads associated to basic algebraic structures in sets.
In §1.2, we prove that many usual algebraic structures, including associative al-
gebras and commutative algebras, are governed by operads. Our constructions
work in any base category, including sets and k-modules as most basic examples.
The associative operad, the one which we associate to associative algebras, will be
denoted by As. The commutative operad, the one which we associate to (associative
and) commutative algebras, will be denoted by Com. In general, we do not assume
that an algebra is equipped with a unit (unless we explicitly assert the contrary),
and we accordingly use this notation As (respectively Com) for the version of the
associative (respectively, commutative) operad governing the category associative
(respectively, commutative) algebras without unit. To refer to the operads govern-
ing algebras with unit, we add a lower-script + to the notation and we say that
we deal with a unitary version of the operad. The connection between the oper-
ads governing the unitary and the non-unitary version of a structure is outlined
in §§1.1.19-1.1.20, as a preparation for a more detailed study, which we address
in §3.2. Simply mention for the moment that the operads As and As, agree in
arity r > 0, but differ in arity r = 0, where we have As(0) = ) (the initial object of
the base category) in the non-unitary case, and As;(0) = 1 (the tensor unit) in the
unitary case. In the case of the commutative operad, we obtain the same relation.
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We soon give a general and conceptual definition, by generators and relations,
of such operads (see §1.2.6, §1.2.8). Nevertheless, we prefer to give a first direct
construction of the operad associated to associative (respectively, commutative)
algebras in order to complete this introductory account with simple examples. For
the moment, we focus on the set-theoretical context, and then we rather use the
terminology of associative (respectively, commutative) monoid for the associative
(respectively, commutative) algebras. The case of k-modules, which provides our
second basic examples of symmetric monoidal categories (after the category of sets)
will be addressed in the next sections.

Previously, we have observed that the collection of symmetric groups %,., r €
N, forms an operad in sets, as well as the collection of one-point sets pt(r) =
pt. In the next propositions, we precisely prove that the permutation operad has
the associative monoids as associated algebras, and the one-point set operad is
associated to commutative monoids. In each case, we get structures with or without
unit, depending on our choice as regards the term of arity 0 of the operad.

ProrosiTION 1.1.17. The category of associative monoids with unit is iso-
morphic to the category of algebras over the permutation operad. The category of
associative monoids without unit is isomorphic to the category of algebras over the
operad formed by dropping the term of arity 0 in the permutation operad.

By dropping the term of arity 0, we mean that we consider a sub-operad of
the permutation operad such that As(0) = 0 and As(r) = X, for » > 0. Thus, this
proposition gives the difference, announced in §1.1.16, between the unitary case,
where we take an operad satisfying As, (0) = pt, and the non-unitary case, where
we take As(0) = ().

PROOF. Let A be an associative monoid with unit. To a permutation w € 3.,

we can associate the operation w : A*" — A such that w(ay,...,a;) = ay@ay-...-
@y (ry- In plain terms, this operation is formed by the r-fold product of the sequence
of elements @y (1), ...,y in the monoid A. In the case r = 0, we use the unit

morphism 7 : pt — A (equivalent to an empty product) to define the operation
assigned to the degenerate permutation idy € ¥y. The verification of the axioms
of §1.1.13 is the matter of an easy understanding exercise. This process obviously
gives a functor between the category of associative monoids with units and the
category of algebras over the permutation operad.

In the converse direction, when A is an algebra over the permutation operad,
we consider the unit operation 7 : pt — A associated to the degenerate permutation
idg € Xg and the binary operation p : A x A — A associated to the identity permu-
tation idy € Y9 in arity r = 2. The identity permutation in arity one 1 = id; € ¥4
defines the unit of the permutation operad and, as such, is supposed to act as the
identity operation on A. The unit operation 7 : pt — A is naturally equivalent to
an element e € A which represents the image of the point pt under n. The identities
’LdQ(’Ldo,Zdl) = ’Ld1 = Zdz(ldl,ldo) and ZdQ(ZdQ,Zdl) = ng = ng(ldl,ldg) in the
permutation operation are respectively equivalent to the unit p(e,a) = a = p(a,e)
and associativity relation p(u(a1,as),as) = p(ay, u(az,as)) in A. Hence, we have
a monoid with unit naturally associated to each algebra over the permutation op-
erad. This correspondence obviously gives a functor which is strictly inverse to the
previously considered functor, from associative monoids with units to algebras over
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the permutation operad. This assertion finishes the proof of the first assertion of
the proposition.

The second assertion follows from the same verification (simply drop the con-
sideration of the degenerate permutation idg corresponding to the unit operation
7 : pt — A from our line of arguments). (]

ProPOSITION 1.1.18. The category of commutative monoids with unit is iso-
morphic to the category of algebras over the one-point set operad. The category of
commutative monoids without unit is isomorphic to the category of algebras over
the operad formed by dropping the term of arity 0 in the one-point set operad.

By dropping the term of arity 0, we mean again that we consider a sub-operad
of the one-point set operad such that Com(0) = () and Com(r) = pt for r > 0.
Thus, we retrieve the same difference as in Proposition 1.1.17 between the unitary
case of our structure, where we take an operad satisfying Com (0) = pt, and the
non-unitary case, where we take Com(0) = 0.

In the next chapter, we establish a generalization of this proposition in the
context of symmetric monoidal categories.

PROOF. The arguments are the same as in the case of algebras over the per-
mutation operad (Proposition 1.1.17). The only difference is the following: the
identity (1 2) - pt = pt in the one-point set operad implies, according the equivari-
ance axiom of operad actions (diagram of Figure 1.7), that the element pt € pt(2)
represents a symmetric operation p : Ax A — A, for any algebra over the one-point
set operad. This explains that the structures associated to the one-point set operad
are commutative. ([

1.1.19. Unitary and non-unitary operads. In general, we say that an operad
P is unitary when we have P4 (0) = 1, the unit object of the ambient symmetric
monoidal category. In the context of sets, this requirement reads P4 (0) = pt. In
contrast, we say that an operad P is non-unitary when we have P(0) = (, the initial
object of the base category. To be precise, when we use this definition, we assume
that the base category has an initial object so that X ® ) = ) ® X = 0. (These
identities are particular cases of our colimit preservation requirement.) In a more
general setting, we just define non-unitary operads by dropping the arity zero term
from the definition of an operad in §1.1.1.

The operad of unitary associative monoids As; and the operad of unitary
commutative monoids Com,, defined in §1.1.16 in the set-theoretic context, are
basic examples of unitary operads in sets. The operads As and Com, formed by
dropping the arity 0 terms of these unitary operads As;, and Com,, are basic
instances of non-unitary operads.

The terminology of a unitary operad refers to the observation that the evalu-
ation morphism of a P, -algebra gives a morphism A : P, (0) — A in arity r = 0,
and if we assume P (0) = pt (in the point set context), then this morphism is
equivalent to a the definition of a distinguished element in A, which in usual exam-
ples (like associative or commutative monoids) represents a unit of the structure.
Because of this interpretation, we also use the expression of unitary operation to
refer to the elements of the arity zero term of an operad. The non-unitary operads
are operads which have no unitary operation.

In principle, our operads are supposed to be unital in the sense that they are
equipped with a unit morphism 1 : 1 — P(1) (corresponding to a unit element
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1 € P(1) in the point-set context), and this has not to be confused with the re-
quirement that an operad P is unitary P (0) = 1. The notion of a non-unitary
operad, similarly, has not to be confused with the complement of the class of unitary
operads. In the point-set context, the unitary operations p € P, (0) have not to be
confused with the unit element 1 € P, (1) too. In general, we reserve the term of
unital for references to operadic units, as opposed to the term unitary, which we use
as a reference to unitary operations acting on algebras and for related structures.
But there is no fixed convention in the literature. In particular, the expression of a
unital operad is used in [134] for what we call a unitary operad.

1.1.20. Unitary extensions of operads. We consider the category formed by the
unitary operads as objects and the operad morphisms ¢ : P — Q which are the
identity of the unit object 1 in arity 0 as morphisms. We adopt the convention to
mark the consideration of fixed terms in operad categories by adding lower-scripts
to our notation. We therefore use the expression Op; for the category of unitary
operads. In the case where the base category is equipped with the cartesian product
as tensor structure, so that the unit object 1 is the final object of the category x,
we may also use the notation Op, (as in the foreword) instead of Op;.

We similarly adopt the notation Op, for the category formed by the non-unitary
operads of §1.1.19. Recall that a non-unitary operad P is defined by assuming
P(0) = ) when the base category satisfies the colimit requirement of §0.8 (as we
assume all through this chapter). In this case, we regard the category of non-unitary
operads with a subcategory of the whole category of operads. Note that a morphism
#(0) : P(0) — Q(0) is automatically the identity when we have P(0) = Q(0) = . In
general, we just define the category of non-unitary operads by dropping arity-zero
terms from all definitions.

We say that a non-unitary operad P admits a unitary extension when we have
a unitary operad P, agreeing with P in arity n > 0, and of which composition
operations extend the composition operations of P. When the base category satisfies
the colimit requirement of §0.8, the extension condition implies that the canonical
embedding iy : P — P, defines a morphism in the category of operads. We often
use an expression of the form @ = P, to assert that a given operad Q forms a
unitary extension of another given (non-unitary) operad P.

We examine the definition of unitary extensions of operads more thoroughly
in §3.2, after a comprehensive review of the definition of operadic composition
structures addressed in §3.1. We immediately see that the underlying collection
of a unitary extension P, is determined from the associated non-unitary operad
P by the addition of the unit term P (0) = 1 in arity 0. We precisely explain
in §3.2 that the composition structure of the unitary operad P, can be determined
from the internal composition structure of the non-unitary operad P and extra
operations which reflect composition products with the additional arity zero term
of the unitary extension, but which can still be defined in terms of the non-unitary
part of the operad P.

1.1.21. Connected operads. In subsequent constructions, we have to consider
non-unitary operads P, satisfying P(0) = () (when we assume that the tensor prod-
uct satisfies our colimit preservation requirement, as usual), and so that P(1) = 1.
We say that the operad P is connected when these conditions are satisfied. We
adopt the notation Op,; (with the lower-scripts hinting the operad first terms) for
the category of connected operads, regarded as a full subcategory of the category
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of operads Op (observe that the preservation of operadic unit implies that any
morphism of connected operads is the identity of the unit object in arity 1).

We will similarly consider operads P, which are unitary in the sense of §1.1.19,
and satisfy P4 (1) = 1 as an extra requirement. We then say that the operad P is
connected as a unitary operad. We adopt the notation Op,; for the full subcategory
of the category of unitary operads Op; generated by the connected unitary operads.

To give basic examples, we immediately see that the non-unitary associative
operad As and the non-unitary commutative operad Com are instances of connected
operads, while the unitary version of these operads As; and Com, are connected
as unitary operads.

We go back to the definition of connected operads at the end of the next section.

1.2. Categorical constructions on operads

In this section, we explain the definition of free objects in the category of
operads and the definition of operads by generators and relations. We also examine
the definition of usual categorical constructions, like colimits and limits, in the
context of operads.

For these purposes, we naturally have to consider the structure, underlying an
operad, formed by a sequence M = {M(r)},en such that each M(r), » € N, is an
object of the base category equipped with an action of the symmetric group %,.
We generally use the expression of symmetric sequence to refer to these objects and
the notation Seq to refer to the associated category, whose morphisms f: M — N
obviously consist of sequences of morphisms in the base category f : M(r) — N(r),
r € N, commuting with the action of symmetric groups.

We may also use the noun of X-sequence (rather than the expression in plain
words) to refer to these symmetric sequences. We adopt the notation ¥ (with no
decoration) to refer the category which has the finite ordinals n = {1 < --- < n},
n € N, as objects and of which morphism sets are defined by Mors(m,n) = %, if
m = n, and Mors(m, n) = () otherwise. The symmetric sequences are then identified
with diagrams over this category . In our expression, the word ‘sequence’ refers
to the sequence of finite ordinals n = {1 < --- < n}, n € N, giving the shape of the
collections underlying these diagrams. The notation X refers to the small category,
encoding the internal structures associated with our diagrams, and in which we put
our indexing objects. We adopt similar conventions for variants of these diagram
structures, which we introduce later on.

We have an obvious forgetful functor w : Op — S8eq mapping an operad P to
the underlying sequence P = {P(r)},en, where we only retain the actions of the
symmetric groups. The definition of free operads arises from the following theorem:

THEOREM 1.2.1. The forgetful functor w : Op — 8eq, from the category of
operads to the category of symmetric sequences, has a left adjoint O : Seq — Op
mapping any symmetric sequence M € Seq to an associated free operad O(M).

This theorem is formally established in §II.A.3.

Intuitively, the free operad is the structure formed by all formal operadic com-
posites of generating elements & € M(n) with no relation between them apart from
the universal relations which can be deduced from the axioms of operads. In §I1.A.3,
we use an extension of the tree representation of §§1.1.5-1.1.6 to give an explicit
construction of such structures.
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To obtain our result, we also use a new definition of the composition structure
of an operad, in terms of the partial composition operations of §1.1.4. In the ap-
proach of §I1.A.3, we explicitly deal with a tree-wise representation which reflects
the relations associated with these composition operations. The idea is that the
level structures, underlying the representation of the full composition products of
operads, can be forgotten when we depict elements of the free operad, because the
unit and associativity relations of Figure 1.5-1.6 imply that the multi-fold compo-
sition products associated to different choices of level structure determine the same
element in the free operad.

To give a simple example, the multiple partial composite p = (1 5)- (((z 01 y) o4
z) og t), such that x € M(2), y € M(3), z € M(2), t € M(2), and where we also
consider an action of the transposition (1 5) € g, defines an element of the free
operad O(M), which we will represent by the following picture:

This tree-wise picture elaborates on a representation of partial composites which
we introduce in §3.1.

For the moment, we can justify this picture by considering the formula p =
(15)-2(y,1)(1,1,1,2)(1,1,t,1,1) arising from the definition of partial composition
operations in §1.1.4. The element p can also be determined by a 3-fold composition
product p = (1 5)-z(y, 2)(1,1,t,1,1), or equivalently, by p = (1 5)-x(y, 1)(1, 1, ¢, 2).
Each formula actually arises from the choice of a particular level structure on our
tree representation. For instance, we have:

<0

p=(15) -z(y,1)(1,1,1,2)(1,1,¢,1,1) =

=(15) z(y,2)(1,1,¢1,1) =
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N

3 4 1 6

=(15) z(y,1)(1,1,¢,2) =

ey

where the factors 1 represent operadic units. The identity between these representa-
tions follow (non trivially) from repeated applications of the unit and associativity
relations of Figure 1.5-1.6.

By definition of an adjunction, the free operad is characterized by the existence
of a functorial bijection

*) Moro,(O(M), P) ~ Morge (M, P),

given for any pair (M, P) such that M € Seq and P € Op. Together with the
adjunction relation, we have:

— a morphism of symmetric sequences ¢ : M — O(M), the unit of the ad-
junction, naturally associated to any M € Seq, which corresponds to the
identity of the free operad id : O(M) — O(M) under (*);

— an operad morphism X : O(P) — P, called the adjunction augmentation,
naturally associated to any operad P € Op, and which, under (*), corre-
sponds to the identity of the operad P, viewed as an object of the category
of symmetric sequences.

Intuitively, the adjunction augmentation A is the morphism which applies the formal
operadic composites of the free operad O(P) to their evaluation in P.

In §I1.A.3, we address the explicit construction of the free operad O(M) and of
the morphism ¢ : M — O(M) before establishing the adjunction relation. Indeed,
our correspondence (a) is defined by associating the composite ¢ -1 € Morg.q(M, P)
with any operad morphism ¢ € Morg,(O(M), P), and the proof that this mapping
defines a bijection amounts to the following result:

PROPOSITION 1.2.2. Any morphism of symmetric sequences f : M — P, where
P is an operad, admits a unique factorization

such that ¢y is an operad morphism.

This proposition, proved in §II1.A.3, expresses the adjunction relation of The-
orem 1.2.1 in terms of an equivalent universal property, which is usually given in
the literature as the definition of a free object (we refer to [122, §IV.1] for the
relationship between adjunctions and universals).
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1.2.3. The unit operad. The purpose of the next paragraphs is to examine the
definition of colimits and limits in the context of operads.
To start with, we consider the symmetric sequence

1, ifr=1
/(r):{’ ifr=1,

(), otherwise,

which reduces to a unit object in arity » = 1. This symmetric sequence inherits an
obvious operad structure: the unit morphism 1 - 1 = /(1) is the identity morphism
of 1; the composition products are forced by the unit axiom of Figure 1.2.

For a given operad P, we have one and only one operad morphism from / to
P, which is simply given by the operadic unit /(1) = 1 — P(1) in arity 1. (The
preservation of operad unit forces the definition of such a morphism.) Thus, the
object I, which we call the unit operad in what follows, defines the initial object
of Op. In general, we adopt the notation of the operadic unit n for the initial
morphism 7 : | — P attached to this object because this initial morphism has only
one component, in arity one, which represents the unit morphism §1.1.1(a) of the
operad P.

The category of operads has a terminal object too, given by the terminal object
of M in each arity.

The category of symmetric sequences, like any category of diagrams, has col-
imits and limits of any kind, which are formed termwise in the ground category. In
the context of operads, we obtain the following general proposition:

PROPOSITION 1.2.4.

(a) The forgetful functor from operads to symmetric sequences creates all lim-
its, the filtered colimits, and the coequalizers which are reflexive in the
category of symmetric sequences.

(b) The category of operads admits coproducts too and, as a consequence, all
small colimits, though the forgetful functor from operads to symmetric se-
quences does not preserve colimits in general.

We refer to the appendix section §1.4 for recollections on filtered colimits and
reflexive coequalizers.

PROOF. Let {P,}acy be any diagram in the category of operads. The collection
(lim P,)(r) = lim (P4 (1)),
a€eld a€l

defined by the termwise limits of the diagrams {P,(r)}aeg in the ground category,
inherit a natural operadic composition product

{1 Po (1)} © {lim Po (1)} -+ © {lim Pa(n,)} = lin{Pa(ny + -+ )},
for any » > 0 and ny,...,n, > 0, which is given by the composite of the morphism
liér:}{Pa(r) ® Pu(n1) @ - @ Py(ng)} — liér:}{Pa(nl +--+n.)}
induced by the composition products of the operads P, with the natural morphism

{Bg Pa(r)} ® {}llgf} Pa(m)} ®---® {Bg}] Pa(nr)}
— 1123{/3(1(7«) ® Po(ni) ® -+ @ Po(n,.)}
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deduced from the universal property of limits. The operad units 1 : 1 — P,(1)
yield a unit morphism on the limit too. We readily deduce from the uniqueness
requirement in the universal property of limits that the axioms of operads are ful-
filled in lim,¢g Py, and we also easily check that this operad, formed by a termwise
limit, represents the limit of the diagram {P, }ncs in the category of operads. The
requirement that the morphisms P — P, preserve operad structures clearly forces
this definition of the structure of our operad P. Therefore, we say that the forgetful
functor creates limits.

In the case of colimits, we can not adapt the above construction to provide the
termwise colimit

(el Po)lr) = cglip(Patr)

with an operadic composition structure, at least in general, because we have a
morphism in the wrong direction:

{colign Po(r)} ® {coli£n Pa(n1)}® - ® {coli§n Puo(ny)}
ac ac 1S
— colign{Pa(r) ® Puo(n1) ® - @ Pu(ny)}.
ac

Nevertheless, the results of Proposition 1.4.2 and Proposition 1.4.4 imply that this
morphism is iso when the diagrams {P,(n)}.cg are shaped on a filtered category
or form reflexive coequalizers in the ground category. Hence, in these situations,
we can form natural composition products

{Colign Po(r)}® {colign Py(n)}®@--® {colign Pao(ng)} — colign{Pa (ni+---+n.)}
ac [e1S ae [e1S
by composition of the morphisms

colim{P, (1) ® Po(n1) ® -+ @ Py(n,)} — colim{Py(ng + -+ +n,)}
aed a€cd

induced by the composition products of the operads P, with colimit isomorphism.
The unit morphisms 7 : 1 — P,(1), composed with the canonical morphisms
P (1) — colimyeg Py (1), also give a canonical unit towards the colimit colimyeg Po(1).
We easily check, again, that the axioms of operad are fulfilled in colimyeg P, and
that this operad, formed by a termwise colimit, represents the colimit of the dia-
gram {P, }qcy in the category of operads.

To realize a coproduct of a collection of operads P, a € J, we form a reflexive
coequalizer of the form

S0

4 T~

0
O(Haej O('Da)) ? O(Haej Pa) > Q
1
where the morphisms (do, d;) are determined on each generating summand O(P,,)
of the free operad @1 = O(]],cq O(P4)) by:

— the morphism O(to) : O(Po) —[][1,c5\0(Pa) induced by the canonical
embedding ¢y : Py — Haej P. asregards dp;

— the composite of the adjunction augmentation A : O(P,) — P, with the
canonical embedding ¢, : Py, — HaeJ P, and the adjunction unit of the
free operad ¢ : [],cq Pa — O(][,cq Pa) as regards dj.

The reflection s is given by the adjunction unit of the free operad ¢ : P, — O(Py)

on each generating summand of Qo = O(][,cq Pa). By the result established in the
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first part of the proposition, the existence of this reflection sy implies the existence
of the coequalizer coker(dp,d;) in the category of operads.

By the universal property of sums and free operads, any morphism ¢ : Qo — R
towards an operad R is fully determined by a collection of symmetric sequence
morphisms f, : P, — R. Moreover, we have ¢rdy = ¢¢dy if and only if the
diagram

0(P,) 2> P,

fo
Pt l

R

commutes for every «, where we consider the operad morphism ¢y, associated to
fa. We readily see that this assertion amounts to the requirement that f, preserves
operadic composites and operad units, because A is given by the evaluation of formal
operad composites of the free operad in P, and maps the unit of the free operad
to the unit of P,. Hence we have ¢rdy = ¢¢d; if and only if each f, : P, = R is
an operad morphism, and this implies that the definition of an operad morphism
Q_Sf : coker(dp,d1) — R is equivalent to giving operad morphisms f, : P, — R. We
conclude that our coequalizer Q = coker(dy,d;) represents the coproduct of the
operads P, (in the category of operads), which therefore exists, as claimed in the
proposition.

The last assertion of the proposition is an application of the result of Proposi-
tion 1.4.5, in the appendix section 1.4. ([

1.2.5. Operads defined by generators and relations. The existence of free objects
and coequalizers enables us to define operads by generators and relations. To start
with, we explain this process in the case where the base category is the category of
sets M = Set.

We start with a symmetric sequence M € Seq, whose elements £ € M(r) rep-
resents generating operations, and a collection of pairs (w§,w$) € O(M)(ny)*?,
o € J, in order to define generating relations wf = w{ within the free operad
o(M).

We first form the free ¥,,-set R(n) =%, ® {ea, a€dn, = n}, where each e,
denotes an abstract generating element associated to the indexing variable o € J.
The expression G ® K is a general notation for the free G-object associated to any
K in a base category M. In other contexts, we use the notation K[G] for this tensor
product. In the case of sets, we can identify this object K[G] = K ® G with the
cartesian product of G and K.

We consider the symmetric sequence R formed by the collection R(n), n € N.
We have symmetric sequence morphisms pg, p1 : R = O(M) such that pg(eq) = w§
and p1(eq) = w respectively. We form the morphisms of symmetric sequences
00,01 : MIIR — O(M) induced by pg,p1 : R = O(M) on R and by the universal
morphism ¢ : M — O(M) on M. We consider the morphisms of free operads
do,dy : OMIIR) = O(M) induced by these morphisms dy and §;. We have an
operad morphism in the converse direction so : O(M) — O(MIIR), yielded by the

composite M < MITR % O(MIIR), and such that dysy = d1s¢ = id. The reflexive

coequalizer P = coker{O(MII R) 2; O(M)}, created in the category of sets, defines
the operad
P=0M:wj=wy, acl)
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associated to the generating symmetric sequence M together with the generating
relations w§ = w{, a € J,.

Intuitively, the formation of the reflexive coequalizer coker{O(MII R) 2; o(M)}
in the underlying category of sets amounts to identifying any formal composites
involving a subfactor of the form wg§ with the same formal composite but where
wg is replaced by w{.

For an operad morphism ¢ : O(M) — Q, we have:

Qp-do =y -dy
& Grepo=Ppp
& or(wg) = ¢p(wy), Va €.

Hence, the definition of a morphism qi_)f P> Qon P=0M:wi=uwd, acl)
amounts to giving a morphism of symmetric collections f : M — @ so that the
extension of this morphism to the free operad ¢y : O(M) — Q maps the relations
w§ = wf, a € J; to actual identities in the target operad Q.

1.2.6. Basic examples of operads in sets. The most classical examples of op-
erads are actually defined by a presentation by generators and relations. To give
first examples of application of this process in the context of sets, we explain the
presentation of the associative operad As, and of the commutative operad Com, the
first instances of operad considered in the introductory sections §1.1. We focus on
the non-unitary version of these operads for the moment. As we explain in §1.2.8,
we will devote a subsequent chapter §3 to the definition of unitary operads in a
general context, and therefore, we only give short indications on the presentation
of the unitary associative (commutative) operad for the moment.

To give a more intuitive interpretation of our construction, we define the gener-
ating symmetric sequence of our operads M by giving operations p = p(z1,...,Zy)
which generate the terms of this sequence M(n) as ¥,,-sets. We use explicit variables
to specify the arity of generating operations, unless this information has already
been specified by the context. We may also use variable permutations to denote
operations which correspond under the action of symmetric groups, but this indica-
tion may not be sufficient to determine the symmetric structure of our generating
collection. Hence, we may have to add this precision.

The associative operad admits a presentation of the form

As = O( pu(w1, z2), (w2, 1) = p(p(we, v2),w3) = plz1, p(w2, 3)) ),

with a single generating operation u = p(x1,x2) in arity 2, on which the group X
operates freely, together with the associativity relation, expressed by the composite
identity pu(u,1) = p(1, 1), as single generating relation. The commutative operad
admits a presentation of the form

Com = O( pu(x1,22) © p(p(zr, 22), 23) = p(@r, p(a2, x3)) ),

with a single generating operation p = u(x1,22) in arity 2, on which the group
Y5 operates trivially, together with the associativity relation p(u,1) = p(1,u) as
generating relation again.

In §1.1, we observed that we can use the permutation operad (respectively,
the one-point set operad) to give a direct construction of an operad governing
associative (respectively, commutative) algebras. The next proposition establishes
the identity between this approach and the definition by generators and relations,
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and gives, in a sense, an operadic counterpart of the result of Proposition 1.1.17-
1.1.18.

ProposITION 1.2.7.
(a) The set-theoretic operad As, as defined in §1.2.6, satisfies

As(r) = {(/), if r =0,

Y-, otherwise,

and is identified with the (non-unitary version of the) permutation operad
of Proposition 1.1.9.
(b) The set-theoretic operad Com, as defined in §1.2.6, satisfies

Com(r) = {@, ifr=0,

pt, otherwise,

and is identified with the (non-unitary version of the) one-point set operad
of Proposition 1.1.10.

PROOF. We focus on the example of the associative operad (a) as the case of
the commutative operad (b) follows from similar arguments. We use the temporary
notation [7 for the permutation operad. We consider, to be precise, the non-unitary
version of this operad with the term in arity 0 withdrawn (as specified in the
proposition).

To start with, we observe (as in the proof of Proposition 1.1.17) that the per-
mutation p = id € 3o satisfies the generating relations of the associative operad
As in the permutation operad. Hence, we have a well-defined operad morphism
¢ : As — 1 mapping the generating operation of As to this permutation. To prove
that this morphism is iso, we form a morphism in the converse direction by assign-
ing the composite operation ¢(w) = w- p(--- (u(p,1),1),...,1) to any w € 3,. We
immediately see that ¢v = id and we easily obtain that id = 1¢ from the relations
of As. The conclusion follows. (]

1.2.8. The presentation of unitary operads. To define unitary versions of the
commutative operad and of the associative operad, we may simply add a generating
operation e in arity 0 and relations of the form pu(e, 1) = 1 = u(1, e), expressing the
neutral element identities, to our presentations. Thus, we may set

Asy =0(e, (@1, 22), (w2, 1) p(p, 1) = p(Lp) , ple, 1) =1=p(l,e) ),
Comy =0(e, p(z1,22) + plp,1) = p(lp), ple,1) =1=p(l.e) ),

to define these operads. The result of Proposition 1.2.7 also extends to the unitary
version of our operads, so that we have As (r) = X, (respectively, Com(r) = pt),
for all r (including r = 0), and similarly in the k-module setting.

But we may also consider that the generating unitary operation e is special
(at least in our examples). Indeed, in the outcome of the presentation process, the
terms of arity r > 0 of the operad As. (respectively, Com,.) agrees with the terms
of the non-unitary operad As, formed by dropping the unitary operation e from the
presentation.

We need to put arity 0 terms apart in certain constructions. We therefore do
not use the general approach of operads defined by generators and relations in the
unitary case, and we put off further studies of unitary operads until §3.
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1.2.9. Operad ideals and presentations of operads in module categories. The
construction of §1.2.5 has an analogue in the context of modules over a ground
ring: we simply have to replace the set {e,, a € J|n, = n} by the associated
free k-module Kle,, a € J|n, = n], and we replace all set-theoretic constructions
by their analogue in k-modules. The purpose of this paragraph is to explain that,
in the setting of module categories, we can use an operadic version of the notion
of an ideal in order to obtain another approach to the construction of operads by
generators and relations. In the next part of the book, we apply an extension of
this construction in the graded context. For the moment, we focus on the case of
plain modules.

In brief, an ideal of an operad in k-modules P is a collection of submodules
S(n) C P(n), each of which preserved by the action of the symmetric group on P(n),
and so that any composite p(qi1,...,¢.) € P(n1 + -+ + n,) involving at least one
factor in S remains in S. Equivalently, the collection S forms a sub-object of P in
the category of symmetric sequences, and we have:

p(q1,. .. q) € S(ny + -+ +n,),
for all p € P(r), and ¢1 € P(n1),...,qr € P(n;),

as soon as p € S(r) or ¢; € S(n;) for some i.

We immediately see that the collection P/ S(n) = P(n)/ S(n) obtained by forming
the quotient of an operad P over an ideal S inherits an operad structure from P.

To a collection of elements z* € P(n,), a € J, in an operad P, we associate
the symmetric sequence < 2% a € J >C P generated by the composites of the
form p(1,...,2%(q1,---,4n.),---,1), where the factors p and ¢i,...,qn, run over
the whole operad P. We easily check, by using the axioms of operads, that this
symmetric sequence S =< z% a € J > forms an ideal in P and is actually the
smallest ideal including the elements z® (a € J). We can also easily check that an
operad morphism ¢ : P — Q factors through the quotient P / < 2% « € J > if
and only if we have ¢(z*) = 0 in Q, for all @ € J. Accordingly, in the case of a
free operad P = O(M), any operad morphism ¢; : O(M)/ < 2%, a € I >— Q is
uniquely determined by a morphism of symmetric collections f : M — Q so that
the extension of this morphism to the free operad ¢y : O(M) — Q cancels the
generating elements of the ideal z%, o € J. From this observation, we conclude
that, in the module context, we can define operads by generators and relations as
quotients

OM:wy =w?, a€d)=0M)/<wy —w,aecd >,

where we replace our relations by equivalent differences before forming our ideal
S=<w§ —wf,aecl>

1.2.10. Basic ezamples of operads in module categories. We can adapt the con-
struction of §1.2.6 to define the module version of the associative (respectively,
commutative) operad. We simply replace the generating sets of §1.2.6 by associ-
ated free modules (as explained in §1.2.9). We have

As = O(kp(zy,z2) ® Ko, z1) : p(p(er, x2), x3) = p(wr, plxe, x3)) ),
Com = O(kp(z1,22) = p(p(zr, 2), 23) = e, (a2, x3)) ),

with, regarding the notation of generating operations, the same conventions as in
the set-theoretic context.
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Formally, the generating symmetric sequence of the associative operad is de-
fined by Mas(2) = Klu(z1,22), u(z2,21)] = K[E2] and Mas(n) = 0 for n # 2.
The generating symmetric sequence of the commutative operad in k-modules is
defined by Mcom(2) = Klu(z1,22)] = k and Mcom(n) = 0 for n # 2. According
to §1.2.9, we can identify the associative operad and the commutative operad with
quotients As = O(Mpas) / < p(p, 1) — u(1, ) > and Com = O(Mcom) / < (s, 1) —
w(1, 1) >, where we consider the ideal generated by the difference p(p(x1, z2), x3) —
w(zy, p(xe, x3)) to implement the associativity relation.

The next classical example of an operad which we consider is the Lie operad,
defined by the presentation

Lie = O( kA(z1,22) : A(A(x1,22),23) + A(A(w2, 23), 1) + A(A(x3,21),22) =0 ),

where we have a single generating operation A = A\(x1,x2) in arity 2 together with
the symmetric group action such that (1 2) - A\ = —A. The generating symmet-
ric sequence of the Lie operad is accordingly defined by M .(n) = 0 for n # 2
and Myie(2) = K[A(z1,22)] = kT, where =+ refers to a twist of the action of per-
mutations by the signature. We can also realize this operad as a quotient of the
free operad O(M;.) under the ideal generated by the element A(A(x1,x2),z3) +
A(A(z2,x3),21) + M A(z3,21),x2). This expression corresponds to the classical Ja-
cobi identity of Lie algebras and the quotient by the associated operadic ideal
implements this relation in the Lie operad.

In Proposition 1.2.7, we have established that the non-unitary associative (re-
spectively, commutative) operad in sets is identified with the non-unitary version of
the permutation (respectively, one-point set) operad. In §2.1, we will explain that
the free k-module functor K[—] : 8et — Mod induces a functor on operads, and
we can use this process to associate an operad in k-modules to any operad in sets.
We can adapt the arguments of Proposition 1.2.7 to identify the operad As (re-
spectively, Com), defined by generators and relations, with an operad in k-modules
associated with the non-unitary permutation (respectively, one-point set) operad.

Consequently, we have
0 if r=0
As(r) = { ’ Bre

k[X,], otherwise,

for the k-module version of the associative operad and

o
Com(r):{o’ ifr=0,

k, otherwise,

for the k-module version of the commutative operad. In the next paragraph, we
give another interpretation of these relations by going back to the representation
of operad elements p € P(r) as abstract operations p = p(x1,...,Z;).

1.2.11. The underlying symmetric sequence of classical operads. The purpose
of this paragraph is to review the interpretation of operad elements as abstract
operations in the case of the usual operads As, Com, Lie. To simplify, we still focus
on the non-unitary version of the associative and commutative operads. The gen-
erating operations of these operads lie in arity r» > 0, and similarly in the case of
the Lie operad. This implies Com(0) = As(0) = Lie(0) = 0. Thus we focus on the
terms of arity r > 0.
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In the case of the associative operad As, an element p(z1,...,z,) € As(r) is
obtained by a multiple composition of an associative product p(x1,x2) = 21 - @2
together with an appropriate variable shift ensuring that each variable x; occurs
once in the expression of p(xi,...,z,). Consequently, the arity r term of the
associative operad As(r) is identified with the module spanned by all monomials
p(x1,...,x,) of non-commutative variables (z1, ..., z,) which have degree one with
respect to each variable. In standard mathematical notation, such a monomial is
written p(z1,...,2,) = 4, « ... x;,., and the degree requirement amounts to the
assumption that the sequence (iy,...,4,) forms a permutation of (1,...,r). Hence,
we obtain

= @ K(zsay - - Tsry) = K[E,], for all r >0,

SEX,.

and we retrieve the observation that As(r) is the regular representation of the
symmetric group X,.

Similarly, the arity r term of the commutative operad Com(r) is identified with
the module spanned by all monomials p(x1,...,x,) formed from a formal com-
posite of products of commutative variables (z1,...,x,) so that each variable x;
occurs once and only once in p(z1,...,2,). In standard algebraic language, this re-
quirement amounts to assuming that p(z1,...,z,) is a monomial of r commutative
variables (z1,...,x,) which has degree one with respect to each variable. In stan-
dard mathematical notation, such a monomial is written p(xy,...,2,) = x1-. .. Xy
Hence, we immediately obtain

Com(r) =K(zy ... -x,) =k, forallr>0,

from which we retrieve the identity between Com(r) and the free k-module of rank
one equipped with the trivial action of the symmetric group.

In the case of the Lie operad Lie, we consider the module spanned by all
Lie monomials p(x1,...,z,) which have degree one with respect to each variable
x;. The determination of the module structure of Lie(r) is more intricate than in
the case of the commutative and associative operads. Nevertheless one can prove
(see [147, §5.6.2] for instance) that Lie(r) has a basis of the form

Lie(r @ K[ - [[zs(1), Zs )]s s3], - - - Zs(ry],  forall 7 >0,
sEX,
s(1)=1
where we use the Lie bracket notation [—, —] for the generating operation of the

operad Lie. Hence, the k-module Lie(r) is free of rank (r—1)!. In the case Q[e*"/"] C
k, we also have an identity between Lie(r) and the induced representation Lie(r) =
IndE X where C,. denotes the cyclic group generated by the r-cycle (12 --- r) € 3,
and X denotes the one-dimensional representation of C. associated to the character
(12 - 1) =e?7/7 (see [147, §8.2] for a general reference on this subject).
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1.2.12. The example of the Poisson operad. To complete our examples, we ex-
amine the definition of the Poisson operad, of which a graded version plays a sig-
nificant role in the study of E,-operads. This operad is defined by the presentation

Pois = O( kpu(z1,z2) ® kKA(z1,22) :
p(p(@e, 22), x3) = p(wy, p(ae, x3)),
A(A(z1, z2), 23) + AM(A (22, 23), 1) + AM(A(x3,21),22) = 0,
(w1, v2), 23) = p(A(T1,73), T2) + p(21, M(22, 73)) ),

where p = u(z1,22) is a symmetric generating operation, fixed by the action of
the transposition (1 2) - u = p, and A = A(z1,2z2) is an antisymmetric generating
operation, which the transposition carries to its opposite (1 2) - A = —A. From this
construction, we see that the Poisson operad is a combination of the commutative
operad Com = O( Kp(z1,2z2) @ p(p(z1,z2),x3) = p(z1, p(ze,z3)) ) and of the Lie
operad Lie = O( kK A(z1,22) : A(A(x1,22),23)+ A A (22, 23), 21) +A(N(23,21), 22) =
0 ), together with an additional distribution relation

(w1, w2), 23) = p(A(21, 23), ©2) + p(21, M2, 73)),

called the Poisson relation, mixing both operads.

The commutative operad (respectively, the Lie operad) can be identified with
the suboperad of the Poisson operad generated by the element p € Pois(2) (re-
spectively, A € Pois(2)). The Poisson relation implies that each composite of a
Lie operation with commutative operations (in that order) can be rewritten as a
composite of a commutative operation with Lie operations. One can prove by elab-
orating on this remark that Pois(r) is identified with the k-module spanned by
formal products

p(Il,...,.Z‘T) =p1($117~-~,$1r1) e 'pm(xmlw-wmmrm);

of which factors p;(z;1,..., 2, ) run over Lie monomials on r; variables x;, each
variable ;) occurring once and only once in p;(2;1, . . ., T, ) (in other word, this Lie
monomial has degree one with respect to each variable), and so that the variable
subsets {x;1,...,%;, } form a partition of the total set {z1,...,z,}. (Thus, each
variable z; also occurs once and only once in the complete expression p(x1, ..., x;).)

1.2.13. Connected operads. Recall that a connected operad in a base cate-
gory M is an operad P such that P(0) = and P(1) = 1.

If the base category is pointed, in the sense that initial and terminal ob-
jects coincide in M, then any connected operad P inherits a natural augmentation
€ : P — I, given by the identity in arity 1 and the terminal morphism otherwise.
This augmentation obviously defines a morphism in the category of operads, and
accordingly, the unit operad / gives a terminal object in the category of connected
operads, in addition to form the initial object. Thus, the category of connected op-
erads is pointed (unlike the whole category of operads) whenever the base category
is so.

To a connected operad P, we associate the symmetric sequence P such that

— ifr=0,1
O
P(r), otherwise.

We call this symmetric sequence the augmentation ideal of P, because we can
identify it with the kernel of the augmentation morphism ¢ : P — [ when the
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base category is pointed. We have to mention, however, that we may consider
this symmetric sequence P outside the pointed category context, where the above
definition makes sense but not the augmentation ideal interpretation.

The category of connected operads is denoted by Op,,, with added lower-
scripts to mark the operad first terms P(0) = (), P(1) = 1. We similarly use the
expression Seqg, to denote the category formed by symmetric sequences such that
M(0) = M(1) = . We say that a symmetric sequence satisfying these conditions
is connected (as a symmetric sequence). The mapping @ : P + P gives a functor,
denoted by W : Opy; — Seqqg, from the category of connected operads Op,, towards
the category of connected symmetric sequences Seqy,. In the connected context,
we will use the following interpretation of the free operad construction:

THEOREM 1.2.14. The free operad O(M) associated to a connected sequence
M € Seqy, is connected as an operad and the map O : M +— O(M) defines a left
adjoint of the functor w : Opy; — 8eqyy mapping a connected operads P € Op; to
its augmentation ideal P € Seqq-

This theorem, which is essentially a follow-up of Theorem 1.2.1, is formally es-
tablished in §IT.A.4 (by using the category of symmetric collections Coll, equivalent
to the category of symmetric sequences Seg, as in the case of Theorem 1.2.1).

In general, an operad defined by generators and relations P = O(M : w§ =
wf,a € J) is connected (in our sense) if and only if the generating sequence M
vanishes in arity 7 = 0, 1, essentially because this result holds for free operads. We
retrieve (for instance) that the (non-unitary) associative operad As is connected,
like the (non-unitary) commutative operad Com, and the Lie operad Lie.

1.2.15. The adjunctions between connected, non-unitary operads, and the com-
plete category of operads. We have an obvious embedding ¢ : Opy; — Op, from
the category of connected operads Op;, characterized by P(0) = () and P(1) = 1,
to the category of non-unitary operads Op,, which are characterized by the single
condition P(0) = 0.

We can readily check that the category embedding ¢ : Opy; — Op, has a
right adjoint 7 : Op, — Opgy;, which maps any non-unitary operad P € Op, to a
connected operad 7 P defined by 7 P(0) = 0, 7 P(1) = 1, and 7 P(r) = P(r) for
r > 1. We just use the unit morphism 7 : 1 — P(1) to define a restriction of
the composition products of the operad P when we deal with the factor of arity
1, so that this truncated symmetric sequence 7 P inherits an operadic composition
structure. The proof of the adjunction relation is immediate.

We also have an obvious truncation functor 7 : Op — Op, which is right adjoi@ @
to the category embedding ¢ : Opy; — Op.

From our construction of limits and colimits of operads, we can readily check
that:

PROPOSITION 1.2.16. The category embeddings Opy; — Op, — Op create @
limits—and colimits. ([

1.3. Categorical constructions on algebras over operads

In the previous section, we focused on the application of categorical construc-
tions to operads. We now study the applications of such constructions at the level
of algebra categories associated to operads. We first explain, in the next paragraph,
that the construction of operads by generators and relations reflects the definition
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of usual algebra categories in terms of generating operations £ : A®" — A satisfying
given relations.

We also give a version of the categorical constructions of §1.2 (free objects,
colimits and limits) in categories of algebras associated to operads. We will observe
(following [134]) that the categories of algebras associated to operads can be char-
acterized as categories of algebras equipped which free objects of a particular form.
One can use this observation to retrieve results of the previous section concerning
the terms of the usual operads. By the way, we establish that any operad mor-
phism give rise to adjoint extension and restriction functors at the level of algebra
categories. Examples include the standard functors connecting the categories of
associative, commutative, and Lie algebras.

1.3.1. Basic examples of algebra categories associated to operads. Recall (see
Proposition 1.1.15) that defining an action of an operad P on an object A € M
amounts to giving an operad morphism ¢ : P — Enda, where End4 denotes the
endomorphism operad of A. In the case of an operad defined by generators and
relations

P=0(M:wj=wf, acld),
we deduce, from the observations of §1.2.5, that such a morphism ¢¢ : P — Endg
amounts to giving a morphism of symmetric sequences f : M — End4, mapping
the abstract generating operations ¢ € M(r) to actual maps £ : A®" — A, and so
that the identities w§ = w{* hold in End 4.

For our basic examples of (non-unitary) operads in the category of k-modules
P = Com, As, Lie, we obtain:

(a) an algebra over the commutative operad Com is a module A equipped with
a product p: A ® A — A which satisfies the symmetry relation

pla, az) = p(az,ar),

for all a1,as € A, and the associativity relation

,U,(‘Ll,(al, (12), a3) = N’(ala :u(a% a3)),

for all a1,as9,a3 € A;
(b) an algebra over the associative operad As is a module A equipped with a
product i : A® A — A which satisfies the associativity relation

:u(:u(ala a2)7 CL3) = u(a’h ,U,(CLQ, a3))

for all a1, as,a3 € A (but no symmetry requirement);
(¢) an algebra over the Lie operad Lie is a module g equipped with an opera-
tion A : g® g — g which satisfies the antisymmetry relation

MMz, 22) = = M(z2, 1),
for all z1, x5 € g, and the Jacobi identity
AA(z1, 22), 23) + M A(x2, 23), 1) + A(A(23,21),22) = 0,
for all x1, 2,23 € g.

We can similarly identify the category of algebras associated to the Poisson operad
from the presentation of §1.2.12.

In characteristic 2, we do not necessarily assume that the generating operation
of a Lie-algebra g satisfies the relation A(z,z) = 0 in contrast to the usual definition
of a Lie algebra. To associate a category of algebras satisfying this condition to
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the Lie operad Lie, we have to modify the definition of an algebra over an operad
following a process explained in [59, §§1.2.12-1.2.16].

The result of Proposition 1.1.17-1.1.18 (in the non-unitary context) is equivalent
to the combination of the assertions of (a-b) with Proposition 1.2.7.

1.3.2. The category of algebras associated to an operad and free algebras. Re-
call that the algebras associated to a given operad P form a category P with, as
morphisms, the morphisms of the ground category f : A — B which preserve the
P-actions on A and B. We have an obvious forgetful functor w : P — M from the
category of P-algebras P towards the base category M.

We can form a functor in the converse direction by considering a generalized
symmetric tensor object

S(P.X) =[] (P(n)® X®™)s,,

n=0

associated to any X € M, where the notation (—)x, refers to a coinvariant quotient,
identifying the natural ¥,,-action on the tensor power X®" with the internal ¥,,-
structure of P(n). Let p € P(n) and 1 ®- - -®@x,, € X®". In the point-wise context,
we formally set

PO (Ts(1) @+ @ Ty(n)) =5 PR (11 @+ @),

and (P(n) @ X®")x  is the quotient under these relations, where we assume that s

runs over the symmetric group X,.
We have natural evaluation morphisms

P(r)® S(P,X)®" 2 S(P, X)

given termwise by morphisms

P(r)® (P(n1) ® X@”“)zn1 ®- @ (P(n,) ® X®m)2n,,
— (P(Tl1 + 4 nr) ® A)(®m+---+nr)E

ni+-+nge

induced by the composition products of the operad. We easily check that the axioms
of operads imply that these morphisms satisfy the equivariance, associativity and
unit axioms of operad actions. We therefore obtain that the object S(P, X) € M
forms a P-algebra, naturally associated to X € M, so that the mapping S(P) :
X — S(P, X) defines a functor S(P) : M — P.

For a P-algebra A, the evaluation morphisms of A induce morphisms A : (P(n)®
A®™)s — Afor all n > 0 by equivariance. These morphisms can be patched into a
single natural morphism A : S(P, A) — A by the universal property of the coproduct
S(P,A) =[1,_,(P(n) ® A®™)s, . From the associativity axiom of operad actions,
we easily check that A : S(P, A) — A preserves P-algebra structures and hence,
defines a morphism in the category of P-algebras. In the converse direction, for
any X € M, we have a natural morphism ¢ : X — S(P, X) given by the composite

X S1ex B5 Py e X = (P1)@ X)s, = [[(P() @ X*)x,,
n=0
where 1 refers to the unit morphism of the operad P.
One checks that:
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PROPOSITION 1.3.3. The functor S(P) : M — P is left adjoint to the forgetful
functorw : P — M. The morphism: X — S(P, X) (respectively, A : S(P,A) — A)
defines the unit (respectively, the augmentation) of this adjunction relation.

Explicitly, this proposition asserts the existence of a bijection
Morp(S(P, X), A) = Mor) (X, A),

for any X € M and any A € P. In one direction, to a morphism of P-algebras
¢ : S(P,X) — A we associate the morphism f = ¢ - ¢ in the base category. In
the other direction, to a morphism in the base category f : X — A we associate
the morphism ¢y = A - S(P, f) in the category of P-algebras. The adjunction
augmentation itself A : S(P, A) — A is the morphism of P-algebras ¢, associated
to the identity of A, regarded as an object of the base category M.

PROOF. By a general result of category theory (see [122, §IV.1]), we essentially
have to check that the composites

S(P
AL SP, AN A and S(P,X) 2P 5P s(P, X)) X S(P, X)

are both identity morphisms to conclude that our mappings are converse to each

other, and hence gives an adjunction relation well. This result follows from the unit

axiom of operad actions in the first case and from the unit axiom of operads in the

second one. O

The result of Proposition 1.3.3 has, like Theorem 1.2.1, an equivalent formula-
tion in terms of universal properties. In this point of view, the functor S(P) : M — P
is defined by the mapping which associates a free object in the category of P-
algebras to any X € M.

Basically, the morphism of P-algebras ¢, associated to a given morphism f in
the base category is characterized by the equation ¢¢ -+ = f since our adjunction
is a bijection. Thus, for a fixed X € M, the result of Proposition 1.3.3 amounts to
the following proposition:

PrOPOSITION 1.3.4. Any morphism in the base category f : X — A, where A
is a P-algebra, admits a unique factorization

7

\ _»"juz;f

S(P, X)

X A

such that ¢y is a morphism of P-algebras. O

This statement gives the expression of the universal property of free object
satisfied by the P-algebra S(P, X).

1.3.5. Basic examples of free algebras. The structure of the basic operads P =
Com, As, Lie can be retrieved from known expansions of free objects in the categories
of algebras associated to these operads:

(a) The free commutative algebra (without unit) is identified with (the aug-
mentation ideal of) the symmetric algebra
S(K) = PK")s,

n=1
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together with a commutative product yielded by the process of tensor con-
catenations. From this observation, we immediately retrieve the identity
Com(n) = k.
(b) The free associative algebra (without unit) is identified with (the augmen-
tation ideal of) the tensor algebra
(o)
T(K) = Ke"
n=1
together with an associative product defined by the concatenation of ten-
sors. We can retrieve the identity As(n) = K[X,] from this observation
since K™ = (k[Z,] @ K®™)x .

(¢) The structure of free Lie algebras is more intricate. Nevertheless, in char-
acteristic 0, we can apply the Milnor-Moore theorem to identify the free
Lie algebra L(K') with the primitive part of the tensor algebra T(K), where
we use the formula A(z) = 2®1+41®x to define the coproduct of any gen-
erating element x € K. Moreover, we have versions of the Milnor-Moore
theorem which enable us to deduce an expansion of the form

L(K) = EP(Lie(n) @ K*")s,
n=1
from the relation L(K) = PT(K). More details on this construction are

given in §7.
We keep focusing on non-unitary algebras, but the identifications of (a-b) obviously
extend to the unitary setting.
Proposition 1.2.4 has the following analogue for the category of algebras asso-
ciated to an operad:

PROPOSITION 1.3.6. Let P be any operad.

(a) The forgetful functor from P-algebras to the ground category creates all
kinds of small limits, the filtered colimits, and the coequalizers which are
reflexive in the category of symmetric sequences.

(b) The category of P-algebras admits coproducts too and, as a consequence,
all kinds of small colimits, though the forgetful functor towards the ground
category does not preserve colimits in general.

Recall that we devote an appendix section §1.4 to recollections on filtered col-
imits and reflexive coequalizers.

PROOF. Same argument line as in the proof of Proposition 1.2.4. See also [60,
§3.3] or [148, Proposition 2.3.5] for this proposition. O

1.3.7. Restriction functors. If an operad morphism ¢ : P — Q is given, then we
can compare the category of P-algebras and the category of Q-algebras. First, we
immediately observe that any Q-algebra B inherits a natural P-algebra structure
since the operad P acts on B through @ by way of the morphism ¢ : P — Q.
Thus we have a natural functor ¢* : Q — P, referred to as the restriction functor
associated with ¢, from the category of Q-algebras to the category of P-algebras.
The existence of reflexive coequalizers can be used to define a morphism in the
converse direction, so that:
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PRrROPOSITION 1.3.8. The restriction functor ¢* : Q — P, associated to any
operad morphism ¢ : P — Q, has a left adjoint ¢ : P — Q, referred to as the
extension functor associated with ¢ : P — Q.

PrOOF. Let A € P. Let ¢ A be the Q-algebra defined by the reflexive coequal-

izer such that
S0

PR

S(Q.S(P,4) == 5(Q.4) = A

where:

— the morphism dj is the morphism of free Q-algebras induced by the ad-
junction augmentation A : S(P, A) — A associated to the P-algebra A;

— the morphism d; is induced by S(¢, A) : S(P,A) — S(Q,A), by using
the functoriality of the generalized symmetric algebra construction with
respect to the coefficients;

— and the reflection sg is the morphism of free Q-algebras induced by the
universal morphism ¢ : A — S(P, A) of the free P-algebra S(P, A).

We can easily check, by using the universal property of free Q-algebras, that
the definition of a morphism of Q-algebras g : $1A — B amounts to the definition

of a morphism f : A — B commuting with P-actions. Therefore the mapping
o1 : A— ¢ A defines a left adjoint of the restriction functor ¢* : B +— ¢*B. O

1.3.9. Basic examples of extension and restriction functors. The commutative,
associative and Lie operads are connected by morphisms

Lie & As < Com

determined on generating operations A € Lie(2), u € As(2) and p € Com(2), by the
expressions t(A) = p — (1 2) - p and a(u) = p.

The restriction functor a* : Com — As is identified with the obvious em-
bedding of the category of commutative algebras into the category of associative
algebras. The restriction functor ¢* : As — Lie is identified with the classical
functor mapping an associative algebra A to the Lie algebra (*A = A_ with the
same underlying module as A and the commutator A(a1,a2) = p(ar,a2) — p(az, ar)
as Lie bracket. Throughout this paragraph, we use the notation of the generating
operadic operation A and p instead of the more usual notation A(aq,as) = [a1, as]
and (a1, az) = ajaz to mark the relationship of the constructions with our operad
morphisms.

The extension functor ay : As — Com, defined as the left adjoint of a* :
Com — As, can be identified with the functor mapping an associative algebra A to
the quotient A/ < A(4,A) >, where < A(A, A) > refers to the two-sided ideal of
A generated by the commutators A(aq1,as) = p(a1,as) — u(as,a1), a1,az € A. The
extension functor ¢ : Lie — As, defined as the left adjoint of ¢* : As — Lie, can
be identified with the functor mapping a Lie algebra g to the augmentation ideal
of the standard enveloping algebra U(g), the quotient of the tensor algebra T(g)
by the two-sided ideal generated by the differences p(ay, as) — u(as, a1) — A(a1, az),
a1,ae € g, where pu refers to the product of T(g) and A to the Lie bracket of g. In
all cases, we can easily check that the functors defined by these basic constructions
satisfy the adjunction relation of extension functors and hence is isomorphic to the
operadic extension functor of Proposition 1.3.8.
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1.3.10. Algebras over connected operads. The structure of an algebra over the
unit operad / (see §1.2.3) reduces to an identity operation, and hence, the category
of [-algebras is simply nothing but the base category M. In the context of a pointed
category (see §1.2.13), the existence of an augmentation € : P — [, when P is a
connected operad, implies that any X € M inherits the structure of an algebra
over P, simply given by a trivial action in arity » > 1. In the context of k-modules,
the application of this construction to the classical examples P = Com, As, Lie
identifies a module with an abelian commutative (respectively, associative, Lie)
algebra, on which the structure product (respectively, Lie bracket) is identically
Z€ro.

The extension functor ¢ : P — M associated to an augmentation € : P — [ is
identified with an indecomposable functor which, in the module context, amounts to
killing the non-trivial operations p(ay,...,a,), r > 1, occuring in a given P-algebra
A. In the case P = As (and in the case P = Com similarly), this indecomposable
functor € : As — M can be defined by the standard construction e, 4 = A/A? where
A? refers to the submodule of A spanned by the products p(a,b), for a,b € A. In
the case P = Lie, we obtain ;g = g /I'2(g), where T's5(g) refers to the submodule
of g spanned by the bracket A\(a,b), for a,b € g.

1.3.11. Further remarks: operads and monads. The use of the functor S(P) in
operad theory goes back to [134], where it is observed that (a pointed space variant
of) this functor S(P) defines a monad on the base category. The category of P-
algebras is defined in terms of this monad S(P) in [134]. This definition is formally
equivalent to the definition of §1.1.13 where we just consider (in the point of view
of [134]) an expansion of the action of the monad S(P) on A. In the approach
of [134], the result of Proposition 1.3.3 is a consequence of a general statement
about algebras over monads (see [122, §VI.2]).

In fact, the definition of S(M) : X — S(M,X) as a functor from the base
category to itself makes sense for any symmetric collection M, and not only for
operads. The category of symmetric sequence comes also equipped with structures,
like a composition product, that reflect pointwise operations on functors (see [60] for
an overall reference on this subject). These observations are the source of abstract
categorical definitions for the notion of an operad. These definitions are not used
in this book, but we can give a sketch of the ideas.

In the point of view of [134], the operads are exactly the symmetric sequences
P such that S(P) inherits a monad structure. On the other hand, the category
of functors F' : M — M is equipped with a natural monoidal structure, defined
by the pointwise composition operation, and monads can be defined abstractly as
monoid objects in that category. In parallel, we can interpret the definition of the
composition structure of an operad in §1.1.1, as the definition of an abstract monoid
structure in the category of symmetric sequences with respect to the composition
operation reflecting the composition structure of functors. In that respect, the
correspondence between operads and monads follows from the relationship between
the composition of symmetric sequences and the composition of functors (we refer
to [159] for the introduction of this idea, to the book [60] for an overall account of
operad theory based on this approach and further references).

This monadic approach of operads supposes that the tensor product of the base
category commutes with colimits. But we soon consider categories for which this
requirement and hence, the monadic approach, fail.
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1.4. Appendix: filtered colimits and reflexive coequalizers

The existence of colimits in the category of operads, and in categories of alge-
bras over an operad similarly, relies on the existence of particular colimits (filtered
colimits and reflexive coequalizers), which we create in the base category. The
purpose of this appendix section is to recall the definition of these fundamental
colimits in a general context. We assume that C is any category. In view towards
applications to operads, we also study the image of filtered colimits and reflexive
coequalizers under a multifunctor 7 : €*" — € with the example of r-fold tensor
products T'(X1,...,X,) = X7 ® --- ® X, in mind.

1.4.1. Filtered colimits. Recall (see [122, §IX.1]) that a small category J is fil-
tering when:

— for any pair of objects «, 8 € J, we have morphisms

Q. oy
B
-7

g

meeting at the same target object v in J;
— for any pair of parallel morphisms u,v : a = 3, we have a coequalizing
morphism
le} 4>*u> 153 t s ~y
v

such that tu = tv in J.

We say that a colimit colimyecg X, is filtered when the indexing category J of the
diagram X, is filtering.
We have the following observation:

PROPOSITION 1.4.2. Suppose that the multifunctor T : C*" — @ preserves

filtered colimits on each input in the sense that the natural morphism

colignT(Xl,...,Xi,...,Xr) — T(Xl,...,cohgnxg,...,xr)
(1S ac

is iso for any diagram {XE}, over a filtering category J and all X' € C, i =

1,...,k,...,n. Then the functor T : C*" — € preserves filtered colimits on the
product category C*" in the sense that the natural morphism
: 1 r : 1 : T
cglelgnT(XCw LX) > T(CgleuijCw e ,cglenjana)
is iso for any collection of diagrams {X!},, i = 1,...,r, over the same given

filtering category J.
ProOOF. Exercise, or see [60, Proposition 1.2.2] or [148, Lemma 2.3.2]. O

1.4.3. Reflexive coequalizers. Recall that a coequalizer is the colimit of a dia-
gram formed by a parallel pair of morphisms dy,d; : X1 = Xy. For a colimit of
this particular shape, we use the notation coker{dy,d; : X1 = Xo}.

In many examples, a parallel pair of morphisms is given together with an extra
morphism sg : Xg — X7 satisfying dgsg = id = disg. In this situation, we say
that coker{dp, d; : X1 = Xy} forms a reflexive coequalizer and we may also use the
notation

coker{ X 2; Xo}
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in order to stress the existence of the reflection sg : Xy — X3.

Note that the addition of the reflection sg : X — X to the diagram X; = X,
does not change the colimit. The importance of reflexive coequalizers lies in the
following stability assertion:

PROPOSITION 1.4.4. Suppose that the multifunctor T : C*" — @ preserves
reflexive coequalizers on each input in the sense that the natural morphism

')
coker{T(X,....,XF ..., X")=T(X',...,X},..., X"}
— T(X', ... coker{XF= Xk} ... X"

2 i ~

is iso for any reflexive diagram {X¥ =Xt} and all X' € €, i = 1,...,k,...,n.
Then the functor T : C*" — € preserves reflexive coequalizers on the product cate-
gory C*" in the sense that the natural morphism

coker{T(X},..., X)) S T(XZ,. .., X5)}

') ')
— T(coker{X{ = Xj},...,coker{X] = X7})

is iso for any collection of reflexive diagram {X} = X%}, i = 1,...,7, in the base
category.
ProOOF. Exercise or see [60, Proposition 1.2.1] or [148, Lemma 2.3.2]. O

The fundamental role of reflexive coequalizers is also asserted by the following
proposition:

PRrROPOSITION 1.4.5. If coproducts and reflexive coequalizers exist in a category
C, then so does any kind of small colimit in C.

PrOOF. Exercise. Check [27, §2] and [28, §4.3]. O

This proposition is applied in §§1.2-1.3 in order to prove the existence of colimits
of any shape) in the category of operads and in categories of algebras over operads.
f h in the cat f ds and i t ies of algeb d



CHAPTER 2

Operads in Symmetric Monoidal Categories

In the previous chapter §1, we have worked in the setting of a base category M
equipped with a tensor product ® : M x M — M preserving colimits on each side.
The colimit assumption is required for the application of categorical constructions
(like colimits, free objects) to operads (§§1.2-1.3), and is also implicitly used as
soon as we deal with endomorphisms operads (see §1.1). On the other hand, the
definition of an operad in §1.1.1 makes sense in any symmetric monoidal category,
without assuming that the tensor product satisfies any other requirement than the
fundamental unit, associativity and symmetry axioms §0.8(a-c).

The overall purpose of this second chapter is to examine the application of
general symmetric monoidal category concepts to operads (regardless of any colimit
requirement). In §2.1, we study the definition of operads in general symmetric
monoidal categories, and the applications of symmetric monoidal category changes
to operads. In §2.2, we study operads in counitary cocommutative coalgebras (our
main example of an elaborate symmetric monoidal category). In general, we rather
use the term of Hopf operad to refer to this category of operads.

In an appendix section §2.3, we review the definition of various notions of
functors associated with symmetric monoidal categories.

Throughout this chapter, we deal with a generalization of the notion of com-
mutative algebra and of the notion of cocommutative coalgebra in the setting of
symmetric monoidal categories. We devote a preliminary section to a survey of this
subject before tackling our main topics.

The ideas explained in this chapter are again not original, and our purpose is
mainly to give a comprehensive and detailed account of concepts and constructions
scattered over the literature. The definition of the notion of an operad in the
axiomatic setting of symmetric monoidal categories was apparently first considered
in a report of G. Kelly, now published in [98], in the case where the tensor product
satisfies the colimit preservation requirement.

2.0. Commutative (co)algebras in symmetric monoidal categories

The main purpose of this zeroth section, as we just explained, is to make
explicit the definition of the notion of a unitary commutative algebra and of the
dual notion of a counitary cocommutative coalgebra in the setting of symmetric
monoidal categories. We address the case of commutative algebras first.

We only deal with commutative structures for the moment. We can how-
ever extend our formalism to define general associative (non-commutative) algebra
structures in our symmetric monoidal category setting. We will address this case
later on, in §7, where we begin to consider non-commutative structures in multiple
symmetric monoidal categories.

43
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2.0.1. Unitary commutative algebras in symmetric monoidal categories. Let M
be any symmetric monoidal category. We define a unitary commutative algebra in
M as a structure formed by an object A € M, together with morphisms n:1 — A
and 4 : A® A — A which make the following diagrams commute:

id ®n n®id id @p (1 2)"
A®1 ARQA 1A , AQARA —— ARA | AQA —— ARA .
\ J/“/ ”®zdi l” " /
A ARA M—> A A

The morphism 7, respectively u, represents the unit, respectively the product, at-
tached to this commutative algebra A. The diagrams express the unit, associativity
and commutativity relations that govern the structure.

In the basic case, where M is the category of sets M = Set (respectively, the
category of modules M = Mod over a ground ring k), we obviously retrieve the
classical notion of a commutative monoid with unit (respectively, of a commutative
k-algebra with unit).

In general, we refer to a unitary commutative algebra by the notation of its
underlying object in the ground category A € M, and we abusively assume that
the unit morphism 7 and the product u are part of the internal structure attached
to this object A. We adopt the letter 7 (respectively, u) as a generic notation
for all unit (respectively, product) morphisms attached to a unitary commutative
algebra structure. If we need to specify the algebra to which these morphisms are
associated, then we simply set n = n4 (respectively, p = p4) to mark the object
A € M in the notation.

The unitary commutative algebras in M form a category, which we denote by
MCom, or just by Comy = MCom, when the monoidal category M is fixed
by the context. We precisely define a morphism of unitary commutative algebras
f:A— B as a morphism of M which makes the following diagrams commute:

= fef

_— s A®RA —— BQ®B

1 .
iﬁB HA \L l/tB
B

A —> B

3
S
n <

—_—

!

Recall that we use the lower script + to mark the consideration of unitary
structures (as in §1.1.16). The category of non-unitary commutative algebras, which
we denote by M Com (or just by Com = M Com), is obviously defined by dropping
the reference to unit morphisms in all definitions.

Note that the unit object of the underlying category 1 inherits a natural com-
mutative algebra structure, and represents the initial object of the category of
unitary commutative algebras M Com . One can prove that the obvious forgetful
functor w : M Com — M creates limits in unitary commutative algebras, whenever
limits exist in M. But the forgetful functor w : M Comy — M does not preserve
colimits in general. (To give the simplest example, we have already observed that
the unit object 1, which generally differs from the initial object of M, is the initial
object of M Com..) In the case where the tensor product of M satisfies the colimit
preservation requirement of §0.9, one can prove that some particular colimits can
be created in the ground category M, and that M Com_ inherits colimits of any
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shape. Indeed, this statement is a particular case of the general result which we
establish in the framework of algebras over operads in §1.3. In the general case,
where we do not assume any colimit requirement on the tensor structure, we still
have coproducts in M Com_, which we deduce from the tensor product operation
of the ground category. We explain this observation in the next paragraph.

2.0.2. The symmetric monoidal category of unitary commutative algebras. The
category of unitary commutative algebras in a symmetric monoidal category M Com
actually inherits a symmetric monoidal structure from the ground category M.

First, we readily see that a tensor product of commutative algebras A ® B

inherits a canonical unit morphism 1 = 1®1 2aBNB, A @ B, and a canonical

product, defined by the composite AQ B A® B % A® A2 Be B 124 A®B,

so that A ® B forms a commutative algebra.

For the unit object 1, which represents the initial object of the category of
commutative algebras M Com_, the isomorphisms A ® 1 = A < 1®A, formed
in the underlying monoidal category M, are isomorphisms of unitary commutative
algebras. Hence, the unit relations of the tensor product hold within the cate-
gory M Com,. The associativity and symmetry relations of the tensor product
remain valid in the category of unitary commutative algebras too. Thus, we have
a whole symmetric monoidal structure on M Com_, as claimed at the beginning of
this paragraph.

We readily see moreover that the tensor product A ® B represents the coprod-
uct of A and B in Comy (and therefore coproducts exist in Comy without any

assumption on the tensor product). The universal morphisms A 4 A® B < B are
given by the tensor products i = id 4 ®np and j = n4 ® id g, where we consider the
unit morphism 74 : 1 — A (respectively, np : 1 — B) associated to A (respectively,
B).

2.0.3. Counitary cocommutative coalgebras in symmetric monoidal categories.
The structure of a counitary cocommutative coalgebra in a symmetric monoidal
category is defined by duality from the definition of a unitary commutative algebra.

In brief, a counitary cocommutative coalgebra in M consists of an object C' €
M, equipped with morphisms € : C' = 1 and A : C' — C'®C such that the following
diagrams commute:

A
C C —— OC c

TR el e N

c®1 ol Te} 10C C®C ————> CaC
id ®e ®id CeC —Tox ¢ecec (12)°

The morphism € (respectively, A) is called the counit or augmentation (respectively,
the coproduct or diagonal) of the cocommutative algebra C'. The diagrams express
the unit, associativity and commutativity relations that govern this structure.

We refer to a counitary cocommutative coalgebra by the notation of its under-
lying object C' € M (as in the algebra case). We use the letter € (respectively, A) as
a generic notation for all counit (respectively, coproduct) morphisms attached to a
counitary cocommutative coalgebra structure. We just mark the object A € M as
a subscript when we need to specify the coalgebra to which these morphisms are
attached in the notation.
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The counitary cocommutative coalgebras in M form a category, which we de-
note by M Com{, or just by Com§ = M ComS , with the superscript ¢ added to
notation in order to mark the consideration of coalgebras. We precisely define a
morphism of counitary cocommutative coalgebras f : C'— D as a morphism of M
which makes the following diagrams commute

¢ — D

o
Q
P<—0

CRC —> D®D
fef

The basic notion of counitary cocommutative coalgebra, classically considered
in the literature, corresponds to the case where M = Mod is a category of mod-
ules over a ground ring K. In the case where M is the category of sets M = Set
(and more generally when the tensor structure is given by the cartesian structure
of the category), any object X € Set inherits a counit € : X — %, because the
unit object is the final object * (the one-point set when M = Set), as well as a
coproduct A : X — X x X (the diagonal). Our counit, coassociativity and cocom-
mutativity relations obviously hold for this structure. Hence, any X € Set inherits
a tautological counitary cocommutative coalgebra structure. The definition of the
coproduct on X is actually forced by the counit relation, and as a consequence, we
have an isomorphism of categories Set Com = Set.

The tensor unit 1 inherits a coalgebra structure, defined by inverting the ori-
entation of the arrows in the definition of the algebra structure of §2.0.1, and
represents the terminal object of the category of counitary cocommutative coal-
gebras. Besides, we can also dualize the construction of the tensor product of
algebras in §2.0.2 to obtain that a tensor product of counitary cocommutative
coalgebras C' ® D inherits a counitary cocommutative coalgebra structure, with

the composite morphism C ® D 8Dy 191 =51 as counit, and the morphism

C@J)%C@C@D@D%C@D@C@Dascoproduct.

This tensor product C ® D also represents the cartesian product of C' and
D in the category of counitary cocommutative coalgebras. The universal mor-
phisms C ¢ C ® D % D are given by the tensor products p = id ®ep and
q = €c ®id, where we consider the counit e : C'— 1 (respectively, ep : D — 1) of
C (respectively, D).

The previous assertion is the exact dual of an observation of §2.0.2 on the
tensor product of unitary commutative algebras. Omne can also check that the
forgetful functor w : MCom§ — M creates colimits whenever colimits exist in
M, just like the dual forgetful functor on the category of commutative algebras
creates limits. But, we can not dualize the construction of general colimits in the
category of unitary commutative algebras to get limits in the category of counitary
cocommutative coalgebras, because we should require that tensor products preserve
limits (instead of colimits) then, and this assumption is not fulfilled in general.

We can also use the tensor product construction to provide the category of
counitary cocommutative coalgebras with a symmetric monoidal structure, as in
the dual context of unitary commutative algebras.



2.0. COMMUTATIVE (CO)ALGEBRAS IN SYMMETRIC MONOIDAL CATEGORIES 47

2.0.4. Change of underlying symmetric monoidal categories. To complete this
preliminary section, we examine the application of a change of symmetric monoidal
category to algebra and coalgebra structures.

First, we consider the case where we have a unit-pointed functor S : M —
N between symmetric monoidal categories M and N together with a symmetric
monoidal transformation 6 : S(X)® S(Y) — S(X ®Y) (see §2.3.1). Let A be a
unitary commutative algebra in a symmetric monoidal category M. Then the object
S(A) € N forms a commutative algebra in N. Indeed, we have a unit morphism

15 51) 22 54

as well as a product

S(A) @ 8(4) L S(Ae A) 21 5(4),

inherited from A, and which satisfy the unit, associativity, and commutativity
axioms of §2.0.1 as soon as the natural transformation 6 fulfills the coherence con-
straints of §2.3.1 with respect to the internal symmetric monoidal structures of our
categories (easy verification).

This construction is obviously functorial with respect to the commutative alge-
bra A. Hence, the mapping S : A — S(A) induces a functor from the category of
unitary commutative algebras in M towards the category of unitary commutative
algebras in N. This functor S : M Com; — N Com_ is unit-pointed, and we read-
ily see, moreover, that the symmetric monoidal transformation 6 : S(A) ® S(B) —
S(A ® B), inherited from S, defines a morphism of unitary commutative alge-
bras when A, B € M Com,. Thus, the functor S : MCom — N Com induced
by S : M — N is unit-pointed and comes also equipped with a symmetric monoidal
transformation in the category of unitary commutative algebras in N.

In the dual case where S : M — N is a unit-pointed functor equipped with a
symmetric comonoidal transformation 6 : S(X ® V) — S(X) ® S(Y), we read-
ily see that the image of a unitary cocommutative coalgebra under S inherits
a unitary cocommutative coalgebra structure so that S induces a functor from
the category of counitary cocommutative coalgebras in M towards the category of
counitary cocommutative coalgebras in N. This functor S : M ComS — N Com,
induced by S : M — N, is unit-pointed and comes also equipped with a symmetric
comonoidal transformation in the category of counitary cocommutative algebras,
which is yielded by the symmetric comonoidal transformation associated to S in N.

In the optimal situation where our functor S : M — N is symmetric monoidal
(see §2.3.1), we have a functor induced by S both on algebras S : M Com —
NComy and on coalgebras S : MComS — NComS. These functors are both
symmetric monoidal too.

In the case where we have functors S : M & N : T forming a symmet-
ric monoidal adjunction in the sense of §2.3.3, we have an induced a symmetric
monoidal adjunction at the level of algebra categories S : M Comy — NComy : T,
and at the level of coalgebra categories S : MComS — NComS : T as well.
Indeed, we readily see that the unit  : X — T(S(X)) and the augmentation
e: T(S(A)) — A of such an adjunction define morphisms of unitary commutative
algebras (respectively, counitary cocommutative coalgebras) when X (respectively,
A) has such a structure, and therefore, define the unit and the augmentation mor-
phism of an adjunction at the algebra (respectively, coalgebra) level.
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2.0.5. The basic example of free module functors. To give a simple example of
symmetric monoidal category change, we consider functor k[—] : et — Mod, which
maps any set X € Set to a free k-module generated by the elements of the set X,
for a fixed ground ring K. We generally write [z] for the generating element of the
k-module K[X] associated to an element x € X.

This functor K[—] : Set — Mod is symmetric monoidal (see §2.3.2), and hence,
induces both a symmetric monoidal functor from unitary commutative monoids
(unitary commutative algebras in sets) to unitary commutative algebras, and from
sets to counitary commutative algebras, where we use the observation of §2.0.3 to
get a category isomorphism Set = Set Com? identifying the category of counitary
commutative algebras in sets with the category of sets themselves.

We consider this functor from sets to counitary cocommutative coalgebras k[—] :
Set — Mod ComS.. We set Com’ = Mod Com<_ to abbreviate notation.

The counit and coproduct defining the counitary cocommutative coalgebra
structure of a free k-module K[X] can be defined by the explicit formula €[z] = 1
and Alz] = [z] ® [z] for each element z € X.

In general, we say that an element ¢ € C' in a counitary cocommutative coal-
gebra in K-modules C is group-like when we have ¢(¢) = 1 and A(c) = c®cin C,
and we use the notation G(C) for the set formed by the group-like elements in C.
We can easily check that the mapping G : C — G(C) defines a right-adjoint of
our functor k[—] : Set — Com<, from sets to counitary cocommutative coalgebras.
The unit of this adjunction is the obvious set embedding ¢ : X — K[X], and the
augmentation p : K[G(C)] — C is identified with the obvious k-module morphism
induced by the tautological set-theoretic inclusion G(C') C C.

We deduce from the general observations of §2.0.4 that the functor K[—] : Set —
ComS is symmetric monoidal, since our initial functor k[—] : Set — Mod, from sets
to k-modules, is so. We immediately see that the group-like functor G : Com$ —
Set is symmetric monoidal too, because this functor, as a right-adjoint, preserves
final objects and cartesian products, with which the unit and tensor product of
the symmetric monoidal structure of coalgebras are identified (see §2.0.3). We
can easily check that the unit morphism and the augmentation morphism of the
adjunction k[—] : Set = Com : G are also symmetric monoidal transformations,
so that our adjoint functors define a symmetric monoidal adjunction in the sense
of §2.3.3.

2.1. The definition of operads in symmetric monoidal categories

The purpose of this section is to examine the application of general symmetric
monoidal category constructions to operads.

In §1.1, we assume that the base category M has a tensor product ® : M x M —
M which preserves colimits on each side. Nevertheless, we have already observed
that the definition of an operad in §1.1.1 makes sense as soon as the unit, associa-
tivity and symmetry axioms of symmetric monoidal categories are satisfied. This
is also the case of the definition of an algebra over an operad in §1.1.13 though the
statement of Proposition 1.1.15, giving an interpretation of operad actions in terms
of endomorphism operads, is not valid in general.

We first give the definition of an operad governing general commutative algebra
structures. Our statements extend the results of Proposition 1.1.10 and Proposi-
tion 1.1.18:
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ProOPOSITION 2.1.1. In any symmetric monoidal category M, we can form an
operad Comy such that Comy(r) = 1 for every r € N, where 1 refers to the unit
object of M.

The structure of this operad is precisely defined as follows: each component
of the operad Comy(r) = 1 is equipped with a trivial action of the corresponding
symmetric group 3., the unit morphism n: 1 — Comy (1) is the identity of 1, and
the composition products p : Comy(r) ® Comy(n1)®---® Comy(n,) — Com(ny +
-+~ +mn,) are given by the canonical isomorphisms 1®1®---® 1 =1,

The collection Com such that Com(0) = 0 and Com(r) = 1 for r > 0 inherits
an operad structure as well, and is actually a sub-object of Com in the category of
operads.

PROOF. The equivariance, unit, and associativity relations of the operadic com-
position structure of Com_ follow from the internal coherence relations satisfied by
the unit, associativity, and symmetry isomorphisms in symmetric monoidal cate-
gories.

We define the composition products of the operad Com by restriction from the
composition structure of Com,, and for this purpose, we essentially have to check
that the composite 1 0®---®0 - 1®1®---®1 — 1 factors through Com(0) = 0
when we deal with a composition product of the form Com(r) ® Com(0) ® --- ®
Com(0) — Com(0). But this assertion is just a direct consequence of the functori-
ality of the unit isomorphism 1®X ~ X. (Il

PROPOSITION 2.1.2. Let M be any symmetric monoidal category. The category
of unitary commutative algebras in M, as defined in §2.0.1, is isomorphic to the
category of algebras over the operad Comy of Proposition 2.1.1. The category of
non-unitary commutative algebras in M is isomorphic to the category of algebras
over the non-unitary operad Com formed by dropping the term of arity 0 in Com,..

PROOF. The result of this proposition concerning the categories of commu-
tative algebras in M follows from a formal extension, in the setting of monoidal
categories, of the arguments of Proposition 1.1.17-1.1.18. (]

In the case M = Set, where we have 1 = pt, we exactly retrieve the result
of Proposition 1.1.18, where the category of commutative monoids with unit is
identified with the category of algebras over the one-point set operad. Indeed, the
operad defined in the proposition is a generalization of the one-point set operad of
Proposition 1.1.10, and our construction gives a version of the unitary commutative
operad Com, attached to any symmetric monoidal category M.

The second basic example of application of Proposition 1.1.18 is the category
of k-modules M = Mod. In this case, we obtain that the usual category of unitary
commutative algebras over K is isomorphic to the category of algebras over the
operad Comy such that Com, (r) = K for every » € N, and similarly in the non-
unitary setting.

In the situation where the ground symmetric monoidal category M has colim-
its and the tensor product preserves colimits, we can extend the presentation by
generators and relations of §1.2.10, to define an operad in M governing unitary (re-
spectively, non-unitary) commutative algebra structures. We can easily check that
this definition by generators and relations, whenever it makes sense, returns the
same operad as the direct construction of Proposition 2.1.1 (adapt the argument
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line of Proposition 1.2.7). We therefore have an equivalence between this approach
and the general definition of Proposition 2.1.1.

To continue this study, we examine the application of a change of underly-
ing symmetric monoidal category to operads. We consider a functor S : M — N
between symmetric monoidal categories M and N. Recall that S is said to be
unit-pointed when we have S(1) = 1, and we say that a unit-pointed functor S is
equipped with a symmetric monoidal transformation if we have a bifunctor mor-
phism 6 : S(A)®S(B) — S(A®B), A, B € M, satistying natural unit, associativity,
and symmetry constraints (see §2.3.1 for details). We have the following result:

LEMMA 2.1.3. Let P be an operad in M. If S : M — N is a unit-pointed functor
equipped with a symmetric monoidal transformation 0 : S(A) ® S(B) — S(A ® B),
then the collection of objects S(P(r)) € N, r € N, defined by applying S termwise
to the underlying collection of P, forms an operad S(P) in N. Indeed:

(a) The functor S maps the morphisms s : P(r) — P(r) giving the action of
permutations s € X, on P(r) to morphisms of the category N, so that the
object S(P(r)) € N inherits an action of the symmetric group ¥, and this
for all r € N.

(b) The collection S(P)(r) = S(P(r)) also inherits a unit morphism

15 51) 29 s(p(1))
as well as composition products

S(P(r)) @ S(P(n1)) ®---® S(P(n,))
L S(P(r) @ P(n1) @+ @ P(ny)) 25 S(P(ny +++-+ 1)),

and the equivariance, unit and associativity relations of operads (§1.1.1)
hold for this operadic composition structure.

PROOF. The unit, associativity and symmetry constraints of symmetric monoidal
transformations (§2.3.1) imply that the equivariance, unit and associativity rela-
tions of operads on S(P) reduce to the corresponding relations on P, and hence
hold at the level of that collection S(P). O

The construction of the operad structure in this lemma is clearly functorial in
P € MOp. Furthermore, for a unitary operad P, (in the sense of §1.1.19), we
have S(P4+(0)) = S(1) = 1, so that S(P) is still unitary with S(P) as associated
non-unitary operad (see §1.1.20). Finally, we have the following proposition:

ProrosiTiON 2.1.4. If S : M — N is a unit-pointed functor equipped with a
symmetric monoidal transformation, then S induces a functor on operad categories
S : MOp — NOp. This functor is given by the construction of Lemma 2.1.3 on
objects P € MOp.

This functor also preserves unitary extensions (in the sense of §1.1.20), since
we have the identity S(P4) = S(P)4, for any unitary operad Py € MOp;. O

In our applications, we essentially need to transport operads from one symmet-
ric monoidal category to another, and we base our constructions on the previous
proposition. For the sake of completeness, we can also record that the functor
S : M — N in Proposition 2.1.4 induces a functor from the category of algebras
over P € MOp to the category of algebras over the operad S(P) € NOp associated
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to P in N. To check this assertion, simply observe that the image of a P-algebra
under S inherits evaluation morphisms S(P(r))®@S(A)®" — S(P(r)@ A®") — S(A)
providing S(A) with a natural S(P)-algebra structure.

2.1.5. Examples of functors between operad categories. The functors considered
in §2.3.2 give examples of situations where we can use the result of Proposition 2.1.4.

(a) Let us begin with the simplest example, namely the functor K[—] : Set —
Mod mapping a set X € Set to the associated free k-module k[X] €
Mod. Proposition 2.1.4 implies that this functor induces a functor K[—] :
SetOp — ModOp, from the category of operads in sets towards the cat-
egory of operads in k-modules, and similarly as regards the extension of
this functor to simplicial sets k[—] : 8imp — s Mod.

(b) The geometric realization functor | — | : S8imp — Top induces a func-
tor K[—] : 8impOp — TopOp, from the category of operads in simplicial
sets towards the category of topological operads. In the converse direc-
tion, the singular complex functor Sing,(—) : Top — Simp induces a
functor Sing,(—) : TopOp — SimpOp, from the category of topological
operads towards the category of operads in simplicial sets.

Recall that the geometric realization and singular complex functors define an
instance of symmetric monoidal adjunction. In such a situation, we have the fol-
lowing additional result:

PROPOSITION 2.1.6. The functors on operad categories S : MOp S NOp : T
induced by the functors of a symmetric monoidal adjunction S : M S N : T are
still adjoint to each other. The augmentation ¢ : S(T(Q)) — Q and the unit
n: P — T(S(P)) of this adjunction (at the operad level) are given by the arity-wise
application of the augmentation and unit of the underlying adjunction between the
categories M and N.

PROOF. The augmentation € : S(T(Y)) — Y and the unit n : X — T(S(X)),
of the adjunction S : M &= N : T are symmetric monoidal transformations by
definition of the notion of a symmetric monoidal adjunction. This observation im-
mediately implies that these morphisms can be applied arity-wise to operads in
order to yield morphisms at the operad category level. The structure relations be-
tween adjunction augmentations and adjunction units remain obviously valid for
these induced operad morphisms, and therefore, we still have an adjunction rela-
tion at the level of operad categories, with the unit and augmentation morphisms
specified in the proposition. O

Let us record the application of this result to the geometric realization and
singular complex functors into a proposition:

PROPOSITION 2.1.7. The functors on operad categories | — | : 8impOp =
TopOp : Sing,(—) induced by the realization of simplicial sets and by the singular
complex functor are adjoint to each other. The augmentation € : | Sing,(Q)| — Q,
respectively the unit n : P — Sing,(| P|), of this adjunction is given by the arity-
wise application of the augmentation, respectively unit, of the underlying adjunction
between simplicial sets and topological spaces.
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Further examples of applications of Proposition 2.1.4-2.1.6 are studied all through-
out this work. For instance, the result of Proposition 2.1.6 applies the adjunc-
tion K[—] : Set — ComS : G, between sets and counitary cocommutative coalge-
bras, involving the extension of the functor K[—] : Set — Mod to coalgebras as left
adjoint (see §2.0.5).

In the sequel, we often face adjunction relations F' : M & N : G such that
the right adjoint functor G is symmetric monoidal, but not the left adjoint F* (or
conversely). In this situation, we still have a functor G : NOp — MOp, but we
can not apply Proposition 2.1.4 to get a functor on operads from F. On the other
hand, we will see that the functor G : NOp — MOp, obtained by the arity-wise
application of G : N — M, preserves limits. In practice, we can apply adjoint
functor theorems to retrieve an adjunction relation on operad categories from the
single functor G : NOp — MOp, and we obtain that way an operadic replacement
Fy : MOp — NOp of the functor F' : M — N. In §5, we use this approach to
produce a Sullivan’s model functor from operads in simplicial sets to cooperads
in cosimplicial commutative algebras (the structures dual to operads in simplicial
cocommutative coalgebras).

To prepare this subsequent study, we will examine the definition of an operad
in cocommutative coalgebras in details in the next section.

Before tackling this new subject, simply observe that we can apply the functor
k[—] : 8etOp — ModOp of §2.1.5(a) to the permutation (respectively, one-point
set) operad of §1.1 in order to obtain a model of the associative (respectively,
commutative) operad in k-modules. In the case of the permutation operad, we
obtain an operad such that Asy(r) = K[X,] for r € N (unitary case). In the case
of the one-point set operad, we obtain an operad such that Comy(r) = K[pt] = k
for r € N. In the non-unitary setting, we simply replace the arity 0 component of
these operads by the null module. In any case, we exactly retrieve the expansion
of §81.2.10-1.2.11 for the operads defined by generators and relations in §1.2.10.
This identification gives an analogue of the results of Proposition 1.2.7 in the context
of k-modules. Note that Comy(r) = Kk can also be identified with a particular
instance of the commutative operad of Proposition 2.1.1-2.1.2 since K represents
the unit object of the category of k-modules.

2.2. The notion of a Hopf operad

We now study the structure defined by an operad in counitary cocommutative
coalgebras. One of our aims is to check that operads in counitary cocommutative
coalgebras are actually equivalent to counitary cocommutative coalgebra objects
in the category of operads. The existence of these multiple equivalent definitions
motivates us to adopt specific conventions for these operads.

We generally use the terminology of Hopf operad, rather than the expression of
operad in counitary cocommutative coalgebras, to refer to these objects, unless we
want to emphasize a particular definition of our structure. We also use the notation
HopfOp, rather than Com Op, to refer to the category of Hopf operads.

We use the name Hopf as a general prefix to specify a category of structured
object in counitary and cocommutative coalgebras, or dually, a category of costruc-
tured object in unitary and commutative algebras. We stress that the coalgebra
(respectively, algebra) structure underlying a Hopf object is, under our convention,
supposed to be cocommutative in general. When we use the expression of Hopf


Benoit Fresse
Crayon
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Autocollant
This operadic ugrade $F_{\sharp}$ exists as soon as the tensor product of the category $\mathcal{M}$ distributes over colimits, so that we can form free objects and colimits in the category of operads in $\mathcal{M}$.
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operad, we therefore consider operads equipped with a counitary cocommutative
coalgebra structure.

The constructions of the next paragraphs §§2.2.1-2.2.5 are valid in an arbitrary
ambient symmetric monoidal category M, which we fix up to the end of this section.

2.2.1. The definition of Hopf operads as operads in counitary cocommutative
coalgebras. The symmetric monoidal structure of the category of counitary cocom-
mutative coalgebras Com§ = MCom¢ is defined in §2.0.3. Recall simply that the
tensor product of coalgebras A, B € Com is obtained by providing the tensor
product of A and B in the underlying symmetric monoidal category with a natural
coalgebra structure. The unit, associativity, and symmetry isomorphisms of the
tensor product of coalgebras are inherited from the ambient symmetric monoidal
category, and the forgetful functor w : MCom< — M is, as a consequence, symmet-
ric monoidal in the sense of §2.3.1.

To define operads in counitary cocommutative coalgebras, we simply apply the
general definition of §1.1.1 to the symmetric monoidal category of coalgebras ComS .
Under this approach, an operad in counitary cocommutative coalgebras (a Hopf
operad in our synonymous terminology) consists of a collection of counitary co-
commutative coalgebras P(r), together with an action of the symmetric group %,
on P(r), for each r € N, a unit morphism 7 : 1 — P(1), and product morphisms
p:P(r)®Pn)® - ®P(n.) = P(ny + -+ + n,), all formed within the category
of counitary cocommutative coalgebras and satisfying the equivariance, unit, and
associativity relations of §1.1.1 in that category ComS .

2.2.2. The internal structure of Hopf operads. An operad in counitary cocom-
mutative coalgebras forms an operad in the ground category since, as we just ob-
served, the forgetful functor w : MComS — M is symmetric monoidal by con-
struction. As such, an operad in counitary cocommutative coalgebras P can be
identified with an operad in M so that the symmetric group X, acts on P(r)
by morphisms of cocommutative coalgebras, for each r € N, and the unit mor-
phism 7 : 1 — P(1) preserves coalgebra structures, as well as the product mor-
phisms p : P(r)®@P(n1)®---®@P(n,) = P(n1+---+n,). Accordingly, to completely
unravel the definition, we simply need to go back to the definition of the coalgebra
structure on the unit object 1, and on the tensor product P(r)@ P(n1)®- - -® P(n,)
in order to make explicit the conditions which 1 and p have to satisfy as coalgebra
morphisms. The result reads as follows: the preservation of coalgebra structures by
the operadic unit 7 : 1 — P(1) is equivalent to the commutativity of the diagrams

a 1 —1s p() 1 —" =P
) 2
1 191 —> P(1)®P(1)
nen

where we use the notation e (respectively, A) to refer to the counit (respectively,
coproduct) of each P(n); the preservation of coalgebra structures by the composi-
tion product p: P(r) @ P(n1)®---® P(n,) = P(ni +---+n,) is equivalent to the
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commutativity of the diagrams

(b) P(@P(m)@ - @P(ny) — > P(mittnr) |
€®6®“'®6\L lg
1 — 1
P(r)@P(n1)@--@P(n,) - P(na i)
ARAR-®A
(P(N@P(r)@(P(n)@P(n1))@-&(P(n,)®P(n,)) A

~

(P(r)®P(n1)®-@P(n.))R(P(r)@P(n1)®@--QP(n;)) W P(ni+-+n,)@P(ni+-+n,)

In the case where M is the category of k-modules and 1 = k (and similarly
in the context of graded, differential graded, simplicial and cosimplicial modules),
the requirement that n : 1 — P(1) is a morphism of coalgebras amounts to the
assumption that the operadic unit element 1 € P(1) (determining 7) is group-like,
because so is the unit 1 in the ground ring K, regarded as a coalgebra. In point-wise
terms, the commutation relation expressed by the diagrams in (b) read

e(p(qrs---,qr)) = €p) - (e(qr) - - .. - e(qr))

and oo Pdha) e d)),
(p)>(q1);---5(qr)

for any p € P(r), 1 € P(n1),...,¢r € P(n,), where we use the notation A(x) =
Z(m) ' ® " to represent the expansion of the coproduct of any element z in a
coalgebra.

In general, the observations of this paragraph imply that we can define operads
in counitary cocommutative coalgebras as operads in the ground category P, where
each P(r) is equipped with a counit € : P(r) — 1 and a coproduct A : P(r) —
P(r) ® P(r), defining a counitary cocommutative coalgebra structure on P(r), and
so that the diagrams (a-b) commute, for all » > 0, ny,...,n, > 0.

To give an abstract interpretation of the compatibility conditions expressed by
these commutative diagrams, we will check that the category of operads inherits a
tensor product from the ground category X : Op x Op — Op, so that the doubled
factors in the tensor products of (a-b) can be interpreted as components of a tensor
square PX2 in Op. We devote the next paragraphs to this subject. This tensor
product X : Op x Op — Op will be called the arity-wise tensor product of operads.

2.2.3. The arity-wise tensor product of operads. Let P, Q@ € Op. The compo-
nents of the operad PX Q are given by the obvious formula (PX Q)(r) = P(r) ®
Q(r) in each arity » € N, where we form the tensor product of the objects P(r)
and Q(r) in the ground symmetric monoidal category M. The diagonal action
of permutations w € 3, on the tensor product P(r) ® Q(r) provides the object
(PR Q)(r) = P(r) ® Q(r) with an action of the symmetric group X,., for each
r € N. The unit of the operad PX Q is given by the composite morphism

15101 227 p(1) e Q1)
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involving the operadic units of P and Q on the different factors of the tensor product
(PR Q)(1) = P(1) ® Q(1). The composition products of PX @ are defined by the
composite morphisms

(P(r)®@ Q(r)) ® (P(n1) ® Q(n1)) ® -+ @ (P(n,) ® Q(n,))
= (P(r) @ P(n1) @ - ® P(n,)) ® (Q(r) @ Q(m1) ® - - © Q(ny))
m P(n1+...+nr)®Q(n1+...+nr)7

where we apply an appropriate tensor permutation to gather the factors attached
to each operad P and Q before applying the composition products of these operads.
We immediately check that these structure morphisms satisfy the equivariance, unit
and associativity axioms of operads. Accordingly, our construction, which is also
obviously natural with respect to P, @ € Op, yields a bifunctor X : Op x Op — Op.

We can readily see that the commutative operad Com., defined in Proposi-
tion 2.1.2 and consisting of the unit object 1 in all arities Comy(r) = 1, forms a
unit for the arity-wise tensor product of operads. We also have a natural associativ-
ity (respectively, symmetry) isomorphism on X given by the arity-wise application
of the associativity (respectively, symmetry) isomorphism of the tensor product ® in
the ambient category M. We simply have to check that the structure isomorphisms
obtained that way preserves the internal structure of operads, but this assertion fol-
lows from formal verifications. We conclude that the bifunctor X : Op x Op — Op
is the tensor product of a symmetric monoidal structure on Op.

A counitary cocommutative coalgebra in Op formally consists of an operad
P € Op equipped with a counit (an augmentation), defined by a morphism € : P —
Com,, and a coproduct A : P — PX P, all formed in the category of operads, so
that the counit, coassociativity, and cocommutativity relations of §2.0.3 hold. We
immediately see, by definition of the arity-wise tensor product X, that giving these
structure morphisms amounts to providing each P(r) with a counitary cocommuta-
tive coalgebra structure commuting with the action of symmetric groups. We also
immediately see that, for the morphisms ¢ : P — Com; and A : P — PX P, the
preservation of operad units and composition products amounts to the commuta-
tivity of the diagrams (a-b) in §2.2.2. Accordingly, we have the following result:

PROPOSITION 2.2.4. The Hopf operads, initially defined as operads in counitary
cocommutative coalgebras in §2.2.1, can equivalently be defined as counitary cocom-
mutative coalgebras in operads, where we take the arity-wise tensor product of §2.2.3
to provide the category of operads with a symmetric monoidal structure. O

We crucially need the equivalence established in this proposition for the defi-
nition Hopf operads by generators and relations (see Proposition 2.2.10).

In §2.0.3, we mention that the tensor unit 1 represents the terminal object
of the category of counitary cocommutative coalgebras, and the tensor product
represents the cartesian product in that category. The same results hold in the
operad context:

PROPOSITION 2.2.5.

(a) The unitary commutative operad Com,., giving the unit object for the arity-
wise tensor product of operads, inherits a natural Hopf operad structure
and defines the terminal object of the category of Hopf operads.
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(b) The arity-wise tensor product of Hopf operads inherits a natural Hopf
operad structure, so that the arity-wise tensor product induces a bifunc-
tor X : HopfOp x HopfOp — HopfOp and gives a symmetric monoidal
structure on the category of Hopf operads, with the unitary commutative
operad Comy as unit object.

(¢) The tensor product of Hopf operads PR Q € HopfOp, considered in (b),
actually represents the cartesian product of P and Q in HopfOp. The
structure projections P L pPx Q N Q, which characterize this cartesian
product, are identified with the tensor products p = id Xe and ¢ = e X id,
where we consider the counit morphisms € : P — Comy (respectively, € :
Q@ — Comy.) of the Hopf operad structure on P (respectively, Q).

PROOF. This result follows from the identity HopfOp = OpCom? , established
in Proposition 2.2.4, and the observations of §2.0.3, concerning the categorical in-
terpretation of the tensor product of coalgebras in a symmetric monoidal category,
which we apply to the category of operads M = Op. O

The assertions of this proposition can also be deduced from the result of Propo-
sition 1.2.4, asserting that limits of operads are created in the underlying category.
We simply note that Proposition 1.2.4 holds as soon as limit exists in the ground
category, and we use the observations of §2.0.3 to get the definition of terminal ob-
jects and cartesian products in categories of counitary cocommutative coalgebras,
without

We now examine the adjunction between symmetric sequences and operads in
the context of Hopf operads. We assume for the construction of free operads that
the base category M is equipped with colimits, and that the tensor product satisfies
the colimit preservation requirement of §0.8(a).

In parallel to the terminology of Hopf operad, we may use the expression of Hopf
symmetric sequence to refer to a symmetric sequence in counitary cocommutative
coalgebras. We may also use the notation Hopf8eq, instead of ComS Seq, to refer
to that category of symmetric sequences. We first examine the definition of a Hopf
symmetric sequence structure.

2.2.6. Hopf symmetric sequences and the definition of free Hopf operads. We
can obviously extend the definition of the arity-wise tensor product to symmetric
sequences. We then obtain a bifunctor X : Seq X Seq — Seq providing Seq with a
symmetric monoidal structure (we just retain the action of symmetric groups from
the construction of §2.2.3). The tensor unit in the category Seq is still given by the
unitary commutative operad Com,., of which we forget the operadic composition
structure.

We can readily identify a Hopf symmetric sequence with a symmetric sequence
in the base category M € 8eq equipped with a counit ¢ : M — Com; and a
coproduct A : M — MK M, formed by the collection of counits € : M(r) — 1
and the coproduct A : M(r) — M(r) ® M(r) on the components of M, so that the
counit, coassociativity, and cocommutativity relations of §2.0.3 are satisfied. We
therefore have an identity between the category of Hopf symmetric sequences and
the category of counitary cocommutative coalgebras in Seq. In our notation, this
equivalence reads HopfSeq = ComS 8eq = SeqCom, .

We can apply the construction of the free operad to the symmetric monoidal
category of counitary cocommutative coalgebras whenever we have colimits in the
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base symmetric monoidal category M. (Just recall that the category of counitary
cocommutative coalgebras has colimits as well, which are actually created in M.)
We then obtain a Hopf operad O(M), naturally associated to any Hopf symmetric
sequence M, and characterized by the universal property of Proposition 1.2.2 in
the category of Hopf operads (or by the equivalent adjunction relation of Theo-
rem 1.2.1).

We have already observed that the forgetful functor w : ComS — M, from
counitary cocommutative coalgebras to the ground category, is symmetric monoidal
by construction, and as a consequence, induces a functor w : HopfOp — Op from
Hopf operads to operads. According to the discussion of §§2.2.1-2.2.4, we can also
identify this functor with a forgetful functor, which retains the operad structure in
Hopf operads and forget about the coalgebra structure attached to each component.
We also have an obvious forgetful functor w : HopfSeq — Seq on Hopf symmetric
sequences. We now study the interplay between these Hopf forgetful functors and
the various free operad functors attached to each category.

The explicit construction of the free operad O(M) in §II.A involves a combi-
nation of colimits and tensor products. On the other hand, we mention in §2.0.3
that the forgetful functor w : Com$ — M creates colimits (in addition to tensor
products). From this observation, we may immediately deduce that the forgetful
functor w : HopfOp — Op preserves free operads. But we aim to establish this
result by another approach, by relying on our interpretation of Hopf operads as
coalgebras in operads. The argument is based on the following construction:

LEMMA 2.2.7. Let M be a Hopf symmetric sequence. Let O(M) be the free
operad associated to M, and formed in the ground category after forgetting the
internal coalgebra structure of M.

(a) The counits € : M(r) — 1 and the coproducts A : M(r) — M(r) @ M(r),
defining the counitary cocommutative coalgebra structure of the object M,
extend to operad morphisms € : O(M) — Comy and A : O(M) — O(M) X
O(M), providing O(M) with the structure of a Hopf operad.

(b) Let f : M — P be a morphism of Hopf symmetric sequences, where P
is a Hopf operad. Let ¢5 : O(M) — P be the unique morphism factoriz-
ing f in the category of operads. The free operad O(M) inherits a Hopf
operad structure by assertion (a). The above morphism ¢ automatically
preserves this additional coalgebra structure and as a consequence defines
a factorization of f in the category of Hopf operads.

(¢) In the construction of (a), the universal morphism attached to the free
operad 1 : M — O(M) forms a morphism of Hopf symmetric sequences. In
the construction of (b), if we form the morphism A : O(P) — P, attached
to the identity of P and defining the adjunction augmentation of the free
operad, then we obtain a morphism of Hopf operads.

PROOF. Recall that the collection of counits € : M(r) — 1, attached to the
coalgebra structure of each M(r), can be viewed as a morphism of symmetric se-
quences towards the unitary commutative operad Com,. The existence of the
operad morphism € : O(M) — Com; extending these counits immediately follows
from the universal property of the free operad, as stated in Proposition 1.2.2.

By composing the diagonals A : M(r) — M(r) ® M(r) with a tensor product
of the universal morphisms ¢ : M(r) — O(M)(r) in each arity, we also obtain a
morphism A : M — O(M) X O(M). By applying the universal property of the free
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operad, we obtain again an operad morphism A : O(M) — O(M) X O(M) extending
this morphism of symmetric sequences.

By applying the uniqueness requirement in the universal property of free oper-
ads (see Proposition 1.2.2 again), we immediately obtain that the counit, coasso-
ciativity and cocommutativity relations of coalgebras hold at the level of the free
operad O(M), for the just defined morphisms, as soon as they hold at the level of
the symmetric sequence M.

The universal morphism ¢ : M — O(M) forms a morphism of Hopf symmetric
sequences by construction of the coalgebra structure on O(M). Thus, the first
assertion of (¢) is immediate. The uniqueness requirement in the universal property
of free operads also implies that the morphism ¢ : O(M) — P associated to a
morphism of Hopf symmetric sequences in (b) intertwines coalgebra structures and
hence, forms a morphism of Hopf operads. The second assertion of (c), regarding
the adjunction augmentation A : O(P) — P, is also immediate from this result. O

Then we obtain:

PROPOSITION 2.2.8. The free operad O(M), together with the Hopf structure
constructed in the previous lemma, forms the free object associated to M in the
category of Hopf operads.

Proor. This proposition is a formal consequence of the results of assertions (b-
¢) in Lemma 2.2.7. O

Lemma 2.2.7 also implies the following result on the free operad adjunction:

PRrROPOSITION 2.2.9. The functors defined by the forgetting of coalgebra struc-
tures in Hopf objects fit in a commutative diagram of functors

0
HopfSeq ——= HopfOp ,

w w
v o v

Seq ——=0p

where we consider the adjoint forgetful and free object functors between symmetric
sequences and operads. These forgetful functors also induce mappings on morphism
sets

MoT3¢opr0p(O(M), P) —— MoTs¢opfseq(M, P)

\ Y
Moro,(O(M), P) — Morgeq(M, P)

that intertwine the correspondence (materialized by the horizontal arrows in the
diagram) which arises from the definition of free operads as a left adjoint.

PrOOF. The assertion of Proposition 2.2.8 implies that the forgetting of coal-
gebra structures preserves free objects in operads. In Lemma 2.2.7, assertion (c)
similarly implies that the forgetting of coalgebra structures preserves the unit mor-
phism and the augmentation morphism of the free operad adjunction. From this
observation, we immediately conclude that the forgetting of coalgebra structures
also intertwines the adjunction correspondence on morphisms. [
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In §1.2, we briefly explain that the free operad O(M) intuitively consists of
formal operadic composites of elements £ € M(n) (whenever the notion of element
makes sense). In this interpretation, the construction of Lemma 2.2.7 amounts to
extending the counit (respectively, coproduct) of M to such composites by using
the point-wise commutation relations of §2.2.2. We use this idea soon, when we
explicitly determine the counit and coproduct of composition products in operads
defined by generators and relations (see §2.2.11).

We now specialize our study to Hopf operads in modules over a ring M = Mod.
We explain in §1.2.9 that operads in module categories can be defined by generators
and relations as quotients P = O(M)/ < z% a € J >, where we consider an
ideal < 2%, & € J > in a free operad O(M). In the context of Hopf operads, we have
the following result:

PROPOSITION 2.2.10. Let M be a Hopf symmetric sequence (in K-modules).
We apply the construction of Lemma 2.2.7 to obtain a Hopf structure on the free
operad associated to M. Let S =< z% o € J > be the ideal generated by a collection
of elements z* € S(ng) in the free operad O(M). If e(z*) = 0 and A(z%) €
S5(ng) ® O(M)(ng) + O(M)(ng) ® S(ny) for each z* € S(n,,), then:

(a) The operad O(M) / < 2%, « € J > inherits a quotient Hopf operad structure

from the free operad O(M).

(b) The morphisms of Hopf operads ¢y : O(M)/ < 2%, a € I >— Q defined
on this quotient are in obvious bijection with the morphisms of Hopf oper-
ads ¢5 : O(M) — Q such that ¢¢(2%) = 0 for each generating element of
the ideal 2% € S(nq).

In the situation of this proposition, we also say that the ideal S =< 2%, o € J >
forms a Hopf ideal in the operad O(M).

PrOOF. The requirement €(z%) = 0 implies that e induces a morphism on
the quotient O(M)/ < 2% a € J >, and hence provides this quotient operad
with a counit € : O(M)/ < z* a € J >= Com,. The requirement A(z%) €
S5(na) @ O(M)(ny) + O(M)(n) ® S(ng) is equivalent to the vanishing of A(z%) in
(O(M)/ SHO(M)/ $)(na) = O(M)(n)/ S(na) © O(M)(na)/ S(na) = O(M)(na) &
O(M)(na)/ S(na) ® O(M)(ng) + O(M)(n4) ® S(ny), and implies that A : O(M) —
O(M) X O(M) induces a morphism A : O(M)/S — O(M)/ SXKO(M)/ S on the quo-
tient operad O(M)/S = O(M)/ < z* & € J >. These morphisms, obtained by a
quotient process, naturally satisfy the counit, coassociativity, and cocommutativity
relations of coalgebras and hence, provide the operad O(M) / < 2% « € J > with a
well-defined Hopf structure.

To check the second assertion of the proposition, simply observe that the mor-
phism ¢; : O(M)/ < 2%,a € I >— @, induced by the morphism of Hopf oper-
ads ¢y : O(M) — @, naturally preserves coalgebra structures as well, and hence,
defines a morphism of Hopf operads. O

2.2.11. The basic examples of Hopf operads. The assertions of Proposition 2.2.5
include the statement that the unitary commutative operad Com, has a natural
Hopf structure. The same result holds for the non-unitary version of this operad
Com and can also be deduced from the identity between the components of this
operad in arity r > 0 and the tensor unit 1. The counit € : Com(r) — 1 is given
by the identity of 1 in arity » > 0, and by the initial morphism () — 1 in arity
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r = 0. The coproduct A : Com(r) — Com(r)® Com(r) is given by the isomorphism
1< 1®1 in arity r > 0, and by the initial morphism ¢ — § ® @ in arity r = 0.

To illustrate our constructions, we check that this structure result can be re-
trieved from the statement of Proposition 2.2.10 and from the presentation com-
mutative operad in §1.2.10. We then assume that the ground symmetric monoidal
category is a category of modules over a ring.

Recall that the generating symmetric sequence of the commutative operad is
defined by Mcom(2) = K[u(x1,22)] = K, where u = p(z1,22) denotes an operation
on which ¥y acts trivially, and Mcom(r) = 0 for » # 2. We provide the mod-
ule Mcom(2) = K[p(x1,22)] with the coalgebra structure such that e(u) = 1 and
A(p) = p @ p for this generating operation. We use the preservation of operadic
composition structures to determine the image of the generating relations of Com
under the counit and the coproduct in the free operad:

e(p(p,1) — p(1l,p)) =1-1=0,
Alp(p, 1) = p(Lp) = (@ p)(pep,1®1) = (e ) (11, 1@ p)
= pp, 1) @ pup, 1) — pu(L, ) @ (1, )
= (pu(p, 1) — (1, 1)) @ pu(pes 1) 4 p(L, ) @ (e, 1) — p(L, o).

We see, from this computation, that the generating relations of the commutative
operad generate a Hopf ideal. Hence, the assumptions of Proposition 2.2.10 are
satisfied, and we retrieve that Com inherits a well-defined Hopf operad structure,
such that e(u) =1 and A(p) = u ® p for the generating operation p = p(x1, x2).

The unitary and the non-unitary version of the associative operad also inher-
its a Hopf structure. Let us see how to retrieve this structure result from the
presentation again. The generating symmetric sequence of the associative operad
is given by Mas(2) = K[u(z1,22), p(z2,1)] = K[E], where p = p(a1,z2) de-
notes an operation on which ¥y acts regularly, and Mas(r) = 0 for r # 2. We
provide the module M44(2) with the coalgebra structure such that e(u) = 1 and
A(p) = p® p. The definition of the counit and of the coproduct of the transposed
operation (1 2) - u = p(xe, 1) is then forced by the equivariance requirement. We
check, as in the case of the commutative operad, that p(u, 1) — p(1, 1) generates a
Hopf ideal, from which we conclude again that the operad As inherits a well-defined
Hopf structure.

In the case of the Lie operad, we have a generating symmetric sequence such
that Me(2) = k[A(z1,22)] = k¥ where k¥ denotes the signature representation.
We have in this case no possibility of fixing a counit €(A) € Kk, and a coproduct
A(N) € Lie(2) ® Lie(2), so that: the counit relations hold, the equivariance require-
ments of operad morphisms are satisfied and the Jacobi relation is canceled by the
counit in K, and by the coproduct in Lie(3) @ Lie(3) as well. Hence, we have no
Hopf structure on the Lie operad.

2.2.12. The example of the Poisson operad. Though we have no Hopf structure
on the Lie operad, we can define an appropriate counit and coproduct for the
corresponding generating operation A in the Poisson operad. Recall that the Poisson
operad Pois is defined by a presentation of the form

Pois = O(kpu(w1,z2) @ KA(w1,22) + p(p(zr, 2),23) = @y, (w2, v3)),
AA(z1,22),23) + A(A(z2, 23), 21) + M A(x3,21),22) =0,
(1, 22), 23) = p(A(z1,23), 22) + pl@r, AM(z2,23)) ),
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where the action of the symmetric group in arity 2 is determined by (1 2) -y = p
and (1 2)-A = —\. We extend the formula of the commutative operad to define the
counit and the coproduct of the product operation p = p(z1,z2). We define the
counit and the coproduct of the Lie bracket operation A = p(x1,z2) by €(A) =0
and A(A) =A@ u+ p® A Again, we easily check (exercise, adapt the verifications
performed in §2.2.11 for the commutative operad) that the generating relations of
the Poisson operad form a Hopf ideal, and therefore we have a well-defined Hopf
structure on the Poisson operad. We use a graded variant of this Hopf structure in
our study of the homology of E,-operads (§4.2).

2.2.13. Remark: tensor product of algebras over Hopf operads. The existence of
a Hopf structure on an operad P implies that the associated category of algebras P
inherits a symmetric monoidal structure from the underlying symmetric monoidal
category M. Indeed, the tensor product of P-algebras A, B € P inherits an action
of P, given by the composite morphisms P(r) ® (A ® B)®" =N (P(r)® P(r)) ®
(A® B)®" = (P(r) @ A®") @ (P(r) @ B®") 24228, A @ B for any r € N, where
we consider the coproduct of P, followed by the obvious tensor permutation and
the tensor product of the evaluation morphisms attached to the P-algebras. The
tensor unit 1 also inherits an action of the operad P by restriction through the
counit morphism e : P — Com; (using the natural commutative algebra structure
of 1). The counit, coassociativity, and cocommutativity relations, at the level of the
coalgebra structure of the Hopf operad P, imply that the unit, associativity, and
symmetry isomorphisms of the ground category define P-algebra morphisms when
we deal with tensor products of P-algebras. Hence, we have a whole symmetric
monoidal structure on the category of P-algebras.

In the case of the commutative operad, we retrieve with this observation the
basic symmetric monoidal structure of §2.0.2. In the case of the associative operad,
we retrieve the similarly defined symmetric monoidal structure alluded to in the
introduction of §2.0.

2.2.14. Changes in the context of connected operads. Recall that the category
of connected operads Opg;, as defined in §1.1.21, consists of the operads P satisfying
P(0) = () when the tensor product of M preserves colimits (otherwise we just forget
about arity zero terms) and P(1) =1

The constructions of §§2.2.3-2.2.5 can readily be adapted in the context of
connected operads. We actually have (PX Q)(0) = () when the tensor product
of M preserves colimits, and (PX Q)(1) = 1 in general, so that the category Op; is
equipped with a well-defined arity-wise tensor product inherited from the category
of operads. We accordingly have a symmetric monoidal structure on Op,,. We just
need to observe that the unit object of this category is the non-unitary version of
the commutative operad Com (defined in Proposition 2.1.1).

The result of Proposition 2.2.4 remains valid for connected operads, and so
does the result of Proposition 2.2.5, provided that we replace the unitary version
of the commutative operad Com by the non-unitary one Com.

2.3. Appendix: functors between symmetric monoidal categories

In various constructions, we have to transport structures (like commutative
algebras) from one symmetric monoidal category M to another N by using func-
tors preserving the internal structures of symmetric monoidal categories. For this
aim, we deal with functors preserving symmetric monoidal structures, in a strict
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or relaxed sense. The purpose of this appendix section is to make explicit extra
structures, consisting of natural equivalences or natural transformations, which we
use to govern the commutation of tensor products and functors S : M — N.

2.3.1. Symmetric monoidal transformations. We often deal with functors S :
M — N satisfying S(1) = 1 for the unit object 1 € M, and equipped with a natural
transformation 6 : S(A)®S(B) — S(A® B), so that natural unit, associativity and
symmetry constraints, expressed by the commutativity of the following diagrams,
hold:

S(A)®S1) — > S(Ae1) ,  S1)®SA) — = S(1®A)
S(A)@1 ——> S(A) 10S(A) ——> S(A)

S(4)®8(B)2S(C) 22 s(aeB)es(©) . S(A)esB) —L s saeB) .

N

S(A)8S(BEC) ———>= S(A®BEC) S(B)®S(A) — > S(B®A)

In this situation, we say that the functor S is unit-pointed (to refer to the identity
S(1) =1) and that 0 defines a symmetric monoidal transformation on S. We have
a dual situation where our functor S is equipped with a natural transformation
going in the converse direction 6 : S(A® B) — S(A) ® S(B) and satisfying a dual
of our unit, associativity and symmetry constraints. We then say that 6 defines a
symmetric comonoidal transformation associated to S.

We may deal with an optimal situation, where a unit-pointed functor S is
equipped with a symmetric monoidal transformation 6 that gives an isomorphism 6 :
S(A)®S(B) = S(A®B), for every A, B € M (or dually in the case of a symmetric
comonoidal transformation). We say in this case that § forms a symmetric monoidal
equivalence and that S : M — N is a symmetric monoidal functor from M to N.
(Some authors use the expression of strong symmetric monoidal functor to depict
this situation.)

The functors which are unit pointed and equipped with a symmetric monoidal
transformation in our sense form a subclass of the class of lax symmetric monoidal
functors (simply called symmetric monoidal functors by certain authors). Indeed,
to retrieve the general definition of a lax symmetric monoidal functor from our
definition, we simply have to relax the identity requirement S(1) = 1 and to assume
the existence of a morphism 7 : 1 — S(1) instead. Dually, the functors which are
unit pointed and equipped with a symmetric comonoidal transformation in our
sense form a subclass of the classical notion of colax symmetric monoidal functor.

Unit objects are preserved by all our examples of functors between symmetric
monoidal categories. Therefore, we do not use the general notion of lax/colax
functor in practice.

2.3.2. Basic examples of symmetric monoidal functors. The geometric realiza-
tion functor |—| : Sémp — Top (see §0.5) is a fundamental example of functor which
carries a non trivial symmetric monoidal structure. Recall that the tensor product
operation on simplicial sets and topological spaces is defined by the cartesian prod-
uct of these categories. In this context, the canonical projections K ¢~ K x L % L
induce morphisms |K| < |K x L| % |L| which we can put together to define a
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natural transformation 6 : |K x L| % |K| x |L|. This natural transformation is
actually a homeomorphism for all K, L € 8imp (see for instance [133, §III]), This
result follows from a topological interpretation, in terms of simplicial decomposi-
tions of prisms, of the classical Eilenberg-Zilber equivalence (we refer to loc. cit.
for details). For a point, we obviously have |pt| = pt, and the definition of the
natural transformation 6 : |K x L| % |K| x |L| from universal categorical construc-
tions automatically ensures that the unit, associativity and symmetry constraints
of §2.3.1 are fulfilled.

The singular complex functor Sing, : Top — Simp, which defines the right
adjoint of the geometric realization functor | — | : Simp — Top (see §0.5), is also
symmetric monoidal. In this case, the identity Sing,(pt) = pt and the existence of
an isomorphism Sing, (K x L) = Sing, (K) x Sing, (L) immediately follows from
the definition of Sing, : Top — Simp as a right adjoint.

To give another (even) simple(r) example: the functor k[—] : Set — Mod,
defined by assigning the free k-module k[X| generated by X to any set X € Set
is symmetric monoidal since we have an obvious identity K[pt] = k for the one

point set pt € Set, a natural isomorphism K[X] @ K[Y] <= k[X x Y], for any
cartesian product of sets X,Y € Set, and we can also easily check that this natural
transformation fulfills our unit, associativity and symmetry constraints. We go
back to this example in §2.0.5.

The simplicial extension of the free k-module functor K[—] : Simp — sMod
(considered in §0.3) is also symmetric monoidal (the symmetric monoidal structure
of simplicial modules will be studied in §4.3).

The normalized chain complex functor N, : Simp — dg Mod, of which we recall
the definition later on, is an instance of functor which is not symmetric monoidal
in the sense specified in §2.3.1. In the case of this functor, we have a natural
transformation 6 : N.(X) x N.(Y) — N.(X x Y), called the Eilenberg-MacLane
morphism, which satisfy our unit, associativity and symmetry constraints, but this
morphism is only a weak-equivalence and not an isomorphism (see [121, §§VIII.6-
8]). We give a detailed account of this subject in §4.3.

2.3.3. Symmetric monoidal adjunctions. Suppose now we have a pair of adjoint
functors S : M &2 N : T between symmetric monoidal categories such that both
S and T are symmetric monoidal. We then say that the adjunction is symmetric
monoidal if the adjunction augmentation € : S(T(X)) — X and the adjunction unit
n:A— T(S(A)) are identity morphisms on unit objects, and make commute the
diagrams

S(T(X)@S(T(V)) — > Xov A9B —— 5 s(1(AeB))

R

S(T(X)BT(Y)) ——— S(T(X®Y))  T(S(A)ST(S(B)) ——> T(S(A)85(B)

)

involving the symmetric monoidal transformations attached to S and T

One can check (exercise) that the augmentation € : |Sing,(X)| — X and the
unit 7 : K — Sing, (| K|) of the adjunction between the geometric realization | — | :
Simp — Top and the singular complex functor Sing,(—) : Top — Simp satisfy
these relations. Hence, this adjunction | — | : 8imp = Top : Sing,(—) is symmetric
monoidal in the sense defined in the present paragraph.






CHAPTER 3

The Definition of Operadic Composition
Structures Revisited

In the introductory chapter §1, we have given a first definition of the notion
of an operad, and we have used this definition to explain the relationship between
operads and algebras. In this second chapter, we go deeper into the study of the
internal structures of operads themselves.

The first outcome of this second examination, explained in the first section
of the chapter (§3.1), is a new definition, in terms of partial composition opera-
tions, of the composition structure of an operad. The equivalence between May’s
definition [134], considered in §1, and this definition in terms of partial composi-
tion operations is due to Martin Markl [127, 129], and is also used in the work of
Ginzburg-Kapranov on the Koszul duality of operads [75]. For us, the partial com-
position operations have the important feature to satisfy homogeneous (quadratic)
relations, unlike the full composition products considered in the definition of §1.1.1.
The existence of this homogeneous structure is the crux of the Koszul reduction
process of §10. Let us mention that examples of partial composition products were
considered before the development of the theory of operads in the work of Murray
Gerstenhaber on the Hochschild cochain complex (see [69]).

In a second part of the chapter (§83.2-3.4), we examine the definition of operads
such that P (0) = 1, where 1 is the tensor unit of the base category M. In §1.2.8, we
mentioned that such operads, which we call unitary operads, can be produced by the
addition of the unit object 1 to the arity 0 component of a non-unitary operad P. To
complete the definition of the composition structure of a unitary operad P from an
underlying non-unitary operad P, we have to assume that P is equipped with extra
structures reflecting composition products with the additional term of the unitary
operad. In §3.2, we give a conceptual interpretation, in terms of an extension
of the underlying symmetric structure of an operad, of these unitary composition
operations. In §3.3, we use the result of this analysis to give a reduced version of
the categorical constructions of §1.2 in the context of unitary operads. In §3.4, we
explain the definition of connected unitary operads, where further reductions of the
structures introduced in §§3.2-3.3 can be considered.

The first instances of operads considered in May’s monograph [134] are unitary
(unital in the terminology of that reference), and May actually uses a unitary
variant of the structure of a free algebra over an operad for the study of iterated
loop spaces. We give a short survey of this subject in §3.2.

We have considered, so far, that the components of an operad P(r) are indexed
by non-negative integers r € N. Recall that an element p € P(r) intuitively rep-
resents an operation of r variables p = p(z1,...,x,), indexed by the finite ordinal
r={1<--- <r}. But in the construction of free operads, we have advantage of

65
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considering operad components P(r) associated to all finite sets r = {iy,... 4.}, so
that we can deal with operations p = p(x;,,...,x; ) of r variables with arbitrary
indexes. We explain this extension of the definition of an operad in the concluding
section of the chapter §3.5.

We assume all through this chapter that we work within a base symmetric
monoidal category M. When we examine the application of categorical construc-
tions to unitary operads in §§3.3-3.4, we will assume that the tensor product of
this category satisfies the colimit preservation requirement §0.9(a), but until this
moment, we do not use more than the general axioms of symmetric monoidal cat-
egories.

3.1. The partial composition product definition of operads

In the point-set context, the partial composition products of an operad are
basically defined by formulas p o, ¢ = p(1,...,1,¢,1,...,1), where ¢ € P(n) is
plugged in the kth input of the operation p € P(m), and operad units 1 € P(1)
are inserted at the other input positions. In §1.1.4, we observed that the unit and
associativity axioms of operads imply that the full composition products of §1.1.1
satisfy p(q1, ..., qr) = (-+ (P Oki4+1 1) Oko41 *++) Ok, 41 G, for any p € P(r) and all
q1 € P(n1),...,q- € P(n,.), where we set k; =nq+---+mn;_q for i =1,...,r. This
result still holds in a general categorical framework as we can obviously replace
our point-wise relations by morphism identities. In any case, we obtain from this
analysis that the composition structure of an operad is fully determined by giving
the partial composition products of : P(m) ® P(n) — P(m +n — 1), where k =
1,...,m. The purpose of this section is to specify relations on partial composition
operations which are equivalent to the equivariance, unit, and associativity axioms
of §1.1.1. The first outcome of this study, as we announced in the introduction of
this chapter, is a new representation of the structure of an operad which will serve
as working definition in subsequent constructions.

To start with, we give the formal definition, in categorical terms, of the partial
composition operations.

3.1.1. The partial composition products associated with an operad. Let P be
an operad (in the sense of the basic definition of §1.1.1). The partial composition
operations associated to P

o : P(m) ® P(n) - P(m+n—1)
are formally defined as composites
P(m) @ P(n) % Pm)@1®---@Pn)®- -1
W Pm)@ P(1)®---® P(n)®---® P(1)
# P(m+n—1),

where we consider a tensor product of operad units 7 : 1 — P(1), putting the factor
P(n) at the kth position of the tensor grouping P(1) ® --- ® P(n) ® -+ ® P(1),
followed by the appropriate component of the full composition product of P. The
range of definition of the full composition products in §1.1.1 implies that a partial
composition operation of this form can be associated to any pair m,n € N and each
composition index k € {1 < --- < m}. (But, since the choice of composition index
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is empty for m = 0, we may assume m > 0 when we apply partial composition
operations.) In the point-set formalism, we just retrieve the formula p oy ¢ =
p(1,...,q,...,1) recalled in the introduction of this section.

From this definition, we can already readily deduce the equivariance relations
satisfied by the partial composition products:

ProproOSITION 3.1.2. The equivariance axiom of operads, as expressed by the
commutative diagram of Figure 1.4, implies that the partial composition operations
of an operad P make the following diagram commute

P(m) ® P(n) —2 P(m) @ P(n) ,

okl los(k)

Pim+n—1)——=P(m+n—1)
Sos(k)t
for all min € N, each k € {1 < -+ < m}, all s € X,,, t € X,,, and where
504(k) t € Linyn—1 refers to a partial composite of the given permutations s € X,
t € X, formed within the permutation operad.

PROOF. The equivariance relation of this proposition immediately follows from
the equivariance axiom expressed by the commutative diagram of Figure 1.4, where
we take r =m and ny = -+ = ngpy—1 = 1, Ngk) =N, Ns(k)41 = - =Ny = L.

Simply observe that the permutation s(id,...,t,...,id), occurring in this ap-
plication of the axiom, with ¢ plugged in the s(k)th composition position of s,
defines the partial composite s o, ¢ of the permutations s € ¥,,, t € ¥,,. O

Before going further, we review the definition of the operadic composition of
permutations in order to give an explicit definition of the permutation s oyt €
Ym+n—1 occurring in the above proposition. The purpose of this examination is to
illustrate the definition of partial composition operations. In the rest of this section,
we only use formal properties attached to the partial composition of permutations,
and not the explicit expression.

3.1.3. Partial composites of permutations. The permutation composite s o)
t € ¥, 4n-1 occurring in the previous proposition can be determined from the
construction of the composition structure on permutations in §§1.1.7-1.1.9. Indeed,
we simply have to unravel the definition of that permutation as a composite

s0uy t = 5(idy, ..oty idy) = idy B @D D idy -5(1,...,m,. .., 1),

In the sequence representation of permutations (see §1.1.7), we readily see that
the sequence associated with the composite s oy t is defined by substituting the
sequence associated with ¢ to the occurrence of the composition index s(k) in the
sequence defining to s, with the appropriate value shift reflecting the interpretation
of partial composites in terms of a composition of operations (see §1.1.4). To be
explicit, if we let s = (s(1),...,s(m)) and t = (¢t(1),...,t(n)), then the result of
this substitution process has the form

sogm t=(s(1),...,s(k=1),t(1),....t(n),s(k+1),...,s(m)"),

where we set s(i)) = s(i), when s(i) < s(k), s(i) = s(i) + n — 1, when s(z) >
s(k), and t(j)) = t(j) + n — 1 in all cases. For instance, for the permutations
s=1(1,3,5,4,2) € ¥5 and t = (3,1,2) € X3, we obtain sost = (1,3,7,6,4,5,2).
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3.1.4. The graphical definition of the partial composition products. In the graph-
ical representation of §1.1.6, the definition of the partial composition operations
from the full composition products reads:

(©)

Recall (see §1.1.6) that an arrangement of operad components (or elements) on
a tree represents a tensor product. The removal of unit factors 1 in isomorphism (1)
corresponds to the application of the unit isomorphisms in the formal definition
of §3.1.1, and morphisms (2-4) represent the continuation of the process. The
withdrawal of the unit factors gives the composition pattern depicted on the source
of isomorphism (1).

3.1.5. The scheme of the partial composition operations, input indexing and
equivariance. In the point-set context, we may use the figure of §3.1.4 to repre-
sent the partial composition of operad elements p € P(m) and ¢ € P(n). In the
two-vertex tree defining the source of our composition morphism, we replace the
operad components P(m) and P(n) by these corresponding elements p € P(m) and
q € P(n). This figure gives the composition pattern underlying the composition
operation of : p® q — p oy q.

In §3.1.4, we use the natural input indexing of the composite operation poy q €
P(m +n — 1) as a canonical input indexing attached to this composition pattern.
In §1.1.5, we observed however that such canonical indexing may be changed into
an arbitrary one in order to materialize the action of permutations on operadic
composites. In the context of the partial composition operation, this extension
of our tree-wise representation makes us deal with composition patterns of the
following general form
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and which the performance of the partial composition operation o : p® q +— pog q
carries to the operad element represented by the following figure

i1

In §1.1.5, we also introduced relations to identify the action of permutations
on operations with an input re-indexing of tree edges. In the case of the two-vertex
tree (a), we deal with relations of the following form:

7"s('m)

Recall that the ingoing edges of a box labeled by an operation p € P(r) are in
bijection with the inputs of this operation. Moreover, as long as we deal with
operad components associated to ordinals r = {1 < -+ < r}, we assume that this
bijection is realized by the ordering of the edges in the plane. Hence, the application
of identification rules in the above picture moves the outgoing edge of ¢ € P(n) from
the s(k)th position to the kth position in the ingoing edges of p € P(m).

The equivariance relation of Proposition 3.1.2 implies the coherence of the
mapping (a)—(b), depicting the performance of a partial composition operation
on tree-wise tensors, with respect to identifications (c). Indeed, this equivariance
relation reads

G e e is(k>_1 J1 e Jn Ts(k)41 cee s im G ens vee La(k)—1 J1  cor oo o Ba(f)l v ce- B

and we have the identification

RS Ts(k)—1 j1 - Jn fs(k)41 e e i To(1)oon oo ls(k—1)Jt(1) == Jt(n)ls(k+1) o s(m)

S0s(k)t"POKY

Il
ﬁ
o
ol
Q

0 0

so that the map (a)—(b) equalizes both sides of relation (c).

The other way round, as soon as we deal with a mapping of the form (a)—(b),
the preservation of identifications attached to tree-wise tensors implies the equivari-
ance relation of partial composition products when we restrict ourselves to canon-
ical indexing of the form considered in §3.1.4. Thus, whenever we use this picture,
we implicitly consider partial composition operations satisfying the equivariance
relation of Proposition 3.1.2.
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FIGURE 3.1. The unit relations of partial composition products,
valid for allr € Nand k= 1,...,7.

3.1.6. The graphical representation of the partial composition products of oper-
ads. In general, we use the picture

Ji_ e Jn

to specify a partial composition product associated with an operad structure, and
for which we implicitly assume that the equivariance relation of Proposition 3.1.2
is satisfied.

In this representation, we identify the application of the partial composition
product o with the performance of an internal operation within the tree-wise tensor
product. Thus, as in §1.1.6, we will use the notation (o). to refer to the induced
map on the global object which the tree-wise tensor, taken as a whole, represents.
This internal operation has not to be confused with an external partial composition
product, which we define in §I1.A.2.7 and for which we use the notation o;, (without
the * mark, and with a tree input index 4, instead of an ingoing edge index k).

In §ITI.A, we elaborate of this picture of the partial composition operations
to give a representation of the free operad. We roughly deal with composition
schemes, modeled on trees with an arbitrary number of vertices, which represent
multiple applications of partial composition products. We have already given an
example of this representation in our introduction of free operad structures in §1.2.
In Figure 3.1-3.3, we give fundamental examples of such (multi-fold) composition
schemes, giving the shape of the unit and associativity relations satisfied by the
partial composition operations.

The verification of these unit and associativity relations, from our initial def-
inition of the composition structure of an operad in §1.1.1, is the subject of the
following proposition:
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FIGURE 3.2. The associativity relation of partial composition
products for a sequential arrangement of factors, with r,s,t € N,
andke{l<---<r},le{l<---<s}
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FiGUrRE 3.3. The associativity relation of partial composition
products for a ramified arrangement of factors, with r,s,¢t € N,
and {k <} Cc{l<---<r}.
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PROPOSITION 3.1.7. The partial composition operations
op: Pm)®@P(n) = Plm+n—1),k=1,...,m,

defined from the full composition products of an operad in §3.1.1, fulfill unit and
associativity relations expressed by the commutativity of the diagrams of Figure 3.1-

3.8.

PRrROOF. To establish this proposition, we use the tree-wise interpretation of
the full composition products of operads, and the corresponding representation of
the unit and associativity axioms of operads in Figure 1.5-1.6

The unit relations of the proposition are immediate consequences of the unit
axiom of full composition products, as expressed by the commutative diagrams
of Figure 1.5. In one relation, we deal with a partial composite on an arity 1
component. But in this degenerate case, the partial composite is formally the same
as a full composition product. In the other unit relation, the evaluation of the
partial composition oj simply amounts to distinguishing a tensor unit 1 in the
composite P(r) @ 187 — P(r) ® P(1)®" £ P(r) involving the full composition
product.

The first associativity relation of partial composition products, expressed in
Figure 3.2, is also immediate from the associativity axiom of the full composition
products. Indeed, we simply have to apply the diagram of Figure 1.6 to a configu-
ration of the form

.
oy

<<

which, under the construction of partial composites in §§3.1.1-3.1.5, corresponds to
the composition of partial composition operations represented in Figure 3.2.

In this process (and in the next constructions as well), the unit factors 1 corre-
spond to the (delayed) application of unit morphisms 7 : 1 — P(1). The unit axiom
of Figure 1.5 implies that the evaluation of an operadic composite on a grouping of
such unit factors is equal to the insertion of a unit morphism n : 1 — P(1) at the
place resulting from the composition operation. In our picture, we just keep unit
factors at the positions associated with such groupings of operadic units.

To check the second associativity relation, we examine the associativity diagram
of Figure 1.6 for configurations of the form

RE

N
=
<.
=
)
)
&

P<—pP<—S
P<—p<—5
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and

N
oo
<
oy
<
o
X
A
o>~
&
S
3

<<

The definition of partial composites implies that the composites of partial com-
position operations represented in Figure 3.3 are identified with the composite com-
position products of (b-¢), when the composition of the lower rows is performed
first. On the other hand, if we perform the composition of the upper rows in (b-c),
then we obtain in both cases a configuration of the form

SRR R N

ip
Y
1

.
oy

<

0

These composition operations reduce to the application of unit relations and form
isomorphisms (b) = (d) <= (c). From this identification, we deduce, by applying
the associativity axiom of operads, that the composites of the partial composition
operations of Figure 3.3 are both equal to a three-fold composition operation of the
form

i1ess 1o Js oo k1 ook i

P(r+s+t—2)

0

This identification finishes the proof of the proposition. (]

3.1.8. The definition of operads in terms of partial composition operations. The
result of Proposition 3.1.7 gives natural axioms for the definition of operadic struc-
tures in terms of partial composition products.

To be explicit, we call operad shaped on partial composition schemes the struc-
ture defined by a sequence of objects P(n) € M, n € N, where each P(n) is equipped
with an action of the symmetric group ¥,, (as in the definition of §1.1.1), together
with:

(a) a unit morphism n: 1 — P(1),

(b) and partial composition products o : P(m) ® P(n) — P(m +n — 1),

defined for all m,n € N, and each k € {1 < --- < m},

satisfying an equivariance relation, expressed by the commutativity of the diagram
of Proposition 3.1.2 as well as unit and associativity relations, expressed by the
commutativity of the diagrams of Figure 3.1, Figure 3.2, and Figure 3.3. Recall
that we just use the equivariance relation when we form the tree-wise picture of the
composition products occurring in these figures.

The definition of a connected operad in §1.1.21 has an obvious analogue for
operads shaped on partial composition schemes. In this case, we forget about arity
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zero components in our definition, and we set P(1) = 1. We then see that the
partial composition operations (b) such that m = 1 or n = 1 are determined by
the unit axioms of Figure 3.1. Hence, the composition structure of a connected
operad shaped on partial composition schemes can be fully determined by partial
composition products (b) such that m,n > 1.

The operads shaped on partial composition schemes form a category with, as
morphisms, the morphisms of symmetric sequences ¢ : P — Q preserving operadic
units and the internal partial composition products of the operads. The result of
Proposition 3.1.7 amounts to the definition of a functor, from the category of plain
operads towards the category of operads shaped on partial composition schemes.
Our claim is that:

THEOREM 3.1.9. The category of operads shaped on partial composition schemes,
as defined in §3.1.8, is isomorphic to the category of plain operads, as defined
in §1.1.1. 0

This result will be established in §II.A, where we explain a general formalism
of tree-wise composition operations, which include the full composition products
of §1.1.1 and the partial composition products considered in this section as partic-
ular examples.

3.1.10. The point-wise formulation of the equivariance, unit, and associativity
relations of partial composition products. In general, we use the graphical picture
to express the relations satisfied by the partial composition products of an operad.
But we can easily give a point-wise representation of our relations whenever the
notion of point-set element makes sense. First of all, the equivariance relation
of partial composition products, stated in Proposition 3.1.2, is equivalent to the
point-wise relation sp oy tq = s ok t - p oy q, for p € P(m), ¢ € P(n), s € Xy,
teX,,and k=1,...,m. The unit relations, given by the diagrams of Figure 3.1,
are equivalent to the formulas 107 p = p and pop 1 = p for all p € P(r), and
k =1,...,r. The associativity relations, given by the diagrams of Figure 3.2-3.3,
read (a ok b) og41—1 ¢ = aoy (bo; ¢), respectively (aog b) 0g41—1 ¢ = (ao; ¢) ox b, for
a€P(r),beP(s),ce P(t),and ke {1 < ---<r},le{l<- - < s}, respectively
{k<l}c{l<---<r}

3.2. The definition of unitary operads

In §1, we introduced the expression of unitary operad to refer to operads P
satisfying P (0) = 1. Recall that we also use the expression of non-unitary operad
to refer to operads which have nothing in arity zero. In the case where the tensor
product of the base category preserves colimits on each side §0.8(a), we can identify
non-unitary operads with operads P such that P(0) = (). In general, we just forget
about arity zero terms to formally define non-unitary operads, and for the moment,
we can use this minimal approach for the definition of our notion.

The operad of unitary associative monoids As, as defined in §1.1.16 (in the set-
theoretic context), and the operad of unitary commutative monoids Com, are our
basic examples of unitary operads. The operads As and Com, formed by dropping
the arity 0 terms of these unitary operads, give basic instances of non-unitary
operads.

Recall that we use the notation Op; for the category formed by the unitary
operads P as objects and the operad morphisms ¢ : P, — Q. which are the
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identity of 1 in arity 0 as morphisms, and we use the notation Op, for category of
non-unitary operads.

In §1.1.20, we introduced the expression of unitary extension to refer to the
unitary operads P, which are defined by the addition of a unit term P (0) =1 to
a given non-unitary operad P. The main purpose of this section is to check that
the composition structure of a unitary extension P is determined by adding extra
operations, reflecting the composition products with the additional unit term of the
unitary extension, to the internal structure of the non-unitary operad P.

In the context of non-unitary operads, we mostly deal with the partial com-
position products, considered in the previous section, which form a good basis of
generating operations for the composition structure. In the context of a unitary
operad, we consider special operations, given by the composition products with
the arity zero term P (0) = 1, which we prefer to regard as part of an extension
of the internal symmetric structure of the operad and which we put apart from
the composition structure therefore. The idea is that fixing P4 (0) = 1 transforms
these composition products into additive operations, while the partial composition
products are quadratic. This observation motivates the use of different approaches
to address the underlying structures of unitary operads.

But we have to return to the analysis of the previous section in order to carry
out our program. In a first stage, we study the subpart of the composition structure
of a unitary operad consisting of these composition products which have the arity
zero term P4 (0) = 1 and operadic units as single composition factors.

3.2.1. The restriction operations associated with a unitary operad structure.
We assume that P, is a unitary operad, such that P;(0) = 1, and we use the
notation P to refer to a non-unitary operad which agrees with P, in arity n > 0.
We formally consider composite morphisms

P(n) < Py(n)@PL(0)® - ®18 - @P(0)® - ®1®- - @ Py(0)
PP () @PL0)®--- P, (1)@ ®P,(0)®--- @ P, (1)®---® P, (0)
i>'D+(m)7

such that 7, is given by the application of operadic units : 1 — P (1) at places
specified by an increasing sequence 1 < ky < - -+ < k;,, < n, and where p denotes the
appropriate component of the full composition products of the unitary operad P.
(We give a graphical representation of these composition schemes in §3.2.8.) Since
specifying an increasing sequence 1 < k; < -+ < k;;; < n amounts to giving an
increasing map u: {1 <--- <m} = {1 <--- <n} with u(é) = k;, fori =1,...,m,
our construction returns a morphism u* : P4 (n) — P4 (m) associated to any such
mapu:{l<---<m}—={l<---<n}l

In the case m,n > 0, we more precisely obtain morphisms u* : P(n) — P(m)
between the components of the non-unitary operad P associated to Py. In the
case m = 0, n > 0, we obtain an augmentation € : P (n) — 1, defined on any
component of the unitary operad P, and which we also identify with a morphism
€ : P(n) — 1 defined on the non-unitary operad P. In what follows, we generally
use the expression of restriction morphism to refer to these structure morphisms
associated with a unitary operad. In the point-set context, the restriction map

*

u* : P(n) = P(m) can be defined by a formula

w(p) =Py ooym, Lokg ook Lok oo %),
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for any p € P(n), where we use the notation * to refer to the distinguished element
of the operad P, in arity 0. The augmentation is similarly defined by e(p) =
Pk, ...y %),

In the case where we take a single unitary factor P4 (0) = 1 in our construc-
tion of restriction morphisms, we retrieve the definition of a partial composition
operation

P(n) < Py (n) ® P4 (0) 2% P, (n —1).

The restriction morphisms 9y : P(n) — P(n — 1), k =1,...,n — 1, corresponding
to these particular composites are associated with the increasing maps 0% : {1 <
oo <n—1} = {1 < --- < n} jumping over a single value k € {1 < --- < n}. In
the point-set context, the definition of these morphisms also reads O (p) = p o, *,
forany k=1,...,n.

Since we observed in §3.1 that the full composition products of an operad are
composites of partial restriction operations, we can readily conclude that all restric-
tion morphisms associated with a unitary operad structure occur as composites of
these particular restriction operations dy : P(n) - P(n—1), k = 1,...,n. This
assertion could equivalently be deduced from the observation that all increasing
maps u : {1 < --- <m} = {1 < --- < n} are composites of maps of the form
O {l<---<n—1} = {1 <--- <n}, and from the associativity of the action of
restriction morphisms, which we will establish in Lemma 3.2.4.

3.2.2. The category of ordinal injections. Our first objective is to establish that
the restriction operations u* : P(n) — P(m) defined in the previous paragraph can
be embodied in an extension of the internal symmetric structure of operads. For this
purpose, we consider the categor hich has the finite ordinals n = {1 < --- < n}
with n > 0 as objects, and all injective maps f: {1 <--- <m} - {1l <--- <m}
(not necessarily increasing) as morphisms. This category includes a distinguished

subcategory AT C A with the same objects as K, but of which morphisms reduce
to the increasing maps of §3.2.1. B

The tilde in our notation of the category A refers to our restriction to ordi-
nals n = {1 < --- < n} such that n > 0. The notation A, when we refer to a
category, is associated to the variant of the category A where we consider all finite
ordinals (including the empty one 0) as objects. Formally, we will not deal with
that complete category A, but we generally use the associated notation A (with no
extra decoration) as a qualifier for objects of which structure includes an action of
morphisms f € Mor(m, n). For instance, we will use the expression of non-unitary
A-sequence to refer to the category of contravariant diagrams over the category A.
In §3.4, we similarly use the expression of connected A-sequence to refer 1o a cat-
egory of contravariant diagrams associated to another full Subcategoryééof th
category A.

In general, we also use the notation of the complete category A, rather than
the notation of a specific full subcategory, in the expression of morphism sets. We
adopt similar conventions for the sets of increasing maps which we associate to a
subcategory of the complete category A™ C A. We have the relation AT = ANAT
for the non-unitary version AT which we consider all through this section.

In the sequel, we deal with objects of the category of KOp—diagrams equipped
with an augmentation over a constant diagram (see Proposition 3.2.6), which we
associate to the commutative operad Comy (see §3.2.14). We will use the expression
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of augmented non-unitary A-sequence to refer to the objects of this category, and
we will adopt a similar naming in the connected context (see §3.4).

3.2.3. The decomposition of morphisms in the category of ordinal injections.
The symmetric group X, n > 0, is identified with the automorphism group at-
tached to the object n in the category A. We readily see that any morphism
f € Mora(m,n) has a unique decomposition f = p - o, such that p € Mor,+(m,n)
and 0 € %,,. The map p is characterized by the relation {f(1),...,f(m)} =
{p(1) < --- < p(m)}, and the permutation o = (o(1),...,0(m)) by the equa-
tion p(o(2)) = f(4), for any ¢ € m.

In the particular case of a composite f = s - u, where u € Mor+(m,n), and
s € X, the existence of our decomposition is equivalent to a commutation formula
s-u = p-o, where p € Morpy+(m,n) and o € X, is a permutation associated
to s € 3,. This permutation ¢ € 3, is actually identified with the image of s
under the restriction morphism p* in the permutation operad, where we consider
the increasing map p fitting in our decomposition s-u = p- 0. We give a proof of
this identity in §3.2.7, where we go back to the definition of restriction operations
for the example of the permutation operad.

In §1.2, we introduced the permutation category ¥ with the ordinals n = {1 <
.-+ < n}, n >0, as objects, the permutation groups Mors(n,n) = X,, as endomor-
phism sets, and such that Mors(m,n) = @, for m # n. In parallel to our category
K, we consider the full subcategory of the permutation category YCcyx generated
by the ordinals n = {1 < --- < n} such that n > 0, and which we can ebvious iden-
tify with the isomorphism category associated to A. To refer to the decomposition
f = u- s of the morphisms in the category A we symbolically write A = AT-X. The
following lemma provides a first motivation for the introduction of our category A:

LEMMA 3.2.4. Let P4 be any unitary operad with P as underlying non-unitary
operad.

(a) The restriction morphisms P(t) v, P(s) LA P(r) associated to any se-
quence of increasing maps {1 < --- <r} S {l <. <s} B {l < - <t}
such that r,s,t > 0, satisfy the relation u*v* = (vu)* on P(r).

(b) The restriction morphisms P(n) v, P(m) associated to increasing maps
{1<---<m} S {1 < <n}, withm >0, also satisfy equivariance
relations, expressed by the commutativity of the diagrams

P(n) ——P(n) ,

J )

P(m) —— P(m)

for all s € X,,, where p denotes the increasing map and o € ¥, denotes
the permutation fitting in the decomposition f = p - o of the composite
morphism f = s-u in Mora(m,n).

PROOF. The first assertion follows from an application the associativity rela-
tion of Figure 1.3 to the unitary operad P,, and the unit axiom of Figure 1.2,
which we use to identify the composite 1 ® P (0) UELIN P, (1)® P, (0) & P, (0)
with the canonical isomorphism 1® P, (0) = P (0). To be explicit, we consider
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a composition pattern formed by three rows of operad components, with the single
factor P (t) on the lower row, and a t-fold (respectively, s-fold) tensor product
of the form P;(0)® -+ ®1® - @ P4(0)® - ®1® - ® P4(0) on the second
(respectively, third) row. The unit factors 1 are set at positions v(1) < --- < v(s)
(respectively, u(l) < --- < u(r)) on the second (respectively, third row) and are
associated with operadic units  : 1 — P4 (1) which we insert before applying
our operadic composition products. We readily see that, for such a composition
scheme, the commutativity of the diagram of Figure 1.3 gives the identity between
the morphisms v*v* and (vu)* considered in our proposition.

The second assertion of the proposition is a consequence of the second equivari-
ance axiom of Figure 1.1, where we take ny = 1 if k € {s(u(1)),...,s(u(m))} and
ng = 0 otherwise. The permutation s* moves the factors P, (1) in the tensor prod-
uct P1(0)®---®@P4(1)®---®@P4(1)®---®P4(0) to the positions 1 <u(l) <--- <
u(m) < n. Hence, the composite p-id ®s* occurring in our application of the equiv-
ariance axiom gives the restriction operation associated to u. On the other hand,
the composition product P (n)@P4(0)®--@P (1)@ - -@P(1)®---®@P4(0) &
P (m) with the factors P, (1) at the initial positions k € {s(u(1)),...,s(u(m))} of
our tensor product gives the restriction operation associated to the increasing map
p such that {p(1) <--- < p(m)} = {s(u(1)),...,s(u(m))}. From the constructions
of decompositions in §3.2.3, we immediately deduce that this map p is identified
with the increasing map p such that s-u = p-%,,. Thus, the equivariance re-
lation gives a commutative diagram of the form considered in our statement, but
where o denotes the block permutation o = 5.(0,...,0,1,0,...,0,...,0,1,0,...,0)
associated to our lengths ng =0, 1.

The definition of §1.1.7 implies that this block permutation is represented by
the sequence (s(u(1))’,...,s(u(m))"), obtained by withdrawing the values k ¢
{s(u(1)),...,s(u(m))} from (s(1),...,s(n)), and where we perform an appropri-
ate index shift, marked by the symbol ’, to retrieve a permutation of (1,...,m).
The shift operation amounts to the formation of a sequence satisfying the relation
(p(s(u(1))),...,p(s(u(m)))) = (s(u(1)),...,s(u(m))), because we can identify this
reindexing process, where we just jump over the values k & {s(u(1)),..., s(u(m))},
with the application of an inverse of our increasing map p. This observation im-
mediately implies that our block permutation is identified with the permutation o
fitting in the decomposition su = po of the map f = su. O

The following proposition is a consequence of Lemma 3.2.4:

PROPOSITION 3.2.5. The underlying symmetric sequence of the non-unitary op-
erad P associated with a unitary operad Py inherits the structure of a AP -diagram,
so that the restriction morphisms of §3.2.1 give the action of the subcategory At CcA
on P and the natural symmetric structure of the operad corresponds to the action
of the isomorphism subcategory % C A.

In §3.2.2, we introduced the expression of non-unitary A-sequence as another
naming for the K"p-diagram structures occurring in this proposition. In the next
section and later on, we use this expression, rather than the general categorical
conventions, to stress the parallelism between the action of restriction morphisms
and the symmetric sequence structures associated with plain operads.
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EXPLANATIONS. To obtain the contravariant action s* : P(n) — P(n) of a
permutation s € ¥, within the category /N\, we precisely consider the action of the
permutation s~ : P(n) — P(n), inverse to s, in the natural symmetric structure of
the operad. The inversion operation enables us to retrieve a contravariant action,
as required, from the natural left action of the symmetric group %,, on P(n).

In general, the morphism f* : P(n) — P(m) associated to amap f € Mory(m,n)
such that f = u-s, where u € Mory+(m,n) and s € X,,, is explicitly defined by the
composite

P(n) “ P(m) s P(m),

where we take the restriction operation associated to u, followed by the action of
the inverse of the permutation s on P.

We obviously have id* = id for the action of identity morphisms and the
associativity relation of the action f*¢* = (gf)* for general morphisms of the
category A is an immediate consequence of the results of Lemma 3.2.4. O

To complete our analysis of the structure on the underlying sequence of unitary
operads, we give a categorical interpretation of the augmentations of §3.2.1:

PROPOSITION 3.2.6. The augmentations € : P(n) — 1, n > 0, deduced from the
structure of a unitary operad Py define a morphism of A°P-diagrams € : P — Cst,

from the underlying diagram of the non-unitary operad P towards the constant
diagram such that Cst(n) = 1, for allm > 0.

PROOF. We can easily check, by the same arguments as in the proof of the
functoriality relation w*v* = (vu)* in Lemma 3.2.4, that the augmentations € :
P(n) — 1, n > 0, make commute each diagram

P(n) ———— P(m),
\ /
1
where we consider the restriction morphisms associated to any map u € Mor+(m,n).
We similarly immediately see, from the equivariance axiom of §1.1.1, that the aug-
mentation € : P(n) — 1 carries the action of a permutation s € ¥,, on P(n) to the

identity of the operad term P, (0) = 1, and this verification completes the proof of
our proposition. O

In §3.2.14, we will observe that the constant diagram Cst is the /~\°p—diagram
underlying the commutative operad Comy. The augmentation morphism € : P —
Cst can also be identified with a morphism towards this object Com. Therefore,
we will use the notation of the commutative operad Com, rather than the notation
of the constant object Cst, in subsequent applications of the result of the above
proposition.

In the next section, we mostly use the expression of augmented non-unitary A-
sequence, elaborating on the conventions introduced in §3.2.2; to refer to the A°P-
diagrams equipped with an augmentation over this constant object Cst.
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3.2.7. The example of the permutation operad. In the case of the permutation
operad, we can readily make explicit the restriction operations from the definition
of the composition structure in §§1.1.7-1.1.9. Let s € ¥,,. Let u: {1 <--- <m} —
{1 < --- < n} be any increasing map. In the permutation operad, we have x = idy €
Yo, 1 =idy € X1, and the composite u*(8) = s(k, ... %, 1k, ook, k 1ok o %)
is given by the block permutation s,(0,...,0,1,0,...,0,...,0,1,0,...,0), where we
apply the permutation s to blocks of length 1 at positions 1 < u(1) < --- < u(m) <
n specified by the injection, and blocks of length 0 on the remaining positions.
This process amounts to a withdrawal of the terms s(k) € {u(1) < --- <wu(m)}, in
the sequence representation of the permutation s = (s(1),...,s(n)), together with
the performance of a natural index shift, carrying the set {u(l) < -+ < u(m)} to
{1 < -+ < m}, and which can formally be identified with the application of the
mapping v~ : {u(l) < --- < u(m)} = {1 < --- < m}. converse to the given
increasing map.

For instance, in the case of the map w : {1,2,3} — {1,2,3,4,5} such that
u(l) = 1, u(2) = 5, u(3) = 5, and the permutation s = (3,1,5,2,4), we perform
the withdrawal operation (3,1,5,2,4) — (1,5,4), followed by the normalization
operation (1,5,4) — (1,3,2), to get ©*(3,1,5,2,4) = (1,3,2).

In §3.2.3, we mention that the permutation o € %, fitting in the decomposition
su = p-o, of the composite mapping s-u : {1,...,m} — {1,...,n} is identified with
the image of s € ¥,, under the restriction operation p* : ¥,, — 3, associated with
the increasing map p fitting in this decomposition. In Lemma 3.2.4, we only checked
that our commutative diagram involves factors of the decomposition s-u = p- 0.
(This result was enough to imply the conclusion of Proposition 3.2.5.) The identity
o = p*(s) actually follows from an application this equivariance relation to the
identity permutation id, € X, within the permutation operad. Indeed, in this
case, the equivariance relation reads o-u*(id,,) = p*(s), from which we immediately
deduce our identity o = p*(s) since we obviously have u*(id,,) = id,, for the identity
permutation id,, € X,.

By applying a similar argument to the inverse permutation s~*, we also obtain
that the permutation u*(s) € %,, is determined by the equation s~!-u = p-u*(s)~!
in the mapping set Mor, (m, n), where p is the increasing map associated with that
composite map f = s - u.

3.2.8. The graphical definition of restriction morphisms. We generally use the
symbol * to mark the positions of unitary factors P (0) = 1 in the picture of a
restriction morphism. When we use this convention, the definition of the restriction
morphisms from the full composition products of a unitary operad in §3.2.1 reads:

1
1

e 1o o o M e " \L ¢
o PH(O) L Py (0) e s L Py (0)
P(n) —
(1) Pi(n)[=
0
0
1 e m
Py (0)zeer Py (1) e Py (0) e Py (1) e 2 Py (0)
— - :
(2) (Pr(n)F (3)

0
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where (2) is the morphism 7., considered in §3.2.1, given by the application of
operadic units 7 : 1 — P (1), and (3) is the full composition product of the operad
P+.

3.2.9. The graphical representation of restriction morphisms. We can also elab-
orate on the conventions of §1.1.6 to give a graphical representation of our restric-
tion morphisms. We then regard our morphisms as the performance of internal
operations

Ko e ean T PR B et By eeeeee s im
P
—
0 0

on tree-wise tensors. The expression p, is a generic notation referring to the appli-
cation of the restriction morphism u* which we use in this tree-wise representation.
The map u : {1 < --- < m} — {1 < --- < n} corresponding to this restriction
morphism is just determined by the positions of the edges which, in our picture,
are not marked by the symbol .

In certain situations, we regard the application of the restriction morphism in
the tree-wise picture as an identification relation between tree-wise tensors. This
conception elaborates on the equivariance identities of §1.1.5.

We again use an arbitrary indexing of the inputs to materialize the action of
permutations on our composition pattern. We can also elaborate on this convention
to extend our representation to restriction morphisms f* : P(n) — P(m) associ-
ated with any map f : {1,...,m} — {1,...,n} (possibly not monotone) in the
category A. We then move the index ix attached to an input k = 1,...,m in the
picture of the result of our operation, to the edge at position f(k) on the source
tree-wise tensor product, and we mark the remaining edges with the symbol of
the unitary composite %, as in the increasing map case. We readily see that the
permutation of the index positions (i1, ...,y ) involved in this process corresponds
to the action of the permutation s occurring in the decomposition f = u - s of our
mapping. (We just perform an inversion of the correspondence of §1.1.5 to change
the natural left action of the symmetric group on operads into a right action.) To
give a simple example, for the mapping f: {1 <2 <3} - {1 <2<3<4<5}
such that f(1) =4, f(2) =1, f(3) = 5, the image of an element p € P(5) under the
restriction operation f* : P(5) — P(3) can be represented by the following picture

2 % % 1 _3 1 2 3

0 0
where we regard the performance of a restriction morphism as an identification of
tree-wise tensors.

In what follows, we also deal with partial evaluations of our tree-wise restriction
morphisms, allowing us to remove only a subpart of the distinguished ingoing edges
* — - in a given composition pattern. The associativity relation of Lemma 3.2.4
amounts to the assumption that the performance of such restriction processes in
several stages does not change the result of the operation. The tree-wise restriction

operations can be applied within tree-wise tensor products shaped on trees with
several vertices. This natural extension of our picture is used in Proposition 3.2.11,
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when we formulate an associativity relation between the restriction morphisms and
the partial composition products of operads.

3.2.10. The graphical representation of augmentations. We adapt the conven-
tions of the previous paragraph to represent the augmentations ¢ : P(n) — 1
associated with the structure of a unitary operad P,. To be precise, we may adopt
the following picture

= 1
0

We use the notation €,, with an added lower script style *, to refer to this tree-wise
morphism since, as usual, we regard this application of the augmentation on tree-
wise tensors as the performance of an internal operation. We may again consider
an obvious extension of the augmentation to tree-wise tensors shaped on trees with
several vertices.

In §3.2.1, we focus on composition products of a unitary operad P, involving
the arity zero term P (0) = 1 and operadic unit as composition factors. But we can
still consider partial composition products oy : P4 (m) ® P4 (n) = Py (m+n —1),
k=1,...,m, defined by the composition scheme of §3.1.4. In the cases m,n > 0,
which exclude the composites with the unitary factor P, (0) = 1, these composition
operations are identified with internal composition operations of the non-unitary
operad underlying P, and they satisfy the equivariance, unit, and associativity
relations of §3.1 within this non-unitary operad.

To complete our results, we extend the analysis of §3.1 to determine associativ-
ity relations involving both our restriction morphisms and the partial composition
products of §3.1. We regard these mixed associativity relations as part of an equiv-
ariance property of the partial composition products with respect to the action of
category A on the underlying collection and to the action of the augmentations. We
therefore use this terminology in our statement and in the corresponding figures.
The result reads:

PROPOSITION 3.2.11. The partial composition products oy : P(m) ® P(n) —
P(m+mn—1), k =1,...,m, on the underlying non-unitary operad of a unitary
operad Py, satisfy equivariance relations, expressed by the commutativity of the
diagrams of Figure 3.5-3.4, with respect to the action of the restriction morphisms
and of the augmentations on P.

PROOF. This proposition follows from a simple variation of the arguments line
of Proposition 3.1.7, where we establish the associativity relations of the partial
composition products. Note that the result of the proposition holds for all restric-
tion operations, not necessarily associated with an increasing map, and involves, in
the general setting, the equivariance axiom of the composition products which we
implicitly use when we form our picture of the associativity relation. ([l

3.2.12. The definition of unitary operads as extensions of non-unitary operads.
In §3.1, we established that the composition structure of an operad is determined by
giving the partial composition products of §3.1.1. In the unitary context, we readily
obtain from the analysis of the present section that the composition structure of a
unitary extension P, of a non-unitary operad P can be determined by giving:


Benoit Fresse
Crayon

Benoit Fresse
Autocollant
In subsequent versions of this work, I give an algebraic definition of these equivariance relations.
I was not able to adapt the graphical language used in this version for the cooperad setting.
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FIGURE 3.4. The equivariance of partial composition products
with respect to the action of restriction morphisms.

(a) the internal partial composition products of the non-unitary operad P,
which, in our unitary extension, correspond to the partial composition
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FIGURE 3.5. The preservation of partial composition products by
augmentation morphisms.

product components

P+(m)®P+(n) O—k) P+(m+n71)

=P(m)®P(n) =P(m+n—1)

such that m,n > 0,
(b) the restriction morphisms u* : P(n) — P(m), m,n > 0, u € Mor,+(m,n),
which are equivalent to composition operations of the form

P(n)@P (0)® @10 -©1®---® P,(0)

=P(n)
P (m)@PL0)® - @PL(1)@--@PL(1)®--- @ P, (0)
i> P+(m>7
=P(m)

with operadic units and unitary terms as composition factors,
(c¢) and the augmentations € : P(n) — 1, n > 0, which yield composition
products
Pi(m)®Py(0)®--- @ Py(0) & Py(0)

——
=P(m) =1

with the unitary term P, (0) =1 as target.
Furthermore, by summarizing our results, we obtain that these structure morphisms
satisfy the following requirements:
— the partial composition products (a) fulfill the equivariance, unit, and
associativity axioms of §3.1.8, within the non-unitary operad;
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— the restriction morphisms (b) and the augmentation (c) also satisfy equiv-
ariance and internal associativity relations, formulated in Lemma 3.2.4, so
that (b-c) actually provide the underlying sequence of the non-unitary op-
erad P with the structure of an augmented A-diagram (in the terminology
of §3.2.2);

— the restriction morphisms (b) together with the augmentation (c) sat-
isfy associativity relations with respect to the partial composition oper-
ations (a), which are expressed by the commutativity of the diagrams of
Figure 3.4-3.5;

— and the unit axiom of operads §1.1(1.2) imply that the augmentation € :
P(1) — 1in arity 1 defines a retraction of the operadic unit n : 1 — P(1).

We coin the expression of augmented non-unitary A-operad to refer to the gen-
eral structure defined a non-unitary operad P equipped with restriction morphisms
(b) and augmentations (c) satisfying the above requirements. We also adopt the
notation A Op, / Com for the category formed by these augmented non-unitary A-
operads. We naturally define a morphism of augmented non-unitary A-operads as
a morphisms of non-unitary operads that preserve the extra structure consisting of
the restriction operations and the augmentations.

The results previously obtained in this section can be rephrased as the definition
of a functor 74 : Op; — A Op,/ Com from the category of unitary operads Op,
towards the category of augmented non-unitary A-operad. We actually have the
following stronger result:

THEOREM 3.2.13. The correspondence of §3.2.12 provides an isomorphism be-
tween the category of unitary operads Op, and the category of augmented non-
unitary A-operads A Op, / Com.

ProOF. The applications of augmented non-unitary A-operads motivate our
choice to introduce restriction operations as a new layer of structure, directly defined
from the full composition products of §1.1.1, and lying over the partial composition
products analyzed in the previous section. But we temporarily change our approach,
and we rely on the result of the previous section, to give a formal proof of our
statement.

In §3.2.1, we already observed that the restriction morphisms v* : P(n) — P(m)
include particular operations Ji : P(n) — P(n — 1) corresponding to the partial
composition products with a unitary factor or : Py (n) ® P+(0) — Pi(n — 1),
where we assume n > 1, and we take any k = 1,...,n. The arity 1 augmentation
€ : P(1) — 1 is also clearly identified with the unique partial composition product
o1 : P1(1) ® P+(0) — P4(0), which has the unitary component as target and is
not covered by this correspondence.

Thus the structure of an augmented non-unitary A-operad P include all par-
tial composition products which have to associate to a unitary extension of that
operad. The equivariance, unit and associativity requirements in the definition of
an augmented non-unitary A-operad also include all equivariance, unit and asso-
ciativity relations which these partial composition products have to satisfy within
the unitary operad. From the result of Theorem 3.1.9, we therefore obtain that
the structure of a unitary extension P is fully determined by the augmented A-
operad structure associated with the non-unitary operad P so that the mapping
T4+ : P4 +— P defines an isomorphism of categories 7 : Op; — AOp,/ Com as
claimed in our theorem. (]
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In §I1.A.5, we put the definition of the composition structure of unitary oper-
ads in a more global perspective, by integrating the partial composition products,
the restriction morphisms, and the augmentations in the general form of tree-wise
composition operations.

The unitary commutative operad Com,, defined in §1.1 in the set-theoretic
context, and in §2.1 in the general setting of symmetric monoidal categories, pro-
vides a natural example of a unitary operad. To conclude this section, we give a
characterization of this operad as a terminal object within the category of unitary
operads. For this purpose, we elaborate on the definition of the augmentations
in §3.2.1.

3.2.14. The unitary structure of the commutative operad. Recall that the op-
erad Comy is defined by the constant symmetric sequence, such that Com,(n) = 1,
for all n € N, and has all structure morphisms given either by the identity of the
unit object 1, or by natural isomorphisms 1®--- ® 1 ~ 1 arising from the unit
constraint in the ambient symmetric monoidal category.

The restriction morphisms of the non-unitary operad Com are therefore given
by identity morphisms of the unit object, and, in the result of Proposition 3.2.5, we
obtain that Com inherits a constant A°P-diagram structure (in arity n > 0). The
augmentations € : Com(n) — 1 associated with this operad are also given by the
identity of the unit object. B

In Proposition 3.2.6, we prove that the A°P-diagram defined by the collec-
tion P(n) = Py(n), n > 0, underlying a unitary operad P is canonically aug-
mented over this constant diagram. In fact, at the operad level, we have the fol-
lowing result:

PROPOSITION 3.2.15. The augmentations € : Py(n) — 1, which we define by
considering the components P (n) = P, (n)@P,(0)®™ £ P (0) of the composition
products of a unitary operad Py in §3.2.1, form a morphism of unitary operads
€ P+ — Com+.

PROOF. The equivariance, unit , and associativity axioms of operads, as for-
mulated in the definition of §1.1.1, imply that the augmentations € : P4 (n) — 1
carry all structure morphisms associated with the unitary operad P to the identity
of the unit object 1. We immediately conclude that these augmentations define a
morphism towards the commutative operad Com. as asserted. (Il

From this proposition, we readily conclude that:

PROPOSITION 3.2.16. The unitary commutative operad Com, as defined in §2.1,
gives the terminal object of the category of unitary operads. ([l

3.2.17. Free algebras over unitary operads. The operads consider in May’s mono-
graph [134] are actually unitary operads (called unital operads in that reference) in
the category of topological spaces. We have already observed that, for an algebra
over a unitary operad giving the arity 0 operation X : P4 (0) — A amounts to fixing
a unit element in A. When we deal with topological spaces, this unit element is
identified with a base point naturally associated to the space A.

The action of the category of ordinal injections is used in this context to give
a reduced version of the free P -algebra functor on the category of pointed spaces.
We now consider, to be more precise, the complete category A, which includes an
empty ordinal 0, rather than the truncated category A, where this empty ordinal
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is excluded. The (contravariant) action of the category A on the non-unitary P,
which we consider all through this section, extends to a (contravariant) action of
this category A on the unitary operad P,. The cartesian powers X *™ n € N, of
a pointed space X inherits a A-diagram structure: to an injective map f : {1 <
-+-<m} = {1 < --- < n}, defining a morphism in A, we associate the mapping
S s XXM — X" which assigns any (21, ..., %) € X *™ to the n-tuple (y1,...,yn)
such that

* otherwise.

x;, if 5 = f(i), for some %,
Y; =
We then form the coend

neA

S*(P+,X):/ P (n) x X<"

to get a P-algebra, naturally associated with X. Intuitively, the performance of
this coend amounts to implementing identities

pf*(xl,-~-7xm) = f*p(xh'"axm)a

in the free algebra structures of §1.3. One can readily check that this reduced
free operad functor S.(Py) : X — S,(P4, X) gives a left adjoint of the reduced
forgetful functor w : P, — Top,, which retains the base point, yielded by the arity
0 action A : P4 (0) — A, from the structure of a P -algebra.

May’s approximation theorem [134] deals with the reduced free algebras asso-
ciated with the little n-cubes operads C,, n € N (see §4.1). May’s result precisely
asserts that, when X is a connected space (and more generally, when X is group
like), the free algebra S.(C,,X) is weakly-equivalent to the iterated loop spaces
Q3" X, where Q" refers to the n-fold loop space functor on pointed spaces, and
¥"™ refers to the n-fold suspension. In this construction, which gives the starting
point of the iterated loop space theory of [134], the little n-cubes operad C,,; can
be replaced by any A-diagram weakly-equivalent to C, and satisfying some mild
cofibrancy conditions with respect to the action of symmetric groups.

The most classical example, occurring in the case n = 1, is given by the associa-
tive (permutation) operad As.. In this case, the reduced free associative monoid,
which our construction represents, can be identified with the construction J(X)
introduced by James in [92]. May’s approximation theorem actually occurred as a
generalization of a result established by James, in terms of the combinatorial con-
struction J(X). We go back to this subject, and give further references on iterated

loop space theory, in §4.1. @

3.3. Categorical constructions for unitary operads

We now assume that the tensor product of the base category preserves colimits
on each side §0.8(a), and we revisit the definition of the categorical constructions
of §1.2 in the context of unitary operads.

Let P, be any unitary operad. By Proposition 3.2.5 and Proposition 3.2.6,
the collection P(n), n > 0, where we drop the arity zero term P, (0) = 1, inher-
its the structure of a K"p—diagram which is also augmented over the constant Aop-
diagram Cst = Com, underlying the unitary commutative operad Com,.. Hence, the
mapping w4 : P4 +— P actually gives a forgetful functor wy : Op; — A8eq,/ Com


Benoit Fresse
Autocollant
The restriction operations and the reduced free algebras considered in this paragraph are also used in "F. Cohen, P. May, L. Taylor, Splitting of certain spaces $CX$, Math. Proc. Cambridge Philos. Soc. 84 (1978), 465--496." fro the definition of generalized Hopf invariants (see revised version).
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towards the category, denoted by A Seq,/ Com, which has these augmented Aop-
diagrams as objects. Throughout this section, we rather use the expression of aug-
mented non-unitary A-sequence to refer to the objects of this category (see §3.2.2).

Our first purpose is to define a version of free operads giving a left adjoint of this
extended forgetful functor wy : Op; — A 8eg, / Com. The technical construction of
these free unitary operads is carried out in the following lemma:

LEMMA 3.3.1. Let M € ASeqy/ Com. Let O(M) be the free (non-unitary)
operad associated to the symmetric sequence underlying M, where we forget about
the restriction morphisms and the augmentations.

(a) This free (non-unitary) operad O(M) has a unique (unitary) extension
O(M)y determined by restriction morphisms u* : O(M)(n) — O(M)(m),
u € Morp+(m,n), and augmentations € : O(M)(n) — 1 that extend the
corresponding structure morphisms, given with our object M, on the image
of the universal morphism t: M — O(M).

(b) Let f : M — P be a morphism of augmented non-unitary A-sequences,
which has the augmented non-unitary A-sequence underlying a unitary op-
erad Py as codomain. The operad morphism ¢y : O(M) — P associated
to f has a unitary extension ¢5y : O(M); — Py and therefore gives rise
to a factorization of f in the category of unitary operads.

(¢) In our construction (a), the universal morphism ¢ : M — O(M), defining
the unit of the free operad adjunction on non-unitary objects, forms a mor-
phism in the category of augmented non-unitary A-sequences A Seq, / Com.
In the converse direction, the application of construction (b) to the iden-
tity morphism of the operad P, provides a morphism of unitary operads
Ay 1 O(P)y — Py extending the adjunction augmentation of the ordinary
free operad \ : O(P) — P.

EXPLANATIONS. We refer to the appendix part (§I1.A.5) for the formal proof
of this statement. At this stage, we can content ourselves with informal explana-
tions. We explained in §1.2 that the free operad O(M) intuitively consists of formal
composites of elements of the generating symmetric sequence M (in the point-set
context), which we can represent by general tree-wise tensors.

We basically use the associativity relations of Proposition 3.2.11 to deduce
the action of restriction morphisms on such formal composites from the internal
structure of the symmetric sequence M. To illustrate our constructions, we consider
the same formal composite p = (1 5) - (((z 01 y) 04 2) 03 t) as in our introduction of
the free operad (see §1.2). Recall that this element p is represented by the tree-wise
picture

Let u: {1 <2<3} —-{1<2<3<4<5 <6} bethe map such that
u(1) =1, u(2) = 2, u(3) = 5. We use the conventions of §3.2.9 and we replace the
input indices in the picture of the element p by the corresponding counter-image
u~(k) when k € {u(1),u(2),u(3)}, by the unitary mark * otherwise, in order to
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represent the application of the restriction operation u* on p:

We assume that we work within a category of modules, so that the application of
the augmentation € : M(n) — K to an element £ € M(n) returns a multiplicative
scalar €(€) € k. We get the following reductions:

N v
v ()] (v (2)]
=€) ,

0

where v*(y) denotes the image of the element y € M(3) under the restriction
morphism associated to the increasing map v : {1 < 2} — {1 < 2 < 3} such that
v(l) = 1, v(2) = 2, and w*(z) denotes the image of the element z € M(2) under
the restriction morphism associated to the increasing map w : {1} — {1 < 2} such
that w(l) = 1.

We can use the same ideas in the case of the augmentation morphisms. We can
equivalently determine the augmentation on the free operad as the unique operad
morphism e : O(M) — Com that extends the augmentation on M. But we have to
go back to the explicit construction in order to check that this morphism carries the
action of the restriction morphisms on the free operad O(M) to identity morphisms
on Com.

We immediately obtain that the morphism ¢; : O(M) — P extending a mor-
phism of augmented non-unitary A-sequences f : M — P in assertion (b) preserves
restriction morphisms and augmentations, because we use universal relations, valid
in any given unitary extension by Proposition 3.2.11, to define our structures on the
free operad O(M). We deduce the conclusion of assertion (b) from this observation.

The claims of assertion (c) are tautological: in this concluding part of our
statement, we just record some immediate consequences of the results obtained
in (a-b). O

‘We now check that:

THEOREM 3.3.2. The construction of Lemma 3.3.1 provides a left adjoint
O(—)4+ : ASeqy / Com — Op,

of our extended forgetful functor wy : Op; — ASeq, / Com towards the category of
augmented non-unitary A-sequences A Seq, / Com.

PROOF. This proposition is an immediate consequence of the claims of asser-
tion (b-¢) in Lemma 3.3.1. O

The construction of Lemma 3.3.1 also implies that the unit morphism ¢ : M —
O(M) associated with the free unitary operad adjunction is given by the adjunction
unit attached to the free non-unitary operad. The claim of assertion (c) similarly
implies that the adjunction augmentation Ay : O(P); — P is a unitary extension
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of the basic adjunction augmentation A : O(P) — P attached to the free non-unitary
operad O(—).

The unit operad / admits an obvious unitary extension /, and we immediately
see that this operad I defines the initial object of the category of unitary operads.
We can also readily check the following result, which parallels the statement of
Proposition 1.2.4 in §1.2:

ProrosiTIiON 3.3.3.

(a) The extended forgetful functor wy : Op; — AS8eq,/ Com, from unitary
operads to augmented non-unitary A-sequences, creates all small limits,
the filtered colimits, as well as the coequalizers which are reflexive in the
category of augmented non-unitary A-sequences.

(b) The category of unitary operads admits coproducts too and, as a by-product,
all small colimats.

ProoOF. Exercise: check that the arguments of §1.2.4 extends to the unitary
context. The case of coproducts is reviewed in the proof of the next statement. [J

To complete our results, we study the image of limits and colimits under the
truncation functor 7 : PL + P from unitary operads to non-unitary operads.
Recall that any unitary operad P inherits an augmentation over the commutative
operad Com by Proposition 3.2.15. We shall consider, to be precise, the functor
7:Op; — Op, / Com which retains the augmentation e : P — Com induced by this
canonical morphism on the unitary operad Py. We have the following result:

PROPOSITION 3.3.4. The functor T : Op; — Op, / Com, from the category of
unitary operads to the category of augmented non-unitary operads, creates limits
and colimits.

PROOF. The case of limits follows from the observation that the forgetful func-
tor w : ASeq,/ Com — 8eq,/ Com creates limits, because limits in all diagram
categories are created term-wise, and from the results Proposition 1.2.4 and Propo-
sition 3.3.3, asserting that limits in the category of unitary and non-unitary operads
are created at the level of the underlying sequence of objects in the base category
(see also Proposition 1.2.16).

We can check the case of filtered colimits and reflexive coequalizers by the same
argument.

We can address the case of a coproduct Q =/, P, by using the same realiza-
tion, in terms of a reflexive coequalizer of free operads

S0

2 g T~

0
0111 OPa) =5 O([Lcs Pa) = Q.
as in the proof of Proposition 1.2.4. We assume that each P, has a unitary ex-
tension. We obtain from Lemma 3.3.1 that the restriction morphisms (and the
augmentation) of the operads P, have a unique extension to O([[,cq Pa), giving a
unitary extension of this free operad. We similarly have a unitary extension of the
free operad O(][,c5 O(Pa)), and of the structure morphisms of our coequalizer di-
agram. We readily deduce that our coequalizer Q admits a unitary extension since
we observed that the reflexive coequalizers are created termwise in all operadic cate-

gories, and this unitary extension represents the coproducts of the unitary extension
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of the operads P,. The uniqueness claim in the definition of the restriction mor-
phisms on O(][ .4 Po) implies the uniqueness requirement in the colimit creation
process.

We deduce the case of general colimits from coproducts and reflexive coequaliz-
ers (by using that all colimits can be obtained as a combination of these particular
colimit constructions). O

acd

We use the result of this proposition in §I1.3.4, where we address the definition
of a model structure on unitary operads.

3.4. The definition of connected unitary operads

In the previous sections, we addressed the definition of unitary operads in a
general context. But in applications, we often deal with operads satisfying con-
nectedness conditions. We assume that the tensor product of our base category
preserves colimits on each side §0.8(a) as in the previous section.

Recall that, under our conventions, a non-unitary operad P is connected if we
have P(1) = 1 in addition to the defining condition P(0) = @ of the category of
non-unitary operads. In the unitary setting, we say that P is connected when have
P(1) = 1 in addition to P(0) = 1 (see §§1.1.19-1.1.20). The connected unitary
operads P, are obviously identified with the unitary extensions of the non-unitary
operads P which are connected as non-unitary operads. The category isomorphism
of Theorem 3.2.13, between unitary operads and augmented non-unitary A-operads,
has, therefore, an obvious restriction to connected operads.

Recall that a symmetric sequence M is said to be connected when M(0) =
M(1) = 0. The category formed by these connected symmetric sequences is denoted
by Segqy. The category of connected non-unitary operads is denoted by Opg,, and
the category of connected unitary operads by Op;.

In Theorem 1.2.14, we have observed that the standard free operad functor
O(—) gives a functor from the category of connected symmetric sequences towards
the category of connected (non-unitary) operads. Furthermore, we have established
that this functor is left adjoint of the augmentation ideal functor @ : P +— P which
maps a connected operad P to the symmetric sequence such that P(n) = (), if
n = 0,1, and P(n) = P(n), otherwise. The definition of the unitary extension of
free operads in §3.3 is not well suited for this connected version of the adjunction
relation, because when we form the augmentation ideal of an operad P, we discard
the restriction morphisms u* : P(n) — P(1) which have the unit component of the
operad as target.

We aim to adapt the construction of §3.3 in order to get a reduced definition
of free connected unitary operads. We first introduce a truncated version of the
category A in order to address the structures underlying the augmentation ideal of
connected unitary operads.

3.4.1. The connected version of the category of ordinal injections. We basically
consider the full subcategory of the category of ordinal injections A generated by
the ordinals n = {1 < --- < n}, such that n > 1. We use the notation A for this
truncated category, and as in §3.2.2, the notation A*, with a + upperscript mark,
to refer to the subcategory of A which has the increasing maps has morphisms.

We also use the notation ¥ for the isomorphism subcategory of A, of which
morphism sets Mors,(m,n) are identified with the symmetric group %,, if m = n,
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with the empty set otherwise. We have ohvious identities At = A* N'A and
¥ =X NA, as well as a decomposition A =)= | A as in the case of the category A.
Recall that we use the notation of the complete category A (respectively, AT, X)
rather than the notation of a specific subcategory in the expression of morphism
sets.

We call connected A-sequence the structure formed by a connected symmetric
sequence M together with restriction morphisms u* : M(n) — M(m), associated
to any u € Mora(m,n), m,n > 1, and so that the associativity and equivari-
ance relations of Proposition 3.2.4 are fulfilled in M. We immediately see, as in
Proposition 3.2.5, that giving this structure amounts to providing the sequence M
with a contravariant action of the category A, so that the restriction morphisms
u* : M(n) — M(m) give the action of the subcategory AT on M and the internal
symmetric structure of the collection M(n) provides the action of the isomorphism
subcategory ¥ C A. We use the notation A 8eq,, elaborating on our previous
conventions, for this category of diagrams.

3.4.2. The underlying structure of the augmentation ideal of connected unitary
operads. We immediately obtain that the action of the category A on the non-
unitary truncation P of a unitary operad P, in Proposition 3.2.5 restricts to an
action of the truncated category A on the augmentation ideal P. We moreover
have an augmentation morphism € : P — Com, defined as a restriction of the
augmentation morphism of Proposition 3.2.15, with the augmentation ideal of the
commutative operad as codomain.

The mapping @y : P, ~ P therefore gives a functor @y : Op;; — A 8eqyy /Com
from the category of connected unitary operads Op,; towards the category of aug-
mented connected A-sequences A Seq, /Com, where we adopt conventions similar
to §3.2.2 to refer to the category formed by the connected A-sequences M € A Seqg
which are augmented over Com.

Let M be any object of this category AS8eq,,/Com. Let O(M) be the free
non-unitary operad associated to the symmetric sequence underlying M. The as-
sumption M(0) = M(1) = @ implies that this free operad is connected, so that
O(M)(1) = 1, with a unit morphism 7 : 1 — O(M)(1) given by the identity of the
unit object.

We have the following lemma:

LEMMA 3.4.3.

(a) The free operad O(M) inherits restriction morphisms u* : O(M)(n)
O(M)(m), associated to all increasing maps u : {1 < --- < a} = {1 <
- < m}, where n,m > 0, and whose restriction to M(n) C O(M)(n) i
defined by:
— the augmentation

—
18

M(n) S 1= 0(M)(1)

whenn >m =1,
— the internal restriction morphism attached to our object

M(n) =5 M(m) c O(M)(m)

when n > m > 2.

/m
/n
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(b) The free operad O(M) also inherits augmentations e : O(M)(n) — 1, n > 0,
whose restriction to M(n) C O(M)(n) is defined by the natural augmenta-
tion € : M(n) — 1 given with our object M for any n > 2.

(¢) The restriction morphisms u* : O(M)(m) — O(M)(») and augmentations
€ : O(M)(n) — 1, whose existence is asserted in (a-b), provide the free
operad O(M) with the structure of an augmented non-unitary A-operad.
These structure morphisms are also uniquely determined by our exten-
sion conditions in (a-b), together with the equivariance, unit and associa-
tivity requirements of the definition of augmented non-unitary A-operads
in §3.2.12.

EXPLANATIONS. We again give short explanations and refer to the appendix
part (§I1.A.5) for a formal proof of this statement. We also assume that we work
in a category of modules.

We use the conditions of §3.2.12, as in the proof of Lemma 3.3.1, to determine
the image of a tree-wise tensor p € O(M)(n), representing a formal composite of
generating elements, under a restriction operation. The main difference, stated
in assertion (a), is that the application of a restriction operation associated to an
injection u : {1} — {1 < --- < n} on a generating factor £ € M(n) within the free
operad O(M)(n) produces a multiple of the operad unit 1 € O(M)(1), which we can
reduce further in the outcome of our operation.

We go back to the example given in the verification of Lemma 3.3.1 to illustrate
this process. We now obtain the following result:

where v*(y) denotes the image of the element y € M(3) under the restriction
morphism associated to the increasing map v : {1 < 2} — {1 < 2 < 3} such
that v(1) = 1, v(2) = 2 (as in the verification of Lemma 3.3.1). We apply the
augmentation € : M(2) — 1 to both z € M(2) and ¢t € M(2), but in order to
produce a unitary factor in the first case, a multiple of the operadic unit 1 in the
second case.

The definition of the augmentation morphism e : O(M) — Com is the same as
in the context of Lemma 3.3.1. g

The definition of the restriction morphisms u* : O(M)(n) — O(M)(1) in asser-
tion (a) of the lemma is forced by the unit requirement of §3.2.12, which implies
that the augmentation € : O(M)(1) — 1 defines a retraction of the operadic unit,
and the associativity of the augmentation with respect to restriction morphisms.
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Indeed, since O(M)(1) = 1, we have a commutative diagram

M(n) — O(M)(n)

giving our definition of the restriction morphism uv* : O(M)(n) — O(M)(1) on the
image of the universal morphism ¢ : M(n) — O(M)(n). This observation gives the
crux of the following lemma;

LEMMA 3.4.4. Let M € ASeqy, /Com. Let O(M) be the free connected operad
associated to the symmetric sequence underlying M.

(a) This free connected non-unitary operad O(M) has a unique unitary exten-
sion O(M) L., determined by the restriction morphisms and augmentations
of Lemma 3.4.3, and such that the unit morphism ¢ : M — O(M), associ-
ated with the free connected operad adjunction of Theorem 1.2.14, defines
a morphism in the category of augmented connected A-sequences.

(b) Let f : M — P be a morphism of augmented connected A-sequences towards
the augmentation ideal of a unitary operad Py . The operad morphism ¢y :
O(M) — P associated to f has a unitary extension ¢ry : O(M)y — P
and therefore gives rise to a factorization of f in the category of unitary
operads.

(c) In our construction (a), the universal morphism v : M — O(M), defin-
ing the unit of the connected free operad adjunction of Theorem 1.2.14,
forms a morphism in the category of augmented connected A-sequences
A S8eq, / Com. In the converse direction, the application of construction (b)
to the identity morphism of the augmentation ideal of the operad P, pro-
vides a morphism of connected unitary operads A, : O(P) — P extend-

ing the basic adjunction augmentation \ : O(P) — P which arises from
the result of Theorem 1.2.14.

EXPLANATIONS. We have already explained the definition of the restriction
morphisms and augmentations of assertion (a) in the verification of Lemma 3.4.3.
The uniqueness of this structure has also been established in that statement.

We deduce the definition of the unitary extension O(M)  from these previously
obtained results and the result of Theorem 3.2.13.

We immediately obtain, as in the verification of Lemma 3.3.1, that the mor-
phism ¢; : O(M) — P extending a morphism of augmented connected A-sequences
f: M — P in assertion (b) preserves restriction morphisms and augmentations, be-
cause we define our structures on the free operad O(M) by using universal relations,
valid in any unitary extension of a connected operad. We deduce the conclusion
of assertion (b) from this observation, and the claims of assertion (c) are again
corollaries of the results obtained in the previous assertions of the lemma (a-b). O

‘We now check that:

THEOREM 3.4.5. The construction of Lemma 3.4.4 provides a left adjoint
O(—)+ : ASeqyy /Com — Opq,
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of the augmentation ideal functor @, : P, + P on the category of unitary operad
Py € Op,; and where we use the observations of §3.4.2 to provide the image of an
object under this functor with the structure of an augmented connected A-sequence.

Proor. This proposition directly follows from the claims of Lemma 3.4.4. O

The construction of Lemma 3.4.4 also implies that the unit morphism ¢ : M —
O(M) associated with this free connected unitary operad adjunction is given by the
adjunction unit attached to the free non-unitary operad. The claim of assertion (c)
in Lemma 3.4.4 similarly implies that the adjunction augmentation Ay : O(P); —
P, is a unitary extension of the basic adjunction augmentation A : O(P) — P
attached to the free non-unitary operad O(—).

We observed in §1.2.15 that the category embedding ¢ : Opy; — Op, has an
obvious right adjoint 7 : Op, — Opg;, which maps a non-unitary operad P € Op,
to the connected operad such that 7 P(0) = (), 7 P(1) = 1, and 7 P(n) = P(n) for
n > 1. We have an analogous construction in the unitary context, but we now need
the category isomorphism of Theorem 3.2.13 to obtain our result:

PROPOSITION 3.4.6. The category embedding ¢ : A Opy, / Com — AOp, / Com
has a right adjoint T : A Op, / Com — A Opy, / Com, given by the same truncation
operation as in §1.2.15 since the connected operad T P associated to some P € Op
inherits obvious restriction morphisms and augmentations when we assume P &
AOp, / Com.

By unitary extension, this right adjoint gives rise to a functor 7 : Op; — Opqq,
which is also a right adjoint of the embedding ¢ : Opy; — Op; at the level of unitary
operad categories.

PROOF. This proposition follows from straightforward verifications. ([

We can use the result of this proposition to extend the adjunction relation of the
free connected unitary operad of Theorem 3.4.5 to morphisms ¢y : O(M)y — Q4+
with any unitary operad (possibly not connected) as codomain. We can also apply
this observation to the definition of morphisms on connected unitary operads given
by a presentation by generators and relations (see §3.4.8).

The results established in Proposition 1.2.16 and in Proposition 3.3.4 admit
the following corollary which summarizes the construction of limits and colimits in
our operad subcategories:

PROPOSITION 3.4.7. We have a commutative square of embedding and trunca-
tion functors

Op1y — Op,y

T+l 7'+l
Opgy / Com —— Op, / Com —— Op / Com

which all create limits and colimits. O

We now specialize our study to operads in a module category M = Mod. We
explain in §1.2.9 that operads in module categories can be defined by generators
and relations as quotients P = O(M)/ < 2% a € J >, where we consider an
ideal < 2%, € J > in a free operad O(M). We generally use this basic construction
in the context of connected non-unitary operads. When we deal with connected
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unitary operads, we usually elaborate on the result of Theorem 3.4.5 to obtain a
reduced presentations of unitary operads. We proceed as follows.

3.4.8. The definition of unitary operads by generators and relations. We as-
sume that M is an augmented connected A-sequence (in k-modules). We apply the
construction of Lemma 3.4.3 to provide the free operad associated to M with the
structure of an augmented non-unitary A-operad.

Let S =< 2%, a € J > be an ideal generated by a collection of elements z* €
S(ng) in this free operad O(M).

We assume that we have

(a) €(z*) =0

when we apply the augmentation € : O(M)(n,) — K to any 2% € S(n,). We also
assume that we have

(b) u (z¥) =0 mod S(m),

for all restriction morphisms u* : O(M)(n) — O(M)(m) such that n = n,. When
these conditions hold, we readily obtain, from the correspondence of §3.2.12 be-
tween augmentations, restriction morphisms and composition operations, that the
symmetric sequence < z%, « € J > forms an operadic ideal in the unitary extension
of the free operad O(M). Therefore, we have a quotient unitary operad O(M); / <
z% a € J > associated to our ideal, and we immediately check that this operad
defines a unitary extension of the basic quotient operad O(M)/ < 2% «a € J >,
considered in the study of §1.2.9.

The morphisms of unitary operads ¢si : O(M)y/ < 2% a € I >— Q, are
clearly in bijection with the morphisms of augmented non-unitary A-operads ¢ :
O(M) — @ such that ¢;(2*) = 0 for each generating element of the ideal z* €
S(ng).

In applications, we can reduce the verification of our vanishing condition (b)
to the restriction morphisms 9y : O(M)(n) = O(M)(n—1), k = 1,...,n, associated
with the partial composition products 9 (p) = p ox * since we observed in §3.2.1
that all restriction morphisms on a unitary operad occur as composites of these
particular restriction operations.

3.4.9. Ezamples of unitary operads constructed by generators and relations. We
explain the application of the construction of §3.4.8 to the basic examples of uni-
tary operads considered in §1.2.10, namely the associative operad As,, and the
commutative operad Com. We also address the definition of a unitary version of
the Poisson operad Pois;. We consider the case of the associative operad first.

Recall that As = O(kpu(z1,22) ® Ku(zy,z2)) / < plp,1) — p(l,p) > for
a generating symmetric sequence such that Mas(2) = ku(x1,x2) @ Ku(z1,z2)
and Mas(r) = 0 for r # 2. Since M s vanishes in arity r > 2, we only have to specify
an augmentation € : Mas(2) — K, in order to provide this symmetric sequence with
the structure of an augmented A-sequence. We take e(u) = 1 to reflect the idempo-
tence relations u(e, e) = e for the unit element of an associative algebra. By apply-
ing the associativity of restriction morphisms with respect to operadic composition
structures, we obtain 0y (p(p, 1) —p(1, 1)) = p(u(x,1), 1) —p(1(x),n) = p—1(pw) =0
and similarly 9a(p(p, 1) — (1, @) = 93(p(u, 1) — (1, p)) = 0. Hence, the assump-
tions of §3.4.8 are fulfilled, so that the operad As inherits restriction morphisms,
and as a consequence, admits a unitary extension As, satisfying Asy(0) = k and
Asy(r) = As(r) = K[Z,] for » > 0. This operad As; is actually identified with
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the image of the permutation operad under the functor k[—] : 8etOp — ModOp
(see §2.1.5).

The case of the commutative operad is similar. We take the same expression
as in the associative case for the value of the augmentation € : Mcom(2) — K on
the generating operation p € Mcom(2). We that the assumptions of §3.4.8 are also
fulfilled for the commutative operad, which therefore admits a unitary extension
Comy satisfying Comy(0) = K and Com (r) = Com(r) = K for r > 0. This operad
Comy, is actually identified with the image of the one-point set operad under our
functor k[—] : 8etOp — ModOp (see the concluding discussion of §2.1).

The unitary extension process can also be applied to the Poisson operad Pois.
Recall that this operad has a generating symmetric sequence such that Mpyis(2) =
K p(z1, x2) K A(z1, 22), where p = pu(x1, 2) represents a (symmetric) commutative
product and A = A(xy,z2) represents an (symmetric) Lie bracket. We take e(u) =
1 (as usual) and €(A) = 0 to reflect standard unit relations associated with the
structure of Poisson algebras. Actually, the vanishing of € on A is forced by the
antisymmetry relation (1 2) - A = —\ and the equivariance requirement of §3.2.1.
Again, we can check that the generating relations of the Poisson operad (see §1.2.12)
are canceled by the restriction morphisms, so that the operad Pois admits a unitary
extension Pois, satisfying Poisy(0) = K and Pois () = Pois(r) for r > 0.

3.4.10. Unitary Hopf operads. The results obtained in this section and in the
previous one make sense in any base category equipped with a tensor product
preserving colimits on each side (see §0.9), and as such, can be applied without
change within the category of augmented cocommutative coalgebras, in order to
give a description of (connected) unitary Hopf operads.

On the other hand, we can also adapt the observations of §2.2 and regard
(connected) unitary Hopf operads as augmented cocommutative coalgebras in the
category of (connected) unitary operads. Indeed, the arity-wise tensor products
(PR Q)(r) = P(r) ® Q(r), as defined in §2.2.3, clearly preserves the category of
(connected) unitary operads.

Furthermore, we immediately see that the action of a restriction morphism
u*, associated to any increasing map u, on a tensor product of operads PX @ is
simply given by the tensor product of the restriction morphisms determined by u
on P and Q. The requirement that the restriction morphisms are morphisms in
the base category of coalgebras also amounts to the assertion that the augmen-
tation A : P — Com, and the diagonal A : P — PKX P intertwine restriction
morphisms. Similar observations hold for the augmentations, and we can therefore
regard the (connected) non-unitary Hopf A-operads, which underlie our category
of (connected) unitary Hopf operad structures, as augmented cocommutative coal-
gebras in the category of (connected) unitary operads in the base category.

Similarly, we can regard augmented Hopf A-sequences as augmented A-sequences
in the category augmented cocommutative coalgebras, or as augmented cocommu-
tative coalgebras in the category of augmented A-sequences in the base category.

The results of Proposition 2.2.10 and §3.4.8 can be combined to get a good
definition of unitary Hopf operads by generators and relations. In this context, the
input of our construction is an augmented connected Hopf A-sequence, combining
the Hopf structures considered in Proposition 2.2.10, and the restriction structures
of §3.2.1.
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The associative operad Asy, the commutative operad Com., and the Poisson
operad Pois , give examples of connected unitary Hopf operads which we can define
by a presentation by generators and relations. In fact, we simply have to check that
the augmentation morphisms defined in §3.4.9 preserve the coalgebra structure on
the generating collection Mp of these operads P = As, Com, Pois (see §§2.2.11-
2.2.12) to conclude that each operad P = As, Com, Pois has a unitary extension as
Hopf operad.

3.5. Operads and symmetric collections

In the definition of §1.1, and in the definition of §3.1 similarly, we assume that
the terms of an operad P(r) are indexed by non-negative integers » € N. This
choice amounts to considering that the elements of an operad (whenever the notion
of element makes sense) represent operations with inputs indexed by finite ordinals
r={1 < --- < r}. In the graphical representation of §1.1.5 and §3.1.5, this input
ordering is used to determine the planar arrangement of the ingoing edges of a box
associated to an operation. In §1.1.6 (and in §3.1.5 similarly), we observed on the
other hand that the operadic composition operations are left invariant when we
perform a change of planar arrangement in our representation, and this motivates
us to introduce an additional definition of the notion of an operad which reflects this
invariance feature. For this aim, we use that any symmetric sequence, underlying
the structure of an operad, extends to a functor on the category of finite sets and
bijections between them.

These finite set extensions of operads intuitively amounts to considering opera-
tions p = p(x;,, ..., x;.) with variables indexed by an arbitrary set r = {i1,..., i}
rather than by a fixed ordinal r = {1 < --- < r} (see the introduction of the chap-
ter). From this interpretation, we see that operations p = p(z;,,...,2;, ) and ¢ =
q(zj,, ..., x;,) have partial composites p o;, ¢ = p(@iy,...,q(xj, ..., T5,), ..., %)
defined for any indexing element iy, € {i1,...,%.}. The main purpose of this section
is to reformulate the definition of an operad in terms of these finite set extension
of the partial composition products, and to make precise the form of the equivari-
ance, unit, and associativity axioms of operads in this setting. By the way, we will
observe that the graphical representation of §§3.1.5-3.1.6 gives the picture of the
partial composition operations shaped on finite sets: we simply have to forget the
planar embedding of our figure.

To begin with, we give a formal definition of the extension of symmetric se-
quences to functors on the category of finite sets and bijections.

3.5.1. Symmetric collections. We denote by Bij this category which has the
finite sets as objects and the bijections as morphisms. We adopt the convention to
denote a finite set, regarded as an object of Bij, by an underlined sans serif letter
r. We use the italic letter » = card(r) corresponding to our set r to refer to the
cardinal of this set. We may regard this cardinal either as a non-negative integer,
or as an isomorphism class in the category of finite sets.

We call symmetric collection, or just collection, a functor M : Bij — M map-
ping any finite set r € Bij to an object in the base category M(r) € M, and any
bijection u : r = s to a morphism wu, : M(r) — M(s). We may also use the
expression of Y-collection, which parallels the expression of Y-sequence, for these
structures. In general, we specify a symmetric collection M by the underlying
collection of objects {M(r)}.
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Naturally, a morphism of collections f : M — N is a collection of morphisms
in the base category f : M(r) — N(r), defined for each finite set r, and commuting
with the action of bijections. We generally use the notation Coll for the category
formed by symmetric collections and their morphisms.

The category of finite sets Bij has a small skeleton with the standard ordinals
r={1l <---<r}, r €N, as objects and the permutations w, viewed as bijec-
tions w : {1,...,7} = {1,...,7}, as morphisms. The following proposition is a
consequence of this fact:

PROPOSITION 3.5.2. The category of symmetric collections Coll is equivalent
to the category of symmetric sequence Seq considered in §1.2.

CONSTRUCTION AND PROOF. In one direction, to a symmetric collection M €

Coll, we associate the sequence M(r) = M({1,...,r}), where we use the action of
bijections w : {1,...,7} = {1,...,7} to define the action of the symmetric group
.

If the base category has small colimits, then we can use a general Kan extension
process to obtain a functor in the converse direction, from symmetric sequences
to symmetric collections, which provides a left adjoint of this canonical functor
Coll — 8eq. Let M(r), r € N, be any given symmetric sequence. We use the tensor
product expression

M(r)=Bi({1,...,r},r)®s,. M(r), where r = card(r),

to refer to this Kan extension process.

If the notion of element makes sense, then this relative tensor product can
be defined as the set of pairs (u, &), where v € Bij({1,...,7},r), and £ € M(r),
quotiented by the relations (us, ) = (u, s€) identifying the action of permutations
s € 3, by right translation on bijections u € Bij({1,...,r},r) with the internal ¥,.-
structure of M(r). The verification that this mapping gives an inverse equivalence
of the canonical functor Coll — Seq is straightforward. In a general context, we can
replace the set of pairs (u, &) by a coproduct of copies of the object M(r) indexed by
the set Bij({1,...,r},r), and we perform an appropriate coequalizer construction to
implement the identities (us, £) = (u, s§). Equivalently, our relative tensor product
represents a coend over the category which has one object and the permutation
group >, as morphism sets.

In fact, the category equivalence of the proposition still holds when the base
category has no colimits. To avoid the colimit operation, we pick a representative
bijection u, : {1 < .-+ < r} — r, for each finite set of cardinal r. We then set
M(r) = M(r), and we define the morphism f, : M(r) — M(s) associated to any
[ € Bij(r,s) by the action of the composite bijection ugt - f-u, : {1 <--- <7} —
{1 <--- < r}, defining a permutation of {1 < --- < r}, on the object M(r). O

In the case of the sequence of permutation groups 1(r) = X,., the underlying
symmetric sequence of the permutation operad (§§1.1.7-1.1.9), we have an iden-
tity 11(r) = By ({1,...,7},r).

In what follows, we often use that the bijection u € Bij({1,...,r},r) occurring
in the equivalence of Proposition 3.5.2, are equivalent to orderings iy < --- < i, of
the set r. The kth term of such an ordering i gives the value of the corresponding
bijection u(k) = ij on the kth term of the ordinal {1 < --- < r}. Thus, in the case
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of the permutation operad [1, we can identify the elements of [1(r) with orderings
of the unordered set r.

3.5.3. Back to the graphical representation of symmetric sequences. The con-
struction of the collection from a symmetric sequence in Proposition 3.5.2 is ma-
terialized by the labeled-box representation of operads in §1.1.5. Indeed, in the
picture

By eeeee iy
0

where p is any operad element, we can obviously assume that (i1,...,%,) are the

elements of an arbitrary finite set, and not necessarily a permutation of (1,...,r).

The relation
G1 e i ig(1) e Ls(r)

used to identify equivalent elements in the construction of §1.1.5, corresponds to
the quotient process involved in the tensor product Bij({1,...,7},r) ®s, P(r) (see
the proof of Proposition 3.5.2). In §1.1.5, we only consider operads, but this inter-
pretation of our construction obviously works for arbitrary symmetric sequences,
not only the underlying symmetric sequences of operads.

3.5.4. The graphical representation of symmetric collections. The box represen-
tation, recalled in the previous paragraph, has a natural extension in the context
of symmetric collections. In the picture §1.1.5, we use the planar arrangement of
the ingoing edges of the box to materialize the bijection between the global inputs
{i1,...,1,} and the inputs of operad elements. Let us be more precise: our conven-
tion is to use the ordering, inherited from the ambient plane orientation, to get a
canonical bijection between the set of ingoing edges {ej, ..., e} and the finite ordi-
nal {1 < --- < r} corresponding to the inputs of elements p € P(r). In the setting
of symmetric collections, we just forget about the planar embedding to consider
abstract trees, and we assume that ingoing edges form an abstract set {ey,...,e.},
not necessarily equipped with an ordering.

Suppose that we work within a category where the notion of element makes
sense. Then we represent a collection element & € M(r) by a box labeled by &
together with one outgoing edge ey, whose target is usually marked by the symbol
0, and a set of ingoing edges {e;,,...,e;, }, whose source are usually marked by the
elements of the indexing set r = {i1,...,4,}, as in the following figure:

i1 e ir
<

The edge set e = {e1,...,e,.} may be distinguished from the external indexing
set r = {i1,...,%,.}, and we assume that £ belongs to M(e). The edge indexing is
equivalent to a bijection between r = {i1,...,i,} and the edge set e = {e1,..., €.}
Thus, our representation formally amounts to giving a pair (s, &), where s : e S
and £ € M(e). The isomorphism s, : M(e) = M(r) induced by the bijection can
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be used to associate an element of M(r) to £ € M(e). To make this correspondence
faithful, we simply set (su,&) = (s, u.(£)) whenever we apply a bijection u : e — f
to change the edge set. Graphically, this identity (su, &) = (s, u.(§)) reads:

i e i G1 e i
u(ey) ... uler) Ly ... BT

0 0

Il
IS

*
—~
o~
~

The natural action of bijections v : r — s corresponds, in the graphical representa-
tion, to the obvious reindexing operation on the input labels of ingoing edges.

Of course, the distinction between the indexing set r and the actual input
set e amounts to considering overkilled information, which we simply reduce in our
identification process. But in certain constructions (when we address the represen-
tation of composite operations for instance), we are naturally lead to mark such
distinctions and to delay that reduction.

Naturally, we can apply our representation to objects and not only to elements.
To be explicit, we set again r = {i1,...,%,} and e = {ey,..., e, }. The picture

represents a copy of the object M(e), which is naturally identified with M(r) by
applying the isomorphism s, : M(e) = M(r) induced by the bijection s : e — r
such that s(eg) =iy, for k=1,...,r.

3.5.5. Operadic composition of finite sets. To an operad P, we now associate
a collection P(r) indexed by the finite sets r. Our next purpose is to give the rep-
resentation of the composition structure of the operad in terms of this associated
collection. The unit morphism of the operad P is obviously equivalent to a mor-
phism 7 : 1 — P(1), where we set 1 = {1}. To go further, we need to introduce
composition operations on finite sets. These finite set composites give the shape of
the operadic composition structures which we aim to define.

Let m = {i1,...,im}. Let n = {j1,...,Jn}. For any iy, € m, we set

~

moikﬂ:{Z.l,...,’ék,...,’ip}H{jl,...,jg},

where we use the notation ZA;C to mark the removal of the element i, from m. To
bijections u : r — m, v : s — n, and any i, € r, we can associate a bijection,
denoted by u 0y(;,) v 1 roj, s — Moy, )N, given by u on {il,...,i/;;,...,ir} and
by v on {j1,...,Js}. Thus, this composition mapping on sets is in some sense
equivariant with respect to the action of bijections.

Besides, we can readily check that the partial composition of finite sets fulfill
set-theoretic analogues of the unit and associativity relations of §3.1. To be precise:

(a) For any finite set s, we have an identity 1o;s = s. For a finite set r
equipped with a distinguished element i, € r, the set ro;, 1 is not equal to
r in the strict sense, but we have an obvious bijection ro;, 1 ~ r naturally
associated to the pair (r,ig).

/ m /n
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(b) For a triple (r,s,t), we have associativity identities
(r Oiy, s) oj, t=roy, (s Oji t),
(roi,s)os t=(ro;t) oy s,
where i, € r, j; € s in the first case, and {iy # 4;} C r in the second case.
(c) The bijections of (a) are coherent with respect to the associativity relations
of (b): any possible combination of a unit bijection ro;, 1 ~ r with an

associativity identity (in which we take a unit set 1 for one of the objects
r, s, or t) yields a diagram which commutes.

This is enough to formalize the definition of partial composition operation
shaped on the composition of finite sets:

PROPOSITION 3.5.6. The definition of morphisms

(a) P(m)® P(n) = P(m+n —1)
for all m,n € N and k = 1,...,m, and such that the equivariance relation of

Proposition 3.1.2 holds, amounts to the definition of morphisms
(b) P(m) @ P(n) =% P(mo;, ),
for all finite sets m, n, and each iy € m, so that the diagram

P©P(s) — 5" o p(m)©P(n)

iy, i iOU(ik)

P(roj, s) ———— P(moy(i,)n)
(wou(ip) V)«

commutes, for all bijections u:r — m, v:s — n.

The main purpose of this proposition is to make explicit the relationship be-
tween the plain partial composition operations (a) and the extended ones (b).

PRrROOF. For standard ordinals m = {1 < --- < m}and n = {1 < --- < n},
we consider the bijection {1 < --- < m}o, {1 < --- <n} ={l < --- < i} <
oomyIl{l < -~ <n} = {1 <. <m+n— 1} mapping the interval {1 <
e <ip—1}c{l<---<ip <...,m} to the same interval {1 < --- < i — 1} in
{1<---<m+n—1}, thesummand {1 < --- <n}to {ir <--- <ir+n—1} and the
remaining elements {ir + 1 < --- < m} of the summand {1 < --- < i < --- < m}
to {ix +n < --- < m+n —1}. The desired correspondence between our partial
composition operations is deduced from the following diagram

P(m)@P(n) s P(mgn—1)

= P({1,...,m+n—1})

~

P({1,..mN@P({1,...;n}) —>= P({1,imboy {1,...n})
1k

which is supposed to commute.
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This diagram enables us to get any collection of partial composition opera-
tions (a) from partial composition operations of the form (b) by identification. In
the other direction, given finite sets m and n, we can pick bijections {1 < --- <
m} = m, {1<---<n} =5 n, and use the equivariance diagram of the proposition
to retrieve the partial composite (b) associated with the pair m and n from a partial
composite of the form occurring in our diagram:

P({l<-~-<m})®P({1<~"<n})Oi>P({1<~-~<m}oik {I<---<n}).

This process makes the correspondence between partial composition operations
of the form (a) and (b) fully explicit. In turn, the equivalence between the equiv-
ariance relations for (a) and (b) follows from straightforward verifications. O

3.5.7. The example of the permutation operad. In the case of the permutation
operad [1(r) = X,, the elements of [1(r) are identified with orderings u = (i; <
- < i,) of the unordered set r (see explanations below Proposition 3.5.2). We
can use this representation to give a simple definition of the partial composition
operations associated with this operad. We just describe the final result of this
composition process again and leave the verification of our claim as an exercise for
the readers.

In short, the sequence corresponding to the composite wo;, v can be obtained by
replacing the occurrence of the composition index i, in the sequence representing u
by the sequence representing v For elements v = (i3 < -+ < 4y) € [1(m) and
v=(j1 <--- <jn) € M(n), we explicitly obtain a result of the form

wos, V= (i1 < <ipo1 <J1 <+ <Jp <lhg1 < <lm)

In comparison with the process of §3.1.3, we simply have to forget the value shifts,
which actually correspond to the bijection considered in the proof of Proposi-
tion 3.5.6.

3.5.8. Operads with terms indexed by finite sets. We can readily adapt the
representation of §3.1.5 to get the picture of partial composition products in the
context of operads with terms indexed by finite sets:

B e g1 e Jn e im

On the source of this mapping, we consider indexing sets m and n representing the
sets of ingoing edges attached to each box of our tree-wise structure. The labeling
of the tree inputs represent bijections {i1,...,%_1,ik41,.--,im} — m\{ex} and
{jlv e 7jl} i n.

We readily see that these partial composites satisfy an obvious generalizations of
the unit and associativity relations of §3.1. We simply have to insert the bijections
of §3.5.5(a) when we apply the commutative diagrams of Figure 3.1, expressing
our unit relation, to terms indexed by finite sets. Similarly, in the diagrams of
Figure 3.2-3.3, expressing our associativity relation, we have to replace the ordinal
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numbers r + s — 1, respectively s +¢t — 1, r+¢t — 1, r + s + ¢t — 2, by appropriate
finite set composites, using the associativity identities of §3.5.5(b).

We consider the general structures defined by the tree-wise composites (*) sat-
isfying these finite set extension of the unit and associativity relations of operads as
axioms. We deduce from Proposition 3.5.2 and Proposition 3.5.6 that this category
of operads, with terms indexed by finite sets, is equivalent to the category of plain
operads, with terms indexed by non-negative integers and a composition structure
determined by partial composition products of the form considered in §3.1. We
use the definition of operads with terms indexed by finite sets as working definition
in §§II.A-B.

3.5.9. Unitary operads with terms indexed by finite sets. The constructions
of §3.2, about the definition of unitary operads, can be extended to operads with
terms indexed by finite sets. We then consider the category formed by the
non-empty finite sets as objects and the injective maps as morphisms. We also
consider the complete variant of this category Jnj, as well as a connected variant

‘Where we restrict ourselves to finite sets r of cardinal r > 2.

For the non-unitary operad P underlying a unitary operad P, we have restric-
tion morphisms f* : P(s) — P(r) naturally associated to all injections f : r — s
and extending the restriction morphisms of §3.2.1, as well as augmentations € :
M(r) — 1. The collection P forms a diagram over the category Jnj., therefore and
comes also equipped with an augmentation towards the underlying collection of
the commutative operad Com. To get the construction of the extended restriction
morphisms from the plain ones, we just adapt the arguments of Proposition 3.5.6.

The associativity of restriction morphisms with respect to the partial composi-
tion products in Figure 3.4-3.5 holds same once we replace the arities r — 1, s — 1,
r 4+ s — 1, occurring in our diagrams, by appropriate finite set operations, and
similarly in the case of the equivariance and unit relations.
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CHAPTER 4

The Little Discs Model of E, -operads

The ﬁr§<purpose of this chapter is to recall the definition of the operad of
little n-discs D,,, and to explain the definition of the notion of E,-operad. These
recollections form the subject matter of the first section of the chapter (§4.1). In a
second step, we give a survey of classical results on the homology of the little disc
operads. This subject is addressed in our second section (§4.2).

The homology functor naturally goes from spaces to graded modules. In good
cases, the homology of a space also inherits a coalgebra structure, dual to the stan-
dard commutative algebra structure of the cohomology, and the homology defines a
symmetric monoidal functor from the category of spaces towards counitary cocom-
mutative coalgebras in graded modules. This assertion implies that the homology
of an operad forms an operad in the category of counitary cocommutative coalge-
bras in graded modules (we say graded Hopf operad for short), and the ultimate
aim of §4.2 is to determine the structure associated to the little discs operads.

To complete our account, we provide an introduction to geometrical variants
of the little discs operads: the operad of framed little discs, obtained by adding
a rotation parameter in the definition of the ordinary little discs operad; and the
Fulton-MacPherson operad, which is a model of F,-operad obtained by a com-
pactification of the configuration spaces of points in the plane. We address these
subjects in an outlook section (§4.3). We also briefly explain the relationship be-
tween the little 2-discs operad and an operad defined by another compactification
of configuration spaces, the Deligne-Mumford compactification, whose terms rep-
resents the moduli spaces of stable marked curves of genus zero. We finally devote
an appendix section (§4.4) to the definition of the symmetric monoidal structure
on the category of graded modules.

In this book, we deal with non-unitary operad structures as soon as we perform
in-depth constructions on operads, and for technical reasons, we systematically
regard unitary operads as unitary extensions of an underlying non-unitary operad.
Therefore, in contrast with standard conventions, we assume that the little n-discs
operad satisfies D, (0) = ) in the basic case. The unitary version of the operad
little n-discs, more usually considered in the literature, is denoted by D,,, and is
obtained by adding an arity zero term D,,4(0) = pt to this non-unitary operad D,,.

Most results and concepts surveyed in this chapter come from [25, 26, 134]
with regard to the definition of the little discs operads and the applications to
iterated loop spaces, and [7, 40, 41] with regard to the homology of little discs and
configuration spaces.

We consider operads in topological spaces from now on. We have to recall some
concepts of homotopical algebra which become necessary when we have to compare
operads defined in this category. We do not need more than some basic definitions
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for the moment. We give a more comprehensive introduction to homotopical algebra
constructions in §I1.1, when we really start using the methods of this theory.

To begin with, recall that a map of topological spaces f : X — Y is a weak-
equivalence if this map induces a bijection at the level of connected component sets
fe : 10X = mY, and an iso at the level of homotopy groups f. : m,(X,zo) —
(X, f(z0)), for all dimension n, and every choice of base points zo € X. We say
that a morphism of operads in topological spaces ¢ : P — @ is a weak-equivalence
if each component of this morphism ¢(r) : P(r) — Q(r) defines a weak-equivalence
of topological spaces. We also deal with augmented non-unitary A-operads and
augmented non-unitary A-sequences (see §3.2) in our study. We similarly define
the weak-equivalences of these categories as the class of morphisms which are weak-
equivalences of spaces arity-wise.

We generally use the notation — to mark a class of distinguished weak-
equivalences in a category, like the weak-equivalences of topological spaces, and
the weak-equivalences of operads. Recall that a homotopy equivalence of topologi-
cal spaces is automatically a weak-equivalence. The converse implication holds for
cell complexes, but not in general. In the operad case, we will consider homotopy
equivalences in the operadic sense, which are invertible up to homotopy in the cat-
egory of operads (we refer to the foreword for an introduction to this topic). Let
us observe that a morphism of operads in topological spaces ¢ : P — Q whose
components ¢(r) : P(r) — Q(r) are homotopy equivalences of spaces for all r € N
is a weak-equivalence of operads, but not necessarily a homotopy equivalence of
operads, because the homotopy inverses of the maps ¢(r) : P(r) — Q(r) do not
necessarily form an operad morphism.

We consider the homotopy category of the category of operads in topological
spaces Ho(TopOp) defined by formally inverting the weak-equivalences in the cat-
egory of operads. We do not need more than this rough idea for the moment (we
will give more details on the definition of a homotopy category in the setting of
model categories in §II.1).

4.1. The definition of the little discs operads

The purpose of this section, as we just explained, is to recall the definition of
the little n-discs operad, and of the derived notion of an F,-operad. To complete
our account, we provide a short survey of the applications of operads to iterated
loop spaces, because these original motivating applications yield some intuition
on FE,-operads and on the associated algebra structures.

To begin with, we explain what the little discs are. We assume that n is a
positive (finite) integer n = 1,2,... for the moment.

4.1.1. The little discs. Let D™ denote the standard unit n-disc, defined as the
subspace D" = {(t1,...,t,) € R" [t +---+ 12 < 1} in the euclidean space R™. The
little n-discs, giving the name of the little n-discs operad, are affine embeddings
c¢:D"™ — D" of the form

c(try .y tn) = (a1,...,an) + 7 (t1,...,tn),
for some translation vector (ai,...,a,) € D" and multiplicative scalar r > 0 such
that 2 < 1 — (a2 + --- + a2). To specify such an embedding, it is enough to

give the subset ¢(D™) since the definition of ¢ amounts to assuming that ¢(D")
forms an n-disc inside D", with (a1,...,a,) = ¢(0,...,0) € D" as center and
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FIGURE 4.1. The representation of an element in the little 2-disc
operad, and the action of the cyclic permutation (1 2 3) on this
element.

r > 0 as radius. This observation implies that little 2-discs are determined by their
graphical representations, which we can therefore safely use in order to illustrate
our constructions. By abuse of notation, we set ¢ = ¢(D") and we use the same
letter ¢ to denote both our mapping from D™ to D™ and the corresponding subspace
in D".

The boundary of the unit n-disc D", defined as the space of points (t1,...,t,) €
D" such that ¢3 +---+t2 = 1, will be denoted by 9D™. The interior of D", defined
as the complement of the subspace D™ in D", or equivalently, as the space of
points (ty,...,t,) € D" such that t2 + --- 4+ t2 < 1, will be denoted by D". We
define the boundary of a little n-disc ¢ as the subspace d¢c = ¢(0D") of ¢ = ¢(D"),
and the interior as ¢ = ¢(D™).

4.1.2. The little disc spaces. The little n-discs space D,,(r) formally consists of
r-tuples ¢ = (c1,...,¢.) of affine embeddings ¢; : D" — D", i = 1,...,r, of the
form considered in §4.1.1, and such that ¢; N ¢; = @ for all pairs i # j.

The space D,,(r) is equipped with the compact-open topology since the collec-
tion of affine maps ¢ = (¢1,...,¢.) is naturally identified with an element of the
mapping space Mapy,,, (IT" D™, D™). Equivalently, we can use parameters associated
with these maps, like the centers (ay,...,a,) = ¢;(0,...,0) € D" and the radius
r > 0, to determine the topology of D, (r). The first approach is more convenient
when we deal with applications of little discs to iterated loop spaces. The second
equivalent definition is more convenient when we examine the connections of little
discs with configuration spaces (see §4.2.1).

Figure 4.1 gives the representation of an element ¢ € D, (3). In this picture,
we use that the definition of ¢ as an r-tuple ¢ = (cy, ..., ¢.) amounts to assuming
that the little n-discs ¢1,...,¢, C D™ are indexed by the elements i = 1,...,r.
We have a natural mapping s, : D, (r) — D,(r), associated to each permutation
s € %, formally defined by s.(ci,...,¢;) = (cs-101),--+,Cs-1(p)), for any ¢ =
(c1,...,¢r) € Dn(r). Pictorially, the mapping s. : Dy(r) — D,(r) is given by
an obvious reindexing operation: we apply the permutation s € to the index
i =1,...,r associated with each little n-disc of ¢ = (¢1,...,¢,) € Dp(r) in order
to get the picture of s.(c) € D,(r) from the picture of ¢ (see Figure 4.1 for an
example).

The collection D,, = {D,(r)}, where the space D, (r) is equipped with this
action of 3., for each r € N, forms a symmetric sequence.


Benoit Fresse
Ovale

Benoit Fresse
Machine à écrire
r

Benoit Fresse
Crayon


4. THE LITTLE DISCS OPERADS

@

FIGURE 4.2. The composition of elements in the little 2-disc operad.

02
‘

FIGURE 4.3. The representation of a restriction operation in the
little 2-disc operad.

In certain applications, we may prefer to consider the symmetric collection as-
sociated to D,,, of which terms are indexed by arbitrary finite sets r, rather than this
symmetric sequence. The elements of a term D,,(r) in this symmetric collection are
identified with collections of little discs ¢ = {¢;,,...,¢;,.} indexed by the elements
of the given set r = {iy,...,i.} rather than by ordinal elements ¢ = 1,...,7. The
action of finite set bijections u € Bij(r,s) on the symmetric collection D, (r) is the
obvious extension of the reindexing process associated with permutations.

4.1.3. The operad of little n-discs. We consider the symmetric sequence of little
n-disc spaces defined in the previous paragraph. We have a natural unit element
1 € D, (1) given by the 1-tuple 1 = (id), where we consider the identity mapping id :
D" — D", with the full unit disc D" = id(D") as corresponding subspace id(D") C
D".

We now define the partial composition operations o; : D,,(r) X D, (s) — D, (r+
s—1) giving the operadic composition structure of D,,. To a = (a1,...,a,) € D,(r)
and b= (by,...,bs) € Dy(s), we associate the r + s — 1-tuple of little discs

ao;b=(ai,...,a;-1,a;0by,...,a;0bs,ai11,...,a,) € Dp(r+s—1),

where the expression a; o by refers to the composite of the maps a; : D" — D"
and b : D" — D". Note that such a composite a; o by is still an embedding of
the form specified in §4.1.1. Intuitively, the little n-disc configuration a o; b €
D, (r 4+ s —1) is obtained by putting the configuration b = (by,...,bs) in the little
disc of @ = (a1, ...,a,) indexed by ¢, as depicted in Figure 4.2. In this process,
we apply the affine mapping a; : D" — D", equivalent to the given little n-disc
a; = a;(D"), in order to put the little n-disc configuration b at the appropriate
position and scale.

The definition of the operad D,,, for n = 1,2,..., is now complete since we can
immediately check, by a straightforward inspection of definitions, that the unit and
associativity axioms of operads are satisfied by our composition operations.
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4.1.4. The unitary version of the little n-disc operad. We take the convention
that D,,(0) = 0 (as explained in the introduction of this chapter). On the other
hand, we can formally extend the definitions of the previous paragraphs to include
an empty collection of little n-discs as an arity 0 element of a unitary version of the
little n-discs operad. We then obtain an operad D,,. such that D, (0) = x, where
x refers to both the one-point set, and the element of this set, which represents the
distinguished arity 0 element of the unitary operad D, .

This operad D, forms a unitary extension of the non-unitary little n-discs
operad D,, (in the sense considered in §1.1.20), and the partial composites with the
arity 0 element x € D, (0) are equivalent to restriction operations dy : Dy (r) —
D,y (r—1) so that 9x(c) = cox * (see §3.2.1). The image of a little n-disc collection
¢ = (c1,...,¢) under the restriction map 0k : Dy4(r) — Dyt (r — 1) can readily
be identified with the r — 1-tuple Ox(c) = (c1, ..., ¢k, - - ., ), where the kth term of
¢ has been removed (see Figure 4.3 for an example). Recall that the permutations
and the restriction operations generate a contravariant action of the category of
ordinal injections A (see §3.2.2) on the underlying sequence of the operad D,
which accordingly forms an augmented non-unitary A-sequence (see §3.2). The
action of a map u : {1 < --- <r} = {1 < --- < s} defining a morphism of that
category A on a little discs collection ¢ = (¢1,...,¢s) € Dy(s) is simply given by
u*(c) = (Cu(1), - - - » Cu(ry), and in this picture, the restriction operation 0y : Dy, (r) —
D,.(r — 1) corresponds to the map 0F : {1 < --- <r—1} = {1 <--- < r} jumping
over the value k € {1 < --- < r} in the image set (see §3.2.1).

In the general study of unitary operads in §3.2, we also deal with augmentation
morphisms which reflect the operadic composites €(p) = p(x, ..., x) where we plug
the unitary element * in all inputs of the operation p = p(x1,...,x,). In the case
of the little n-discs operads in topological spaces, these augmentations reduce to
the obvious canonical maps € : D, (1) — pt.

The unitary operads D, . naturally occur in applications to iterated loop
spaces. The computation of the homology of the little discs operads (see the next
section) involves the restriction morphisms arising from the unitary structures too.

4.1.5. The operads of little discs as a nested sequence of operads. The operad of
little n-discs, as defined in the previous paragraphs for a finite integer n = 1,2,.. .,
actually form a nested sequence of topological operads

Dy —Dg—---—Dy—---.

We take the colimit D, = colim,, D,, to add a terminal term to this sequence and
to define the infinite dimensional version of the little disc operads. We have an
extension of this construction in the unitary setting too.

We use the equatorial embedding of the n-disc D™ into the n+ 1-disc D", for-
mally defined by v(t1,...,t,) = (t1,...,tn,0), to regard D" as a subspace of D" .
To a little n-disc ¢ : D" — D", we associate the little n 4 1-disc ¢(c) : D"*' — D" 1!
with the same center as ¢ in the equatorial disc D" ¢ D"*!, and the same radius
r > 0. Thus, if we assume c(t1,...,t,) = (a1,...,an) + 7 (t1,...,t,), then this
little n + 1-disc ¢(c) is formally defined by ¢(c)(t1, ..., tn,tht1) = (a1,...,a,,0) +
r- (tl, N 7tn7tn+1).

The operad embedding ¢ : D, < D,4; is defined by the formula c(c) =
(t(c1)y .-, t(er)) for any ¢ = (e1,...,¢r) € Dy(r) and each r € N (see Figure 4.4
for the graphical representation of this process). We readily see that the collec-
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FIGURE 4.4. The image of a little
1-disc configuration in the little 2-
disc operad.

tion of these mappings preserve the internal structure of operads, and hence, do
define operad morphisms, which moreover admit an obvious extension to the uni-
tary version of the little discs operads. We can check further that our mappings
t: Dp(r) <= Dyy1(r), are topological inclusions, for all » € N, and hence, the little
n-disc space D, (r) can really be identified with a subspace of D,,11(r).

To complete our definitions, we record the following result (already mentioned
in the chapter introduction) about the initial term of the sequence D; and the
added terminal term D.:

PROPOSITION 4.1.6.

(a) We have g D1(r) = %,, forr =1,2,..., and the canonical maps D (r) —
7o D1(r) define a weak-equivalence of topological operads D1 = As between
the little 1-disc operad D1 and the associative operad As, formed in the
category of sets and viewed as a discrete topological operad. In the unitary
setting, we have similarly mo D14 ~ As.

(b) We have mg Doo (1) = *, forr =1,2,..., and the canonical maps Do (1) —
70 Doo (1) define a weak-equivalence of topological operads Do, — Com
between Do, and the commutative operad Com, formed in the category of
sets and viewed as a discrete topological operad. In the unitary setting, we
have similarly mo Dooy >~ Com,.

PROOFS AND EXPLANATIONS. In the proposition, we consider the sets of path-
connected components my P(r) associated to the topological spaces P(r) underlying
an operad P. The collection of sets 7y P(r) inherits an operad structure from P.
Moreover, the collection of maps P(r) — mg P(r) defines a morphism of topological
operads, where we regard the sets my P(r) as discrete topological spaces, as stated
in the proposition. This assertions formally follows from the obvious observation
that the mapping 7y : X — mX, from topological spaces to sets, defines a sym-
metric monoidal functor with the functors from sets to discrete spaces as adjoint
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(see §82.1.3-2.1.7). The claim that P — mg P defines a weak-equivalence of topo-
logical operads, as formulated in the proposition, amounts to the assertion that the
path-connected components of the spaces P(r) are weakly-contractible.

In the case P = Dj, the embedding of a collection of little intervals (of little
I-discs) ¢ = (c1,...,¢,) € Dy(r) in the one dimensional space D' determines an
order relation between the intervals. To be explicit, we set ¢; < ¢; when we have
ci(0) < ¢;(0), or equivalently, when ¢;(s) < ¢;(t) for all s,¢ € D'. The obtained or-
dering ¢;; < --- < ¢;, determines a permutation (i1, ...,%,) of the indices (1,...,7)
which we associate to eur the little 1-disc configuration (cy,...,¢.). For the little
configuration of Figure 4.4, for instance, we obtain the permutation (1, 3, 2).

This assignment gives a map D(r) — X, for any » € N, and we can easily
check, by providing a map in the converse direction and a contracting homotopy,
that this map is a homotopy equivalence of topological spaces. From this verifica-
tion, we conclude that my D1(r) = %, and the path-connected components of D1 (r)
are contractible, as asserted. Recall that the permutation groups %,., r > 0, define
the underlying collection of the associative operad in sets As. By inspection of def-
initions, we can also easily check that the relation mg D1 = As holds as an identity
of operads. In the unitary context, we simply consider an additional base point in
arity 0 on both sides of the identity mg D1 = As, and we easily check, again, that
the obtained an identity mg D14+ = Asy holds in the category of unitary operads.

We refer to [26, Lemma 2.50] for a proof that each space Do (7) is contractible,
so that we have my Do (1) = *, for each r > 0, where we use the notation * for the
one-point set (viewed as a terminal object of the category of sets). Recall that the
commutative operad in sets Com is also given by Com(r) = pt = x, for all » > 0.
In the case of one-point sets, the existence of the relation 7y Do (r) = * for each
r > 0 automatically implies that the identity my Do, = Com holds the category
of operads, and we similarly have an identity my Door = Com, in the category of
operads in the unitary setting. O

The operads D,,, where 1 < n < oo, are not weakly-equivalent to discrete
operads (unlike Dy and D). This observation can be deduced from the homology
computations of the next section. We readily see, nonetheless, that the spaces
D, (r) are path-connected for n > 1. Accordingly, the identity of the theorem
mo D, = Com in assertion (b) holds as soon as n > 1, and we similarly have
o Dy = Comy in the unitary setting.

4.1.7. Relationship with the little n-cubes operad. The little n-cubes operad,
denoted by C,,, is a variant of the little n-discs operad D,, of which elements consist
of collections of cube (rather than disc) embeddings. To be precise, we define a little
cube ¢ as a map ¢; : [0,1]" < [0,1]", of the form

ci(t, ... tn) = (a1 + (b1 — a1)ts, ..., ay+ (by — an)ty),

for each point (¢1,...,t,) € [0,1]", where (ai,...,an),(b1,...,b,) € [0,1]™ are
given parameters such that 0 < ap < by < 1, for each k. The space g= (,:([O, 1]™)
accordingly defines an n-dimensional cube in [0, 1]™ with non-empty interior ¢; and
faces parallel to the faces of the ambient unit cube. The n-tuples (a1, ..., a,), (b1, ...
[0,1]™ represent the extremal vertices of this little cube.

The spaces C,,(r), forming the little n-cubes operad C,,, consist# of r-tuples of
little n-cubes ¢ = (c1, . .., ¢,.) with disjoint interiors. Thus, a typical element of the
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little n-cubes operad is represented by a picture of the following form:

The definition of the operad structure on little n-cubes is an obvious variation
of the definition of the operad structure on little n-discs.

The operad of little n-discs is weakly-equivalent to the operad of little n-cubes
as an operad in topological spaces (we refer to [2 arguments giving a conceptual
proof of this statement). The operads of little cubes can be used to define models
of suspension maps in iterated loop space theory (see [134, 77]), while the operads
of little discs can not. But the little discs operads make some of our constructions
more natural, and we therefore prefer to use this model. The operads of little discs
also have a framed version, which is also needed for certain geometric constructions
extending the applications of operads to iterated loop spaces (reviewed in the next
paragraphs), but where spheres without a distinguished base point naturally occur
(we provide an introduction to this subject in §4.3)

4.1.8. Iterated loop spaces. The little n-discs are used to represent composition
schemes of continuous maps « : D" — X towards a space X equipped with a fixed
base point xg so that a 19prn= x¢. The space formed by these maps

Q"X = {a € Mapg,,,(D", X) | a 1gpr= w0},

together with the topology inherited from Mapy,, (D", X), is one of the possible
equivalent definitions for the n-fold loop space associated to X. In the case n =1,
we retrieve with this construction the basic definition of the space of loops « : D* —
X based at xg. This 1-fold loop space is more usually denoted by QX (with the
dimension exponent dropped from the notation).

The pairs (X, x), consisting of a topological space X together with a distin-
guished base point zg € X, form the objects of the category of pointed spaces Top,.
The morphisms of this category are the morphisms of topological spaces preserving
the base point. In general, we use the expression of the underlying space X for
the objects of Top,, and the notation * to refer to the base point attached to any
such space (except in particular cases where the base point has to be specified).
Implicitly, we abusively consider that a space X, regarded as an object of Top,,
comes together with a base point, which is part of its internal structure.

The loop space 27X is equipped with a natural base point, defined by the
constant map towards the base point of X. The assignment Q" : X — Q"X
accordingly gives a functor Q™ : Top, — Top, on the category of pointed spaces
Top,. The n-fold loop space functor Q™ : Top, — Top, can formally be identified
with the n-fold composite of the basic single loop space functor € : Top, — Top,.
This observation motivates the terminology of iterated loop space for spaces of the
form Y = Q" X.


Benoit Fresse
Autocollant
and R. Steiner, A canonical operad pair,
Math. Proc. Cambridge Philos. Soc. 86 (1979), 443-449.


4.1. THE DEFINITION OF THE LITTLE DISCS OPERADS 115

4.1.9. Operations on iterated loop spaces associated to little discs. Each ele-
ment ¢ € D, (r) in the unitary operad of little n-discs D,,4 determines an r-fold
operation ¢: Q"X x .- x Q"X — Q" X. Let us recall this construction.

Let ¢ = (c1,...,¢-) € Dpy(r). The assumption that each little disc ¢; has
a radius > 0 in the definition of the little n-discs operad implies that the map
¢; : D" — D" induces an affine isomorphism between D" and ¢; = ¢;(D"). To a
collection of n-fold loop space elements aq,...,q, € Q"X, we associate the map
«a: D" — X such that

ai(e; M (t, ... ty)), when (t1,...,t,) belongs to the image
alty,... tn) = of a small disc ¢; = ¢;(D"),
% (the base point of X), otherwise.
The assumption a; 19pn= * for the elements of 2"X ensures that this map is

well defined and continuous over D™. Moreover, we clearly have a 1gpn=x.
Thus, the map a : D" — X defines an element of the n-fold loop space a =

claq,...,q.) € Q"X naturally associated to ay,...,q, € "X, and this mapping
c:(ag,...,a.) = c(aq,...,q) gives the operation ¢ : Q"X x --- x Q"X — Q"X
associated to our operad element ¢ € D,,, (7).

Intuitively, the composite o = ¢(aq,...,qa,) : D" — Q"X is obtained by ap-

plying the maps «a; to the little n-discs of the configuration ¢, and the composition
with cl-_1 simply amounts to performing a suitable change of scale before applying
this map «;. The complement of the little n-discs inside D™ is sent to the base
point.

We easily see that the definition of the operad structure on our little n-discs
spaces reflects the structures associated with the corresponding operations on n-fold
loop spaces, and we obtain the following statement:

PRrROPOSITION 4.1.10. The construction of §4.1.9 provides each n-fold loop space
Q"X with an action of the (unitary version of the) little n-discs operad D,y so that
Q"X forms an algebra over this operad.

To summarize the idea, this proposition gives the construction of an algebraic
structure (an algebra over D, 1) from a topological object (an n-fold loop space).
The question is how far the algebraic structure provides a faithful picture of the
topological objects. The answer is provided by the following recognition theorem,
which gave the first motivation for the introduction of operads in topology:

THEOREM 4.1.11 (J. Boardman, R. Vogt [25, 26], P. May [134]). For any space
Y equipped with an action of the (unitary) operad of little n-discs D, we have a
pointed space B,Y , naturally associated to Y, together with maps Q"B,Y < - Y
commuting with D, -actions, where the middle term is again equipped with a D,y -
action and the right hand side map is a weak-equivalence.

The left hand side map is a weak-equivalence too when'Y is path-connected (or,
more generally, when moY forms a group). O

The cited references provide different approaches of this theorem. The argu-
ments of [134] rely on an approximation theorem (see Theorem 2.7 in loc. cit.)
asserting that free algebras over D,, are weakly-equivalent to iterated loop spaces
of suspensions Q"Y¥" X (see again loc. cit.) and returns the n-fold delooping B, Y
in one step. The arguments of [25, 26] rely on an inductive delooping process.
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The space Q"B,Y is not weakly-equivalent to Y in general, but forms a so-
called group completion of Y (see [2] for an introduction to this notion and further
references on this subject).

We will not go much further into the applications of operads to iterated loop
spaces. We refer to the literature, notably the already mentioned monographs [26,
134], for a comprehensive account of that subject. We simply want to explain,
in order to complete our survey, that the action of the little n-discs operad on
n-fold loop spaces represents a fine homotopical structure underlying the classical
definition of the homotopy groups of pointed spaces, and we address this subject
matter in the next paragraphs.

4.1.12. Basic motivations: the definition of homotopy groups. The nth homo-
topy group m,(X,xo) of a space X equipped with a base point zo € X can be
defined as the set of homotopy classes of maps u : D" — X which are identical
to the base point £y € X on 9D"™ C D". Simply recall that a homotopy between
any such maps ug,u; : D" — X consists of a map h : [0,1] x D" — D" such that
h(0,-) = ug, h(1,:) = u; and h(s,-) 19pn= zo, for all s € [0, 1].

The group m (X, xo) is identified with the fundamental group of X because a
based loop on the pointed space X is nothing but a map a : D' — X such that
@ 1gp1= Tg, and we have a similar identification for homotopies. Recall that the
fundamental group 71 (X, ) is not abelian in general while all higher homotopy
groups m, (X, zg), n > 1, are. We aim to revisit the definition of the group structure
on m, (X, z), from the operadic viewpoint.

We have a formal identity between the group m,(X,z) and the set of path-
connected components of the n-fold loop space Q" X. The group multiplication
of m, (X, x0), as usually defined (see for instance [177, §IV]), can be identified with
an operation p : Q"X xQ" X — Q" X, formed at the loop space level, and associated
with an arity 2 element the little n-cubes operad C,{2). (We then have to define
the n-fold loop space Q"X as a set of maps on a cube [0, 1]™ instead of a disc D",
but this does not change the result of the construction.) In our setting, we consider
an operation = ¢ : Q"X x Q"X — Q"X associated an arity 2 element in the little
n-discs operad ¢ € D,,(2).

If we assume n > 1, then all operations ¢: Q"X x Q"X — Q"X associated to
such a little n-disc configuration ¢ € D,,(2) are the same up to homotopy: indeed,
since D,,(2) is path-connected, any pair of little n-disc configurations c°, ¢! € D,,(2)
are connected by a path ¢®, s € [0, 1], in D,,(2), and the collection of operations ¢® :
Q"X x Q"X — Q"X, s € [0,1], associated to this path determines a homotopy
between the operations associated to ¢® and ¢! on Q" X.

This argument line also implies that the multiplication defined by an ele-
ment ¢ € D,(2) is homotopy equivalent to the multiplication determined by the
transposed operation (1 2) - ¢ € D,(2). Hence, we obtain that a multiplication
on m,(X,zg) is equal to the opposite operation, and as a consequence, that the
group m, (X, xg) is commutative.

In the case of n = 1, we have two choices of multiplications in homotopy, corre-
sponding to the two path-connected components of the space D;(2), and these mul-
tiplications are transposed to each other. Thus we retrieve the non-commutativity
of the fundamental group 71 (X, o) from the identity w9 D1(2) = As(2).

The homotopy, giving the associativity of the multiplication on homotopy
groups, can also be defined by a one parameter family of triple operations p§(-, -, -) :
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Q"X x Q"X x Q"X — Q" X, s € [0, 1], associated with a path in the little n-discs
space D,,(3). The inversion operation is apart because the homotopies giving this
operation are not included in the structure associated with the little n-discs operad.

By pushing our operadic analysis further, we can regard the associativity (re-
spectively, commutativity) of the group structure on 7, (X, () as a consequence
of the operad identity mo D1+ = Asy (respectively, mo D+ = Comy for n > 1).
We mention after Proposition 4.1.6 that the operads D, are not componentwise
contractible for 1 < n < co. We precisely check in the next section that D, (2)
is homotopy equivalent to a sphere S"~' and that each space D, (r) has a non-
trivial homology. Fine structures arising from the operad little n-discs operad can
be revealed by studying homology groups H, (2" X, k) rather than restricting our
consideration to the set of connected components m,(X,zo) = m(Q2"X). The
monograph [40] gives a complete description of these homological structures in the
case where the coefficient ring of the homology is a field.

4.1.13. The notion of an E,-operad. To conclude this chapter, we just record
the formal definition of the notion of an E,-operad: a non-unitary (respectively,
unitary) E,-operad in topological spaces is an operad P, in the category of topo-
logical spaces, which is isomorphic to the operad of little n-discs D,, (respectively,
D, ) in the homotopy category of topological operads Ho(TopOp).

By definition of the homotopy category Ho(TopOp), this definition amounts to
assuming that P is connected to D,, by a chain of morphisms of topological operads

P& D,

inducing isomorphisms on homotopy groups, and hence, defining weak-equivalences
in the category of topological operads.

The existence of a model structure on TopOp, which we study in §1, implies
that such a chain can be reduced to a zig-zag of two weak-equivalences

P& 2D,

The same observations hold in the unitary context.

In many applications, authors take the additional assumption that E,-operads
are cofibrant as symmetric collections (we explain the definition of this concept
in §I1.1.4 and §I1.3.1) in order to ensure that the category of algebras associated
with different models of E,,-operads are Quillen equivalent (see §II1.1.4). The inter-
esting reader can notice that all instances of E,-operads considered in this work
(including the reference model of little n-discs by the way) are cofibrant as symmet-
ric collections. But we will not pay attention to this technical point. Furthermore,
as soon as we consider homotopy automorphism groups, we need to deal with cofi-
brant models of E,-operads, and this requirement is actually stronger than being
cofibrant as a symmetric collection (see for instance [22]).

In the cofibrant case, the model category axioms implies that we can reduce our
chain of a weak-equivalences, connecting P and D,,, to a single element P = D,,,
but we usually do not need to make this weak-equivalence explicit too.

In the case n = 1, 00, the result of Proposition 4.1.6 immediately implies:

PROPOSITION 4.1.14.

(a) A non-unitary operad P is E; if and only if we have mo P(r) = 3,., forr =
1,2,..., and the canonical maps P(r) — m P(r) define a weak-equivalence
of topological operads P = As, where we regard the associative operad As,
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formed in the category of sets, as a discrete topological operad. A similar
result holds in the unitary context, with the non-unitary associative operad
As replaced by the unitary one As,.

(b) A non-unitary operad P is Ey if and only if we have mo P(r) = x*, for
r = 1,2,..., and the canonical maps P(r) — mo P(r) define a weak-
equivalence of topological operads P = Com, where we regard the commu-
tative operad Com, formed in the category of sets, as a discrete topological
operad. A similar result holds in the unitary context, with the non-unitary
commutative operad Com replaced by the unitary one Comy.. O

Since the operads D,, are not equivalent to discrete operads for 1 < n < oo, we
do not have such a simple characterization of E,-operads in general. On the other
hand, the existence of weak-equivalences P <~ - = D,, implies that FE,-operads
have the same homology as the operad of little n-discs (and similarly in the unitary
context). This already gives a simple criterion for the recognition of E,-operads.
But the study of the homology of E,-operads gives the subject of the next section.

4.2. The homology (and cohomology) of the little discs operads

The goal of this section is to give a description of the homology of the little
n-discs operads D,,, and as a byproduct of any E,-operad. We work throughout
this section with a fixed ground ring Kk, which we take as coefficient ring for the
homology H,(X) = H.(X,k) and the cohomology H*(X) = H*(X, k) of topological
spaces. We need to assume that the ground ring is a field in order to have general
structure result on the homology of operads. We can adopt this assumption to
simplify, because we do not need more than the case of a characteristic zero field in
subsequent applications, but our description of the homology of the little n-discs
operads remains valid over any ring.

We naturally deal with objects defined in the category of graded modules,
denoted by g Mod. We have a symmetric monoidal structure, recalled in the ap-
pendix section §4.4, on the category of graded modules, and the homology of a space
forms a counitary cocommutative coalgebra in that symmetric monoidal category
(at least when we take a field as coefficient ring). When we apply the homology to
a topological operad, we get an operad in the category of counitary cocommutative
coalgebras in graded modules. We also speak about graded Hopf operads for short.
We precisely aim to determine the graded Hopf operads defined by the homology
of the little discs operads.

We adopt the following conventions. We use the prefix graded rather than the
full expression of graded module, to refer to objects defined within the category
of graded modules g Mod. For instance, we speak about graded counitary cocom-
mutative coalgebras, graded operads, ... Following the convention of §2.2, we also
generally use the prefix Hopf to refer to objects defined in a category of counitary
cocommutative coalgebras. Therefore, we use the expression of a graded Hopf op-
erad to refer to the structure defined by an operad in counitary cocommutative
coalgebras in graded modules.

In mathematical formulas, we similarly use the notation g Com{, rather than
gMod ComS , to refer to the category of graded counitary cocommutative coal-
gebras, the notation g Op, rather than g Mod Op, for the category of graded op-
erads, and the notation g HopfOp for the category of graded Hopf operads. In
Proposition 2.2.4, we observed that Hopf operads can be identified with counitary
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cocommutative coalgebras in operads. In the graded context, this identity reads
gHopfOp = gCom< Op = g Op Com,.

The homology of the little n-discs operads is essentially trivial when n = 1, oo,
since the topological spaces underlying these operads have contractible connected
components (and similarly in the unitary context). Therefore most of our efforts
are devoted to the cases where 1 <n < oo

In a first stage, we forget about operadic composition structures. We give a
description of the cohomology of each space D,,(r) as a graded unitary commutative
algebra. In this context, we can replace the little n-discs spaces D,,(r) by homotopy
equivalent configuration spaces F (D”, r), which do not form an operad but are more
suitable for the analysis of topological structures. To begin with, we recall the
definition of these spaces:

4.2.1. Configuration spaces. The space of configuration of r points in a topo-
logical space M € Top is generally defined by:

F(M,r)={(a1,...,a,) € M"|a; # a; for all pairs i # j},

for any r € N. In what follows, we mostly consider the configuration space as-
sociated to the open n-discs M = D". The configuration space associated to the
euclidean space M = R™ is more usually considered in the operadic litterature. But
the standard homeomorphism between the euclidean space and the open n-disc in-
duces a homeomorphism at the configuration space level. Therefore, we can deduce
results involving one of these configuration spaces from results involving the other.
We easily see that:

To an element of the little n-discs operad ¢ € D, (r), we associate the con-
figuration of points (¢1(0),...,c.(0)) € F(D™,r) defined by the centers of the lit-
tle n-discs ¢;, ¢ = 1,...,r, of our collection ¢ = (c1,...,¢.), and we get a map
w : Dy (r) — F(D™,r), which we call the disc center mapping. We have the follow-
ing result:

PROPOSITION 4.2.2. The disc center mapping defines a homotopy equivalence
of topological spaces w : D, (r) = F(D",r), for each r € N.

PRrROOF. Exercise or see [134, §4]. O

We have no operadic composition products on configuration spaces. Nonethe-
less, we still have some structure result when we focus on unitary composition
operations. We then consider our notion of augmented non-unitary A-sequence
which formalize this part of the structure attached to operads (see §3.2). Recall
that the little n-discs operad D,,, has such a structure, which we associate to the
unitary extension of this operad (see §4.1.4). Then we have the following statement:

PROPOSITION 4.2.3. The collection of configuration spaces F(b”,r) forms an

~

augmented non-unitary A-sequence so that the disc center mappings w : Dy (r) —
F(D™,r) form a morphism of augmented non-unitary A-sequences.

EXPLANATIONS. The action of an ordinal injection uw : {1 < --- < r} —
{1 < -+ < s} on an element ¢ = (ai,...,as) € F(D",s) is defined by u*(a) =
(@y(1ys - - -5 @u(ry), This construction clearly gives an action of our category A on

the collection of configuration spaces, and we have an obvious canonical augmen-
tation € : F(D™,r) — pt, for each r € N, so that the collection {F(D™,r)} forms
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an augmented non-unitary A-sequence as stated in the proposition. We imme-
diately see, from the definition of the augmented A-sequence structure on the
little n-discs spaces D, (r) in §4.1.4, that the collection of disc center mappings
w:D,(r) = F (D", r) defines a morphism of augmented non-unitary A-sequences,
when we take this definition of A-sequence structure on the configuration spaces
F (D™, 7). 0

We now examine the topological structure of the configuration spaces F (D"7 7)
with the aim of determining the cohomology of these spaces. We begin with the
following simple observation:

PROPOSITION 4.2.4. We have a homotopy equivalence F(I5",2) 5™t be-
tween the configuration space of two points F(D™,2) and the n — 1-sphere st

PROOF. We easily check that the mapping which associates the normalized

vector %/HJH € S"! to each pair (a,b) € F(D",2) defines a homotopy equiva-
lence. (]

4.2.5. The definition of fundamental classes. For n > 1, the result of Proposi-
tion 4.2.4 implies that we have:

k, ifx=0,n-1,

0, otherwise,

H,(F(D",2)) = H,(S" 1) = {

and similarly for the cohomology H*(F (D™, 2)). We use the notation [S" '] the fun-
damental class of the sphere (equipped with a suitable orientation) which defines
a generator of the module H,_1(S" '), and which we transport to H,(F(D",2))
by using the homotopy equivalence of Proposition 4.2.4. We will also use the
notation [pt] for the canonical generator of the degree 0 component of the ho-
mology module H,(F(D",2)). In the cohomological context, we consider the ele-
ment w € H"~1(F(D",2)), dual to [S"!], in order to obtain a canonical generator
of H""L(F (D", 2)).

Let now r > 2. For each pair 1 < ¢ < j < r, we consider the map ¢;; :
F(D™,r) — F(D™,2) such that pij(ar, ... ar) = (a;,a;), and we set wi; = ¢j;(w)
for the image of w € H" 1(F(D",2)) under the morphism b3 HL(F(D",2)) —
H”_l(F(IOD"7 r)) induced by this map. Observe that ¢;; is the the restriction opera-
tion associated with the injection p;; : {1 < 2} — {1 <--- < r} such that p;;(1) =1
and pi;(2) = .

Let S(wjj,i < j) be the graded symmetric algebra generated by the classes w;;
in degree n — 1. We have the following result:

THEOREM 4.2.6 (See V. Arnold [7], F. Cohen [40]). Letn > 1. Let r > 2.

(a) In H*(F(D",r)), we have the relation w;i; = 0 for each pair i < j, and the
relation w;;wjr — wWikWjr — wijwik = 0 for each triple i < j < k.

(b) The morphism S(w;j,i < j) — H*(F(IOD”,T)), mapping the generator w;;
to the corresponding cohomology class in H*(F(IOD", 7)), induces an isomor-
phism

S(wij,i < j)

= HY(F(D", 7)),
WijWik — WikWjk — WijWik)

(%Qja
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when we form the quotient of the symmetric algebra S(w;;,i < j) by the
ideal generated by the relations of (a). O

This theorem is established in the cited references, by using euclidean spaces R™
instead of open discs D"™. This choice does not change the result since the homeor-
phism between the euclidean n-space R" and the open n-disc D" induces a home-
orphism at the configuration space level.

In the case n = 2, we can still use the complex plane C instead of R?. This
case n = 2 of the theorem is addressed in the reference [7], by using the differential
form dlog(z; — z;) as a representative of the class w;; in the de Rham complex of
the configuration space F(C,7) = {(z1,...,2) € C"|z; # z;}, where we take the
complex field as coefficient ring. The general case of the theorem is addressed in
the reference [40]. The computation involves the Leray-Serre spectral sequences
associated to the projection map

f:FR"r)—= FR",r—1)

which forgets about the last point of a configuration. We also refer to the arti-
cle [158] provides a comprehensive survey, with little background, of this homolog-
ical computation.

We use the result of Theorem 4.2.6 (in this form) when we study the commu-
tative algebra part of the deformation complex of Es-operads. We also need to
determine the morphisms 0j : H*(F (D", r—1)) — H*(F(D™, 7)) induced by the map
O : F(D",r) — F(D",r —1) such that dy(as,...,a,) = (a1,...,ax,...,a), for any
a = (a1,...,a,) € F(D", 7). These maps are the restriction operations associated
to the usual generating morphisms 9% : {1 < --- <r —1} = {1 < --- < r} of the
category A in Proposition 4.2.3. We have the following easy result:

PROPOSITION 4.2.7. Let n > 1 again. The morphism 0j : H*(F(D",r — 1)) —
H*(F(D™,r)), for any r € N, and any k =1,...,r, satisfies

5t () = {wij, ifi#j#k.

0, otherwise,
for each generating cohomology class w;j, 1 <@ < j <, of the cohomology algebra
H*(F(D™,r)).

PRrOOF. Exercise. O

4.2.8. Homology and monoidal structures. We can use the existence of a coho-
mology isomorphism w* : H*(F(D",r)) = H*(D,,(r)) and the duality pairing

H*(F(D", 7)) ® K, (D (1)) S B (F(D", 7)) @ B, (F(D™, 7)) == k
to determine the homology of each component of the little n-discs operad from our
description of the cohomology of the configuration spaces in Theorem 4.2.6. But we
now aim to give a description of the collection of homology modules {H.(D,(r))}
as an operad.

We have already used that the cohomology defines a functor from spaces to
commutative algebras. We carefully check the definition of a coalgebra structure
on the homology of spaces first, and we address the general definition of operadic
structures on the homology of operads before tackling the case of little n-discs. We
use the formalism of symmetric monoidal functors (see §2.3.1).
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We obviously have H,(pt) = K, by definition of ordinary homology, so that the
mapping H, : X — H,(X) defines a unit pointed functor from topological spaces
to graded modules. We consider the Kiinneth morphism « : H,(X) ® H.(Y) —
H.(X x Y). We have the following classical statement:

PROPOSITION 4.2.9 (See [121, §VIII] or [161, §5.3]).

(a) The Kinneth morphism defines a symmetric monoidal transformation on
the homology functor Hy : X +— H,(X), regarded as a functor from the sym-
metric monoidal category of spaces Top towards the symmetric monoidal
category of graded modules g Mod.

(b) If the coefficient ring is a field, then the Kinneth morphism is an iso,
so that the homology defines a symmetric monoidal functor H, : Top —
gMod. a

We can therefore apply the general constructions of §2.0.4 to obtain:

PROPOSITION 4.2.10. If the coefficient ring is a field, then the homology func-
tor Hy : Top — g Mod induces a functor from the category of topological spaces Top
towards the category of counitary cocommutative coalgebras in graded modules g ComS, ,
and this functor Hy : Top — g Com<. is also symmetric monoidal.

EXPLANATIONS. In §2.0.4, we deal with the general case of a functor between
symmetric monoidal categories. In the context of Proposition 4.2.10, we consider
the homology functor H, : Top — g Mod between topological spaces and graded
modules. The first result of that proposition, the existence of a counitary cocommu-
tative coalgebra structure on the homology, follows from Proposition 4.2.9 and the
observation that any space X naturally forms a counitary cocommutative coalgebra
in the category of spaces, with the constant map € : X — pt as counit, and the
diagonal map A : X — X x X as coproduct. The second result of the proposition,
the definition of the symmetric monoidal functor H, : Top — g Com?, arises from
the observations of §2.0.4.

To prepare our subsequent study of the homology of little discs, we examine
this applications of the general construction of §2.0.4 with more details. First, the
graded counitary cocommutative coalgebra structure on the homology of a space
H.(X) is formed as follows:

(a) To define the counit of this coalgebra, we simply consider the morphism
H.(X) — H.(pt) = K, associated to the constant map X — pt;
(b) To define the coproduct, we form the composite

Ho(X) 25 H (X x X) < B (X) @ H(X),

where we consider the morphism induced by the diagonal of the space X,
followed by the Kiinneth isomorphism.
The unit, associativity and symmetry constraints, fulfilled by the Kiinneth isomor-
phism, ensures that the obtained coalgebra structure satisfies the counit, coasso-
ciativity, and cocommutativity relations of graded counitary cocommutative coal-
gebras (see §2.0.4).
The coproduct on the homology represents the dual morphism of the product
o HY(X) ® H(X) — H*(X), defining the commutative algebra structure of the
cohomology H*(X), because this product can also be defined as a composite

HY(X) @ H* (X) 5 B (X x X) 25 B (X),
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where we consider a cohomological version of the Kiinneth morphism, followed by
the morphism induced by the diagonal of the space X. Note that the commutative
algebra structure of the cohomology is still defined when the Kiinneth morphism
is not an iso (in contrast with the coalgebra structure of the homology). To give
a more explicit formulation of this duality between product and coproduct, we
consider the natural pairing (—, —) : H*(X) ® H,(X) — Kk, between the cohomology
and the homology of X. If we set A(c) = >, a;®b; for the coproduct of an element ¢
in H.(X), then we have the adjunction relation

(- Byc) = Zi<a7ai> - (B, bi),

for every «, 8 € H*(X), where the sign + is produced by the commutation of the
factors a and a; in this expression.

The tensor product ® : g ComS x g ComS — g Com< of the category of graded
counitary cocommutative coalgebras is inherited from the category of graded mod-
ules by definition (see §2.0.3). The construction implies that the Kiinneth morphism
H.(X) ® Hi(Y) — Ho (X x Y) defines a morphism of graded counitary cocommu-
tative coalgebras, and satisfies the unit, associativity, and symmetry constraints
of §2.3.1 in that category g Com (see §2.0.4). Thus, improving on the assertion of
Proposition 4.2.9, we finally obtain that the homology functor defines a symmet-
ric monoidal functor H, : Top — g Com{, between spaces and graded counitary
cocommutative coalgebras, as asserted in the proposition. O

We then obtain:

PROPOSITION 4.2.11. Let P be any operad in topological spaces.

(a) The collection of graded modules Hi(P) = {H.(P(r)),r € N} associated to
the spaces P(r) forms a graded operad naturally associated to P, for any
choice of ground ring.

(b) If the ground ring is a field, then this operad H.(P) is actually an op-
erad in graded counitary cocommutative coalgebras, where we use Proposi-
tion 4.2.10 to get the coalgebra structure on the homology modules Hy (P ()).

EXPLANATIONS. This proposition is a corollary of the results of §2.1, where we
examine the image of operads under functors between symmetric monoidal cate-
gories. We consider the homology functor H, : X — H,(X), from the category of
spaces towards the category of graded modules (respectively, graded counitary co-
commutative coalgebras), and we use the result of Lemma 2.1.3 to get the definition
of an operad structure on the homology H,(P). We obtain the following structures:

(a) The morphisms w, : Hi(P(r)) — H.(P(r)), induced by the action of per-
mutations w € ¥, at the topological level, give the action of permutations
on the homology of the operad.

(b) The morphism k = H,(pt) ~+ H,(P(1)), induced by the operadic unit of
the topological operad P, gives an operadic unit at the homology level.

(¢) The partial composition products of the topological operad P induce mor-
phisms

H.(P(m)) ® K. (P(n)) = B.(P(m) x P(n)) <25 H,(P(m +n — 1))

which give the partial composition products of the homology operad H, (P).
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The unit, associativity and symmetry constraints of symmetric monoidal functors
ensures that these structure morphisms fulfills the equivariance, unit and associa-
tivity axioms of operads (see §2.1). Depending on the context (a-b), we can form
the morphisms giving this operad structure in the category of graded modules or
in the category of counitary cocommutative coalgebras.

To complete this analysis, recall that such a functor on operads H, : P — H.(P)
preserves unitary extensions: we have the identity H, (P4 ) = H.(P)4 for any unitary
extension P of a non-unitary operad P. ([

Following the conventions of §2.2, we will use the terminology of graded Hopf
operad to refer to an operad in augmented graded commutative coalgebras, and
the notation g HopfOp (instead of g ComS Op) for the category formed by these
operads. We similarly use the terminology of graded Hopf symmetric sequence,
and the notation g HopfSeq, for the category of symmetric sequence in graded
counitary cocommutative coalgebras. Proposition 4.2.11(b) asserts, under these
conventions, that the homology functor H, : Top — gComS induces a functor
Hy : TopOp — g HopfOp.

For P = D; (respectively, P = D), the existence of a weak-equivalences be-
tween our operad and the discrete operad of associative (respectively, commutative)
monoids implies:

PROPOSITION 4.2.12.

(a) We have an identity of graded Hopf operads H.(D1) = As, where we con-
sider the associative operads in K-modules As, regarded as a graded operad
concentrated in degree 0, together with the coproduct inherited from the
corresponding set operad (see the concluding paragraph of §2.1). In the
unitary setting, we have similarly Hy(D14) = Asy.

(b) We have an identity of graded Hopf operads H.(Do,) = Com, where we
consider the commutative operads in K-modules Com, regarded as a graded
operad concentrated in degree 0, together with the coproduct inherited from
the corresponding set operad (see the concluding paragraph of §2.1 again).
In the unitary setting, we have similarly Hy(Dooy) = Comy..

Recall that our main objective is to give the description of H.(D,,) as a graded
Hopf operad when 1 < n < co. We give an abstract definition of this sequence of
graded Hopf operads first and we explain the identity with the homology of little
discs afterwards.

4.2.13. The Gerstenhaber operad. We use the notation Gerst,, and the termi-
nology of n-Gerstenhaber operad, for the nth term of this sequence of graded Hopf
operads, which we now consider. This graded Hopf operad Gerst,, is actually a
graded versions of the Poisson operad of §1.2.12, and some authors use the name of
Poisson operad of degree n — 1, rather than n-Gerstenhaber operad. We precisely
define Gerst,, by the same presentation as the Poisson operad

Gerst,, = O( Ku(x1,z2) @ KA (21, 22) :

wp(21, x2), 23) = (1, (22, 3)),
(Mz1,x2),x3) + A(M (22, 23), 1) + A(A(T3, 21), 22) = 0,

A
Ay, 22), 23) = p(M@1, 23), 22) + (o, Mz2, 23)) ),
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with a generating operation pu = u(xy,x2) of degree 0 and such that (1 2) - u = p,
but where we now assume that A = A\(x1,29) is a generating operation of degree
n—1, satisfying a symmetry relation (1 2)-A = (—1)"\ that depends on the degree n
of the operad.

The operation p forms associative and commutative product in Gerst,, which
generates as suboperad isomorphic to the commutative operad Com within the n-
Gerstenhaber operad (see [73, 126]). The operation A is a graded analogue of Lie
bracket. The suboperad of Gerst,, generated by A is isomorphic to a suspension of
the Lie operad Lie (see [73]).

The distribution relation A(p(z1,x2),23) = p(AM a1, 23),22) + p(xr, A(x2, x3))
implies, as in the Poisson case, that any composite of products and Lie bracket in
the n-Gerstenhaber operad is equal to a product of Lie monomials. To be more
precise, one can prove that the components of the operad Gerst, (r) are the k-
modules spanned by formal products

p(xla e axr) :P1(1’117~ .. 7:1717‘1) e 'pm(fEm17~ .. 7Im7‘m)a
where each p; = p;(1,...,%,) is a Lie monomial of degree 1 with respect to
each variable z;;, kK = 1,...,r;, and so that the variable subsets {z;1,..., %, }
form a partition of {z1,...,z,}. We simply have to consider operadic composites

of the graded Lie bracket A when we form our Lie monomials. The description of
the Lie operad in §1.2.10, remains also valid in this context, and any monomial
p;i = pi(Zi1, ..., Tir,) in the above expansion has a reduced form

Pi(Tit, oo, ZTiry) = AC - A A (@in, i2), iz -+ ), Tary ),
where we assume x;1 < z, for all 1 < k (with respect to the natural ordering
inherited from the set of variables {x; < -+ < z,.}).

We provide the operad Gerst,, with a Hopf structure such that e(x) = 1 and
A(p) = p® p, for the commutative product operation p € Gerst,(2) and e(A) =1
and A(A) = A® p+ p® A for the Lie bracket operation A € Gerst,,(2). We can
readily see, as in the Poisson case (see §2.2.12), that the ideal of generating relations
forms a Hopf ideal, so that this Hopf structure is well defined.

4.2.14. The unitary Gerstenhaber operad. We have considered a non-unitary
version of the n-Gerstenhaber operad in the construction of the previous paragraph.
We can also define a unitary n-Gerstenhaber operad, by observing, as in the Poisson
case, that the operad Gerst,, inherits a restriction structure such that Oy = O = 1
and 01 A = G2 A = 0 for the generating operations u, A € Gerst,, (2). We easily check
that the application of these restriction operations cancel the generating relations
of Gerst,,. We then use the process of §3.4.8 to obtain the definition of our unitary
extension Gerst,, of the operad Gerst,,.

The Hopf structure of the n-Gerstenhaber operad is clearly preserved by our
restriction operations so that our construction yields a unitary extension of the
n-Gerstenhaber operad in the category of Hopf operads.

In the computation of the homology of the operad of little discs, we use the
restriction morphisms, associated with this unitary extension of the Gerstenhaber
operad, as well as the Hopf structure. The main result reads:

THEOREM 4.2.15 (F. Cohen [40]). Let n > 1.

(a) The elements p = [pt] € Ho(D,,(2)) and X = [S"'] € H,_1(D,(2)) satisfy
the symmetry relations (1 2) - p = p and (1 2) - A = X\ as well as the
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generating relations of the Poisson operad

p(p(@e, 22), x3) = (w1, plaz, x3)),
)\()\<$1,$2),$3) + >\()\($2,SL‘3),.’L‘1) + )\()\(.Tg,xl),xg) =0,
)‘(/J’(xlv 332), .733) = M()‘(xla 1‘3), 332) + u(xh A(Jf‘% l‘3))

in the homology of the little n-discs.
(b) The counit and coproduct of our elements on the homology of the space D,,(2)
are given by:

elpt] =1, Alpt] = [pt] ® [pt],
(S =0, A" =[S""Ipt]+[pt]@[S"].

The restriction operations O : Hi(D,(2)) — Hi(Dn(1)), k = 1,2, which
the homology module H,(D,,(2)) inherits from the little n-discs operad, are
determined by:

Oilpt] = dapt] =1, 01[S"" ' =[S ] =0,

where we use the obvious identity H, (D, (1)) = H,(F(D", 1)) = k.
(¢) The mapping i — [pt] € Hy(D,(2)) and X — [S"7!] € H,_1(D,(2)) in-
duces an isomorphism of graded Hopf operads

h: Gerst, = H,(D,,),
which also admits a unitary extension hy : Gerst,,; — H,(Dy, ).

EXPLANATIONS AND REFERENCES. We refer to [40] for the proof of the identi-
ties of (a) in the homology of the little discs operad (see also [158] for another nice
reference on this topic). The identities of (b) are obvious.

We deduce, after this preliminary verification, that we have a morphism of
graded operads h : G, — H.(D,,) mapping the generating operation p € Gerst,(2)
(respectively, A € Gerst,,(2)) to the element [pt] € Ho(D,,(2)) (respectively [S" '] €
H,-1(Dn(2))), as specified in the theorem. As the coproduct of the homology
classes [pt] and [S™'] matches the definition of the coproduct of the corresponding
generating operations in the Gerstenhaber operad, we immediately conclude that
coproducts are preserved by our morphism, which therefore forms a morphism of
graded Hopf operads.

We still have to check that this morphism is an iso. We can deduce this claim
from the computation of the cohomology of configuration spaces in Theorem 4.2.6,
and from the next proposition, which involves the definition of the morphism (and
no more). We refer to [158] for details.

The result of the theorem also follows from the computation of [40], giving the
expression of the homology H.(S.(D,, X)) as a functor in H,(X), for any space X,
where S, (D,,, X) refers to the free D,-algebra associated to X modulo base point
(see loc. cit. for details). In the case of rational coefficients, the result of [40]
asserts that this functor is precisely the free Gerst,-algebra on H.(X), and the
identity between Gerst,, and H,(D,,) is actually equivalent to this functor identity.

The preservation of restriction morphisms implies that our morphism A extends
to a morphism of unitary operads hy which is obviously an iso too as soon as h
is. (]
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PROPOSITION 4.2.16. Let w;j € H*(F(D", 7)) be any of the generating elements
of the cohomology algebra H*(F(I:D)"7 r)), as defined in §4.2.5. Letp = p(x1,...,2,) €
Gerst,,(r). We apply the morphism of Theorem 4.2.15 to regard p as an element
of He(Dy(1)). Then we have the duality relation

~

1, inthecasep=x1-... - Nzj,xj) ... Tj ... Tp,
(wij,p) = . (= J) ! "
0, otherwise,

with, respect the pairing (-,-) : Hy(F(D™, 1)) @ H,(Dy (1)) = Kk considered in §4.2.8.

PROOF. We use that the disc center map w : D,(r) — F(D",r) defines a
weak-equivalence of non-unitary A-sequences. We have by definition w;; = ¢7;(w),
where w € H* 1(F(D",2)) is the dual element of the class [S"~!] which repre-
sents the Lie bracket operation A\ = A(z1,22) in H.(D,). Recall that the map
Gij F(D",r) — F(D",2), considered in the definition of this element wij, is the
restriction operation associated to the mapping p;; : {1 <2} = {1 <--- <r} such
that p(1) = ¢ and p(2) = j. By functoriality of the pairing between cohomology
and homology, and the preservation of restriction morphisms, we obtain:

(wijrp) = ((¢ij)" (W), p) = (w, (pi;)" (D))
for any p = p(z1,...,x,) € Gerst,(r). The result of the proposition accordingly
follows from the expression of the expression of restriction operations on products

of Lie monomials in the Gerstenhaber operad §4.2.13, and from the duality formula
(w, Ay = 1. O

The expression of the pairing (r, p) associated to any monomial 7 = w; j, .. .-
wi,.j. can be obtained from the result of this proposition, and the adjunction relation
between the product of H*(F(D",r)) and the coproduct of H,(D,(r)) (see §4.2.8).
The combinatorial formula arising from this process is worked out in [158], and
implies that our construction yields a non-degenerate pairing in each arity r € N,
between the component of the n-Gerstenhaber operad G, (r) and the cohomology
algebra of Theorem 4.2.6. This argument provides a proof that the map of Theo-
rem 4.2.15 defines an iso between the n-Gerstenhaber operad and the homology of
the little n-discs operad (as we mention in the proof of this statement).

4.3. Outlook: variations on the little discs operads

The little n-discs operad of §4.1 is our reference model of E,-operad, and we
mostly deal with structures which we directly obtain from the consideration of
this topological object. Nonetheless, this operad is not universal. We have other
instances of F,-operads and, depending on the considered application, one model of
E,-operad may be more appropriate than another. We may also consider additional
structures in our definition in order to get variants of the notion of an F,-operad.
The purpose of this section is to give an overview of geometric constructions yielding
such operads related to little discs.

In the first instance, we provide an outline of the definition of the Fulton-
MacPherson operad FM,,, an instance of E,-operad introduced by E. Getzler and
J. Jones in [73], and which arises from a compactification of the configuration space
of points in the euclidean space F(R™,r). We may intuitively regard a configuration
of points as a configuration of discs equipped with a zero radius. The idea of the
Fulton-MacPherson operad is to use the compactification process in order to extend
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FIGURE 4.5. The picture
of an element in the
Fulton-MacPherson com-
pactification of the config-
uration space.

the composition of little discs to this degenerate case. We then obtain a picture of
the form of Figure 4.5, involving a scale of micr&pic configurations, forming a tree,
and which represent a free operadic composite in our compactification. We outline
the definition of the topological spaces underlying this operad structure first.

4.3.1. The Fulton-MacPherson compactifications. In the approach of the refer-
ence [73], we first consider a compactified space F(R™,r), for each r € N, defined
by performing real blow-ups of the diagonal subspaces z;, = x;, = -+ = x;, in the
product space (R™)", and by taking the closure of F(R"™,r) in the cartesian product
of all these blow-up spaces. This compactification process is a real analogue of the
construction introduced by Fulton-MacPherson in [62], for the study of configura-
tion spaces of points in complex varieties. The real version of the compactification
process was initially introduced by Axelrod-Singer in [11], for the study of the
perturbative expansion of Chern-Simons quantum field theories.

In short, the real blow-up of the small diagonal A = {1 = z9 = --- =z} in
a product space (R™)¥ is a space BLa(R™)* C (R™)* x (R™)* such that:

— the mapping
7 :B1a(R™)* — (RM)*,
induced by the projection w(z1,..., 2k, v1,...,0%) = (z1,...,2Tk), is one-
to-one over the complement of the diagonal A in (R™)*,
— and we have

a,...,a) = {(a,...,a)} x (A+\0)/Rso),

for the points of the diagonal (a,...,a) € A, where (AL \ 0)/Rxq is the
space of open half lines R~ v in the vector space A+ = {x) +xo+- - -+a) =
0}.
The spaces F(R"™,r) returned by the real Fulton-MacPherson compactification pro-
cess are manifolds with corners. The canonical embeddings F(R",r) < F(R",r)
also define weak-equivalences of topological spaces. We refer to the cited arti-
cles [11, 62], or to [149], for further details on the construction of these spaces
F(R™,r).
The configuration space F(R",r) inherits an action of the group Rs x R" con-
sisting of the transformations of the euclidean space R™ such that

O (T, xn) = A (21, .., mn) + (a1, ..y an),

\Cf)(


Benoit Fresse
Crayon

Benoit Fresse
Machine à écrire
co

Benoit Fresse
Crayon


4.3. OUTLOOK: VARIATIONS ON THE LITTLE DISCS OPERADS 129

where A € Rsg, (a1,...,a,) € R". The Fulton-MacPherson compactification pro-
cess can be performed equivariantly in order to get a compactification C(R™,r)
of the quotient space C(R",r) = F(R",7)/Rsox R". The spaces C(R™,r) have
the structure of manifolds with corners, like F(R™,r), and the composite map
F(R™,r) — C(R",r) — C(R",r) defines a weak-equivalence too (we refer to [149]
for a detailed proof of this assertion).

4.3.2. The Fulton-MacPherson operad. The spaces FM, (r) = C(R™,r) form
the underlying collection of the Fulton-MacPherson operad FM,,. The structure
of this operad is defined as follows. To start with, we immediately see that the
symmetric group ¥, acts on FM,,(r), for each r, so that our collection of spaces
forms a symmetric sequence. We also have FM,,(1) = pt, so that FM,, inherits a
canonical operadic unit too.

Let FM,(r) = C(R™,r) = F(R",r)/Rsox R™. We explain the definition of
operadic composites in the case of (equivariance classes of) configurations of points
a = (a,...,a.) € F(R*,r) and b = (b1,...,bs) € F(R",s) defining elements
in these inner subspaces FM,(—) of the Fulton-MacPherson operad FM,,(—) =
C(R",—). We can assume aj + --- +a, = 0 and b + --- + by = 0 by equivariance
with respect the action of translations. We define the operadic composite a oy b

in FM,(r +s—1)= C(R",r + s — 1) by considering the element

(akv"';ak) X (b1a~"7bs) € {(ak,“';ak)} X ((AJ— \0)/R>0)

in the blow-up of the subspace xy = xx41 = -+ = Tpys—1, and by taking x; =
A1y y Thel = Ak—1, Thps = Qft1,---,Trys—1 = Ay for the remaining components
of our point.

This process has a natural extension to the whole spaces FM,,(—) = C(R", —)
and returns well-defined operadic composition operations oy : FM,,(r) X FM,(s) —
FM,(r+s—1), forall ;s >0 and each k =1,...,7.

We have already mentioned, in §4.3.1, that the spaces FM, (r) are weakly-
equivalent to the configuration spaces F(R™,r). Thus, we have weak-equivalences
of spaces D, (r) = F(R™,r) = FM,(r) between the little n-discs spaces D, (r)
and the components of the Fulton-MacPherson operad. These maps do not form
an operad morphism, but one can lift them to get an operad weak-equivalence
W(D,,) = FM,,, where W(D,,) is the Boardman-Vogt construction of D,, (see [26]),
an operad consisting of formal composites of little n-discs configuration, which we
arrange on trees equipped with a metric structure. This operad W(D,,) is also
equipped with a natural weak-equivalence W(D,,) = D,, so that we have a chain
of weak-equivalences of operads

D,, <~ W(D,,) = FM,,

proving that the Fulton-MacPherson operad FM,, defines an instance of an F,-
operad. We refer to [149] for the explicit construction of the operad morphism
W(D,,) = FM,,.

We have not been explicit about arity 0 terms in the construction of our operad
FM,,. We tacitely assume that we deal with a non-unitary operad FM,,, so that
FM,,(0) = . But we also have an obvious extension of our operad construction
in arity zero, and this extended construction naturally yields a unitary extension
FM,,+ of the non-unitary Fulton-MacPherson operad FM,,.
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The Boardman-Vogt construction is a general construction used to define cofi-
brant resolutions of operads in the setting of model categories. We tackle this
subject in §II1.1.4. In the case of the Fulton-MacPherson operad, we actually have
an isomorphism of topological operads FM,, ~ W(FM,,), and deduce from this re-
lation that the Fulton-MacPherson operad forms a cofibrant model of E,-operad
(see [149]).

4.3.3. Trees and the underlying structure of the Fulton-MacPherson operad.
The relation FM,, ~ W(FM,,) mentioned in the previous paragraph implies that
the operad FM,, is free as an operad in sets. If we forget about the topology, then
we can actually identify the Fulton-MacPherson operad FM,, with the free operad
generated by the symmetric sequence F7Vln(r). This free operad structure reflects
the geometry of the spaces FM,,(r) in the blow-up construction of §4.3.1.

To be more explicit, one can observe that each space FM,,(r) has a decomposi-
tion FM,,(r) = ]_[Iewee(r) FM,,(T) of the same shape as the components of the free
operad, where we use the formalism of the appendix chapter §II.A. Simply say for
the moment that Tree(r) denotes the category of r-trees, and the space FM,,(T),
is formed by a cartesian product

veV(T)

representing an arrangement of factors FM,(r,) on the vertices v € V(T) of a
tree T.

The open space FM,,(r) = C(R",r) = F(R",r)/Rso x R", inside the compact-
ification FM,,(r) = C(R",r) is identified with the space FM,,(Y) associated to the

corolla:
i1 EICICI

-

0
The operadic composite of configurations a = (a1,...,a,) € F(R",r) and b =
(b1,...,bs) € F(R",s), of which we have made the definition explicit in §4.3.2, lies
in the subspace FM,,(T) associated to a tree with two vertices

The spaces FMH(I), which we associate to r-trees T such that §V(T) > 2,
define the facets of the manifold with corners FM,,(r) = C(R",r).

4.3.4. Some variations on the Fulton-MacPherson compactification. In [104],
Kontsevich considers a simpler definition of compactifications from the quotients
C(R",r) = F(R",r)/Rs0 x R" of the configuration spaces F(R",r). We refer to [66]
for a detailed study of the relationship between Kontsevich’s approach and the
blow-up construction of §4.3.1.

For each pair i # j, we consider the mapping 6;; : C(R",r) — S"~! which
sends the equivariance class of a configuration a = (a1, ..., a,) to the unit vector

bij(ar,.... ay) = Gy /|| @],
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and, for each triple ¢ # j # k, we consider the mapping d;;, : C(R",r) — [0, 0]
such that:

Sijk(ar, ... ar) = [l ||/ | @]

We then consider the map
L C(R™,r) = (8" 1)(2) x [0,00](5)

such that v(ai,...,a;) = ((0i(a1,...,ar))ij, (6iju(ar, ..., ar))ijr). We readily see
that this map is an embedding. We can identify, according to [66], the compactifi-
cation C(R™,r) of §4.3.1 with the closure of the image of the space C(R",r) in the
product space (S"_l)(g) X [O,oo](g).

We have a variant of this construction defined by considering the closure of the
image the space C(R",r) under the map

2 CR™ ) = (8P (2)

such that t(ar,...,a,) = (0;(a1,...,a,));. Let C(R™, 7)™~ be the space obtained
by this compactification construction. We still have an operad structure, which is
studied in details in [156], on the collection of the spaces FM,,(r)~ = C(R™,r)~. We
see however that the map ™ is not injective, and therefore, the space FM,,(r)™~ =
C(R™,r)~ differs from the previously considered compactification FM,,(r) = C(R™, 7).

Kontsevich is not precise about the operads used in his work. In [104], he calls
FM?, the Fulton-MacPherson operad, though this operad differs from the standard
Fulton-MacPherson operad FM,,.

This operad FM,, seems also better suited for the proof of the formality of the
operad of little n-discs (we go back to this subject in §7), which is the purpose of
the Kontsevich’s construction in [104]. The variant FM, is used in Sinha study
of knot spaces [155, 156]. The operad FM, has the advantage of giving rise to a
cosimplicial space which Sinha uses to define models for knot spaces.

4.3.5. The Deligne-Mumford compactification of the moduli spaces of curves.
We now consider the case n = 2 of the configuration spaces F(R",r) and of the
Fulton-MacPherson operad. In §4.3.1, we consider the action of group of real simi-
larities R X R™ on the configuration space F(R", ), but when we deal with config-
uration of points in the plane R? = C, we can also consider an action of the group
of complex similarities C* x C, consisting of the transformations of the complex
plane ¢ : z — az + b such that a € C*, b € C.

The quotient space occurring in this case F(C,r)/C* x C is identified with the
quotient space F(CP',r 4 1)/ PGLy(C) of the configuration space of 7 + 1 points
in the projective line CP!, which also represents the moduli space of isomorphism
classes of genus zero smooth curves with r 4+ 1 marked points Mog,41.

This space Mo, 1 has a particular compactification Mo, 1, the Deligne-Mumford-
Knudsen compactification, which represents the moduli space of genus zero stable
curves with 7 + 1 marked points, the curves C' such that:

(a) We have at most a finite number of singularities in C, which all consist
of double points, and r 4+ 1 marked points ag, ..., a, € C distinct for the
singular points. These points all together (the singular points and the
marked points) define the special points of our curve.

(b) Each irreducible component of the curve includes at least three special
points.
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(¢) The dual graph of the curve, which has the irreducible components as
vertices and the local branches passing through special points as half edges
(possibly glued on double points), is a tree.

For instance, for the stable curves of M4, we get the following forms of dual graphs:
ap ai ap ai ap as ap as

X e

as a2 as a2 as ay a2 ay

We refer to the work of Deligne and Mumford [46] and Knudsen [100] for a
definition of these space Mg, from a moduli space approach. We refer the work of
Keel [97] for a more combinatorial definition of the space Mg, 1 in terms of iterated
blow-up constructions (as in the Fulton-MacPherson compactification process).

The collection M(r) = Mg,,1 inherits an operad structure, with composition
products o : ﬁoﬂrl X MOSH — ﬁ0r+s defined at the point set level by the natural
gluing operation of curves on marked points. The space My, is also equipped
with a stratification, with strata parameterized by the dual graphs of curves, and
which reflects the composition structure of the operad M. We refer to [71] for
the detailed definition of the operad structure and of this correspondence with the
stratification of the spaces Mo,41.

The articles [97] gives a description of the cohomology ring of the space Mo, 1.
The Fulton-MacPherson compactification of the configuration space F(CP',r + 1)
in [62] includes a divisor which is isomorphic to the cartesian product of the space
Mo,41 with the affine line Al, and can also be used to give a description of this
cohomology ring H* (Mo, 1)-

The homology of the spaces Mo,;1 also forms a operad in graded modules
H.(M), like the homology of the little 2-discs spaces. The structure of this operad
is determined in [71], in terms of a presentation by generators and relations. In
short, the result asserts that this homology operad H,(M) is identified with an
operad HyCom, called the hypercommutative operad in [71], which has a symmetric
generating operation u, € HyCom(r) in each arity r > 2, and higher associativity
relations as generating relations. We also refer to the book [125] for a account of
this computation, and the relationship with structures associated to the quantum
cohomology of projective algebraic varieties.

4.3.6. The operad of framed little discs. We have a connection between the
little discs and the Deligne-Mumford-Knudsen operads, which can be made more
precise by considering a framed version of the little 2-discs operad of §§4.1.1-4.1.3.

In §4.1.1, we define a little n-disc as an affine embedding ¢ : D" — D™ of the
formc(ty,...,tn) = (a1,...,an)+r-(t1,...,t,), for a translation term (aq,...,a,) €
f), and a scaling factor r > 0. The framed little n-discs, occurring in the definition
of the framed little n-discs operad fD,,, are defined by embeddings ¢ : D" — D"
of the form c(t1,...,t,) = (a1,...,an) + 7 - q(t1,...,t,), where, with respect to
the little discs of §4.1.1, we consider an additional rotation transformation ¢ €
S0,,. The space D, (r) precisely consists of collections of embeddings of this form
¢ = (c1,...,¢) with the same intersection condition ¢ # j = ¢; N¢; = 0 as in
the definition of the ordinary little n-discs operad D,,. The symmetric, unit, and
composition structure of this operad fD,, are defined by an obvious extension of the
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‘ FIGURE 4.6. The representation of an element

in the framed little 2-disc operad.

construction of §4.1.3. The framed little discs operad fD,, has a natural unitary
extension fD,,; satisfying D, (0) = pt too.

In the 2-dimensional case, we add a mark to the picture of the little 2-discs in
order to represent the angle of the rotation occurring in the definition of the framed
little discs (the horizontal axis defining the zero angle). Figure 4.6 for instance gives
the picture of a configuration of framed little discs in the space fD(3).

We now focus on the case n = 2 of the construction. Let S be the operad
such that S(1) = SO, = S' and S(r) = @ for r # 1. We have an obvious operad
morphism S — fDy. The moduli space operad M of §4.3.5 is, according to a result
of Drumond-Cole [49], identified with the result of a homotopy pushout in the
category of topological operads:

S——1 .

y

fD2 > ﬁ

This operadic homotopy pushout is an instance of the homotopical algebra con-
struction which we study in §II.1.

The operad H,(S) has a single generating operation A, given by the fundamen-
tal class of the sphere in arity one H,(S(1)) = H,(S"), and we have Ao; A = 0. The
operad H,(fD3) is identified with an operadic semi-direct product of the Gersten-
haber operad Gersty and of the operad H,(S). We refer to [70] for a full description
of this homology operad H,(fDs), which is usually called the Batalin—VilkoxXky op-
erad in the literature. We also refer to [150] for a description of the homology
operad H,(fD,,) in the case n > 2.

4.4. Appendix: the symmetric monoidal category of graded modules

Let k be any fixed a ground ring. In §0.1, we define the category of graded mod-
ules g Mod as the category formed by k-modules K equipped with a splitting K =
@,.cz Kn. A morphism of graded modules is a morphism of k-modules f : K — L
such that f(K,) C Ly, for all n € Z. We say that an element 2 € K is homogeneous
of degree n € Z, and we write deg(x) = n, when we have z € K,,.

The main purpose of this appendix is to explain the definition of our symmetric
monoidal structure on graded modules. By the way, we also check the existence
of graded hom-objects Homgnoq(—, —) : g Mod® x gMod — gMod defining an
internal hom in this monoidal category g Mod.

4.4.1. The symmetric monoidal structure of graded modules. The tensor prod-
uct of K, L € g Mod in the category of graded modules is the tensor product of K
and L as k-modules, which we equip with the decomposition K&L = ,, ., (K®L),

N
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such that (K ® L), = D, ,—, Kp ® Lg. This construction obviously gives a bi-
functor ® : g Mod x g Mod — g Mod with the ground ring K regarded as a graded
module concentrated in degree 0 as unit object. We also have an obvious associa-
tivity isomorphism (K ® L) ® M ~ K ® (L ® M) inherited from k-modules.

We get an obvious symmetry isomorphism from the category of k-modules too,
but we shall modify this basic isomorphism in order to implement the signs of dg-
algebra in our categorical operations on graded modules. We precisely define our
symmetry isomorphism ¢: K ® L — L ® K by the formula ¢(z ® y) = (—1)P%y ® z,
for any pair of homogeneous elements x € K, and y € L,, where we consider
the sign (—1)P? determined by the rules of §0.2. We generally simply add the
symbol + to mark the occurrence of such a sign in a formula (see §0.2) We take
this symmetry isomorphism c¢: K ® L — L ® K to complete our definition of the
symmetric monoidal structure on graded modules.

We immediately see that the tensor product of graded modules satisfies the
colimit requirement §0.9(a). We mention in §0.14 that this extra condition is related
to the existence of an internal hom in the category of graded modules. We make
this internal hom explicit in the next paragraph.

4.4.2. The internal hom of graded modules. We basically define the internal
hom of graded modules L,M € gMod as the graded module Homg yoq(L, M)
spanned in degree n by the morphisms of k-modules f : L — M such that f(L,) C
Lyyy. Thus, we set Homg (L, M), = Hp Homg niod (Lp, Mptr), for each n € Z.
The adjunction relation Mor ; nioq (K Q@ L, M) =~ Mor 4 v oq (K, Homg v oq (L, M)) easily
follows from the adjunction relation of k-modules. Note that a morphism of graded
modules is identified with a homomorphism of degree 0, where according to the
conventions of §0.13, we use the term of homomorphism to refer to an element of
the graded hom Homg o4 (L, M).

In §0.14, we mention that, for general reasons, the internal hom-objects of
a closed symmetric monoidal category inherit a composition product, an internal
tensor product operation, and evaluation morphisms. In the context of graded
modules, the evaluation morphism is identified with the morphism of graded mod-
ules € : Homgnoa(L, M) ® L — M mapping any tensor f ® x, such that f €
Homg nod(L, M), x € L, to the element f(x) € M defined by applying the k-
module map f : L — M to z € L. Note that Homg yoq(L, M) ® L refers to the
tensor product of graded modules in this construction. The composition prod-
uct o : Homg (L, M) ® Homg nioq (K, L) — Homgnioq (K, M) is induced by the
obvious composition operation on k-module morphisms. The tensor product op-
eration ® : Homg nioq (K, L) ® Homg nioq (M, N) — Homg niod (K @ M, L @ N) maps
(homogeneous) homomorphisms f : K — L and g : M — N to the homomor-
phism f®¢g: K® L - M ® N such that (f ® g)(x @ y) = £f(x) ® g(y), for any
pair of (homogeneous) elements x € K and y € L, where the sign + is produced by
the commutation of g and .



CHAPTER 5

Braids and the Recognition of Es;-operads

Recall that an operad P is E, when we have weak-equivalences of topological
operads P <~ - =5 D,, connecting P to the operad of little n-discs D,. In this
situation, we also say that P is weakly-equivalent to D,,. In many problems the
issue is to prove that a given operad P is E,,. The usual method is to apply
an appropriate recognition criterion building the required weak-equivalences from
internal structures of P.

In the previous chapter, we observed that a topological operad P is Ej if only
if each space P(r) has contractible components which form an operad in sets 7y P
isomorphic to the operad of associative monoids As. This criterion actually im-
plies that P is weakly-equivalent to the set operad As, viewed as a discrete operad
in topological spaces. The weak-equivalence with the little 1-discs operad follows
from the observation that the operad D; is itself weakly-equivalent to As. Sim-
ilarly, we observed that a topological operad P is E., if only if each space P(r)
is contractible. This criterion actually implies that P is weakly-equivalent to the
discrete set operad of commutative monoids Com. The weak-equivalence with D,
follows, again, from the observation that D, consists of contractible spaces and is
itself weakly-equivalent to Com.

The main objective of this chapter is to explain a similar characterization, due
to Z. Fiedorowicz [56], for the class of Ej-operads.

We start with the observation that each space D2 (r) is an Eilenberg-MacLane
space K (P,, 1), where P, = w1 Dy(r) denotes the pure braid group on r strands. We
then consider the universal covering D (r) of the little 2-discs space Dy (r), which is
contractible and comes equipped with a P.-action so that Dy(r)/P. = Dy(r). This
action of the pure braid group P, on the covering space bQ(T) actually extends
to an action of the entire braid group B, which lifts the action of the symmetric
group X, on the little 2-discs space Dy(r). The crux of Fiedorowicz’s idea relies
on the observation that the collection of spaces Dy = {Ds(r)}, inherits the same
structure as an operad, except that have to replace the symmetric group actions
of the standard definition §1.1.1 by the just considered braid group actions. We
adopt the name of braided operad for this variant of the notion of an operad.
We regard the quotient process Do(r)/P, = Dy(r) giving the connection between
the little 2-discs space Do(r) and the associated universal covering space Dy(r)
as an instance of a general symmetrization process, which enables us to retrieve
a symmetric operad from any braided operad structure. The recognition theorem
of Z. Fiedorowicz precisely asserts that any operad P obtained by symmetrization
P(r) = P(r)/P, from a contractible braided operad P is Es.

We notably use this recognition method to check that the classifying spaces of
a certain operad in groupoids, the operad of colored braids, forms an instance of
an Fs-operad.

135
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In a preliminary section §5.0, we survey basic concepts of braid theory and
we recall the definition of the braid groups B,. In §5.1, we explain the definition
of a braided operad and we state Fiedorowicz’s recognition criterion. In §5.2, we
give the definition of the operad of colored braids, and we explain our construction
of a model of Fs-operad from the classifying spaces of this operad in groupoids.
In §5.3, we explain that the operad of colored braids is also equivalent to an op-
erad in groupoids, naturally associated to the little 2-discs operad, formed by the
fundamental groupoids of the little 2-discs spaces. In a concluding section §5.4,
we give a brief introduction to more general recognition theorems, aiming to give
characterizations of F,-operads for all n > 1.

The ideas of §§5.1-5.2 are mostly borrowed from [56]. The preprint [181] pro-
vides a generalization of this approach for the recognition of operads built from
Eilenberg-MacLane spaces. In §5.3, we outline another approach of Fiedorow-
icz’s criterion, involving the adjunction between classifying spaces and fundamental
groupoids.

5.0. Braid groups

In the previous chapter, we introduced the configuration spaces F (D", r) as a
suitable model of the little n-discs spaces D, (r), which we use to perform coho-
mology and homology computations. By the way, we observed that, in the case
n = 1, the configuration spaces F (IoDl,r) have contractible connected components,
indexed by the permutations of the sequence (1,...,r), just like the little 1-discs
spaces D1 (r). Let us begin this chapter with the following preliminary observation
about the homotopy of the spaces F(D",r) for n > 1:

ProroSITION 5.0.1. The spaces F(I5", r) are connected for allm > 1. Ifn > 2,
then we have 71 F(D™,7) = 0 too. If n = 2, then we have in contrast m, F(D?,r) =
0, for x # 1.

PROOF. In the previous chapter, we recalled that the maps f : F(If)", r) —
F ([o)", r—1) which forget about the last component of a configuration is a fibration.
The idea is to prove the proposition by induction on r, by using the homotopy exact
sequence

s (), ) = o (F(D™,7)

) L m(FO"r = 1),0) = -
S m(FHD),a) — m (F(D™,7),a) L

' &
aQ) = 71-1(,’—_([0)”’ r—= 1)’b) - Wo(fil(b)ag)a

—_——
associated to these fibrations, where a = (aq,...,a,) is a fixed base point in the
configuration space F(D™,r), and we set b = (a1,...,a,—1) = f(a). The fiber of
the map f at this base point b is identified with the punctured space

f_1<b) = {(G,l, N ,ar_l,b) S Dn|b 7é Ay ... ,ar_l} =D" \ {G,l, N ,ar_l},
which is connected as soon as n > 1. Hence, we have the identity mo(f~1(a), a,) = *
as indicated in our formula.

The connectedness of this space f~1(b) implies, by induction on r, that the
spaces F (f)",r) are connected as well, for all n > 1. In the case n > 2, we have
besides 71 (f~1(b),a) = m (D™ \ {a1,...,a,_1},a,) = *, and by an immediate in-
duction again, we deduce from the degree 1 terms of the homotopy exact sequence
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that the spaces F (5",7") are simply connected too. In the case n = 2, we have
7. (f71(b),a) = m(D?\ {a1,...,a,_1},a,) = x for x > 1, and we use the higher
terms of the homotopy exact sequence to conclude that . (F(D?,7),a) vanishes for
all x > 1. (]

The result of the proposition obviously holds for the little disc spaces D, (r)
since we have a homotopy equivalence w : D, (r) = F(D",r) (see Proposition 4.2.2)
which induces an isomorphism on homotopy groups. Briefly recall that this homo-
topy equivalence, which we call the disc center mapping, sends an r-tuple of little
n-discs ¢ = (c¢1, . . ., ¢), defining an element of D, (r), to the configuration of points
defined by the centers ¢;(0, . ..,0) € D™ of the discs ¢; : D™ — D™,

The previous proposition implies that the configuration spaces F (52,r), and
hence the little 2-discs spaces D2 (r), are Eilenberg-MacLane spaces K (P, 1), where
we set P, = wl(F(f)Q,r), ). Recall that this group P, is the pure braid group on
r strands. The Artin braid group B,, which we also consider in our study of Fo-
operads, sits in a short exact sequence 1 — P, — B, — 3, — 1. The purpose of
this preliminary section is to recall the classical interpretation of these groups, in
terms of isotopy classes of braids on r strands, and the geometric representation
arising from this interpretation. The identity between little 2-discs spaces Do(7)
and the Eilenberg-MacLane spaces K(FP,, 1) is used in the next sections.

To begin with, we explain the definition of the Artin braid group B, as the
fundamental group of a space.

5.0.2. Braid groups. Recall that the space F(|52, r) is equipped with an action
of the symmetric group Y, given by the standard formula

w*(a1, .. .,a,,) = (aw—l(l), . .,awq(r)),

for all (aq,...,a,) € F(f)2,r), and for any permutation w € X, (see Proposi-
tion 4.2.3). The braid group on r strands B,. is precisely defined as the fundamental
group of the quotient of the configuration space F(D?,r) under this action:

B, = w1 (F(D?,7)/%,, *).

The quotient map ¢ : F(D2,7) — F(D2,7)/%, induces a morphism ¢, : P, — B,.
We easily check that:

LEMMA 5.0.3. The symmetric group X, acts freely and properly on F([032,r) S0
that the quotient map q : F(D?,r) — F(D2,7)/%, is a covering map. O

Then we apply standard results of covering theory to obtain:

PRrROPOSITION 5.0.4. The morphism q. : P, — B, fits in an exact sequence of
groups 1 — P, &5 B, 255 % — 1, where p, : B, — %, is deduced from the action
of By = 1 (F(D2,7)/S,, %) on the fiber of the covering q : F(D%,r) — F(D2,7)/%,
at any base point x € F(D2,r)/%,. O

5.0.5. Braids and braid diagrams. The braids, giving the name of braid groups,
come in a representation of the paths in the configuration space F(M,r) associated
to any manifold M. We review this representation of a braid before recalling
the classical presentation of the braid groups by generators and relations. For
our purpose, we focus on the case M = [0)2, and our braids are defined in the
cylinder D2 x [0,1]. In our survey, we refer to works dealing with braids in the
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euclidean plane M = R?, rather than in the open disc M = D2. We just use
that the homeomorphism between the euclidean plane and the open disc gives an
equivalence between the notions of braids associated to these spaces in order to get
the correspondence between our presentation and the set-up of these references.

We precisely define a braid with 7 strands in D? as a collection of r disjoint
arcs a; : [0,1] = D? x [0,1], i =1,...,r, of the form

ai(t) = (xi(t)7yi(t)at)v te [07 1}7

and whose origin «;(0) = (2;(0),y;(0),0) and end-point a;(1) = (z;(1),y;(1),1) lie
in a set of fixed contact points {(29,0,¢°)|k = 1,...,7} on the axis y = 0 of the

boundary discs of our cylinder D2 x {t°}, 0 = 0,1 (see [9]). We can take the set of
equidistant points

(29,0,0), (29,0,1), withal =—-1+2k-1)/(r+1), k=1,...,7,

as contact points for the moment.
The requirement that the arcs «; are disjoint amounts to the relation

(@i(t), yi(t)) # (;(t),y;(t))
for all i # j and every t € [0,1]. In the case tY = 0,1, this assumption implies
that the r-tuple (ay(°),...,a,.(t%) = ((z1(t9),0,%%),..., (z,(t),0,t%)) forms a
permutation of ((z9,0,t%),...,(22,0,t°)). The mapping s : k — s(k) such that

z;(0) = 2%, x;(1) = 372(1@)» fori=1,...,r,

defines a permutation s € X, naturally associated to our braid «a, and usually
referred to as the underlying permutation of the braid a.

The set of pure braids consists of the braids which have the identity as under-
lying permutation.

The arcs «; define the strands of the braid. For the moment, we take the
convention that the collection of strands «;, i = 1,...,r, defining a braid « is
equipped with the indexing such that a;(0) = (29,0,0), for i = 1,...,7. We
then have (a1(1),...,a1(1)) = ((23,),0,1),...,(2,,0,1)), where s € X, is the
permutation associated to our braid. We adopt another convention in §5.2 where
we consider braids equipped with additional structures for which this ordering is
not natural.

We use a projection onto the plane (z,t) to get a convenient representation of
our braids. We give an example of this representation in Figure 5.1, for a braid on

4 strands with
(1 2 3 4
=\4 2 1 3

as underlying permutation. The projection picture works for braids such that the
intersection between the projected arcs (z;(t),t) reduce to isolated points, and so
that each intersection (z;(t),t) = (x;(t),t) involves no more than two arcs (x;(t), t),
(x;(¢),t). In this context, the usual convention is to insert a gap at each intersection
point (z;(t),t) = (x;(t),t), as in the example of Figure 5.1, in order to mark the
strand going under the other with respect to the y-coordinate. Such a figure is
called a braid diagram.

In the next paragraph, we recall the definition of the isotopy relation between
braids. The notion of isotopy can be formalized in terms of braid diagrams, and
one can prove that braid diagrams are enough to give a faithful picture of braids
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FIGURE 5.1. An instance of braid diagram. In the next pictures,
we generally do not specify the abscissa #¥ of the contact points.
We just mark the index of some contact points when necessary.

up to isotopy. This observation is originally due to E. Artin, and we refer to
his article [9], or to the subsequent textbook [96] by C. Kassel and V. Turaev,
for more explanations about the relationship between braids and braid diagrams.
In what follows, we just use braid diagrams informally, in order to illustrate our
constructions.

5.0.6. Braid isotopies. By definition, an isotopy from a braid « to another one
[ is a continuous family of braids hs such that hg = « and h; = 8. T'wo braids are
isotopic if we have an isotopy between them, and in this case we write a ~ 8. The
isotopy relation is clearly an equivalence relation on the set of braids. Figure 5.2
gives simple instances of braid isotopies and fundamental examples of non-isotopic
braids.

Let us regard a braid as a single map a(t) = (a1(t),...,a,(t)) rather than
as a collection. The assumption that the underlying braids of an isotopy hs form
a continuous family amounts to the requirement that the two parameter map h :
(s,t) — hg(t) is continuous on [0,1] x [0,1]. By continuity, the requirement that
hs(1) belongs to the discrete space {((a:?u(l),(), 1ynny (a:?v(k),O, 1))|w € ¥,} implies
that the map s — hy(1), given by the endpoints of the isotopy, is constant. Hence,
we see that isotopic braids have the same underlying permutation.

By a standard abuse of language, we generally use the word braid to refer to
an isotopy class of braids unless the distinction is made necessary by the context.

5.0.7. Relationship with the fundamental groups. We immediately see that a
pure braid on r-strands a;(t) = (x;(t), y:(t),t) is equivalent to a based loop 7(t) =
(@1 (t), y1 (), - .., (xr(t), yr(t))) in the configuration space F(D?,r), where we take
the configuration of our contact points on the line a® = ((29,0),...,(22,0)) as
base point. Similarly, an isotopy of pure braids is equivalent to a homotopy of
based loops in F (52,7’). Thus, the pure braid group P,, which we define as the
fundamental group of the space F (IODQ, r), is identified with the set of isotopy classes
of pure braids.
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FIGURE 5.2. Basic examples of isotopic and non-isotopic braids

Let ° = ¢(a®) be the image of the element a® = ((29,0),...,(2%,0)) in the
quotient space F(I°32,r)/27,. The fiber of this point »° under the covering map
q: F(D?,r) = F(D?,7)/%, is ¢ 1 (0") = {((gcow(l),O)7...,(:1021(1),0))7 w € X,}. The
set of all braids on r strands is identified with the set of paths connecting a° to
another point wa’ = ((:c?u(l),O), cee (:c%(l),())) in this fiber. Braid isotopies are
also equivalent to path homotopies. By standard results of covering theory, any
loop v based at b° in the quotient space F (52,7“) /%, lifts to a path of this form
7, with 7(0) = a® and 5(1) = wa® for some w € ¥,. Moreover, such a lifting is
unique once we fix the starting point 4(0) = a° and any homotopy of based loops
lifts to a path homotopy. Hence, the full braid group B,, which we define as the
fundamental group of the quotient space F(D2,7)/%,, is identified with the set of
isotopy classes of all braids.

In both cases P, and B,, the group multiplication can readily be identified
with a natural concatenation operation on braids, of which the Figure 5.3 gives
an example. The unit element with respect to this group multiplication is given
by the identity braid, represented in Figure 5.4. (In what follows, we also use the
notation id to refer to this braid.) Note that we perform compositions downwards,
in the increasing direction of the ¢ coordinates, in contrast with conventions adopted
by other authors. Our choice is more natural when we regard braids as morphisms
oriented from a source to a target object, and we heavily use this interpretation
next.

In Proposition 5.0.3, we refer to a general result of covering theory in order
to define the morphism p, : B, — X,. By going back to the proof of this result,
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FIGURE 5.3. The concatenation of braids

FIGURE 5.4. The identity braid

we immediately see that the morphism p, : B, — 3, is identified with the map
sending the isotopy class of a braid « to its underlying permutation s. The natural
embedding of the subset of pure braids into the set of all braids gives the morphism
q« : P. — B,. Thus we have a full interpretation of the exact sequence of groups
1— P. — B, — X, — 1 in terms of isotopy classes of braids.

5.0.8. Generating elements. For i = 1,...,r — 1, we consider the element 7; €
B, represented by the diagram of Figure 5.5

The mapping ¢, : B, — X, assigns the elementary transposition t; = (i i+1) €
3, to this braid 7; € B,. In §0.10, we recall that the symmetric group has a
simple presentation by generators and relations involving these transpositions t;,
i1=1,...,7—1, as generating elements. For the braid group, we have the following
classical result:

THEOREM 5.0.9 (see [8]). The braid group B, is generated by the elements 7;,
i=1,...,7r — 1, together with the commutation relations

7,75 =1;7i, ford,j=1,...,r—1 such that |i — j| > 2,
and the braid relations
TiTit1Ti = Tig1TiTig1, Jori=1,...,r =2,

as generating relations (see also the representation of these relations in Figure 5.6).
O

In other words, the braid group B, is given by the same presentation as the
symmetric group X, except that we drop the involution relation ¢? = 1 associated
to transpositions. The idea of this result goes back to the work of E. Artin [8] cited
in reference. We refer to [24], [58], and [96] for various proofs of the theorem.
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FI1GURE 5.5. The generating braids
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FIGURE 5.6. The commutation and braid relations in braid groups.

The inverse of a generator 7; in the braid group can actually be obtained by
switching the disposition of the strands in the representation of Figure 5.5 (the
i + 1th strand comes in the foreground and ith strand goes in the background).
The case r = 2, where the braid is reduced to these overlapping strands, has
already been represented in Figure 5.2, to give an example of non-isotopic braids.

5.0.10. Change of contact points. In the definition of §5.0.5, we assume that
the origin points of a braid belong to the subset {(z%,0,0)|k = 1,...,7}, where
z) = —14(2k—1)/(r+1), and the end points belong to the subset {(:v,€7 0,1)|k =
1,...,r}. Equivalently, our braids correspond to paths in the configuration space
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F(D2,7) starting at the element ((z9,0),...,(z%,0)) and ending at a permutation
((:cg)(l), 0),..., (:cg}(r), 0)) of this base point ((x9,0),..., (z%,0)).

In principle, the fundamental groups arising from different choices of base points
in a connected space are isomorphic. In our case, we obtain the same result if
we replace our collection of contact points {(z2,0)|k = 1,...,7} x {0,1}, in the
definition of the braid group by an arbitrary one {(ax, bx)|k = 1,...,7} x{0,1}. But
the definition of an isomorphism comparing the groups associated to these choices
involves the choice of a path v(t) = (11(¢),...,7(t)) going from one configuration
7(0) = ((29,0),...,(22,0)) to the other one (1) = ((a1,b1),--.,(ar, b)) in the
space F ([D)Q, r). In the braid picture, we consider a concatenation of the strands of
our braids with the arcs of the path . This isomorphism clearly depends on the
homotopy class of the path v, and hence, is not canonical in general.

In the sequel, we implicitly use changes of base points, but we also need a strict
control of the isomorphism involved in the operation. For this aim, we restrict

ourselves to base configurations of the form ((a1,0),..., (ar,0)), where all points
lie on the line y = 0, and for which we assume a; < -+ < a,. Equivalently, we
only consider base configurations arising from a configuration (ai,...,a,) in the

equatorial 1-disc D! 152, and belonging to the connected component associated
to the permutation (1, ..., r) in the configuration space F(D', ). Since F(D',r) has
contractible connected components, all paths y(t) = (y1(t),...,7(t)) going from
one such configuration to another one within this space are homotopic and hence,
induce the same isomorphism at the fundamental group level. Thus, all choices of
contact points on the the line y = 0 yields the same braid group up to a canonical
and well determined isomorphism.

5.0.11. Degenerate cases. We should note that the definition of the braid group
B, makes sense for r = 0. We then deal with a degenerate situation of braid with
an empty set of strands. We therefore have By = * for formal reasons.

The braid group B; is also trivial (like the symmetric group ¥;), with the
isotopy class of a one-strand vertical braid as unique element.

5.1. Braided operads and Es-operads

Let Dy(r) be the universal coverings of the spaces of little 2-discs Do(r). The
main purpose of this section is to prove, after [56], that the collection of spaces Do (r)
inherits a braided variant of the structure of an operad. The main application of
this construction, as we explained in the chapter introduction, is a simple character-
ization of Es-operads from contractible braided operads. We conclude our account
with the proof of this recognition theorem.

In a preliminary step, we give the general definition of the notion of braided
operad. We follow the same plan as in the definition of a symmetric operad (§1.1.1).
We essentially replace the symmetric group actions considered in this definition by
braid group actions.

5.1.1. Braided operads. Explicitly, a braided operad P in a base category M
consists of a sequence of objects P(r) € M, r € N, where P(r) is now equipped
with an action of the braid group B, together with

(a) a unit morphism 7 : 1 — P(1)
(b) and composition products  : P(r)®@P(n1)®---@P(n,) = P(ni+---+n,),
defined for every r > 0, and all nqy,...,n, >0,
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FiGURE 5.7. The direct sum id ®--- & 7, & - - - @ id in the braid group.

FIGURE 5.8. The block braid (7;)«(n1,...,n;:)

so that natural equivariance, unit and associativity relations, modeled on the same
commutative diagram as in the symmetric operad case (Figure 1.1-1.3), hold. We
just have to consider braid group elements « € B, (respectively, $1 € By,,...,0r €
B,,,) instead of permutations s € X, (respectively, t; € ¥p,,...,t, € £, ) in
equivariance relations and an extension to the braid groups of the construction
of block permutations and of the direct sum of permutations. We address these
constructions in the following proposition:

ProrosITION 5.1.2. Letr € N. Let nq,...,n, € N.

(a) The direct sum of permutations, regarded as a mapping X, X -+ X Ly —
Ypi4tn,., has a unique lifting to braid groups

Bnl Koo X Bnr - Bn1+"‘+n7‘7

giwen by the picture of Figure 5.7 for direct sums id®--- S 1, S -+ D id
involving a single generating element 7, € By, and so that we have the
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following multiplication relation
(- B1@©Bar-Br)=(® - Da,) (b1 @B,

for all (a1,...,ar), (B1,...,Br) € By X -+ X By, .
(b) The block permutation construction, regarded as a mapping X — Y, 4 tn,.s
has a unique lifting to braid groups

B, = Byt tn,s

given by the picture of Figure 5.8 for the generating elements 7; € B,., and
so that we have the following multiplication relation

(- B)u(n,...,np) = aw(na, ..., n.) 'ﬁ*(ns(l)w-wnS(r))v

for all a, B € B,., and where s denotes the underlying permutation of the
braid o.
(¢) In addition, we have the commutation relation

61@"'@57"04*(”17“’7”7"):a*(nly-‘-vnr)'65(1)@"'@ﬂs(7“)

for all « € B, every (B1,...,08y) € Bp, X -+ X By, and where s denotes
the underlying permutation of the braid o again.

Proor. The multiplication relations imply that these operations on braids are
uniquely determined by fixing the image of generating elements. In each case, we
simply have to check that our mapping preserves generating relations in order to
prove the coherence of our definition.

In (a), we have to deal with the internal generating relations of braid groups,
within each factor B,,,, and with the commutation relation

(id®- &1, - @id)-(dd--- DT D ---Did)
=(do - dn@ - ®id) (dD-- T D Did)

when we take generating elements in disjoint factors B,, and B, i # j, of the
cartesian product By, X - - X By,,.. Our mapping visibly preserves all these identities.

The case of construction (b) is addressed by a similar straightforward inspec-
tion.

The multiplication relations also imply that we are reduced to check the identity
of assertion (c) in the case where one element among « and /31, . .., 5, is a generating
braid 7%, and all the others are identities. The validity of the relation in this
generating case is still immediate, and this verification completes the proof of our
proposition. [l

The braids of Figure 5.7 and Figure 5.8 can also be defined purely algebraically,
in terms of the generating elements of the braid group By, +...4n,. Let k; = ng +
coo4+m;_1,1=1,...,7r. In the case of Figure 5.7, we have:

W@ BT D B id = T, +k,
for all 7, € B,,,. In the case of Figure 5.8, we obtain:
(Tk)*(’nl, e anr) =
(Thstns * Thitni—1 "+ Thit1) " (Thitnit1* Thitng oo Thit2) * - -

s (Tki+ni+ni+1 “Thitnitnigi—1" - Tki+ni+1)'
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The definition of the permutation operad in Proposition 1.1.9 has the following
braided analogue:

PROPOSITION 5.1.3. The collection of braid groups B,,, n € N, forms a braided
operad in sets so that:

(a) the action of the braid group on each B, is given by left translations;

(b) the element of By = {id} gives the operadic unit,

(¢) and the composition product p : B, X (Bp, X+ X By, ) = By, 4...4n, maps
a collection o € By, (P1,...,8r) € Bp, X+ X By, to the product element

O‘(ﬂlw-'vﬁr):51@"'@5r'a*(n1,...,nr)

i B,y googn, -

PRrROOF. This statement easily follows from the relations of Proposition 5.1.2.
O

By convention, we assume that the operad defined in this proposition includes
the braid group By = pt as arity 0 component (as in the case of the permutation
operad).

The result of §3.1, the equivalence between the plain definition of an operad and
the definition in terms of partial composition operations has an obvious extension to
braided operads. In the sequel, we use this definition, in terms of partial composites,
rather than the plain definition of §5.1.3.

Let a« € B,,, 8 € By,. To illustrate the definition, we give an instance of
operadic composition of braids aoy 8 = a(id, ..., B, ..., id) € Byin—1 in Figure 5.9.
Intuitively, the operadic composite a of 8 is obtained by inserting the braid 8 on
the kth strand of the braid a. To ease the understanding of our picture, we have
marked the array in which the braid j is inserted.

In subsequent constructions, we will use that the strands defining the composite
a ok B in this process are canonically in bijection with the strands of the braid «,
minus the kth one ay, plus the strands of the braid 3.

5.1.4. Unitary braided operads and restriction operations. The notion of a non-
unitary and of a unitary operad have obvious analogues in the braided setting,
and similarly as regards the notion of unitary extension of non-unitary operads.
Furthermore, any unitary braided operad P, inherits restriction morphisms u* :
Py (n) — P4 (m) associated to all increasing injections v : {1 < --- <m} — {1 <
-+- < n}, and defined like the restriction morphisms of symmetric operads in §3.2.

The collection of braid groups B,., r € N, forms an instance of a unitary braided
operad since we have By = %. The image of a braid a € B, under a restriction
operation u* : B,, — B,, is obtained by removing the strands ay whose index k does
not lie in the image of the map u : {1 < --- < m} — {1 < --- < n}. Figure 5.10
gives an instance of application of this restriction process for the injection u : {1 <
2} — {1 <2 < 3 <4} such that u(1) = 2 and u(2) = 4.

The components of a symmetric operad naturally inherit an action of braid
groups (by restriction through the canonical morphism p, : B, — 3,.) so that any
symmetric operad naturally forms a braided operad. The next proposition gives a
functor in the converse direction:
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FIGURE 5.9. An operadic composition of braids
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FIGURE 5.10. An instance of restriction operation in the braid operad

1=

PROPOSITION 5.1.5.

(a) Let P be any braided operad. Let SymP(r) = P(r)/P,. The collection
of these objects Sym P(r) inherits a symmetric structure and an operadic
composition structure from the braided operad P. Hence the collection
of quotient objects Sym P(r) = P(r)/P, forms a symmetric operad Sym P
naturally associated to P.

(b) The mapping Sym : P — Sym P provides a left adjoint of the obvious re-
striction functor from symmetric operads to braided operads (the functor
defined by the componentwise restriction of group actions). The collec-
tion of quotient morphisms P(r) — P(r)/P,. forms a morphism of braided
operads P — Sym P which represents the augmentation of this adjunction.

(¢) In the case of the braid operad B(r) = B,, we have Sym B(r) = B,./P,. =
Y, and the symmetric operad Sym B is identified with the permutation
operad, as defined in Proposition 1.1.9.

(d) The mapping Sym : P — Sym P preserves unitary extensions. To be explicit,
for any unitary braided operad P, we have an obvious identity Sym(Py) =
Sym(P) 4+ in the category of symmetric operads.

PROOF. Since ¥, = B,/P,, we immediately obtain that the action of B,
on P(r) induces an action of the symmetric group ¥,. on the quotient object P(r)/P,.
The operadic unit of P obviously defines a unit morphism 1 % Sym P(1) at
the level of the collection Sym P since Sym P(1) = P(1)/P; = P(1). Recall that the
direct sums 1 @ - -- @ 5, as well as the block braid construction a,(ni,...,n,) of
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Proposition 5.1.2 lift the corresponding constructions on permutations. If 31, ..., 3,
are pure braids, then so is the direct sum 31 @ - - - @ 3, because we have the identity
idp, B D idy, = idy,4...4n, at the level of permutations, and similarly in the
case of the block braid a,(ni,...,n,). Thus, the permutations 51 @ --- @ B, and
ax(nq,...,n,) occurring in the equivariance relations of braided operads are pure
whenever « and 1, ..., 3, are pure braids. From this observation, we immediately
deduce that the composition products of the operad P induce composition prod-
ucts on the collection of quotient objects Sym P(r) = P(r)/P. so that we have a
commutative diagram

P(r)® P(n1) ® ---® P(n,) P(ni—+ - +n,) ’

| !

P(r)/Pr @ P(n1)/Pn, ® -+ @ P(ny)/Pa, Ee P(ny+ - +n:)/Poyggn,
for every r > 0 and all nq, ..., n, > 0. Furthermore, the equivariance, unit and asso-
ciativity relations of Figure 1.1-1.3 remain obviously satisfied in the quotient Sym P.
This verification completes the construction of the symmetric operad Sym P associ-
ated to P. The assertion about the adjunction relation follows from a straightfor-
ward inspection of our construction.

The identity between the symmetrization of the braided operad and the per-
mutation operad follows from the observation that the composition operation on
braids a(B1,...,8;) = 1D+ ® Br - ax(nq, ..., n,) lifts a corresponding operation
on permutations.

The last assertion of the proposition is immediate. O

Our main objective is to prove that the topological operad of little 2-discs is
the symmetrization of a contractible braided operad in topological spaces. For this
purpose, we consider the universal coverings D () of the little 2-discs spaces Do (7).
The result reads:

THEOREM 5.1.6 (Z. Fiedorowicz [56]). The universal coverings Dy(r) of the
little 2-disc spaces Do(r) form a braided operad in topological spaces D, with the
operad of little 2-discs Do as associated symmetric operad.

The construction of this operad structure works for the unitary extension of the
operad of little 2-discs Doy as well, and gives in this case a unitary extension Do
of the non-unitary operad Ds.

We address the proof of this theorem in a series of constructions and lemmas.
We focus on the definition of the non-unitary operad structure on the collection of
covering spaces Dg(r), r > 0. The extension of our constructions to the unitary
setting is straightforward.

Recall that the definition of a universal covering depends on the choice of a base
point in the base space. To be precise, the universal coverings associated to different
base points are isomorphic, but the isomorphisms connecting them is not canonical,
and we need a rigid construction in order to check that the operad relations hold
at the level of universal covers. We use a specific choice of base points in the little
2-disc spaces in order to work out this issue. We devote the next paragraph to this
point.
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5.1.7. The choice of base points. Recall that the operad of little 1-discs embeds
into the little 2-discs operad by a topological inclusion Dy < Ds. In Proposi-
tion 4.1.6, we prove that each space D;(r) has contractible connected components
D1 (r), indexed by permutations w € X,.. Recall that 7y Dy is also isomorphic to
the permutation operad as an operad. Equivalently, the partial composition prod-
uct og : D1(m) x D1(n) — Dy(m-+mn—1) maps each cartesian product of connected
components Di(m)s x Dy(n); into the connected component Dy(m + n — 1)s0,1,
associated to the composition product s oy t of the permutations s € ¥,,,, t € ¥,
within the permutation operad.

We consider the contractible space Dq(r);q associated to the identity permu-
tation id € 3., and the corresponding subspace in Do (r), which, according to def-
initions (check §4.1.5), consist of little disc configurations of the form represented
in Figure 5.11.  We fix such a disc configuration c?, coming from D;(r);q, as base
point for the little 2-disc space D (r), and from now on, we use the notation Dy (r)
to refer to the universal covering of Do(r) formed at that base point.

Any disc configuration ¢ coming from the subspace D1(r);q < Da2(r) can be
connected to our base point c® by a path 4" in that subspace D1(r)iq < Da(r). All
paths of this form belong to the same homotopy class since D1 (r);q4 is contractible.
Such a path gives a canonical isomorphism between the universal covering of Do ()
determined at the base point ¢ and the universal covering D (r) determined at our
chosen base point c’. We explain this process in the next paragraph where we give
an explicit construction of our covering spaces.

5.1.8. The construction of the universal coverings. The covering spaces D (r)
can actually be built as sets of homotopy classes of paths « : [0,1] — Da(r) with
our base point ¢” as origin:

Da(r) = {v:[0,1] = Da(r)y(0) =}/ ~.

We use in this identity a classical construction of the universal covering of a space.
We briefly recall the definition of the topology on this space. We refer to standard
textbooks (like [132, §V.10]) for details.

The homotopies considered in our definition of the space D(r) consists of
continuous families of paths 74, s € [0,1], which have our base point as origin
75(0) = ¢, and which are constant at the end-point vs(1) = c'. We use the
notation [y] for the class of a path v with respect to this homotopy relation.

We consider the map ¢ : Dy(r) — Dy(r) sending (the homotopy class of) a
path v : [0,1] = Da(r) to the end-point v(1) € Dy(r), and we equip the set Do(r)
with an appropriate topology so that this map ¢ : Da(r) — Da(r) is a covering. We
determine this topology by the following process:

— each point ¢ € Dy(r) in the little 2-discs space Dy(r) clearly admits a basis
of neighborhoods formed by contractible open sets U, o, o € J;

— to each path 7 : [0,1] — Da(r) such that v(0) = °, we associate the
collection of sets Ug,a - Dg(r) consisting of homotopy classes of paths of
the form « - v where « is any path such that «(0) = ¢ and lying in U, 4;

— we take this collection Ug,a, «a € 7, as a basis of open neighborhoods for
the element [4] in the space Do(r).

This definition is actually forced by the requirement that the counter-image of the
set Up o under the covering map q : Da(r) — D2(r) is a union of open sets.
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FIGURE 5.11. The
form of a chosen base
disc configuration,
lying in the image
of the contractible
subspace Di(r);q <
DQ(T).

FI1GURE 5.12. The path defining a representative of the generating

braid 7; in the little 2-disc space Da(r).
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In what follows, we omit to check the continuity of the maps which we define on
covering spaces. These verifications generally reduce to straightforward inspections.

In the construction of this paragraph, the isomorphism connecting the space Do (r)
with the universal covering taken at another base point ¢ is given by the con-
catenation of the paths 7 : [0,1] — Ds(r), defining the elements of the covering
space Dy(r), with a path 4% : [0,1] — Ds(r) such that 4°(0) = ¢ and 7°(1) = °.
From this construction, we immediately see that this isomorphism is canonical as
soon as the homotopy class of the path v° connecting the base points is uniquely
determined, and this is so when, as set in §5.1.7, we restrict ourselves to base points
" lying within the component D1 (r),4 of the little 1-disc space D1 (r) inside Da(r).

5.1.9. The action of braid groups. The pure braid group P, can immediately be
identified with the group of automorphisms of the covering Dy (r) — Ds(r) because:

— the automorphism group of a universal covering is identified with the fun-
damental group of its base space,

— and the homotopy equivalence w : Dy(r) = F(D2,7), defined by the disc
center mapping, induces a group isomorphism

m1(Da(r), %) = w1 (F(D?,7), %) = P,.

One can adapt this approach in order to prove that the action of P, on Do (r)
extends to an action of the full braid group B,. Indeed, we can also identify our
covering space Ds(r) with the universal covering of the quotient space Do(r)/%,.,
for which we have 71 (Do (r) /Sy, %) = 71 (F(D2,7)/2,, %) = B,.

In order to ease the subsequent proof of operad equivariance relations on our
covering spaces bz(r), we prefer to give an explicit construction of this action.
For this aim, we rely on our explicit definition of the universal covering Dg(r),
in §5.1.8. We consider a path in the little 2-disc space 7; : [0,1] — Da(r) of
the form represented in Figure 5.12. We immediately see from our picture that
the image of this path under the disc center mapping w : Do(r) — F(D2,7) is a
representative of the generating braid of Figure 5.5.

Note that the endpoint of this path 7;(1) is identified with the image of our
base disc configuration ¢ under the action of the transposition t; = (i i + 1).

Let now v : [0,1] — Da(r) be a path in Da(r) with v(0) = ¢” as origin so that
the homotopy class of this path [y] defines an element of the covering space D (7).
We apply the transposition ¢; to this path in order to obtain a path ;v with
tiv(0) = t; - ¥ as origin. We can then concatenate t;y with the path represented in
Figure 5.12 to obtain a new path (¢;v) - 7; : [0,1] — Da(r) with ¢ as origin, and of
which homotopy class [(¢;y) - ;] determines an element of Dy(r) associated to the
class [7].

By an immediate visual inspection, we obtain that:

LEMMA 5.1.10.

(a) The mapping 7; : [y] — [(ti7y) - ;] defines a lifting, to the space Dy(r), of
the map t; : Da(r) — Da(r) defining the action of the transposition t; =
(i i4 1) on the little 2-disc space.

(b) The maps 7; : Da(r) — Da(r), obtained by this construction for i =
1,...,7 — 1, satisfy the generating relations of braids groups, and hence,
determine an action of the braid group B, on the covering space [V)g(r). (I
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This result completes the construction of the braided structure on the collection
of spaces Doy = {D3(r)}en-

We can use a similar composition process [y] — [y - w] when w : [0, 1] — Da(r)
is any loop based at w(0) = w(1) = ¢ in order to determine the action of the
fundamental group 7 (D2(r),c®) on the universal covering Dy(r). We immedi-
ately see that this action corresponds to a restriction of the action considered in
Lemma 5.1.10 when we apply the isomorphism 71 (Da(r), ) = m1(F(D%,r),*) to
identify 1 (Da(r), *) with the pure braid group P,.

The following statement follows from this identification and standard results of
covering theory:

LEMMA 5.1.11. The covering map q : Dy(r) — Dy(r), defined in §5.1.8, induces
a homeomorphism q, : Da(r)/P. = Do(r), where the quotient space Do(r)/ P, is
formed by considering the restriction of the action of Lemma 5.1.10 to the pure
braid group P,. O

5.1.12. The operadic composition structure. We now aim at providing the col-
lection D5 with an operadic composition structure.

We can assume that our base point in arity 7 = 1 is given by the operadic unit
of the little 2-disc operad 1 € D2(1). We take the homotopy class of the constant
path 1(t) = 1 associated to this element 1 € Dy(1) as operadic unit for Ds.

We proceed as follows to define the composition products of Ds. Let a :
[0,1] — Da(m) (respectively, 8 : [0,1] — D2(n)) be a path defining an element
in the covering space Dy(m) (respectively, Dy(n)). Let a® = «(0) (respectively,
b” = B(0)) be the base point in the little 2-discs space Dy(m) (respectively, Do(n))
underlying this covering. We fix a composition index k € {1,...,m}. By performing
the operadic composition of little 2-discs point-wise, we obtain a path a o 3 :
[0,1] — Da(m +n — 1) with a of 8(0) = a° o b° as origin. This composite little
discs configuration a® oy, 5° is not necessarily equal to the chosen base point °
of the little 2-disc space Do(m + n — 1). But, the assumption that a° lies in the
contractible space D1 (m);q < D2(m), and that b° similarly arises from Di(n)ig —
Dy (n) implies that al oy, bo lies in our distinguished subspace Di(m + n — 1);4
too, because the composition of these connected components is reflected by the
composition structure of the permutation operad where we have id oy id = id (see
Proposition 1.1.9). Thus, as we explain in §5.1.7, we have a path 7° : [0,1] —
Dy (m+n—1), going from 4°(0) = ® to 1°(1) = a®0x b, and with a well determined
homotopy class. We concatenate our composite aoy, 3 with such a path 4° : [0,1] —
Ds(m+mn—1). The homotopy class [a oy, 3-7°] defines an element of Do (m+n—1)
naturally associated to [o] € Da(m +mn — 1) and [] € Da(m +n — 1). We obtain
by this process a composition product on our universal coverings

Of Dg(m) X DQ(H) — ég(ern — 1)

which obviously lifts the composition product oy of the little 2-discs operad. We
prove that:

LEMMA 5.1.13. The operadic unit and composition products defined on the cov-
ering spaces Dg(r) in the previous paragraphs fulfill the unit and associativity re-
quirements of operadic composition structures, as well as the equivariance relation
of braided operad.



5.2. THE CLASSIFYING SPACES OF THE COLORED BRAID OPERAD 153

PROOF. The proof of the unit and associativity relations of composition prod-
ucts follows from a quick visual inspection. The equivariance relation is checked
similarly in the case of a generating braid 7; by going back to the definition of the
action of these elements in §§5.1.9-5.1.10. The verification of this case suffices to
prove the equivariance relation in full generality. O

The covering maps ¢ : Dy(r) — Da(r) clearly define a morphism of braided op-
erads ¢ : Dy — Ds. The assertion of Lemma 5.1.11 also implies that this morphism
induces an isomorphism between the symmetrized operad Sym Dy and Do, and this
verification finishes the proof of Theorem 5.1.6. O

Theorem 5.1.6 has the following consequence:

THEOREM 5.1.14 (Z. Fiedorowicz [56]). Let P be a braided operad in topological
spaces. Suppose that the action of B, on P(r) is free and proper, for all r € N. If
the spaces P(r) are contractible for all v € N, then the symmetric operad naturally
associated to P, and formed by the collection of quotient spaces Sym P(r) = P(r)/P,,
is an Fs-operad. This result has an obvious extension in the unitary setting.

PROOF. We again focus on the non-unitary setting because the generalization
of our statement to unitary operads follows from a straightforward extension of our
arguments.

We form the arity-wise product Q(r) = P(r) x Do(r) in the category of braided
operads. The braid group B, operates diagonally on Q(r), for each r € N, and we
equip the collection Q@ = {Q(r)},en with the obvious operad structure so that the
canonical projections

P(r) < P(r) x Da(r) = Do(r)
define morphisms of braided operads P < Q — Ds.

Recall that the spaces P(r) are contractible by assumption, and we have al-
ready observed that the spaces DQ(’I“) are contractible too. Thus, the considered
projections are weak-equivalences between contractible spaces.

The braid group B, operates freely and properly on P(r) by assumption, and
on Dy(r) as well by definition of this space as a universal covering. The diagonal
action of B, on P(r) x Dy(r) is free and proper too. By performing the quotient
over the action of P, C B,., we accordingly obtain weak-equivalences of spaces

P(r)/P, < (P(r) x Dy(r)) /P, =5 Dy(r)/ P, = Do(r),

and these weak-equivalences define a chain of morphisms of symmetric operads
Sym P <~ Sym @ =+ D,. The conclusion of the theorem follows. (]

5.2. The classifying spaces of the colored braid operad

Recall that an Eilenberg-MacLane space of type K (G, 1), where G is any group,
is a connected space X such that 71 (X) = G and 7,.(X) = 0 for * # 1. These
conditions determine the homotopy type of the space X: all Eilenberg-MacLane
spaces of a given type K (G, 1) are weakly-equivalent.

In the preliminary section §5.0, we mentioned that the underlying spaces of the
little 2-discs operad D» are Eilenberg-MacLane spaces K(P,,1) associated to the
pure braid groups P,. This result follows from the existence of the homotopy equiv-
alence Dy(r) = F(I°32, r), established in Proposition 4.2.2; and the computation of
the homotopy groups of the configuration spaces F (52, r) in Proposition 5.0.1.
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In topology, we have a standard simplicial model BG for the Eilenberg-MacLane
space K (G, 1). This simplicial set BG also represents the base space of a universal
G-principal bundle, and for that reason, is usually referred to as the classifying
space of G.

The objective of this section is to define a classifying space model of the little 2-
disc operad D5. But we do not have a full operad structure on the collection of pure
braid groups. To get our model, we have to consider an extension of the classifying
space construction to groupoids and to operad in groupoids. We precisely construct
a collection of groupoids, the colored braid groupoids CoB(r), which include the
pure braid groups P, as automorphism groups of objects, and form an operad in the
category of groupoids. We prove that the collection of classifying spaces B CoB(r)
associated to this operad forms a model of Fs-operad.

To begin with, we make explicit the definition of an operad in the category of
small categories and in the category of groupoids. Then we recall the definition of
the classifying space of a category, and we examine the application of this classifying
space construction to operads in categories. We define the colored braid operad
afterwards, as an instance of operad in groupoids.

5.2.1. The category of small categories and groupoids. We use the notation Cat
for the category of small categories. The cartesian product of categories defines the
underlying product X : Cat x Cat — Cat of a symmetric monoidal structure on Cat.
The one-point set pt, which is identified with the final object of the category of
small categories, defines the unit object associated with this symmetric monoidal
structure. We may identify sets with discrete categories, which have no morphism
outside the identity attached to each object.

We basically define a groupoid is a small category in which all morphisms are
invertible. We may identify groups with groupoids of which underlying object set
is reduced to a point. We use the notation Grd for the category of groupoids
which, according to our definition, form a full subcategory of the category of small
categories. We immediately see that the embedding Grd < Cat creates products
and final objects. The category of groupoids Grd forms, therefore, a symmetric
monoidal subcategory of the category of small categories Cat.

5.2.2. Operads in small categories and in groupoids. We define the category of
operads in the category of small categories as an instance of a category of operads
in a symmetric monoidal category, and similarly in the case of operads in groupoids.
An operad in the category of small categories P (we also say operad in categories
for short) accordingly consists of a sequence of small categories P(r) € Cat, r € N,
equipped with an action of the symmetric groups ., together with a unit morphism
n : pt — P(1), and composition products p : P(r) x P(ny) x --- x P(n,) —
P(ni +---+n,), all formed in the category of categories, and satisfying our usual
equivariance, unit and associativity relations. Since the category of groupoids forms
a symmetric monoidal subcategory of the category of small categories, an operad
in groupoids can be defined as an operad in categories P of which components P(r)
are groupoids.

The equivalence between the plain definition of an operad (§1.1) and the defini-
tion in terms of partial composition operations (§3.1) naturally holds in the context
of categories M = Cat (respectively, groupoids M = Grd). Hence, the composition
structure of an operad in categories (respectively, groupoids) can be defined by
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giving a collection of functors oy : P(m) x P(n) - P(m+n—1), k = 1,...,m,
satisfying the equivariance, unit and associativity relations of §3.1.

The category of operads in categories is denoted by CatOp (following our no-
tation conventions for operad categories). By definition, a morphism of operads in
categories f : P — Q consists of a sequence of functors f : P(r) — Q(r) preserving
the internal structures of our operads. The category of operads in groupoids, also
denoted by GrdOp, forms a full subcategory of the category of operads in categories.

In the category of small categories, one distinguishes the class of equivalences
(functors which are invertible up to natural equivalence) in addition to isomor-
phisms (the functors which are strictly invertible). For operads in categories, we
will naturally consider operad morphisms f : P — @ of which all underlying func-
tors f : P(r) — Q(r) are equivalences of categories. In this situation, we will say
that the operad morphism f is a categorical equivalence, and we will use the dis-
tinguishing mark ~ in the notation of f. Note that the inverse equivalences of the
functors f : P(r) = Q(r) do not necessarily define an operad morphism in general,
and we do not assume that such a property holds in our definition of a categorical
equivalence of operads.

5.2.3. Recollections on classifying spaces. The classifying space of a category C
is the simplicial set B € defined in dimension n by the n-fold sequences of composable
morphisms of €

Qn

a={rg L r 2. )

together with the face operators such that

Qp

do(a) =21 25 - 2% 2,

Qj—1 Q410 Q42

di(a) =29 2 - - Ti_1 Tip1 ce 2 g, for 0< i < n,

QAn—1

dn(g) = X0 % o > Tp—1,

and the degeneracy operators given by the insertion of identity morphisms
_ a1 &y id Y+t Qn
sjl@) =29 — -+ T, — T; — - — Tp,

for all j =0,...,n. One can prove that the simplicial set B C forms a Kan complex
if and only if the category C is a groupoid (see for instance [78, §1.3]). In the case
of a group G, this result can be used to check, by a direct and simple computa-
tion, that the geometric realization of BG is an Eilenberg-MacLane space (use the
combinatorial definition of simplicial homotopy groups in [43, §2] or in [133, §1]).

The mapping B : € +— B C defines a functor from the category of small categories
to the category of simplicial sets. To study the image of operads in categories under
the classifying space construction, we use the following result:

PROPOSITION 5.2.4. The functor B : Cat — Simp is symmetric monoidal in
the sense of §2.3.1:

(a) for a point pt, viewed as the unit object of the category of small categories,
we have an obvious identity B(pt) = pt;

(b) for a cartesian product of categories @ x D, the maps BC &= B(€ x D) L
BD, induced by the canonical projections € & € x D L D, give rise to an
isomorphism B(€ x D) = BC x BD;

(¢) and these comparison isomorphisms (a-b) fulfill the unit, associativity and
symmetry constraints of §2.3.1.
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PROOF. The proof of assertions (a-b) reduces to a straightforward inspection
of definitions. The definition of the isomorphism B(€ x D) = B€ x BD from uni-
versal categorical constructions automatically ensures that the unit, associativity
and symmetry constraints of §2.3.1 are fulfilled. (]

From this statement, the result of Proposition 2.1.4 gives:

PROPOSITION 5.2.5. Let P be an operad in small categories. The collection
of classifying spaces B P(r) associated to the categories P(r) forms an operad in
simplicial sets naturally associated to P. ([

Recall that, in the situation of Proposition 5.2.4, the mapping B : P +— BP
preserves unitary extensions, so that we have an identity B(Py) = (B P)4 for any
unitary operad in the category of small categories P (see Proposition 2.1.4).

In §2.3.2, we observe that the geometric realization functor |—| : Simp — Top is
symmetric monoidal as well. We can apply this functor to the simplicial operad B P
in order to form a classifying space operad in topological spaces naturally associ-
ated to P. In general, we abusively use the notation of the underlying simplicial
operad B P for this associated operad in topological spaces too. We only mark the
application of the realization functor | — | when the context requires to distinguish
the topological object from its simplicial counterpart.

The mapping B : P +— BP defines a functor from the category of operads
in the category of small categories to the category of operads in simplicial sets.
In §4, we introduced a notion of weak-equivalence for the category of operads in
topological spaces. In the simplicial framework, we consider weak-equivalences of
simplicial sets, consisting of maps f : X — Y of which topological realization
|f| : 1X] — |Y]| defines a weak-equivalence of topological spaces, and we similarly
say that an operad morphism ¢ : P — Q is a weak-equivalence if each component
of this morphism ¢(r) : P(r) — Q(r) defines a weak-equivalence of simplicial sets.
From this definition, we immediately see that a morphism of operads in simplicial
sets is a weak-equivalence ¢ : P = Q if and only if the topological realization
of this morphism defines a weak-equivalence of operads in topological spaces |¢] :
[P =]Q]

The following proposition, which is an immediate corollary of a standard result
on classifying spaces, is worth recording:

PROPOSITION 5.2.6. The morphism B f : BP — B Q associated to a categorical
equivalence of operads f: P = Q is a weak-equivalence of simplicial operads. O

The rest of this section is devoted to the definition of the colored braid operad
CoB and to the proof that the associated classifying space operad B CoB defines an
instance of Fy-operad. We also establish a unitary extension of this result. In a
first step, we define the underlying groupoids of this operad.

In §5.2.1, we define a small category by an object set 0b € together with mor-
phism sets More(z,y), associated to all pairs of objects x,y € 0bC, and we adopt
the same approach for the definition of groupoids, which we regard as categories G
where all morphisms are isomorphisms. But for the definition of the groupoid of
colored braids CoB(r), we follow another approach, because all the information is
carried by the morphisms. In short, we consider that CoB(r) is formed of an object
set Ob CoB(r) and a single morphism set Mor CoB(r) collecting all morphisms of
our groupoid. We give a definition of the colored braid groupoid along these lines
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first. We make explicit the morphism set Mor cop(r) (u, v), associated to each pair of
objects u,v € 0b CoB(r), and the equivalence between this initial definition of our
groupoid CoB(r) and the structures considered in §5.2.1, in a second step.

We adopt a parallel plan all along this section, when we address the definition
the symmetric and composition structure of the operad formed by our groupoids
CoB(r), r € N.

5.2.7. Groupoids revisited. In a preliminary step, we explain the general defi-
nition of a groupoid structure G from an object set Ob G and a single morphism set
Mor G collecting all morphisms of the groupoid.

In this approach, we assume the existence of maps s,t : Mor § — 0b G, deter-
mining the source and target of the morphisms in G, as well as the existence of a
map e : 0b§ — Mor G, which determines the identity morphism associated to each
object. We also assume that these maps satisfy the relation se = te = id. The
morphism sets Morg(z,y), which we have considered so far, are identified with the
subsets of morphisms « € Mor § associated to a given source s(«) = x and target
object t(a) = y.

The fiber product

Mor G x4 Mor § ! >Mor G ,

p it
N

Mor § ————=0b§

more explicitly defined as the set Mor G xguMor§ = {(a, B)|s(a) = ¢(5)}, col-
lects all pairs of composable morphisms of the groupoid. The composition op-
eration of G is given by a product operation u : Mor § x4, Mor § — Mor G, defined
on this fiber product, and such that sy = sq, tg = tp. In point-wise terms,
these requirements read s(af) = s(8) and t(af) = t(«) for all composable mor-
phisms (a, ) € Mor § X ¢ Mor G, where we set a8 = u(a, 8).

To define the inverse of morphisms in a groupoid, we similarly consider a map
t : Mor§ — Mor§ such that st = ¢t and &« = s. The unit, associativity, and
inverse relations of the composition structure of groupoids can be written in terms
of commutative diagrams, involving the fiber product Mor G x4 Mor G. But, since
we define the product and inversion maps of our groupoids as point-set mappings,
we are just going to use the basic point-set interpretation of these relations.

5.2.8. The groupoids of colored braids. The object set 0b CoB(r) of the rth
colored braid groupoid CoB(r) is the set of permutations w € ¥, which we regard
as ordered sequences (w(1),...,w(r)) of integers w(i) € {1,...,r}. The morphism
set Mor CoB(r) consists of isotopy classes of braids a equipped with a bijection
between {1,...,r} and the collection of strands {a, ..., o, } underlying the braid a.
Intuitively, the extra bijection assigns a color ¢ € {1,...,r} to each strand «;, and
this interpretation motivates the name of colored braid which we adopt for our
groupoid.

In §5.0.5, we consider that the strands of a braid form an r-tuple (aq,...,q;)
arranged according to the ordering of the points (a1(0),...,,(0)) on the axis
(y = 0,t = 0). In the colored braid case, we rather consider the ordering equiv-
alent to the bijection ¢ — «; given together with our braid a. Thus, we have
(a1(0),...,0,-(0)) = ((952(1)’070)7“'7(x2(r)7070) for some permutation u € X,,
where we again use the notation x%, k =1,...,r, for the abscissa of our contact
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FIGURE 5.13. An instance of colored braid.
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FIGURE 5.14. The representation of identity elements in the
groupoid of colored braids.

points on the axis y = 0 (see §5.0.5). This permutation defines the source of our
braid v = s(«) in the groupoid CoB(r). The target of the braid v = t(«) is the
permutation v such that (ai(1),..., (1)) = ((29),0,1),....(29,,0,1). Intu-
itively, we simply take the ordering of the origin points of the strands on the axis
(y = 0,t = 0) to determine a color ordering yielding the source permutation u of
the colored braid «, and we the take the ordering of the end points of the strands
on the axis (y = 0,t = 1) to determine another color ordering yielding our target
permutation v.

To illustrate these definitions, we give an instance of a colored braid in Fig-
ure 5.13. The source and target permutations associated to this colored braid are
given by the ordered sequences u = (2,4,3,1) and v = (3,4, 1, 2).

The identity morphism id,, = e(w) assigned to any permutation w € X, is
defined by the identity braid whose strands «; are equipped with the coloring
determined by the permutation w = (w(1),...,w(r)) so that we have a,,;(t) =
(29,0,t), for any i = 1,...,7 (see Figure 5.14).

The composition of the groupoid is given by the standard concatenation op-
eration on braids, inherited from the braid group, and represented in Figure 5.3.
In our new context, we simply note that the colors assigned to strands agree on
contact points precisely when our braids («, §) satisfy the relation s(«) = ¢(5) and
hence are composable in the sense of §5.2.7. In this situation, each composite strand
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inherits a single color from its components, which we use to define the coloring of
the composite braid o - 3.

The inversion of colored braids can also be deduced from the inversion operation
of the braid groups.

5.2.9. Braid cosets and morphisms in the colored braid groupoids. In the previ-
ous paragraph, we chose an approach which provides an intuitive definition of the
colored braid groupoid. On the other hand, we immediately see, from this first defi-
nition, that the color indexing of an element «« € CoB(r) is determined by giving the
permutation u = s(«), which represents the source of the morphism « in the colored
braid groupoid. Indeed, the ordered sequence u = (u(1),...,u(r)) corresponds to
the color indexing of the origin points ((29,0,0),..., (22,0,0)), which in turn deter-
mines the coloring of the braid strands. By using this observation, we can readily
identify the morphism set Mor c,g() (u, v) associated to fixed permutations u,v € 3,
with the coset ¢;'(v~'u) C B,, where we consider the natural group morphism
¢« : By = %, from braids to permutations. The composition operation of CoB(r) is
also identified with the operation ¢;!(w™tv) x ¢ (v™tu) — ¢ (w™tu) obtained
by restriction of the natural multiplication of the braid group B,. For a single
permutation w € X, we have an identity Mor cop () (w, w) = ¢ Y(w™tw) = P, and
the identity morphism associated to w in the groupoid corresponds to the neutral
element of the pure braid group P,.

5.2.10. The symmetric structure of the colored braid groupoids. Each groupoid
of colored braids CoB(r) inherits a natural action of permutations. Therefore the
collection CoB = {CoB(r),r € N} forms a symmetric sequence of groupoids. To be
explicit, the groupoid morphism s, : CoB(r) — CoB(r) associated to any s € X,
is defined by the following process: for a permutation w € X,., representing an
object of CoB(r), we set s.(w) = swj; for a braid « equipped with a strand coloring
i — «y, we define s,(a) by the same underlying braid as a, but we equip s.(«)
with the modified coloring s(i) — a; which assigns the value s(i) € {1,...,r} to the
strand «a; which was previously colored by the index i € {1,...,r}. The mappings
S« : Mor CoB(r) — Mor CoB(r) and s, : O0b CoB(r) — 0b CoB(r) clearly preserve
the structure morphisms attached to our groupoid. In the definition of §5.2.9, the
mapping s : Morcop(r) (%, v) — MoTrcop(r)(5«(u), 54(v)) is given by the identity of
the coset g7 (5. (v) 15, (u)) = ¢ ((sv) "1 (su)) = ¢ (v~ u) C B, with which both
morphism sets Mor cop(y) (4, v) and Mor cop(ry (S« (1), 5+ (v)) are identified.

5.2.11. The operadic composition operations on colored braids. We have an ob-
vious identity CoB(1) = pt, giving a canonical operadic unit in the colored braid
groupoids. We also have operadic composition operations, deduced from the op-
eradic composition of permutations and braids, so that CoB inherits a full operad
structure. We proceed as follows to define these operations.

On object sets 0b CoB(r) = X,, we simply use the operadic composition of
permutations. (Accordingly, the collection 0b CoB is identified with the permuta-
tion operad in the category of sets.) On morphism sets Mor CoB(r), we use the
operadic composition of braids, defined in §§5.1.2-5.1.3, together with an operadic
composition of the braid colorings which we define as follows.

Let o € Mor CoB(m) and 8 € Mor CoB(n) be colored braids. Intuitively, to
define the composite a0y 8 € Mor CoB(m +n — 1), we insert the kth input braid S
in the strand of « colored by k € {1,...,m}. We also apply the standard operadic
shift ¢ — ¢+ k — 1 to the index of the strands of 3 in the composite braid, the shift
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FI1GURE 5.15. An operadic composition of colored braids

i — i+mn—1 to the index of the strands of a when k£ < 4, and this gives the coloring
of ao, B. In comparison with the process of §§5.1.2-5.1.3, we simply use an ordering
defined by the color indexing of the strands of « instead of the natural ordering of
the source points on the line y = ¢ = 0. Thus, the composition of braids in the
colored braid groupoid is formally defined by the composition operation of §§5.1.2-
5.1.3 up to an input reordering, which we determine from the source permutation
of the braid «.. To illustrate this process, we give an instance of partial composition
operation « o1 f = «(f,1) in Figure 5.15. In order to ease the understanding of
this picture, we have added dotted lines marking the array in which the braid 3 is
inserted.

In the coset representation of morphism sets (§5.2.9), the partial compos-
ite Mor cop(m)(8,t) X Morcop(n)(u,v) Sk MOT coB(m+n—1)(8 Ok U, T o v) maps ele-
ments o € ¢; 1 (t71s) and B € ¢, (v u) to the composite braid « 04-1(k) B which
has g.(a og-1(y) ) = (top v)~' - (s op u) as associated permutation. This op-
eration obviously preserves the groupoid structure, and hence, gives a morphism
o : CoB(m) x CoB(n) — CoB(m 4+ n — 1) in the category of groupoids.

The verification of the operad axioms is straightforward from the results ob-
tained for the braid operad in §5.1.

The construction of this composition clearly extends to the degenerate case of
a colored braid g with an empty set of strands, and we readily deduce from this
observation that the operad CoB has a unitary extension CoB.. The restriction
operation u* : CoBy(n) — CoBy(m) can actually be identified with a natural gen-
eralization to colored braids of the removal operations on braid groups, as described
in §5.1.4, just like the operadic composition of colored braids define a generalization
of the operadic composition of braids.

The definition of the colored braid operad is now complete and we aim to prove:

THEOREM 5.2.12. The classifying space operad B(CoB) associated to the operad
of colored braids CoB is an Fy-operad, and the operad B(CoB)., associated to the
unitary extension of CoB, similarly defines an instance of a unitary Es-operad.

We focus on the non-unitary context. The unitary extension of our statement
follows, again, from a straightforward adaptation of the arguments.

The idea is to identify B(CoB) with the symmetrization of a contractible braided
operad in order to deduce Theorem 5.2.12 from the recognition theorem of §5.1.
This contractible braided operad is formed by a collection of contractible classifying
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spaces E B, naturally associated to the braid groups B,. In a preliminary stage,
we review the general definition of these contractible classifying spaces EG, which
can be associated to any group G.

5.2.13. Translation categories and their classifying spaces. First, to a group G,
we associate a translation category Eg which has Ob Eg = G as object set, and of
which morphism sets are reduced to a single element Morg, (o, 3) = {8~ ta}, for
all o, 8 € G. This element 3~ 'a represents the right translation connecting 3 and
«a in G. This interpretation motivates the name of translation category assigned
to Eg. The translation category Eg obviously forms a groupoid, for any group G.

The translation category F¢g is also naturally equipped with a left G-action,
which assigns a functor g, : E¢ — FEg to each g € G. This functor is given by the
left translation operation g.(«) = ga at the object level, and by the identity of the
translation elements (g3) *(ga) = B ' at the morphism level.

The classifying space associated to the translation category E¢g is usually de-
noted by EG = B(E¢). By definition of E¢, the n-simplices of this classifying space
have a representation of the form

a;lao a;1a1 a;lan_l
a={ap a1 e an},
where (ag, ..., a,) Tuns over G"*1. The morphisms occurring in this simplex are
determined by the sequence of vertices (aq, ..., a,), as we see in the above expres-

sion. Faces d; (respectively, degeneracies s;) are given by the omission (respectively,
repetition) of a vertex «; (respectively, «;). By functoriality of the classifying space
construction, the simplicial set EG inherits a left G-action from the translation cat-
egory Fg. The image of a simplex « under this action reads:

(ga1) ™ (geo) gou (gaz) ™" (gon) (gan) M (gom—1)

g+(a) = {90 goun }.

The space EG is equipped with a natural map p, : EG — BG towards the
classifying space of the group G. If we regard the group G as a category with
a single object =, then this classifying space map is induced by the functor p :
Eg — G defined by p(a) = * on objects and by p(3~'a) = 8~ ta on morphisms.
The motivations for the introduction of this space EG are given by the following
observations:

OBSERVATION 5.2.14.

(a) The groupoid E¢g is equivalent to a point, and as a consequence, has a
contractible classifying space EG = B(Eg).

(b) The action of G on EG is free.

(¢) The mapping p. : EG — BG goes down to an isomorphism EG/G = BG
on the quotient space EG/G.

These observations follow from immediate inspections. In the topological con-
text, the contractibility of the simplicial set EG implies that the space |EG| is
contractible. The free action of G on EG gives rise to a free and proper action at
the topological level. Furthermore, the mapping p, : EG — BG induces a homeo-
morphism |EG|/G = |EG/G| = | BG| since we have | X/G| = | X|/G for any space
X equipped with a G-action.

We now consider the translation categories E'p, associated to the braid groups
B,.. We immediately see that the collection formed by this sequence of groupoids
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E(r) = Ep, inherits a natural braided operad structure from the braid groups:
the natural action of the group B, on each Ep_ gives the braided structure of the
collection E; the identity Eg, = pt provides the operadic unit 7 : pt — E(1); and
the composition morphism is the functor oy, : Ep,, X Ep, — Ep, ., determined
by the operadic composition of braids at the level of the object sets 0b Ep, = B,,.
We also easily check, by using the result obtained at the level of braid groups, that
these morphisms fulfill the structure axioms of braided operads.

We apply the symmetrization functor of Proposition 5.1.5 in the context of the
category of categories M = Cat in order to get a symmetric operad Sym E naturally
associated to E. We have the following observation:

LEMMA 5.2.15. The colored braid operad CoB is identified, as a symmetric
operad in groupoids, with the symmetrization of the braided operad E defined by the
translation categories E(r) = Ep, of the braid groups B,.

PROOF. We use the definition of §5.2.9 where we identify the morphism sets
of the groupoid CoB(r) with the cosets Morcop(r)(u,v) = ¢ (v™tu) naturally as-
sociated to the morphism ¢, : B, — X,. We have an obvious functor ¢. : Ep, —
CoB(r), given by the map g, : B, — X, on the object set 0b Eg, = B,., and by the
embedding {7 a} < ¢;(¢.(8) 'g.()) on each morphism set Morg, (a, ) =
{B7ta}, for a,B € B,. We immediately see that this functor carries the action
of B, on Ep_ to the natural action of X, on CoB(r), the action of P. C B, to a
trivial action. We can also readily check, by unraveling the definition of a quotient
object in the category of categories, that ¢, : Ep. — CoB(r) identifies CoB(r) with
the quotient category Ep, /P;.

We have already observed that ¢. : Eg, — CoB(r) carries the B,-action on Ep,_
to the natural ¥,-action on the groupoid CoB(r). We readily obtain that ¢. pre-
serves the operadic composition structures too by using the coset definition of this
structure in §5.2.11. Accordingly, the collection of functors ¢. : Ep. — CoB(r)
defines a morphism ¢, : E — CoB in the category of braided operads, and the
relation Ep, /P, = CoB(r) immediately implies that this morphism identifies CoB
with the symmetric operad naturally associated to E. O

The conclusion of Proposition 5.2.5 remains obviously valid in the context of
braided operads. In the particular case of the translation categories associated to
braid groups E(r) = Ep,, we deduce from this assertion that:

FacT 5.2.16. The collection of classifying spaces BE(r) = B(Ep,) = EB, in-
herits a braided operad structure.

The geometric realization and classifying space functors naturally commute
with quotients under group actions. In the case of the symmetrization functor Sym,
which is essentially given by such a quotient process, this observation implies:

OBSERVATION 5.2.17. We have operad identities Sym|BE| = |SymBE| =
|B(Sym E).

Thus, from the identity Sym E = CoB established in Lemma 5.2.15, we conclude
that |B(CoB)| is identified with the symmetrization of the contractible braided
operad |BE|. The braided operad B E is also contractible by observation 5.2.14
and the braid group B, operates freely and properly at the level of the topological
space |BE(r)| = EB,. By Theorem 5.1.14, these assertions imply that |B(CoB)| =
Sym|B E | forms an Es-operad, as claimed in Theorem 5.2.12. O



5.3. FUNDAMENTAL GROUPOIDS AND OPERADS 163

5.2.18. Remark. The category of algebras associated with the colored braid op-
erad consists of braided categories equipped with a strictly associative tensor prod-
uct. This statement is an operadic counterpart of a result of Joyal and Street [93]
asserting that the disjoint union of the braids groups form a free braided category
on one generating object. The correspondence between operads in groupoids and
monoidal structures on categories is the subject of the next chapter, and we go back
to the connection between the colored braid operad and Joyal-Street’ statement in
this subsequent account.

5.3. Fundamental groupoids and operads

In the previous section, we observed that the identity between the Eilenberg
space Ds(r) and an Eilenberg-MacLane spaces K (P,, 1) determines the homotopy
type of the spaces underlying the little discs operad D>. However, we have needed to
replace the pure braid groups P, by groupoids of colored braids CoB(r) in order to
retrieve an operad reflecting the structure associated with the little 2-discs operad.

The purpose of this section is to explain the source of our problems and to give
an explanation for the introduction of colored braids in §5.2.

The pure braid group P, represents the fundamental group of the little 2-discs
space Do(r), and involves, by definition of the fundamental group, the choice of a
base point in Do(r). The problem comes from this choice: base points can not be
chosen coherently with respect to the structure operations attached to an operad.
The natural idea is to replace fundamental groups by fundamental groupoids in
order to work out this issue. In the case of the little 2-discs operad D5, we prove
precisely that the fundamental groupoids of the spaces Ds(r) form an operad in
groupoids which is equivalent to the colored braid operad of §5.2. The main purpose
of this section is to establish this result. Before, we quickly recall the definition
of the fundamental groupoid and we check that the fundamental groupoids of the
spaces underlying an operad in topological spaces form an operad in groupoids.

5.3.1. Fundamental groupoids. The fundamental groupoid of a topological space
is denoted by mX. The object set of this groupoid 7.X is the underlying point-set
of the space X. Let z,y € X. The morphisms from x to y in 7X are the homotopy
classes of paths « : [0,1] — X with «(0) = z as prescribed origin and a(l) =y as
prescribed endpoint. The composition of morphisms in 7X is given by the usual
composition operation on paths, and extends the composition of based loops consid-
ered in the definition of the fundamental group. The unit relation, the associativity
relation and the existence of inverses in w.X is proved by a straightforward extension
of the arguments classically considered in the context of fundamental groups.

The fundamental group of X at a base point xg € X is clearly identified with
the automorphism set of ¢ in the fundamental groupoid

m1(X, 29) = Moz x (X0, Z0)

and we have an isomorphism connecting xg € X to another point z € X in 7 X if
an only if zg and = belongs to the same path connected component of X.

Thus, if we regard a group as a groupoid with one object, then we can also
identify the fundamental group (X, zg) at a base point zy with the full subcat-
egory of X generated by the single object {zo} C X = 0b7X, and, when X is
path connected, the embedding 71 (X, z¢) < 7 X, which arises from this categor-
ical interpretation of the fundamental group, defines an equivalence of categories.
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In general, the fundamental groupoid is equivalent (as a category) to the coprod-
uct H[%]Ewo(x) m1 (X, zg) formed by picking a representative xo € C' in each path
connected component [zg] = C € mp(X) of the space X.

Even in the path connected case, we usually have no canonical choice for a
single base point x¢ in X. In subsequent applications, we rather consider subsets
A C X and the full subcategories, denoted by X 14, which such subsets generate.
The embedding 7 X 14— wX defines an equivalence of groupoids as soon as A
includes a representative of each path connected component of X.

The mapping 7 : X — 7X clearly gives a functor from spaces to groupoids,
and usual results on fundamental groups extend to fundamental groupoids. But,
in the groupoid context, we need to take care of the difference between the notion
of isomorphism and the notion of equivalence. For instance, a homeomorphism
induces an isomorphism on fundamental groupoids, but a homotopy equivalence
f:X 5 Y induces a groupoid equivalence f, : 7X = 7Y, and no more, unless f
is a bijection at the point set level.

In order to study the image of topological operads under the fundamental
groupoid functor 7 : Top — Grd, we establish as usual that:

PROPOSITION 5.3.2. The functor @ : Top — Grd is symmetric monoidal:

(a) for a point pt, viewed as the unit object of the category of spaces, we have
an obvious identity w pt = pt;

(b) for a cartesian product of spaces X x Y, the maps X <= n(X xY) L
7Y, induced by the canonical projections X E2xxy Ly, give rise to
an isomorphism (X xY) = 71X x wY’;

(¢) and these comparison isomorphisms (a-b) fulfill the unit, associativity and
symmetry constraints of §2.3.1.

PRrOOF. The proof of assertion (a) is immediate. The proof of assertion (b)
reduces to a straightforward extension of arguments classically used in the case of
fundamental groups. The definition of the isomorphism 7(X x Y) S X xny
from universal categorical constructions automatically ensures, as usual, that the
unit, associativity and symmetry constraints of symmetric monoidal functors are

fulfilled. 0

From this statement, the result of Proposition 2.1.4 gives:

PROPOSITION 5.3.3. Let P be an operad in topological spaces. The collection
of groupoids m P(r) associated to the spaces P(r) forms an operad in groupoids
naturally associated to P. [l

From Proposition 2.1.4, we also deduce that the mapping 7 : P — 7 P preserves
unitary extensions, or more explicitly, that we have an identity w(Py) = (7 P)4,
for any unitary operad in topological spaces P .

Now, for the operad of little 2-discs, we obtain the following result:

THEOREM 5.3.4. The fundamental groupoid operad of the little 2-discs operad
w Dy is related to the colored braid operad CoB of §5.2 by a chain of categorical
equivalences of operads in groupoids

7Dy & - =5 CoB,

and similarly for the unitary extension of these operads ™ Doy and CoB. .
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PROOF. We use the embedding D; < D, defined in §4.1.5, to identify the
operad of little 1-discs Dy with a suboperad of Dy. We consider, for each r € N,
the full subcategory of the fundamental groupoid m Do(r) generated by the image
of the set Di(r) in Do(r). We adopt the notation 7 Da(r) ip, () for this category,
which obviously forms a groupoid. The collection of groupoids

7 Do ip,= {7 Da(r) 1p, (r) }ren
also defines a suboperad of m Dy because the object sets D1 (r) associated to these
groupoids m Da(7) 1p, () form themselves a suboperad of the little 2-discs operad Ds,
regarded as an operad in sets. We use this operad 7 Dy 1p, C ™ D2 as an interme-
diate object between the fundamental groupoid operad m Ds and the colored braid
operad CoB.

The embeddings 7 D2(r) 1p, -y~ ™ D2(r) are equivalences of categories since
each space Dy(r) is connected, and as a consequence, the embedding of operads in
groupoids 7 Dy 1p,— 7 Dy defined by the collection of these morphisms forms a
categorical equivalence of operads. To complete our arguments, we define a second
categorical equivalence of operads m Dy 1p, — CoB connecting 7 Do i1p, with the
colored braid operad CoB. In a preliminary step, we construct the collection of
groupoid equivalences m Do(r) | Dl(,ﬂ); CoB(r) underlying our operad morphism.

Let [1(r) be the subset of the configuration space F(D?2,r) formed by the ele-
ments of the form a) = ((x?u(l),O), ce (xgu(r),O)), where w € X,.. If we go back
to the construction of §5.2.8, where we define the groupoids of colored braids, then
we immediately see that the isotopy classes of braids defining the morphisms of
the colored operad are nothing but homotopy classes of paths between elements
of M(r). In other words, we have a formal identity CoB(r) = 7 F(D?,r) in(ry, for
each r € N.

The homotopy equivalence w : Do(r) — F (52,7"), defined by the disc cen-
ter mapping (see §§4.2.1-4.2.2), induces an equivalence of fundamental groupoids
w, : wDy(r) = 7 F(D2,7). In order to connect 7 Dy(r) D, (r)C T Da(r) with the
groupoid CoB(r) = = F(D%,r) \n(r)» we pick a collection of little 2-discs ¢” in the
image of our embedding D1 (r) — D2(r) so that w(c?) = a?;. Then we consider the
subset =(r) formed by the elements ¢! = w,(c®), w € %,, in D1(r) < Da(r). The
disc center mapping is clearly equivariant, so that w(c) = a!, for all w € ¥,., and
the equivalence w, : m Do(r) = 7 F(D2,7) induces, by restriction to =(r) C Dy(r),
a groupoid isomorphism 7 Do(r) |:—(T)i> 0 F(I:Q)z7 7) in(r)- To recap, we now have a
groupoid diagram

(a) 7 Da(r) 1=(r) o= 7TF([Q)2,7“) \11(r) ——= CoB(r)

|

7 Da(7) 1p, (r)

|

7 Ds(r) ———7 F([D)Q,r)

where vertical morphisms are embeddings of full subgroupoids, the bottom hori-
zontal morphism is a groupoid equivalence, and the upper horizontal morphism is
a groupoid isomorphism. The connectedness of Ds(r) implies that the first vertical
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embedding 7 Da(r) 1=y 7 D2(7) 1p, () defines an equivalence of groupoids too,
just like the second embedding 7 Do(r) 1p, ()= 7 Da(7).
The groupoid equivalence which we aim to define is obtained by picking an
appropriate inverse equivalence of the embedding 7 D2(r) 1=(y= 7 D2(r) 1p, (r)-
Recall that the embedding of a configuration of little 1-discs ¢ = (c1,...,¢,)

in the interval D' = [~1,1] determines a linear ordering i; < --- < 4, of the
indices of these 1-discs ¢;. In Proposition 4.1.6, we use this observation to assign a
permutation w = (41, ...,%,) to each element ¢ € D, (r), and to establish the identity

mo D1(r) = X,. To an element ¢ in the image of D1(r) < Ds(r), we associate the
element ¢! € =(r), formed by applying the permutation w associated to ¢ to the
initially chosen configuration of little 2-discs c’. This construction amounts to
considering the element ¢ lying in the same connected component Di(r),, of the
1-disc space Di(r) as our configuration ¢ within Dy(r).

Recall that each space D1 (r),, is contractible. We pick a path v connecting the
element v(0) = ¢% to (1) = ¢ and lying in this contractible space. We perform
such a choice of path for every element ¢ in the image of the little 1-disc space
Dy(r) in Do(r). The homotopy class of our path ~ represents an isomorphism
between ¢ and ¢ in the fundamental groupoid 7 Da(r). We consider the groupoid
morphism 7 Dy(r) 1p, ()= ™ D2(7) 1=(,) which maps each object ¢ to the associated
configuration ¢! in the set =(r), and which is given, at the morphism set level,
by the composition with the isomorphism [y] € Mor, p,((c),c) determined by
the homotopy class of our path connecting ¢! and ¢ within Di(r) < Dy(r). The
contractibility of the space D1(r).,, where we define this path -y, implies that this
isomorphism does not depend on choices.

Now we can take the composite of the just defined equivalence of groupoids
with the obvious isomorphism 7 Dq(r) \E(T)i 71'F(|52,7“) In(r) in order to get a
morphism of groupoids

~

(b) 7TD2<T) |D1(7")_> 7TF([G)27T) @)= COB(T)v

which is also an equivalence by construction. We see that our mapping which
associates an element ¢ to any c is equivariant with respect to the action of per-
mutation, and as a consequence, so is our groupoid morphism since we observed
that our construction does not depend on any other choice.

We immediately see that our morphism sends the unit element of the op-
erad m Ds 1p, to the unit element of the colored braid operad CoB too because
we trivially have CoB(1) = 7 F([D)Q, 1) ip(y= pt. We also see that our groupoid
morphisms commute with operadic composition structures at the object level, be-
cause we use the decomposition of the little 1-discs operad into connected com-
ponents to determine our correspondence on objects, and the operadic composi-
tion of permutations reflects the operadic composition associated to the connected
components of the little 1-discs operad. The existence of a groupoid equivalence
between m D2 (r) 1p,(r) and CoB(r) for each r implies that the morphisms of the
groupoid 7 Dy(r) ip, () are composites of paths representing the generating braids
7; in the little 2-discs space Dy (r). We easily see, by going back to our figures, that
we retrieve the definition of the operadic composites of generating and identity
braids in Proposition 5.1.2 when we form operadic composites of paths in the little
2-discs operads corresponding to these generating elements of the braid group (see
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Figure 5.12). We deduce from this generating case that our groupoid morphisms
preserve the operadic composition of all morphisms in our groupoids.

We conclude that our collection of groupoid equivalences (b) defines a morphism
of operads in groupoids m Do 1p, — CoB, which is also a categorical equivalence by
construction. Hence, we finally have a chain of categorical equivalences of operads
in groupoids

(c) 7Dy <= wDq 1p, — CoB

connecting the fundamental groupoid of the operad of little 2-discs m Dy to the
operad of colored braids CoB. We also readily see, by an immediate extension of our
arguments, that these categorical equivalences preserve the restriction operations
attached to our operads, and hence, extends to categorical equivalences of unitary
operads. This observation completes the proof of Theorem 5.3.4. ]

5.3.5. Remark: The representation of morphisms in the fundamental groupoid
of the little 2-discs operad. The bijection

Wyt MoT p, (@, b) = Mor _ e, (@(a),w(d))

induced by the disc center mapping w : Do(r) — F([D)Q,r) implies that the mor-
phisms of the fundamental groupoid of the little 2-discs space are specified by:

— a configuration of little 2-discs a = (ay,...,a,), which represents the
source of our morphism,

— a configuration of little 2-discs b = (by, ..., b;), which defines the target,

— and a braid on r strands @ = (aq,...,a,) so that «; connects the center
of the ¢th little 2-disc a; in the source configuration g to the center of the
ith little 2-disc b; in the target configuration b.

Thus, we get a picture of the following form:

for a morphism a € Mor, p,(2)(a, b), with the configuration of little 2-discs a repre-
sented at the top of the picture, and b at the bottom.

In the special case of configurations of little 2-discs centered on the axis y = 0,
like
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we may use a simplified picture where, as in the braid diagram representation, we
only retain the trace of our little 2-discs configurations on the axis y = 0:

1|/2 >'
[

2 1

This trace also represents the counter-image of our configurations of little 2-discs
under the operad embedding Dy < Ds. The groupoid equivalence m Dy(r) |Dl(r)l>
CoB(r), considered in the proof of Theorem 5.3.4, is given at the morphism level by
a simple path concatenation operation which recenters the contact points of such
braid diagrams.

5.3.6. Extra remarks. The results of Theorem 5.2.12 and Theorem 5.3.4 are ac-
tually not independent though we give a direct proof of each statement. To explain
the precise relationship between our results, we move from topological spaces to
simplicial objects.

The classifying space construction of §5.2.3 is naturally given as a functor from
categories to simplicial sets. The fundamental groupoid construction has a combina-
torial analogue, defined on the category of simplicial sets, and yielding a left adjoint
w: 8imp — Grd of the restriction of the classifying space functor B : Cat — Simp
to the category of groupoids Grd C Cat. The augmentation 71BG — G of this ad-
junction 7 : 8imp = Grd : B defines an isomorphism of groupoids, for all § € Grd.
The adjunction unit X — B7w X defines a weak-equivalence of simplicial sets when
X is a Kan complex with a trivial homotopy in degree * > 1.

The simplicial version of the fundamental groupoid 7 : 8imp — Grd is a sym-
metric monoidal functor, like the topological one (this result is a variation on the
Eilenberg-Zilber correspondence). Therefore, the fundamental groupoid induces a
functor 7 : 8impOp — GrdOp from simplicial operads to operads in groupoids,
which is still left adjoint of the functor B : GrdOp — 8impOp defined by the arity-
wise application of the classifying space functor from groupoids to simplicial sets.
By combining this adjunction with the realization and singular complex adjunction
relation (see §2.1.7), we get a chain of adjunctions

[ w
- —_
TopOp (1) 8impOp (20 GrdOp
Sing, (—) B
connecting the category of topological operads and the category of operads in
groupoids.

The unit (respectively, the augmentation) of the adjunction between simplicial
sets and topological spaces is a weak-equivalence, and so is the unit (respectively,
the augmentation) of the corresponding adjunction (1) on operad categories.

The augmentation of the adjunction between simplicial sets and groupoids de-
fines a groupoid isomorphism 7B = G, for all § € Grd, while the unit of this
adjunction X — B7X defines a weak-equivalence of simplicial sets as soon as X is
a Kan complex with a trivial homotopy in degree * > 1. These assertions extend to
the unit and the augmentation of the induced adjunction (2) on operad categories.
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From these observations, we deduce that the existence of weak-equivalences of
operads Dy <= - =5 B CoB, asserted by Theorem 5.2.12, implies the existence of
categorical equivalences of groupoids connecting 7 Dy and 7B CoB = CoB. On
the other hand, since we observed that the underlying spaces of the little 2-discs
operad D, are Eilenberg-MacLane spaces, we automatically have weak-equivalences
of operads connecting Do and B Dy. Hence, the existence of equivalences of oper-
ads in groupoids between m Dy and CoB, asserted by Theorem 5.3.4, also implies
the existence of weak-equivalences of simplicial operads connecting Do and B CoB,
which we establish in Theorem 5.2.12.

Our adjunctions (1-2) can also be used to give a necessary and sufficient recog-
nition criterion of Es-operads. Namely, an operad P is F5 if and only if each space
P(r) has a trivial homotopy in degree * > 1 and 7 P is equivalent to the colored
braid operad CoB as an operad in groupoids.

5.4. Outlook: The recognition of E, -operads for n > 2

The recognition of E,-operads is more difficult in the case n > 2 than in the
case n = 2, because the underlying spaces of the little n-discs operads are no longer
Eilenberg-MacLane spaces when n > 2. On the other hand, we do have sufficient
conditions asserting, as in Theorem 5.1.14, that certain operads Sym,, P obtained
by a quotient process from an appropriate contractible object P are E,.

In the context of Theorem 5.1.14, we consider the category of braided operads,
the obvious restriction functor from symmetric operads to braided operads, and the
symmetrization functor which represents a left adjoint of this one. Nice analogues
of these notions have been introduced by Michael Batanin’s with the aim of defining
higher dimensional generalizations of fundamental groupoids (see [15] for this part
of the program). In Batanin’s approach [17, 16, 18], the category of braided operads
is replaced by a category of n-operads, which have an underlying collection P(7)
indexed by n-level trees, representing certain composition patterns that can be
formed from the structure of an n-category. We again have an obvious functor
Op — , Op, from the category of ordinary operads to the category of n-operads, and
we consider an n-symmetrization functor in the converse direction Sym,, : , Op —
Op. In [16], Batanin establishes that the symmetrization of a contractible n-operad
(satisfying some suitable cofibrancy requirement) is an F,,-operad. In [17], he proves
further that many usual models of E,-operads, like the Fulton-MacPherson operads
(see §4.3), can be obtained as instances of this symmetrization construction.

Batanin’s recognition criterions are used to define models of E,,-operads, for
each n independently. In [20], Clemens Berger explains that models of the little
n-discs operads, regarded as a nested sequence of operads, can be obtained from
contractible (symmetric) operads equipped with an appropriate cell structure. The
first application of this recognition method, given by Berger himself in [20], is
the construction of simplicial models of E,-operads from a basic simplicial op-
erad, first considered by Barratt-Eccles in [14], and given by an application of the
translation category construction of §§5.2.13-5.2.16 to the symmetric groups X,,.
The E,-operads arising from the Barratt-Eccles operad are related to simplicial
models of n-fold spaces of suspensions Q"YX"X (defined by Jeff Smith in [160]).
Berger’s method has also been applied successfully by Jim McClure and Jeff Smith
in [136] to prove that a certain operad, defined by natural operations acting on
Hochschild cochain complexes, is F5. This result has lead to a new conceptual
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proof of the Deligne conjecture claiming the existence of a natural Es-structure on
the Hochschild cochain complex (see the preface of the book).

Other models of E,-operads, related to the topics studied in the present chap-
ter, arise from the iterated monoidal categories of [12], which generalize the classical
braided monoidal categories of quantum algebra (n = 2) and yield higher intermedi-
ate structures between the standard (noncommutative) monoidal categories (n = 1)
and symmetric monoidal categories (n = 00).



CHAPTER 6

The Magma and Parenthesized Braid Operad

The operads in the category of small categories, like the operad of colored braids
considered in the previous chapter, govern multiplicative structures associated to
categories. In §5.2.18, we already mentioned that an action of the operad of colored
braids on a category encodes a braided monoidal structure whose tensor product
is associative in the strict sense. We give a detailed proof of this statement in
this chapter. But our main purpose is to explain the definition of a variant of the
operad of colored braids, the operad of parenthesized braids, whose actions encode
general braided monoidal structures, where the tensor product is associative up to
a natural isomorphism.

Recall that the colored braid operad is an operad in groupoids CoB of which
object sets form an operad in sets isomorphic to the permutation operad /1. The
morphisms of the rth component of this operad CoB(r) are isotopy classes of braids
with r strands whose (fixed) contact points are labeled by indices (i1,...,%,) (the
colors) that form a permutation of the set (1,...,7). These contact points, together
with the associated colors, represent the objects of our operad. In the parenthesized
braid operad, denoted by PaB, the object sets form an operad in sets isomorphic to
a free operad 2 = O(u(x1,x2), p(x2, 1)) generated by a non-symmetric operation
i = u(xy,x9) in arity 2. We adopt the name magma, which Bourbaki introduces
for general non-associative structures (see [31, §I.1]), to refer to this free operad in
sets.

In our geometrical picture, the morphisms of the rth component of the paren-
thesized braid operad PaB(r) are still defined by isotopy classes of braids with r
strands, but we now consider contact points located on the center of diadic par-
titions of the interval [—1,1]. These diadic partitions are in bijection with planar
binary trees and this correspondence gives the iso between the object sets of the
parenthesized braid operad and the terms of the magma operad.

The diadic partitions correspond to a suboperad of the little 2-disc operad
defined by certain little 2-disc configurations centered on the horizontal axis. The
components of the operad of parenthesized braids are actually identified with the
full subgroupoids of the fundamental groupoid operad of little 2-discs defined by
these particular subsets of base points. Recall that the connection between the
colored braid operad CoB and the fundamental operad of little 2-discs m D5 involves
a chain of categorical equivalences 7 Dy <= - = CoB. The operad of parenthesized
braids PaB is actually the minimal object which can be used to give the middle
term in such a chain.

In a preliminary step §6.1, we explain the definition, from the magma operad,
of an operad governing general monoidal category structures, where we have no
symmetry constraint on the tensor product. By the way, we also give an operadic
interpretation of the Mac Lane Coherence Theorem. In a second step §6.2, we

171



172 6. THE MAGMA AND PARENTHESIZED BRAID OPERAD

address the definition of the parenthesized braid operad itself, and we give the proof
that this operad is associated to general braided monoidal category structures.

Let us mention that D. Bar-Natan uses the expression of parenthesized braid
and the notation PaB, for a structure which is not our parenthesized braid op-
erad (see [13]). Bar-Natan’s parenthesized braid categories actually represent, in a
linear context, the summands of a free braided monoidal category on one generating
object. The same difference of conception occurs for the parenthesized permutation
operad PaP which we consider in §6.1. We explain the connection between Bar-
Natan formalism and our operadic approach with more details in §6.2.8. By the
way, we also explain the relationship between the operad of colored braids of §5.2
and Joyal-Street’ definition of the free braided monoidal category on one generating
object.

6.1. Magmas and the parenthesized permutation operad

The ultimate objective of this chapter, as we just explained, is to define an
operad in groupoids, the operad of parenthesized braids, with the same morphism
sets as the operad of colored braids in §5.2, but where the object sets are changed to
terms of the magma operad in order to encode general braided monoidal category
structures. The rough idea is to perform a pull-back operation in order to perform
this change of object sets. This pull-back process can also be used to get an operad
governing general non-symmetric monoidal categories, and we study this more basic
example in a first instance in this section. The relationship between monoidal
structures and our pull-back of operads in groupoids actually follows on an operadic
formulation of the Mac Lane Coherence Theorem which we explain in this section
too.

The magma operad, as we explain in the introduction of this chapter, is a free
operad (in sets) with a single (non-symmetric generator) p in arity 2. We explicitly
set:

Q2 = O(pu(xy1, 22), w22, 21)),

where p = p(x1,z2) denotes our generating operation, and tu = p(ze,xq), with
t = (1 2), is the associated transposed element. The algebras associated with this
operad are identified with Bourbaki’s (non-commutative) magmas (see [31, §L.1]).
To be explicit, by going back to the definition of free operads in §1.2, we see that
an 2-algebra in sets consists of an object A € Set equipped with a (possibly non-
commutative and non-associative) product m : A x A — A, giving the action of
the generating operation p € 2(2) on A. This is exactly Bourbaki’s definition of a
magma, and the name of the magma operad is motivated by this correspondence.

To begin this section, we explain a representation of the elements of the magma
operad in terms of non-commutative non-associative monomials and planar binary
trees.

6.1.1. The algebraic definition of the magma operad. Recall that the elements
of a free operad intuitively consists of formal operadic composites of generating
operations, with no more relation between them as the general equivariance, unit
and associativity relations of operads. In the case of the magma operad, we consider
operadic composites of the product p = u(x1,x2), and of the transposed operation
tp = p(xe,x1). If we take the usual product notation xjxe = p(xq,z2) for the
generating operation p = p(x1,x2), then these operadic composites have the form
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of parenthesized words

(wixy), ((wimj)zy), (@i(zjoR)),

((wizj)zr)z),  ((@i(zjze))z),  ((zizg)(ze)),

defined by providing any permutation of the variables (z1,...,,) with a full bi-
nary bracketing (the parenthesization). These parenthesized words are the non-
commutative non-associative monomials considered by Bourbaki.

In this algebraic representation of the elements of the magma operad, the
symmetric groups act by permuting variable indices, the unit is defined by the
one-variable word 1 = 1(z1) = 1, and the operadic composition operation o, :
2(m) x 2(n) = Q(m + n — 1) are defined by the natural substitution of variables
in non-commutative non-associative monomials. For instance, we have:

((x371)22) 01 ((T271)73) = ((25((T271)73))74).

To get this composite, we replace the variable x; (corresponding to our composition
index k = 1) in the first monomial p = ((x321)x2) by the second monomial ¢ =
((xaw1)x3), and we use the variable index shift of §1.1.4 to form a new monomial
poy q = p(q(z1,z2,23),24,25) on the variables (z1,...,xs5).

6.1.2. The planar binary tree representation. In our general construction of
free operads, the elements are represented by trees whose vertices are labeled by
generating operations. In the case of the magma operad, we can form a reduced
version of this representation, where the elements of arity r consist of planar binary
trees with r ingoing edges indexed by a permutation (i1,...,%,) of (1,...,r) as in
the following picture:

() = s (@izy)a) = O (g = N
i J k1 ic J_ k1
(@zpze)e) = 7 (@i@m)m) = 7,
| |
i J k_ 1
(ww) () = N,

In the representation of §I1.A, these planar binary trees correspond to tree-wise
elements in which all vertices are labeled by the generating operation p and where
no vertex labeled by the transposed operation ¢u occurs. The equivariance relation
of §1.1.5 (see also §II.A.2) implies that the tree-wise elements considered in the
appendix are, in the case of the magma operad, equivalent to tree-wise elements of
this reduced form, and hence, that we can restrict ourselves to such planar binary
trees in our construction.

The symmetric action, the operadic unit and the operadic composition opera-
tions of the magma operad are given by the same operations as in §II.A.1 for planar
binary trees. The symmetric group acts by permutation of the indices attached to
the ingoing edges. To obtain the picture of an operadic composite of trees g o T,
we plug the second tree 7 in the ingoing edge of the tree ¢ marked by the index
k and we perform the usual shift operation on the input indices of this composite
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object. For instance, in the case considered in §6.1.1, we get the following picture:

5.1 2 123 24N
e =N
\

6.1.3. The underlying permutation and parenthesization of magma elements.
We readily see that each component of the magma operad 2(r) forms a free X,-
set. We obtain, to be more precise, that each element p € 2(r) has a unique
writing p = sm = (x4, ..., Ts1)), such that 7 arises as a (multiple) composite
of the generating operation p = p(x1,x2) (with no occurrence of the transposed
operation), and where s is a permutation acting on this monomial 7 = 7(z1,...,2,).
We refer to the permutation s occurring in this expression p = s7 as the underlying
permutation of the magma element p. We also refer to the composite defining the
monomial 7 as the underlying parenthesization of the word p.

We can easily retrieve the permutation s and the composite 7w from the mono-
mial expression of our element p € Q2(r). Indeed, the permutation s represents
the ordering of the variables in the word underlying p (where we forget about
the parenthesization), while the monomial 7 = 7(x1,...,x,) is determined by the
parenthesization itself (with the variables put in the canonical order). As an exam-
ple, in the case p = ((25((z271)z3))z4), we obtain the permutation s = (5,2, 1, 3,4),
corresponding to the ordering of variables zszoxi1x324, and we have an identity
p = st = 7(xs, T2, 1, T3, 24), Where

1.2 .3 4 5

7 = ((v1((z223)14))25) =
\

In the tree-wise representation, the permutation s can also be determined by
the ordering (in the plane) of the indices attached to the ingoing edges of our tree,
where we use the outgoing edge of the tree to fix the orientation of the figure.

6.1.4. The unitary extension of the magma operad. The magma operad has a
unitary extension 2, such that

*, ifn=0,
24 (n) —{

2(n), otherwise,

and of which composition structure extends the composition structure of the non-
unitary operad 2. In §3.2, we observe that the partial composition operations
with the additional arity zero term of such an operad are equivalent to restriction
operations Jy : 24(n) — 24(n — 1) so that Ox(p) = p o *. Furthermore, for
a connected free operad, such as the magma operad 2 = O(u(x1,x2), p(x2, 21)),
the associativity of partial composites implies that our restriction operations are
uniquely determined by their expression on generating operations p = u(xy,x2)
and tp = p(xe, 1) (see §3.4). In the case of the magma operad, we obviously have
O1(p) = 02(p) = 1, and 04 (tu) = 02(tp) = 1, the operadic unit, since the arity 1
component of our operad is reduced to a one-point set.

The restriction operations Jx(p) = p oy, * are equivalent to the substitution of a
variable by a unit element * in an operad element p = p(x1, ..., x,). The assignment
01(p) = () = 1 is therefore equivalent to unit identities p(*,z1) = 21 = p(xq, %)
for our generating product operation p(zy,z2) = z1x2. In the algebraic approach
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of §6.1.1, we get the expression of a restriction operation on a non-commutative non-
associative monomials by performing this substitution z = * (and the standard in-
dex shift on the remaining variables). For instance, we have 03 ((x5((x2x1)x3))xs) =
((x4((x221)%))x3) = ((x4(x221))23). In the tree-wise representation of §6.1.2, the
operation J; (o) = o oy, * is identified with the removal of the ingoing edge indexed
by k in the tree o. For instance, in the case p(x1,...,2,.) = ((x5((x2x1)x3))x4), We
get the following picture:

521 3 4 4.2 1 3 4 91 3
0| N )= NS =N
\ \ !

The algebras over the operad 2 are identified with sets A equipped with a
product m : A x A — A, which determines the action of the non-unitary operad
2 on A, and a distinguished element e € A, such that pu(e,a) = a = p(a,e), for all
a € A. This element e represents the image of the arity zero operation * € £2,(0)
in A.

6.1.5. Pullbacks of operads in groupoids. By definition of free operads, giving
a morphism w : 2 — P from the magma operad {2 to an operad in sets P amounts
to giving an element m € P(2) such that m = w(pu).

We consider such a morphism w : 2 — 0b Q towards the object operad P =
Ob Q underlying an operad in groupoids . For each » € N, we form a groupoid
w* Q(r) with Obw* Q(r) = 2(r) as object set, and with morphism sets such that

Mor, Q(r) (p7 q) = MOI’Q(T) (W(p), w(q)>7

for all p,q € 2(r). The identity morphisms of this groupoid w* Q(r) are inherited
from Q(r), as well as the composition operation for morphisms.
The collection of groupoids w* Q(r), r € N, also inherits an operad structure:

— the action of a permutation s € 3, on the groupoid w* Q(r) is the functor
Syt w* Q(r) — w* Q(r) given by the action of s on the magma operad at
the object level, and by the mapping

Mor () (w(p), w(q)) == Mor () (sw(p), sw(q))

=Mor,* o(r) (P:q) =Mor* q(r) (sP,59)

inherited from the groupoid Q(r) at the morphism level;

— the unit object 1 € Obw* Q(1), equivalent to a functor 7 : ¥+ — w* Q(1), is
given by the unit element of the magma operad 1 € 2(1);

— the partial composition operation oy : w* Q(m) x w* Q(n) — w* Q(m +
n—1) is the functor given by the partial composition of the magma operad
at the object level and by the mapping

Mor g(m) (w(po), w(p1)) X Mor g(n)(w(go), w(q1))

=Mor ,* @(m)(P0,P1) =Mor,,* g(n)(q0,91)

2k MOT Q(m4n—1)(W(Po) ok w(qo), w(p1) or w(q1))

=Mor,* @(m+n—1)(P0OKG0,P10Kq1)

inherited from the operad @ at the morphism level.
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The collection w* Q(r), r € N, therefore forms an operad in groupoids w* Q. We
refer to this operad as the pullback of the operad @ to the magma generated by
the object m in 0b Q.

In the case where our operad @ has a unitary extension Q,, we immediately
see that the morphism of non-unitary operads w : 2 — 0b @ associated to an
element m € 0b Q(2) has a unitary extension wy : 2 — 0bQ as soon as the
relations m oy * = mog % = 1 hold in Q. In this situation, we also have a unitary
version w* @, of the pullback operad w* Q defined by an obvious extension of our
construction.

6.1.6. The pullback of the permutation operad. We first examine the application
of our pullback construction to the permutation operad 1, which is basically defined
in the category sets, but which we may also regard as formed of a collection of
discrete groupoids. We adopt the notation CoP to distinguish this operad in the
category of groupoids from the underlying operad in sets /1, so that we may write
0b CoP = 1. Each groupoid CoP(r) is explicitly defined by 0b CoP(r) = %, and
we have

. oty ifu=w,
o Cop(r) (1: V) = (0, otherwise,
for all u,v € 3.
Let m € 0b CoP(2) be the object defined by the identity permutation (1,2) €
Y. The operad morphism w : 2 — 1 = 0b CoP associated with this element m €
0b CoP(2) is obviously identified with the map which sends a parenthesized words
p = p(Ts(1), ..., Te(r)) to the underlying permutation (s(1),...,s(r)) (in the sense
of §6.1.3) and forgets about the bracketing (see §6.1.3). Let PaP = w* CoP denote
the pullback of the permutation operad under this morphism. This notation PaP
refers to the name of parenthesized permutation which we adopt for this operad.
For parenthesized words p = p(2y 1y, - - -, Tu(ry) and ¢ = q(Zy(1), - - -, Ty(r)), With
w(p) = v and w(q) = v as underlying permutations, we have:

pt, if w(p) =w(g),

Morpap(r) (Pa q) = {0 otherwise.

The morphism w : 2 — 0b CoP clearly admits a unitary extension, and we accord-
ingly have a unitary version of the parenthesized permutation operad PaP such
that PaP1(0) = x.

Let o(z1, 22, z3) be the morphism connecting the composites p(p(x1, x2), x3) €
2(3) and p(x1, u(x2,x3)) € 2(3) in PaP(3), and oriented in this direction, from
w(p(zy, x2), x3) to p(xy, p(xa, x3)). We refer to such a morphism, making the op-
eration u = p(xy, ) associative, as an associator. We have the following result,
which gives an interpretation of the Mac Lane Coherence Theorem:

THEOREM 6.1.7 (Operadic interpretation of the Mac Lane Coherence Theo-
rem).

(a) In each groupoid PaP(r), all morphisms can be obtained as (categorical)
composites of morphisms which themselves decompose into operadic com-
position products of identity morphisms and of the associator a(x1, 22, x3).
Naturally, since the morphism sets of the groupoid PaP(r) are either empty
or reduced to a one-point set, all parallel morphisms of the parenthesized
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xl? $2), -TB
m(a(z1,22,23), 1:4)
m(m<xlam( 2,333)), a(m(z1,22),23,24)
a(z1,m(z2,z3),x4) 5517 332 xg, 3'54
m(w1, m(m(wz, x3),4)) a(zy,z2,m(z3,24))

m(Il,a(w27w37w4k

m(xy, m(xe, m(xs,z4)))

F1GURE 6.1. The pentagon relation

braid operad, obtained by such combinations of categorical and operadic
composition operations, are equal.
Now let Q be any operad in the category of categories. Let

m = m(x1,22) € 0b Q(2)
be an object in the arity 2 term of this operad. Let

a(x1, T, 23) € Morg(z)(m(m(z1, z2), x3), m(z1, m(za, z3)))

be an isomorphism connecting the composites p = m(m(x1,x2),23) €
0b Q(3) and ¢ = m(xy,m(xa,x3)) € 0bQ(3) in the category Q(3). If
this associator a = a(xy1, x2,x3) makes the pentagon diagram of Figure 6.1
commute in Q(4), then all parallel morphisms of the categories Q(r) which
we obtain from this iso a = a(x1,x2,x3) by combinations of the oper-
ations of (a) are equal. In this situation, we also have a morphism of
operads in groupoids ¢ : PaP — Q wuniquely determined by the assign-
ment ¢(p(x1,z2)) = m(x1,x2) at the object level, and d(a(x1,x2,x3)) =
a(xy,x9,x3) at the morphism level.

In the construction of (b), if we moreover assume the existence of an object

e € 0b Q(0)
satisfying the relation

m(e,x1) = x1 = m(xy,e)
at the object level, and the relation

a<67$1; 1’2) = a(xla 67:1;2) = (L(.’I}l,ZCQ, 6) = idm(ml,mg)

at the morphism level, then the morphism ¢ : PaP — Q has a unitary
extension ¢4 : PaPy — Q sending the distinguished arity 0 element of the
unitary operad of parenthesized permutations PaP to e € 0b Q(0).

permutation
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o
g \

§§/ Qo3[

D4

FIGURE 6.2. The associa-
hedra in dimension 2. The
edges are given by the im-
age of the associator o €
Mor PaP(3) under the func-
tors — o p : PaP(3) —
PaP(4), k = 1,2,3, and
poy — : PaP(3) — PaP(4),
k = 1,2, in the parenthe-
sized permutation op-
erad PaP.

— o4 b

F1GURE 6.3. The stereographic projection of the 3 dimensional

associahedra.

The binary tree corresponding to the word

(21 (z2(x3(z4ws5)))) is put at the infinity of the figure. The pen-
tagon cells in this picture are identified with the image of the pen-
tagon of Figure 6.2 under the functors — o u : PaP(4) — PaP(5),
k=1,2,3,4, and pox— : PaP(4) — PaP(5), k = 1,2, marked in the
figure. The square cells correspond to factorization of morphisms
«a oy, o, marked by dotted arrows in the figure, and arising from the
consideration of bifunctors — o — : PaP(3) x PaP(3) — PaP(5),

k=1,2,3.




6.1. MAGMAS AND THE PARENTHESIZED PERMUTATION OPERAD 179

EXPLANATIONS. The claims of this theorem follow from an operadic interpre-
tation of the Mac Lane Coherence Theorem [122].

To understand the statement of (a-b), we may look at the picture formed
by the full subgroupoid of PaP(r) generated by the parenthesized words p =
p(Ts1), .-+ Tsy) for a given underlying permutation s € 3,. The morphisms
of this subgroupoid are identified with paths in a graph, represented in Figure 6.2
in the case r = 4, and in Figure 6.3 in the case r = 5. To simplify these pictures,
we only represents the parenthesization (in the form of binary trees) underlying
our objects p € Ob PaP(r), and we omit the permutation labeling (s(1),..., (s(r))
which is by assumption the same for all objects occurring in the figure. In the case
r = 4, we just retrieve the pentagon diagram of the theorem.

The edges of our graph are operadic composition products of associators and
identities. The claim of (a) is therefore equivalent to the connectedness of this
graph, which visibly holds in the case r = 4 and in the case r = 5. The general
case of this claim can be established by an easy induction.

The idea beyond our second claim (b) is that the edges of our graphs form
the 1-dimensional skeleton of a connected cell complex, whose 2-dimensional cells
are equivalent either to the pentagon of Figure 6.1 or to square diagrams. The
picture of Figure 6.3 make this observation clear in the case r = 5. The edges of
our graph form, in general, the 1-dimensional skeleton of a polyhedra, the Stasheff
associahedron K(r), r € N, of which boundary decomposes as a union

OK(r) = U K(m) x K(n),

mo;, n=r

ranging over operadic composition schemes p = a(z;,,...,b(x;,,...,x;,), .., i)
(see §3.1, §3.5), and where the summands are identified with cartesian products of
associahedra of lower dimension. The form of the 2-dimensional cells of the asso-
ciahedra can be obtained by induction from the shape of this decomposition. The
associahedra actually define an operad in topological space modeling homotopy as-
sociative monoids (see [163]). We refer to [67, 111, 119] for various constructions
of the associahedra as convex polyhedra and to Stasheff original article [163] for
a realization as a cell complex. We can use all these constructions to get a ge-
ometrical proof of our statement (see [154]). We can also use a direct inductive
argument, forgetting about the geometry of associahedra and focusing on the un-
derlying combinatorics of trees, to establish that all relations between paths in our
graph reduce to composites of pentagon and square relations. We refer to Mac
Lane’s monograph [122] for further details on this purely combinatorial approach.

To establish our assertion (b), we consider the image of our graph in the
groupoid Q(r), with the given object m € 0b Q(2) and the given associator a €
Mor Q(3) substituted to the universal object p and associator « in the parenthesized
permutation operad PaP. The assumption on our associator a(xi,xe,x3) implies
the commutation of the pentagon diagrams of this graph in the groupoid Q(r).
The (bi)functoriality of operadic composition products implies that the squares in
our graph commute as well. The graph therefore commute as a whole and this
assertion gives the crux of the claim of (b). Indeed, the commutation of the graph
implies that the image of our graph in the groupoid Q(r) gives a coherent definition
of groupoid morphisms ¢ : PaP(r) — Q(r), for all » € N, preserving our operad
structures.
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The requirements of (¢) imply that our operad morphism ¢ : PaP — Q makes
the composite with the arity zero term * in the unitary extension of the operad PaP
correspond to the the composite with the object e in the operad Q. Therefore, we
immediately obtain that our operad morphism ¢ : PaP — @ admits an extension
¢4+ : PaPy — Q@ to the unitary operad PaPy as soon as we have an object e
satisfying our conditions in Q. O

To sum up, the result of Theorem 6.1.7 gives an equivalence between op-
erad morphisms ¢ : PaP — Q and pairs (m,a) consisting of an operation m =
m(z1,22) € 0b Q(2) and an isomorphism a = a(x1, x2, r3) € Mor Q(3) which makes
this operation associative in the operad @. In the expression of this associativ-
ity relation, we assume the verification of coherence constraints, which can be re-
duced to the commutativity of the pentagon diagram of Figure 6.1. In the unitary
case, we counsider an additional object e € Q(0) satisfying strict unit relations
m(e,x1) = 21 = m(x1, e) with respect to the product m, and the natural coherence
constraints with respect to the associator.

For comparison, in the case of the discrete groupoid operad CoP we have the
following statement:

THEOREM 6.1.8.

(a) Giving a morphism ¢ : CoP — Q from the permutation operad CoP to-
wards an operad in groupoids Q amounts to giving an object

m(x1,x2) € 0b Q(2)
satisfying a strict associativity relation

m(m(wl,xg),xzz) = m(xl,m(x% xS))

in the operad Q.
(b) In the construction of (a), if we moreover assume the existence of an object

e € 0b Q(0) such that m(e,x1) = z1 = m(z1,e),

then the morphism ¢ : CoP — Q has a unitary extension ¢ : CoP+ — Q
sending the distinguished arity 0 element of the unitary operad of permu-
tations 1y = 0b CoP to this object e € Ob Q(0).

PROOF. If we regard an operad in sets P as a collection of discrete groupoids,
then giving a morphism of operads in groupoids ¢ : P — Q reduces to giving a
morphism of operads in sets ¢ : P — 0b @ towards the object operad underlying
Q. In the case of the permutation operad P = [1, we deduce from the presentation
by generators and relations of §1 that giving such a morphism reduces to giving
an operation m € Q(2) satisfying the associativity relation on Q. The argument is
similar in the unitary case. O

6.1.9. The operadic representation of monoidal structures on categories. Re-
call that the action of an operad P on an object A in a base symmetric monoidal
category M is equivalent to a morphism ¢ : P — Enda, where End 4 is the endo-
morphism operad of A. In the case where we work within the category of (small)
categories M = Cat and we deal with an object € € Cat, the endomorphism operad
Ende is given in arity r by the category which has the r-functors f : €*" — C as
objects and the natural transformation between them as morphisms.
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From the results established in this section, we obtain that giving a mor-
phism ¢ : PaP, — Ende amounts to giving a monoidal structure on € with
strict unit relations but general associativity isomorphisms (see [122]), while giv-
ing a morphism ¢ : CoP; — Ende is equivalent to giving a monoidal structure
with both strict unit and strict associativity relations. In both cases, we take
the image of the object p = p(x1,z2) under ¢ to get the tensor product oper-
ation m(X1,Xs) = X7 ® Xo : €x € — € of the monoidal structure on €. In
the unitary setting, we also take the image of the unitary element of the op-
erad * € P, (0) to get a natural transformation e : pt — € equivalent to a unit
object 1 € € for this tensor product in €. In the parenthesized permutation operad
case, we take the image of the associator a € Mor P(3) to get a natural isomorphism
a(X1, X2, X3) 1 (X1 ® X2) ® X3 = X; ® (X2 ® X3) making our tensor product
associative. In the colored permutation case, we assume that this associativity
relation holds strictly (X; ® X2) ® X3 = X7 ® (X2 ® X3) and we take the iden-
tity isomorphism as associator a = id. The pentagon relation of Theorem 6.1.7 is
nothing but the usual coherence axiom of [122] for the associativity isomorphism
of a monoidal category, and we have a similar correspondence for the coherence
constraints associated with the unit object. This identity gives the correspondence
between the results of Theorem 6.1.7-6.1.8 and the definition of monoidal structures
on a category C.

To complete the account of this section, we record the following result which
motivates the introduction of the pullback construction of §6.1.5 for operads in
groupoids:

PROPOSITION 6.1.10. Let P be an operad in groupoid which has the magma
operad as underlying object operad Ob P = 2. For any lifting problem

R
7
a?n./v;‘ ; l¢
P——>5S

such that ¢ is a categorical equivalence of operads in groupoids (see §5.2.2), we have
a fill-in morphism v that make the diagram commute in the strict sense.

PRrROOF. Exercise. O

6.2. The parenthesized braid operad

Recall that the operad of colored braids CoB satisfies Ob CoB = [1. We de-
fine the operad of parenthesized braids PaB by applying the pullback construc-
tion of §6.1.5 to this operad CoB. We explicitly take PaB = w* CoB, where we
again consider the morphism w : 2 — [] mapping a parenthesized word p =
P(Ts(1)s -+ Tsry) € £2(r) to its underlying permutation s € %, (as in §6.1.6). We
then have 0b PaB(r) = 2(r) for each r, and Morp,p() (P, q) = Mor cop(r) (W (p), w(q))
for any pair of parenthesized words p = p(2y (1), . - -, Tu(r)) and ¢ = q(@y(1), - - - To(r))
with 4 = w(p) and v = w(q) as underlying permutations. The symmetric group
actions, the unit, and the composition operations defining the operad structure on
this collection of groupoids are inherited from the magma operad at the object
level, and from the colored braid operad at the morphism level (see §6.1.5). The
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parenthesized braid operad has a unitary version (like the parenthesized permu-
tation operad) which is defined by an obvious unitary extension of our pullback
construction.

Recall that we use the notation CoP for the permutation operad 1 regarded as
an operad in groupoids. In the colored operad case, we have an obvious morphism
of operads in groupoids ¢ : CoP — CoB given by the identity 0b CoB = [1 at the
object level. This morphism admits a lifting

PaP > PaB ,
CoP —— CoB

which identifies the operad of parenthesized permutations PaP with a suboperad
of PaB such that Ob PaB = 0b PaP = (2. This operad embedding construction has
an obvious extension in the unitary setting.

The main purpose of this section is to give an analogue of Theorem 6.1.7 for the
parenthesized braid operad. To complete our account, we also record an analogue
of the result of Theorem 6.1.8 for the colored braid operad. But before examining
this question we give a topological interpretation of the operad PaB in terms of the
fundamental groupoid of the little 2-discs operad 7 Ds.

6.2.1. Parenthesized braids and fundamental groupoid elements. In the defini-
tion of the operad of colored braids CoB, we make a choice of contact points a
on the medium axis y = 0 of the open disc D2. The planar binary trees, defin-
ing the objects of the groupoids PaB(r), actually have an analogous topological
interpretation in terms of configurations of contact points on the line y = 0.

Instead of the equidistant contact points of §5.0, we just consider the centers of
diadic decompositions of the axis y = 0 of the open disc D2. In the next proposition,
we establish that these configurations of points are associated to little 2-discs con-
figurations defining a free operad, isomorphic to the magma operad, inside the little
2-disc operad Ds5. The correspondence between these diadic decompositions, the
free suboperad of little 2-discs, and the planar binary trees of the magma operad,
is made explicit in the picture of Figure 6.4.

In the proposition, we use this correspondence and we elaborate on the proof of
Theorem 5.3.4 to identify the parenthesized braid operad PaB with a suboperad of
the operad w Dy formed by the fundamental groupoids of the little 2-discs spaces.
In the sequel, we essentially use the correspondence of this proposition to get a con-
venient representation, elaborating on observations of the previous chapter (§5.3.5),
for the morphisms of the parenthesized braid operad. Figure 6.5 provides the pic-
ture of such a morphism in the parenthesized braid operad. In general, we use
the simplified representation, where the source and target of our morphism are re-
placed by the corresponding diadic decompositions of the interval, rather than the
perspective representation given in this figure.

PROPOSITION 6.2.2.
(a) The little 2-disc configuration

n = S D2(2)
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FIGURE 6.4. The correspondence between binary trees, operadic
composites of a generating little 2-disc configurations and diadic
decompositions of the interval in arity » = 2,3,4. The indices
(i,9), (i,4, k), (i,4,k,1), ... run over permutations of (1, 2), (1,2, 3),
(1,2,3,4), ... The diadic decompositions of the interval are coun-
terparts, in the little 1-disc operad, of the little 2-disc composites
considered in this picture (see proof of Proposition 6.2.2 for de-
tailed explanations).

FIGURE 6.5. The picture, in the fun-
damental groupoid of the little 2-discs
operad, of a morphism of the paren-
thesized braid operad.

generates a free operad, isomorphic to 2, within the little 2-disc operad D-.
(b) The disc center mapping of §4.2.2, applied point-wise to paths in little
2-disc spaces, induces an isomorphism

Wy : T Do I_QE—> PaB

between the restriction of the fundamental groupoid operad of Do to the
suboperad 2 C Dy and the operad of parenthesized braids PaB.
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PrROOF. Let ¢ : 2 — Dy be the morphism sending the generating element
u € 2(2) of the free operad 2 to the little 2-disc configuration pu € D9(2) of
assertion (a). The claim of assertion (a) is that this morphism defines an embedding.
In our verification, we use the symmetric collection equivalent to the magma operad
2, and we consider monomials p = p(z;,,...,2;,) € 2(r) of which variables may
be indexed by an arbitrary finite set r = {i1,...,4,} (not necessarily a standard
ordinal). Since p visibly comes from the operad of little 1-discs Di, regarded as
a suboperad of Dy (see §4.1.5 and §5.1.7), our morphism ¢ admits a factorization
through Dq, and we are therefore reduced to prove that this factorization ¢ : 2 —
D, is an injection. Equivalently, we look at the trace of little 2-disc configurations
¢ € Ds(r) on the axis y = 0 in the ambient disc D? to determine the counter-image
of elements ¢ in 2. (Recall that the image of Dy in Dy consists of configurations of
little disc centered on this axis y = 0, and the trace, considered in our process, can
be used to determine the counter-image in D; of an element of Ds.)

The little interval configurations lying in the image of our map ¢ are associated
with diadic decomposition of the interval [—1, 1] (see Figure 6.4 for examples). To
retrieve an element of 2 from the corresponding little interval configuration c,
just observe that we have ¢ = u(a,b) where a € Dy({i1,...,im}) (respectively,
b€ Di({j1,---,7n})) is produced by applying the affine transformation ¢ — 2t +
1 (respectively, ¢ — 2t — 1) to the configuration of little intervals lying in the
subinterval [—1,0] C [-1,1] (respectively, [0,1] C [—1,1]) in the collection ¢. We
continue by induction to obtain the full decomposition of ¢ and to determine the
counter-image of ¢ in £2.

The second claim of the proposition is a variation on the result of Theo-
rem 5.2.12. Simply note that we now have a direct isomorphism w, : 7w Dy \Qi PaB
lifting the chain of category equivalences

7TD2(T’) |_Q(r) v > PBB(T‘)

[ |

7 Da(r) 1p, (ry — CoB(r)
2

[

7 Da (1)

considered in the proof of Theorem 5.2.12. (]

We must note that the isomorphism of the proposition wy : ™ Dy 10— PaB does
not extend to a morphism of unitary operads. We therefore need to go back to the
rectification process of Theorem 5.3.4 when we deal with restriction morphisms
u* : PaBi(n) — PaB;(m) defining the composition operations with the additional
term PaB, (0) = * of the unitary parenthesized braid operad PaB.

6.2.3. The associator and the braiding in the parenthesized braid operad. The
morphism ¢ : PaP — PaB considered in the introduction of this section is given by
the identity 0b PaB = 0b PaP = (2 on object sets and is defined at the morphism
level by sending the associator o € Mor PaP(3) in the parenthesized permutation
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operad to the morphism

in the parenthesized braid operad. The pentagon relation of Figure 6.1 is equivalent
to the identity of the following parenthesized braid diagrams

in PaB(4). The cover picture of this volume is the perspective representation of this
pentagon relation in the morphism set of the fundamental groupoid of the little 2
discs space D2 (4).

Besides the associator a € Mor PaB(3), we consider the morphism

which we call the braiding. We readily see that the associator and the braiding
satisfy hexagon coherence constraints expressed in Figure 6.6 (in algebraic terms)
and equivalent to the identity of the following parenthesized braid diagrams

1 23

and

in PaB(3).
We can now formulate the analogue of Theorem 6.1.7 for the parenthesized
braid operad:

THEOREM 6.2.4.

(a) In each groupoid PaB(r), all morphisms can be obtained as (categorical)
composites of morphisms which themselves decompose into operadic com-
position products of identity morphisms, of the associator o € Mor PaB(3),
and of the braiding T € Mor PaB(2).

(b) Let Q be any operad in the category of categories. Let

m = m(x1,z2) € 0b Q(2)
be an object in the arity 2 component of this operad. Let

a(x1, 9, 23) € Morg(z)(m(m(z1,z2), 23), m(z1, m(ze, z3)))



186 6. THE MAGMA AND PARENTHESIZED BRAID OPERAD

m(z1,T2),
C(T:W mn«a)
m(za, 1), m(x1, m(x2,73))
a(acQ,xl,acg)\L lc(acl,m(xg,xg))
m(xg, m(r1,73)) m(zg,3), 1)
m(izam\ Aﬂcl)
m(xs, m(r2,71))
xla x271:3
m(zy, i(m/ W%) !
xla 3)3,%‘2 mlaxQ
@(wlyzsyxz)ll lc(m(ihfw)@s)
m(z1,T3), m(xs, m(x1,2))
WL(c(amw:;XL Agg) 1
-T?,,J:l
FIGURE 6.6. The hexagon relations
be an isomorphism connecting the composites p = m(m(zy1,x2),x3) €

0b Q(3) and ¢ = m(x1, m(z2,z3)) € Ob Q(3) in the category Q(3). Let

c(x1,r2) € Morg(z)(m(z1, x2), m(w2,21))

be an isomorphism connecting the operation m = m(x1,z2) € O0b Q(2) to
its transposite tm = m(x2,x1) € 0b Q(2) in the category Q(2). If these
isos a = a(xy,x9,23) and ¢ = c(x1,x2) make the pentagon diagram of
Figure 6.1 and the hexagon diagrams of Figure 6.6 commute, then we have
a morphism of operads in groupoids ¢ : PaB — Q uniquely determined
by the assignment ¢(u) = m(z1,x2), ¢la) = a(xy,x2,23) and ¢(1) =

c(x1,xa).

(¢) In the construction of (b), if we moreover assume the existence of an object

e € 0b Q(0)

satisfying the relation
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FIGURE 6.7. An instance of a parenthesized braid decomposition.

at the object level, and the identities

a(67x17x2) = a(l‘l,€7.’1§‘2) = a(wl,xz,e) = idm(ml,zg)v
cle,x1) = c(x1,€) = idy,

at the morphism level, then the morphism ¢ : PaB — Q has a unitary
extension ¢4 : PaBy — Q sending the distinguished arity 0 element of the
unitary operad of parenthesized braids PaPy to this object e € 0b Q(0).

ProOF. We subdivide the proof of this theorem in several steps.

Step 1: The decomposition of morphisms in the parenthesized braid operad. We
first prove that any given morphism 3 € Morp,g(,)(p, ¢) has a decomposition of the
form specified in assertion (a). We suggest the reader to follow our argument lines
on the example depicted in Figure 6.7.

We have Morp,g(r)(p,q) = Morcog(r(w(p),w(q))) C B, by definition of the
groupoids of parenthesized braids. We immediately obtain therefore that our mor-
phism 3 € Morp,g()(p, ¢) admits a decomposition

B=P-... Pu,

where each factor ; € Morp.g(r)(pi, ;) consists, after forgetting about parenthe-
sizations, of a single generating factor 7 in the braid group B,.

If pi = pi(x51ys--.,T5(ry) has s = (s(1),...,s(k),s(k +1),...,s(r)) as un-
derlying permutation, then ¢; has an underlying permutation of the form st =
(s(1),...,s(k+1),s(k),...,s(r)), with the factors (s(k), s(k+1)) switched. We pick
a parenthesization gathering the factors x41) and x(x41) in the word z gy . .-z 4.
We thus consider a parenthesized word of the form

Ki = Ti(Tg(1)y -+ M(Ts(k)> Ts(ht1)), - -5 Ts(ry) € 2(1),

where m; € Q(r — 1). By Theorem 6.1.7(a), we have a parenthesized permutation
operad morphism

P =p(Ts1)s- s Ts(k)s Ts(k+1)s - - -+ Ts(r)) € Mo PaP(r),
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formed by a composite of associators, connecting p; to x;. We similarly have a
morphism

o= 0’(373(1)7 s Ts(k41) Ts(k)y - - - ,xS(T)) € Mor PaP(r)

going from g; to Xj = T (T5(1), -+ s (T s(g1)s Ts(k))s - - - Ts(r)). We therefore have a
decomposition of each morphism g; of the form

Bi = 0(Ts(1)s - » Ts(ot1)s T(k)s - > Ts(r))
T X1y T(Ts(h), To(ha1))s - - -5 Ts(r))
. p(xs(l)v s Ts(k)y Ls(k41)s -+ - vxs(r))

where p and o are defined by composites of associators, and the medium factor
s - idy; o T reduces to the application of a braiding 7 within a fixed parenthesized
word.

This observation completes the proof of assertion (a) of the theorem.

Step 2: The construction of the category morphisms ¢(r) : PaB(r) — Q(r). The
result of Theorem 6.1.7(b) implies the existence (and uniqueness) of a morphism
¢ : PaP — @, determined by the assignments ¢(u) = m and ¢(a) = a, whenever
we have an object m € 0b Q(2) and an associator a € Mor Q(3) satisfying the
pentagon relation of Figure 6.1. The aim of our next verifications is to establish
that this morphism ¢ : PaP — Q@ has an extension to the parenthesized braid
operad PaB, uniquely determined by the additional assignment ¢(7) = ¢, for a
symmetry operator ¢ € Mor Q(2) satisfying the hexagon relations of Figure 6.6.

The definition of the morphism ¢ : PaP — @ includes the definition of a
mapping ¢ : 2(r) — Q(r) at the object level, for each » € N. In this second
step, we aim to define a corresponding mapping ¢ : Mor PaB(r) — Mor Q(r) at
the morphism level, and to complete the construction of a groupoid morphism
@(r) : PaB(r) — Q(r), for each r € N.

The image of a morphism 3 € Morp,g()(p,¢q) under an operad morphism ¢ :
PaB — Q is actually uniquely determined from the decomposition obtained in Step
1 and the assignments a — a = a(z1, z2,23), T = ¢ = ¢(x1,x2), since our operad
morphism is supposed to commute with all structure operations involved in this
decomposition. For instance, in the case of the braid of Figure 6.5, we obtain an
image of the form

o(B) = m(1, a_l)-m(l,m(l,c)) -m(1,a)-a(l,;m,1)-m(m(1,c),1)
m(a,1) -m(m(c,1),1)-m(a=t,1) - m(m(1,¢),1) - m(a, 1)

in Mor Q(4) (where we do not mark input permutations to simplify our expression).
The main purpose of our verifications is to establish that the mapping

B(r) : Mor pag(ry (P; @) — MorQ(o(p), ¢(q)),

which we determine from this decomposition process in Step 1, does not depend on
choices involved in the operation.

The Mac Lane Coherence Theorem implies that ¢(8) does not depend on the
choice of the associator decompositions between the parenthesized words occur-
ring in our factorization. We also see that the outcome of our construction does
not depend on the parenthesizations m € 2(r — 1), which we chose to gather the
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factors of the braiding operations in our words. Indeed, we can go from one paren-
thesization k; = k;(x1,...,2,—-1) to another one \; = A\;(z1,...,z,—1) by a mor-
phism p = p(z1,...,2,—1) defined within the parenthesized permutation operad
and formed by a composite of associators therefore. The middle square in the
commutative diagram

Pi(Ts(1)-rTa(r))
I
Ki(Zs(1) s (T s (k) Ts (k1)) 5o Ts(r)) =X (Ts(1) s s (T s (k) 5T s (k1)) oo sTs(r))
KiOKT AiOkT
POkt
Ki(Zs(1)se (T s (kt1) 5T s (k) )seerTs(r)) =X (Ts(1) s s (T s (k1) sTs (k) )5 Ts(r))
Qi (Zs(1)se-Ts(r))

is carried to a commutative square by our morphism ¢, for any choice of assignment
¢ = ¢(7), because the composition products of operads in categories oy : Q(m) x
QR(n) = Q(m+mn—1) is a category morphism (or equivalently, defines a bifunctor).
The external triangles are carried to commutative triangles too (by the Mac Lane
Coherence Theorem), and we conclude that both paths from p; = p;(z 51y, - -, Zs(r))
to ¢; = qi(Zs1), - - -, Ts(r)) yield the same morphism in Q.

We still have to establish that the morphism ¢(3) does not depend on the
decomposition § = B - ... B, formed from the image of the morphism S in the
braid group B,. We are reduced to check, for this purpose, that the application of
the generating relations of braids does not change the result of our construction.

In the case of the commutation relations

TkTi = TiTk,

we assume that a parenthesization of the form

i = Ti(Ts(1)s -+ o s M Ts(h)y Ts(ha1))s - - 5 (s ()5 Ts(141) )5 -+ + 5 Tu(r))

is chosen when we proceed to determine the image of the factors 5; and f;41
associated with the elementary braids of this relation. The identity of the result
associated to the decompositions

B=P1-BiBixr-o Pn=P1Bit1-Bi Bn
follows, in that case, from the associativity of the composition product of operads.
In the case of the braiding relations

TkTk+1Tk = Tk+1TkTk+1,
we assume that a parenthesization of the form

i = Ti(Ts(1ys - oo (T (ks Ts(hr1))s Ta(hr2))s - -+ Ts(r))

is chosen when we proceed to determine the image of the factors associated with
the elementary braids of the relation. The identity of our morphisms in Q reduces
in that case to the commutation of the duodecagon diagram of Figure 6.8, which
we establish next (in Lemma 6.2.5).
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a m(1,c) a”?!
m(m(zy,z2),x3) —>m(x1,m(z2,x3)) —>m(z1,m(z3,z2))—>m(m(z1,z3),22)

m(e,1) m(c,1)
m(m(z2,x1),73) m(m(w3,x1),02)
a e(1,m) e(1,m) a
m(zz,m(z1,73)) m(zs,m(z1,22))
m(1,c) m(1,c)

\ N
m(.ﬁEQ.’m(Ig,fL’l))Hl m(m(mg,xg),ml)Hm(m(mg,mg),zl)ﬁa m(zg,m(z2,x1))
a~ m(c,

FIGURE 6.8. The duodecagon relation

Step 3: The preservation of operadic composition structures. In the previous
step, we checked that we have a coherent definition of morphisms of small categories
¢ : PaB(r) — Q(r), extending the components of an operad morphism ¢ : PaP — Q
on the parenthesized permutation operad PaP. The purpose of this third step is to
check that our morphisms of small categories ¢ : PaB(r) — Q(r) actually define an
operad morphism on the parenthesized braid operad PaB. The equivariance and the
preservation of operadic unit are immediate, and the preservation of operadic com-
position products at the object level follows from the definition of our morphisms
as extensions of the components of an operad morphism on the parenthesized per-
mutation operad. We are therefore reduced to check the preservation of operadic
composition products on the morphisms of the parenthesized braid operad.

The decomposition of morphisms, which we have used to determine the map-
ping on morphisms ¢ : Mor PaB(r) — Mor Q(r) in Step 2, can be applied to reduce
the verification of the relations ¢(8 of v) = ¢(8) ok ¢(7) to generating cases. The
preservation of operadic composites with associators is also included in the defini-
tion of our morphisms of small categories as extensions of the components of an
operad morphism on the parenthesized permutation operad. We therefore reduce
our verifications to the case where 5 (respectively, 7) is an identity morphism in
PaB and ~ (respectively, () is given by the application of a braiding 7 within a
parenthesized word.

The verification of the relation ¢(8 ok v) = ¢(B) ok ¢(7y) is immediate when S
is the identity and the braiding occurs in the second factor y. Thus we focus on
the case where the braiding occurs in the first factor 3.

We assume 8 = k(z1,...,7(x), Ti41),---,Zm) and v = idy, for some k €
Q2m—-1),1€{l,...,m—1}, and A € 2(n). We can still use the decomposition of
the word A\ within the magma operad to reduce our verification to the case where
A=pand n=2. If vy =1id, is plugged in an input k£ # [,{ + 1 of the word 8 =
k(x1,...,7(x1,T141), - - -, Tm), then our relation follows from the associativity of the
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composition products in Q. If v = id, is plugged in an input & = I,/ + 1 of the
braiding 7 = 7(x;, x;41) within the composite 8 = &(x1,...,7(2;, Zi41)s .-y Tim)s
then we see that the decomposition of the morphism 7(z;, z;41) o id,,, involved in
the construction of our map ¢ : 8 oy v, amounts to the application of the hexagon
relations of Figure 6.6 within the parenthesized braid operad. The commutation of
these diagrams in Q implies the preservation of the operadic composition operation
in this remaining case.

This verification completes the proof of assertion (b) of the theorem.

Step 4: the definition of the unitary extension of our morphism. To address
the proof of assertion (c), we just observe that the relations of this assertion, which
read moje = mogse =1, aoy id, = aog id, = a o3 id, = id,,, and c oy id, =
coj ide = id;1, amounts to requiring that the assignment ¢ : * — e gives a coherent
extension of our morphism ¢ : PaB — @ when we consider the image of the
object p € Ob PaB(2), and of the morphisms a € Morp,p(s) (((z122)23), (z1(2223))),
T € Morpap(2) ((122), (x221)) under the restriction operations 9, = — o * in PaB.
The decomposition obtained in the preliminary step then implies that ¢ carries any
restriction operation in PaB to the corresponding composite with the object e in
the operad Q. The conclusion follows. |

The next lemma, which we use in the proof of Theorem 6.2.4, is a standard
statement of the theory of braided monoidal categories (see [93]):

LEMMA 6.2.5. If the morphisms a(x1,x2,x3) and c(x1,x2) in Theorem 6.2./
make the heragon diagrams of Figure 6.6 commute, then the duodecagon of Fig-
ure 6.8, tiled with two hexagons and one square, commutes as well. (To simplify,
we do not mark input permutations in the morphisms of this diagram.)

We suggest the reader to make these relations explicit for the associator a and
the braiding 7 of the parenthesized braid operad PaB.

PrROOF. The left hand side and right hand side hexagons in the duodecagon
tiling of the lemma are identified with the hexagons of Figure 6.6 (with a factor a™*
inverted) and therefore, these hexagons commute. The medium square commutes
as well. Indeed, for the morphism ¢ = c¢(x1,x2), going from m = m(z1,x2) to
(1 2) - m = m(xg,21), the functoriality of the composition product os : Q(2) x
QR(2) = Q(3) gives cog ((1 2) -m)-mogc=cogc=((12):m)oyc-cogm, which
is the identity asserted by the commutation of that square. ([

To sum up, the result of Theorem 6.2.4 gives an equivalence between operad
morphisms ¢ : PaB — @ and triples (m,a,c) consisting of an operation m =
m(z1,22) € O0b Q(2), an isomorphism a = a(z1, z2,x3) € Mor Q(3) (an associator),
which makes this operation associative in the operad @, and an isomorphism ¢ =
c(x1,22) € Mor Q(2) (a braiding), which makes m braided commutative in the
sense that we have ¢(z1,22) : m(zy,z2) — m(z2, 1), but we do not necessarily
get the identity of the object m = m(x1,z2) when we go back to m by applying
this symmetry iso twice. In both the expression of the associativity and symmetry
relations, we assume the verification of coherence constraints, which can be reduced
to the commutativity of the pentagon diagram of Figure 6.1 in the associativity case
and of the hexagon diagrams of Figure 6.6 in the symmetry case. In the unitary
case, we consider an additional object e € Q(0) satisfying strict unit relations
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m(e,x1) = 21 = m(x1, e), with respect to the product m, and the natural coherence
constraints with respect to the associator and the braiding.

For comparison, in the case of the colored braid operad, we obtain the following
statement:

THEOREM 6.2.6.

(a) Giving a morphism ¢ : CoB — Q from the colored braid operad CoB
towards an operad in categories Q amounts to giving an object

m(z1,22) € 0b Q(2)
and an isomorphism
c(z1,22) € Mor oy (m(x1, r2), m(x2, 1))
so that the strict associativity relation

m(m(z1,22),r3) = m(z1, m(v2,r3))

holds in the operad Q, and the hexagons of Figure 6.6, where we take
a = id, commute.
(b) In the construction of (a), if we moreover assume the existence of an object

e € 0b Q(0) such that m(e,z1) = x1 = m(z1,e),
and cle,x1) = id = c(x1, €),

then the morphism ¢ : CoB — Q has a unitary extension ¢4 : CoBy — Q
sending the distinguished arity 0 element of the unitary operad of colored
braids CoB to this object e € 0b Q(0).

Proor. This result follows from the same arguments as Theorem 6.2.4. We
just drop the consideration of associators from our verifications. ([l

6.2.7. The operadic representation of braided monoidal structures on categories.
We can extend the observations of §6.1.9 to get an interpretation of the action of
the operads P = CoB,, PaB on a category C. We again use that such an action
is encoded by a morphism ¢ : P — Ende mapping the objects of our operad
p € 0bP(r) to multi-functors f : €*" — € and the morphisms of the operad to
natural transformations.

In both cases, we can take the image of the object u = p(x1,z2) under our
morphism ¢ to get the tensor product operation m(X;, X)) = X1 ®Xo : €xC — €
of a monoidal structure on € (as in §6.1.9). The image of the unitary element
of the operad gives a natural transformation e : pt — C equivalent to a unit
object 1 € € for this tensor product in C, and we can take the image of the
image of the braiding 7 to get a natural isomorphism (X, X2) : X1 ® X5 =
Xo ® X7 making the tensor product braided commutative. In the parenthesized
braid operad case, we take the image of the associator o € Mor PaB(3) to get a
natural isomorphism a(X1, X2, X3) : (X1 ® X5) ® X3 — X; ® (Xo ® X3) making
the tensor product associative. In the colored braid operad case, we assume that
the tensor product satisfies the associativity relation in the strict sense (X1 ® X2)®
X3 = X; ® (X2 ® X3) and we take a(X1, Xo, X3) = id for the associator. Hence,
we obtain that giving a morphism ¢ : PaB, — Ende is equivalent to giving a
braided monoidal structure (in the sense of [122]) with strict unit relations but
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general associativity isomorphisms in €, while giving a morphism ¢ : CoB, —
Ende is equivalent to giving a braided monoidal structure with both strict unit
and strict associativity relations. The pentagon diagram of Figure 6.1 and the
hexagon diagrams of Figure 6.6 are equivalent to the usual coherence axioms of
braided monoidal categories (see [122]), and we have a similar correspondence for
the coherence constraints associated with the unit object.

The constructions of this chapter can readily be adapted to get operads gov-
erning symmetric monoidal category structures with strict or general associativity
isomorphisms. We then consider the operad in sets [y such that I, (r) = pt,
for all » € N (the operad of commutative monoids), and the discrete operads in
groupoids, which has the components of this operad as object sets. We get the
operad governing symmetric monoidal category structures with strict associativ-
ity isomorphisms by performing the pullback of this operad along the morphism
a: [y — Iy, from the permutation operad 14 to I}, and the operad governing
symmetric monoidal category structures with general associativity isomorphisms
by performing the pullback along the morphism w : 2, — [, from the magma
operad 24 to .

6.2.8. Free braided monoidal categories. The free algebra construction of §1.3.4
can be applied in the category of small categories, and, in the case P = CoB, PaB,
this construction returns a free (strict, general) braided monoidal category S(P, X),
which we naturally associate to any X € Cat.

We focus on the case of a one-point set X = pt. For the operad P = CoBj,
we obtain 0bS(CoBy,pt) = N, and S(CoB,pt) = [],cn(CoBy(r) x pt*")s, =
[,en CoBy(r)s, is identified with the disjoint union of the braid groups B, re-
garded as categories with a single object. The tensor product ® : S(CoB, pt) x
S(CoB4,pt) — S(CoB., pt) is given by the addition of non-negative integers at
the object level, and by the direct sum of braids at the morphism level. We actu-
ally retrieve, with this operadic approach, the Joyal-Street construction of the free
braided monoidal category in [93].

For the operad P = PaB,, we have 0b S(PaB_, pt) = 2(x)4, where we use the
notation 2(z)4 for a free magma on one variable x. The category S(PaB., pt) ad-
mits a decomposition S(PaB ., pt) = [[,cn(PaB (1) xpt*")s, = [1,en PaB+(7)s,
whose rth summand PaB. (r)s, is identified with the full subcategory generated by
monomials of weight r in the object set defined by the free magma 2(z),. For any
pair of such monomials p,q € 2(x), we moreover have Mors(p.g, p¢)(P,q) = Br.
The tensor product associated to this category ® : S(PaB., pt) x S(PaB,, pt) —
S(PaB4,pt) is given by the substitution operation p(zx,...,z) ® ¢(z,...,x) =
w(p(z,...,x),q(x,...,x)) at the object level, and again, by the direct sum of braids
at the morphism level.

Bar-Natan’s parenthesized braid category (see [13]) is identified with the Hopf
groupoids K[PaB_ (r)yx, ] associated to these summands of the free braided monoidal
category (we give more details on Hopf groupoid constructions in §9).
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CHAPTER 7

Hopf Algebras

The purpose of this chapter is to review the definition of the notion of a Hopf
algebra and to recall classical structure results on these objects.

Briefly recall for the moment that a Hopf algebra is an object which includes
both a counitary coalgebra and a unitary algebra structure, and an operation,
called the antipode, which is a generalization of the classical inversion operation for
groups. Hopf algebras equipped with a commutative algebra structure naturally oc-
cur in the framework of algebraic geometry, as function rings of affine group schemes
(see for instance [1, 30]). Hopf algebras equipped with a cocommutative coalgebra
structure notably occur in algebraic topology as the homology of connected H-
spaces (see for instance [177, §IIL.8] for an introduction to this subject), and as
the natural structure of the Steenrod algebra (see [164]). Hopf algebras equipped
with a cocommutative coalgebra structure also occur in representation theory, as
the dual objects of the commutative Hopf algebras considered in the study of affine
group schemes, and as enveloping algebras of Lie algebras (we address the subject
of Lie algebras in the second section of this chapter). In the next chapter, we also
use complete cocommutative Hopf algebra structure to extend the rationalization of
abelian groups to pro-nilpotent groups. We refer to this construction as the Malcev
completion. Further fields of applications of commutative and cocommutative Hopf
algebra structures include algebraic combinatorics (see the monographs [3, 4]), the
Grothendieck-Galois theory (see for instance [168, §6] for a nice introduction to this
subject, and [29] for a comprehensive account), and the Connes-Kreimer approach
of renormalization theory in mathematical physics (see [42]).

The notion of a Hopf algebra makes also sense without assuming any commu-
tativity property, for both the coalgebra and the algebra part of the structure, and
significant examples of Hopf algebras which are neither cocommutative nor commu-
tative occur in the theory of quantum groups (we refer to [47] for a short overview
of this subject, or to reference books). In our applications however, we only deal
with Hopf algebras which are cocommutative as coalgebras. Therefore, when we
deal with a Hopf algebra, we generally assume that the coalgebra structure is co-
commutative and we do not recall this convention, unless the precision is required
by the context.

In the first section of the chapter (§7.1), we recall the precise definition of a
Hopf algebra, and we give a reminder of basic examples of Hopf algebra structures.
To be more specific, we check that the free k-module K[G] associated to a group G
inherits a Hopf algebra structure.

The second section (§7.2) is devoted to the connection between Lie algebras and
Hopf algebras: we recall the definition of the enveloping algebra of a Lie algebra,
and the statement of the theorems of Poincaré-Birkhoff-Witt and Milnor-Moore
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(the classical structure theorems of the theory of Hopf algebras). The main out-
come of these theorems is that the enveloping algebra functor defines an equivalence
of categories between the category of Lie algebras and a category formed by (co-
commutative) Hopf algebras satisfying an appropriate conilpotence condition.

In the third section (§7.3), we provide a comprehensive study of Hopf algebras in
the category of complete filtered modules. These complete Hopf algebra structures
give the required device for the Hopf algebra approach of the Malcev completion of
groups, which we tackle in the next the chapter §8.

7.1. The notion of a Hopf algebra

This first section is introductory. Our purpose is to recall the general definition
of a Hopf algebra and the definition of the Hopf algebra structure on a group
algebra K[G].

In short, the notion of a Hopf algebra is defined by replacing sets, underlying
the usual group structures, by coalgebras, and by using tensor structures instead of
cartesian structures in the definition of the unit, product, and inversion operations.
In the case of a group algebra K[G], we consider the natural coalgebra structure
of §2.0.5, with the coproduct defined by the diagonal A[g] = [g]®[g] on the elements
of G, and the counit such that €[g] = 1, for any g € G. The Hopf structure on K[G]
is yielded by the structure operations attached to our group G. In the sequel, we
generally assume that the underlying coalgebra of a Hopf algebra is cocommutative,
and we therefore take this convention in our definition.

The definition of a Hopf algebra makes sense in the general setting of symmetric
monoidal categories. Throughout this section, we generally start with abstract
definitions, formulated in that framework, and we make explicit the application of
the concepts in the case of a category of modules over a ground ring K. The purpose
of this abstract approach is to give a conceptual introduction to the main ideas of
the theory and to prepare the ground for applications of Hopf algebras in other
contexts than plain module categories.

In certain cases, we may still use point-wise formulas, directly transported
from a module context, to specify morphisms in abstract categories. The idea is
to interpret such formulas in terms of operations on abstract variables, so that
our formulas actually represent combinations of morphisms produced by applying
structure operations associated with the ambient category. For instance, we may
use the expression ¢(z®y) = y@z to refer to a symmetry isomorphism ¢ : MQN =
N®M.

To start with, we review the definition of the notion of a counitary (cocom-
mutative) coalgebra, which we introduced in §2.0.3 in the context of symmetric
monoidal categories, and on which we base our approach for the definition of a
Hopf algebra. In a second stage, before addressing Hopf algebras, we examine the
definition of a bialgebra, which are monoid objects (algebras in the sense of §2.0)
in the symmetric monoidal category of coalgebras.

7.1.1. Counitary cocommutative coalgebras. Briefly recall that a counitary co-
commutative coalgebra (in a symmetric monoidal category) consists of an object
C' equipped with a counit € : C — 1 (also referred to as the augmentation) and a
coproduct A : C' — C ® C satisfying counit, coassociativity and cocommutativity
relations (see §2.0.3).
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In the module context, the augmentation € : C' — K assigns a scalar e(x) € k
to any element x € C, and we represent the expansion of a coproduct A(z) € C®2
x € C, by an expression of the form A(z) = Z(m) x(1) @ T(2), where x(1),z(2) € C
denote the factors of this tensor in C'®2.

The coassociativity relation implies that all iterations of the coproduct towards
a fixed codomain C®" define the same morphism A : C — C®" and we can
naturally extend our notation of the coproduct to represent the expansion of the n-
fold tensor A (z) € C®" arising from any such iterated application of coproducts.
Explicitly, we write A (z) = Z(I) (1)@ - -®T(y), for any x € C. In this formalism
the coassociativity relation reads:

Yo @ue @nE =Y Alrw) @re =y 10) @ Alzw)-
(x) (z) (=)

AG) () A®id A=) id @A-A(z)

The counit relations read

26(13(2)) CT(p) = Zﬁ(mu)) “T(9) = 1,
(z) (z)

and the cocommutativity relation reads
DT @) =) T0) @)
() (2)

The associativity implies that these relations have an obvious extension to multiple
coproducts. In particular, we obtain from the cocommutativity relation that an n-
fold coproduct A(™(z) € C®™ is left invariant under the action of any permutation
s €X, on C®",

Recall that we use the notation Com?. for the category formed by the counitary
cocommutative coalgebras with the structure preserving morphisms of the ground
category as morphisms.

7.1.2. Tensor product of counitary cocommutative coalgebras. In §2.0.3, we ob-
serve that the tensor product of augmented cocommutative coalgebras inherits a
counitary cocommutative coalgebra structure, so that augmented cocommutative
coalgebras form a symmetric monoidal category, with unit, associativity and sym-
metry isomorphisms inherited from the ground category.

In the module context, the definition of the augmentation on a tensor product
of coalgebras C, D € Com? reads

(z@y) = e(z) - €(y),

and the definition of the coproduct reads

Aey) = Y (20 @y1) @ (22 @ ye),
(2),(y)

for any z € C, y € D, and where we adopt the convention of §7.1.1 for the notation
of the coproduct of = (respectively, y) in C' (respectively, D).

The ground ring K, defining the unit object of our module category Mod, is
equipped with the augmented cocommutative algebra structure such that (1) =1
and A(l) =1® 1.
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7.1.3. Unitary associative algebras. In §2.0, we focused on the study of com-
mutative structures. However, we mentioned that most of our constructions can be
handled for associative (non-commutative) algebras.

To get the definition of a unitary associative algebra, we just drop the commu-
tativity requirement from our definition. Thus, a unitary associative algebra in a
(symmetric) monoidal category M explicitly consists of an object A € M equipped
with a unit morphism 7 : 1 — A and a product p: A ® A — A satisfying unit and
associativity relations, expressed by the commutativity of the usual diagrams:

A1 2% 404 2% 104, AcAA L ApA.
\l“/ M®idJ{ l/‘
A

AQA———> A

In the module context, we use the standard notation 1 = (1) € A and a1 - as =
wu(ar ® az), for the unit element and the product of any associativity algebra A. If
necessary, then we adopt the convention of §2.0 to specify the algebra corresponding
to a given unit (respectively, product) morphism by adding a subscript in our
notation.

The morphisms of unitary associative algebras consist, as in the commutative
case, of the morphisms of the ground category which preserve the unit and product
morphisms defining our structure. We use the notation As; = MAsy for the
category of associativity algebras in M, with the base category added as prefix
when necessary.

7.1.4. Tensor product of unitary associative algebras. The tensor product AQ B
of unitary associative algebra A, B € As, inherits a unitary associative algebra
structure given by the same definition as in the unitary commutative algebra case:

— the unit morphism n4gp is defined by the composite 1 S1iw1l MELIEN

A ® B involving the unit isomorphism of the ground symmetric monoidal
category M.

— the product morphism pag g is given by the composite AQ BRARB ﬁ)

A® A® B® B £4%18, 4 g B, involving the symmetry isomorphism of
M.

The unit object of the ground symmetric monoidal category 1 inherits a canonical
unitary associative algebra structure and represents a unit object for the tensor
product of unitary associative algebras. The category of unitary associative algebras
inherits unit, associativity and symmetry isomorphisms from the ground category
as well, and forms a symmetric monoidal category therefore.

In the module context, the unit element of the tensor product A ® B is given
by the tensor product 1 ® 1 of the unit elements attached to each factor A, B, and
the definition of the product reads (a1 ® by) - (a2 @ ba) = (a1 - az) @ (by - ba), for any
a1®b2,a2®b2 c A® B.

This symmetric monoidal structure is similar to the symmetric monoidal struc-
ture on unitary commutative algebras, handled in §2.0.2. However, we may observe
that the tensor product of unitary associative algebras is not identified with the
coproduct of the category (in contrast with a tensor product of unitary commuta-
tive algebras). To be specific, we have a commutation relation (¢ ® 1) - (1 ® b) =
(a-)@1-b)=a®b=(1-a)®(b-1)=(1®0D)-(a®1), between the image

ILunltary associative |
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of the elements of A and B in the tensor product A ® B, while such commutativ-
ity relations do not occur in coproducts when we work in the category of unitary
associative algebras.

7.1.5. Bialgebras. We formally define a (cocommutative) bialgebra as a unitary
associative algebra (in the sense of §7.1.3) in the symmetric monoidal category of
counitary (cocommutative) coalgebras. Accordingly, in the general context of a
symmetric monoidal category M, a cocommutative bialgebra consists of an object
H € M equipped with:

(a) a counitary cocommutative coalgebra structure, determined by a counit
€ : H — 1 and a coproduct A : H — H ® H satisfying the counit,
coassociativity, and cocommutativity relations of §2.0.3,

(b) together with a unit morphism n : 1 — H and a product morphism p :
H ® H — H, both formed in the category of counitary cocommutative
coalgebras, and satisfying the unit and associativity relations of §7.1.3 in
that category.

Under our conventions for the notation of algebra categories, the category of bial-
gebras which we define in this paragraph is denoted by the expression Com$ As, =
MCom< As;. (We mark the base category as a prefix when this information is
necessary, as usual.)

7.1.6. The distribution relations underlying a bialgebra structure. Since the cat-
egory of counitary cocommutative coalgebras inherits its symmetric monoidal struc-
ture from the ground category, the unit and product morphisms defining the unitary
associative algebra structure of our bialgebra can be formed in the ground category,
and the requirement that these morphisms are morphisms of counitary cocommu-
tative coalgebras amounts to the commutativity of the diagrams:

1.1 1— " - H
(a) \ie, :l J{A
1 191 goH

(as regards the unit morphism),

H®H H
HoH-—"~H AwA

(b) and 6®6J« lev HoH®H®H a
191 ——-1 <23)*i

HoHoHoH- % HeH

(as regards the product). In the module context, the commutation of these diagrams
are equivalent to identities:

(=1, A1) =1®1,

and €(a-b) =¢€(a) e(b), A(a-b)= Z acry - bay ® ag) - by,
(a),(b)
for any a,b € H.
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We just get these relations by unraveling the definition of the counitary cocom-
mutative coalgebra structure on the unit object 1 (1 = K in the module context)
and on the tensor product H ® H. We readily see that the distribution relation
between the product and the coproduct amounts to A(a - b) = A(a) - A(b) by defi-
nition of the product of tensors in unitary associative algebras. More globally, the
commutativity of diagrams (a-b) amounts to assuming that the counit ¢ : H — 1
and the coproduct A : H — H ® H define morphisms of unitary associative alge-
bras, with respect to the underlying unitary associative algebras structure of the
bialgebra. We therefore obtain that:

PROPOSITION 7.1.7. The bialgebras, initially defined as unitary associative al-
gebras in the category of counitary cocommutative coalgebras in §7.1.5, can equiv-
alently be defined as counitary cocommutative coalgebras in the category of unitary
associative algebras, where we use the observations of §7.1.4 to provide the category
of unitary associative algebras with a symmetric monoidal structure. O

Thus, under our conventions for the notation of categories, we have a category
identity Com$ As = Asy ComS .

We use the observation of this proposition in the next section when we define
the Hopf algebra structure of enveloping algebras.

We generally use the expression of Hopf object to refer to any class of structured
object formed in the symmetric monoidal category of counitary cocommutative
coalgebras (see §2). When we deal with unitary associative algebra structures
however, we prefer to reserve the expression of Hopf algebra for unitary associative
algebras in counitary cocommutative coalgebras endowed with special features (in
order to agree with the conventions of the literature) and we use the name of
bialgebra in the general case.

7.1.8. Hopf algebras. We explicitly define a Hopf algebra H as a bialgebra in
the sense of §7.1.5 equipped with:

(a) morphisms o,7 : H — H, formed in the ground category, which fit in a
commutative diagram

H - 1 H

N T
o®id

HOH ——=xH®H
1d QT

involving the structure morphisms of our bialgebra.

This definition makes sense in any symmetric monoidal category, but we exam-
ine the particular case of Hopf algebras in modules with more details first, before
tackling more elaborate examples in the next sections. In the module context, our
relations, formalized by the commutativity of diagrams in (a), are equivalent to the

equations
A

¢<2)
> ola) a@ =€) 1= aq)-(aw)
(a) (a)

in H, for any a € H. In general, a morphism ¢ which fits in a relation of the form
(1) is called a left antipode, and a morphism 7 which fits in the symmetric relation
(2) is a called a right antipode.

7m

/¢2)
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We denote the category of Hopf algebras by the expression HopfSGrp. We do
not use the following remark, but under our conventions regarding the notation
of categories of structured objects in /ﬁnitary cocommutative Algebras, this nota-
tion Hopf Grp can be motivated by the observation that Hopf algebras, in the sense
of our definition, are nothing but group objects in the category of/ﬁnitary cocom-
mutative Algebras (see [1, §A.5]).

To complete the definition of a Hopf algebra, we check that:

PRrROPOSITION 7.1.9. In general, if we assume that a bialgebra H is equipped
with a left antipode o : H — H, then we have at most one right antipode on H
which is necessarily equal to the left antipode as a morphism from H to H. If we
symmetrically assume that a bialgebra H is equipped with a right antipode 7 : H —
H, then we have at most one left antipode on H which is also necessarily equal to
the right antipode.

Hence, in our definition of a Hopf algebra §7.1.8, the left and the right antipodes
are necessarily equal o = T, and are also unique. Furthermore any morphism of
bialgebras ¢ : G — H, where G and H are Hopf algebras, automatically preserves
antipodes.

PROOF. The result of this proposition holds in any symmetric monoidal cate-
gory, but we prefer to give a proof in the module setting in order to exercise with
our coproduct notation. The reformulation of our arguments in a general setting is
the matter of a straightforward transcription.

Let H be any bialgebra. The proof of the first claims of the proposition reduce
to the proof of an identity o(a) = 7(a), for all a € H, and for any given left and
right antipodes o,7 : H — H. To establish this relation, we perform different
reductions of the expression

2] .
(c®idor) - A¥(a) = alan)) - a@) - m(a),

}./\
(a)

leading to o(a) in one case, and to 7(a) in the other case. For this purpose, we just
observe that both the left and right antipode relations can be applied within our
3-fold coproduct A®) (a) = A® id -A(a) = id @A - A(a). By using counit and unit
relations together with these antipode relations, we explicitly obtain:

> alaqy) - a@ - Tlag) =Y elaqy) - 1-m(a@) =Y elaq)) - m(ag) = 7(a),
(a) (a) (a)

= Za(a(l)) “1-elap)) = Za(a(l)) -€(a)) = o(a),
(a) (a)

and these identities prove our claim o(a) = 7(a).
The relation ¢o(a) = 7¢(a) = op(a), for a morphism ¢ : G — H, follows from
the same argument line, by considering different reductions of the expression (¢o ®

¢ @10) - AP (a) = 32, do(a)) - dlac) - T¢(a(s))- O

Thus, in what follows, we use the name of antipode (without extra precision)
to refer to the single morphism ¢ = 7 defining both the left and the right antipode
of a Hopf algebra. The result of Proposition 7.1.9 also motivates us to regard
Hopf algebras as bialgebras endowed with special features (as alluded to before
we introduce our definition), rather than bialgebras equipped with an additional

//co

/co
/co
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structure. In categorical terms, we regard the category of Hopf algebras HopfGrp
as a full subcategory of the category of bialgebras.

This interpretation diminishes the inconsistence between the definition of a
Hopf algebra and our convention to use the name Hopf as a qualifier for any cate-
gory of structured object in the symmetric monoidal category of counitary cocom-
mutative coalgebras. In fact, the terminology of Hopf algebra was originally used
in algebraic topology for bialgebra structures, without any reference to antipodes,
but in situations where antipodes automatically exist.

By elaborating on the arguments of Proposition 7.1.9, we also obtain that:

ProrosiTiON 7.1.10. In a Hopf algebra H, the antipode o : H — H defines:

(a) a morphism of counitary cocommutative coalgebras from H to H;

(b) and a morphism of unitary associative algebras from H to H°P, the uni-
tary associative algebra obtained by changing the product of H into the
transposite operation p°? = p - (1 2)* (we also say that o defines a anti-
morphism of unitary associative algebras from H to H ).

We check this proposition in the module context again. The transcription of
our arguments in a general categorical setting reduces to a straightforward exercise
as in the proof of Proposition 7.1.9. We see that the assertions of our proposition
are equivalent to the relations of the following statement:

LEMMA 7.1.11.

(a) The antipode o(a) of any element a € H in a Hopf algebra H satisfies the
identities

e(o(a)) =€(a) and Ac(a) = olap)®olan)),
(a)
with respect to the counit € : H — K and the coproduct A : H — H® H of
the counitary cocommutative coalgebra structure underlying H.
(b) The antipode also preserves the unit element 1 € H, in the sense that
o(1) =1, and we have the formula

o(a-b) =o(b)-o(a),
for a product of elements a,b € H.

PROOF. We establish the product relation first. We need the identity o = 7,
established in Proposition 7.1.9, between the left and right antipodes of the Hopf
algebra.

We readily see, as in the proof of Proposition 7.1.9, that, for any a,b € H, the
expression 3 ) ) o(a(1) - b1)) - a2) - b2y - T(b(z)) - T(a(z)), can either be reduced to
o(a-b), by using the right antipode relation for 7 (together with the other structure
relations of bialgebras) or to 7(b) - 7(a) by using the left antipode relation for o
(together with the distribution relation between the product and the coproduct of
H). We therefore obtain o(a - b) = 7(b) - 7(a) = (b) - o(a).

We establish the coproduct relation Ac(a) =3, o(a2)) ® o(aq)) by similar
arguments, by considering different reductions of the expression Z(a) Ao(ay) -
Alaz))-(12)"(r®7)A(a(s)) leading to Ao (a) in one case, to 3, T(a2))®7(aq)) in
the other case. We establish the augmentation relation eo(a) = €(a) by considering
different reductions of the expression >, €o(a(1)) - €(a(2)), and the unit relation
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o(1) =1 is a direct consequence of the left antipode relation o(1) -1 =¢(1) -1 and
of the identity ¢(1) = 1. O

For the sake of completeness, we also check that:

PROPOSITION 7.1.12. The antipode of a Hopf algebra satisfies the involution
equation 0> = id as long as we assume that the coproduct of a Hopf algebra is

cocommutative.

PROOF. We check this assertion in the module context again. The transcrip-
tion of our arguments in a general categorical setting reduces to a straightforward
exercise. We start with the expression }_,) o(o(a(1))) - o(a(2)) - ac). On the one
hand, by performing the left antipode relation on factors (2, 3) of the tensor prod-
uct, we see that this expression reduces to o(o(a)). On the other hand, the already
established coproduct identity Ac = 0 ® o - A (where we use the cocommutativity
of the coproduct to drop the transposition) implies that we can also apply the left
antipode relation on factors (1,2) of our tensor product, which, in the final out-
come, reduces to the simple expression of our element a € A. We obtain as a result
that o(o(a)) = a, for any a € A, which is the claim of the proposition. O

7.1.13. Monoid and group algebras. Recall that we use the notation K[X] for
the free k-module associated to a set X, and the notation [z] for the basis element
of this k-module K[X] associated to any = € X. In §2.0.3, we observed that k[X]
inherits a canonical counitary cocommutative coalgebra structure, with a counit
determined on basis elements by the formula e[z] = 1, and a coproduct determined
by Alx] = [z] ® [z], for any = € X.

In the case of an associative monoid X = M, we readily see that k[M] inherits
an additional unitary associative algebra structure, with a unit 1 = [1] yielded by
the unit of M, and a product induced by the product of M on basis elements,
so that [a] - [b] = [a - b], for any a,b € M. Furthermore, we easily check that
the relations of §7.1.6 are satisfied, so that our unit n : K — K[M] and product
morphisms u : K[M] ® K[M] — k[M] are morphisms of counitary cocommutative
coalgebras. Hence, the free k-module K[M] associated to a monoid M forms a
bialgebra in the sense of the definition of §7.1.5.

In the case of a group X = G, we can check further that the mapping o :
K[G] — K[G] such that o[g] = [g7}], for any g € G, satisfies the equation of a left
and right antipode on K[G]. Hence, the free k-module K[G] associated to a group
G (the group algebra of G) forms an instance of a Hopf algebra, in the sense of the
definition of §7.1.8.

7.1.14. Group like elements. Recall that the subset of group-like elements of a
counitary cocommutative coalgebra C, denoted by G(C), is defined by:

G(C)={ceCle(c) =1,Ac) = c®c}.

In §2.0.5, we observed that the mapping G : C' +— G(C') defines a right adjoint of the
free k-module construction K[—] : X +— K[X], regarded as a functor K[—] : Set —
ComS from the category of sets Set to the category of counitary cocommutative
coalgebras in k-modules Com§ = Mod Com< . The unit of this adjunction is the
morphism ¢ : X — GK[X] yielded by the identity between the elements of X
and the basis elements of the k-module k[X] which are group-like by definition of
our counitary cocommutative coalgebra structure on C' = k[X]. The adjunction
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augmentation is the morphism p : K[G(C')] — C induced by the inclusion G(C) C C
on the basis elements of the free k-module k[X] with X = G(C).
In the context of groups and Hopf algebras, we obtain the following results:

PROPOSITION 7.1.15. The set of group-like elements G(H) in a Hopf algebra H
satisfies the following belonging relations:

1€G(H), g,heGH)=g-heG(H), and geG(H)=o0(g) € G(H).
Furthermore, for a group-like element g € G(H), the antipode relations imply:

g-olg)=oalg)-g=1
The set of group-like elements G(H) of a Hopf algebra H consequently inherits a

group structure with the multiplication p : G(H) x G(H) — G(H) induced by the
product of our Hopf algebra.

ProOOF. The axioms of bialgebras include the relations ¢(1) =1, A(1) = 1®1,
which are equivalent to the requirement that the unit element of H is group-like in
the sense of our definition. Hence, we have 1 € G(H).

For a product of group-like elements g,h € H, the axioms of §7.1.6 imply the
relations €(g-h) = €(g)-e(h) = 1-1 = 1 and A(g-h) = A(g)-A(h) = (9®g)-(h®h) =
(9-h)® (g ®h). Hence, we have g,h € G(H) = g- hG(H).

For the antipode o(g) € H of a group-like element g € G(H), the identities
established in Lemma 7.1.11 imply eo(g) = €(g) = 1 and Ao(g) = (1 2)*(o ®
0)A(g) = o(g9) ® o(g). Hence, we have g € G(H) = o(g) € G(H).

The identities g-o(g) = 0(g)-g = 1 are a formal consequence of the application
of the antipode relation when we assume ¢(g) = 1 = ne(g) = 1 and A(g) =g ® g.
This observation completes our verifications. O

ProrosiTION 7.1.16. The functor G : HopfSGrp — Grp obtained by the con-
struction of Proposition 7.1.15 is also right adjoint to the group algebra functor
K[—]: Grp — HopfSGrp, from groups to Hopf algebras.

PROOF. We easily see that the unit and augmentation of the adjunction k[—] :
Set = Com< : G, defined at the set and counitary cocommutative coalgebra level
in §2.0.5, preserve the additional unit and product structures when we deal with
groups and Hopf algebras. Therefore our functors still form an adjoint pair groups
and Hopf algebras K[—] : Grp = HopfGrp : G. |

7.2. Lie algebras and Hopf algebras

In this second section, we provide a survey of the relationship between Lie
algebras and Hopf algebras. Lie algebras arose in the mathematical literature as
infinitesimal versions of group structures. The tangent space of a Lie group (a
manifold equipped with a group structure) is a fundamental instance of Lie algebra.
The classical third theorem of Sophus Lie asserts that any finite dimensional real
Lie algebra can be integrated into a Lie group structure, and hence occurs as such
a tangent space.

The relationship, which we aim to review in this section, is an algebraic ana-
logue of this correspondence. The main device for this study is the enveloping
algebra functor, of which we recall the formal definition. The Milnor-Moore Theo-
rem precisely implies that the enveloping algebra functor induces an equivalence of
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categories between the category of Lie algebras and a subcategory of locally conilpo-
tent Hopf algebras (see §7.2.15). Besides the Milnor-Moore Theorem, we recall the
statement of the Poincaré-Birkhoff-Witt Theorem as a fundamental structure re-
sult about enveloping algebras, and we give the statement of a general structure
theorem for locally conilpotent Hopf algebras which we use in our proofs.

The first definitions of this section makes sense over any additive base sym-
metric monoidal category M. In addition to this basic requirements, we prefer to
assume, all through this section, that the morphism sets of M are uniquely divisible
as abelian groups, and hence form Q-modules. To coin this situation, we say that
we work in a Q-additive symmetric monoidal category. In the case of a module
category M = Mod, this requirement amounts to assuming that the ground ring
k satisfies Q C k. If we do not take this assumption, then we have to distinguish
several variants of the notion of a Lie algebra.

In a second stage, we perform colimit constructions, and we therefore assume
that M is equipped with arbitrary colimits. Then we also assume that the tensor
product satisfies the colimit preservation requirement of §0.9.

The existence of kernels is not needed until we introduce the primitive element
functor in §7.2.11. To simplify our exposition, we will assume from that moment
on that kernels exist in our base category, and we establish our structure theorems
in that setting. Nevertheless, the careful reader may observe that our argument
lines work as soon as we have kernels of idempotent morphisms, so that both
the Poincaré-Birkhoff-Witt Theorem and the Milnor-Moore Theorem hold in that
setting.

The Q-additive category requirement amounts to assuming that our category
M is canonically enriched over the Q-modules Mod = Modg, with the morphism
sets Mory(—, —) as hom-objects Homy¢(—, —). In good cases, the existence of this
Q-additive structure implies that the category is equipped with an external tensor
product @ : Mod x M — M such that Mory (K@M, N) = Mor 04 (K, Homp (M, N))
for each K € Mod, and all M, N € M. By adjunction, we readily see that we have
unit, associativity and symmetry relations associated to any combination of this
tensor product ® : Mod x M — M with the internal tensor product of Mod and M.
In [60], we observe that the existence of this structure amounts to assuming that we
have symmetric monoidal functor 7 : Mod — M, mapping any Q-module K € Mod
to the tensor product K ® 1 with the unit object 1 in our symmetric monoidal
category M. In §7.2.3, we use such structures to relate a general definition of a Lie
algebra with an operadic approach.

Throughout this section, we still use the convention to specify general mor-
phisms by point-wise formulas, directly transported from a module context, and
which we can interpret as morphism combinations produced by the application of
structure operations of the ambient category (see our explanations in the intro-
duction of the previous section). In our survey, we formulate all definitions in an
abstract setting, and we make their applications explicit in the module context too.
The immediate purpose of this abstract approach is again to give an conceptual in-
troduction to the main ideas of the theory, in order to be prepared for applications
in other contexts than the plain module categories. To begin with, we review the
definition of a Lie algebra.

7.2.1. Lie algebras. In §1.3.1, we recall the definition of a Lie algebra as an
instance of a category of algebras associated to an operad Lie.
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In the context of a Q-additive symmetric monoidal category M, we define a
Lie algebra as an object g € M equipped with a morphism A : g®g — g, called
the Lie bracket, which satisfies the antisymmetry relation A - (id +(1 2))* = 0,
and a 3-fold tensor relation A(\, 1) - (id +(1 2 3) + (1 2 3)?)* = 0, called the Jacobi
relation. In these formulas, we use the notation o* for the action of the transposition
o= (12) € ¥y and of the cycle o = (1 2 3) € X3 on tensor powers g&™.

In the module context, we write [z1, z2] € g for the image of elements z1,z2 € g
under the Lie bracket A : g®g — g. The antisymmetry relation reads [z1,x2] +
[z2,21] = 0, and the Jacobi relation reads

[[z1, z2], T3] + [[w2, 23], 1] + [[23, 21], 22] = 0,

for z1, 29,23 € g.

We denote the category of Lie algebras by Lie. We naturally define a morphism
of Lie algebras as a morphism of the base category preserving the structure (the
Lie bracket) of our Lie algebras. As usual, we just specify the ambient symmet-
ric monoidal category M in our notation Lie = M Lie when this information is
necessary.

7.2.2. Remarks. In the standard definition of a Lie algebra, we assume the
vanishing relation [z,z] = 0, for € g, instead of the antisymmetry relation.
In §8.2.3, where we give a short introduction to Lie algebras over the integers, we
will take this vanishing relation [z,x] = 0 in our definition. But, this relation is
equivalent to the symmetry relation, and give the same notion of Lie algebra, as
soon as 2 are invertible in the the ground ring, and hence, under our assumption
that the ground ring satisfies Q C K.

Further subtleties occur in other instances of symmetric monoidal categories.
Notably, in the context of graded modules, where we use the symmetric monoidal
structure of §4.4, the antisymmetry relation reads [z, z2] + £[x2, 1] = 0, with an
extra sign arising from the permutation of the elements x1, x5 € g (see §0.2, §4.4.1),
and we do not necessarily assume that the Lie bracket [z, z] of a homogeneous ele-
ment of odd degree vanishes. But the vanishing relation [z, z] = 0 for the homoge-
neous elements of even degree, as well as [[z, x], 2] = 0 for the homogeneous elements
of odd degree, is usually taken as part of the definition of graded Lie algebra in the
literature. These requirements are automatically fulfilled, as consequences of the
(graded) antisymmetry and Jacobi relations, when 2 and 3 are invertible in the the
ground ring, and hence, under our assumption that the ground ring satisfies Q C k.

7.2.3. Relationship with the operadic definition and free Lie algebras. The def-
inition of §7.2.1 agrees with the definition of the structure of an algebra over the
Lie operad in §1.3.1.

In §1.3.1, we explain that the definition of such a structure, in terms of a
morphism A : g® g — g satisfying relations, amounts to giving an operad morphism
¢ : Lie — Endgy, where Lie is our notation for the Lie operad, and Endg is the
endomorphism operad associated to the object g € M, defined by the hom-object
Endy(r) = Homy(g®", g) in each arity » € N. In this correspondence, we use the
observation, made in the introduction of this section, that our symmetric monoidal
category M is naturally enriched over the base category of Q-modules (where the
Lie operad is defined).

The interpretation of Lie algebras in terms of algebras over operads implies
that the category of Lie algebras inherits free objects, which admit an expansion of
the form L(M) = @, ,(Lie(r) ® M®")s, . Recall that the expression (—)y, in this
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expansion refers to the application of a coinvariant functor, used to coequalize the
right action of permutations on the tensor power M®” with their left action on the
term Lie(r) of the Lie operad (see §§1.3.2-1.3.5). In the sequel, we refer to the terms
of this expansion L,(M) = (Lie(r) ® M®")y, as the components of homogeneous
weight of the free Lie algebra.

In §1.3.2, we define the Lie operad Lie in a base category of modules over a
ring. In the setting of a Q-additive symmetric monoidal category M, we can use
the external tensor product operation ® : Mod x M — M to form the summands
(Lie(r) ® M®")s of the free Lie algebra, with Lie(r) € Mod and M € M.

In the literature, the free Lie algebra is usually defined as a quotient of a free
magma (see for instance [32, 11.2.2], or [147, §0.2]). This construction parallels the
definition of the Lie operad by generators and relation. (Magmas, as we observed
in §6.1, are identified with structures associated to free operads.)

The free Lie algebra L(M) intuitively consists of Lie monomials on generating
variables x € M, where a Lie monomial refers to a formal operadic composite
of Lie brackets quotiented by the antisymmetry and Jacobi relations. The Lie
bracket on L(M) is intuitively defined by the obvious substitution operation on Lie
monomials. The homogeneous component L, (M), for any r € N, consists of Lie
monomials on r variables. The Lie bracket preserves the weight grading in the sense
that [Ls(M),Ly(M)] C Lspe(M). (We go back to the notion of weight grading in
the next section.)

In §1.2.11, we mention that the Lie operad has an intricate symmetric structure.
The structure theorems of Hopf algebras imply that the free Lie algebra functor
has a more effective realization in terms of a retract of the tensor algebras, and we
rather use this approach when we have to deal with free Lie algebras. We review
the definition of the (non-unitary) tensor and symmetric algebras before tackling
this subject.

7.2.4. The tensor algebra and the symmetric algebra. The (unitary) tensor al-
gebra T(M) associated to an object M € M in our base category M is explicitly de-
fined by the sum T(M) = @,~ , M®", where we form the tensor powers of our object
M®" by using the tensor product operation of the base category ® : M x M — M.
In the sequel, we refer to the summands of this expansion T,(M) = M®" as the
components of homogeneous weight of the tensor algebra.

The (unitary) symmetric algebra S(M) is explicitly defined by the sum S(M) =
D2 ,(M®")x, , where we apply the coinvariant functor (—)y, to make the action of
permutations o € ¥, on the tensor power M®" equal to the identity morphism. In
the module context, these coinvariance relations read r,(1)®- - @ () = 11Q- - QX
forall z; ® --- @ ¥, € M®", and each ¢ € %,. The summands S, (M) = (M®")x_
define the components of homogeneous weight of the symmetric algebra.

The tensor algebra inherits a unit 1 : 1 — T(M), given by the identity between
the unit object 1 and the summand M®° = 1 of weight r = 0 in T(M), as well as
a product p : T(M) ® T(M) — T(M), defined termwise by the concatenation op-
eration M®* @ M® — M®s*+! so that T(M) forms a unitary associative algebra.
The symmetric algebra inherits a similarly defined unit 7 : 1 — S(M), as well as
a product p : S(M) ® S(M) — S(M), which is given termwise by the morphism

(M®%)s, @(M®")y;, — (M®*t")y__, induced by the concatenation operation of the
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tensor algebra. The coinvariant quotient implies that this product operation be-
comes commutative on the symmetric algebra, and hence, the object S(M) actually
forms a unitary commutative algebra.

In the tensor algebra case, we have a canonical embedding ¢ : M — T(M), given
by the identity between the object M and the summand M®! = M of order r = 1
in T(M). In the symmetric algebra case, we have a similarly defined embedding
t: M — S(M), given by the identity between the object M and the summand
(M®Y)g, = M in S(M).

In §1.3.5, we already briefly recalled the definition of the tensor and symmetric
algebras (in the non-unitary context) as instances of free algebras associated to
operads. This free algebra interpretation of the tensor and symmetric algebras
reads as follows:

PROPOSITION 7.2.5.

(a) The tensor algebra functor T : M — Asy is left adjoint to the forgetful
functor w : Asy — M from the category of unitary associative algebras
Asy to the base category M. The embedding v : M — T(M) represents the
unit of this adjunction relation.

(b) The symmetric algebra functor S : M — Comy is left adjoint to the for-
getful functor w : Comy — M from the category of unitary commutative
algebras Asy to the base category M. The embedding ¢ : M — S(M) also
represents the unit of this adjunction relation.

EXPLANATIONS. In §§1.3.3-1.3.4, we explained that the assertions of this propo-
sition have an equivalent formulation in terms of universal properties. In the case
of the tensor algebra R = T(M) (respectively, in the case of the symmetric algebra
R = S(M)), we explicitly obtain that any morphism f: M — A towards a unitary
associative (respectively, commutative) algebra A admits a unique factorization

f

\ o

R

such that ¢y is a morphism of unitary associative (respectively, commutative) al-
gebras.

The image of a tensor 71 ® -+ ® z,, € M®" in the tensor algebra T(M) is
denoted by 1 - ... 2, € T(M) (whenever the notion of elements makes sense),
because by identifying the object M with a summand of T(M), we obtain that
this tensor represents the product of the elements z1,...,z, € M in T(M). We
adopt similar conventions for the symmetric algebra. In this case, we have the
identity @5(1) ...  Ty(y) = 1 - ... Ty, arising from the coinvariant quotient, and
which also reflects the commutativity of the product in S(M). The product of the
tensor algebra is given by the concatenation operation (z1 ... @s) - (y1-... - yt) =
(x1+... s Y1 ... Yt), and similarly in the symmetric algebra case.

The extension of a module morphism f : M — A to the tensor (respectively,
symmetric) algebra is explicitly defined by the formula ¢f(xq-... -2,) = f(x1)-...-
f(x,) for any tensor (respectively, symmetric) algebra monomial x; - ... -z, € R
where we form the product of the images of the elements z1,...,z, € M in the
associative (respectively, commutative) algebra A. [

M A
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We use the statement of Proposition 7.2.5 to establish the following structure
result:

PROPOSITION 7.2.6. The tensor algebra R = T(M) (respectively, the symmetric
algebra R = S(M)) inherits a Hopf algebra structure such that:

— the augmentation € : R — 1 is the morphism of unitary associative (respec-
tively, commutative) algebras associated with the zero morphism e(x) =0
from M to the unit object 1;

— the coproduct A : R — R ® R is the morphism of unitary associative
(respectively, commutative) algebras defined, on M C R, by the formula
Alx)=2z1+1Qa;

— the antipode A : R — R is the anti-morphism of unitary associative (re-
spectively, commutative) algebras defined, on M C R, by the opposite of
the identity map o(x) = —x.

In an abstract categorical setting, we regard our point-wise formulas as an alge-
braic combination of morphisms involving the structure operations of the ambient
category (as explained in the introduction of this section).

EXPLANATIONS. In the module context, we can apply the formula given in the

proof of Proposition 7.2.5 to determine the image of any monomial 1 -... -z, € R
under our structure morphisms. For the augmentation, we obtain e(xy - ...  x,) =
€(z1) - ... e(z,) =0 as soon as r > 0. For the coproduct, we get the expression:
Al zp)=(1@14+41@x1) ... (2, 1+ 1R x,)
A1) A(zy)

= Z (.%lezs)@(l'jlitjs)
{i1< < JI{j1 <+ <jt }
={1<--<r}
For the antipode, we get o(z1 ... ) =o(zy) ... o(x1) = (=1)" - (zp - ... x1).
The proof of the structure relations of Hopf algebras reduces to straightforward
verifications, which are also immediate once we observe that the uniqueness claim
in the definition of morphisms on tensor (respectively, symmetric) algebras enables
us to reduce these verifications to the case of generators. O

7.2.7. The adjunction between Lie and associative algebras. Let A be any (uni-
tary) associative algebra. One can readily check that the commutator [aq,as] =
ajas — agaq satisfies the antisymmetry and Jacobi relation of a Lie bracket, and
hence provides A with a natural Lie algebra structure.

In §1.3.9, we interpret (a non-unitary version of) this correspondence as an
instance of a restriction functor ¢* : A — *A, associated to an operad morphism
from the Lie operad to the (non-unitary) associative operad. This interpretation
works same in the unitary context. In the case of the tensor algebra, the existence
of this structure implies that, for any object M € M, we have a natural morphism
of Lie algebras ¢ : L(M) — T(M) fitting in a factorization

M———T(M)

L(M':)‘ﬁ
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of the canonical embedding M < T(M). In the operadic approach, we have
L(M) = @,-(Lie(r) @ M®)s, (see §1.3.5, §7.2.3), T(M) = @, ,(As;(r) ®
M®")s, (see §1.3.5), and our free algebra morphism is the natural transformation
induced by the morphisms ¢ : Lie(r) — Asy(r) at the operad level.

Intuitively, the morphism ¢ : L(M) — T(M) maps the Lie monomials, which
represent the elements of the free Lie algebra, into commutators in the tensor
algebra. From this representation, we retrieve that the morphism ¢ : L(M) — T(M)
preserves the weight grading of our free algebras and splits as a sum of homogeneous
components ¢, : L. (M) — T,.(M).

In Proposition 1.3.8, we give a general construction of extension functors on
categories of algebras associated to operads. These extension functors are left
adjoint to the restriction functors associated to operad morphisms. In the case
of the Lie operad and the associative operad, the application of our construction
returns a functor ¢ : Lie — Asy which is left adjoint to our explicitly defined
restriction functor ¢* : As; — Lie. The image of a Lie algebra g under this
extension functor ¢ : Lie — Asy is usually called the enveloping algebra of g, and
is denoted by ¢ g = U(g). The enveloping algebra of a Lie algebra is endowed with
a Lie algebra a morphism ¢ : g — U(g) which represents the unit of our adjunction.

In the approach of Proposition 1.3.8, the image of a Lie algebra under the
extension functor ¢ g = U(g), is defined by a reflexive coequalizer of free algebras
of the form:

T(L(g)) —=T(g) > U(g) .

The morphism € : T(g) — U(g) occurring in this coequalizer is identified with the
morphism of associative algebras induced by the canonical morphism ¢ : g — U(g)
underlying the enveloping algebra. This coequalizer construction differs from the
classical definition of the enveloping algebra, and which we will review in the next
paragraph.

Before explaining the classical approach, we examine some applications of
the general definition of our extension functor ¢ : Lie — Asy in the case of
free Lie algebras. By composition of adjunction relations, we have in this case
uL(M) =UL(M) = T(M). Furthermore, we readily see that the previously con-
sidered morphism ¢ : L(M) — T(M), defined by using the definition of free Lie
algebras, is identified with the canonical Lie algebra morphism ¢ : L(M) — UL(M)
attached with the enveloping algebra. For our purpose, we record the following
observation:

PROPOSITION 7.2.8. The morphism ¢ : L(M) — T(M) admits a retraction
p:T(M) — L(M), such that:
1
-

plxy - o.orxy) ==+ [ [[z1,22], 23], - . Tp),

for any tensor monomials 1 - ...z, € T,.(M), and all v > 0.

PROOF. We borrow our argument from [145, §B.2, Lemma 2.2]. We establish
the proposition within a base category of modules. The general case of our assertion
can then be deduced from the functoriality of the construction with respect to the
underlying symmetric monoidal category. We use that the mapping A : L(M) —
L(M) such that A(p) = rp, for any homogeneous monomial p € L, (M), defines a



7.2. LIE ALGEBRAS AND HOPF ALGEBRAS 213

derivation of the free Lie algebra. We explicitly have A([p, ¢]) = [A(p), ¢] + [p, A(q)]
for all p,q € L(M). We equip the sum KA @ L(M) with the Lie bracket such
that [(ad, p), (bA, q)] = (0, aA(p) — bA(g) + [p, g]), for any (p,ald), (¢,bA) e KA S
L(M). We consider the associative algebra morphism ad : UL(M) — End(kA &
L(M))°? induced by the (right) adjoint action of the free Lie algebra L(M) on KA®
L(M), so that ad(p) = [—, (0,p)], for any p € L(M).

For a homogeneous Lie monomial p € L,.(M), we have

ad(p)(A,0) = [(A,0), (0,p)] = (0,A(p)) = (0, rp).
For a tensor algebra monomial x; - ...z, € T(M), identified with a product of
generating elements z1,...,2,. € M in the enveloping algebra T(M) = UL(M),
we obtain on the other hand ad(zy - ...  z,)(A,0) = ad(x,) - ... ad(z1)(A,0) =
(0,[- - [[#1, z2], 23], ..., xr]), and the conclusion of proposition follows. O

The structure theorems of Hopf algebras, which we explain soon, give a charac-
terization of the object L(M) within the tensor algebra T(M), and in the sequel, we
actually use this representation when we need to handle free Lie algebra structures.

7.2.9. The classical definition of enveloping algebras. In the module context,
the enveloping algebra U(g) of a Lie algebra g is classically defined as a quotient

Ulg) =T(g)/ <z y—y-a—[z,y]lz,y€g >,

where we divide the tensor algebra T(g) by the ideal generated by the relations
x-y—y-x—|[z,y] =0, for z,y € g. The morphism ¢ : g — U(g) associated with the
enveloping algebra U(g) is defined as the composite of the morphism ¢ : g — T(g)
with the canonical quotient morphism ¢ : T(g) — U(g). In general, we use the same
notation for the elements of the tensor algebra and their image in the enveloping
algebra. Intuitively, the quotient process makes the commutator of Lie algebra
elements z,y € g equal to the image of the Lie bracket [z, y] € g in the enveloping
algebra U(g).

From this quotient definition, we easily retrieve that the enveloping algebra U(g)
fits in an adjunction relation Mor 4., (U(g), A) = Morg.(g, A), for A € As,, and
so that the canonical morphism ¢ : g — U(g) represents the adjunction unit. The
morphism of unitary associative algebras ¢ : U(g) — A associated to a Lie alge-
bra morphism f : g — A is given by the same formula as in the tensor algebra
case ¢p(z1 ... xp) = f(z1) ...  f(x,), except that we now assume that the
monomial x; - ...z, represents an element of the enveloping algebra U(g).

We use the adjunction relation of enveloping algebras to establish the following
structure result:

PROPOSITION 7.2.10. The enveloping algebra of a Lie algebra U(g) inherits a
Hopf algebra structure such that:

— the augmentation € : U(g) — 1 is the morphism of unitary associative
algebras induced by the zero morphism e(x) = 0 from the Lie algebra g to
the unit object 1,

— the coproduct A : U(g) — U(g) ® U(g) is the morphism of unitary associa-
tive algebras whose restriction to the Lie algebra g is given by the formula
Alz)=z®1+1®«,

— the antipode o : U(g) — U(g) is the anti-morphism of unitary associative
algebras whose restriction to the Lie algebra g is given by the opposite of
the identity map o(x) = —x.
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EXPLANATIONS. This proposition follows from the same argument line as Propo-
sition 7.2.6 (about the Hopf algebra structures of tensor and symmetric algebras).
For our purpose, we only have to check that the formulas of the proposition corre-
spond to the definition of Lie algebra morphisms on g since this condition is required
for the construction of well-defined structure morphisms on the enveloping algebra.

The condition is obvious for the augmentation. In the case of the coproduct,
we readily obtain [A(x), A(y)] = [z,y] ® 1 +1® [z, y] in the algebra tensor product
U(g) ® U(g), and therefore we have [A(x),A(y)] = A([z,y]). In the case of the
antipode, we have o([z,y]) = —[z,y] = yz — 2y = o(y)o(z) — o(x)o(y), and this
result agrees with the commutator of o(z) and o(y) (in this order) in the opposite
algebra U(g)°P.

The explicit formulas for the augmentation, the coproduct, and the antipode
of monomials are also the same as in the tensor algebra case. [

The first objective of the Lie theory of Hopf algebras is to identify the image of
a Lie algebra g in the associated enveloping algebra U(g). For this aim, we explain
the definition of a primitive element functor on coalgebras. Intuitively, the primitive
element functor represents an infinitesimal version of the group-like element functor

considered in the previous section.
7.2.11. Primitive elements in counitary cocommutative coawevras. The primi-
tive element functor on the category of coalgebras is defined by:
P(C)={ze€Cle(x) =0,A(z) =21+ 1z}

In the module context, we immediately see that this definition returns a submodule
of the coalgebra P(C) C C. In a general setting, we define the object P(C) by an
appropriate kernel in the ambient category M.

To simplify our presentation, we assume from now on that the base category
is equipped with kernels (in addition to biproducts and colimits). Nevertheless, in
each statement where we explicitly determine primitive elements of Hopf algebras,
we proceed by a direct approach, without assuming the existence of a sub-object of
primitive elements as a preliminary result. In general, we only need the existence
of split kernels for idempotent morphisms. This assumption is actually sufficient
for the Poincaré-Birkhoff-Witt Theorem (in our formulation), and for the Milnor-
Moore Theorem.

The following observations parallel the assertions of Proposition 7.1.15 (con-
cerning the definition of a group structure on group-like elements):

PROPOSITION 7.2.12. In a Hopf algebra H, we have [P(H),P(H)] C P(H),
where [—, —] refers to the commutator [x,y] = xy — yx defined from the underlying
product of the Hopf algebra.

The object P(H) C H consequently inherits a Lie algebra structure with the
morphism [—,—] : P(H) ® P(H) — P(H) induced by the commutator of H as Lie
bracket.

PROOF. In the proof of Proposition 7.2.10, we already used an identity of
the form 2 ®1+1®z,y®@1+1®y] = [z,y] ® 1 +1® [z,y]. If we assume
Alz)=2z®1+1®z and A(y) =y® 1+ 1®y, then we deduce from this relation
that A([z, y]) = [A(z), A(y)] = [z,y] @ 1+ 1® [z, y]. We clearly have e(x) = €(y) =
0= e([z,y]) = [e(z), e(y)] = 0 too, and these verifications establish that the object
P(H) is stable under commutators, which is the claim of the proposition. O


Benoit Fresse
Autocollant
We assume that C is equipped with a coaugmentation (a unit morphism) $\eta: \mathbb{1}\rightarrow C$
in this definition. The functor of primitive elements is defined on the category of coaugmented coalgebras.
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ProproOSITION 7.2.13. The functor of primitive elements P : HopfGrp — Lie
is right adjoint to the enveloping algebra functor U : Lie — HopfSrp (which we
regard as a functor towards the category of Hopf algebras by using the result of
Proposition 7.2.10).

PrROOF. Let g be a Lie algebra. Let H be a Hopf algebra. We elaborate on
the adjunction relation of §7.2.7, between Lie algebra morphisms f : g — H and
unitary associative algebra morphisms ¢ = ¢y : U(g) — H. We use point-wise
formulas to make our argument more explicit, as usual.

We have f = ¢y 14 (by definition of this adjunction), and as a consequence,
we have f(g) C P(H) (equivalently, f comes from a Lie algebra morphism towards
P(H)), if and only if the associated morphism of unitary associative algebras ¢ :
U(g) — H satisfies ep(z) = 0 = e(z) and A¢p(x) = f(z)@1+1® f(z) = ¢ ®@¢- A(x)
for any € g. We deduce from the injectivity of the adjunction correspondence
that the verification of these relations on g implies that the identities e¢p = € and
A¢p = p®@¢- A holds on the whole U(g). We therefore conclude that the adjunction
relation of §7.2.7 restricts to an adjunction relation between Lie algebra morphisms
f g9 = P(H) and Hopf algebra morphisms ¢ : U(g) — H and this result proves
the claim of our proposition. O

The Milnor-Moore Theorem, which we state soon, implies that this adjunction
defines an equivalence of categories when we restrict ourselves to a subcategory
of Hopf algebras satisfying an appropriate conilpotence condition. Before address-
ing this general statement, we determine the primitive elements of the symmetric
algebra and of the tensor algebra. The result reads as follows:

PROPOSITION 7.2.14.

(a) For the symmetric algebra S(M), which comes equipped with the Hopf
algebra structure of Proposition 7.2.6, we have PS(M) = M.

(b) For the tensor algebra T(M), which comes equipped with the Hopf algebra
structure of Proposition 7.2.6, the morphism ¢ : L(M) — T(M) of §§7.2.7-
7.2.8 defines an isomorphism between the free Lie algebra L(M) and the
Lie algebra of primitive elements P T(M) C T(M).

This identity P T(M) = L(M) gives our working realization of free Lie algebras.

PROOF. We use point-wise formulas again, in order to make our argument more
explicit.

The definition of the coproduct in the symmetric algebra S(M) immediately
implies M C P S(M). To check the converse inclusion, we consider the morphism
¢ : S(M) — S(M) induced by the projection onto the summand S;(M) = M C
S(M). For a homogeneous element u € S,.(M) of weight r > 0, we have v = (1/r) -
2 (w) U(1) - A(u(z)). (We can easily check this identity on monomials u = 1 -...- 2y,
by using the explicit formula of the coproduct in the proof of Proposition 7.2.6.)
This equation implies the following belonging relation u € PS(M) = u = u -
d(1) +1-¢(u) = ¢(u) = u € M, which completes the verification of the identity
PS(M) =M.

In the case of the tensor algebra, we again immediately have M C P T(M), and
this inclusion implies L(M) C PT(M) since primitive elements are preserved by
commutators (see Proposition 7.2.12). To check the converse inclusion, we consider
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the morphism ¢ : T(M) — T(M) (closely related to the morphism of Proposi-
tion 7.2.8) such that ¢(xy - ... x,) = [+ [[z1, 22], 23], ..., x,]. For a homogeneous
element u € T, (M) of weight r > 0, we have again u = (1/r) - 32, uq) - ¥(u)).
(We refer to the article [178], from which we borrow this argument, for a detailed
proof of this identity.) This equation readily implies, as in the symmetric algebra
case, that we have u = PT(M) = u € L(M) and the proof of this belonging
relation completes the verification of our identity P T(M) = L(M). O

This proposition gives a preliminary step of our proof of the Poincaré-Birkhoff-
Witt Theorem. But we have to explain the concept of a locally conilpotent Hopf
algebra before going further into our study.

7.2.15. Locally conilpotent Hopf algebras. We give a definition of the subcate-
gory of locally conilpotent Hopf algebras which makes sense in any Q-additive base
category. We proceed as follows.

In any Hopf algebra H the relation en = id, between the unit n : 1 — H and
the counit € : H — 1, implies that we have a decomposition H = 1@ |(H), where
we set |(H) = ker(e : H — 1). We call this subobject |(H) the augmentation ideal
of the Hopf algebra H. We consider the morphism 7 = id —en, which defines the
projector associated to this summand I(H) in the Hopf algebra H.

Let A« H — H®" denote the n-fold coproduct associated to our Hopf
algebra (see §7.1.1). Let 7(™) : H®" — H®" denote the n-fold tensor power of
our projector 7. The composite 7™ A represents the components of the n-fold
coproduct A(™ on the summand I(H)®" of the tensor product H®", and where all
occurrences of unit factors have been removed.

We generally say that H is locally conilpotent when H admits a colimit de-
composition K° — --- — K™ — ... — colim,, K™ = H such that:

(a) we have 7MAM | =0 as soon as n > m;
(b) and the coproduct H — H ® H admits a factorization

H A HoH :

3 .
K™ > colimpy g<m KP ® K19

for each m € N.

We use the notation HopfGrp, for the full subcategory of the category of Hopf
algebras HopfGrp formed by the locally conilpotent Hopf algebras.

We can retrieve the definition of [145, §B.3] (where our locally conilpotent Hopf
algebras are called connected Hopf algebras) by taking K™ = ker(w(m“)A(m“)).
We easily check (by using the coassociativity of the coproduct) that these kernels
form a nested sequence ker(r(WAM) c ... C ker(z(mMTVAM+) ¢ ... ¢ H.
We automatically have the vanishing condition (a). When we work in a category
of modules over a field (so that the tensor product preserves kernels), we easily
check (by using the coassociativity of the coproduct again) that the coproduct
condition (b) is automatically fulfilled too. In this situation, the local conilpotence
condition accordingly reduces to colim,, ker(r(mTDA(+1)) = [,

The tensor algebra (and the symmetric algebra similarly) is an instance of a
locally conilpotent Hopf algebra: we take K™ = @) T,.(M), and our require-

r<m ' T
ments follow from the expression of the coproduct in Proposition 7.2.6. This object
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K™ =@,.,, T-(M) actually realizes the kernel of the morphism 7(m+DA(m+1) on
the tensor algebra. The enveloping algebra U(g) of a Lie algebra is locally conilpo-
tent too. In the context of modules over a field, we take K™ = im(&, ., Tr(g) —
T(g) — U(g)) and our requirements follow from the observation that the coproduct
in U(g) is identified with a quotient of the coproduct in the tensor algebra T(g). In
the general context, we can arrange this construction by extending the colimit de-
composition T(g) = colim,, {€P, <, Tr(g)} to the coequalizer of §7.2.7 which serves
to define the enveloping algebra.

We can now state the first main structure theorem of the theory of Hopf alge-
bras:

THEOREM 7.2.16 (Structure Theorem). Let H be a Hopf algebra. The mor-
phism e : SP(H) — H defined by the symmetrized sum

e(xy .. =(1/r!)- Z To(1) - To(r)
ceEYD,
on the symmetric algebra monomials ;1 - ...z, € S(P(H)) is an isomorphism of
counitary cocommutative coalgebras as soon as H is locally conilpotent (see §7.2.15).

PROOF. The proof of this theorem forms the technical heart of this section.
We adapt ideas of [142] (see also [38, 141]) and divide our argument line in several
steps.

Preliminaries: Convolution algebras. Let End(H) be the module formed by
the endomorphisms f : H — H of the Hopf algebra H. The composition of
endomorphisms gives a product o providing the module End(H) with a natural
unitary associative algebra structure. To produce the isomorphism considered in
the theorem, we use that End(H) is equipped with an additional unitary associative
product, called to the convolution product and defined by the formula:

=Y flug) - g(u)

(u)
for f,g € End(H), and w € H. The morphism 7e, defined by the composite of the
unit and of the counit of the Hopf algebra, is a unit with respect to the convolution
product since we have (ne* f)(u) = 3_, e(u)) - f(ue) = () eluq)) ue) =
f(u) and similarly (f % ne)(u) = f(u).

Let us observe that the definition of this convolution structure makes sense
in the more general case of a hom-object Hom(C, A) such that C is a counitary
cocommutative (or coassociative) coalgebra and A is a unitary associative algebra.
In the course of our verifications, we use convolution structures attached to the
hom-objects Hom(H,H ® H) and Hom(H ® H,H ® H). In these cases, we use
the natural counitary cocommutative coalgebra (respectively, unitary associative
algebra) structures attached to a tensor product of Hopf algebras to define the
convolution product.

For our purpose, we still consider the morphism = : H — H such that 7 =
id —ne < id = ne + w. Recall that this morphism defines the projector associated
to the summand I(H) = ker(e : H — 1) of our Hopf algebra H (see §7.2.15).

Step 1: A subalgebra of the convolution algebra. In a preliminary step, we
consider the elements such that 7™ = 7*", for n € N. To make our subsequent
argument lines work, we need to give a sense to formal sums > 2 A, 7", A, € Q,
in the endomorphism algebra. For this purpose, we use the colimit decomposition
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H = colim,,, K™ arising from the local conilpotence condition. Our elements 7™ are
identified with composites 7 = V@ 7MW A™) where A : H — H®" denotes the
n-fold coproduct of our Hopf algebra (as in §7.2.15), the morphism 7(") : H®" —
H®" is the n-fold tensor power of our projector m, and V(™ : H®" — H denotes
the n-fold product. By definition of the local conilpotence condition (in §7.2.15),
we have 1AM (K™) = 0 = 77(K™) = 0 for all n > m, and we identify our
formal sums with the definition of elements in the limit of hom-objects End(H) =
lim,, Hom(K™, H).

Let S = {3, A7 | An € Q(Vn)} be the submodule of the endomorphism
algebra formed by the morphisms f which admits an expansion of this form f =
Yool o A We have 7 ™ = 7™%™ and we can readily check, by using the
coproduct condition §7.2.15(b) in our definition of the local conilpotence, that the
usual extension of this formula to power series f = Zf;o Ap™ corresponds to the
convolution product on morphisms f € End(H). We obtain, therefore, that our
module S forms a subalgebra of the endomorphism algebra End(H) with respect to
the convolution structure.

In contrast, we face difficulties when we aim to analyze the composition product
of our power series. We will be able to sort out this point by using a new collection
of elements e® € End(H) which we define by the formulas:

0 n
, 7
et =log, (id) = log, (ne + ) = Z(fl)” L. —
n=1
1)*s
eS:(e , for s €N.
s!
We see that each e® has an expansion of the form e® = ZnZs A We can

therefore form infinite sums ) ¢;e®. We moreover have the relation

8= {2020 A7 [ A € Q(Vn)} = {325 cse [ cs € Q(Vs)}

inside the endomorphism algebra End(H).

Step 2: the coproduct relations. In an intermediate step, we determine a distri-
bution relation between the action of the elements e® and the coproduct of the Hopf
algebra H. For this purpose, we use the convolution structure associated with the
hom-objects Hom(H, H ® H) and Hom(H ® H, H ® H). We have an obvious extension
of the formal sum representation of Step 1 to Hom(H, H ® H) since we also have
a limit decomposition Hom(H, H ® H) = lim, Hom(K™, H ® H) in this case. We
have a similar observation for the hom-object Hom(H ® H, H ® H), for which we
use Hom(H ® H, H ® H) = lim,q Hom(K? @ K9, H ® H).

We can easily check that the distribution relation between the coproduct and
the product in H implies the distribution relation Ao (fxg) = (Ao f)*x(Aog)
when we form the composite of morphisms f,g € Hom(H, H) with the coproduct
A € Hom(H, H ® H). We accordingly obtain that the mapping Ao —: f+— Ao f
defines a morphism of convolution algebras Ao— : Hom(H, H) — Hom(H, HQ H). We
have a similar result for the mapping —oA : Hom(H® H, H® H) — Hom(H, H® H).
We need the commutativity of the coproduct at this point (or, equivalently, the
observation that the coproduct defines a morphism of coalgebras).

We examine the composite of the element e! = log, (id) with the coproduct.
We have A oid = (id ®id) o A, and we deduce from the usual logarithm addition
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formula that:
Aolog,(id) =log,(id ® id) o A
= log, ((id ®@ne) * (ne ® id)) o A
= (log, (id) ® ne + ne ® log, (id)) o A.

Again, we use at this point the coproduct condition in the definition of local conilpo-
tence §7.2.15(b) in order to give a sense to the above identities in our limit of
hom-objects.

We have €? = (e!)*® = ne (the convolution unit), and accordingly, we can
rewrite the above result as A(e!) = (¢! ® e + ¢ ® e!) o A. When we deal with
a general element e = (e!)*"/r!, we have Aoe” = (Aoe!)*/r!, and a simple
computation gives the formula:

(*) Aoe = Z((f(X)cat)oA7
s+t=r

for all » € N.

Step 3: the Fulerian idempotents. We now prove that the endomorphisms e®,
s € N. form a complete collection of orthogonal idempotents in the endomorphism
algebra End(H). For this purpose, we consider a third collection of elements, which
we define by the simple formula ™ = id™", where id : H — H is the identity
morphism. For each n € N, we have:

Y" = exp,(nlog,(id)) = Y n'e’,
s=0

where we define the exponential exp, (x) by the usual power series expansion in the
convolution algebra.

Recall that we use the notation A for the n-fold coproduct of the Hopf
algebra H and the notation V() for the n-fold product. We have already observed
that we have 77 = Vg A®) for the elements introduced in Step 1, where
we set 7(") = 7®" We can also immediately deduce, from the definition of the
convolution product, that our new elements ™ = id*™" are identified with the
composites ¢ = VM AM)

We obtain, from the distribution relation (*), that we have:

(VP rMAM) o e = v o [ Z (moe™)®-+-®(wo e’””)} o A
r1+ T =r
This formula implies the relation
moe" =0

0

for n > r since we have me” = mne = 0. We similarly obtain that:

wn oe’ = (V(ﬂ)A(n)) oe”

r!
— 1 “e. Tn) — [———
S Y @ Y

r
riteetrp=r ritetra=r

=n"e",

foralln e N, r € N.
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We consider the variants S, = {d oo, cee®|cs € Q(Vs)} = {d 02, A7 |\, €
Q(¥n)}, of the module S = Sy introduced in Step 1. We form the quotient ob-
ject S/S,4+1 and we set p € S/8S,41 for the image of an element p € S in this
quotient. From the definition of the element 1™, we deduce the relation:

=Yt =& =3 0",
where (0,,5)ns denotes the inverse of the Vandermonde matrix (n®),;s.

We deduce from the vanishing of the product 7™ oe” for n > r that we have the
relation S, 1 ce”™ = 0. The mapping p : f — foe” accordingly induces a linear map
p:8/Sr11 — End(H). We deduce from our computation of the product ¢" o e”
that we have the formula p(y)™) = n"e", for all n € N. By using the Vandermonde
matrix again, we obtain p(e®) = Y7 _ Opsp(¢p™) = Y. _, Onsn"e” = dle”, where
drs is the Kronecker delta (compare this argument with [118]). This computation
finishes the proof that our elements e”, r € N, satisfy the relations

e, ifs=t
esoet{ ’ ’

0, otherwise,

and hence, form a complete set of orthogonal idempotents in the endomorphism
algebra.

From now on, we use the name of Eulerian idempotents (following the conven-
tion of the article [142]) to refer to these elements e, s € N. The original Eulerian
idempotents, as defined in [146], are collections of idempotent elements e defined
in the group algebra of the symmetric groups Q[X,], and which correspond to our
idempotent morphisms e® € End(H) in the case of the tensor algebra H = T(M)
(see [118, 142] and [147, §9]).

Step 4: the Fulerian splitting. We consider the splitting

H=e (H)
r=0

deduced from the action of the Eulerian idempotents on the Hopf algebra. Recall
that we have e’ = n¢, the unit of the convolution product. We readily see that
el(H) C P(H), because we have e’e!(u) = 0 = e(e!(u)) = 0, and for r = 1, the
distribution relation (*) implies:

Ae!(w) =D [e'(uay) @ (u) + () @ € (u)]
@

=D _le(u@) - e’ (uw) @1+ 1@ e(uw) - ¢ (uz)]
()
=c(u)@1+1®el(u).

We aim to prove that this inclusion e!(H) C P(H) is an equality and that we have
in addition e"(H) = S, (e*(H)).

Recall that we set I(H) = ker(e : H — 1), and the morphism = : H — H,
such that m = id —ne = id —e®, is identified with the projector associated to this
summand of our Hopf algebra. Recall besides that we use the notation V() :
H®" — H for the r-fold product, and the notation A" : H — H®" for the r-fold
coproduct. We also consider the morphism 7(") : H®" — H®" defined by the tensor
power of our projector m: H — H.
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We readily check, by applying the distribution formula (*), and the identities
7me¥ =0, me® = e® for s > 0, that we have:

(**) W(T)A(T) (er(u)) = Z el(u(l)) ®- - el (U(r))a
(u)

for all w € H. We use the symmetrization morphism S, (e*(H)) < e (H)®" — H®"
(defined by the same expression as in the statement of the theorem) to deduce, from
the above formula, the existence of a morphism S,. : e"(H) — S,(e!(H)) fitting in
a commutative diagram

er(H) T = S(eN(H)) .

>
2 A /
ger

)7 or
S, (! (H)) — H® WY g o

We form the composite

to get a morphism going in the converse direction II, : S,.(e*(H)) — e"(H), for
every 7 € N.
We use our formula (**) to get the relations

(1/rl) - VO M A (e (u)) = (1/r) - Zel(u(l)) et ()
()

= (1/r)) - (e * - xe)(u)
=er(u)

from which we readily conclude that II.S,(e"(u)) = €"(u), for every u € H. We
now consider the image of a symmetric algebra monomial @ = e!(uy)-...-e!(u,) €
S.(e'(H)) under our morphism II,. We readily identify this image II,(cw) with
the component e”(u) € e"(H) of the product u = e(u1) - ... e*(u,) in H. We
have A®)(u) = A®)(el(uy)) - ... A (el(u,)) by distribution between the prod-
uct and the coproduct in our Hopf algebra. This formula, together with the ob-
servation that e!(H) consists of primitive elements, readily implies that we have
TMAM (W) = 3 ses e (uyq)) @ - @ € (ug(r), and 7HAE (4) = 0 whenever
s > r. We use Equation (**) again to conclude that we retrieve the symmetrization
of the monomial e!(uy) - ... e'(u,) € S,(e*(H)) when we insert the idempotent
e” in the expression 7(W A (u). We therefore have S,.II, = id in addition to the
already established identity IL.S, = id.

We moreover see, by the using the case s > r of our computation, that we
have Ss(e®*(u)) = 0, when the weight s exceeds the order r of our monomial u =
el(uy) ... el(u,).

We take the sum of our morphisms II, to get an isomorphism IT : S(e!(H)) —
H. We see that the symmetrization map e : S(e'(H)) — H (defined as in the
statement of the theorem) differs from this iso by the insertion of the idempotents

". We use our computation of the image of monomials u = e!(uy) - ... - e!(u,)

er.
under the morphisms Ss(e®(—)) to obtain that the symmetrization map satisfies
e(Sr(e'(H))) C @,<, e*(H), and agrees with our isomorphism II, : S.(e'(H)) —
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e"(H) on e"(H). We conclude that this map e : S(e!(H)) — H is an isomorphism
too.

Conclusions. To complete this proof, we can just check, by using the inclusion
el!(H) C P(H) and a straightforward coproduct computation, that e defines a
isomorphism in the category of counitary cocommutative coalgebras. Then we use
Proposition 7.2.14(a) to obtain the relation e! (H) = P S(e!(H)) = P(H) in addition
to the definition of this isomorphism e : S(e!(H)) = H. O

Proposition 7.2.14(b) and Theorem 7.2.16 give the free Lie algebra case of the
Poincaré-Birkhoff-Witt Theorem:

THEOREM 7.2.17 (Poincaré-Birkhoff-Witt Theorem). The morphisme : S(g) —
U(g) defined by the symmetrized sum

6(371 el .Z’T> = (1/7"') . Z 376(1) . -xG(T)
ceX,
on the symmetric algebra monomials x1 - ...z, € S(g) yields an isomorphism
of counitary cocommutative coalgebras from the symmetric algebra S(g) to the en-
veloping algebra U(g), for all Lie algebras in our base category g € Lie.

We refer to [1, §3.3] for an another approach of the Poincaré-Birkhoff-Witt
Theorem, and to [80] for a historical overview of the subject.

The equivalence between the claim of Theorem 7.2.17 and the combined results
of Proposition 7.2.14(b) and Theorem 7.2.16 in the case of a free Lie algebra g =
L(M) follows from the identity UL(M) = T(M) (see §7.2.7). The assertion that our
morphism e : S(g) — U(g) is a morphism of counitary cocommutative coalgebras in
the theorem follows from a straightforward verification (similar to the verification
of the parallel claim of Theorem 7.2.16), and we do not come back to this claim.

The Poincaré-Birkhoff-Witt Theorem (in the formulation of Theorem 7.2.17)
is established in [145, Theorem B.2.3] in the module context, and in other usual
examples of base categories, like graded modules (in the sense of §4.4), and differen-
tial graded modules (which we use later on). Our proof of the free Lie algebra case,
provided by Proposition 7.2.14(b) and Theorem 7.2.16 proceeds from a different
approach as the proof given in this reference and works as soon as we have kernels
for idempotent morphisms. Nevertheless, after establishing the preliminary case of
free Lie algebra, we can obtain the proof of general case of Theorem 7.2.17 by the
same argument line as in [145, §B.2] (without loss of generality), and this is this
argument which we now recall.

Proor. Explicitly, to establish the general case of our theorem, we use that
any Lie algebra g fits in a reflexive coequalizer of free Lie algebras

¥ o N\
L(M,) Z: L(My) — >g,
of which construction can be deduced from the free Lie algebra adjunction (see [122,
§VL.7] for details). The symmetric algebra functor preserves reflexive coequalizers
(by the general statements of §1.4) as well as the enveloping algebra functor (by
adjunction and because reflexives coequalizers of algebras are created in the under-
lying category). Thus, our natural transformation fits in a diagram of coequalizers
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of the form: T~
SL(M;) == SL(Mo) >S(g) ,

~

l N i v

T(My) ——= T(Mo) >U(g)
where we use the identity UL(M) = T(M) of §7.2.7, and the combined results of
Proposition 7.2.14(b) and Theorem 7.2.16 to get that this diagram involves isomor-
phisms between the terms of our coequalizers. The existence of these isomorphisms
implies that we get an iso at the level of the coequalizers themselves, and this
assertion finishes the proof of our theorem. O

Theorem 7.2.17 admits the following immediate consequence, which extends
the results of Proposition 7.2.14(b) to arbitrary Lie algebras:

THEOREM 7.2.18. The canonical morphism ¢ : g — U(g), associated with an
enveloping algebra U(g), admits a natural retraction p : U(g) — g and induces an

isomorphism between the Lie algebra g and the Lie algebra of primitive elements
PU(g) C U(g). O

This result gives one part of the Milnor-Moore Theorem:

THEOREM 7.2.19 (Milnor-Moore Theorem). The enveloping algebra and prim-
itive element functors U : Lie 2 HopfGrp : P induce adjoint equivalences of
categories between the category of Lie algebras Lie and the subcategory of locally
conilpotent Hopf algebras HopfSGrp,.

The original Milnor-Moore Theorem [138] deals with Hopf algebras in (weight)
graded modules satisfying.a stronger conilpotence condition, which we study in
the next section (see .3.16). The reference [145, Theorem B.4.5] provides
a generalization of Milnor-Moore’ statement to the setting of locally conilpotent
(connected) Hopf algebras in Q-modules (respectively, graded modules, differential
graded modules). We give a direct proof of the general case of our theorem, by
relying on the results of Theorem 7.2.16 (the Structure Theorem), Theorem 7.2.17
(the Poincaré-Birkhoff-Witt Theorem). and Theorem 7.2.18, which we already
obtained as a corollary of these preliminary statements.

ProOOF. The claim of Theorem 7.2.18 actually gives one inversion relation of
our category equivalence g — P U(g), and we use the statements of Theorem 7.2.16

and Theorem 7.2.17. to get the converse relation UP(H) =5 H. For this purpose,
we simply observe that our morphism UP(H) — H fits in a commutative triangle

UP(H),

where the diagonal morphisms are the isos of Theorem 7.2.16 and Theorem 7.2.17.
O

% 13
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To complete the survey of this section, and as a preparation for applications
to operads, we examine the definition of a symmetric monoidal structure on Lie
algebras.

7.2.20. Direct sums of Lie algebras. The category of Lie algebras inherit limits
and colimits, like any category of algebras over an operad, so that the limits, as well
as the filtered colimits and the reflexive coequalizers, are created in the ambient
symmetric monoidal category. In our setting, we also have an identity between the
direct sum g@bh and the product of g and h in the category of Lie algebras since
we assume that the ambient category is additive. We precisely take this direct sum
operation @ : Lie x Lie — Lie to provide the category of Lie algebras Lie with a
symmetric monoidal structure. The zero object 0, which also represents the initial
object in the category of Lie algebras, defines the monoidal unit. The axioms are
trivially satisfied for this symmetric monoidal structure, but we must note that the
colimit preservation requirement of §0.9 is not fulfilled.

The Lie bracket of the Lie algebra g@ b is defined by [(z1,y1), (z2,y2)] =
([v1, 2], [y1,y2]), for any z1,22 € g, y1,92 € b,

The canonical embeddings ¢ : g — g® b and j: h — g P h define morphisms of
Lie algebras. We moreover have [i(g),j(h)] = 0 in g h. We readily see that the
Lie algebra g @b is universal with this property so that giving a morphism from
g®bh towards a Lie algebra m amounts to giving a pair of Lie algebra morphism
(f 9 = m,g: b5 — m)such that [f(g),g(h)] = 0 in m. This result holds in the
general setting of Q-additive symmetric monoidal categories.

The Lie algebra embeddings g — g@®h < b induce morphisms U(g) —»
U(goh) & U(h) at the enveloping algebra level, and we can use the product of the
enveloping algebra in order to get a morphism pu(i, j.) : U(g) @ U(h) — U(gd bh)
so that p(ix, j«)(u @ v) = ix(u) - j«(v), for u @ v € U(g) ® U(h). We claim that:

LEMMA 7.2.21. The just defined morphism (i, j.) : U(g) @ U(h) = U(gdh)
15 an 180.

PROOF. In general, we have an bijection between the morphisms of unitary as-
sociative algebras on a tensor product ¢ : U ® V — T and the pair of unitary asso-
ciative algebra morphisms (¢ : U — T, ¢4 : V — T) satistying [¢;(U), ¢4(V)] =0
in T as we can set ¢(u @ v) = ¢s(u) - ¢4(v) to get a morphism on U ® V' when
this condition is satisfied. In the case of the enveloping algebras U = U(g) and
V' = U(h), the verification of the relation [f(g), g(h)] = O for the Lie algebra mor-
phisms (f : g = T,g : h — T) associated to (¢ : U(g) — T, ¢, : U(h) — T,
readily implies that we have the commutation relation [¢f(u), ¢4(v)] = 0 on the
whole tensor product U(g) @ U(h).

Hence, giving a morphism of unitary associative algebras ¢ : U(g) @ U(h) — T
amounts to giving a pair of Lie algebra morphisms (f : g = T,¢g : h — T) such
that [f(g),g(h)] = 0, and according to the analysis of §7.2.20, this data amounts to
defining a Lie algebra morphism on the direct sum g&®b.

From this result, we conclude that the tensor product U(g) ® U(h) fits in the
adjunction relation characterizing the enveloping algebra of the Lie algebra g &b,
and hence, is isomorphic to this enveloping algebra. The morphism considered in
the lemma can readily be identified with the comparison isomorphism arising from
our argument line. O
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7.2.22. The symmetric monoidal category of Hopf algebras. We have already
observed that the category of counitary cocommutative coalgebras in any symmet-
ric monoidal category, and the category of unitary associative algebras similarly,
inherits a symmetric monoidal structure. As we define bialgebras in term of a
combination of these structures, we deduce from our general primary results that
the category of bialgebras inherit a symmetric monoidal structure too. When we
deal with Hopf algebras G, H € HopfGrp, we have an obvious antipode on the
tensor G ® H, defined factor-wise by the tensor product of the antipodes associated
to G and H. We conclude that the category of Hopf algebras HopfGrp forms a
symmetric monoidal subcategory of the category of bialgebras.

We implicitly check, in the proof of Lemma 7.2.21, that our pairing p(i, js) :
U(g) @ U(h) — U(g@h) defines a morphism of unitary associative algebras. We
readily see that our morphism preserves counits and coproducts too (since this is
so on the Lie algebras which generate our unitary algebra tensor product). Accord-
ingly, our pairing defines an isomorphism of Hopf algebras.

In the formalism of symmetric monoidal categories, the result of Lemma 7.2.21
implies:

PROPOSITION 7.2.23. The enveloping algebra functor U : Lie — HopfSGrp is
symmetric monoidal in the sense that:

(a) in the case of the zero object 0, viewed as the unit object of the category of
Lie algebras, we have an obvious identity U(0) = 1;

(b) in the case of a direct sum of Lie algebras g b, the pairing of §7.2.20
defines a Hopf algebra isomorphism U(g) @ U(h) = U(g @ h);

(¢) and these comparison isomorphisms fulfill the unit, associativity and sym-
metry constraints of §2.5.1.

PRroOF. The statement of assertion (a) is obvious and we have already checked
the result of assertion (b). The proof of the unit, associativity and symmetry
constraints, claimed by assertion (c), follows from a straightforward inspection of
definitions. O

7.3. Lie algebras and Hopf algebras in complete filtered modules

In this section, we examine the definition of Hopf algebras and the applicatior%j
of the concepts of §§7.1-7.2 in the case where the ambient category consists of
modules M equipped with a filtration M =FgM D --- DF,;M D --- so that M =
limg M/Fs M. We use the expression of complete filtered module to refer to such
objects. We also deal with Hopf algebras satisfying an appropriate connectedness
condition when we work in the category of complete filtered modules, and will use
the expression of complete Hopf algebra to refer to this more precise notion.

Our main purpose is to check that the main results of §7.2, about the relation-
ship between Lie algebras and Hopf algebras, work well for complete Hopf algebras.
We check that the category of complete filtered modules forms an example of cate-
gory fitting the setting of §7.2 first. We revisit the adjunction between Lie algebras
and Hopf algebras afterwards. We are notably going to observe that the universal
algebra structures of §7.2, namely the free Lie, symmetric, tensor, and enveloping
algebras, can be realized, in the category of complete filtered modules, as comple-
tions of the corresponding ordinary objects in the category of k-modules.
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Throughout this section, we assume that our ground ring K is a field of char-
acteristic zero. The assumption that K is a field ensures us that the tensor product
of k-modules preserves monomorphisms, kernels and finite limits. Let us mention
that our constructions have generalizations in the context of complete modules over
a complete local ring R, like power series ring K[[¢t]], which are naturally considered
in problems of deformation theory (see for instance [130] for a general reference on
this subject).

We work in the category of k-modules and in the categories formed by the
filtered objects, complete filtered objects, and weight graded objects in this base
category Mod = Modk. We first explain the precise definition of these categories
and check that they form examples of Q-additive symmetric monoidal categories in
the sense considered in §7.2.

7.3.1. The category of filtered modules. We call filtered module the structure
defined by a module M equipped with a decreasing filtration of the form:

M=FyM>---DF;M>---.

We also say that a module morphism f : M — N is filtration preserving when we
have f(Fs M) C Fs N, for all s € N. We set f Mod for the category formed by the
filtered modules as objects and the filtration preserving morphisms as morphisms.

We use this category as an auxiliary category for the definition of complete
filtered modules, and we will need the following constructions:

(a) The direct sum €, .4 M, of filtered modules M, o € J, inherits a canon-
ical filtration, defined by the obvious formula Fy(, Ma) = D, Fs(M.),
and represents the coproduct of the objects M, a € J, in the category of
filtered modules. The category of filtered modules is obviously additive,
so that we have an identity between finite direct and cartesian products
of filtered modules.

(b) A submodule K C M of a filtered module M inherits a canonical filtra-
tion, defined by Fs K = K NF; M, and to which we refer as the induced
filtration on K. We easily see that the kernel K = ker(f) of a filtration
preserving morphism f : M — N, M, N € fMod, equipped with this
induced filtration, represents the kernel of the morphism f in the category
of filtered modules.

(¢) A quotient N/M of a filtered module N by a submodule M is also equipped
with a canonical filtration, defined by Fs(N/M) = Fs(N)/M NFs(N). We
easily see that this quotient filtered module N/M represents the cokernel of
the canonical embedding ¢ : M — N in the category of filtered modules.
In general, the cokernel of a morphism f : M — N in the category of
filtered modules can be realized as the quotient filtered module N/ f(M),
where we regard the image of our morphism f(M) C N as a submodule
of the codomain N.

The existence of coproducts and cokernels implies that the category of filtered
modules has all colimits. Recall that, in an additive category, the cokernel of a
parallel pair (dy, d;) is identified with the cokernel of the difference dy — d;.

The observations (b) imply that the monomorphisms of the category of filtered
modules are the filtration preserving morphisms ¢ : M — N which are injective
as module morphisms. In general, the preservation of filtrations by a morphism
i: M — N is equivalent to the relation i(Fs M) C Fs N < Fs M C i Y(Fs N).
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We say that a monomorphism of filtered modules ¢ : M — N is a filtered module
inclusion, and we write ¢ : M — N, when we have an equality in this relation
F, M =i~ '(F, N), so that we can identify the subobject M with a submodule of N
equipped with the induced filtration, as defined in (b).

Note that a monomorphism of filtered modules is not necessarily a filtered
module inclusion, and hence, a kernel in the category of filtered modules. This
observation immediately proves that the category of filtered modules, though ad-
ditive, fails to be abelian. Note also that a morphism of filtered modules which is
bijective as a module morphism is not an isomorphism in the category of filtered
modules in general. The isomorphisms of the category of filtered modules precisely
consist of the filtration preserving morphisms f : M — N which are bijective as
module morphisms and of which inverse bijection f~! : N — M is also filtration
preserving.

7.3.2. Towers. We immediately see that giving a filtration in §7.3.1 amounts
to giving a coaugmented tower of surjections of the form

M*»~-~*»M/F5M*»~--*»M/FOM:0’

since we have p,M = M/F; M < Fs M = ker(M — psM). We refer to the quotient
psM = M/Fs M occurring in this tower as the sth level of the tower associated
to the filtered module M. We also have an equivalence between the morphisms of
filtered modules and the morphisms of coaugmented towers, which formally consist
of an underlying module morphism f : M — N together with a sequence of fill-in
morphisms

M—s - — M/F;M —---——> M/Fo M .

fl fa fx
Y Y
N—>>»--H>N/FSN4>>-«-H>N/FON

In this equivalence, the isomorphisms of the category of filtered modules correspond
to the morphisms of coaugmented towers which form an isomorphism level-wise.

We mainly use the tower representation when we define the completion of fil-
tered modules (in the next paragraph). In the tower representation, we can easily
realize colimits by an obvious level-wise construction, and we can see that the fil-
tration constructions of §7.3.1 match this process. For our purpose, we record the
following observations:

(a) For a direct sum @, 4 M, of filtered modules M,, a € J, we have an
obvious identity:

(P M)/ F (P M) = P (Ma/F, M),

aecd a€cld a€cd

for each s € N.

(b) For a submodule K C M of a filtered module M, which we equip with
the induced filtration of §7.3.1(b), we have a tower identity K/Fs K =
K/K NFy M, and the inclusion K C M induces an embedding

K/KNF,M — K/F, M,
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for each s € N. For the kernel K = ker(f) of a filtration preserving
morphism f: M — N, we have the relation

ker(f)/ ker(f)NFs M =ker(f.: M/Fs M — N/F; N),

at each level s € N.

(¢) For the quotient N/M of a complete filtered module N by a submodule
M, where we consider the quotient filtration of §7.3.1(c), we have a short
exact sequence

0—-M/MNF;N — N/FsN — (N/M)/Fs(N/M) — 0,

for each s € N.

The proof of these observations reduces to easy verifications.

7.3.3. Completions. The completion of a filtered module M is the module M
such that M = lim, M/Fs M. The tower of quotient morphisms g : M — M/F; M
gives rise to a canonical morphism q : M — M towards this limit M = lim, M /Fs M.
The module M inherits a canonical filtration, defined by the kernels

F, M = ker(M — M/ Fy M),

where we consider the canonical projections M— M /Fs M, s € N, associated with
the limit M = limg M/Fg M. Our canonical morphism ¢ : M — M is clearly filtra-
tion preserving. The construction of this object M, together with the associated
morphism ¢ : M — M, is obviously functorial in M € f Mod.

In the language of §7.3.2, the definition Fy M = ker(M — M/ F, M) amounts
to providing the completed module M with the filtration associated to the tower

M—»---—»M/FSM—»---—»M/FOM:O
used to define this limit, so that we have an identity:
M/F,M = M/F, M,

for every s € N. This tower identity implies that the completion functor is idempo-
tent in the sense that the canonical morphism ¢ : N — N associated to a completed
module N = M is an iso.

In general, we say that a filtered module M is complete when the associated
morphism ¢ : M — M is an iso (equivalently, if we have M = lim, M/ Fy(M)). The
idempotence of the completion functor implies that the completion of a filtered
module M gives a complete filtered module M , naturally associated to M. This
complete filtered module M is also universal in the sense that any filtration pre-
serving morphism f : M — N, where N is complete, admits a unique factorization

in the category of filtered modules (we take the image of the morphism f under the
completion functor, and use the identity N = N to get this factorization).
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7.3.4. The category of complete filtered modules. The category formed by the
complete filtered modules as objects and the filtration preserving morphisms as  /\ AN
morphisms is denoted by Mod (we forget about the f prefix in this notation, be- ﬂo } — /gg MDA
cause we assume that a complete filtered module is automatically given with a \
fixed filtration). The completion functor can be interpreted as a left adjoint of the '** 3\0.‘,\1\')&)\
category embedding i : Mod — f Mod. VRO O%
In what follows, we use a notation of the form (ﬁ?naMa, with a hat mark, LQ’V\A LAJQ'\}(
to distinguish the colimit of a diagram M,, a € J, in the category complete fil-
tered modules Mod from the colimit of this diagram colim, M, in the category
of filtered modules f Mod, which we also use as an auxiliary construction in the
complete setting. The idempotence of the completion functor actually implies that
the complete colimit ca;naMa can be realized as a completion of the ordinary col-
imit (colim, M,)~ This observation implies that the category of complete filtered
modules has all colimits too. In general, for a diagram in the category of filtered
modules M, o € J, we have an identity

(colim M, )" = ca;naMa

in the category of complete filtered modules.

For our purpose, we record the following assertions concerning particular cases
of colimit and limit constructions (we rely on the observations of §7.3.2 for the
verification of these claims):

(a) For the direct sum of a finite collection of filtered modules M,,, i =
1,...,n, we have an obvious relation

(Mal@...@Man)A: Mm@"‘@Man'

In the case of complete filtered modules M, = M, we deduce from this
identity that the direct sum M,, ®--- @& M, is complete, and we obtain,
besides, that this direct sum represents the coproduct of the objects M,,,
i=1,...,n, in the category of complete filtered modules. The category of
complete filtered modules is therefore additive (like the category of filtered
modules). For the direct sum ,.5 M, of a (possibly infinite) collection
of filtered modules M, « € J, the completion returns a complete filtered
module (P, .5 M) which represents the coproduct of the objects M, in
the category of complete filtered modules. By convention, we may use the
notation @, ., M, (with the hat mark) to refer to these coproducts in the
complete sense.

(b) Let K C M be a submodule of a filtered module M, which we equip with
the induced filtration of §7.3.1(b). The morphism of complete filtered
modules K — M extending the inclusion i : K < M is an inclusion of
filtered modules. The kernel ker(f) of a filtration preserving morphism f :
M — N, equipped with the induced filtration, is automatically complete as
soon as M and N are complete, and represents the kernel of the morphism
f in the category of complete filtered modules. In general, we have the
relation

ker(f)"=ker(f : M — N),
where f : M — N is the morphism of complete filtered modules induced
by our morphism f: M — N.
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(¢) For the quotient N/M of a filtered module N by a submodule M, equipped

with the quotient filtration of §7.3.1(c), we have the relation
(N/M)™=N/M,

where we use the observation of assertion (b) to identify the completion
M with a submodule of the complete filtered module N. In particular, the
quotient of a complete filtered module N = N by a complete submodule
M = M is automatically complete. The object (N/M)™ represents the
cokernel of the inclusion M < N in the category of complete filtered
modules. In general, the cokernel of a morphism f : M — N in the
category of complete filtered modules can be identified with the completion

(N/f(M))", where we regard the image of our morphism f(M) C N as a
submodule of the codomain N.

We can easily observe that the category of complete filtered modules, though
additive, fails to be abelian (for the same reasons as the category of plain filtered
modules). In the next paragraph, we recall the definition of weight graded module
structures, which we use as approximations of our complete filtered modules, and
which do form an abelian category. The idea is to use abelian category methods at
this level in order to get structure results for complete filtered modules.

7.3.5. The category of weight graded modules. The category of weight graded
modules, denoted by wMod, consists of the modules M equipped with a decom-
position of the form M = @, \ M, and where we refer to the summand M, as
the homogeneous component of weight s of the module M. The morphism of this
category are the module morphisms f : M — N which preserve the weight decom-
position in the sense that f(M,) C N;. The definition of a weight graded module
is obviously the same as the definition of a graded module of §4.4 (except that we
now restrict the grading to non-negative integers). But we introduce a new category
in order to distinguish structures of different nature. This difference appears, at
the categorical level, in the definition of a symmetric monoidal structure on weight
graded modules (see §7.3.13).

The category of weight graded modules inherits both limits and colimits (re-
alized componentwise) and is also clearly abelian (unlike the category of filtered
modules and the category of filtered modules).

7.3.6. The weight graded module associated to a filtered module. To a filtered
module M we associate a weight graded module E® M with the sub-quotients

ECM =F,M/F,41 M, forscN,

as homogeneous components. The mapping E° : M +— E° M defines a functor on
the category of filtered modules and on the category of complete filtered modules
as well by restriction.

The sub-quotients EY M can also be defined in terms of the tower associated to
M. We explicitly have:

EC M = ker(M/Fyyy M — M/F, M), forscN.

For the completion of a filtered module M, we immediately deduce from this rep-
resentation that we have the relation:

EO M =EO M,

for every s € N.
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The following easy statement motivates the introduction of weight graded mod-
ules for the study of complete filtered modules:

PROPOSITION 7.3.7. A morphism of complete filtered modules f : M — N is an
is0 as soon as the associated morphism of weight graded modulesE® f : E° M — EO N
is an iso in w Mod.

PROOF. The definition E? M = ker(M/F,. 1 M — M/F, M) implies that the
modules of homogeneous weight EQ M fit in short exact sequences

0—E'M — M/Fee1 M — M/Fy M — 0,

for all s € N. From these exact sequences, we obtain by induction that a morphism
of filtered modules f : M — N induces an isomorphism at each level s of the towers
associated to our modules as soon as the morphism of weight graded modules E° f :
E° M — E° N is an iso. The proposition follows. (I

In subsequent verifications, we combine the result of this proposition with the
following observations:

PROPOSITION 7.3.8. The mapping E° : M + E® M preserves the categorical op-
erations considered in §7.3.1(a-c). To be explicit, we have the following assertions:

(a) For a direct sum @, M, of (complete) filtered modules M,, we have the

obvious relation
E (P M.) = PE" M.
(6% «

(b) For the kernel K = ker(f : M — N) of a filtration preserving morphism
f:M — N, where M and N are (complete) filtered modules, we have the
relation

E'ker(f : M — N) = ker(E” f : E° M — E° N).

(¢) For a submodule M C N of a filtered module N, equipped with the induced
filtration of §7.3.1(b), the weight graded module E° M associated to M
embeds into EC N, and we have a short ezact sequence

0—-E"M —-E°N - E'(N/M) =0

identifying E° M/ EY N with the weight graded module E°(N/M), where the
module N/M is equipped with the quotient filtration of §7.3.1(c).

PROOF. The proof of this proposition reduces to easy verifications which elab-
orate on the observations of §7.3.2. (]

7.3.9. The tensor product of filtered modules. The tensor product M ® N of
filtered modules M, N € f Mod inherits a canonical filtration, which we define by:

F(M®N)= > FJ(M)®F,(N)CM®N, foreachreN.
s+t=r
The category of filtered modules is therefore equipped with a natural tensor product
operation.

The ground field K, regarded as a module equipped with a trivial filtration, such
that Fok = k and F, k = 0 for s > 0, forms a unit for this tensor product. Besides,
we readily check that the associativity isomorphism (K @ L)@ M ~ K ® (L ® M)
preserves filtrations, so that the associativity of the tensor product holds in the



232 7. HOPF ALGEBRAS

category of filtered modules, and we also have a symmetry isomorphism M ® N ~
N ® M inherited from the base category of k-modules. Thus we have a natural
symmetric monoidal structure on the category of filtered modules. We readily see,
moreover, that the tensor product of filtered modules preserves the direct sums
of §7.3.1(a), the cokernels of §7.3.1(c), and as a consequence all colimits, so that
the colimit preservation requirement of §0.9 is entirely satisfied in the category of
filtered modules.

We use the symmetric monoidal category of filtered modules as an auxiliary
structure for the definition of a symmetric monoidal structure on complete filtered
modules. The tensor product of complete filtered modules is not complete in gen-

eral. For M, N € Mod , we therefore perform the completion operation
M&N =lm(M®N)/F.(M®N)
T
in order to get a tensor product operation & on the category of complete filtered
modules. Our purpose is to establish that the category of complete filtered mod-

ules, equipped with this completed tensor product, is symmetric monoidal. Our
verifications rely on the following observation:

LEMMA 7.3.10. The natural morphism

@ FoM/Foey1 MQF,N/Friy N

stt=r =EQ M —E0 N
5 Y RADERN)/ Y R @R(N)
s+t=r s+t=r+1
=EO(M®N)
1S an 1so.

PROOF. The proof of this lemma reduces to an elementary exercise of linear
algebra. 0

This lemma gives our main argument in the proof of the following proposition:

ProrosIiTION 7.3.11. The canonical morphism M @ N — M®N — M@N,
defined for any pair of filtered modules M, N € f Mod, extends to an isomorphism
(M@N)™= M&N

in the category of complete filtered modules.

PRrROOF. Lemma 7.3.10 implies that we have

EAM@N) =E(M®N)= P EIME) N
s+t=r

as well as

E(M&N)=E(MoN)= P ESM@EN= P E2ME N
s+t=r s+t=r
for every r € N. Besides, we immediately see that the morphism of the propo-
sition (M ® N)™— M & N induces the identity morphism at the level of these
weight graded modules. Proposition 7.3.7 immediately implies, therefore, that this
morphism is an isomorphism. [
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In the next paragraphs §§7.3.12-7.3.13, we reinterpret these intermediate results
as the definition of symmetric monoidal functors between the symmetric monoidal
categories formed by the filtered modules, the complete filtered modules and the
weight graded modules.

7.3.12. The symmetric monoidal structure on the category of complete filtered
modules. We equip the category of complete filtered modules with the completed
tensor product of §7.3.9:

M&®N=M®N/F.(M®N).

We see that the ground field, for which we have k = Kk, also defines a unit for this
tensor structure. We moreover readily obtain, from the result of Proposition 7.3.11,
that the completed tensor product inherits an associativity isomorphism from the
tensor product of filtered modules:

(K&L)&M)~ (K ® L)@ M)~ (K (Lo M)~ (K&(L& M)

We also have an obvious symmetry isomorphism M &® N ~ N & M induced by
the symmetry isomorphism of the category of filtered modules (we just use the
functoriality of completions in this case). Thus the category of complete filtered

modules Mod , equipped with our completed tensor product &, has a full symmetric
monoidal category structure. From the realization of colimits of complete filtered
modules in terms of completions (see §7.3.4), the result of Proposition 7.3.11, and
the preservation of colimits by the tensor product of filtered modules (see §7.3.9),
we obtain that the colimit preservation axiom of §0.9 is fulfilled in the category of
complete filtered modules as well.

We can interpret the result Lemma 7.3.10, in terms of a symmetric monoidal
structure on weight graded modules, of which we now explain the definition. Sim-
ply note, before addressing this subject, that the result of Proposition 7.3.11 and
the definition of our symmetric monoidal structure on complete filtered modules,
implies that the completion functor (—)~: f Mod — Mod is symmetric monoidal.

7.3.13. The symmetric monoidal structure on the category of weight graded
modules. The tensor product of weight graded module M, N € wMod inherits a
canonical weight decomposition M @ N = @~ ,(M ® N),., which we define by the
same formula as in the homological algebra framework (see §4.4):

(M@N), = @ M.®N,, forreN.

s+t=r

The category of weight graded modules is therefore equipped with a natural tensor
product operation ® : w Mod x wMod — wMod (given by the same construction
as the tensor product of graded modules in §4.4.1). The ground ring k, regarded
as weight graded module of rank 1 concentrated in weight r = 0, still provides a
unit object for this tensor product, and we have an obvious associativity isomor-
phisms yet. But, in contrast with the definition of §4.4.1, we now consider the plain
symmetry isomorphism of the category of k-modules M; ® N; ~ N; @ M, (with no
sign involved) to define a symmetry isomorphism for the tensor product of weight
graded modules.

The tensor product of weight graded modules clearly fully satisfies the colimit
preservation requirement of §0.9.
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The result of Lemma 7.3.10 amounts to the definition of a weight-graded module
isomorphism

EY(M ® N) ~E°(M) ® E°(N)

and we have an analogous iso in the complete case, since the definition of the ten-
sor product M @ N as a completion implies E°(M @ N) = E°(M ® N) (see §7.3.6).
The mapping E° : M ~ E°(M) clearly preserves unit objects, our iso satisfies the
associativity constraint of §2.3.1, as well as the commutativity constraint. To be
explicit, the morphism E°(M ® N) ~ E°(M ® N) induced by the symmetry iso-
morphism of filtered modules is carried to the plain symmetry isomorphism of the
category of weight graded modules E°(M) ® E°(N) ~ E°(M) ® EY(N) (of which
definition was actually motivated by this correspondence) when we apply our sym-
metric monoidal transformation. Thus, the mapping E° : M + E°(M) defines a
symmetric monoidal functor from the category of filtered modules (respectively,
the category of complete filtered modules) towards the category of weight graded
modules.

7.3.14. Hopf algebras in filtered, complete and weight graded modules. The def-
inition of the symmetric monoidal structures, in the previous paragraphs, enables
us to apply concepts of the previous sections §§7.1-7.2 in the context of filtered
modules, complete filtered modules, and weight graded modules. In particular, we
can define Hopf algebra structures in these categories.

In the weight graded setting, the definition of such a Hopf algebra H explicitly
amounts to assuming that we have a weight graded module H together with a Hopf
algebra structure (in the ordinary sense) so that the unit n : K = H, the product
uw: H®H — H, the counit € : H — K, the coproduct A : H - H ® H, and the
antipode ¢ : H — H are homogeneous morphisms. In the filtered module setting,
we similarly obtain that a Hopf algebra H consists of a filtered module H together
with a Hopf algebra structure (in the ordinary sense) so that the unit  : k — H,
the product p: H® H — H, the counit ¢ : H — K, the coproduct A : H - H® H,
and the antipode o : H — H are filtration preserving morphisms.

In the complete case, we have to replace the plain tensor product by the com-
pleted one & in the definition of a Hopf algebra. The product can still be composed
with the canonical morphism H ® H — H ® H (associated to our completion) to
give an ordinary product on the Hopf algebra H (we go back to this observation
in §7.3.21). In contrast, the coproduct A : H — H & H does not factor through
the ordinary tensor product in general, and accordingly, is not equivalent to an
ordinary coproduct.

The preservation of symmetric monoidal structures implies that the filtration
subquotient functor E® : M — E°M maps a Hopf algebra in filtered modules
(respectively, in complete filtered modules) to a Hopf algebra in weight graded
modules. The completion functor (—=)~: M — M similarly maps a Hopf algebra in
filtered modules to a Hopf algebra in complete filtered modules.

7.3.15. Connected weight graded Hopf algebras and complete Hopf algebras. In
order to agree with standard conventions (see [138]), we say that a weight graded
Hopf algebra (for a Hopf algebra in weight graded modules) is connected when we
have Hy = k. The unit n : K — H (respectively, the counit € : H — K) is necessarily
given, in this case, by the identity morphism between the ground field k and the
component Hy. We use the notation w HopfGrp, for the category formed by the
connected weight graded Hopf algebras.



7.3. LIE ALGEBRAS AND HOPF ALGEBRAS IN COMPLETE FILTERED MODULES 235

In the filtered module context, we analogously say that a filtered Hopf alge-
bra (for a Hopf algebra in filtered modules) is connected when we have EJ H =
H/F1 H =k, and we use the notation f HopfGrp, for this subcategory of the cate-
gory of Hopf algebras in filtered modules. In the case of Hopf algebras in complete
filtered modules, we suppose that the requirement EJ H = k is satisfied in all ap-
plications. Therefore we reserve the expression of complete Hopf algebra and we
use the notation fHo/pErp (with no further precision) for the subcategory of Hopf 7 N M
algebras in complete filtered modules that satisfy our condition E) H = k. A OVRG’"(—_ %’ O&K\f
The requirement H/Fy H = k amounts to defining the category of connected ' MQ
filtered (respectively, complete) Hopf algebras as the counter-image of the category .
connected weight graded Hopf algebras under the mapping E° : H — E° H, and we @% \Q'U\Q
accordingly have a diagram of functors

VR AUDNG AN

f HopfSrm, = HopfGrp

wHopfSrp,

summarizing the connections between our Hopf algebra categories.
The following proposition motivates the introduction of the connectedness con-
dition for weight graded Hopf algebras:

PROPOSITION 7.3.16. The connected weight graded Hopf algebras are locally
conilpotent in the sense of the definition of §7.2.15.

PrOOF. Let H be a connected weight graded Hopf algebra. We check that the
conditions of local conilpotence hold for the objects K™ = Hy @ --- & H,,. We
obviously have colim,,, K™ = H and the homogeneity of the coproduct implies the
inclusion relation A(K™) C >_ ., Kp ® K,. We are therefore reduced to check
the vanishing condition n > m = 7(MAM (K™) = 0.

Recall that the morphism 7™ A represents the components of the n-fold
coproduct A™ : H — H®" on the summand I(H)®" C H®". In the case of a
connected weight graded Hopf algebra, for which we have Hy = K, the augmentation
ideal I(H) = ker(e : H — K) is identified with the sum I(H) = @, ., (H). The
reduced n-fold coproduct 7™ A is equivalently defined by dropping all terms
involving at least one unit factor 1 € Hy in the expansion of the n-fold coproduct
of an element u € H. The preservation of the grading by the coproduct implies

w(")A(")(HT) C @ H, ®---®H,,,
r1+-Frp=r
T1yeeeyTn >0
and we accordingly have n > r = 7™ A (H,) = 0. This observation finishes the
proof of our statement. O

7.3.17. Weight graded Lie algebras and Hopf algebras. We can formally apply
the definitions and constructions of §7.2 to the category of weight graded modules
M = w Mod since this symmetric monoidal category fulfills all our requirements,
including the colimit preservation condition of §0.9. We accordingly have a cat-
egory of weight graded Lie algebras (for Lie algebras in weight graded modules),
an enveloping algebra functor which assigns a weight graded Hopf algebra U(g)
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to any weight graded Lie algebra g, as well as a primitive element functor P(H)
which forms a right adjoint of this enveloping algebra functor on weight graded
Lie algebras. We basically get all constructions by plugging in the tensor product
of weight graded modules in the definitions of §7.2. We also have, by the way, a
weight graded version of the symmetric Lie algebras S(M), of the tensor algebras
T(M), and of the free Lie algebras L(M) of §§7.2.3-7.2.4.

We immediately get, from the formal definition, that a weight graded Lie alge-
bra consists of a weight graded module g equipped with a morphism A : g® g — g,
which defines a Lie structure (in the ordinary sense) on g, and is homogenous with
respect to the weight grading. We explicitly have [g,,g,] C 9,4, for all s,t € N,
where we use the Lie bracket notation [z,y] = A(z ® y). We say that a weight
graded Lie algebra is connected when we have g, = 0, and we use the notation
w Lieg for this subcategory of the category of weight graded Lie algebras. We
readily see that the enveloping algebra functor maps a connected weight graded
Lie algebra to a connected weight graded Hopf algebra (in the sense of §7.3.15)
and conversely as regards primitive elements. We accordingly have adjoint functors
between our subcategories of connected objects U : w Lieg = w HopfGrp, : P, and
the result of Proposition 7.2.23, asserting that the enveloping algebra functor is
symmetric monoidal, holds in the weight graded setting. We also immediately see,
by the way, that the symmetric algebra R = S(M) associated to a weight graded
module M € wMod is connected in the sense that Rg = k when My = 0. We have
a similar result My = 0 = T(M)o = k for the tensor algebra R = T(M), and we
obtain My =0 = L(M)o = 0 for the free Lie algebra R = L(M).

We record the following weight graded version of the main theorems of §7.2:

THEOREM 7.3.18. In the weight graded context:
(a) The result of Theorem 7.2.16 (the Structure Theorem of Hopf algebras)
returns an iso of weight graded counitary cocommutative coalgebras
e:SP(H) = H

for any connected weight graded Hopf algebra H € w HopfGrp,.
(b) The result of Theorem 7.2.17 (the Poincaré-Birkhoff-Witt Theorem) re-
turns an iso of weight graded counitary cocommutative coalgebras

e:S(g) = U(g)

for any connected weight graded Lie algebra g € w Lieg.

(¢) The result of Theorem 7.2.19 (the Milnor-Moore Theorem) implies that
the graded versions of the enveloping algebra U : g — U(g) and primitive
element functors P : H — P(H), induce adjoint equivalences of categories

U:wlieyg = wHopfGrp, : P
between the category of connected weight graded Lie algebras w Lieg and

the category of connected weight graded Hopf algebras w HopfSGrp, .

The third assertion of this theorem actually gives the original version of the
Milnor-Moore theorem (see [138]).

PROOF. These assertions are applications of the results of Theorem 7.2.16,
Theorem 7.2.17 and Theorem 7.2.19 since we established in Proposition 7.3.16 that
the connected weight graded Hopf algebras are locally conilpotent in the sense
of §7.2.15. O
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We now review the applications of the concepts of §7.2 in the category of com-
plete filtered modules. We can formally apply the definitions and constructions
of §7.2 in this context since we observed in §7.3.12 that the tensor product of com-
plete filtered modules (and the tensor product of plain filtered modules similarly)
fulfill all our requirements, including the colimit preservation axiom of §0.9. We
may however follow another approach to make these constructions more explicit.
We precisely explain, in the next paragraphs, that the complete versions of the
free Lie algebras, symmetric and tensor algebras, enveloping algebras, considered
in §7.2, are identified with completions of their ordinary counterpart. We examine
the definition of a Lie algebra structure first.

7.3.19. Lie algebras in filtered modules and in complete filtered modules. We
immediately get, from the definition of §7.2.1, that the structure a filtered Lie alge-
bra (for a Lie algebra in filtered modules) consists of a filtered module g equipped
a Lie bracket A : g®g — g, which defines a Lie structure (in the ordinary sense)
on g, and preserves filtration. We explicitly assume [Fsg,Fsg] C Fsit g, for all
s,t € N, where we use the bracket notation [z,y] = A(x ® y). When we deal with
Lie algebras in complete filtered modules, we assume that g is a complete filtered
module § = g and we formally replace the plain tensor product in the definition
of the Lie bracket by the completed one. We immediately see that any such Lie
bracket on the completion g& g = (g® g)  arises as the extension of an ordinary
filtration preserving Lie bracket on g:

\ s
g®g

We obtain, therefore, that a Lie algebra in complete filtered modules is equivalent
to a filtered Lie algebra g whose underlying filtered module is complete § = g.

This observation implies, besides, that we have an embedding of the category of
Lie algebras in complete filtered modules into the category of Lie algebras in filtered
modules. We see that this embedding is a right adjoint of the functor induced by
the completion (—)7: g — @, where we use the preservation of symmetric monoidal
structures, asserted in §7.3.12, to get that the completion § of a Lie algebra in
filtered modules g inherits a Lie algebra structure.

7.3.20. Connected filtered Lie algebras and complete Lie algebras. We say that
a filtered Lie algebra is connected when we have E}g = g /F1 g = 0, so that the
filtration of our Lie algebra has the form g =F;g D --- DFsg D ---. We use the
notation f Lieg for the subcategory of connected filtered algebras. In the case of Lie
algebras in complete filtered modules, we suppose that the requirement E§ g = 0
(equivalently, g = F; g) is satisfied in all applications. Therefore we reserve the

gR®g

expression of complete Lie algebra and we use the notation Lie (with no further
precision) for the subcategory of Lie algebras in complete filtered modules that
fulfill this condition EJ g = 0.

The mapping E° : M — E° M also induces a functor on Lie algebra categories
since we observed in §7.3.13 that this mapping is a symmetric monoidal functor
in the sense of §2.3. The requirement E° g = 0 amounts to defining the category
of connected filtered (respectively, complete) Lie algebras as the counter-image of
the category connected weight graded Lie algebras of §7.3.17 under the functor
E? : g — E%g. The connections between our Lie algebra categories are summarized
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by the functor diagram:

w Lieg

where the horizontal arrows are the embedding and completion functors of §7.3.19.
We now aim to revisit the construction of the symmetric algebras, tensor al-
gebras, and enveloping algebras of §7.2 in the setting of complete filtered modules.
We then deal with unitary associative algebras and unitary commutative algebras
in complete filtered modules. We examine the definition of these structures in a pre-
liminary stage. We also deal, for our purpose, with auxiliary categories of unitary
associative algebras and unitary commutative algebras in filtered modules.

7.3.21. Unitary associative and unitary commutative algebras in complete fil-
tered modules. We immediately see (as in the Lie algebra case) that a unitary
associative (respectively, commutative) algebra in filtered modules is equivalent
to a filtered module A equipped with a unit 7 : K — A and product morphisms
w:A® A— A, which provide A with a unitary associative (respectively, commu-
tative) structure (in the ordinary sense), and preserve filtrations (this condition is
void for the unit since we assume F; K = 0). We also readily observe that a uni-
tary associative (respectively, commutative) algebra in complete filtered modules is
equivalent to a unitary associative (respectively, commutative) algebra in filtered
modules A which is complete as a filtered module A = A, because we have k =k
and any product in the sense of the symmetric monoidal structure of complete fil-
tered modules i : A® A — A arises as an extension of a product in the ordinary
sense (: A® A — A.

We say that a unitary associative (respectively, commutative) algebra in fil-
tered modules is connected when we have E) A = A/F; A = k. When we work
in the complete setting, we reserve the expression of complete unitary associative
(respectively, commutative) algebras for the unitary associative (respectively, com-
mutative) algebras in complete filtered modules which fulfill this connectedness
requirement. We adopt the notation fAs; (respectively, f Comy) for the subcate-
gory of connected filtered unitary associative (respectively, commutative) algebras,

and the notation As (respectively, @) for the subcategory of complete unitary
associative (respectively, commutative) algebras. We use similar conventions for
unitary associative (respectively, commutative) algebras in weight graded modules
and we have a diagram, similar to the functor diagram of §7.3.20, summarizing the
connections between these algebra categories.

The observations of this paragraph imply that the completion functor (—)~
A~ A induces a functor on filtered unitary associative (respectively, commutative)
algebras. We readily see that the functor defines a left adjoint of the category
embedding 7 : As < f Asq (respectively, i : Com — fComy).

7.3.22. The completion of free algebras. We can apply the general construc-
tion of §7.2.4 to get the definition of a tensor (respectively, symmetric) algebra in
the category of filtered modules (and in the category of complete filtered modules
similarly). We can also use the general construction of §7.2.3 to get the definition
of free Lie algebras. In all case, we simply replace the generic direct sums and
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tensor products of §7.2 by the coproduct and tensor product of our categories (the
complete direct sum & and the complete tensor product & in the complete filtered
module setting).

When we deal with plain filtered modules, we can identify the tensor alge-
bra T(M) with the standard tensor algebra associated to the module M, which
we equip with the filtration T(M) = FoT(M) D --- D FsT(M) D --- such that
FsT(M) = @, Fs(M®") and Fs(M®") =30, _ Fs, M® - ®@F; M. We
have a similar observation in the symmetric algebra and free Lie algebra case.

When we deal with a complete filtered module M = M, we use the notation
T(M) to refer to the complete tensor algebra associated to M, and T(M) for the
ordinary tensor algebra (formed in the category of filtered modules) which we also
use as an auxiliary structure in this context. We adopt an analogous notation
é(M ) for the complete symmetric algebra associated to M, which we oppose to the
ordinary symmetric algebra S(M). We similarly set ﬂ(M ) for the complete free Lie
algebra associated to M, and L(M) for the ordinary free Lie algebra in the category
of filtered modules.

We actually immediately obtain, by using the adjunction between unitary as-
sociative (respectively, commutative) algebras in filtered modules and in complete
filtered modules, that the complete tensor (respectively, symmetric) algebra can be
realized as the completion of the ordinary tensor (respectively, symmetric) alge-
bra. We more generally have T(M) = T(M) for any filtered module M € f Mod.
We have similarly S(M) = S(M)” in the case of the symmetric algebra, and
L(M) = L(M)"in the case of the free Lie algebra. We can use this relationship to
get an explicit representation of the complete tensor (respectively, symmetric, free
Lie) algebra.

Let R = S(M) (respectively, R = T(M)) denote the symmetric (respectively,
tensor) algebra associated with a filtered module M. The definition of the counit
€: R — Kk, coproduct A : R — R®R, and antipode ¢ : R — R in the construction of
Proposition 7.2.6 automatically returns filtration preserving morphisms that define
the counitary cocommutative coalgebra structure of our algebra R = S(M), T(M)
in filtered modules. In the complete case, the counit € : R — k, coproduct
A:R— R®R and antipode & : R — R, obtained by completion from these
morphisms, clearly yield the counitary cocommutative coalgebra structure of the
complete algebra R = S(M), T(M) associated to R.

7.3.23. Connectedness assumptions and complete free algebras. We generally
consider the complete tensor algebra of complete filtered modules M such that
EQM =0 < M =F; M. Wereadily see that M = Fy M = E§ T(M) =EJT(M) =k
so that the complete tensor algebra 'i'(M ) associated to a complete filtered mod-
ules M which satisfies this connectedness requirement E§ M = 0 forms a complete
unitary associative algebra in the sense of §7.3.21. We have similar results in the
symmetric algebra and free Lie algebra case.

In the case E) M = 0, we moreover have

S(M) =TIy (M®7)s, and T(M)=[[>,M®",

essentially because this condition E M = 0 <& M = F; M implies the inclusion
relation M®" = F.(M®") C F, T(M) for each r € N, and similarly in the symmetric
algebra case. In other terms, the complete direct sums &, which we usually have in
the expansion of the tensor and symmetric algebra, reduce to an ordinary product
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when the module M is connected. We also have
L(M) = T2, L (M)
in the free Lie algebra case, where we take

L. (M) = L,(M)"= (Lie(r) ® M®")s, ,

the completion of the homogeneous summands of the ordinary free Lie algebra in
the expansion of §7.2.3.

7.3.24. The completed enveloping algebras of Lie algebras, primitive elements
and adjunctions. We can readily extend our analysis of the construction of sym-
metric and tensor algebras to enveloping algebras.

When we deal with a Lie algebra in filtered modules g, we can provide the usual
enveloping algebra associated to g (as explicitly defined §7.2.9) with a canonical
filtration, so that this algebra U(g) naturally forms a unitary associative algebra in
the category of filtered modules and satisfies the adjunction relation of enveloping
algebras (see §7.2.7) in this setting. When the Lie algebra is complete § = g, we
adopt the notation U(g) for the enveloping algebra in complete filtered modules
associated to g, as opposed to the ordinary enveloping algebra in filtered modules
U(g), which we use as an auxiliary construction in this setting. We can actually
readily identify the complete enveloping algebra U(g) with the completion of the
ordinary enveloping algebra U(g). We more generally have U(g) = U(g)" for any
Lie algebra in filtered modules g.

We moreover easily see that the counit ¢ : U(g) — k, coproduct A : U(g) —
U(g) ® U(g) and antipode 6 : U(g) — U(g), defining the counitary cocommutative
coalgebra structure of the enveloping algebra in the complete case, are identified
with the morphisms induced by the counit, coproduct and antipode of the ordinary
enveloping algebra U(g) on the completion. We have besides EJ U(g) = k as soon
as our Lie algebra satisfies E° g = 0 < g = F; g. Accordingly, we obtain under our
conventions that the complete enveloping algebra functor induces a functor from
the category/ci complete Lie algebras Lie towards the category of complete Hopf

algebras Hopf Grp:
/U\: Lie — U—C@rp.
In the converse direction, the image of a Hopf algebra H under the primitive
element functor P : H — P(H) is defined, in the complete case, as the submodule
P(H)={r € Hle(z) =0,A(z) =2®1+ 1z},

which we equip with the induced filtration of §7.3.1(b). Recall that this object is
complete and is identified with the appropriate kernel in the category of complete
filtered modules (see §7.3.4). In the case of a complete Hopf algebra, we moreover
have E) H = k = EJ P(H) = 0 so that the mapping P : H — P(H) yields a functor
from the category of g)inplete Hopf algebras CH:O/p-ET’p towards the category of
complete Lie algebras Lie:

P:J—Co/p-Erp—)ZE.

The adjunction of Proposition 7.2.13 between the enveloping algebra and primitive
element functors also holds in the complete context.
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The results of Proposition 7.2.14, also holds in the category of complete filtered
modules since this category fits the assumptions of §7.2. Thus, we have P'i'(M ) =
L(M).

In the rest of this section, we check the analogue of the structure theorems
of §7.2 for complete Hopf algebras. To start with, we observe that:

THEOREM 7.3.25. The symmetrization morphism of Theorem 7.2.16 (the Struc-
ture Theorem of Hopf algebras) gives, in the complete setting, an iso of counitary
cocommutative coalgebras

e:SP(H) =S H

for any complete Hopf algebra H € J'CO/])E’F]) (satisfying our requirement H/Fy H =
k).

EXPLANATION AND PROOF. In §7.2, we use a local conilpotence condition to
establish this statement in a general context. Recall that this assumption is essen-
tially used to have a limit decomposition of the endomorphism algebra End(H) and
give a sense to formal sums in this object.

In the case of a complete Hopf algebra H, we more naturally use the rela-
tion H = lims H/Fs H to get a limit decomposition at the level of hom-objects
Hom(—, H) = lim, Hom(—, H/F, H), and we can similarly take the decomposition
Hom(—, H @ H) = lim, Hom(—, H ® H/F,(H ® H)) when we have to deal with hom-
objects towards a tensor product. We easily check that the proof of Theorem 7.2.16
works same when we take this limit decomposition instead of the one considered
in §7.2. We precisely use the connectedness condition H/F; H = K to give a sense
to our formal sums ) A,7". We therefore get a version of the result of Theo-
rem 7.2.16 for complete Hopf algebras, as claimed in the present theorem. (Just
note that we have to take the complete direct sums of §7.3.4(a) instead of the ordi-
nary direct sums when we work in the category of complete filtered modules.) O

This structure theorem is completed by the following analogues of the Poincaré-
Birkhoff-Witt and Milnor-Moore theorems:

THEOREM 7.3.26.

(a) The symmetrization morphism of Theorem 7.2.17 (the Poincaré-Birkhoff-
Witt Theorem) gives, in the complete setting, an iso of counitary cocom-
mutative coalgebras

¢:S(g) = U(g)
for any complete Lie algebra g € Lie.

(b) The result of Theorem 7.2.19 (the Milnor-Moore theorem) implies, in the
complete setting, that the complete enveloping algebra U: g— U(g) and
primitive element functors P : H — P(H), define adjoint equivalences of
categories

U: Lie= ﬂ{o/pﬁrp :P
between the category of complete Lie algebras Lie and the category of com-
plete Hopf algebras f}fo/pjfgrp.

PROOF. The claim of assertion (a) follows from the statement of Theorem 7.2.17
(just recall that this result holds for any Lie algebra in a general Q-additive sym-
metric monoidal category setting which includes the example of complete filtered
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module as a particular case). The argument line of Theorem 7.2.19 works and
yields a proof of assertion (b) as soon as we have the result of the Structure Theo-
rem and the result of the Poincaré-Birkhoff-Witt Theorem. In the case of complete
filtered modules, these results are provided by the statements of Theorem 7.3.25
and Theorem 7.3.26(a). O

For the sake of completeness, we record the following relationship between the
complete and weight graded versions of our functors:

PROPOSITION 7.3.27.
(a) For any complete filtered module M € m, we have the relation E° é(M) =
S(E° M), EOT(M) = T(E° M), and E° L(M) = L(E° M).
(b) For a complete Hopf algebra H € H@rp, we have E°P(H) = P(E* H).
(¢) For a complete Lie algebra g € Lie, we have E° U(g) = U(E® g).

PROOF. In fact, we prove that we have the relations E° S(M) = S(EY M) and
E'T(M) = T(E® M) at the level of plain filtered modules, and we use the general
identity E°(—)"= E°(—) to get the complete case of these identities, as asserted in
our proposition.

The identity E° T(M) = T(E® M) follows from the preservation of the ten-
sor product (see §7.3.13) and direct sums (see Proposition 7.3.8) by the filtra-
tion subquotient functor E° : f Mod — wMod. In any Q-additive symmetric
monoidal category, the quotient map T,(M) — S,(M) from the tensor product
T.(M) = M®" to the symmetric tensor product S,(M) = (M®")yx admits a
natural section, for every r € N, which is defined by the symmetrization map
e(xy ... x) = dezr To(1) ® -+ @ Zg(py. The functor E? : M — E° M preserves
this retraction diagram (because E° preserves the symmetry isomorphism of our
symmetric monoidal structure). Therefore, we also have ES,.(M) = S,.(E° M) for
the symmetric tensor functor S,(—), and we conclude that E°S(M) = S(E° M).
The case of the free Lie algebra follows from the same argument line as the sym-
metric algebra by using the observation, established in Proposition 7.2.8, that the
free Lie algebra forms a natural retract of the tensor algebra.

The second and third assertions of the proposition readily follow from the
identity E°S(M) = S(E® M) and the parallel statements of the structure theorems
of Hopf algebras established in this section, in the weight graded (Theorem 7.3.18)
and complete settings (Theorem 7.3.25-7.3.26). O



CHAPTER 8

The Malcev Completion for Groups

In this chapter, we give an account of the applications of Hopf algebras for the
definition of a category of Malcev complete groups, where we have power operations
g® with exponents a in any given ground field k. We also examine the specific case
k = Q, where the Malcev completion construction is identified with a generalization
to pro-nilpotent groups of the rationalization functor on abelian groups.

The main idea of our approach is to consider a complete version of the group
algebras of §7.1.13, a complete version of the group-like element functor of §7.1.14,
and to check that these functors form an adjoint pair:

k[-]": Grp = J{@Tp : G,

like the ordinary group algebra and group-like element functors. We precisely define
our category of Malcev complete groups % as the image of the category of complete
Hopf algebras under the group-like element functor G : Q{@Tp — Grp. We have
an obvious Malcev complete group G, assigned to any group G, defined by the
formula

G = GK[G];
where we take the composite of the group-like element and complete Hopf alge-
bra functors of our adjunction relation. This map (=)~ : G — G is our Malcev
completion functor with coefficients in the field k.

The structure theorems of complete Hopf algebras imply that we have an
equivalence between the Malcev groups G = G(H) and the complete Lie alge-
bras g = P(H), and we use this correspondence to get insights into the structure
of Malcev complete groups. To be specific, the definition of the logarithm and
exponential functions, in terms of power series, makes sense in any complete Hopf
algebra. We will check that these maps induce inverse bijections between primitive
and group-like elements, and as a consequence, that every element in a Malcev
complete group G is represented by an exponential g = e” such that x belongs to
the Lie algebra g associated to G. The definition of general power operations g¢
in G, where a € K, follows from this exponential representation. Indeed, for an
element g = e”, we can simply set g% = e®".

We devote the first section of the chapter §8.1 to the definition of the complete
group-like element and complete group algebra functors. We also define the expo-
nential correspondence, between primitive and group like elements, at this point.
We devote the second section §8.2 to the definition and the study of the category
of Malcev complete groups.

In a third section §8.3, we study the Malcev completion of free groups and of
groups defined by generators and relations. We use the correspondence between

243
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Hopf algebras and Lie algebras to give another explicit description, in terms of
commutator expansions, of elements in the Malcev completion of such groups.

To complete our account, we give, in the fourth section of the chapter §8.4, a
survey of the rational case of the Malcev completion process. In this setting, we
actually have an equivalence between our category of Malcev complete groups and
the category of uniquely divisible pro-nilpotent groups. Furthermore, the group G‘,
returned by our Malcev completion functor, represents, according to [145, Corol-
lary A.3.7-A.3.8], a universal uniquely divisible pro-nilpotent group associated to
G. This statement implies that our Malcev completion functor, of which we actu-
ally borrow the definition from [145, Appendix A], returns the same result as the
classical Malcev completion of groups [124].

We assume throughout this chapter that the ground ring K is a field of character-
istic 0. We consider the category of modules associated to this field Mod = Modk,

and the associated category of complete filtered modules Mod = mk (see §7.3).

8.1. The adjunction between groups and complete Hopf algebras

The main purpose of this section is to define the complete version of the group
algebra and group-like element functors of §7.1. The idea is to observe that any
ordinary algebra H inherits a canonical filtration, in the sense of §7.3.1, and to per-
form the completion process of §7.3.3 with respect to this filtration on the ordinary
group algebra k[—] in order to get our complete group algebra K[—]"

We explain the general definition of this canonical filtration first.

8.1.1. The canomnical completion of a Hopf algebra. Let H be any Hopf algebra
in the category of k-modules. Let I(H) = ker(e : H — K) be the augmentation ideal
associated to H. Recall that H admits a splitting H = K1 @ I(H), where 1 € H
refers to the unit element of the Hopf algebra. Let 1" (H), for any n € N, denote the
nth power of the augmentation ideal I(H) in the unitary algebra H. These ideals
form a nested sequence

(a) H=1°H)>I"H)>---DI"(H)D -

defining a canonical filtration of our Hopf algebra H.

The counit € : H — k satisfies ¢(I(H)) = 0 by definition, and hence, defines
a filtration preserving morphism towards the ground field k, which we equip with
the filtration such that Fok = K and Fsk = 0 for s > 0 (see §7.3.9). The counit
identities € ® id -A(u) = id ®e - A(u) = u imply that the coproduct of an element
u € I(H), has the form:

!
(b) Alu)= u®l1+1Q®u +Zu(1)®u(2).
—_———
cH)R1+1RI(H) (W)
€ I(H)®I(H)

In what follows, we generally use the expression E/(u) u(1) ®u(z) to denote the terms
of the coproduct A(u) = 3_,) u1) ®u(z) lying in the summand I(H) ® I(H). From
this expansion, we deduce that u € 1(H) = A(u) € I'(H) @ 1°(H) +1°(H) @ 1'(H).
In general, for an n-fold product u = u; - ... - u,, we have:

=yt € NH) = A(u) = A(uw) ... - A(up) € Y IP(H) @ 19(H),

ptg=n
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and this relation proves that the coproduct of our Hopf algebra A: H — H ® H is
a filtration preserving morphism.

Recall that the preservation of filtration is a void condition for the unit mor-
phism (see §7.3.21). The product p: H® H — H is obviously a filtration preserving
morphism too since we have I1”(H) - 19(H) = 1”*9(H) by definition of the powers of
an ideal. For the antipode, we have v € I(H) = o(u) € I(H) and

u=uy-...-up, €I"(H)=0ou) =0(up)-...-o(u) € I"(H)

by Proposition 7.1.10 so that the antipode ¢ : H — H preserves our filtration as
well.

We also trivially have I(H) = ker(e : H — k) & H/I(H) = k1. We con-
clude from these observations that our filtration by the powers of the augmentation
ideal (a) provides H with the structure of a connected filtered Hopf algebra in the
sense of §7.3.15. By observations of §§7.3.14-7.3.15, we can take the completion of
this filtered object (a) to get a complete Hopf algebra

(c) H = lim H/ 1" (H)

canonically associated to H.

8.1.2. The complete group algebra and group-like element functors. We as-
sociate a complete group algebra K[G]™ to any group G by taking the comple-
tion §8.1.1(c) of the ordinary group algebra H = K[G] of §7.1.13. We explicitly
set

KG] ™= lim K[G]/ 1" kG

to get a functor k[—]~: Grp — J—C@rp from the category of groups Grp towards
the category of complete Hopf algebras %o/pﬁrp.

We use a complete analogue of the group-like element functor of §7.1.14 to
define a functor in the converse direction. The set of group-like elements in a
counitary cocommutative coalgebra in the category of complete filtered modules is
explicitly defined by:

G(C) ={c € Cle(c) =1,A(c) = c®c},

where the tensor c®c € C ®C, associated to any ¢ € C, represents the image
of the ordinary tensor product ¢ ® ¢ € C' ® C under the completion morphism
C®C — C&®C. In the case of a complete Hopf algebra C' = H, we obtain (as in
Proposition 7.1.15) that:

1 e G(H),

9, he€G(H)=g-heG(H),

gE€G(H)=o0(9) €G(H) and g-o(g9)=o0(g)-g=1
Hence, the set of group-like elements of a complete Hopf algebra G(H) forms,
like the set of group-like elements of an ordinary Hopf algebra, a group naturally
associated H.

Proposition 7.1.16 has the following analogue in the context of complete Hopf
algebras:

PROPOSITION 8.1.3. The complete group algebra K[—]": G — K[G]™ and group-
like functors G : H — G(H) obtained by the construction of §8.1.2 define a pair
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of adjoint functors K[—|": Grp = U{@rp : G between the category of groups Grp
and the category of complete Hopf algebras HopfSGrp.

PrOOF. Let G € Grp. Let H € U‘CO/pET‘p. In §7.3.21, we observe that the com-
pletion functor defines a left adjoint of the obvious embedding from the category of
unitary associative algebras in complete filtered modules towards the category uni-
tary associative algebras in filtered modules. Consequently, we have an equivalence
between the morphisms of complete unitary associative algebras QAS :KkGI"—= H
and the morphisms of ordinary unitary associative algebras ¢ : k|G] — H such
that ¢(I"K[G]) C F, H. This morphism is uniquely determined by the images
#(g9) € H of the group elements ¢ € G and the preservation of the unit and
product reduces to the usual equations ¢(1) = 1 and ¢(gh) = é(g) - ¢(h) in
H. The completion adjunction also implies that the preservation of augmenta-
tion and coproducts is equivalent to the verification of the identities ep(g) = 1
and A¢(g) = ¢(g9) @ é(g) in H, and hence to the belonging relation ¢(g) € G(H).
To complete these verifications, simply observe that for a complete Hopf algebra,
such that ES H = k < I(H) = Fy H, the relation ep(g) = 1 = ¢(g9— 1) € F1 H
automatically implies ¢(1" K[G]) C (F1 H)™ C F, H, and hence, that our morphism
is filtration preserving. [

8.1.4. Logarithms and exponentials. Recall that we assume E§ H = H/Fy H =
k for any complete Hopf algebra H. In the proof of Proposition 8.1.3, we have
already observed that this condition implies F1 H = |(H) and I(H)" = (F; H)" C
F,, H for any n € N. We can use this observation to give a sense to logarithm

o0 hn
log(1+h) = -t =
e h) = > () 3

=9

and exponential maps

when we have h € I(H) & ¢(g) = e(l+h) =1and z € I(H) & e(z) = 0. We
formally define the logarithm log(1 + h) € H = lim, H/F,+1 H by the sequence
of truncated power series log, (1 +h) = >/ _ (=1)"~'-(1/n) - k™, by using h €
I(H) = h"t!' € Fpy1 H = log, (1 + h) = log, (1 + h)(modF, 1 H), and we use a
similar construction in the case of the exponential exp(z).

We have the following general observation:

PRrROPOSITION 8.1.5. In a complete Hopf algebra H, we have
g€ G(H)=1log(g) e P(H) and x€P(H)= exp(z) € G(H),

so that the logarithm log : g — log(g) and exponential maps exp : x — exp(zx) define
inverse bijections between the sets of primitive and group-like elements in H.

ProoF. The identity e(log(g)) = 0 is obvious, for any g € 1+ I(H), and
similarly as regards the identity e(exp(z)) = 1.

The definition of the coproduct as an algebra morphism A : H — H®H
implies A(log(g)) = log(A(g)), where in the right hand side of this equation, we
consider the logarithm of the element A(g) in the tensor product of Hopf algebras
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H & H. For a group-like element, we have A(log(g)) = log(g® g), and according
to the standard addition formula for logarithms, which we apply to the commuting
elements (¢ 1) (10g) = (1%g) (g®1) = g® g, we obtain:

A(log(g)) =log(g@g) =log((g® 1) - (1))
=log(g®1) +log(1& g) = log(g) ®1 + 1 &log(g).
Hence, we have g € G(H) = log(g) € P(H) as stated in the proposition.

In the case of the exponential of a primitive element z € P(H), we argue
similarly to get:

Alexp(z)) =exp(z @1+ 1®z) =exp(z®1) - exp(1 ® x)
= (exp(z) ®1) - (1® exp()) = exp(x) ® exp(z).

Thus, we have z € P(H) = exp(x) € G(H).
The conclusion of the proposition follows from the fact that the logarithm and
the exponential are inverse to each other as power series. O

We have the following result:

PROPOSITION 8.1.6. The functor G : J—C@rp — Grp induces an injective map
on morphism sets

M (4, B) < Morg;(G(A),G(B)),

T 3(opfSrp
for all A, B € %o/pﬁrp, and hence, is faithful.

This mapping is also bijective when we take k = Q as coefficient ring. We
establish this result in §8.4.

PRrOOF. The group morphism G(f) : G(A) — G(B) associated to a morphism
of complete Hopf algebras f : A — B fits in a commutative diagram

p(a) S 4 pp)

-

6(4) g5 6()

where we consider the exponential correspondence of Proposition 8.1.5. Hence, if
we have G(f) = G(g) for morphisms of complete Hopf algebras f,g : A — B,
then we also have P(f) = P(g) and Theorem 7.3.26(b) (the Milnor-Moore theorem)
implies that we have f = g as soon as this relation holds. O

Recall that any category of Hopf algebras, including the example of complete
Hopf algebras, inherits a symmetric monoidal structure from the ground category
(see §7.2.22). The category of groups is also equipped with a symmetric monoidal
structure with the cartesian product as tensor operation. To complete this section,
we observe that:

PROPOSITION 8.1.7. The functors K[—]": Grp — f}{o/pf\grp and G : f}{o/pf\grp —
Srp are symmetric monoidal, as well as the adjunction relation between them.

&
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PROOF. For the trivial group, we immediately obtain k[pt] = K. For a cartesian
product G x H, we have a Hopf algebra identity k|G x H] = K[G]®K[H], and we can
also readily check that the filtration by the powers of the augmentation ideal of the
group algebra K[G x H] agrees with the filtration of the tensor product k|G| ® k[H].
We explicitly have I"K[Gx H] = 3", _ IPK[G]@1?K[H] for all n. We immediately
deduce from this relation that we have the identity K[G x H|"= (K[G] @ K[H])"=
K[G]"@ K[H] at the level of our completed group algebras. We easily check that the
isomorphisms which give these relations satisfy the coherence constraints of §2.3.1.

We can actually identify the tensor product of §7.2.22 with a cartesian prod-
uct bifunctor in the category of Hopf algebras, and our comparison isomorphims,
making the complete group algebra functor into a symmetric monoidal functor are
identified with canonical morphisms attached to the cartesian structure of Hopf al-
gebras. We can therefore readily retrieve that these comparison morphisms satisfy
the coherence constraints of §2.3.1. We also deduce from the identity between the
tensor structure and the cartesian structure of the category of Hopf algebras that
the group-like element functor is symmetric monoidal, since this functor preserves
all limits by adjunction.

We easily check that the unit and augmentation of our adjunction commute
with the isos making our functors symmetric monoidal. We therefore conclude that
our functors define a symmetric monoidal adjunction. O

We will establish a groupoid version of the result of this proposition in §9.3.

8.2. The category of Malcev complete groups

We define the category of Malcev complete groups as the image of the category
of completeHopf algebras under the functor G : HopfGrp — Grp. We adopt the
notation Grp for this category:

Srp = G(HopfGrp).

We also say that a group G is Malcev complete when we have G = G(H ), for some
H e ?Co/pﬁrp, so that G € %

We define the Malcev completion of a group by the formula G = G k[G]", where
we consider the complete group algebra and group-like element functors of §8.1.2.
This group is automatically Malcev complete in our sense.

Proposition 8.1.6 implies that the group-like element functor G induces an
equivalence of categories between the category of complete Hopf algebras and the
category of Malcev complete groups. Besides:

PROPOSITION 8.2.1. Any group morphism ¢ : G — H where H = G(A) is
Malcev complete admits a unique factorization

such that (2) belongs to the category of Malcev complete groups.
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PRrOOF. This proposition is a tautological consequence of the adjunction rela-
tion between the complete group algebra and the group like element functors, and
the observation that the group-like element functor is injective on morphisms. [

Most of this section is devoted to the study of natural structures attached to
Malcev complete groups G = G(H) in terms of the exponential correspondence
of §§8.1.4-8.1.5. We first define a general notion of group filtration giving a suitable
background for this study of the structure of Malcev complete groups.

8.2.2. Filtrations on groups. We use the notation (a,b) for the commutator
(a,b) = a~'b~lab in a group G. When we have subgroups A, B C G, we also use
the notation (A, B) for the subgroup of G generated by the commutators (a,b) € G
such that a € A and b € B. We consider groups G equipped with a filtration

(a) G=FG>---DF,G>---
by subgroups F,, G C G such that

(b) (Fp G,F4G) CFpyqG forall p,g € N.
The lower series filtration of the group, inductively defined by
MG=G and T,G=(G,T,-1(G)) forn>1,

gives a universal example of a filtration which meets this requirement. In fact, our
condition (b) implies that any filtration (a) satisfies F,, G C T',, G for n > 0.

8.2.3. The weight graded Lie algebra associated to a group. Suppose we have
a group G equipped with a filtration of the form considered in the previous para-
graph §8.2.2(a) and satisfying the commutator condition §8.2.2(b). This condi-
tion (b) implies, in the case p = 1, that the filtration §8.2.2(a) consists of a nested
sequence of normal subgroups so that each quotient F,, G/F, 1 G is abelian. We
use additive notation for the abelian group operation associated with these quo-
tients F,, G/ F,+1 G. We explicitly set w+v = uw- v, for any pair u,v € F,, G, where
g refers to the class of any element g € F,, G in F,, G/F,+1 G. We also adopt the
notation E° G for the connected weight graded Z-module such that:

oo
E'G=@DF.G/Fni1 G,
—_——
n=1 :Ea G
where we consider the obvious extension, in the context of modules over a ring, of
the notion of weight graded module of §7.3.5.

The requirement (F, G,F;G) C Fpyq G of §8.2.2(b) implies that we can as-
sociate a well-defined element [4,7] = (u,v) € Fpyn G/Fmint1 G to any pair
% €E€F,G/Fni1Gand T € F,, G/F,11 G in these quotients. The Philip Hall iden-
tities
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where (—, —) is our commutator operation and we set g" = h~1lgh for any g,h € G

(see [83, 108]), imply that the mapping [Z, 7] = (x, y) induces a biadditive operation

Fru G/Fri1GxF,G/Fni1 G Hincis' FrinG/Fmini1 G

=E0 G =E0 @ =E0 .G

m+n

for every m,n > 0, so that the weight graded Z-module E° G inherits the structure
of a connected weight graded Lie algebra. To be precise, we consider, in this
construction, a Z-module analogue of the weight graded Lie algebras of §7.3.17
since our sub-quotients EY G = F,, G/F, 11 G are just abelian groups (Z-modules)
in general. The Lie bracket then satisfies the vanishing relation [z,z] = 0, for all
x € E° G, in addition to the Jacobi relation [[x,y], z] + [[y, 2], ] + [[2, 2], y] = 0, for
x,y,z € E'G. This vanishing relation is obvious and the Jacobi relation follows
from the Philip Hall identities.

In the case of the group of group-like elements of a complete Hopf algebra, we
have the following result:

PROPOSITION 8.2.4. Let H be any complete Hopf algebra.
(a) The sets

F,G(H)={geG(H)|lg—1€F,H}, n>0,

define a filtration of the form §8.2.2(a-b) for the group of group like ele-
ments of the Hopf algebra H, and we moreover have

G(H) = lim G(H)/ F,, G(H)

in this case.

(b) The sub-quotients of this filtration EY G(H), n > 0, are modules over our
ground field K and form a weight graded Lie algebra in the category of
k-modules. The exponential map exp : P(H) — G(H) induces an isomor-
phism of weight graded Lie algebras

exp : E°P(H) = E°G(H),

where P(H) C H is equipped with the filtration induced by the natural
filtration of the complete Hopf algebra H, and E° P(H) refers to the weight
graded Lie algebra associated to this complete Lie algebra (see §§7.5.19-
7.3.20).

The result of this proposition is used in the next section where we give a
representation of elements in the Malcev completion of free groups.

PROOF. We readily obtain, from the exponential correspondence g = e* < x =
log(g), and the multiplicativity of the filtration of Hopf algebras, that the elements
g € F,, G(H) are identified with the exponentials g = e* of primitive elements such
that « € P(H)NF,, H =F, P(H). We moreover have

z,y € P(H)NF, H = €”,¢Y = 1(modF,, H) = ¢” - ¥ = 1(modF,, H)
so that each F,, G(H) forms a subgroup of G(H). When we assume z € P(H)NF,, H,
y € P(H)NF,4+1 H, we obtain:

e V.e ™ " =1(modF, 1 H) = "V =¢” - e¥(modF, 1 H)
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so that the exponential induces a well defined bijection

exp:EOP(H) = F,, G/Fo1 G

for every n > 0.
Let 0 : H — H denote the antipode of our Hopf algebra. For x € P(H) N
FnH=>u=e"—1€F,H,andyeP(H)NF,H=v=¢e¥—1€F, H, we write

e =1+4u, e=14v, e*=0c()=14+0), e Y=0c(e)=1+0(v),

where we use ¢ € P(H) = ¢ € G(H) = o(ef) = (ef)™! = e7¢. The antipode
relation implies

l+u+o(u)+uc(u)=1 and 14+v+o(w)+vo(v)=1
and we use the multiplicativity of the filtration of the Hopf algebra to obtain
(e*,eV)=14uv —vu=1+ 2y — yx(modF,yni1 H).

This computation implies (F,, G(H),F, G(H)) C Fpn+n G(H) and proves that the
exponential map defines a morphism of Lie algebras.

The relation G(H) = lim,, G(H)/F, G(H) is a straightforward consequence of
the identity H = H = lim,, H/F, H and this observation completes the proof of
the proposition. Note that our requirement H/F1 H = K < |(H) = F1 H for a

complete Hopf algebra also implies G(H) = Fy G(H). O

8.2.5. Remarks: The equivalence with the category of complete Lie algebras and
the Baker-Campbell-Hausdorff formula. The category of Malcev complete groups
is, according to our definition, equivalent to the category of complete Hopf algebras,
with an equivalence of categories yielded by the group-like element functor, from
complete Hopf algebras to groups. The category of complete Hopf algebras is also
equivalent to the category of complete Lie algebras (according to the results of §7.3),
with adjoint equivalences of categories yielded by the complete enveloping algebra
and primitive elements functors.

We can obviously compose these equivalences of categories to get an equivalence
between the category of Malcev complete groups and the category of complete Lie
algebras. We then consider the functor which assigns the group G =G U(g), to any
complete Lie algebra g € Lie. As we have g = P U(g), the result of Proposition 8.1.5
implies that the exponential map induces a natural bijection exp : g — G between
the Lie algebra g and the associated Malcev complete group G = G U(g). In
particular, for any a,b € g, we have an identity e® - e® = e, between the product of
the elements e® and e® in the group G, and the exponential of a certain element ¢
in the Lie algebra g.

We can use the functoriality of the exponential correspondence to get a uni-
versal formula, usually referred to as the Baker-Campbell-Hausdorff formula in the
literature, for this Lie algebra element (see for instance [32, §I1.6]). We proceed as
follows. We first work within a free complete Lie algebra g = I:(k:y @ ky), where z
and y now represent abstract variables, and we use the exponential correspondence
to get a Lie power series ¢(x,y) € L(Kz@ky) satisfying our relation e -e¥ = ()
in the tensor algebra T(kz@ky) = UL(kz@ky). We also have ¢(x,y) = log(e*-e¥)
and we can use the retraction of Proposition 7.2.8 to get an effective definition of
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this Lie power series. We obtain for the first terms:

B y) = o+ + losy] + 15[yl ol + 2l ) + -+

We then consider the Lie algebra morphism L(kz®ky) — g, mapping our variables
(z,y) to any pair of given elements (a, b) in the Lie algebra g, and we immediately
conclude that we have the relation e® - e® = e®(@? for the Lie algebra element
¢ = ¢(a,b) obtained by the substitution (z,y) = (a,b) in our Lie power series.

The Baker-Campbell-Hausdorff formula can be used to give a direct definition
of the Malcev complete group G associated to a Lie algebra g, without referring to
the theory of Hopf algebras. This approach is used by Bourbaki [32] for instance.
We then define G as the set of formal exponential elements e¢, where £ € g. We
set e® - e? = e?(®) to provide this set G = exp g with a group structure.

8.2.6. Remarks: The relationship with the notion of a unipotent algebraic group.
In the case where g is a finite dimensional algebra in §8.2.5, the exponential map
gives, for any choice of a basis on g, an identity between the underlying set of the
group G associated to g and the affine space k™, where we set N = dim g. The
identity g = lim,, g /F, g is also equivalent to the vanishing relation F,,11g = 0
for some m > 0, and implies that the Lie algebra is nilpotent in the sense that
all Lie monomials of weight > m vanish on g. From this observation, we deduce
that the Baker-Campbell-Hausdorff formula reduces to a finite sum on g, and as
a consequence, is given by a polynomial expression in our choice of coordinates
G ~k". Thus, when we have dimg = N, we obtain that the group G associated
to g forms an algebraic group in the classical sense of algebraic geometry (see for
instance [30]).

If we moreover assume that g has a trivial center [¢,—] = 0 = ¢ = 0, then we
can consider the adjoint action Ad(ef) : 2 +— eSxze™¢ to get an injective morphism
Ad : G — End(g) identifying G with a closed subgroup, defined by a collection of
polynomial equations, in the general linear group GL(g). This statement follows
from the relation eSze™¢ = z + [¢,z](modFeysr1 @), valid for all z € Fyg and
& € Fy g, and which also implies that our group G is actually unipotent. Recall
that an algebraic group is unipotent if and only if this group admits an embedding
into a group of upper triangular matrices with unit entries on the diagonal. In our
case, such an embedding can be obtained by providing a basis of our Lie algebra
reflecting our filtration.

We refer to standard textbooks on algebraic group theory (like [30]) for more
complete explanations on the structure of unipotent algebraic groups.

8.3. The Malcev completion of free groups

We now study the Malcev completion of free groups and groups defined by a
presentation by generators and relations. To simplify, we focus on finite generation
cases. We use the notation F(zq,...,z,) for the free group generated by elements
Z1,...,Ty. We still consider Malcev completions with coefficients in arbitrary field
of characteristic zero k. We have the following result:

PROPOSITION 8.3.1. For a free group G = F(x1,...,x,), we have an isomor-
phism of complete Hopf algebras

KIF(21,...,22)] "= T(€1,.. ., &n),
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where 'i'(ﬁl, ..., &n) 1s a short notation for the complete tensor algebra associated
to the free K-module M = K& & --- ® K&, equipped with the filtration such that
Fi1M = M and FsM = 0 for s > 1. This complete tensor algebra is equipped
with the canonical Hopf algebra structure of §7.2.6 (see also §7.58.23), so that each
generator & defines a primitive element in 'i'({l, ooy én).

For the primitive part, we have an identity:

PK[F(z1,...,2.)] = L(&L, ..., En),

where I:(ﬁl, ..., &n) s also a short notation for the free complete Lie algebra asso-
ciated to the free K-module M = K& & -+ & KE,.

The elements of the Malcev completion of a free group are therefore identified
with exponentials of Lie power series (elements of a free complete Lie algebra).

PROOF. The elements &; are primitive by definition of the Hopf algebra struc-
ture of the tensor algebra, and the associated exponential elements e are group-like
by Proposition 8.1.5.

We consider the group morphism ¢ : F(zq,...,z,) — G(f(fl, ...,&n)) which
sends the generating elements of the free group z; to these group-like elements e,
and the associated morphism of complete Hopf algebras ¢y : K[F(z1,...,2,)]" —
f({l, ...y&n). We have a Hopf algebra morphism going in the conversion direction
Y T(E,. .., &) — K[F(z1,...,2,)]" which assigns the logarithm log(z;) of the
group like elements x; to the generating elements of the tensor algebra &;.

We have ¢4 -9(&;) = explog(§;) = &; for each i so that ¢4 -1 = id. We also have
G(¢¥)(é(x;)) = x; for each generator of the free group z;, where we consider the
morphism on group-like elements induced by our complete Hopf algebra morphism
. We accordingly have G(v)¢ = ¢, where ¢ refers to the standard morphism
t:F(zy,...,2,) = GK[F(z1,...,2,)] defining the unit morphism of the group-like
adjunction. We have G(¢))¢ = t = ¢y = id by adjunction. We conclude that ¢y
and ¥ define inverse isomorphisms between the complete group algebra of the free
group and the complete tensor algebra.

The second assertion of the proposition follows from the result of Proposi-
tion §7.2.14 (see also §7.3.24). O

8.3.2. The combinatorial group theory approach of the Malcev completion. The
free Lie algebra L(&3,...,&,) has a definition over Z and forms a free Z-module
(see [32, I1.2.9] or [147, §0.3]). Furthermore, each homogeneous component of the
free Lie algebra L,(&1,...,&,), r > 0, admits a basis h(&1,...,&,), h € H(r), where
h(&1,...,&,) is a Lie monomial. Examples of such monomial basis are associated
with Hall sets (see [147, §4] for a general reference on this subject).

The sub-quotients of the lower central series filtration of a free group (see §8.2.2)
form, by fundamental results of combinatorial group theory, a free weight graded
Lie algebra (over Z)

(a) @Fs F(.Tl, v 7xn)/rs+1 F(xh .. 71‘71) = L(é-la e 7571)7
s>0

where we assume that each generator £; is homogeneous of weight 1 (see for in-
stance [32, §I1.5.4] or [123, Theorem 5.12]). This statement implies that any element
g(z1,...,2,) in the pro-nilpotent completion of the free group F(z1,...,z,) has a
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unique expansion

(b) g(x1, .. ) =2t xln H h(xy,...,xn)"",

where ay,...,a, € Z, ap € Z, for all h, and each factor h(x1,...,z,) € F(x1,...,2;)
is obtained by replacing the iterated Lie bracket [—,—] of our Lie monomials
h(&1,...,&,) by iterated commutators of generating elements in the free group
(see [83] for the original statement of this result, see [32, §11.5.4] or [123, Theo-
rem 5.13A] in our reference books on this subject). This process implies that we
have h(&y,...,&,) € Lo(&1,...,&) = h(&, ..., &) € T F(x1, ..., x,.). The product
of our expansion is also performed in the increasing direction of the weight index
r > 0, and according to a fixed order on each indexing set H(r). The truncated
product 1" ... - 25" - Lo, < (Ilnem(r M(@1, . .-, 2n)*") represents the image of
our element g(z1,...,x,) in the quotient F(x1,...,2,)/Tsp1 F(21,...,2p).

Proposition 8.3.1 implies that we have parallel results for the Malcev completion
of a free group Ii(ml, ..., y). The subquotients of our filtration on IA:(acl, ..., Ty)are
identified with a free weight graded Lie algebra, as in (a), but we now take a free Lie
algebra over the ground field k. Each element g(z1, ..., z,) has a unique expansion
of the form (b), but we now take exponents in the coefficient field aq,...,a, € kK,
ap € K. We use this consequence of Proposition 8.3.1 in the next section.

8.3.3. The Malcev completion of a group defined by a presentation by generators
and relations. The result of Proposition 8.3.1 can be used to determine the primitive
Lie algebra P K[G] for a group given by a presentation by generators and relations
G =<m1,...,2, : w§ =wi,...,w) =w] >. The definition of a group by such a
presentation can be formulated in terms of a reflexive coequalizer of free groups

S0
F(z1,. - Tn, 2155 2r) 4?!:(1:1,...,:0”) > <Ly, Ty WY = W] >,
1
=F =Fy =G

where do,d; and s are both the identity on the generating elements z;, and we
set do(zj) = wi(z1,...,2p), di(z;) = wl(x1,...,2,) for the remaining variables.
The functor K[—] preserves coequalizers by adjunction, and we still have a reflexive
coequalizer at the Lie algebra level

(50)«
/\
. (do)x . € ~
L(gla"'agnach"'acr)HL(éla"'aén) >Pk[G] ’

1)*

=PK[F] =P K[Fo]

since the primitive element functor is an equivalence of categories (by Theorem 7.3.26,
the Milnor-Moore theorem for complete Hopf algebras). The morphisms (dg)«, (d1)«
and (sg)« occurring in this coequalizer are also given by the identity on the gen-
erating elements &;, and we deduce from the exponential correspondence between
group-like and primitive elements that we have (do).({;) = log(wj (e, ... e%))
and (dy).(¢;) = log(w] (e, ..., eé)) for the remaining generators ¢;. We therefore
have a presentation (in the complete sense) of the Lie algebra associated to our
group.
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8.4. Malcev completions in the rational coefficient case

To conclude this chapter, we examine the case kK = Q of the Malcev completion
process. Throughout this section, we use the infinite product expansion §8.3.2(b)

() gt = () ) T e e

heH(r)
r>2
for the elements of the completion of a free group g(&1,...,&,) € IA:(:El, cey X)),
where we set x; = €%, i = 1,...,n, and where we also assume aq,...,a, € Q,
and ap € Q, for all h € H(r), r > 2. By Proposition 8.3.1, these Malcev group
elements g = g(&1,...,&,) are identified with group-like elements in the tensor
algebra 'i'(fl, ..., &1). In the rational setting, the existence of such an expansion is
a consequence of the single result of Proposition 8.3.1. The factors h(et, ..., e")

can also be obtained as the commutators associated to any (ordered) basis of the
summands of homogeneous weight the free Lie algebra over Q.

Proposition 8.2.4 implies that a Malcev complete group G = G(H) is pro-
nilpotent. The exponential correspondence implies that this group Gisa uniquely
divisible group. Indeed, we have g" = h < nlog(g) = log(h) & g = exp(1l/n -
log(h)) for any exponent n > 0. These properties actually characterize the Malcev
completion (see [145, Corollary A.3.7-A.3.8]). We revisit the proof of this result.
We start with the following theorem:

THEORE .1. The augmentation morphism p : Q[G(H)|”— H of the ad-
junction bet groups and complete Hopf algebras is an iso when K = Q is our
ground field.

PROOF. We check the case of a complete tensor algebra H = T(M) first. We
also assume that M is equipped with a finite basis (£1,...,&,)-

We consider the morphism of complete Hopf algebras ¢ : T(M) — Q[G(H)]™
such that (&) = logle®]. We immediately see that py(&;) = &, for any basis
element & € M, and we mainly have to check the validity of the converse relation
¥p(lg]) = lg], for any group like element g = g(&1,...,&,) € GT(M). We use the
infinite product expansion (*). We clearly have the identity ¥p([h(e%1, ..., e)]) =
[h(ef1, ... e5)], for any factor of this expansion, and we also see that ¥p([h]) =
[h] < ¥p([h?]) = [h?] for any rational exponent a = p/q and any h € GT(M),
because this element [h?/9] is characterized by the relation [hP/9]7 = [hP] = [h]P
in GT(M) c T(M). We conclude that we have ¢p([g]) = [g], as required, for our
group-like element g = g(&1,...,&,)-

We now consider the general case of an arbitrary complete Hopf algebra H. We
have H = U(g) by Theorem 7.3.26 (the Milnor-Moore theorem), where we consider
the complete Lie algebra such that g = P(H). We set G = G(H) = GU(g), and
we use the exponential mapping exp : & — ef to get a bijection exp : g — G. We
consider the map 1 : g — Q[G]” which associates the logarithm series log[ef] €
Q[G]™ to any £ € g. We have py(§) = logexp(§) = &€ in U(g).

Let us observe that the construction of this mapping is functorial with re-
spect to the Lie algebra g, and returns, in the case of a free complete Lie al-
gebra g = L(&1,...,&,), an inverse of the isomorphism p : Q[GT(&1,...,&,)] =
'i'(&, ..., &) (obtained in the first step of this proof) since we have Uﬁ(fl, o) =
f(gl, ...,&n). From this free case, and by using the functoriality of our mapping
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¥ : g — Q[G]"with respect to a Lie algebra morphism f : L(£1, &) — g, we obtain
that the identities ¥(z1 + z2) = ¥(x1) + ¥(x2) and Y ([z1,22]) = [W(x1), ¥ (x2)]
hold in Q[G] for all x1,z2 € g. We also have ¢(az) = ayp(x), for all @ € Q and
x € g. Hence, our mapping defines a morphism of complete Lie algebras, from
g to Q[G]7 which also admits an extension to the enveloping algebra U(g). The
identity py(§) = £ for any £ € g, implies that this morphism % : U(g) — Q[G]™
satisfies pyp = id on the whole U(g) For an element ¢¢ € G, we moreover have
Yp([ef]) = w(exp&) = explogled] = [ef] in the complete group algebra Q[G] and
hence, we also have the relation ¥p = id on Q[G]" We conclude that the morphism

p: Q[G]"— U(g) is an iso, and the proof of our theorem is complete. O @

This theorem admits the following corollaries:

PRrROPOSITION 8.4.2. If we take the rational field as coefficient field k = Q, then:

(a) The group-like element functor, from complete Hopf algebras to groups,
is full and faithful, so that the category of Malcev complete groups forms
a full subcategory of the category of groups equivalent to the category of
complete Hopf algebras.

(b) The Malcev completion functor G=0G Q[G] is idempotent, and a group G
is Malcev complete if and only if we have G = G.

PROOF. These assertions are immediate consequences of the result of Theo-
rem 8.4.1. (]

In addition, we have the following result:

PrOPOSITION 8.4.3. A pro-nilpotent group G is Malcev complete in our sense
if and only if this group is uniquely divisible.

PROOF. We closely follow the argument line of [32, §I1.6, Exercise 4], which we
complete by our statements on complete Hopf algebras. We have already checked
that a Malcev complete group is uniquely divisible, and we aim to prove the converse
implication. We can restrict ourselves to the case of a nilpotent group G. We
aim to define a nilpotent Lie algebra g, naturally associated to G, and such that
G =GU(g).

We use the expansion (*) for the elements of the Malcev completion of a free
group, which we also identify with the set of group-like elements in a complete
tensor algebra. In the case g(£1,&) = e$11€2) and g(£1,&) = elé€2]) we get a
formula for the sum and the Lie bracket in terms of commutators of group-like
elements. We define our Lie algebra g by the same underlying set as the group
G, and we equip this set with the sum and Lie bracket defined by these universal
formulas. We use the assumption that G is uniquely divisible to provide g with a
Q-module structure. We see that the structure relations of Lie algebras hold in g
because these relations are satisfied by our universal formulas, within the completed
tensor algebra. We also readily obtain that the Lie algebra g is nilpotent. We have
bijections g ~ GU(g) ~ G, and we see retrieve the multiplication of the group G
inG U(g), because this is so for the Malcev completion of a free group. We conclude
that our group G is Malcev complete as required. O


Benoit Fresse
Autocollant
I need to deal with complete Hopf algebras H = U(g) such that E^0(g) is generated in weight 1.

Benoit Fresse
Crayon


CHAPTER 9

The Malcev Completion for Groupoids
and Operads

In the previous chapter §7, we recalled that the adjunction between groups
and Hopf algebras can be used to define a rationalization process, the Malcev
completion, for groups.

To be more explicit, recall that the free k-module k[G] associated to a group
G inherits a Hopf algebra structure so that the mapping K[—] : G — K[G] defines a
functor from the category of groups Grp to the category of Hopf algebras Hopf Grp.
The other way round, we have a functor from Hopf algebras to groups, defined by
observing that the set of group like elements G(H) in a Hopf algebra H inherits a
group structure, and we checked that this functor G : HopfGrp — Grp forms a right
adjoint of the group algebra functor K[—] : Grp — HopfGrp. To obtain our Malcev
completion functor in §8, we consider an extension of this adjunction relation, where
the category of plain Hopf algebras is replaced by a category of complete Hopf
algebras. The complete Hopf algebra k|G| associated to a group G is precisely
defined as the completion K[G]”= lim,, K[G]/ I" K[G] of the Hopf algebra associated
to G with respect to the powers of the augmentation ideal 1 K[G] = ker(e : K[G] — k),
and the completion of the group G is defined by the set of group like elements
G = GK[G] associated to this completed Hopf algebra k[G]"

In §8, we also crucially assume that the ground ring K is a field of characteristic
0. The elements of the group G are then identified with exponentials g = €” such
that « belongs to the Lie algebra of primitive elements in K[G]™ This representation
enables us to define powers ¢g* for arbitrary exponents a € k in G. In the case k = Q,
our construction therefore returns a rationalization of the group G. The case k = C
of our construction will used in the next chapter, for the definition of the Drinfeld
associator. This application motivates us to keep the general case of a characteristic
zero field under consideration in our constructions.

Throughout this chapter, we still assume all that the ground ring K is a field such
that Q C k. Our first purpose is to check that the Malcev completion process for
groups extends to groupoids. Then we prove that the obtained completion functor
on groupoids preserves symmetric monoidal structures, and hence can be applied
to operads arity-wise in order to yield a Malcev completion functor for operads
in groupoids. Some care is necessary when we deal with groupoids, and not all
arguments are generalizable, since the morphism sets of groupoids, as opposed to
the underlying set of a group, are not naturally pointed.

In a first section (§9.1), we define the notion of a Hopf groupoid, extending
the classical notion of a Hopf algebra, which we need to form the Hopf side of
our completion process in the groupoid context. The definition of the Malcev
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completion functor for groupoids itself is addressed in the second section of the
chapter (§9.2) and the applications to operads in the third section (§9.3).

9.1. The notion of a Hopf groupoid

Like Hopf algebras, the Hopf groupoids, which we consider in our completion
process, are defined by replacing the morphism sets of plain groupoids by coalgebras
and by using tensor product operations instead of cartesian structures. The goal
of this section is to check the application of this idea and to make the definition of
a Hopf groupoid explicit.

We follow the same plan as in §7.1. To begin with, we make explicit the
definition of a Hopf category, which parallels the notion of a bialgebra. We address
the definition of Hopf groupoids afterwards, and we complete our account with the
definition of the generalization to groupoids of the group algebras of §7.1.

9.1.1. Hopf categories. In §7.1, we define (cocommutative) bialgebras as uni-
tary associative algebras (or monoids) in the category of counitary cocommutative
coalgebras. The Hopf categories which we consider are small categories enriched
in counitary cocommutative coalgebras, and are defined by applying the general
concepts of §0.13 to this instance of symmetric monoidal category ComS. This
process makes sense in any (lower level) base symmetric monoidal category where
the category of counitary cocommutative coalgebras can be defined. For the mo-
ment we focus on the case of counitary cocommutative coalgebras in k-modules
ComS = Mod Com< . In the next section, we will consider counitary cocommuta-
tive coalgebras in the category of complete filtered modules of §7.3.

Thus, a Hopf category in our sense is a small category H, equipped with a hom-
bifunctor towards the category of counitary cocommutative coalgebras Homg¢(—, —) :
HP x H — Com? , unit morphisms

(a) k L Homg¢(X, X), for X € K,
and composition morphisms

(b) Homg( (Y, Z) @ Homy¢(X,Y) &5 Homge (X, Z), for all X € K,

satisfying the usual unit and associativity axioms of categories within the symmetric
monoidal category of counitary cocommutative cocoalgebras (see §0.12). Recall
that we also assume that the structure morphisms (a-b) are left invariant under the
action of the morphisms of the plain category underlying H on the hom-objects.
We revisit this correspondence in the next paragraph.

In applications, we also use the classical notation idx € Homgc(X, X) for the
homomorphism such that (1) = id x, and which defines an analogue of the identity
morphism in our hom-objects. Similarly, we use the notation f o g (or just fg) for
the image of homomorphisms under the composition morphism (b).

9.1.2. Morphisms and homomorphisms in Hopf categories. In §0.13, we briefly
mention that we can define a mapping between the morphism sets More(—,—)
of an enriched category € and the hom-objects Home(—, —). In the general case of
categories enriched over an abstract symmetric monoidal category M, this mapping
is defined by a morphism ¢ : 1[More(X,Y)] — Home(X,Y'), where 1[More(X,Y)]
denotes the coproduct, over the morphism set More(X,Y), of copies of the unit
object of the category M.
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In the case of a Hopf category € = H, we consider the coalgebra K[Morg(X,Y)]
associated to the set Mors¢(X,Y’), and where the elements [f], associated to mor-
phisms f € Morg(X,Y), are group-like. The morphism 7 : kK — Homg (X, X), which
models the identity morphism associated to any object X € 0b X, is formally de-
termined by the group-like element id x € Homg¢(X, X) such that n(1) = idx. Our

mapping
(a) ty : KMors(X,Y)] — Homy(X,Y)

is defined by ¢4[f] = f«(idx), where we consider the image of this group-like el-
ement idy € Homg¢(X,X) under the hom-object morphism f, : Homgc(X, X) —
Homg¢ (X, Y) associated to f. The homomorphism ¢4[f] is group-like in Homg(X,Y")
(because f, is a morphism of counitary cocommutative coalgebras) and there-
fore our mapping defines a morphism of counitary cocommutative coalgebras from
kMors¢(X,Y)] to Homgc(X,Y). In this construction, we can equivalently take
wlf] = f*(idy) since, in the case of the unit morphisms, the invariance require-
ments of §9.1.1 imply f.(idx) = f*(idy).

By adjunction, the morphism of counitary cocommutative coalgebras (a) is
equivalent to a mapping

(b) ¢t Morg(X,Y) — G(Homg(X,Y))

which assigns the group-like element ((f) = f.(idx) = f*(idy) € Homg(X,Y) to
any f € Mory(X,Y).

The invariance of the composition operation on hom-objects with respect to the
action of morphisms implies that the mapping f, : Homg¢(—, X) — Homg¢(—,Y") asso-
ciated to any morphism f € Morg¢(X,Y) is also identified with the composition op-
eration fi(u) = ¢(f) o u, where we consider the homomorphism ¢(f) € Homg¢(X,Y)
associated to f. For the mapping f* : Homgc(Y,—) — Homgc(X,—) we similarly
obtain f*(u) = wo(f).

Our mapping (b) also satisfies t(idx) = idx and ¢(f o g) = ¢(f) o ¢(g) by
functoriality of the action of morphisms on hom-objects. Thus the unit and com-
position structure of the hom-objects Homg¢ (X, Y") extends the unit and composition
structure of the plain set-theoretic category .

In practice, we define Hopf categories by giving the underlying category I,
the hom-coalgebras Homg¢(X,Y"), the mapping (b), which associates a group-like
element in the hom-object Homg¢(X,Y") to any plain morphism f € Mors(X,Y),
and the extension of the composition of morphisms to the whole hom-objects. In
applications, we often assume that the maps ¢ : Morg(X,Y) — G(Homg(X,Y)) is
an embedding so that this mapping identifies the morphisms of our category H
with a subset of the group-like elements in the hom-objects.

9.1.3. Hopf groupoids. We define a Hopf groupoid as a Hopf category G, where
every morphism is invertible (thus, the underlying category of G is a groupoid in
the classical sense), and where we have an extra operation on hom-objects

(a) Homg (X, Y) 2 Homg (Y, X),
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defined for all X,Y € 0b G, such that the diagrams

(b) Homg (X,Y) : k ! Homg (X, X)

Al T

Homg (X,Y) ® Homg(X,Y) e Homg (Y, X) ® Homg(X,Y)

and
(c) Homg(X,Y") < k Homg (Y, Y)

N T

Homg (X,Y) ® Homg(X,Y) —————— Homg (X, Y) ® Homg (Y, X)

id Qo

commute. We naturally assume in this definition that our operation o is defined
by a morphism of counitary cocommutative coalgebras.

We immediately see that a Hopf algebra is identified with a Hopf groupoid with
one object, and our extra structure is an obvious generalization of the notion of
antipode attached to Hopf algebras. We therefore keep the same name, antipode,
to refer to these morphisms.

The relations formulated in our diagrams are naturally coalgebra analogues
of the inversion relation of morphisms in groupoids. For a group-like element f,
representing a morphism in G, the relations read f - o(f) = id, o(f) - f = id,
and hence amounts to the requirement that f is invertible with o(f) = f~! as
inverse. From this observation and the uniqueness of inverse, we also deduce that
the antipode extends the inversion operation for the morphisms of the underlying
category of our Hopf groupoid.

One can prove, by an easy extension of the standard argument in the Hopf
algebra context, that the antipode operation in a Hopf groupoid is unique and
satisfies the relation o(idx) = idx, for any X € G, as well as o(uov) = o(v) oo (u),
for any pair of composable homomorphisms u € Homg (Y, Z), v € Homg(X,Y).

9.1.4. The category of Hopf categories and of Hopf groupoids. We have a natu-
ral notion of morphism associated to Hopf categories, so that Hopf categories form
a category HopfCat.

To be explicit, a morphism of Hopf categories ¢ : § — H consists of a func-
tor between the underlying set-theoretic categories of § and H, together with a
collection of coalgebra morphisms

(a) Homg (X, Y) 2 Homgc(¢X, ¢Y),

preserving the unit and composition structure on hom-coalgebras, and natural in
X, Y € G with respect to the action of the morphisms on hom-objects.

In the approach of §9.1.2, the assumption that our morphisms (a) are natural
amounts to the requirement that these morphisms fit in commutative diagrams

(b) Morg(X,Y) — 2> Morsc(6 X, 0Y)

i |

Glttoms (X,Y) > GltHomsc(6X, 6Y))
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for all X,Y € G, and hence, extend the mapping defined by our functor at the level
of the morphisms of the underlying categories of § and K.

We define the category of Hopf groupoids HopfGrd as the full subcategory of
the category of Hopf categories generated by Hopf groupoids. We should note that
a morphism of Hopf groupoids automatically preserves the extra structure given by
the inversion operations (this assertion is a variation of the uniqueness of inversion
morphisms in Hopf algebras). Recall that we use the notation Grd for the category
of groupoids.

We have the following result, extending the classical adjunction relation be-
tween groups and Hopf algebras:

PropPOSITION 9.1.5.

(a) The coalgebras K[Morg (X, Y)] associated to the morphism sets of a groupoid
G define the hom-objects of a Hopf groupoid K[G] with G as underlying
groupoid in sets.

(b) The set of group-like elements G(Homgc(X,Y)) associated to the hom-coal-
gebras of a Hopf groupoid F form the hom-objects of a groupoid G(H),
naturally associated to 3, and the mapping G : H — G(H) gives a right
adjoint of the functor K[—] : Grd — HopfGrd defined in assertion (a).

PROOF. The definition of the Hopf groupoid K[G] in assertion (a) is a straight-
forward extension of the definition of the Hopf algebra K[G] in the group context,
and similarly as regards the definition of a groupoid structure on the group-like
element sets G(Homg(X,Y")) associated to a Hopf groupoid H in assertion (b). One
can also readily check that the adjunction relations between coalgebra morphisms
f : K[X] = C and set maps g : X — G(C) make morphisms of Hopf groupoids
f : K[G] = H correspond to groupoid morphisms g : § — G(H) so that the map-
pings k[-] : § +— K[S] and G : H — G(H) define adjoint functors between the
category of groupoids Grd and the category of Hopf groupoids HopfGrd. O

9.2. The Malcev completion for groupoids

To obtain the Malcev completion of groupoids, we consider, as in the group con-
text, an extension of the adjunction relation of §9.1.5 to complete Hopf groupoids.
The goal of this section is to address this construction of the Malcev completion.

In §9.1, we mention that our fundamental definitions make sense in any ambient
symmetric monoidal category. To define our complete Hopf groupoids, we work
within the symmetric monoidal category of complete filtered modules of §7.3. In
a first step, a briefly review the concepts of §9.1 in order to make this definition
explicit.

9.2.1. Complete Hopf categories and complete Hopf groupoids. First, in order
to get the notion of a category enriched in complete counitary cocommutative coal-
gebras, we just replace the category of plain counitary cocommutative coalgebras
in the definition of §9.1.1 by the category of counitary cocommutative coalgebras in
complete filtered modules G/ozi — Mod ComS . Thus, we consider a hom-bifunctor
with values in that category

Homg¢(—, —) : HP x H — @i
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In the definition of the unit morphisms §9.1.1(a) and of the composition mor-
phisms §9.1.1(b), we also deal the symmetric monoidal structure of complete couni-
tary cocommutative coalgebras, and we have to replace the ordinary tensor product
by the completed tensor product of §7.3.12. The structure of a groupoid enriched
in complete filtered modules is defined similarly, by assuming that the antipodes
of §9.1.3 are morphisms of complete counitary cocommutative coalgebras, and by
taking completed tensor products instead of ordinary tensor products in the dia-
grams of §9.1.3.

Recall that the ground field K is identified with a complete filtered module
equipped with a trivial filtration and forms a unit for the completed tensor prod-
uct. The unit morphisms of a category enriched in complete counitary cocommu-
tative coalgebras are therefore equivalent to ordinary unit morphisms of counitary
cocommutative coalgebras §9.1.1(a). The preservation of filtration, which we re-
quire for morphisms in complete filtered module in general, is automatically fulfilled
for these unit morphisms. The preservation of counitary cocommutative coalgebra
structures is equivalent to the requirement that the element id x = n(1) associated
to each unit morphism 7 : K — Homg¢ (X, X) is group-like as an element of the com-
plete counitary cocommutative coalgebra Homg¢ (X, X), where we use the definition
of §8.1.2 for this notion of group-like element in the complete sense.

In the definition of the composition operations of §9.1.1(b), we have to re-
place the ordinary tensor product by the completed tensor product of §7.3.12. The
composition operations can still be identified with extensions of ordinary filtration
preserving composition products, as in the Hopf algebra case (see §7.3.14), but we
need to work at the level of the completed tensor product in order to get the coalge-
bra structure of our hom-objects, and hence, to check the preservation of coalgebra
structures by our composition operations.

The observations of §9.1.2 have a straightforward extension in the case of com-
plete counitary cocommutative coalgebras, so that a group-like element in the com-
plete sense «(f) € G(Homgc(X,Y)) is associated to each morphism of our cate-
gory f € Morg¢(X,Y). The covariant (respectively, contravariant) action of mor-
phisms f € Morg(X,Y) on hom-objects is also identified with the composition
operation f.(u) = ¢(f) ou (respectively, f*(u) =woc(f)).

9.2.2. The category of complete Hopf categories and of complete Hopf groupoids.
The definition of a morphism of Hopf category (respectively, groupoid) in §9.1.4 has
an obvious generalization in the complete setting. In §7.3.15, we introduce a con-
nectedness condition for the definition of the subcategory of complete Hopf algebras
within the category of Hopf algebras in complete filtered modules. In the Hopf cat-
egory case, we consider categories enriched in complete counitary cocommutative
coalgebras H such that the augmentation € : Homg((X,Y) — k induces an iso be-
tween the quotient Homg¢(X,Y)/F; Homgc (X, Y") and the ground field k. We reserve
the expression of complete Hopf category for the enriched categories which satisfy
this connectedness condition and we use the notation ﬂ-Co/p-]@at for this subcategory
of the category of categories enriched in complete counitary cocommutative coalge-
bras. We use the same convention, and take the same connectedness requirement,
to define a category of complete Hopf groupoids such that ﬂ'Co/pErd C ﬂ-fo/p-]@at.

9.2.3. The completion of Hopf groupoids. The natural filtration of Hopf al-
gebras, arising from the tensor powers of the augmentation ideal, has a natural
generalization in the context of Hopf groupoids.
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To be explicit, let H € HopfGrd be a Hopf groupoid. For any X,Y € H, we
consider the nested sequence

Homg (X, Y) = 1°(Homy¢ (X, Y)) D I' (Homg (X, Y)) D - D 1" (Homg((X,Y)) D ---

where " Homg¢ (X, Y) is the submodule of Homg¢(X,Y") spanned by the n-fold com-
posites fi-...- f, of homomorphisms f; such that e(f;) = 0. Equivalently, we assume
that each f; lies in the kernel of the augmentation on hom-objects | Homgc(—, —) =
ker{Homg¢(—, —) = k} which gives the n = 1 layer of our sequence.

The preservation of the counitary cocommutative coalgebra structure by the
composition operations of H implies, as in the Hopf algebra case (see §8.1.1), that
we have the inclusion relation A(I"(Homy(X,Y))) C > . _, IP(Homg(X,Y)) ®
19(Homg (X, Y")), for each n € N, so that the coproduct defines a filtration preserving
morphism for this choice of filtration. The counit € : Homg(X,Y) — K trivially
defines a filtration preserving morphism too.

Hence, each hom-object Homg¢(X,Y") of our Hopf groupoid H canonically in-
herits the structure of a counitary cocommutative coalgebra in filtered modules, of
which we perform the completion

Homg¢(X,Y) = lim Homg¢ (X, Y)/ 1" (Homg¢ (X, Y))

to get a complete counitary cocommutative coalgebra Homg¢(X,Y)7 for each pair
X, Y € H. Recall that the filtration associated to such a completed module
satisfies Homg¢(X,Y)”/ F1 Homg((X,Y)™ = Homg((X,Y)/ 1" (Homs(X,Y)), for every
n € N. In the case n = 1, we have I(Homg(X,Y)) = ker(e : Homy(X,Y) —
k) < Homg¢(X,Y)/ I(Homg(X,Y)) = K, and we deduce from this relation that the
augmentation of Homg(X,Y)”; obtained by completion from the augmentation of
the ordinary coalgebra Homg((X,Y), induces an iso between the quotient module
Homg((X,Y)”/ F1 Homg¢ (X, Y ) and the ground field k

The unit morphisms of H have a trivial prolongation 7 : k — Homg (X, X)) for
every X € H, and so does the mapping ¢ : f — ¢(f) which associates a group-like
homomorphism to every morphism of the category underlying . The composition
operations of H trivially preserve the filtration of our counitary cocommutative
coalgebras, and hence induce composition operations at the level of our completed
hom-objects Homg¢(—,—)" The relations satisfied by antipodes imply, as in the
Hopf algebra case, that the antipodes of our Hopf groupoid preserve filtrations too
and hence admit an extension to the completed hom-objects as well.

We conclude from these observations that the collection of complete counitary
cocommutative coalgebras Homg((X,Y)", XY € H, define the hom-objects of a
complete Hopf groupoid H naturally associated to JH.

9.2.4. The complete Hopf groupoid and group-like element functors. We asso-
ciate a complete Hopf groupoid K[G]™ to any groupoid § by taking the comple-
tion §9.2.3 of the Hopf groupoid K[G] of Proposition 9.1.5. This complete Hopf
groupoid k[G]"has § as underlying groupoid and the completed modules

Homg (X,Y) = limk[Morg(X,Y)]/ 1" kMorg(X,Y)]
as hom-coalgebras. The outcome of this construction is a functor k[—|~: Grd —

J{O/pﬁrd from the category of groupoids Grd to the category of complete Hopf
groupoids HopfGrd.
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In the converse direction, we see that the group-like element functor in Proposi-
tion 9.1.5 has an obvious complete version, so that a groupoid of group-like elements
G(H) can be associated to any complete Hopf groupoid H. This groupoid has the
same object set as the underlying groupoid of H and the sets of group-like elements
in the complete sense

G(Homg¢(X,Y)) = {f € Homeu (X, Y) |e(f) =1 and A(f) = f& f}

as morphism sets (see §8.1.2). The identity morphisms and the composition opera-
tion are yielded by the unit and composition on hom-objects, as in the construction
of Proposition 9.1.5. The inverse of morphisms in G(J) is also given by the antipode
of the complete Hopf groupoid H.

Proposition 9.1.5(b) has the following analogue in the context of complete Hopf
groupoids:

PROPOSITION 9.2.5. The complete Hopf groupoid K[—]": § — K[S]™ and group-
like functors G : H — G(H) obtained by the construction of this paragraph §9.2./

define a pair of adjoint functors K[—]": Grd = U{O/p]@rd : G between the category
of groupoids Grd and the category of complete Hopf groupoids HopfGrd.

PROOF. This proposition follows from a straightforward extension of the ar-
guments of Proposition 8.1.3, where we define the adjunction bewteen groups and
complete Hopf algebras. (Il

The definition of a Hopf groupoid in §9.1.3 implies that the endomorphism
coalgebra Homg¢ (X, X) of any object X € ObH in a Hopf groupoid H forms a
Hopf algebra in the classical sense (and similarly in the context of a complete Hopf
groupoid), just as the endomorphism set Morg (X, X) of any object X € 0b§ in a
groupoid G forms a group. We easily check that:

LEMMA 9.2.6.

(a) Let H be a Hopf groupoid. Suppose that the set of group-like elements
G(Homy¢ (X, Y)) is non-empty for every pair X, Y € H (equivalently, the
groupoid G(H) is connected). The endomorphism coalgebras Homg (X, X)™
associated to the objects X € H in the completion of the Hopf groupoid H
(§9.2.3) are isomorphic to the completion of the Hopf algebras Homg (X, X)
(88.1.1) associated to each object X € H individually.

(b) For a connected groupoid G € Grd, the endomorphism coalgebras of the
objects X € G in the complete Hopf groupoid K[G]™ associated to G are
isomorphic to the complete group algebras KMorg(X, X)|™ associated to
each automorphism group Morg(X, X) taken individually.

PrOOF. To check the first assertion (a), we just observe that the filtration
of §9.3.3, where we consider all composites of composable homomorphisms in H,
agrees with the filtration of §8.1.1 for the Hopf algebra Homg (X, X'), where we only
consider composites of endomorphisms of X in H. The latter is obviously included
in the former. The converse inclusion immediately follows from our assumption
ensuring that we can insert appropriate invertible elements (recall that the antipode
defines an inversion operation on group-like elements) to convert any sequence of

composable homomorphisms X EEN X ECNUELN X, going from Xy = X to
X,, = X into a sequence of endomorphisms of X.
The second assertion of the lemma is a corollary of the first one. O
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9.2.7. The category of Malcev complete groupoids. We define the category of
Malcev complete groupoids as the image of the category of complete Hopf groupoids
under the functor G : J{@Td — Grd. We also adopt the notation §;‘\d for this
category, so that E’TEI = G(U—Co/pﬁrd), and we say that a groupoid G is Malcev
complete when we have § = G(H), for some H € j‘fO/pETd, so that G € §—7;i

We define the Malcev completion of a groupoid by G=0G6 k[S]"where we consider
the complete Hopf groupoid and group-like element functors of §9.2.4.

The observation of Lemma 9.2.6 has the following consequence, which parallels
the result of Proposition 8.1.6 Proposition 8.2.1 for Malcev complete groups:

PRroOPOSITION 9.2.8.

(a) The functor G : H@rd — 9rd induces an injective map on morphism
sets

M .A,B) — Morgrd(G(A),G(B)),

Orgfo/p}?rd(

for all A, B € fHo/pErd, and hence, is faithful.
(b) If G is a connected groupoid, then any groupoid morphism ¢ : § — H
towards a Malcev complete groupoid H = H admits a unique factorization

S

such that ¢E belongs to the category of Malcev complete groupoids.

PROOF. These assertions follow from the same arguments as the results of
Proposition 8.1.6 and Proposition 8.2.1. (I

Lemma 9.2.6 also readily implies:

PROPOSITION 9.2.9. The automorphism group of an object X € G in the Malcev
completion G of a connected groupoid G is identified with the Malcev completion (in
the classical sense) of the group of automorphisms of X in G. O

9.3. Symmetric monoidal structures and operads

We now check that Malcev completion process of the previous section defines a
symmetric monoidal functor on groupoids and, as a consequence, induces a functor
on operads in groupoids. We actually prove that the adjunction k[—]": Grd =

U{o/pETd : G, which we use in our construction of the Malcev completion, is sym-
metric monoidal in the sense of §2.3.3.

In a preliminary step, we explain the definition of a symmetric monoidal struc-
ture on (complete) Hopf groupoids. The idea is to combine the (cartesian) sym-
metric monoidal structures of categories with the symmetric monoidal structure of
(complete) counitary cocommutative coalgebras.
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9.3.1. Symmetric monoidal structures on Hopf categories and Hopf groupoids.
In §5.2.1, we equip the category of categories with the symmetric monoidal structure
defined by the cartesian product of categories. In §2.0.3, we observe that the tensor
product defines the cartesian product in the category of counitary cocommutative
coalgebras.

To Hopf categories § and H, we associate the Hopf category §® H with the
cartesian product 0b(G® H) = 0b G x O0b H as object set, and the coalgebra tensor
products Homg g 5¢((X,Y), (Z,T)) = Homg(X, Z) ® Homg(Y,T) as hom-coalgebras.
These tensor products inherit identity morphisms and composition products from
the hom-coalgebras of G and H so that §® H forms a Hopf category. We more-
over have natural functors G & G@H L K given by the natural projections

0bG < 0bGx 0bH % 0bH on object sets, and yielded by the tensor products

with augmentation morphisms Homg (X, Z) Lo Homg (X, Z) ® Homg (Y, T) d @e,

Homg( (Y, T') on hom-coalgebras (see §2.0.3). This Hopf category § ® H actually rep-
resents the cartesian product of § and H in the category of Hopf categories (this
assertion follows from our parallel interpretation of the tensor product of counitary
cocommutative coalgebras in §2.0.3).

We can replace the plain tensor product by the completed one in order to
define an analogous tensor product construction G & H for complete Hopf categories.
We readily see that the complete Hopf category G & K obtained by this operation
represents the cartesian product of § and H in the category of complete Hopf
categories too.

In §5.2.1, we observe that the cartesian product of groupoids G x H, formed
in the category of small categories, defines a groupoid and represents the cartesian
product of § and H in the category of groupoids as well. In the context of Hopf
categories, we can similarly prove that the tensor product of Hopf groupoids § ® H
forms a Hopf groupoid and represents the cartesian product of § and H in the
category of Hopf groupoids, and we have the same statement for the completed
tensor product of complete Hopf groupoids.

The existence of these symmetric monoidal structures enables us to give a sense
to the notion of an operad in Hopf groupoids and in complete Hopf groupoids. We
have the following result:

PROPOSITION 9.3.2.

(a) The functors K[—|": Grd — ﬂ{o/p]@rd and G : fHo/pErd — Grd, between
groupoids and complete Hopf groupoids, are symmetric monoidal, as well
as the adjunction relation between them.

(b) These functors can also be applied to operads arity-wise in order to yield
functors on operad categories

K[~]": Grd Op = HopfGrd Op : G
and we still have an adjunction relation at this level.

ProOF. The functor G : fHo/pErd — Grd, defining a right-adjoint of k[—]":

Srd — J{O/pﬁrd, preserves terminal objects and cartesian products and is there-
fore symmetric monoidal since we observed that the (complete) tensor product of
(complete) Hopf groupoids represent the cartesian product (as well as the cartesian
product of groupoids).
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The proof that the functor K[—]™: §rd — fHo/pErd is symmetric monoidal fol-
lows from easy verifications. For the trivial one-point set groupoid pt, we obviously
have K[pt]”= k. For a cartesian product of groupoids G x H, we can easily check
that the filtration of §9.2.3 satisfies

1" kMorg « 5 ((X,Y), (Z,T))] = Z I”kMorg(X, Z)] @ 1" P k[Morg (Y, T)]
p+q=n
in the coalgebra tensor product

KiMorg « 3¢((X, Y), (2,T)] = kliorg (X, Z) x Morg(V, T)]
= k[Morg(X, Z)] ® k[Morg (Y, T)]

The isomorphism K[Morg x 5¢((X,Y),(Z,T))] ~ kMorg(X,Z)] ® KMorg(Y,T)] is
therefore an identity of filtered modules which, as such, induces an isomorphism at
the level of completions

K[Morg » 3¢ ((X,Y), (Z,T))] =~ k]Morg(X, Z)]"® K[Morg (Y, T)|”

(compare with the proof of Proposition 8.1.7, where we a similar result is established
for the Malcev completion of a cartesian product of groups). This verification proves
that the natural morphism K[G x 3]~ — K[G] @ K[H] induced by the canonical
projections G L oxH L K (where we use the interpretation of the complete
tensor product as a categorical cartesian product), is an iso. The definition of this
comparison isomorphism from categorical constructions immediately implies the
fulfillment of the unit, associativity and symmetry constraints of §2.3.1 (as usual),

and we conclude that K[—]": Grd — ﬂ{@rd is symmetric monoidal as asserted.
The proof that the adjunction unit (respectively, augmentation) associated with
our functors preserve symmetric monoidal structure reduces to straightforward ver-
ifications, and the second assertion of the proposition is a consequence of the general
observations of Proposition 2.1.4 and Proposition 2.1.6. O

This proposition implies:

PROPOSITION 9.3.3. The Malcev completion functor on groupoids (—)": Grd —

§%E is symmetric monoidal (as a composite of symmetric monoidal functors) and
can be applied arity-wise to operads in groupoids in order to yield a Malcev comple-
tion functor on operads (—)": Grd Op — Grd Op. O

To recap the construction, the Malcev completion of an operad in groupoids
P € Grd Op is the operad P formed by the collection ﬁ’(r), where we consider the
Malcev completion of each groupoid P(r). We also have P = GK[P]", where k[P]™
is the operad in complete Hopf groupoids defined by the completion of the Hopf
groupoid K[P(r)] associated to each P(r) € Grd, and G(—) refers to the arity-wise
application of the group-like element functor of complete Hopf groupoids.

Recall that in the situation of Proposition 9.3.2(a), the functors k[—]~: Grd Op —
J{O/pErd Op and G : f]-CO/pErd Op — Grd Op, preserves unitary extensions of op-
erads (see Proposition 2.1.4), and as a byproduct, so does the composite functors
(=)"= Gk|[—]" In the notation of §3.2, we have the identity (P, ) = (P), for any
unitary operad in groupoids P.






CHAPTER 10

The Definition of the
Grothendieck-Teichmiiller Group

We have several notions of Grothendieck-Teichmiiller groups. We mostly deal
with a pro-unipotent group GT'* (K), defined over any characteristic zero field Kk, and
which, for us, occurs as a group of automorphisms associated to the parenthesized
braid operad of §6. We just have to deal with a Malcev completion of the operad of
parenthesized braids in order to get this pro-unipotent Grothendieck-Teichmiiller
group because the automorphism group of the uncompleted operad of parenthesized
braids is trivial.

The pro-unipotent Grothendieck-Teichmiiller group GT* (k) has a graded coun-
terpart GRT*(K), which we interpret as a group of automorphisms associated to
another operad related to little 2-discs, the operad of parenthesized chord diagrams.
These groups GT* (k) and GRT" (k) are isomorphic, with isomorphisms arising from
the set of Drinfeld’s associators Assl(k), which we interpret as isomorphisms be-
tween the parenthesized braid and the chord diagram operad.

The main purpose of this chapter is to explain the definition of the pro-
unipotent Grothendieck-Teichmiiller group, of the graded Grothendieck-Teichmiiller
group, and of the torsor of Drinfeld’s associators from the operadic viewpoint.
We address the definition of the pro-unipotent Grothendieck-Teichmiiller group
first (§10.1). We give the definition of the operad of chord diagrams and of the
torsor of Drinfeld’s associators in second (§10.2), and we provide a brief survey
of the definition of the graded Grothendieck-Teichmiiller group afterwards (§10.3).
We work with a fixed coefficient field k, of characteristic zero, and we address all
definitions in this setting.

To conclude this chapter, we survey the definition of the Knizhnik-Zamolodchikov
associator, the first instance of associator which was constructed by Drinfeld in [48]
from the work of Knizhnik-Zamolodchikov in conformal field theory [99]. We de-
vote §10.4 to this subject.

The second instance of an associator effectively constructed in the literature is
the Alekseev-Torossian associator, whose definition, given in articles of Alekseev-
Torossian [5] and Severa-Willwacher [153], arose from Kontsevich’s approach of the
formality of the little discs operad [104]. The definition of this associator will be
explained in the second volume, when we study rational models of the little discs
operads.

10.1. The prounipotent Grothendieck-Teichmiiller group

The pro-unipotent Grothendieck-Teichmiiller group GT*(K), which we consider
in this work, has formally been defined by Drinfeld in [48] as a group of power series
satisfying certain equations in the Malcev completion of the pure braid groups.

269
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Drinfeld motivated his definition by explaining that any element in this group ¢ €
GT'(K) could be regarded as a universal transformation acting on (the completion
of) braided monoidal categories.

The goal of this section is to revisit Drinfeld’s approach and to explain that
the group GT 1(k) can be interpreted as a group of automorphisms associated to
the Malcev completion of the operad of parenthesized braids of §6. We start with
this operadic definition and prove the equivalence with Drinfeld’s original definition
afterwards.

10.1.1. The Grothendieck-Teichmiiller group as a group of operad automor-
phisms. Recall that the operad of parenthesized braids, defined in §6.2, is an operad
in groupoids PaB, whose object sets form a free operad on one non-symmetric gen-
erator (the magma operad in the terminology of §6.2) and whose morphisms are
depicted as braids with contact points on the center of a diadic decorggosition of
the horizontal axis. We consid\er the Malcev completion of this operad PaB, and the
associated unitary operad PaB.. The underlying object operad of the completed
operad PaB is also the magma operad by definition of our Malcev completion pro-
cess for operads in groupoids (see §9). Recall that we use the notation 2 for the
magma operad. We accordingly have 0b PaB = 0b PaB = 2

We define the Grothendieck-Teichmiiller group GT"(K) as the group formed by
the automorphisms

d) : Fg\B+ E-) Iga\B_,_
of the unitary operad in Malcev complete groupoids ,Ea\BJr so that:
(a) each component ¢(r) : .Ea\B(r) — Fg\B(r) of our morphism is given by the
identity mapping at the level of the object set Ob P/a\B(r) = Q(r);
(b) and the component ¢(2) : .5573(2) — 15;9(2) also fixes the braiding 7 in

the morphism set Mor@@)(,u(xl, Za), w(x2,x1)).

We can drop the constraint (b) from our definition and consider a group GT' (k)
formed by all automorphisms of the operad P/a\BJr which are the identity at the
object level. The image of the braiding under a morphism ¢ : I%+ — l%+ has
an expression the form ¢(7) = 7, for a formal exponent A € k. We necessarily
have A € k* if we assume that ¢ is an iso, and the mapping v : ¢ — )\ defines a
group morphism v : GT(K) — k* of which kernel defines the group GT*(k). We
do not use the full group GT(k) further in this book. Just mention that v is split
surjective (this result, established in [48, §5], is a consequence of the existence of
associators, which we address in §10.2 and in §10.4).

10.1.2. The explicit construction of elements in the Grothendieck-Teichmiiller
group. By deﬁgition of the category of Malcev complete groupoids, a morphism
¢ : PaB, — PaB_ is equivalent to a morphism of operads in groupoids ¢ : PaB; —
P/Q\BJF, where we now consider the plain version of the parenthesized braid operad
PaB.. By Theorem 6.2.4, such a morphism is fully determined by giving the image
of:

— the object u € 0b PaB(2),

— the associator o € Morp,g(s) (11, 22), 3), p(w1, p(2, 23))),

— and the braiding 7 € Morp,p(2) (1(21, Z2), p(w1, 22)).
In the general statement of Theorem 6.2.4, we also consider a unit object e in
arity 0. In our present setting, and more generally when we deal with unitary
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o/pgrads, the image of the unit term is just fixed by the assumption that the groupoid
PaB (0) reduces to the one-point set pt. Since we assume ¢(p) = p and ¢(7) =7
in the definition of the Grothendieck-Teichmiiller group GTl(k)7 our morphism
¢: PaB, — l@+ can be determined by giving a single morphism a(z1, 22, z3) =
d(a) € Mor g (p(p(z1, w2), 23), (21, p(z2,73))) in the arity 3 component of the
Malcev completion of the parenthesized braid operad PaB.

We go back to the completion process in order to figure out the explicit def-
inition of this element a(zy,x2,x3) such that a(zy,x2,23) = ¢(a). We have
Mor pap(3) ((p(@1, T2), 23), (w1, (2, v3))) ~ P3, where P3 denotes the pure braid
group on 3 strands, and as a consequence:

Mor g ((p(z1, T2), 23), @1, (22, 73))) =~ Py,

Our element a(xy,x9,x3) is therefore determined by an element in the Malcev
completion of the pure braid group Ps.
The group of pure braid groups on 3 strands Pj is generated by the elements

aiz2 = ‘J y G23 = ‘C/ y  a13 = ‘C/ )
D R R

and is also isomorphic to the cartesian product of a central cyclic subgroup < ¢ >,
generated by the following element

with the free group generated by a2 and ass (see for instance [96, §1.3], or the
subsequent paragraph §10.2.2 where we give more comprehensive recollections on
the presentation of pure braid groups). We actually have ¢ = aj2a93a13.

Our element a(x1,x2,23) € Py consequently splits as a product a = ¢
F(a12,a93), for some formal exponent A € Q of the central element ¢, and where
F(ai12,a23) is an element in the Malcev completion of the free group generated by
the pure braids a;2 and ap3. The unit relation a(z1,e, 22) = id, (5, 4,), in the cor-
respondence of Theorem 6.2.4, implies the relation dy(c)* - F(1,1) = da(c)* = 1
in Pg, where 0:(c) denotes the result of the omission of the second strand in ¢,
and since da(c) = 72 # 1, we obtain A = 0. Hence, the expression of an element
a = a(x1, 22, 23) which corresponds to a well-defined morphism of unitary operads
on PaB, necessarily reduces to the factor F' = F'(a12, ags) in the Malcev completion
of the free group F(aj2,as;3).

We record the outcome of the discussion of this paragraph in a proposition:

A .

ProrosiTION 10.1.3. A morphism of unitary operads ¢ : PaBy — Iga\B+
which fizes the generating object of the parenthesized braid operad pu = p(x1,22) €
Ob PaB(2) and the braiding T € Morp,p(2)(u(z1,x2), (22, 21)) is uniquely deter-
mined by an elements in the Malcev completion of the free group on two generators

F(z,y) € F(z,y),
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FIGURE 10.1. The pentagon constraints for the Malcev group el-
ement F' = F(x,y) associated to an element of the Grothendieck-
Teichmiiller group GT" (k). The relation holds in the Malcev com-
pletion of the braid group P,. The factors of this relation are
obtained by applying F, which we regard as an element of the
Malcev completion of free group on two generators (z,y), to the
braids 8 € Py represented in the picture.

so that we have the formula

12 3 12 3 12 3
7 S
pla) = F \ 7
A, 1N, L
1 23 12 3 12 3
=a =F(a12,a23)
in the morphism set Mor g ) (w(p(z1, z2), x3), p(x1, (a2, x3))) of the parenthesized
braid operad PaB. d

To complete this proposition, we write down the coherence co/nitraints of The-
orem 6.2.4 for the definition of operad morphisms ¢ : PaBy — PaB, in terms of
the associated Malcev group element F' = F(a12,a23). We obtain the following
proposition:

ProrosiTION 10.1.4. The assignment
(p) =p, o(r)=7, ¢(a)=a- Flas,azs)
in Proposition 10.1.3 determines a well-defined morphism of unitary operads
¢: PaB, — PaB,

if and only if our Malcev group element F = F(x,y) € IA:(:E,y) satisfies:
(a) the unit relations F(z,1) =1= F(1,z),
(b) the involution relation F(x,y) - F(y,z) =1,
(¢c) the hexagon equation F(x,y) - F(z,xz) - F(y,z) = 1, where (z,y,2) is any
triple of variables such that z -y -z =1,
(d) and the pentagon relation of Figure 10.1.

PRrROOF. We determine the expression of the unit, pentagon and hexagon con-
straints of Theorem 6.2.4(b-c) for the braiding operator ¢ = 7 and an associator of
the form a = o - F'(a12,as3). The reduction of the unit constraints of the theorem
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to F(z,1) = 1 = F(1,z) is immediate. The equivalence between the pentagon
constraint, expressed by the commutation of the diagram of Figure 6.1, and the
equation of Figure 10.1 is immediate too (we just expand the expression of our
element in the general relation of that figure).

The hexagon relations of the theorem, expressed by the commutation of the
diagram of Figure 6.6, read:

m(l,¢)-a-m(e, 1) =a-c(l,m)-a,
m(c,1)-a ' -m(l,e) =a"t-c(m,1)-a"t.
These equations are equivalent to
a=(m(1,¢) ta-m(1,¢) - (m(c,1) -a-m(c,1)71)
(m(1,e)7 -a™t-m(1,¢)) = (e(m, 1)L -a™t - ¢(m, 1)) -a™?

In our case a = a-F(a2, as3), we have the relation g=*-F(x,y)-g = F(g *zg, 9~ yg)
and we see that

m(c, 1) - a1z - m(c, 1)_1 = a1z, m(c, 1) - ass - m(c, 1)_1 = a3,
e(m, )™t - aia - c(m, 1) = ay3, c(m,1)™" - ass - ¢(m, 1) = aa,
m(1, c)_1 ~arz-m(l,¢) = as, m(l,c)_1 ~ags - m(l,c) = ags.

(Draw the pictures corresponding to these conjugation relations.) Hence, the
hexagon relations are equivalent to the combined identities

{ F(a12,a23) = F(a13,a23) - F(ai2,a13),

F(a13,a23)" " = F(aiz,a12) "' - Fa12,a23) 7",
- F(a12,a13) = F(a13,a23)"" - F(a12, as3),
F(a13,a12)"" = F(aiz,a3) "' - Fay2, as3)

in the group P.

The elements © = aj2 and y = a13 generate a free group in Ps (like a; and
a93), and the already mentioned relation ¢ = ajsag3a;3 implies that ass agrees with
the product z = 'y~ up to a central element ¢ which we can factors from any
formal expression in the group P;. These observations imply that our equations
are equivalent to the system of relations

F(z,y) = F(y,z)™' and F(z,y)-F(z,z) - F(y,z) =1

given in our statement, and this result completes the verification of our assertions.
O

In the discussion of §10.1.2, we already recalled that the morphisms ¢ : PaB; —
15379+ in Proposition 10.1.4 are equivalent to morphisms defined on the Malcev
completion of the parenthesized braid operad. Let ¢ : Igé\B_A'_ — Ige:BJr and ¢ :
I%Jr — I%Jr be such morphisms, associated to the Malcev group elements
F(z,y) € F(z,y) and G(z,y) € F(z,y) under the correspondence of Proposi-
tion 10.1.3-10.1.4.

We have the following easy observation:
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PROPOSITION 10.1.5. The Malcev group element (F o G)(z,y) € F(z,y) asso-
ctated to the composite morphism ¢ o1 : PaB, — PaBy can be determined by the
formula

(FoG)(z,y) = Flz,y) - Glz,y"),

where we set y¥' = F(z,y)~! -y - F(x,y).

PrOOF. Exercise: go back to the arguments of Theorem 6.2.4 in order to de-
termine the image of the element ¥ (a) = « - G(aj2,as3) under the morphism ¢
determined by the Malcev group element F'(x,y). O

We get the following final result:

THEOREM 10.1.6 (Equivalence between the operadic approach and the Drinfeld
definition [48, §4]). The Grothendieck-Teichmiiller group GT*(K) is isomorphic to
the group formed by the Malcev group elements F(x,y) € Ii(x,y), which satisfy the
relations of Proposition 10.1.4, and are invertible with respect to the composition
operation of Proposition 10.1.5. [l

10.1.7. The pro-unipotent structure of the Grothendieck-Teichmiiller group. The
Grothendieck-Teichmiiller group G Tl(k) is equipped with a natural filtration by
normal subgroups F,,, GT*(K) such that GT' (k) = lim,, GT*(k)/F,, GT"(K), and
each quotient GT*(K)/F,, GT*(K) is unipotent in the classical sense of algebraic
group theory (see for instance [30]). We therefore say that GT'(k) is a pro-
unipotent version of the Grothendieck-Teichmiiller group, as opposed to the profi-
nite version which occurs in Grothendieck’s program (see our overview in the con-
cluding part of this volume).

We refer to [48, §5] for a description of the Lie algebra gt! associated with this
pro-algebraic group structure on GT'(k). This Lie algebra gt' is also equipped
with a filtration such that gt' = lim,, gt! /F,, gt'.

In the next section, we define a graded version of the Grothendieck-Teichmiiller
group GRT'(k), which is also pro-algebraic. The Lie algebra associated with this
group, denoted by grt!, is equipped with a weight grading such that get! = EO gt!,
and this relationship motivates the name (as well as the notation) given to this
group (see [48, §5]).

10.2. The operad of chord diagrams and associators

We now address the definition of the torsor of Drinfeld’s associators. In the
introduction of the chapter, we only mention the torsor Assl(k), but we have a
torsor Ass”(K) associated to each parameter p € k™ and we recall the general
definition.

We first define an operad in weight graded Lie algebras, the Drinfeld-Kohno
operad, which intuitively represents an infinitesimal approximation of the operad
of colored braids of §5.2. We proved in §8 that any Malcev complete group G is
associated to a complete Lie algebra § so that G = Gk[G]"= GU(§). We moreover
have an identity EC g = E° G, where E° G is a weight graded Lie algebra defined by
the sub-quotients of a natural filtration on G. The weight graded Lie algebras p(r)
defining the components of the Drinfeld-Kohno operad p = {p(r)} are identified
with the weight graded Lie algebras E° P, associated to the Malcev completion
of the pure braid groups G = P,.. Recall that P, represents the automorphism
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group of any object in the rth component of the operad of colored braids CoB(r).
The definition of the operad structure on the Drinfeld-Kohno operad reflects the
structure of this operad.

In a second step, we study an operad in complete Hopf algebras formed by
the completion (with respect to the weight grading) of the enveloping algebras of
the Drinfeld-Kohno Lie algebras U(p(r)). We regard this operad in complete Hopf
algebras as an operad in complete Hopf grouB\oids which has the one-point set as
object set in each arity. We use the notation CD for the image of this operad under
the group-like element functor (see §9.3), and we adopt the name of chord diagram
operad to refer to this operad in the category of Malcev complete groupoids. This
terminology is motivated by a correspondence between the monomials in the en-
veloping algebra of the Drinfeld-Kohno Lie algebras and certain chord diagrams
occurring in the definition of a universal Vassiliev invariant.

We have by definition Mor CD(r) = GU(H(r)) = {ef|¢ € p(r)}, where we take
the completion of a weight graded Lie algebra p(r) such that p(r) = E° P,.. The
main purpose of this section is to check the existence of categorical equivalences
of operads ¢ : PaB — CD which realizes this identity of weight graded objects at
the morphism level. We deduce from Theorem 6.2.4 that the set of these operad
morphisms is in bijection with a set of associators in the chord diagram operad. We
precisely check that this set of associators is equivalent to the notion of associator
introduced by Drinfeld in [48], and as such, is is not empty for any coefficient field
of characteristic zero k.

To start with, we explain the definition of the Drinfeld-Kohno Lie algebras p(r),
reN.

10.2.1. The Drinfeld-Kohno Lie algebras. The rth Drinfeld-Kohno Lie algebra
p(r) is defined by a presentation by generators and relations

p(r) = L(t;[1 <i#j <r)/ <[tij,trl, [tij, tix +tr] >

where:

(a) a generator t;; is associated to each pair {1 # j} C {1,...,7},
(b) and the generating relations consist of the commutation relations

[tij, tw] = 0,

which hold for all quadruples {i # j # k #1} C {1,...,r}, together with

relations
[tij, tik + trj] =0,

usually referred to as the Yang-Baxter relations, which hold for all triples
{li£j£k}C{l,...,r}
In these expressions, we assume t;; = t;; for each pair {i,j} C {1,...,7}.

The generating relations (b) are homogeneous with respect to the natural
weight grading of free Lie algebras. The Lie algebras p(r) accordingly inherit
a weight grading where the generating elements t;; are homogeneous of weight
1. We explicitly have p(r),, = Lp /L0 < [ti, tel, [tij, tie + te] >, where
we set L,, for the homogeneous component of weight m in the free Lie algebra
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10.2.2. The connection with the presentation of pure braid groups. In §10.1.2,
we recall the definition of the generating elements a;; of the pure braid group on 3
strands P3. In the general case, we consider an obvious extension of this definition,
with an element a;; € P,, associated to each pair {i < j} C {1 <--- < r}, given
by the following picture:

i J

J
)

Note that the ordering of the pair ¢ < j is significant in this definition since we do
not get the same braid when we swap the positions of the strands (7, 7). The pure
braid group P, has a presentation with these elements as generators, and whose
generating relations read:

(a) A5 = &

aj;, fork<l<i<jori<k<l<y,
-1 . .
Ak Qy fork<l=1i<
(b)  aylagam =3 IR o .
R (aijaij)agj(aja;)~t, fork=i<I<
i Wlj )i\ Uiz Uiy ) 75
-1 -1 —1 —1y— . .
(akjaljakj a; )aij(akjaljakj a; )7L, fork<i<lI<j.

Just recall that the pure braid group P, can be defined as the fundamental
group of the configuration space of r points in the open disc F([D)Q, r). The above
presentation can be established by induction, by using the homotopy exact sequence
associated to the fibration f : F(D2,r) — F(D2,r — 1) which forgets about the last
point of a configuration. In the proof of Proposition 5.0.1, we already observed that
the fiber of this map is a disc with r — 1 punctures D2\ {2?,...,2%_,}, so that our
homotopy exact exact reduces to a short exact sequence of fundamental groups

1= m D>\ {22,...,20 | }) = m F(D?,7) = m F(D%,r — 1) — 1.

=P, =P,_;
The elements a;., ¢ = 1,...,7 — 1, in our presentation are given by the standard
generators of the fundamental group of this punctured disc D%\ {29,...,2% ;}. We

refer to [24] for details.
We use the following theorem:

THEOREM 10.2.3 (T. Kohno [102]). We have a Hopf algebra isomorphism
v:Up(r) = EOK[P,]
defined on generating elements by the mapping

U(tij) = [aij] -1, fori<yj,
where we use the notation [a;;] — 1 for the class of the difference [a;;] — 1 € I K[P;]
in the homogeneous component of weight 1 of the weight graded algebra E° K[P,] =

@, P K[P]/ 1T K[P,].
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EXPLANATIONS AND REFERENCES. The difference [a;;] — 1 defines a primitive
element in the weight graded Hopf algebra E° K[P,] because we have

A(faiz] = 1) = (Jai;] = 1) @ 1+ 1@ ([ai] = 1) + ([ai] = 1) @ ([ai;] — 1)

=0

by definition of the filtration on a tensor product. We can moreover readily deduce,
from the relations (b) of §10.2.2, that our mapping cancels the defining relations of
the Drinfeld-Kohno Lie algebra (go back to the relations establish in the proof of
Proposition 8.2.4 in order to perform this computation). We therefore have a well
defined morphism of weight graded Hopf algebras v : U(p(r)) — E°K[P,] such that
’U(tij) = [aij] — 1, for all i < J-

The difficulty is to check that this mapping is an iso. This result is established
by methods of rational homotopy in the cited paper [102]. In a more elementary
approach, one can rely on the short exact sequence of fundamental groups of §10.2.2
to establish that the sub-quotients of the derived series of the group P, are isomor-
phic to the homogeneous components of the Drinfeld-Kohno Lie algebra (see [180]),
and we can use this observation (together with general statements of §7.3 and §8) to
define a morphism of Lie algebras P(E°k[P,]) = E°(P,) — p(r) yielding an inverse
of our map v : Up(r) — EYK[P,] at the Hopf algebra level. O

By Proposition 8.2.4, the claim of Theorem 10.2.3 is also equivalent to the defi-
nition of an isomorphism v : p(r) =, E° P, between the Drinfeld-Kohno Lie algebra
p(r) and the weight graded Lie algebra associated to the Malcev completion of the
pure braid group P,.. This iso maps the generator ¢;; of the Drinfeld-Kohno Lie al-
gebra to the class of the element a;; € P, in the subquotient E0P,. In applications
of this section, we use this equivalent form of the result of Theorem 10.2.3.

10.2.4. The algebras of chord diagrams. The enveloping algebra of the Drinfeld-
Kohno Lie algebra p(r) is identified with the associative algebras defined by the
presentation:

Up(r) = T(ty|l <i#j <)/ <[tij,trl, [tij, tix +trg) >,

where we consider the same relations as in the Lie algebra case, but the bracket
now refers to the commutator [a,b] = ab — ba.

The associative algebra given by this presentation is also called the algebra
of chord diagrams. This expression refers to a representation of the monomials
tivji -+ tinj. by chord diagrams on r strands. The diagrams corresponding to
such a monomial is obtained by drawing a chord between the strand i and the
strand j, for each factor ¢;, ;,, so that the composition ordering of the monomial,
read from right to left, corresponds to a downwards orientation of the diagram. For

instance, we have:
1 2 3 4 5 6

ligti2tsetos = ‘

In this chord diagram representation, the commutation relation reads


Benoit Fresse
Crayon

Benoit Fresse
Crayon
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and the Yang-Baxter relation is equivalent to the identity:

ik i ik i J ok i ik
R L
This latter equation is also called the four term relation (the 47 relation for short)
in the literature on Vassiliev’s invariants.

10.2.5. The operad structure on the Drinfeld-Kohno Lie algebras. In §§7.2.20-
7.2.23, we introduce the direct sum of Lie algebras as the tensor product operation
of a symmetric monoidal structure, which we use to define the notion of an operad
in the category of Lie algebras.

We provide the collection of Lie algebras p(r), » € N, with such an operad
structure:

(a) the action of a permutation w € ¥, on the Lie algebra p(r) is defined on
generating elements by the formula

W tij = tw(iyu ()

for all pairs {¢,5} C {1,...,7},

(b) the operadic unit  : 0 — p(1) is naturally given by the zero morphism
(which is also an isomorphism since we trivially have p(1) = 0),

(¢) the partial composition products are the Lie algebra morphisms

o :p(m) @p(n) = p(m+n—1)
such that

titn—t1j4n—1, ik <i<j,

tijan—1+ +lign-1j4n—1, Lk=1<7,
tij ok 0= Q tijan—1, ifi<k <y,

tij + -+ tijan—1, ifi<k=j,

tij, ifi<j<k,

and

Ooptpg = tptrk—1g+k—1 for all values of k =1,...,m,

where we use the notation x o y for the image of an element (x,y) under
this Lie algebra map og.

Recall that the Lie algebra morphisms ¢ : gé&h — m are equivalent to pairs of
Lie algebra morphisms (u : g — m,v : g — m) such that [u(g),v(h)] = 0. In
the definition of (¢), we implicitly assume that our maps give rise to such well-
defined Lie algebra morphisms on the direct sum p(m)®p(n). This assertion follows
from straightforward verifications involving the commutation and the Yang-Baxter
relations.

The verification of the operad axioms in the Lie algebras p(r) is immediate from
our definition of the structure morphisms on generating elements. We refer to this
operad, formed by the collection of the Drinfeld-Kohno Lie algebras p = {p(r)}, as
the Drinfeld-Kohno operad.
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10.2.6. The operad structure on chord diagrams. By Proposition 7.2.23, we
have an iso U(g) ® U(h) = U(g@d b) so that the enveloping algebra functor defines
a symmetric monoidal functor from Lie algebras to Hopf algebras. This result
implies, according to the general statement of Proposition 2.1.4, that the collection
of enveloping algebras Up = (Up(n)) forms an operad in the category of Hopf
algebras. In short:

— each Hopf algebra Up(r) inherits an action of the symmetric group from
the Lie algebra p(r) by functoriality of the enveloping algebra mapping;

— we moreover have p(1) = 0 = Up(1) = k so that our collection Up has an
obvious operadic unit;

— and we consider the Hopf algebra morphisms

U(p(m)) @ U(p(n)) = U(p(m) @ p(n)) = U(p(m +n — 1)),

induced by the Lie algebra morphism of §10.2.5(c) to define the partial
composition products of our operad U p.

In the chord diagram representation, the kth partial composition product of
monomials in the enveloping algebra Up(m+n— 1) can be identified with a natural
cabling operation where a chord diagram on n strands u is plugged in the kth strand
of an input chord diagram v. The composite of these chord diagrams u oy v is the
sum of all diagrams obtained by attaching the strings joining the kth strand of u
to a strand in v. To give a simple example, we have the formula

in Up(4).

10.2.7. The unitary extension of the Drinfeld-Kohno operad. In §§10.2.5-10.2.6,
we are not precise about the arity 0 component of our operads. By convention, we
assume that we deal with a non-unitary operad when we use the notation p. But
the definition of §10.2.5 has an obvious extension in the unitary setting. Hence,
we also have a unitary operad in the category of Lie algebras, defining a unitary
extension of our operad p, and which we denote by p, (with the usual + mark
of unitary operads). Recall that we have to adapt the concepts of §§3.2-3.3 when
we work within a symmetric monoidal category, like the category of Lie algebras,
of which tensor product does not preserve colimits (see §§1.1.19-1.1.20). To be
explicit, when we deal with such a situation, we simply drop our consideration of
arity 0 terms in the definition of non-unitary operads instead of assuming that such
terms are given by the initial object of the ambient category. In fact, since the
initial object (the zero object) 0 is the tensor product unit in the category of Lie
algebras, we have p, (0) = 0 for the unitary operad p,, and not the converse.

The definition of the partial composition operations with this arity zero term are
given by a formal extension of the definition of §10.2.5. The restriction morphisms
Ok :p(r) = p(r—1),k =1,...,r, equivalent to these partial composition operations,
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are given on generating elements by:

ti—ij—1, ifk<i<y,

0, ifk=i<y,
6k(tij) = tij—l; ifi<k< 7,

0, ifi<k=j,

tij, ifi<j<k.

We adopt similar conventions for the enveloping algebra operad associated to
the Drinfeld-Kohno operad in Lie algebras. We then have Uy, (0) = K, the ground
ring, which also represents the zero object of the category of Hopf algebras. We can
identify the restriction morphisms d; : Up(r) = Up(r — 1), k = 1,...,r, with the
operation which consists in withdrawing the kth strand in the chord diagram rep-
resentation of our monomials. The image of a chord diagram under this operation
is zero as soon as a chord is attached to the kth strand of our diagram.

10.2.8. Completions and the operad of chord diagrams. We can regard the Hopf
algebras of §10.2.4 as the hom-objects of a collection of Hopf groupoids 3(r) such
that 0b H(r) = pt and Homgq(,)(pt, pt) = Up(r) for each r > 0. We have an operad
structure on this collection of Hopf groupoids defined by the construction of §10.2.8
at the hom-object level. We apply the completion process of §9.2 to get an operad
in complete Hopf groupoids H from this operad H.

The filtration used to defined this completion is given, on the hom-object
Homg¢ () (pt, pt), by the powers of the augmentation ideal of the enveloping alge-
bra U(p(r)). In the presentation of §10.2.4, we readily see that the sth layer
of this filtration 1°U(p(r)) is identified with the module spanned by monomials
tivjy - Liyjn Of length m > s. These monomials corresponds to chord diagrams
with m > s chords in our representation. The completion of the enveloping al-
gebra U(p(r)) with respect to this filtration is also identified with the complete
enveloping algebra U(p(r)) on the complete Lie algebra p(r) such that

p(r) = I:(tijll <iF# 5 <)) <[, trls [tig, tan + trg] >,

for each r > 0, where we take the same conventions as in Proposition 8.3.1 for
the definition of the free complete Lie algebra L(t;j|1 < i # j < r). Since the
generating relations of the Lie algebra p(r) are homogeneous, we have an identity
p(r) =TI _i Lin /LN < [tij, trals [tij, tir + tra] >, where, as in §10.2.1, we set L,
for the homogeneous component of weight m of the free Lie algebra L = L(¢;;|1 <
i # j <r). The complete enveloping algebra U(p(r)) similarly satisfies U(p(r)) =
T(tij|1 <i# 3 <r)/ < [tijstr], [tij, tir +tr;] >, where we just replace the ordinary
tensor algebra of §10.2.4 by the completed one.

We adopt the expression of chord diagram operad, and use the notation E\D,
for the operad in Malcev complete groupoids such that Ob CD = G(SJ:C), where we
apply the group-like element functor of §9.2.4 (see also §9.3). We therefore have
Ob Eb(r) = pt and

Morzp (pt,pt) = GT(tij|1 <i# 5 < 7)) < [tij,tial, [tij, tar + trs] >,

=U(p(r)

for every r > 0.
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Proposition 8.1.5 (see also Lemma 9.2.9) gives an identity between the mor-
phisms u € MorCAD(T)(pt,pt) and the exponentials e such that p € p(r). The
defining structure morphisms of this operad are defined by constant maps at the
object set level and by the structure morphisms of the Drinfeld-Kohno Lie operad
at the morphism set level.

The chord diagram operad has also an obvious unitary extension Eb+ defined
by considering the unitary extension of the Drinfeld-Kohno operad at the morphism
level.

10.2.9. Operad morphisms and associators in the chord diagram operad. We
consider the set of morphisms of unitary operads in Malcev complete groupoids

¢ I@+ — E\D_,_
which are bijective at the morphism set level, and hence, define a categorical equiv-
alence from the Malcev completion of the operad of parenthesized braids l%+
towards the Malcev complete operad of chord diagrams ED+.

By Proposition 9.2.8, any such morphism of operads in the category of Malcev
complete groupoids ¢ : FTa\BJr — E\DJr occurs as the unique extension, to the
completed operad IS;:J\BJF, of a morphism of operads in groupoids ¢ : PaB, — 5\D+,
where we consider the basic operad of parenthesized braids PaB and we forget
about the Malcev structure of the operad of chord diagrams. By Theorem 6.2.4,
the construction of such a morphism ¢ : PaBy — Eb+ reduces to the definition
of a product operation m = m(x1,x2) = ¢(u) € 0Ob @(2) in the chord diagram
operad CD, of a braiding ¢ = c(x1,x2) = ¢(7) € Mor (_/"b(Q), and of an associator
a = a(x1,x2,73) = ¢(a) € Mor (./'\D(3) The unit object e, which is also considered
in the general statement of Theorem 6.2.4, is again fixed by the assumption that
the groupoid (/fb+ (0) reduces to the one-point set pt. We have no choice for the
product too m = ¢(u) € Ob E\D(Q) since we have Ob E\D(r) = pt for all r > 0 by
definition of the chord diagram operad.

In arity 2, we trivially have p(2) = Kt12 so that the braiding ¢ = c¢(x1,22) €
Mor@(Q)(pt, pt) is given by an exponential

(a) (w1, x2) = exp(uti2/2) € GU(p(2)),

for some p € K. In the case of a categorical equivalence, we assume that our mor-
phism ¢ induces a bijection of morphism sets MoT 55 o) (pt, pt) = MorCAD(Q)(pt,pt),
and this requirement implies 1 € k*.

In arity 3, the Lie algebra p(3) splits as a direct sum p(3) = ke @ L(t1a, tas),
where Kc is a central Lie subalgebra, spanned by the element ¢ = t15 + o3 + t13,
and we consider the free complete Lie algebra generated by the Drinfeld-Kohno
elements t1o and to3. We therefore have a(xy, s, 23) = e - ®(t1o,103), where
A € k and ®(t12,t03) is a group like element in the enveloping algebra of the free
complete Lie algebra |:(t12,t23). We immediately deduce from the unit identity
a(z1,e,x3) = 0 that the central factor e*¢ is trivial in a(z1,x2, 23). Thus we finally
obtain an expression of the form:

(b) a(x1, T9, T3) = D(t1a,ta3) € GUL(t1a, t23)

for the associator a = a(x1,x2,23) € Mor E\D(?)) We record the outcome of this
discussion in a proposition:
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ProrosITION 10.2.10. A morphism of unitary operads ¢ : PaB, — C<b+,
satisfying
¢(7) = exp(uit12/2) € Moxr g5 0 (pt, pt), 11 € K,

for the braiding T € Mor PaB(2), is uniquely determined by a group-like power series
(I)(t12, t23) [N ¢] -i-(tlg, t23) =G Ut(tlg, t23)

so that we have:

P(a) = P(t12,t23)
in the morphism set Morz.b(g)(pt,pt). O

To complete this proposition, we write down the coherence constraints of The-
orem 6.2.4 for the definition of operad morphisms ¢ : PaBy — CD in terms of the
corresponding associator ® = ®(t19,ta3). We obtain the following proposition:

ProroSITION 10.2.11. The assignment
o(p) =pt, &(1) =exp(uti2/2), ¢(a)= D(ti2,t23),

in Proposition 10.2.10, determines a well-defined morphism of unitary operads

¢ PaB, — CD.,
if and only if our power series ®(t12,ta3) satisfies:
(a) the unit relations ®(x,0) = 1= ®(0, z),
(b) the involution relation ®(x,y) - ®(y,z) =1,
(c) the hexagon equation e’*/? - ®(z,x) - et*/? - B(y, z) - e¥/? . D(x,y) = 1,
where (x,y,z) is any triple of variables such that z+y+ x = 0.
(d) and the pentagon equation

D(t12,ta3 + taa) - P(t13 + tag, t34)
= ®(ta3,t34) - P(t12 + 13,24 + t34) - P(t12,t23)
in U(p(4)).

PrOOF. We determine the expression of the unit, pentagon and hexagon con-
straints of Theorem 6.2.4 for the braiding ¢(7) = exp(uti2/2) and an element of the
form ¢(a) = P(t12,t23) in CD. The equivalence between the pentagon constraint
of Figure 6.1 and the equation of Figure 10.1 is immediate (we just expand the
expression of our element in the general relation of Figure 6.1). The reduction of

the unit constraints of Theorem 6.2.4 to ®(z,0) =1 = ®(0, z) is immediate too.
The hexagon equations read:

eM13/2 . B(t,t13) - €4112/2 = B(tag, t13) - 12 H119)/2 B (115, 1),
thIS/Q . (I)(t137t23)71 . eMt23/2 — (I)(tlg,tlg)il . eﬂ(t13+t23)/2 . (p(t12,t23)71-

In the first equation, we set x = t13, y = to3. We then have t15 = z + ¢, where
we set z = —x —y and ¢ = t12 + ta3 + t13 denotes the central element of p(3) as
in §10.2.9. The unit relations ®(x,0) = 1 = ®(0, z) implies that the Lie power series
P(z,y) =log ®(x,y) € L(z,y) such that ®(z,y) = exp(P(z,y)) has no component
in weight 1, and we consequently have ®(t12, —) = ®(z, —), and ®(—, t12) = (-, 2),
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since ¢ is central [¢, —] = 0. We can also collect the factors e#¢/2 in our equation.
The first hexagon relation is therefore equivalent to the equation:

e B(z,x) P = By, x) e D(2,y)
o B(y,z) = el? . B(z,x) M2 B(z,y) L - /2

The second hexagon relation, where we set x = t15 and y = t23, so that t13 =2+c¢
for z = —x — y, is similarly equivalent to the equation

1 B(z,y) 7 Y2 = B(z,0) 7 I B, y) )
N (p(x,y)il _ 6”93/2 . @(z’x) . e,u,z/Q . (I)(Z7y)71 . el"y/Q.

These equations are clearly equivalent to the combination of relations

Oy, x) = (w,y)"" and - B(z,x) - - By, 2) - VP D(x,y) = 1,

given in our statement, and this result completes the verification of our assertions.
O

10.2.12. Remark. By Proposition 8.1.5, the group like elements ®(¢12, ta3) con-
sidered in Proposition 10.2.10, satisfy ®(t12,t23) = exp P(t12,t23) for a Lie power
series P(t127t23) = atq1s + PBtag + ’y[tlg,tgg] + - € L(tlg,tzg). In the proof of our
statement, we have already observed that the unit relations ®(z,0) = ®(0,z) =1
imply @« = 8 = 0. By a theorem of Furusho (see [64]), any element ®(t12,t23) €
G 'i'(tu, to3) satisfying the pentagon equation (d) of Proposition 10.2.11 also satisfies
the hexagon equation (c) for a parameter u € K determined by the coefficient v € k.

In the discussion of §10.2.9, we already recalled that the morphisms ¢ : PaB —
(_/"b+ in Proposition 10.2.11 are equivalent to morphisms defined on the Malcev com-
pletion of the parenthesized braid operad ¢ : lga\B+ — C/'bJr. In §10.1, we used the
same correspondence for the study of the automorphisms of the Malcev completion
of the parenthesized braid operad. In the associator case, we can establish the
following result:

ProroSITION 10.2.13. The morphisms ¢ : /55-1\5_;,_ — Eb+ arising from the
construction of Proposition 10.2.11 induce bijections on morphisms sets (and hence,
are categorical equivalences of operads in groupoids in the sense of §5.2.2), as soon
as we assume 1 € K*.

PROOF. To establish this proposition, we use the identity Mor@(r) (p,p) =

P,, which holds for any parenthesized word p € Q2(r), and the isomorphism v :
p(r) = E° P, between the Drinfeld-Kohno Lie algebra p(r) and the weight graded
Lie algebra associated to the Malcev completion of the pure braid group P,. Recall
that this iso associates the element @;; € EO If’r to the generator ¢;; of the Drinfeld-
Kohno Lie algebra.

We have by definition Mor&)(r)(pmpt) = GU(p(r)), where we consider the
completion of the Lie algebra p(r) with respect to the filtration defined by the weight
grading. By Proposition 8.1.5, we also have an iso E°GU(p(r)) = E°p(r) = p(r),
yielded by the exponential mapping.
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Since all morphism sets of the groupoid PaB (r) are isomorphic, we can work
with the fixed parenthesized word p = ((--- ((x122)x3) - - - )a,). Each subgroup of
the natural filtration on G U(p(r)) is normal (by the commutator condition of §8.2.2)
and each sub-quotient E° G U(p(r)) is also abelian. Consequently, we have g=1-e i -
g =eMii/2 in E°GU(p(r)), for any A € k, and this exponential also corresponds to
the element A#;; in the Drinfeld-Kohno Lie algebra. The image of the pure braid
generator a;; in the morphism set Morg B (r )(p,p), can be written as a composite
morphism

u=g - q(xl,...77'2(mi,mj),...,xr) - g,

where g is a composite of braidings and associators in PaB(r), and ¢ is a parenthe-
51zed word on r— 1 variables. The image of this composite under our morphism
o : PaB+ — CD+ reads

p(u) = ¢(g)~" - e - ¢(g),

and according to our recollections, reduce to the exponential e“% in the sub-
quotient.
Hence, our map

¢
Mor@(r)(p,p) — Mor g, )(pt pt)

=P =G U(b(r)

reduces to the multiple y-v =" of the inverse of the iso v considered in Theorem 10.2.3
on the weight graded Lie algebras E° G associated to our groups G = P, GU(p(r)).
By the limit condition of §8.2.2, we immediately conclude that the map ¢ is bijective
at the level of our morphism sets themselves, so that ¢ : F/l;-)\BJr(r) — C/:b_l’_(/r) defines
an equivalence of groupoids for each r € N. O

We now consider an automorphism of the completed parenthesized braid operad
P lga\BJr — Iga\BJr, which defines an element in the Grothendieck-Teichmiiller
group, and we aim to determine the composite ¢ o 9 : .‘ga\BJr — C/TDJF of this
morphlsm w1th our categorical equlvalence of operads in Malcev complete groupoids
o : PaB+ — CD+ Let G(z,y) € F(x y) be the Malcev group element associated to
P PaBJr — PaBJr under the correspondence of Proposition 10.1.3-10.1.4. We still
deal with the power series ®(t12,t23) € G -i—(tlg, t23), associated to ¢ : I:Ta\BJr — EL\')Jr.

We have the following easy observation:

ProPOSITION 10.2.14. The composite morphism ¢ o) : ﬁa\BJ,_ — 6b+ satisfies
po(t) = ¢(1) = exp(uti2/2), and the power series ¢ o h(a) = ®C(t1a,t93) €
G-i—(tlg,tgg) associated to this composite morphism under the correspondence of
Proposition 10.2.10-10.2.11 can be determined by the formula:

D (t1a, tag) = P(t1a, tas) - Glexp(ut12/2), exp(utas/2)*),
where we set y® = ®(t19,t23) "L -y - B(t12,te3) for any y € -i—(tlg,t23>.

ProOF. Exercise: go back to the arguments of Theorem 6.2.4 in order to de-
termine the image of the element ¢ (o) = o - G(a12,a23) under the morphism ¢
determined by our power series ®(t12, tog). ([l
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10.2.15. The explicit definition of the set of Drinfeld’s associators. We now
define the set of Drinfeld’s associators, denoted by Ass"(k), as the set of group-like
power series

(I)(t12, t23) S G T(tlg, t23) = G UL(tlg, tgg)
satisfying the unit, involution, hexagon and pentagon constraints (a-d) of Proposi-
tion 10.2.11, for a given parameter u € kK*. We use the discussion §10.2.9 and the
result of Proposition 10.2.11 to identify such a power series with an associator in
the chord diagram operad EbJr

a(xy,wo,x3) = O(t12,t23) € MorCAD(g)(pt,pt)
—_———
=GU(B(3))
where we take the braiding morphism c(x1,z2) = exp(uti2/2) to fix a symmetry
constraint.

We summarize the result of Proposition-10.2.10-10.2.13 in the following Theo-
rem:

THEOREM 10.2.16 (Equivalence between the operadic approach and the Drin-
feld definition [48, §5]). The categorical equivalences of operads in Malcev complete
groupoids

d) : ISS\BJ,_ — C<\D+
satisfying

o(7) = exp(ut12/2),

for some parameter i € K™, are in bijections with the Drinfeld associators ®(t12,t23) €
Asst(K), so that we have

¢(r) = D(t12,123)
in the chord diagram operad EEM, where T (respectively, o) denotes the braiding

morphism (respectively, associator) defined within the parenthesized braid operad
(see §6.2.3). O

We have the following result:

THEOREM 10.2.17 (V. Drinfeld [48, Proposition 5.3, Proposition 5.8]). The set
of Drinfeld’s associators Assl(k) is not empty for every field such that Q C K.

The cited paper of V. Drinfeld [48] gives a first analytic construction of an
associator, in the complex coefficient case k = C. Drinfeld’s construction relies on
the study of the holonomy of a connection, the Knizhnik-Zamolodchikov connection,
which was introduced by Knizhnik-Zamolodchikov in the realm of conformal field
theory [99]. The papers [5, 153], give another effective construction of an associator
by using the holonomy of another connection, usually called the Alekseev-Torossian
connection. The definition of this latter connection relies on fiberwise integrations,
encoded by a graph complex, of certain differential forms on configuration spaces of
points in the plane. This process was introduced by M. Kontsevich in his work on
deformation-quantization [104, 105]. We give a brief account of Drinfeld’s associator
construction in §10.4. We will survey Kontsevich’s construction of differential forms
and give a brief overview of the definition of the Alekseev-Torossian associator later
on, in §II.7, when we study the formality of the little discs operads.
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The existence of associators with coefficients in any characteristic zero field is
established in [48, Proposition 5.3, Proposition 5.8] by two different methods. In
the approach of [48, Proposition 5.8] (see also [13, Corollary 4.1]) the idea is to
considers the sets Ass,ln(k) formed by the truncated power series ®,,(t12,t23) €
'i'(tlg,tgg)/ |t -i-(tlg,tgg) which satisfy the constraints attached to an associator
modulo error terms of weight > m. We then have Ass'(K) = lim,,, Ass® (K).

The lifting ®,,+1 € Assp,.q(K) of a residue ®,, € Ass,,(K) is determined
by affine equations with the element ®,, as second member. (We refer to the
cited articles [13, 48] for details.) The existence of a complex (or real) associator
implies that these affine equations have a solution in the field k C C, for any such
®,, € Ass;, (k). Hence, we can obtain a whole sequence of truncated power series
®,,(t12, t23) defining an element ®(t,2, to3) in the limit set Ass* (K) = lim,,, Ass’ (K).

10.2.18. The set of associators as a torsor under the Grothendieck-Teichmyiller
group. The definition of §10.2.9 readily implies that the group GT 1(k) acts freely
and transitively on each set Ass"(Kk), for any fixed parameter p € k*.

In §10.1.7, we mention that the group GT"(K) decomposes into a limit GT* (k) =
lim,,, GT*(K)/F,, GT"(K), where each quotient GT}, (k) = GT*(K)/F,, GT*(K) is
an (algebraic) unipotent group. The just considered quotients Asskh (K) are also
algebraic varieties and each of them Assk, (k) forms a torsor, in the sense of alge-
braic group theory (see for instance [137, §I11.4]), under the group GT% (k). The
set of associators Ass”(K) is therefore a pro-torsor under the pro-unipotent group
GT(K).

In the next section, we explain that the set Ass”(k) inherits an action of the
graded Grothendieck-Teichmiiller group GRT"(K) too. Both actions commute and
the set Ass" (k) actually forms a pro-bitorsor under the action of the groups GT*(K)
and GRT'(K).

10.3. The graded Grothendieck-Teichmiiller group

The purpose of this section is to outline the definition of the graded Grothendieck-
Teichmiiller group GRT*(k). This group has also been introduced by Drinfeld
in [48] and we again revisit Drinfeld’s original definition by introducing an operadic
viewpoint. We do not use the graded Grothendieck-Teichmiiller group in our study.
We therefore reduce the account of this section to a survey of main definitions, and
we just give references for the proof of each statement.

We can apply the pullback coritgction of §6.1.5 to get a parenthesized ver-
sion of the chord diagram operad PaCD. with the magma as object operad. We
explicitly define the graded Grothendieck-Teichmiiller group GRT*(K) by analogy
with the prounipotent Grothendieck-Teichmiiller group G Tl(k) as a group of au-
tomorphisms associated to this operad @+. We examine the definition of the
operad gC\DJr first.

In §6, we mention that Bar-Natan uses the name of parenthesized braids and
the notation PaB for a concept which differs from our operad of parenthesized braids
(see [13]). He actually deals with homogeneous components of the free algebra on
one variable associated with this operad (in the linear context). Let us mention
that the objects referred to as the parenthesized chord diagrams categories in [13]

similarly differ from our categories of parenthesized chord diagrams 5C\D+ (r), and
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2 4 3 1

3 41 2

FI1GURE 10.2. The picture of a homomorphism in the operad in
Hopf groupoids underlying the parenthesized chord diagram op-
erad PaCD.

actually consist of the homogeneous components of the free algebra on one variable
associated with this operad.

10.3.1. The operad of parenthesized /Ehord diagrams. We consider the obvious
morphism of set operads w : 2 — 0b CD, defined by the constant map Q2(r) —
0]} C/'b( ) = pt in each arity r, and which sends the generating element of the
magma operad pu € 2(2 ) to the element m = ¢(u) of the one-point set formed by
this object operad Ob CD in arlty r = 2 We define the operad of parenthesized
chord diagrams by setting PaCD = w CD where the notation w* refers to the
pullback process of §£l\5 o

Each groupoid PaCD(r), r > 0, satisfies 0b PaCD(r) = 2(r) by construction,
and we have Morg—=; D (r) (p,q) = MorCAD(T)(pt,pt) = GU(p(r)) for all p,q € Q(r).
The symmetric group actions, the unit, and the composition operations defining
the operad structure on this collection of groupoids are, as usual, inherited from
the magma operad at the object set level and from the chord diagram operad at the
morphism set level (see §6.1.5). The operad of parenthesized chord diagrams has
a unitary version (like the parenthesized permutation and the parenthesized braid
operads) defined by an obvious unitary extension of our pullback construction.

We have an obvious identity PaCD = G(fJ:C), where we consider the completion
H of the operad in Hopf groupoids H such that Ob H(r) = 2(r) and Homg¢ () (p, q) =
U(p(r)) for all p,q € Q2(r).

We can combine the chord diagram picture of §10.2.4 and the conventions
of §6.2.1 to get a graphical representation of the homomorphisms of this operad
H, and of the completed operad H similarly. We basically use that each homo-
morphism f € Homg((,y(p,q) has a canonical decomposition f = g -u such that
g € Homg((,y(p, ) is represented by the unit element 1 in the Hopf algebra Up(r),
and v is an endomorphism of the object p € Q(r) which captures the enveloping
algebra element corresponding to f in Homge(,)(p,q) = Up(r). We represent this
factor u € Homg((,y(p,p) = Up(r) by a chord diagram on r strands arranged on
the centers of the diadic decomposition of the interval corresponding to our ele-
ment p € 2(r). We identify the factor g € Homg(,y(p,q) of our morphism with a
correspondence, marked by lines in our figure, between the centers of the diadic
decompositions associated to p and q. Figure 10.2 gives an instance of this repre-
sentation for a homomorphism f = g-u € Homg(r) ((((z274)23)21), (23((2471)22))).
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Fundamental instances of morphisms in the operad of parenthesized chord di-
agrams PaCD include the associator
2 3

L

2
(whose representation is the same as in the parenthesized braid operad case), the
symmetry operator

(a) a= l\

12
(b) T = >< )
271
and the exponential element
1 2
(©) y= exp( | )
271

One can prove an analogue of the result of Theorem 6.2.4 for the operad of paren-
thesized chord diagrams (adapt the arguments of [13, Proposition 4.5, Proposition
4.8] to our formalism).

10.3.2. The graded Grothendieck-Teichmiiller group. We define the graded Gro-
thendieck-Teichmiiller group GRT"(Q) as the group formed by the automorphisms
¢ : gC\D+ i} @+

of the unitary operad in Malcev complete groupoids gC\D+ so that:
(a) each component ¢(r) : @(T) — @(7’) of our morphism is given by
the identity mapping at the level of the object set Ob gC\DJr(r) = Q4 (r);
(b) and the component ¢(2) : EC\D(Q) — gC\D(2) fixes the symmetry oper-
ator 7 in the morphism set Mor@(z)(u(m, x2), (22, 1))
(¢) as well as the exponential element v € Mor 5759 (u(x1, 22), (1, x2))
of §10.3.1(c).

As in the case of the prounipotent Grothendieck-Teichmiiller group, we can drop
the constraint (c) and consider a group GRT(Q) formed by all automorphisms of
the operad EC\DJr which are the identity at the object level and fix the symmetry
operator 7. The image of the chord exponential v under a morphism ¢ : EC\DJr —
EC\D+ has an expression the form ¢(y) = v*, for a formal exponent A € k. We
again see that this exponent necessarily satisfies A € k™ if we assume that ¢ is an
iso, and the mapping v : ¢ + ) defines a group morphism v : GRT(k) — k™ of
which kernel represents the group GRT™ (K).

The result of Proposition 10.1.3 has the following easy analogue:

ProrosSITION 10.3.3. The operad morphisms ¢ : gC\D+ — gC\DJr which fix

— the object = p(x1,x2) € Ob gC\D(2),

— the braiding T € MorgC\D@)(,u(zl,zg),,u(zg,xl)),

— and the exponential element vy = e'12 € Mor@@)(u(xl,xg),,u(xl,xg)),
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are uniquely determined by an associated group-like power series
D(t12,123) € GT(t12,t23) = GUL(t12, t23)

so that we have

P(ar) = o+ D(t12,t23)
in the morphism set MoT 55 3 (w(p(z1, z2), x3), w(x1, w(xe, x3))) of the parenthe-

sized chord diagram operad PaCD. O

We also have the following statement, which parallels the result of Proposi-
tion 10.1.4:

ProrosITION 10.3.4. The assignment
op) =n, o(r)=7, ¢(7) =7 d(a)=a-D(ta,ta3)

in Proposition 10.3.3 determines a well-defined morphism of unitary operads
d) : gC\D+ — EC\DJ’_

if and only if our power series ®(t12,t23) € G-i—(tlg,tgg) satisfies:
(a) the unit relations ®(z,0) =1 = ®(0, z),
(b) the involution relation ®(z,y) - ®(y,z) =1,
(c) the hexagon equation ®(z,z) - ®(y,z) - ®(z,y) = 1, where (z,y,2) is any
triple of variables such that z+y+x =0,
(d) the semi-classical hexagon equation
x4+ Oz, y) "ty (a,y) + P(x,2) "z B(x,2) =0,

where (x,y, z) is again a triple of variables such that z +y+x =0,
(e) and the pentagon equation

O (t12,ta3 + t34) - (t13 + ta3,t34)
= ®(taz,t3a) - P(t12 + t13, toa + t3a) - P(t12,123)

in U(p(4)).
ProOF. We refer to [13] for the proof of a similar statement, which we can
readily adapt in our setting. [

We have the following extra result, which parallels the statement of Proposi-
tion 10.2.13 on Drinfeld’s associators:

ProrosiTioN 10.3.5. The morphisms ¢ : @+ — @+ arising from the
construction of (10.3.4) automatically induce bijections on morphisms sets, and
hence, are isomorphisms of operads in groupoids.

PRrROOF. We refer to [13] for the proof of a similar statement, which we can
again readily adapt in our setting. ([

Let ¢, : gC\D+ — EC\D+ be endomorphisms of the operad EC\[?+. Let
D(t12,t23), U(t12,t23) € G Ii(t127t23) be the group-like power series which are asso-
ciated to these morphisms under the correspondence of Proposition 10.3.3-10.3.4.
Proposition 10.1.5, about the composition of morphisms in the pro-unipotent Gro-
thendieck-Teichmiiller group, has the following analogue:
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PROPOSITION 10.3.6. The group-like element (® o W)(t1a,t23) € GF(t1a,ta3)

associated to the composite morphism ¢ o : gC\DJr — PaCD under to the result
of Proposition 10.3.4, can be determined by the formula

(® 0 W)(t1g,taz) = P(t12,ta3) - U(t12, t23®),

where we set u® = ®(t1g,taz) ' - u - B(t1a, tag).

PRrROOF. We consider the operad in complete Hopf groupoids H of §10.3.1 and
the morphism of this operad equivalent to our morphisms ¢, : EC\DJr — EC\DJF.
The chord diagrams t12, ta3 € U(P(3)) in the expression ¥(a) = a- U (tyg, ta3) repre-
sents endomorphisms of the parenthesized word p(u(z1,z2),z3) in this operad H.

We easily see (by using the preservation of operadic composition structures)
that t15 is fixed by the morphism ¢. We can also readily obtain that the image
of the homomorphism t33 under our morphism ¢ is given by the formula ¢(te3) =
®(t19,t93) L - ta3 - P(t12,t23), which reflects the expression of the endomorphism
represented by this chord diagram t¢s3 in terms of a composite of associators and
of a composition product in the parenthesized chord diagram operad. We apply
these formulas to the power series U(t12,t23) € G IA:(tlg,tQ?,), which we regard as a
formal composite of the morphisms represented by the chord diagrams t1o,t23 €

U(p(3)). 0
We get the following final result:

THEOREM 10.3.7 (Equivalence between the operadic approach and the Drinfeld
definition [48, §5]). The graded Grothendieck-Teichmiiller group GRT'(K) is iso-
morphic to the group formed by the group-like power series ®(t12,t23) € G f(tlg, tas),
which satisfy the relations of Proposition 10.3.4. (]

To complete our account, we explain the definition of isomorphisms between
the pro-unipotent and the graded Grothendieck-Teichmiiller group from associa-
tors. We need the following proposition which is an immediate consequence of the
observation of Proposition 6.1.10:

ProprosITION 10.3.8. FEach categorical equivalence of operads ¢ : @Jr —
CD., determined by an element in the set of Drinfeld’s associators Ass"(K) for
some u € K™, admits a unique lifting

PaCD,
3!<1~5+_, A i

lga\B+7>a)+

which defines an isomorphism of operads in groupoids (;NSJF : ,EaEJr = @+ and
is given by the identity mapping of the magma operad at the object set level. [

This proposition implies that each set of associators Ass”(K) inherits a left
action of the group GRT'(K) which commutes with the right action of the pro-
unipotent group GT*(K). The following proposition is a consequence of the fact
that these actions are both free and transitive:
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PROPOSITION 10.3.9. Each element ® in the set of Drinfeld’s associators Ass" (K),
where u € K*, determines a group isomorphism se : GRT*(K) = GT" (k).

PRroOF. Let ¢ : lga\BJr = Eb+ be the categorical equivalence of operads asso-
ciated to our element ® € Ass(K). Let ¢y : :‘i;-)\BJr = gC\D+ be the operad iso
which lifts this categorical equivalence in Proposition 10.3.8. We define the image
of an isomorphism v : EC\D+ = EC\D+ under our iso sg : GRT*(K) = GT'(K)
by considering the composite operad morphism sq¢ () = q3+_1 oo (5+. (I

10.3.10. Pro-unipotent structures (continued). The graded Grothendieck-Teich-
miiller group GRT'(K) satisfies GRT'(k) = lim,, GRT"(K)/F,, GRT"(K) where
each quotient GRT! (k) = GRT'(K)/F,, GRT' (k) is a unipotent algebraic group,
as in the case of the pro-unipotent group GT" (k). The action of the group GRT" (k)
on the set of associators Ass*(K) is also pro-algebraic so that Ass*(K) forms a pro-
torsor under this action (see §10.2.18).

We refer to [48, §5] for a description of the Lie algebra grt! associated with the
pro-algebraic group structure on GRT* (k). We have a filtration F,, get! of the Lie
algebra grt! so that grt! = lim,, gtt! /F,, grt! as in the case of the Lie algebra gt!
associated to the pro-unipotent group GT'. The isomorphism s : GT*(k) =
GRT'(K) associated to an associator ® € Ass"(K) induces an iso sq : gt' —» grt!
at the Lie algebra level.

The filtration splits on grt! (according to a result of [48]) so that this Lie
algebra grt! is accordingly equipped with a canonical weight grading and we have
grtl = E2 gt!. The argument of the cited reference relies on a description of the
Lie algebra grt! in terms of Lie power series P(t12,t23) € L(tlg,tgg) satisfying an
analogue of the relations (a-e) of Theorem 10.3.7. The idea is that the Lie analogue
of the semi-classical hexagon relation (d) follows from the other relations, which are
all homogeneous. We refer to [48, §5] for details. We just record the group version
of this observation:

PROPOSITION 10.3.11 (see [48, Proposition 5.7]). In Theorem 10.3.7, the semi-
classical hexagon relation (d) holds as soon as we have an element ®(t12,t23) €
G T(t1a,tas) satisfying the unit relation (a), the involution relation (b), the hezagon
relation (c), and the pentagon relation (e) of the theorem.

PROOF. We refer to [48, Proposition 5.7] for the proof of this result at the Lie
algebra level. 0

This proposition has also the following immediate consequence:

PROPOSITION 10.3.12 (see [48, Proposition 5.9]). The elements of the graded
Grothendieck- Teichmiiller group GRT(K) are in bijection with the power series
®(t1o,t03) satisfying the equations of the set of Drinfeld’s associators Ass®(K) for
the parameter u = 0. O

In §10.2.12, we recall that, according to a result of Furusho [64], the penta-
gon equation automatically implies the hexagon equation in the set of Drinfeld
associators. This result also holds for the graded Grothendieck-Teichmiller group
GRT*(K), whose defining equations therefore reduce to the unit (a), involution (b),
and pentagon equations (e) of Proposition 10.3.4.
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10.4. The Knizhnik-Zamolodchikov associator

To conclude this chapter, we give an outline of Drinfeld’s definition of the
Knizhnik-Zamolodchikov associator [48]. This construction is well documented in
the quantum group literature. Besides Drinfeld’s original article [48], we can refer
to the books [39, 95, 154]. The purpose of our account is just to survey the main
steps of the construction, and we will give references for details.

10.4.1. The Knizhnik-Zamolodchikov connections. The Knizhnik-Zamolodchi-
kov associator has complex values, and we therefore consider a complex coefficient
version of the Drinfeld-Kohno Malcev algebra p(r)c, which we get by taking the
ground field k = C in the construction of §10.2.1. For short, we write p(r) =
p(r)c throughout this section. We also consider the group P, = GU(p(r)) which
represents a complex Malcev completion of the pure braid group with r strands.
We deal with connections in trivial fiber bundles X x F' which have this group
G = GU(p(r)) as structure group, and are determined by connection forms w €
Q!(X,g) with value in the corresponding Lie algebra g = p(r). We refer to [139)
for a modern introduction to the theory of connections in general fiber bundles and
the definition of connection forms with values in Lie algebras.

The Knizhnik-Zamolodchikov associator is constructed from the holonomy of
certain flat connections, defined over the configuration spaces of points in the com-
plex plane

FCr)={(z1,...,2r)|zs £ zj(Vi# )}, r €N,

and determined by the complex 1-forms

(a) WKz = Z ht;; @ dlog(z; — z;) € Q' (F(C,r),p(r)),

1<i<j<r

where & denotes a fixed parameter, we set dlog(u) = du/u, and t;; are the gen-
erators of the Drinfeld-Kohno Lie algebra p(r). These connections are called the
Knizhnik-Zamolodchikov connections after the work of these authors in conformal
field theory [99] (see also [53] for a reference book on this subject).

10.4.2. The holonomy of the Knizhnik-Zamolodchikov connections. Let v(s) =
(21(8),...,2-(s)) be any smooth path v : [0,1] — F(C,r), going from one point

a® = ~(0) to another a! = (1) in the configuration space F(C,r). Let

(a) hy i s hy(s) € U(p(r)),
be the solution of the differential equation
dh’Y _ / / tij
1<i<j<r

with values in the complete enveloping algebra U(p(r)) and such that h.(0) = 1.
Note that h(s) @ h,(s) and Ah(s) satisfy the same differential equation, have the
same initial value Ah.(0) = hy(0) ® h,(0) = 1 ® 1, and as a consequence, agree
on all s € [0,1]. The element h,(1) is therefore group-like and defines an element
in our structure group P, = GU(p(r)). The iso h,(1) : {y(0)} x F — {y(1)} x F
determined by the action of this group element h, (1) € P, on the fibers of a trivial
bundle F(C,r) x F' with structure group P, represents a parallel displacement along
the path v (see [139, §6.3]). If we have v(0) = (1) so that 7 is a loop, then this
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group element h (1) € P, is also called the holonomy of the connection around the
loop 7.

The Knizhnik-Zamolodchikov connections are flat (see for instance [39, §16.2]
or [95, §XIX.2] for the details of this verification), and as a consequence (see [139,
§6.6]), we have an identity h,(1) = hg(1) for all homotopic paths «, 5 : [0,1] —
F(C,r) with a given origin a(0) = 3(0) = a° and end-point a(1) = 5(1) = a! in the
configuration space F(C,r). The holonomy morphisms h : v — h,(1) associated to
the Knizhnik-Zamolodchikov connections give rise to representations of the braid
groups, the monodromy representations. The article [103], by T. Kohno, gives
an explicit description of these representations. This topic is also addressed in
Drinfeld’s article [48] as an application of the Knizhnik-Zamolodchikov associator
construction.

10.4.3. The definition of the Knizhnik-Zamolodchikov associator. We fix some
r > 2. We now study the system of differential equations

(a) O _§op iy,

('9,21- Zi — Zj

where w is a function, defined on a subdomain of the configuration space F(C,r),
and with value in the algebra U(p(r)).

We see that (a) is invariant under the action of the group of affine transforma-
tions z > az + b, where a € C*, b € C, and as a consequence, any solution of this
system (a) is determined by a solution of a system depending on r — 2 variables
(we refer to [154, §12.2] for a nice and detailed analysis of this dependence). When
we take r = 3, we obtain

h(ti2+t23+t1a) | G(Z2 — 21)
b

(b) w(z1, 22, 23) = (23 — 21) z3— 21

where G(z) is a solution of the equation

(o) ) =h (224 ) 6.

z z—1
Let C ={2 =z +1iy|ly # 0 or 0 < & < 1}. The classical theory of Fuchsian
equations (see for instance [174, §4.3]) implies that this differential equation (c¢) has
a unique analytic solution Gg(z), defined for z € C, and such that Go(z) ~,_,o 2"12.
We also have an analytic solution G1(z) such that Gy(z) ~._1 (1 — 2)™2. The
solutions wy and w; of the Knizhnik-Zamolodchikov system (a) associated to these
functions are determined by asymptotic behaviors of the form:

(d)  wo(z1,22,23) ~ (22 — 21)"12 (23 — zl)h(t13+t23), for |22 — 21| < |23 — 21],
(e)  wi(z1,29,23) ~ (23 — zz)ﬁt”’(z;; — zl)ﬁ(t12+t13), for |z5 — 22| < |23 — 21].

The solutions Go(z) and G1(z) of equation (c) differ by a constant factor of the
variable z. We precisely take this factor, such that G1(z) = Go(z) - Prz(t12,t23),
to define the Knizhnik-Zamolodchikov associator ® gz (t12,t23) € GU(p(3)). This
element @ 7 (t12,t23) € G U(p(S)) can equivalently be characterized by the relation

(f) w1 (21, 22, 23) = wo(21, 22, 23) - P z(t12,t23),

where we consider the solutions of the Knizhnik-Zamolodchikov system (a) with
the asymptotic behavior prescribed in (d-e).
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We aim to check that our element ® gz (t12,t23) satisfies the constraints of
Proposition 10.2.11, for a parameter u such that A = p/2imr. We devote the next
paragraph to a brief survey of the argument lines given in [48, §2].

10.4.4. The verification of associator equations. We immediately see that the
reduction t1o = t13 = 0 makes our functions wy and w; equal, and similarly as
regard the reduction t13 = to3 = 0. We deduce from these observations that
the Knizhnik-Zamolodchikov associator satisfies the unit relation ® gz (t12,0) =
D 2(0,t23) = 1. The involution relation @k z(t12,t23) - Pr z(tas, t12) = 1 follows
from an easy inspection too.

To establish the pentagon equation, we consider asymptotic zones

(a) To — T K T3 — 11 K Ty — T1,
(b) T3 — g LT3 —T1 KTy —T1,
(c) To— 21 KTy —x1 and x4 — 23 K 24 — 27,
(d) T3 — Xy K Ty — Tg K Ty — X7,
(e) Ty — T3 K Ty — Ty K Ty — T1,

in the range of variation formed by real variables such that {z; < zs < z3 < x4}.
Each of these zone is associated to a vertex of the Mac Lane pentagon, with the rule
that we have x; — z; < x; — x);, whenever the parenthesized word corresponding to
our vertex includes the pattern (zy---(z;---x;)--- ;). For instance, we associate
zone (c) to the word ((z1x2)(xs3z4)). The Knizhnik-Zamolodchikov system r = 4
of §10.4.3 admits solutions w; = w;(x1,x2,x3,24), ¢ = 1,...,5, associated to the
vertices of the Mac Lane pentagon, with an asymptotic of the form

(f) wy ~ (29 — 1) (w5 — 2p) 1 3T28) L (g — gy ) MBrataatlon),
(2) Wa ~ (T3 — 22) 125 . (25 — ap) B2 Ht13) | (g, g )iltrattaattes)
(h) w3 ~ (T2 — xl)ﬁhz (14 — xg)ht“ (g — xl)h(t13+t23+t14+t24),

(i) wy ~ (3 — 22)12 -+ (mg — o) P2a ) L (g — gy) Bz ttrsttn)
() ws ~ (24 — w3) "0 (g — mg) PR L (3 — gy )ME2 IO

in the corresponding zones (a-e). The factors (x;—zy) occurring in these asymptotic
expansions correspond to the variable groupings (z, . ..x;) that occur in the paren-
thesized words associated with each asymptotic zones. The exponent of this factor
x; — T is the sum Zij t;; Tunning over all pairs ¢ < j that come separated in the
merging operation ((xy---x;---)(---x;---x;) from which the grouping (zj ...z;)
arises. The notation ~ asserts that w;, ¢« = 1,...,5, differs from the given expan-
sion by a function ¢(u,v) which depends analytically on the asymptotic factors
(x;—2k) /(g4 — 1) deduced from these expansions. The existence of such functions
follows from the theory of differential equations (we refer to [53] for the detailed
argument).

One can prove identities W9y = W1 - (I)Kz(tlg, tgg), wyq = W2 - q)KZ(t12 +t13, t24 +
t34), ws = wy- Pz (taz, taa), w3 = wi- P z(t13+123,134), and ws = w3 - Pr 7 (t13+
tos, t34) by checking that regularized forms of these functions (where we multiply
by some asymptotic factors to eliminate divergence) satisfy the same differential
equations, and agree at some initial value of the cyclically ordered quadruple z; <

- < x4 on the projective line RP' (see [48, §2], or [154, §12.4] for a detailed
account of this proof). The pentagon equation ®(t12,tas + t34) - P(t13 + to3,34) =
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(I)(t23, t34) . (I)(tlg + t13, t24 + t34) . ‘I)(tlg, t23) of PI‘OpOSitiOH 10211(d) immediately
follows.

The hexagon equation of Proposition 10.2.11(c) is established by the same line
of arguments (see for instance [154, §12.4] for full details on this verification).

The definition of the Knizhnik-Zamolodchikov associator is now complete.






Recapitulation and Outlook






The Homotopy Interpretation of the
Grothendieck-Teichmiiller Group

We have already observed that the classifying space of the operad of colored
braids B(CoB) defines a model of the operad of little 2-discs D2 (see §5.2). We also
have 71 B(CoB(r)) = Py, the pure braid group on r strands, and m, B(CoB(r)) = 0
for n > 1.

We now consider the classifying space operad associated the Malcev completion
of the operad of colored braids CoB with the field of rationals as coefficient fields
k = Q. We then have m; B(.Ea\B(r)) =m B(@(T’)) = P, for each r, where P,
denotes the Malcev completion of the pure braid group P., and m, B(CoB(r)) = 0
for all n > 1. We also have a canonical operad morphism ¢ : B(CoB) — B((,{OTB),
yielded by the adjunction unit of the Malcev completion process at the level of our
operads in groupoids, and this morphism clearly corresponds to the rationalization
map ¢ : P. — P, associated to the pure braid group at the level of fundamental
groups. We can therefore regard the operad B(C/O\B) as a model for the rational-
ization of the operad of little 2-discs, and we use this model for the definition of
a rational homotopy type of Fs-operads in simplicial sets (or in topological spaces
after realization). We precisely say that an operad P is a rational Fs-operad if this
operad is connected to the classifying space of the colored braid operad by a chain
of weak-equivalences of operads

P <. 2 B(CoB),

where a weak-equivalence of operads consists, as we explain in the introduction
of §4, of an operad morphism ¢ : R — S whose components ¢(r) : R(r) — S(r)
are weak-equivalences of simplicial sets (respectively, topological spaces). We have
an obvious extension of this deﬁrgpion in the unitary setting. We then consider
the unitary operad B(CoB), = B(CoB.) associated to the unitary extension of the
Malcev completion of the colored braid operad.

The operad of parenthesized braids, considered in the definition of the Grothen-
dieck-Teichmiiller group, is endowed with a morphism towards the operad of colored
braids w : PaB — CoB, and this morphism defines an equivalence of groupoids in
each arity by construction (a categorical equivalence of operads in the terminology
of §5.2.2). This categorical equivalence induces a weak-equivalence of operads in
simplicial sets (respectively, topological spaces) at the classifying space level Bw :
B(PaB) = B(CoB) (see Proposition 5.2.6). If we take the Malcev completion
of the parenthesized braid operad @ then we similarly get a weak-equivalence
Bw : B(PaB) = B(CoB) so that B(PaB) forms another instance of rational Fy-
operad. In the unitary setting, we similarly obtain an operad B(Iga\B)+ which forms
an instance of a rational unitary Fs-operad.

299
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We aim to work in the homotopy category of operads in simplicial sets (respec-
tively, topological spaces), which we intuitively define by adding the formal inverses
of the weak-equivalences to the morphisms of the ordinary category. We explain in
the next volume a definition of this homotopy category Ho(8impOp) (respectively,
Ho(TopOp)) in terms of a model structure on operads. We moreover establish the
existence of an equivalence of categories between the homotopy category of operads
in simplicial sets and the homotopy category operads in topological spaces. We
more precisely check that we have a Quillen equivalence (we explain the definition
of this notion in the next volume), defined at the level of model categories, and
which induces this category equivalence at the homotopy category level. We can
therefore perform homotopy computations in the category of operads in simplicial
sets or in the category of operads in topological spaces equivalently. For simplicity,
we assume for the moment that we work in the category of topological operads
Op = TopOp.

The model category approach is better suited when we need to perform homo-
topy computations. The model structure notably includes the definition of a class
of objects, called cofibrant, which are the analogue, in our context, of the cell com-
plexes of topology. We can pick a cofibrant replacement Qo of the classifying space
of the Malcev completion of the parenthesized braid operad ag = B(,Ea\B) in order
to get a cofibrant model of rational Fs-operad. We assume to simplify our account
that the augmentation (A?Q = B(EEJ\B) associated to this cofibrant replacement is a
fibration of operads (we explain the definition of this notion in the next volume).
In the case of cofibrant objects, we have an identity between the morphism set of
the homotopy category, and a set of homotopy classes of morphisms in the model
category. We can accordingly identify the automorphism group associated to any
model of Es-operad with a group of homotopy classes of homotopy equivalences
o : 6)2 = 6)2 associated to our model.

We can also perform the cofibrant replacement process in the category of A-
operads of §3.2. (We explain the definition of an appropriate model structure on
A-operads in the second volume too.) We then obtain a cofibrant operad equipped
with restriction morphisms, so that the unitary operad associated to this A-operad
©2+ defines a cofibrant model of a rational unitary Fs-operad.

Recall that we define the Grothendieck-Teichmiiller group GT*(Q) as a group
of automorphisms associated to the unitary operad of parenthesized braids /ga\BJr.
Thus, any element of the Grothendieck-Teichmiiller group ¢ € GTl(Q) induces
an isomorphism B¢, : B(IgaTBp_ = B(Iga\B)+, and by a standard construction of
the theory of model categories, we can lift this iso to a weak-equivalence on our
cofibrant replacement:

~ IBo,
Qo > Qo

B(PaB), ——' B(PaB),

We will see that the mapping B : ¢ — ]g?b , induces a group morphism

~

B: GT'(Q) = Autyuo(7opop)(Qay)
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from GT*(Q) towards the group of homotopy automorphism classes of ©2+. We
also have the following observation:

PROPOSITION A. The morphism B¢, : B(/ga\B)Jr — B(lga\B)Jr associated to
an element of the Grothendieck-Teichmiiller group ¢ € GT(Q) acts identically in
homology.

ProoF. We know that the spaces B(.Ea\B(r)) satisfy H, (B(/%TB(T))) = H.(D2(r)),
where we consider the homology with Q coefficients (see [35, §V]). We accordingly
have an identity between H*(B(@)) and the Gerstenhaber operad Gersty. The
proposition follows from the requirement that the elements of the Grothendieck-
Teichmiiller group ¢ € G TI(Q) act identically in arity 2 and the preliminary ob-
servation that the Gerstenhaber operad is generated by operations p = p(x1,z2)
and A = \(x1, z2) in arity 2 precisely (see §4.2.13). O

Recall that we use the notation Op; for the category of unitary operads in
general, and the notation Op,, in the special case where the tensor unit of the
ambient symmetric monoidal category is the final object (see §3.2). In this context,
which includes the case of operads in topological spaces, the category Op, actually
forms a full subcategory of Op (with the same class of weak-equivalence). From
now on, we consider that our mapping B : ¢, — é;ﬁ ., has values in the group
AutHo(g'opOp*)(/Q\2+) formed by the homotopy automorphisms of the object @2+ in
the category of unitary operads TopOp,.

We have already mentioned that we have a functor Hy : TopOp — ¢g Op, from
the category of topological operads TopOp towards the category of graded operads
g Op, yielded by the classical homology of topology spaces, and an induced functor
H, : TopOp, — ¢gOp,; on unitary operads. We easily see that homotopic operad
morphisms ¢, : P — @ induce the same morphism in homology: the underlying
spaces QAl (r) of a path object of @ in the category of operads are path objects in
topological spaces; morphisms ¢, : P — Q, which are homotopic in the category
operads, are therefore homotopic as maps of topological spaces. Accordingly, the
homology defines a functor H, : Ho(TopOp) — g Op on the homotopy category of
topological operads Ho(TopQp), and similarly in the unitary setting.

Proposition A implies that the image of our mapping B : ¢ — l% . lies in the
kernel of the group morphism

~ o~

AutHo(‘J’opOp*)(QQJr) H_*> Autg Op, (H*(QQ)+)

induced by the homology functor H, : Ho(TopOp,) — g Op,.

In the foreword, we already mentioned that Autye(gopop,) (ang) represents the
set of connected components of a space hAutgo,0p, (52+) (actually a monoid) as-
sociated to the operad a2+. Motivated by the result of Proposition A, we con-
sider the space hAut}Topop*((A?H) formed by the sum of connected components

of hAuty,pop, (E\)H) associated to maps ¢ such that H,(¢) = Id.
The main result of this work reads as follows:
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THEOREM B. The mapping B : GT*(Q) — AutHo((]'opOp*)(aQ-i,-) induces a group
isomorphism

o~

GTI(Q) i) ker{H* : AutHo(‘J’opOp*)(©2+) — Autg Op, (H*(QQ+))},

= To hAU‘tilTopOp* (QQ+)
and we have
L ~
. Yoo (@a1) =0
when * >-0.

We give the proof of this theorem in volume II, after a tour through deformation
complexes.


Benoit Fresse
Autocollant
For *>1. The action of SO(2) on little 2-discs still gives a non-trivial homotopy group (Q,+) in dimension 1.

Benoit Fresse
Barrer


The Grothendieck Program

The definition of the Grothendieck-Teichmiiller group by Drinfeld was moti-
vated by applications to quantum group theory and by Grothendieck’s program
aiming to understand a geometric counterpart of absolute Galois groups. The pur-
pose of the this outlook chapter is to give an overview of this program, and to survey
the connections between the structures occurring in our study of the homotopy of
operads and the objects arising on the arithmetic side of the subject.

In Grothendieck’s proposal [82], the fundamental objects are the moduli spaces
of marked curves My, already considered in §4.3.5 in the genus zero case. We
mostly deal with this case g = 0 yet. We then have

Mor41 = F(PY(C),r + 1)/ PGLy(C),

where we consider the diagonal action of the group PGLy(C) on the configuration
space of points in the projective line Pl(C). In previous chapters, we used the
notation CP*, borrowed from topology, for the projective line. In what follows,
we prefer to adopt the notation of algebraic geometry Pl(C) which stresses the
existence of a scheme P! underlying this topological space P*(C) = CP*.

For r > 2, we have an identity Mo,,1 = F(P'(C)\ {00,0,1},7 — 2) since
for each configuration (zp,...,2.) € F(P*(C),r 4+ 1), we have one and only one
transformation g € PGL2(C) mapping this z = (2q,...,2-) to a configuration of
the form (00,0,1,24,...,2.), and we can use this identity to regard each space
Mor41, 7 > 2, as a scheme defined over Q in the sense of algebraic geometry. In
the particular case © = 4, we obtain Moy = P*(C) \ {00,0,1}. We refer to [85]
for a modern textbook on moduli spaces of curves, addressed from the algebraic
geometry approach. We also refer to [125] for an account of the connections with
operads and the theory of Gromov-Witten invariants.

To start our survey, we recall the construction of an action of the absolute
Galois group Gg = Gal(Q|Q) on the profinite fundamental group of the moduli
spaces 71(Mop,+1), and the relationship between the definition of this action and
the definition of the Grothendieck-Teichmiiller group.

The action of the absolute Galois group on the fundamental group of algebraic
varieties. We first consider étale (or algebraic) fundamental groups, in the sense
of [81, §V], and the homotopy exact sequence

(a) 1 — 7H(X xp k) = (X)) — Gal(ks|k) — 1,
which relates:

— the étale fundamental group 7$*(X) associated to any integral scheme X
over a field k,

— the étale fundamental group 7§'(X x}, ks) associated to the scheme X =
X Xy ks, where kg denotes the separable closure of the field k,
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— and the absolute Galois group Gal(ks|k).

We refer to the books [137, §1.5] and [168, §5] for good introductions to this subject,
besides the original text [81], where the étale fundamental group was first defined
and studied.

For any g € w{'(X), we consider the automorphism ¢, : 7" (X xj ks) —
7 (X Xy ks) given by the conjugation action ¢,(x) = gzg~' on the normal sub-
group (X Xy ks). Let Out(w¢*(X xy ks)) be the outer automorphism group of
the group m§*(X Xy k), the quotient of the automorphism group by the group of
inner automorphisms ¢y, : @ + haxh~! such that h € 7§'(X xj ks). The mapping
p: g — cg induces a group morphism px : Gal(ks|k) — Out(7§" (X X ks)) naturally
associated to the homotopy exact sequence.

We assume k = Q, so that ks = Q, and we set Go = Gal(Q| Q). We consider the
analytic space X (C) associated to the scheme X, and we assume that X is locally
of finite type over Q. We then have an identity (see [81, §§XI1.5.1-5.2]):

(b) T (X X k) = 71(X(C)),

where 71 (X (C)) denotes the profinite completion of the fundamental group of the
space X (C). We therefore have a group morphism

(c) px : Gq — Out (71 (X (C))),

naturally associated to the scheme X, and which we deduce from the homotopy
exact sequence (a).

The Teichmiiller tower. The main idea of the Grothendieck program [82] is to
get information on the absolute Galois group Ggq from the morphisms (c) associated
to the moduli spaces X = My,, and by using the geometry of the topological
curves X = ¥, underlying the objects C' € Mg,,. The morphism px is injective for
X = Mos = P'\{00,0,1} (by a theorem of Belyi [19], see also [168, §§4.7.6-4.7.7]
for an account of the arguments). The issue is therefore to characterize the image of
the absolute Galois group Gg within the fundamental group 7; (P*(C) \ {oc,0,1}).

The (topological) fundamental group m;(Myg,) is identified with the mapping
class group I'y,, of the surface X4, (up to elements of finite order). We refer to [24,
§4] for a classical introduction to this subject. Recall that I'y,, explicitly defined
as the group of isotopy classes of orientation preserving diffeomorphisms on Xy, is
generated by Dehn twists along curves drawn on ¥4,. We can also use decompo-
sitions of the surface ¥, along curves in order to determine this group I'y,, from
smaller pieces involving the mapping class group of surfaces with boundary compo-
nents. The proposal of [82] is to use an algebraic counterpart of the combinatoric
of Dehn generators and surface decompositions in order to understand the relations
satisfied by the image of the absolute Galois group Gg in the outer automorphism
groups Out (71 (Myy)). These ideas are put in applications in [86] and [140] with
as main outcome a lifting of the morphisms p : Gg — Out(71(My,)) to the auto-
morphism groups Aut (71 (My,,)) and the determination of relations satisfied by the
image of the absolute Galois group in Aut (71 (Mgy)).

In the previous paragraph, we have not been precise about base points taken for
étale fundamental groups. In basic references on the subject, the base point is just
a fixed geometric point of the scheme. But this choice does not enable us to get a
counterpart, at the level of étale fundamental groups, of the operations on mapping
class groups associated to surface decompositions. To handle the issues, one idea is
to consider the Deligne-Mumford compactification Mgn of the moduli space My,
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and to take tangent vectors at the infinity of the compactification as base points
for the étale fundamental groups of the schemes Mg,. This notion of tangential
base point was introduced by P. Deligne in [44, §15]. We also consider fundamental
groupoids rather than fundamental groups. In [90, 91], Thara gives a definition
of an action of the absolute Galois group on the tower of fundamental groupoids
with tangential base points, and use this approach to give a proof of the relations
satisfied by the image of the absolute Galois group in the étale fundamental groups
in the genus zero case g = 0. We go back to the subject of relations in the next
paragraph.

We have already considered the Deligne-Mumford compactification in the genus
zero case in §4.3.5. We notably recalled that the collection of these moduli spaces
forms an operad M(r) = Mo, 41 with composition operations oy, : Mo, 11 X Most1 —
Mo, +s representing the gluing of stable curves in the the moduli spaces (see [71,
125]). The tangential base points, which one considers in this case, are indexed by
planar binary trees with r+1 leaves, corresponding to the mark points of our curves,
and numbered from 0 to r (we refer to [68] for the geometric interpretation of this
correspondence). The leave indexed by 0 provides such a tree with a root, and
the composition operation inherited from the moduli space is identified with to the
grafting operation used in the representation of the magma operad in §6.1. Thus, in
order to model the combinatorial structures underlying the mapping class groups
in the genus zero case, we actually deal with an operad in groupoids 7¢(M) g
formed by the collection of the éfale Tundamental grmmﬁmg&ﬁ
Mor+1 together with a _choice of tangential base points defining an operad in sets
isomorphic to the magma operad of §§\1

We have a surjective morphism PaB — (M) 1, from the profinite comple-
tion of the parenthesized braid operad of §6.2 towards this operad in groupoids
7 (M) 1, which, at the level of automorphism groups, maps any generating el-
ement of the pure braid group a;; € P, (see §10.2.2) to the corresponding Dehn
twists in the mapping class group ].—‘T+1/L‘.

The definition of the profinite Grothendieck-Teichmiiller group. We go back to
the case of the space Moy = P'\{00,0,1} and we consider the morphism p =
PP1L\{s0,0,1} from the absolute Galois group Gq to the outer automorphism group

of the étale fundamental group of this scheme P' \{o0,0, 1}.

The topological fundamental group associated to this space is identified with the
free group F(x,y), where x (respectively, y) is a loop turning around 0 (respectively,
1). We accordingly have 7¢*(P*\{c0,0,1}) = F(x,y), where the notation F(z,y)
now refers to the profinite completion of the free group on two generators (z,y).

In the tangential base point approach of [90, 91], one considers a loop = based
at the tangent vector (ﬁ, the image of this loop under the map 6(z) = 1 — z, which
forms a loop 0(x) based at ﬁ in the fundamental groupoid, and the straight path

p, which goes from ﬁ to 10. The loops # and y = p~'6(x)p correspond to the
previously considered generators of the fundamental group 7, (P'(C) \ {c0,0,1}),
based at a point near 0.

We have already mentioned that the morphisms p : Go — Out(7;(My,))
can be lifted to the étale fundamental groupoids of the moduli spaces equipped
with tangential base points. In the case (¢g,n) = (0,4), which we now exam-
ine with more details, this approach can also used to prove that the morphisms

p: Go — Out(F(z,y)) admits a lifting to the group of automorphisms of the free
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group F(z,7). To be more precise, one can prove that we have an automorphism
p(o) : IA:(x, y) — Ii(x,y), canonically associated to any element o € Ggq, such that
p(o)(z) = z*, where A = x(o) denotes the image of o under the cyclotomic char-
acter x : Gg — 2%, and p(o)(y) = fo(x, )y fo(z,y) for some f, = f,(x,y) €
IA:(m,y) Furthermore, by using paths in the moduli spaces Moy = P'\{00,0,1}
and Mos = (P'\{00,0,1} x P*\{00,0,1})\ A, one can prove that this group el-
ement f,(x,y) satisfies profinite analogues (with extra A exponent factors) of the
involution, pentagon and hexagon relations of §10.1. The profinite Grothendieck-
Teichmiiller group GT, as defined by V. Drinfeld in [48], precisely consists of the
group automorphisms ¢ : F(z,y) — F(z,y) of the form:

o(y) = flz,y) v flz,y),

where we consider any pair (A, f(x,y)) such that the geometric involution, pentagon
and hexagon constraints hold. The construction of the action of the absolute Galois
group Ggq on the étale fundamental group of the moduli spaces My, therefore
yields an injective group morphism p : Gg — GT.

The proof of Drinfeld’s involution, pentagon and hexagon relations for the pair
(A, fo(z,y)) associated to a Galois group element o € Gq is given in [90, 91] by
using the fundamental groupoids with tangential base points approach. We also
refer to [117] for another approach, relying on a cohomological interpretation of
Drinfeld’s relations, of this question.

We note that the group GT encodes the geometric information captured by the
action of the absolute Galois group in genus zero only. We have a generalization of
this group, defined by considering the whole collection of moduli spaces M, , intro-
duced by P. Lochak, H. Nakamura, and L. Schneps in [116]. We do not go further
into applications of Grothendieck-Teichmiiller groups in the profinite setting. We
refer to the cited articles for the reader willing to learn more about this subject. We
now give a brief survey on an arithmetic counterpart of the pro-unipotent groups
of §10.

The category of mized Tate motives. The pro-unipotent groups GT(Q) and
GRT(Q) are actually related to motivic fundamental groups of Tate motives.

Briefly recall that the idea of a motive was introduced by Grothendieck as an
attempt to unify the cohomology theories occurring in algebraic geometric: the
singular cohomology of the topological space underlying any algebraic variety or
Betti cohomology, the de Rham cohomology, the I-adic cohomologies, the crystalline
cohomology, and more generally, any suitable cohomology theory satisfying the Weil
axioms. Motives are supposed to form an abelian category under the category of
algebraic varieties so that the mapping M : X — M(X), which assigns a motive
M(X) to any algebraic variety X, defines a universal Weil cohomology theory. We
refer to [6] for a comprehensive introduction to this subject.

The definition of a category of motives with all expected properties has not
been established yet. Nonetheless, a definition of a category of pure motives (well
suited when we restrict ourselves to smooth projective varieties), has been proposed
by Grothendieck (see [6]). In a more general setting, we have Deligne’s language
of realization systems, which formalize the structures carried by the images of a
motive under a cohomology theory, as well as Hanamura’s [84], Levine’s [114], and



THE GROTHENDIECK PROGRAM 307

Voevodsky’s [175] triangulated categories of mixed motives, which define candidates
for the derived category of the abelian category of mixed motives.

The connection between Grothendieck-Teichmiiller groups and motives is made
precise in the work of Deligne-Goncharov [45] and in the work of Terasoma [173].
We then mostly consider a category of (rational) mixed Tate motives, which is
defined as a subcategory of the category of mixed motives. We follow [45] for our
account. We consider varieties and motives defined over a field k£ of characteristic
0.

Recall that the Tate motive T is classically defined as the tensor inverse T =
L~! of a motive L such that M(P') = 1®L, where we consider a splitting of the
motive associated to the projective line P'. The triangulated category of rational
Tate motives, denoted by DMT (k)q, is generated by iterated extensions of shifted
objects Q(n) in any of our rational triangulated categories of mixed motives, where
we set Q(1) = T'®Q for the object representing the Tate motive in this triangulated
category, and Q(n) = Q(1)®™. This category DMT (k)q is actually identified with
the derived category of an abelian category MT (k) as soon as the Beilinson-Soulé
vanishing conjecture holds, and we know at least this is so when & is a number field
(see [113]). We refer to this category MT (k) as the abelian category of mixed Tate
motives over k.

Let Og be a ring of S-integers in the number field k. In [45], a subcategory
of mixed Tate motives over Og, denoted by MT(k), is also defined within MT' (k).
One can apply the Tannakian formalism to identify this category MT(Og) with the
category of representations of an affine group scheme G, associated to a realization
functor w : MT(Og) — Modg. Deligne and Goncharov also defines an affine group
scheme Gyrr(og) (a commutative Hopf algebra) in the category MT(Og) so that
wW(Gur(os)) = Aut®(w), and call this object G pr(og) the fundamental group of
the category of mixed Tate motives MT(Og). This is this group which replaces the
absolute Galois in the pro-unipotent setting.

The motivic fundamental group of Tate motives. We now assume k = Q and
Os = Z. Deligne-Goncharov [45] and Terasoma [173] define a motivic counterpart
770t (P \ {00, 0,1}), in the category MT(Z), of the fundamental group of the variety
P'\{c0,0,1}. This motivic fundamental group m***(P*\{00,0,1}) has a Betti
realization wF (P! \{oo, 0,1}), which is identified with the prounipotent completion
of the fundamental group of the topological space P'(C)\ {c0,0,1}), as well as a de
Rham realization 7P% (P! \{00,0,1}) (we refer to [44, §10] for the original definition
of this de Rham realization of fundamental groups).

We use the notation Gy for the Betti realization of the motivic funda-
mental group Gur(z) of the integral category of mixed Tate motives MT(Z). We
have a group morphism p : GﬁT(Z) — Aut (7P (P \{00,0,1})) defining a motivic
analogue, in the Betti realization, of the previously considered morphism p : Go —
Aut (71 (P \{00,0,1})), where we consider the usual Galois group Gq = Gal(Q| Q).
We also have 78(P*\{c0,0,1}) = F(z,), the prounipotent completion of the free
group with two generators, and one can prove, just as in the profinite setting, that
the morphism p factors through the Grothendieck-Teichmiiller group GT(Q) re-
garded as a subset of the automorphism group of this free group F(z,y) (see [172]
for an outline of the arguments). Note that we now consider the whole group GT'(Q)
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which differs from the prounipotent group GT*(Q) of §10.1 by a multiplicative fac-
tor Q*.
The obtained morphism

(d) p: G]\B4T(Z) — GT(Q)
is conjecturally an isomorphims (Deligne-Thara). A result of F. Brown [36] gives
the injectivity of this morphism.

Let us mention that the group GﬁT(Z) is according to a statement of [45], the
(product of a scalar factor with the) prounipotent completion of a free group on a
sequence of generators ss, S5, ..., S2n+1,. ... Lhe Deligne-Thara conjecture therefore
amounts to the conjecture that we have an identity between:

— the Lie algebra gt (Q) of the prounipotent Grothendieck-Teichmiiller group
GT'(Q) (see §10.1.7), or equivalently, the Lie algebra get' (Q) of the graded
Grothendieck-Teichmiiller group GRT*(Q) (see §10.3.10),

— and a free complete Lie algebra I:(53, Sy ety S2mply e e )

The Knizhnik-Zmolodchikov associator and multizetas. The Knizhnik-Zamo-
lodchikov associator of §10.4 has also an interpretation in terms of a period isomor-
phism connecting the Betti realization and the de Rham realization of the motivic
fundamental group 7}*°*(P*\{00,0,1}) (see [172] for an introduction to this sub-
ject).

The Knizhnik-Zamolodchikov associator actually represents a generating power
series of the multizeta values:

1
ki,..., k) = _
C( ) n1>-Z>:nr,->0 n’fl et nfv'

The number ((k1, ..., k) precisely appears (with a correcting sign) as the coefficient
of the term zF1 ~lya*2~1y...ya*~1 in the expansion of the power series of the
Knizhnik-Zamolodchikov associator ®(x,y) € GT(z,y) in the completed tensor
algebra 'i'(x, y). The other terms of this expansion can be obtained from multizetas
by an explicit procedure (see [110]).

The multizeta values form an algebra. The result established by F. Brown
in [36] actually asserts that a motivic counterpart of this algebra, where we only
retain relations underlying an algebraic definition of multizetas in terms of motivic
periods (see [79]), is isomorphic to the completed tensor algebra underlying the free
Malcev complete group G]\B;IT(Z). The injectivity of the map (d) in the Deligne-Thara
conjecture arises as a consequence of this result.
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