
An Optimal Algorithm for Euclidean Shortest Pathsin the Plane�John HershbergerInterconnectix/Mentor Graphics10220 SW Nimbus Drive, Suite K4Portland, OR 97223 Subhash SuriDepartment of Computer ScienceWashington University,St. Louis, MO 63130November 3, 1997AbstractWe propose an optimal-time algorithm for a classical problem in plane computationalgeometry: computing a shortest path between two points in the presence of polygonalobstacles. Our algorithm runs in worst-case time O(n logn) and requires O(n logn)space, where n is the total number of vertices in the obstacle polygons. The algorithmis based on an e�cient implementation of wavefront propagation among polygonal ob-stacles, and it actually computes a planar map encoding shortest paths from a �xedsource point to all other points of the plane; the map can be used to answer single-source shortest path queries in O(logn) time. The time complexity of our algorithmis a signi�cant improvement over all previously published results on the shortest pathproblem. Finally, we also discuss extensions to more general shortest path problems,involving non-point and multiple sources.1 Introduction1.1 The Background and Our ResultThe Euclidean shortest path problem is one of the oldest and best-known problems incomputational geometry. Given a planar set of polygonal obstacles with disjoint interiors,the problem is to compute a shortest path between two points avoiding all the obstacles.Due to its simple formulation and obvious applications in routing and robotics, the problemhas drawn the attention of many researchers in computational geometry; we mention onlya few papers most relevant to our work [4, 13, 14, 17, 18, 19, 25].The problem of computing shortest paths in the presence of a single obstacle has receivedspecial attention, due to its applications in various geometric problems involving a simplepolygon [4, 13, 14, 17]. The roles of free space and obstacle space have traditionally beenreversed in this special case: the interior of the polygon represents the free space andthe boundary of the polygon represents an impenetrable obstacle. After several years of�The authors were at DEC Systems Research Center, Palo Alto, CA, and Bellcore, Morristown, NJ,respectively, when this research was conducted. 1

continued e�orts, an optimal, linear-time algorithm is now known for computing a shortestpath in a simple polygon [13, 14].The general case of multiple obstacles, however, has proved to be substantially moredi�cult. There have been two fundamentally di�erent approaches to the problem|thevisibility graph method and the shortest path map method .1 The visibility graph methodis based on constructing a graph whose nodes are the vertices of the obstacles and whoseedges are pairs of mutually visible vertices. The shortest path between two vertices can befound by running any Dijkstra-type algorithm on this graph [8, 9, 11]. This approach fueledintense research on computing visibility graphs, culminating in an optimal O(n logn + E)time algorithm by Ghosh and Mount [12], where E is the number of edges in the graph.Unfortunately, the visibility graph can have
(n2) edges in the worst case, and so anyshortest path algorithm that depends on an explicit construction of the visibility graph willhave a similar worst-case running time [1, 2, 15, 22, 25]. A \holy grail" of this approach isto build and search only the portion of the visibility graph that is relevant to the shortestpath computation, but no noteworthy progress has been made on that front.The second approach tries to solve a more general problem: for a given source point s,build a shortest path map (a subdivision of the plane) so that all points of a region havethe same vertex sequence in their shortest path to s. This map is an encoding of shortestpaths from s to all points of the plane. The shortest path map approach seems inherentlymore geometric than the graph-theoretic method based on visibility graphs. Nevertheless,most algorithms using the shortest path map approach also have
(n2) worst-case runningtimes|however, their running times typically have the form O(n k g(n)), where k is thenumber of obstacles and g(n) is a sublinear function, such as the poly-logarithm [15, 18, 24].Thus, for a small number of obstacles, these bounds approach the time complexity for asingle obstacle. Mitchell has recently published an algorithm for computing a shortest pathmap that runs in O(n3=2+�) time and space [19], for any � > 0, with the constant in thebig-Oh notation depending on �. Mitchell's algorithm uses some advanced range searchingdata structures to compute the vertices of the shortest path map.The only lower bound known for the shortest path problem is
(n logn) in the algebraiccomputation tree model, and so there remained a relatively large gap between the knownupper and lower bounds on the problem. (The lower bound follows easily by a reductionfrom sorting.) Nevertheless, there had been a general belief in the computational geometrycommunity that an almost-linear-time algorithm must be achievable.In this paper, we validate this belief by presenting an optimal O(n logn) time algorithmfor computing shortest paths in the presence of polygonal obstacles; n denotes the totalnumber of vertices in all the obstacle polygons. Our algorithm takes the shortest pathmap approach and builds a subdivision of the plane, which after an additional linear-timepreprocessing can be used to answer shortest path queries from a �xed point [10, 16].A key idea in our algorithm is a special, quad-tree-style subdivision of the plane withrespect to an arbitrary set of points P . This subdivision, called a conforming subdivision,divides the plane into a linear number of cells using horizontal and vertical edges so that thefollowing critical condition holds: each point of P lies in a separate cell, and there are O(1)cells within distance �jej of every subdivision edge e, where jej is the length of e and � is1Several authors have also considered approximation algorithms for the shortest path problem [5, 7]; weconsider only the exact shortest path problem. 2

a parameter (we choose � = 2 for our application). Though a subdivision into square cellswith this property can be obtained using a quad-tree construction of Bern et al. [3], thatsubdivision has size O(n logA), where A is the aspect ratio of the Delaunay triangulationof P . Our subdivision achieves its linear upper bound by enforcing a weaker condition; inparticular, cells in our subdivision may be nonconvex and the subdivision itself may notbe connected. Nevertheless, our conforming subdivision appears to be a useful tool andis likely to have other applications. In particular, we discuss extensions of our techniquethat can handle generalized versions of the shortest path problem. These include versionswith multiple sources (the \geodesic Voronoi diagram") or non-point sources such as linesegments or disks.1.2 An Overview of the AlgorithmWe use a technique dubbed the continuous Dijkstra method in the literature [18, 19, 20].It simulates the expansion of a wavefront from a point source in the presence of polygonalobstacles. The wavefront at time t consists of all points of the plane whose shortest-pathdistance to the source is t. The boundary of the wavefront is a set of cycles, each composedof a sequence of circular arcs. Each arc, called a wavelet , is generated by an obstacle vertexalready covered by the wavefront; the vertex is called the generator of its wavelet. Themeeting point between two adjacent wavelets sweeps along a bisector curve, which is eithera straight line or a hyperbola. Simulating the wavefront requires processing events thatchange its topology. These events fall into two categories: wavefront-wavefront collisions andwavefront-obstacle collisions. The ability to process these events e�ciently is the key to afast algorithm for the shortest path problem. Detecting and processing these events quickly,however, appears to be quite di�cult, and except for the recent result of Mitchell [19], allprevious algorithms employing the continuous Dijkstra method have led to no better thanan
(n2) worst-case time bound.We introduce two new ideas to speed up the implementation of the wavefront propa-gation method: a quad-tree-style subdivision of the plane, and an approximate wavefront.Our �rst idea is to recognize that advancing a wavefront from event to event can be di�cultwithout a su�ciently well-behaved subdivision of the plane to guide the propagation. Webuild a special subdivision of size O(n) on the vertices of the obstacles, temporarily ignoringthe line segments between them. Each cell of this subdivision, called a conforming subdivi-sion, has a constant number of straight line edges, contains at most one obstacle vertex, andsatis�es the following crucial property: for any edge e of the subdivision, there are O(1) cellswithin distance 2jej of e. We then insert the obstacle line segments into the subdivision,but maintain both the linear size of the subdivision and its conforming property|exceptnow a non-obstacle edge e has the property that there are O(1) cells within shortest pathdistance 2jej of the edge. These cells form the units of our propagation algorithm: in eachstep, we advance the wavefront through one cell. Since each cell has constant descriptivecomplexity, we are able to do the propagation in a cell e�ciently.Inside a cell, a wavefront-obstacle event is relatively easy to handle. However, a wavefront-wavefront event is more complex. There are two types of wavefront-wavefront events,depending on whether or not the colliding wavelets are neighbors in the wavefront. The col-lision of neighboring wavelets occurs when a wavelet is engulfed by the expanding wavelets3

of its two neighbors. This event is easy to detect and process. The collisions between non-neighboring wavelets, however, are more troublesome, and to process them we introduceour second idea: the approximate wavefront.When trying to propagate the wavefront across a boundary edge of a cell, we abandonthe idea of computing the wavefront exactly; instead, we maintain two separate wavefronts,approaching the edge from opposite sides. Each of these wavefronts is an approximatewavefront , representing the wavefront that hits the edge from only one side.We use timers to make a conservative estimate of the time each edge is engulfed bythe wavefront, and discard any parts of the wavefront arriving at a cell boundary after atimer at that boundary edge goes o�. A critical task of these timers is to ensure that thewavefront-wavefront collisions of the true shortest path map are detected during approxi-mate wavefront propagation in a small neighborhood of their actual location. The algorithmpropagates the approximate wavefront, remembering the wavefront-wavefront collisions andupdating the wavefront so that it has enough information to act as an approximate wave-front at any time.At the end of the propagation phase, we collect all the collision information, then useVoronoi diagram techniques in each cell to compute the collision events in that cell precisely.The collisions determine the edges of the �nal shortest path map.This paper contains seven sections. Section 2 describes our conforming subdivision ofthe free space, and Section 6 gives the details of its construction. Section 3 presents thekey shortest path properties used by our algorithm. Section 4 describes our algorithm forcomputing a shortest path map. The data structures and �ner details of our algorithm arediscussed in Section 5. We close in Section 7 with some discussion and open problems.2 A Conforming Subdivision of the Free SpaceThe input to our shortest path problem is a source vertex s and a family of obstaclesO = fO1; O2; : : : ; Okg, where each obstacle is a simple polygon and the closures of anytwo obstacles are disjoint. (It is not hard to extend our algorithm to handle more generalpolygonal obstacles, but for convenience we limit our discussion to disjoint, non-nestedobstacles.) The total number of vertices in all the obstacles is n. The plane minus theinteriors of all obstacle polygons is called the free space, and a path is called legal if it liesentirely in the free space|that is, a legal path is disjoint from the interiors of all obstaclepolygons in the family O. Given two points in the plane, a Euclidean shortest path betweenthem is a legal path of minimum total length connecting the two points.A key ingredient of our shortest path algorithm is a special subdivision of the planeinto cells of constant descriptive complexity. We construct this subdivision in two steps:the �rst step builds a subdivision by considering only the vertices of the obstacle polygons;the second step inserts the obstacle edges into the subdivision. Our algorithm for the �rststep (constructing a conforming subdivision for points) is somewhat complicated and quiteindependent of our main topic, the shortest paths, and so we have moved its presentationto Section 6 at the end of the paper. In the present section, we assume the construction forpoints, and describe how to modify this subdivision when obstacle edges are inserted. Westart with some preliminary de�nitions. 4

2.1 The Well-covering RegionsOur subdivision is inspired by quad-trees, though it is best implemented bottom-up. Acrucial property of our subdivision is the well-covering of its internal edges. Given a straight-line subdivision S of the plane, an edge e 2 S is said to be well-covered with parameter � ifthe following three conditions hold:(W1) There exists a set of cells C(e) � S such that e lies in the interior of their union. Theunion is denoted U(e) = fc j c 2 C(e)g.(W2) The total complexity of all the cells in C(e) is O(�).(W3) If f is an edge on the boundary of the union U(e), then the Euclidean distance betweene and f is at least � �max (jej; jf j).The edge is strongly well-covered if the stronger condition (W30) holds:(W30) If f is an edge on or outside the boundary of the union U(e), then the Euclideandistance between e and f is at least � �max (jej; jf j).In either case, the region U(e) is called the well-covering region of e. Our wavefront sim-ulation algorithm cares only about the distance between e and the edges on the boundaryof U(e); that is, it requires its subdivision edges to be well-covered, but not strongly well-covered. The strong condition on the distance between e and the edges outside U(e) is usedonly in our construction of the conforming subdivision (cf. Lemma 2.2).Let V denote the set of vertices of the obstacle polygons, plus the source vertex s. Asubdivision S is called a (strong) �-conforming subdivision for V if(C1) Each cell of S contains at most one point of V in its closure (interior plus boundary),(C2) Each edge of S is (strongly) well-covered with parameter �, and(C3) The well-covering region of every edge of S contains at most one vertex of V .The subdivision is called \conforming" because Conditions (C1) and (C3) force it toconform to the distribution of points in V . Figure 1 shows an example of a well-coveringregion in a 1-conforming subdivision. The region U(e), drawn shaded, is not necessarily aminimal well-covering region; rather, it is the region constructed by our algorithm.Our algorithm is based on a 2-conforming subdivision for V . For convenience, in therest of the paper we use the term conforming to mean 2-conforming; when the conformityparameter is not 2, we state it explicitly.2.2 Computing a Conforming SubdivisionOur strong conforming subdivision S is similar to a quad-tree in that all its edges arehorizontal or vertical. However, the cells of S may be nonconvex and the subdivisionitself may be disconnected. Each cell is reasonably well-behaved, though|there is at mostone hole per cell. More speci�cally, each cell is either a square or a square-annulus (asquare minus a square|see Figure 2); the boundaries of these squares, however, may besubdivided into a constant number of edges. Each square-annulus also has the followingminimum clearance property: 5

e

Figure 1: Part of a strong 1-conforming subdivision of a set of points. Theshaded region is the union of cells U(e) forming a well-covering of e.Minimum clearance property: The minimum width of an annulus in thesubdivision (the minimum distance from the inner square to the outer square)is at least one quarter of the side length of the outer square.Annuli and square faces are both subject to the uniform edge property:Uniform edge property:� Every edge on the outer square of an annulus has length 1=(4d�e) timesthe side length of the outer square. Every edge on the inner square haslength 1=(4d�e) times the side length of the inner square.� The lengths of edges on the boundary of a square cell di�er by at most afactor of 4.Our algorithm for computing a strong conforming subdivision of V is presented in Section 6;describing it here would cause an unduly long digression. We simply state the main resultfrom Section 6:Theorem 2.1 (Conforming Subdivision Theorem) For any � � 1, every set of npoints in the plane admits a strong �-conforming subdivision of O(�n) size satisfying thefollowing additional properties: (1) all edges of the subdivision are horizontal or vertical,(2) each face is either a square or a square-annulus (with subdivided boundary), (3) eachannulus has the minimum clearance property, (4) each face has the uniform edge property,and (5) every data point is contained in the interior of a square face. Such a subdivisioncan be computed in time O(�n + n logn).We modify the strong conforming subdivision of V to accommodate the edges of theobstacles, producing a conforming subdivision of the free space. In the modi�ed subdivision,there are two types of edges: the edges introduced by the subdivision construction and the6

Figure 2: A square-annulus. The distance from the inner square to the outersquare is at least 1=4 the side length of the outer square.original obstacle edges. To distinguish between them, we call the former transparent edgesand the latter opaque edges; a wavefront can pass through the transparent edges, but it isblocked by the opaque edges. We require that all transparent edges be well-covered in theconforming subdivision of the free space (but not strongly so). Conditions (W1) and (W3)in the de�nition of well-covering are modi�ed for the subdivision of free space as follows:(W1fs) Let e be a transparent edge of S. There exists a set of cells C(e) � S such that e iscontained in the closure of the union of cells U(e) = fc j c 2 C(e)g.(W3fs) Let e and f be two transparent edges of S such that f lies on the boundary of thewell-covering region U(e). Then the shortest path distance between e and f is at least� �max (jej; jf j).Condition (W3fs) ensures that e does not touch any transparent boundary edge of U(e),although it may touch opaque boundary edges.Figure 3 shows an example of a well-covering region with obstacles. The lemma be-low shows how to modify a strong conforming subdivision of obstacle vertices to obtain aconforming subdivision of the free space. This subdivision of free space has the additionalproperty that each obstacle vertex is incident to a transparent edge.Remark: Our shortest path algorithm computes the distance from the source to the endpoints ofall the transparent edges. The condition in the following lemma that each obstacle vertex is incidentto a transparent edge ensures that the distance to each obstacle vertex is correctly computed.Lemma 2.2 Every family of disjoint simple polygons with a total of n vertices admits a2-conforming subdivision of the free space with size O(n) in which each obstacle vertex isincident to a transparent edge.Proof. Let S be a strong 2-conforming subdivision for V (the source vertex plusthe vertices of the obstacle polygons), constructed according to Theorem 2.1. S hasO(n) vertices, edges, and faces (also referred to as cells), and each face is either7

e

Figure 3: Part of a 1-conforming subdivision of free space. The shaded regionis the well-covering region U(e).a square or a square-annulus. Overlaying the obstacle edges on top of S cuts theplane into O(n2) cells. We call a face of this new subdivision Soverlay interesting if itsboundary contains an obstacle vertex or a vertex of S. For every vertex of O and forevery vertex of S, we keep intact the cells in Soverlay to which the vertex is incident(at most four cells per S vertex and two cells per obstacle vertex). We delete everyedge fragment of S not on the boundary of one of these interesting cells.Partition each cell containing an obstacle vertex v by extending edges verticallyup and down from v. This cuts the cell into at most three convex pieces (since thecell is derived from a square of S). Let c be the square in S that contains v, andlet � be the length of the shortest edge on the boundary of c. Subdivide each ofthe added vertical edges incident to v into pieces of length at most � (this producesO(1) vertical edge fragments, since there are O(1) edges on the boundary of c, all ofapproximately equal lengths, by the uniform edge property).In the resulting subdivision, call it S 0, all cells are convex except those derivedfrom square-annuli. Every nonconvexity in Soverlay is derived from a nonconvexityin either S or O, since each face is the intersection of a face of S with a face inthe arrangement of obstacle segments. Hence all nonconvex faces of Soverlay areinteresting cells. Any face in Soverlay with an obstacle vertex on the boundary iscut into convex pieces by the vertical edges added through the vertex. The onlyother nonconvex vertices in Soverlay are annulus vertices. Each edge fragment that isdeleted lies on the common boundary of two uninteresting faces; its deletion createsno new nonconvexities.If a cell c of S has p edges on its boundary, then each subcell of c in S 0 thatcontains one of c's vertices has size at most 2p+O(1)|each convex corner of c maybe cut o� by an obstacle edge, adding an extra edge, and two obstacle edges mayenter and exit through the same edge, leaving an obstacle vertex in the cell. Addingvertical edges through each obstacle vertex splits a cell into at most three subcells,8

with at most O(1) additional edges shared between them. Because each cell of Shas constant complexity, the same is true of the interesting cells of S 0. It followsthat the total complexity of the interesting cells is O(n). Each uninteresting cell ofS0 (without a vertex of S or V) has at most eight edges|four edge fragments fromS and four from O. Each vertex in S 0 is a vertex of an interesting cell, so S 0 hasO(n) vertices, and, by planarity, O(n) faces. See Figure 4 for a simpli�ed exampleof the construction of S 0. In the remainder of the proof, we show that the portionof S 0 outside all obstacles in O is a conforming subdivision of the free space.
Figure 4: Constructing a conforming subdivision of the free space, given a strongconforming subdivision for the obstacle vertices. The shaded cells on the rightare interesting cells.Condition (C1) is easily satis�ed: each vertex of V lies in its own square cell inS. These cells are interesting, and hence are retained (possibly subdivided) in S 0.Each cell of Soverlay therefore contains at most one vertex of V in its closure.To show that all transparent edges of S 0 are well-covered (Condition (C2)), con-sider such an edge e0. Edge e0 may be a fragment of an edge e 2 S (possibly e = e0),or it may be a fragment of a vertical edge added incident to an obstacle vertex. Inthe former case, de�ne U = U(e). In the latter case, e0 is inside a square c of S;de�ne U to be the union of U(e) over all edges of c. Note that the boundary of Uis covered by edge fragments in S (and hence in Soverlay), but need not be in S 0:some edge fragments on the boundary of U may be erased in the construction ofS0. That is, U is a union of cells of S (and hence of Soverlay), but not necessarilyof S 0. Region U satis�es Conditions (W1fs) and (W3fs); the latter holds becauseU satis�es Condition (W3) for the transparent edges of S, and hence for those ofSoverlay. However, because U is not necessarily a union of cells of S 0, and may becut into a non-constant number of pieces by the obstacle polygons, we cannot use itdirectly as the well-covering region of e0 in S 0.We intersect U with free space. This partitions U into connected componentsR1; R2; : : : . Exactly one component, call it R1, contains e0. We show that each Ri isa union of O(1) cells of Soverlay, and hence that it has constant total complexity. Weargue that for each cell c in S, only a constant number of Soverlay subcells of c belongto Ri. If two subcells of c in Soverlay both belong to Ri, then the obstacle edgesseparating them must have endpoints either inside U , or contained in one or moreholes of U if U is multiply connected. See Figure 5. If we walk along the boundaryof Ri, we visit subcells of c repeatedly. Between each pair of di�erent subcells of c,9

we traverse the boundary of a di�erent hole of U (or the outer boundary of U , orthe unique obstacle vertex inside U). Because U has O(1) holes, only O(1) subcellsof c belong to Ri.
U

Figure 5: A cell of U may be partitioned into many subcells in Soverlay, but onlyO(1) of them belong to any one Ri.For any given componentRi, let c(Ri) be the cells of Soverlay in Ri; jc(Ri)j = O(1).Corresponding to each c 2 c(Ri), there is a unique cell c0 in S 0 such that c � c0.Cell c is a strict subset of c0 if and only if some edge of c was erased during theconstruction of S 0. If c is a strict subset of c0, then c0 is an uninteresting cell, andhence has at most eight edges. Thus both c and c0 have constant complexity. De�nec0(Ri) = �c0 j c0 2 S 0 and c � c0 for some c 2 c(Ri)	:We have jc0(Ri)j = O(jc(Ri)j) = O(1).If U is nonconvex, it may be the case that some cell c0 of S 0 that intersects Ri alsointersects another component Rj , that is, c0(Ri) \ c0(Rj) 6= ;. See Figure 6. Let ussay that two components are connected, Ri � Rj , if and only if c0(Ri) \ c0(Rj) 6= ;,and extend � to an equivalence relation by transitive closure.We de�ne U 0 = U(e0), the well-covering region for e0 in S 0, to be the union ofc0(Ri) for all Ri in the equivalence class of R1 under the � relation. We argue that U 0has constant complexity. Let R be the set of Ri that contain a vertex of S or O. Theset of cells c0(R) = SRi2R c0(Ri) has O(1) total complexity. Further, if Ri =2 R, thenc0(Ri) is a single convex cell with O(1) complexity (because all transparent edges ofc(Ri) inside U have been deleted). If such a cell c0 = c0(Ri) does not intersect anycomponent in R, then the union of c0(Rj) for all Rj � Ri is just the single cell c0.On the other hand, if c0 does intersect some Rj 2 R, c0[c0(Rj) is identical to c0(Rj).Because edge e0 was not deleted, R1 2 R. It follows that U 0 � c0(R), and hence U 0satis�es Condition (W2).The de�nition of U(e0) implies that every transparent edge f 0 on the boundaryof U(e0) is outside or on the boundary of U . Edge f 0 is a subset of some edge f ofS, so the Euclidean distance from e0 to f 0 is at least 2 �max(je0j; jf 0j). It follows thatCondition (W3fs) holds. Condition (W1fs) holds by construction.10

U(e)

Rj

Ri

c'(R)jFigure 6: Ri and Rj are disjoint components of U(e) in Soverlay. Ri is partitionedby a vertical line inside U(e), so c(Ri) consists of two cells; c(Rj) is a single cell.c0(Rj) intersects both Ri and Rj , so Ri � Rj . Note that c0(Rj) may havetransparent edges outside U(e).Let us now establish Condition (C3). A well-covering region U(e0) in S 0 containsno obstacle vertex that lies outside the well-covering region U in S from which U(e0)is derived, since no edges of S that bound vertex-containing cells are deleted. If e0is a fragment of an edge e of S, then its well-covering region U(e0) in S 0 contains atmost one obstacle vertex, since the same is true for U = U(e) in S. If e0 is one ofthe edges added to S 0 inside a vertex-containing square, its well-covering region U isthe union of O(1) well-covering regions of S. Each component region contains thesquare and its vertex, and no other vertex; hence the well-covering region of e0 in S 0also satis�es Condition (C3).This completes our proof that S 0 is a conforming subdivision of the free spacecorresponding to the set of obstacles O. 2Our next lemma shows that the conforming subdivision described above can be com-puted in O(n logn) time.Lemma 2.3 The linear-size conforming subdivision of free space described in Lemma 2.2can be built in time O(n logn).Proof. We start with a strong 2-conforming subdivision S of the obstacle vertices;S is computed in O(n logn) time, by Theorem 2.1. In O(n logn) additional time, webuild a point-location data structure for the obstacle polygons, so that given a querypoint q, we can in O(logn) time �nd the obstacle edge immediately to the left, right,above, or below q [10, 16]. The edges of S 0 are obstacle edges, transparent edges onthe boundary of kept cells, and transparent edges incident to obstacle vertices. Toidentify the second kind of edges, we trace the boundary of each kept cell separately.11

Each kept cell is contained in a single cell of S and has at least one vertex on itsboundary, so we trace starting from each vertex. Tracing along an obstacle edgeis easy, since the next transparent edge intersected is one of the O(1) edges on theboundary of the current cell in S. We use the point-location structure to tracealong transparent edges: the next cell vertex is either a vertex of S, or it is the �rstobstacle point hit by the ray that the current point and edge de�ne. This tracingtakes O(n logn) time altogether. The third kind of edges can be computed in O(n)total time by local operations in each cell containing an obstacle vertex. To stitchthe three kinds of edges into a single adjacency structure S 0, we use an O(n logn)time plane sweep algorithm [23]. 2This completes our discussion of the conforming subdivision. Our shortest path algo-rithm, described in Section 4, relies heavily on the well-covering property of this subdivision.But �rst we establish some key geometric properties of shortest paths used by our algorithm.3 Geometric Properties of Shortest PathsThis section summarizes the properties of shortest paths we use in our algorithm. Most ofthese de�nitions and lemmas have appeared earlier [17, 18, 24]; we include them here forcompleteness.The triangle inequality implies that a Euclidean shortest path turns only at obstaclevertices. Shortest paths need not be unique, though|for instance, every obstacle polygonOi has at least one point on its boundary reached by two shortest paths; the two shortestpaths together form a cycle enclosing the polygon. We use the notation �(p; q) to denotethe set of shortest paths connecting two points p and q. The length of any path in �(p; q) isthe shortest path distance between p and q, denoted d(p; q). (Clearly, if one or both pointslie inside an obstacle, there is no legal path between them; their shortest path distance isassumed to be in�nite.) If the shortest path between p and q is the line segment pq, then pand q are said to be mutually visible. We occasionally use d(X; Y) to denote the shortestpath distance between two sets of points X and Y , which is the minimum d(x; y) over allpairs of points x 2 X and y 2 Y .We consider the problem of computing shortest paths from a �xed point s to all pointsof the free space. We de�ne the weight of an obstacle vertex to be its shortest path distanceto s. Given an arbitrary point p in free space, its weighted distance to a visible vertex uis de�ned as jpuj + d(u; s)|the straight-line distance from p to u plus the shortest pathdistance from u to s. Obviously, the shortest path distance d(p; s) is the minimum weighteddistance between p and all vertices visible to p.The predecessor of an arbitrary point p is de�ned as the vertex (or vertices) of V adjacentto p in �(p; s); recall that V includes both s and the obstacle vertices. A predecessor ofp is necessarily visible from p. (If p and s are mutually visible, then s is a predecessor ofp.) The shortest path map of a particular source point s, denoted SPM (s), is a subdivisionof the plane into two-dimensional regions such that all the points in one region have thesame, unique predecessor. Points on region boundaries have multiple predecessors. Theseboundaries are pieces of bisectors|a bisector is the locus of points equidistant (by weighted12

distance) from two obstacle vertices, and it is in general an arc of a hyperbola. Figure 7shows an example of a shortest path map.
sFigure 7: SPM (s) and a wavefront sweeping it.The next three lemmas establish some fundamental properties of shortest paths andshortest path maps.Lemma 3.1 The set of points in the plane with multiple predecessors has measure zero.Proof. A point p with two obstacle vertices u and v as predecessors lies on thebisector of u and v, which is the hyperbola determined by the equationjpuj+ d(u; s) = jpvj+ d(v; s):There are at most O(n2) such hyperbolas, and each has measure zero. 2There are two types of edges in the subdivision SPM (s): (portions of) obstacle edgesand arcs of hyperbolas determined by pairs of weighted vertices. The hyperbolic arcs maydegenerate to straight lines|this happens when the weights of two vertices are equal, ordi�er by precisely the distance between the vertices; in the latter case the vertex withsmaller weight is a predecessor of the other vertex. The vertices of SPM (s) are of threetypes: the obstacle vertices, the intersections of obstacle edges with (bisector) hyperbolicarcs, and the intersections of two or more bisectors; each of the last variety of vertices hasthree or more predecessors. The following lemma proves a linear upper bound on the totalsize of a shortest path map.Lemma 3.2 The shortest path map SPM (s) has O(n) vertices, edges, and faces. Eachedge is a segment of a line or a hyperbola.Proof. We �rst observe that each face of SPM (s) is star-shaped, with the uniquepredecessor vertex for the face in its kernel|this follows from Lemma 3.1, whichshows that interior points of a face have a unique predecessor.The key step in the proof is to show that each obstacle vertex is the predecessorvertex for at most one face in SPM (s). Consider a vertex u that is the predecessor13

of a face F , and let pred(u) be the set of predecessors of u; observe that d(u; s) =juvj+ d(v; s), for any v 2 pred(u).By the triangle inequality, if a point p is visible from a vertex v 2 pred(u), withv; u; p not collinear, then p cannot have u as its predecessor. Let R(u; v) denote theregion of the free space that is visible from u but not visible from v 2 pred(u). ThenR(u; v) lies in an angular wedge around u of less than 180�. De�neR(u) = \v2pred(u)R(u; v):Clearly, F � R(u). We claim that there is at most one face of SPM (s) in R(u) withu as its predecessor. Suppose there were two faces, F1 and F2, both having u astheir unique predecessor. The faces F1 and F2 have exactly one point in common:the vertex u. In the space between F1 and F2, there is a point p arbitrarily closeto u with predecessor z such that z is distinct from both u and pred(u). In otherwords, jpuj+ d(u; s) > jpzj+ d(z; s). However, as p moves towards u, the di�erencein the distance shrinks, and �nally d(u; s) = juzj + d(z; s). But then z must be apredecessor of u, contradicting the hypothesis. Thus, a vertex u is a predecessor ofat most one face in the shortest path map.Finally, to prove the linear upper bound on the size of the shortest path map,recall that the number of obstacle vertices is n; the remaining vertices border at leastthree faces of SPM (s) (for this argument, we count the obstacle polygons as facesof the shortest path map). Since the number of faces is O(n), Euler's formula forplanar graphs implies that the total number of vertices is also O(n). This completesthe proof. 2Lemma 3.3 Let u and v be two obstacle vertices that lie on the same side of a line `. If `intersects the bisector generated by u and v more than once, the intersections lie on oppositesides of the line supporting uv.Proof. If the bisector is a straight line, the claim follows readily. Otherwise, thebisector is a hyperbola, and let us consider an arbitrary point p on this bisector.Every point on pu has u as its predecessor, and every point on pv has v as itspredecessor. Points in the interiors of pu and pv have only one predecessor sincethey are not on the bisector. See Figure 8. If the half-bisector on one side of uvintersects ` at two points p and q, then there is an intersection of pu with qv or pvwith qu that is not on the bisector and yet has two predecessors|a contradiction.2With these preliminaries in place, we can now describe our shortest path algorithm,which works by propagating a wavefront through the conforming subdivision of the freespace.4 The Shortest Path AlgorithmOur algorithm uses the continuous Dijkstra method [18, 19, 20], which simulates a unit-speedwavefront expanding from a point source and spreading among the obstacles. At simulation14

u v

p
q

lFigure 8: The intersection of qu with pv has two predecessors, even though it isnot on a bisector|a contradiction.time t, the wavefront consists of points whose shortest-path distance to the source is t. Thewavefront is a set of disjoint paths and closed cycles. Each path or cycle is a sequence ofcircular arcs, called wavelets. Each wavelet is centered on an obstacle vertex that is alreadycovered by the wavefront, called the generator of the wavelet. As the wavefront expands, themeeting point of two adjacent wavelets sweeps along a bisector curve, which is the hyperbolicbisector of the two wavelets' generators. The endpoints of paths in the wavefront are formedwhere wavelets meet obstacle boundaries; these endpoints sweep along obstacle boundariesas the wavefront expands. During the wavefront simulation, the topology of the wavefrontis changed by events of two types: wavefront-wavefront collisions and wavefront-obstaclecollisions.Our shortest path algorithm has two phases: a wavefront propagation phase, followedby a map computation phase. The �rst phase simulates the wavefront and determinesapproximate locations of all the wavefront collision events. The second phase uses thisinformation to build the shortest path map in each cell of the conforming subdivision. Inthe following two subsections, we describe the details of these two phases, deferring the datastructures and implementation issues of the propagation until the next section.4.1 The Propagation AlgorithmOur algorithm works by propagating the wavefront through the cells of the conformingsubdivision of the free space. The wavefront propagates between adjacent cells only acrosstransparent edges; it dies upon meeting an opaque edge.Propagating the exact wavefront appears to be quite di�cult, so we content ourselveswith computing two \single-sided" approximations to the wavefront at each transparentedge. Speci�cally, at each transparent edge, we compute two approximate wavefronts, pass-ing through the edge in opposite directions. An approximate wavefront represents thewavefront reaching an edge from one side of the edge only. We can think of an approximatewavefront as labeling each point p on the edge with the time at which the approximate wave-front reaches p. The true distance d(p; s) is the minimum of the two labels from oppositesides of the edge.Remark: In some cases we can determine that a portion of a wavefront arrives at an edge afterthe wavefront from the other side of the same edge, and in such cases we drop the part that arriveslater. In that sense, an approximate wavefront is not necessarily a complete representation of all thewavelets coming from one side of the edge.An approximate wavefront at an edge e is represented as a sequence of obstacle verticesweighted with their shortest path distances from s. These vertices are the generators of15

the wavelets in the approximate wavefront. All the generators in an approximate wavefrontsequence lie on the same side of e, since the approximate wavefront passes through e inone direction only. The core of our algorithm is a method for computing an approximatewavefront at an edge e based on the approximate wavefronts of nearby edges. These nearbyedges are formalized in the following with the de�nitions of input(e) and output(e).We denote by input(e) the set of edges whose approximate wavefronts are used to com-pute the approximate wavefronts at e. This set consists of the transparent edges on theboundary of U(e), the well-covering region of e (cf. Section 2.1). To compute the approx-imate wavefront at e, we propagate the approximate wavefronts from input(e) to e insideU(e). The propagation algorithm introduces bends only at obstacle vertices in the closureof U(e); that is, the shortest paths corresponding to the wavefront do not bend except atobstacle vertices. Because U(e) need not be convex (nor even simply connected), noncon-vexities of U(e) may block the wavefronts from some edges of input(e) from reaching e.Typically, the paths corresponding to blocked wavefronts either run into obstacles outsideU(e), or they pass through free space outside U(e) and re-enter through other edges ofinput(e).We denote by output(e) the set of edges to which the approximate wavefronts of e willbe passed; output(e) = input(e) [ff j e 2 input(f)g. We set output(e) to contain input(e)because our algorithm for detecting wavefront collision events depends on output(e) havinga cycle enclosing e.Lemma 4.1 For any transparent edge e, output(e) contains a constant number of edges.Proof. Because jU(f)j = O(1) for all f , and each U(f) is a connected set of cellsof S 0, no edge e can belong to input(f) for more than O(1) edges f . 2Our simulation of the wavefront propagation is loosely synchronized. For a transparentedge e = ab, we de�ne ~d(e; s) = min(d(a; s); d(b; s)); this is a rough estimate of d(e; s),since d(e; s) � ~d(e; s) � d(e; s)+ 12 jej. We compute the approximate wavefronts for e at the�rst time we are sure that e has been completely covered by wavefronts from the edges ininput(e). This time is ~d(e; s) + jej, the approximate time at which the expanding wavefront�rst hits an endpoint of e, plus the length of e. It is a conservative estimate of the timewhen e is completely run over by the wavefront.We compute ~d(e; s)+jej on the
y for each edge e using a variable covertime(e). Initially,for every edge e whose well-covering region U(e) includes the source point s, we calculatean upper bound on ~d(e; s) directly, considering only straight-line paths inside U(e), and setcovertime(e) to this upper bound plus jej. For all other edges, we initialize covertime(e) =1. Thus covertime(e) is not equal to ~d(e; s) + jej only for edges e = ab such that �(a; s)or �(b; s) crosses the boundary of U(e). The simulation maintains a time parameter t, andprocesses edges in order of their covertime(�) values. The main loop of the simulation is asfollows: 16

Propagation Algorithmwhile there is an unprocessed transparent edge do1. Select the edge e with minimum covertime(e), and set t := covertime(e).2. Compute the approximate wavefronts at e based on the approximate wave-fronts from all edges f 2 input(e) satisfying covertime(f) < covertime(e).Compute d(v; s) exactly for each endpoint v of e.3. For each edge g 2 output(e), compute the time tg when the approxi-mate wavefront from e �rst engulfs an endpoint of g. Set covertime(g) :=min (covertime(g); tg + jgj).endwhileThe following lemma proves the consistency of our algorithm|it shows that covertime()is correctly maintained and that the edges required for processing e are already processed.The details of Step 2 appear in Sections 4.1.1 and 4.1.2; the computation of tg in Step 3 isdescribed in Section 5.Lemma 4.2 During the wavefront propagation, the following invariants hold:(a) If the wavefront of an edge f 2 input(e) contributes to an approximate wavefront ofe, then ~d(f; s) + jf j < ~d(e; s) + jej.(b) The value of covertime(e) is updated a constant number of times.(c) The �nal value of covertime(e) is ~d(e; s)+ jej. This value is reached no later than thesimulation clock reaches that time.(d) Edge e is processed at simulation time ~d(e; s) + jej.Proof.(a) Any wavelet that contributes to the approximate wavefront at e must reach eat some time te with d(e; s) � te < ~d(e; s) + jej. Such a wavelet reaches e either bytraveling straight from s inside U(e), or by passing through a transparent edge f 2input(e) at an earlier time tf , with d(f; s) � tf < ~d(f; s) + jf j and te � tf + d(e; f).By Condition (W3fs) of a well-covering region with parameter 2, d(e; f) � 2jf j,and so te � d(f; s) + 2jf j. Since ~d(f; s) � d(f; s) + 12 jf j, we can conclude that~d(f; s) + jf j < ~d(e; s) + jej.(b) The value of covertime(e) is updated only when an edge f is processed suchthat f 2 input(e) or e 2 input(f). There are O(1) such edges, by Lemma 4.1. ofwell-covering.(c); (d)We prove these by induction on the simulation clock. Claims (c) and (d) holdfor the edges whose initial covertime(�) values are not in�nite. The wavelet that �rst17

reaches an endpoint of e (at te = ~d(e; s)) passes through some f 2 input(e). Byinduction and the proof of (a), f has already been processed before the simulationclock reaches te, and so covertime(e) is set to ~d(e; s) + jej no later than te = ~d(e; s).The variable covertime(e) cannot be set to any smaller value, because no approximatewavefront can reach the endpoints of e earlier than ~d(e; s). It follows that e will beprocessed at simulation time ~d(e; s) + jej. 2Lemma 4.3 For every vertex v of our conforming subdivision, the propagation algorithmcorrectly determines the distance d(v; s) before v is used as a generator in any wavefront.Proof. Every vertex v of the conforming subdivision is an endpoint of a transparentedge e. The wavefront that determines d(v; s) either reaches v from s by travelingonly inside U(e), or it passes through an edge f 2 input(e) such that covertime(f) <covertime(e). In the former case, initialization computes d(v; s) correctly; in thelatter case, Step 2 of the propagation algorithm implies that d(v; s) is correctlycomputed. If v is an obstacle vertex, it may appear as a generator in a wavefront, butit will not be used until after d(v; s) is computed at time ~d(e; s)+ jej (Lemma 4.2(d)).2While a well-covering region U(e) has constant complexity, it is not necessarily simply-connected; consider, for instance, the case of a square annulus. Consequently, there maybe multiple, topologically distinct paths from a boundary edge f 2 input(e) to e. Inorder to avoid comparing paths of di�erent topologies, we split the wavefront W (e) intotopologically-equivalent pieces. In particular, let W (e) denote one of the two approximatewavefronts passing through e. In computing W (e) from a set fW (f) j f 2 input(e)g, we usetopologically constrained versions of the incoming wavefronts, denotedW (f; e). A wavefrontW (f; e) is a portion of W (f) that follows a single topological path inside U(e) from f to e.If U(e) contains islands, there are multiple topologically distinct paths from an edgef 2 input(e) to e. When we need to refer to multiple topologically distinguished wavefrontsfrom a single edge f to e, we use primed notation: W (f; e), W (f 0; e), etc.If two points p; q 2 e are hit by a single topologically constrained wavefront W (f; e),then the segments connecting p and q to their predecessors among the generator verticesin W (f) intersect f and e, and the quadrilateral bounded by those segments and f and eis a subset of U(e). (The paths are not always segments: if an obstacle vertex v lies in thewell-covering region of e and the path from f to p turns at v, then the predecessor of pin W (f; e) may be v. Even in this case, the paths from p and q to f can be continuouslydeformed to each other inside U(e).) For any point p 2 e, the shortest path �(p; s) passesthrough some f 2 input(e) (unless s 2 U(e)), so constraining the source wavefronts to passthrough input(e) does not lose any essential information.4.1.1 The Arti�cial WavefrontsWhen we compute the approximate wavefronts at a transparent edge e, we allow limitedinteraction between waves coming from opposite sides of the edge. This lets us eliminatesome waves coming from one side of the edge that are dominated by waves from the otherside. The interaction between the wavefronts from two sides is implemented using arti�cial18

wavefronts . These arti�cial wavefronts are our only mechanism for pruning the wavefrontthat arrives second at a transparent edge. We depend on arti�cial wavefronts to elimi-nate dominated wavefronts within a constant number of cells of where they �rst becomedominated.Consider a horizontal transparent edge e, and let v be an endpoint of e. We introducean arti�cial wavefront with generator v and weight d(v; s) into the computation of bothapproximate wavefronts at e. The triangle inequality implies that d(p; s) � d(v; s) + jvpj,for any point p 2 e. If the arti�cial wavefront reaches p 2 e before the wavefront frombelow e reaches p, then p is surely reached �rst by the upper wavefront, and so there isno need to propagate the lower wavefront through p. See Figure 9 for an illustration. Inessence, an arti�cial wavefront is a convenient mechanism for discarding parts of the actualwavefront that are completely dominated by some other part of the wavefront. A generatorof an arti�cial wavefront is not passed on to output(e) as part of the approximate wavefront,unless it is also a vertex of O.Remark: An arti�cial wavefront is just a conceptual device that lets us argue about shortestpaths without having to exhibit a speci�c shortest path. We use this technique in our proofs (e.g.Lemma 4.8) to discard generators at a cell boundary if the wavelet from an arti�cial wavefrontreaches that boundary before the wavelets from those generators|since the path passing throughan arti�cial generator is no shorter than the true path from the predecessor of the arti�cial generator,the paths from the losing generators cannot be shortest paths.
v

p

from sFigure 9: An arti�cial wavefront generated by v. If d(v; s)+ jvpj is less than thetime at which the wavefront from below reaches p, then p is reached �rst by awavefront from above.When we compute the approximate wavefront passing through e from below (that is,coming from predecessors below e), the contributing wavefronts are the following:1. All wavefronts W (f; e) for f 2 input(e) and f below the line supporting e. (If fintersects the line supporting e, we split W (f; e) in two, and keep only the portionW (f 0; e) that comes from the part of f below e.)2. An arti�cial wavefront expanding from each endpoint of e. An arti�cial wavefrontgenerator v has weight d(v; s).The contributing wavefronts for the approximate wavefront passing through e from aboveare symmetric. The wavefront coming directly from s is handled separately.The approximate wavefront from below is what the true wavefront would be if we wereto block o� the wavefront from above by adding extra obstacles. In physical terms, we19

can imagine replacing the transparent edge e with an (open) opaque obstacle segment. Theopaque segment absorbs the wavefront from above, but the open endpoints let the wavefrontfrom above pass through to generate arti�cial wavefronts. (Open endpoints are needed onlyto guard against the case in which an actual obstacle segment shares an endpoint of e,in which case replacing e with a closed segment would prevent arti�cial wavefronts frompassing through the endpoint.)Consider a set of wavefronts that reach e from the same side. We say that a contributingwavefront W (f) claims a point p 2 e if W (f) reaches p before any other contributor fromthe same side of e.Lemma 4.4 Let e be horizontal, and let W (f; e) and W (g; e) be two contributors to theapproximate wavefront that passes through e from below. Let x and x0 be points on e claimedby W (f; e), and let y be a point on e claimed by W (g; e). Then y cannot lie between x and x0.Proof. Consider the shortest paths �(x; s), �(x0; s), and �(y; s) in the modi�edenvironment in which e has been replaced by an open, opaque segment. These pathsconnect x and x0 to f , and y to g, inside U(e). Shortest paths �(x; s), �(x0; s),and �(y; s) do not cross. The subpaths of �(x; s) and �(x0; s) inside U(e) can becontinuously deformed to each other inside U(e), so g is not between them. Itfollows that y is not between them, either. 2Lemma 4.5 Let u and v be two obstacle vertices, both generating wavelets that are con-sidered when the approximate wavefront passing through an edge e from below is computed.Then the bisector generated by u and v intersects e at most once in SPM (s).Proof. Suppose the bisector intersects e twice. Without loss of generality assumeu lies inside the loop formed by the bisector and e. If the bisector intersects e twicein SPM (s), then the segment from u to its predecessor must intersect e between thetwo bisector intersections. This means that d(e; s) < d(u; s); in fact, d(e; s) + 2jej �d(u; s). Hence ~d(e; s) + jej < d(u; s), and u cannot contribute to the approximatewavefront at e: it does not become a generator until after e is processed, contradictingthe assumption that both u and v contribute to the approximate wavefront at e. 2Lemma 4.6 Given W (f; e) for each f below e that contributes to W (e), we can computethe interval of e claimed by each W (f; e) in O(1+k) total time, where k is the total numberof generators in all wavefronts W (f; e) that are absent from W (e).Proof. For each contributing wavefront W (f; e), we show how to determine theportion of e claimed by W (f; e) if only one other contributing wavefront W (g; e) ispresent. Lemma 4.4 implies that this portion is contiguous. The intersection of theseclaimed portions, taken over all other contributors W (g; e), is the part of e claimedby W (f; e) in W (e).In constant time we determine whether the claim ofW (f; e) is left or right of thatofW (g; e). If both W (f; e) and W (g; e) reach the left endpoint of e, in constant timecheck which one reaches it sooner. Otherwise, one of W (f; e) and W (g; e) reaches apoint on e that is left of any point reached by the other, and this point determines20

a

x ep
a

b

p
b

Figure 10: The contribution of b toW (e) is constrained to be left of pb and rightof x, and therefore does not exist.the ordering. Without loss of generality, assume that the claim of W (f; e) is left ofthat of W (g; e).By Lemma 4.4, we can combine the two wavefronts using only local operations.Let a denote the generator in W (f; e) claiming the rightmost point on e. Let pa bethe left endpoint of a's interval on e. Similarly, let b denote the generator in W (g; e)claiming the leftmost point on e, and let pb be the right endpoint of b's intervalon e. Compute the bisector of a and b, and let its intersection with e be the point x.(By Lemma 4.5, there is only one intersection point in SPM (s). If the hyperbolagenerated by a and b intersects e twice, then a is to the left of b at only one of theintersections, and we use that intersection as x.) See Figure 10. If x is to the leftof pa, then delete a fromW (f; e); if x is to the right of pb, then delete b fromW (g; e);in either case, rede�ne a, b, pa, pb, recompute x, and repeat this test. If pa is leftof pb and x lies between them, then x is the right endpoint of W (f; e)'s claim in thepresence of W (g; e).By combining the claimed regions for all contributors W (f; e), we construct theapproximate wavefront at e. The time bound follows since we spend constant timeper generator that is deleted for each pair of wavefronts, and the total number ofwavefronts W (f; e) to be merged is also a constant. This �nishes the proof. 2Lemma 4.7 Any generator deleted during the construction of an approximate wavefront atedge e does not contribute to the true wavefront at e. Every generator that contributes tothe true wavefront at e either is s or belongs to one of the approximate wavefronts at e.Proof. The �rst part is clear|every deleted generator is dominated by some othergenerator at e. The second part follows by induction from two facts: any waveletthat contributes to the true wavefront at e must come either from s inside U(e)or through one of the edges in input(e) (by the de�nition of well-covering). Theapproximate wavefronts at input(e) are ready before they are needed to constructW (e) (by Lemma 4.2). 221

4.1.2 The Bisector EventsWhen we propagate an approximate wavefront W (e) to output(e), we may detect bisectorevents, which are intersections of bisectors with each other or with obstacles. Bisectorevents are detected in two ways: 1) during the computation of W (e; g) from W (e) for someg 2 output(e); 2) during the merging process described in Lemma 4.6.1. Bisector events of the �rst kind are detected when we simulate the advance of thewavefront from e to g to compute W (e; g); the details of this simulation are discussedin Section 5. In particular, if two generators u and v are non-adjacent in W (e) butbecome adjacent at any time during the propagation from e to g, then there is abisector event involving u and v.2. Bisector events of the second kind are detected during merging. If a generator vcontributes to one of the input wavefronts W (e; g) but not to the merged wavefrontW (g) at g, then v is involved in a bisector event on the way from e to g. (As a specialcase, if a generator's claim on W (g) is shortened (but not eliminated) by an arti�cialwavefront, then that generator is also considered to have a bisector event. This addsat most two extra bisector events for each edge g.)Our algorithm detects bisector events in a small neighborhood of their actual location inSPM (s). To ensure that all bisector events are properly localized, we mark the generatorsthat participate in a bisector event in O(1) cells near where the event is detected: if agenerator v is involved in a bisector event in a cell c, then v is guaranteed to belong to aset of marked generators for c. However, the set of marked generators for a cell c may bea superset of the generators that actually participate in bisector events in c. We will showthat the total number of generators marked in all the cells is O(n). The precise rules formarking the generators are given below.
22

Marking Rules for Generators1. If a generator v lies in a cell c, then mark v in c.2. Let e be a transparent edge, and let W (e) be the approximate wavefrontcoming from some generator v's side of e.(a) If v claims an endpoint of e in W (e), or if it would do so except foran arti�cial wavefront, then mark v in all cells incident to the claimedendpoint.(b) If v's claim inW (e) is shortened or eliminated by an arti�cial wavefront,then mark v in the cell on v's side of e.3. Let e and f be two transparent edges with f 2 output(e). Mark v in boththe cells that have e as an edge if one of the following events occurs:(a) v claims an endpoint of f in W (e; f);(b) v participates in a bisector event detected either during the com-putation of W (e; f) from W (e), or during the merging step at f(Lemma 4.6). (We also mark v as having a bisector event if v's claimon W (f) is shortened by an arti�cial wavefront.)4. If v claims part of an opaque edge when it is propagated from an edge etoward output(e), mark v in both cells with e on their boundary.Rules 2a and 3a both apply when a wavefront claims an endpoint of an edge. Themain di�erence between the two rules is that Rule 2a puts marks in cells near the claimedendpoint, and Rule 3a puts marks in cells near the source edge of the wavefront.A generator may contribute to a wavefront more than once in the wavefront sequence;each mark applies to only one instance of the generator in the sequence. The followingtechnical lemma is used in the proof of Lemma 4.9 to establish the correctness of themarking rules.Lemma 4.8 Let v be a generator that contributes to an approximate wavefront W (e). Sup-pose there is a point p 2 e that is claimed by v in W (e) but not in SPM (s) (because a wavefrom the other side of e reaches p �rst). Then v is marked in the cell c on v's side of e.Proof. If v is unmarked in c, there must be generators u and w such that u; v; ware consecutive in W (e)|otherwise Rule 2 would apply. The bisectors (u; v) and(v; w) must exit from U(e) through the same transparent edge h|otherwise Rule3 or 4 would apply. For the same reason, the region bounded by (u; v), (v; w), h, ande is a subset of of U(e)|if the region contained a non-U(e) island, v would claim anendpoint of a boundary edge of that island. Edge h is by de�nition part of input(e).Consider the point p 2 e that is claimed by v in the approximate wavefront W (e)23

but not in the true wavefront at e, and suppose that the true predecessor of p isz 6= v. The vertex z is either an obstacle vertex or the source s. In the former case,z lies outside U(e) or on its boundary @U(e)|by Condition (C3), U(e) contains atmost one obstacle vertex, so any vertex not strictly outside U(e) must be connectedto points outside U(e) by opaque edges. Vertex z may lie strictly inside U(e) only ifz = s.Let us �rst assume that z lies outside the well-covering region U(e)|the proofsimpli�es in the other case, which is considered below. Let q denote the intersectionpoint between zp and input(e) closest to p (recall that input(e) � output(e), andinput(e) � @U(e)). Based on the position of q relative to the bisectors (u; v) and(v; w), we argue that v must have been involved in a bisector event detected by ouralgorithm, and thus marked in cell c.First, consider the case in which q lies between the bisectors (u; v) and (v; w)on the edge h. Now, since jqpj � jhj (by the well-covering property), the endpointsof h are engulfed by a wavefront from z or from some other generator before thewavefront from z reaches p at time d(z; s) + jzpj. The arti�cial wavefronts fromh's endpoints will cover h before time d(z; s) + jzpj + jhj. By assumption we haved(v; s) + jvpj > d(z; s) + jzpj. The wavefront from v cannot reach e earlier thand(v; s)+jvpj�jej. By well-covering with parameter 2, d(e; h) is at least jej+jhj, and sothe wavefront from v reaches h no earlier than d(v; s)+jvpj+jhj > d(z; s)+jzpj+jhj,at which time h is already covered by the arti�cial wavefront. The claim of v on his shortened by the arti�cial wavefront (in fact, v's claim is eliminated completely),and so it must be marked by Rule 3b.In the second case, q is not between the bisectors (u; v) and (v; w) on h. Thesegment qp must intersect one of the bisectors. Without loss of generality, assumeqp intersects bisector (u; v). Since every point on qp has z as its predecessor inSPM (s), the bisector (u; v) does not reach @U(e) in SPM (s). We show that ourpropagation and merging algorithms will detect a bisector event for (u; v). Let r bethe intersection point between the bisector (u; v) and the edge h. As noted in thediscussion after Lemma 4.3, the triangle de�ned by the segments ur, vr, and e isa subset of U(e). Bisector (u; v) crosses the triangle boundary on e and at r, butnowhere else. The larger region R bounded by e, h, ur, and bisector (v; w) also is asubset of U(e), and it contains point p. Because qp crosses into R to intersect (u; v),and it does not intersect the (v; w) or h sides of R, qp must intersect ur; let x be thepoint of intersection. The wavelet from z reaches x before the one from u, so thepath z ! x! r, starting at time d(z; s), reaches r before the path u! r, startingat time d(u; s). Observe also that the path z ! x! r is a legal path|it lies in freespace. Now, consider the shortest path from z to r inside the triangle 4zxr thatdoes not cross h or any obstacle edge (see Figure 11). Because z ! x! r lies in freespace, such a path exists, and is shorter than z ! x ! r. This path claims r fromthe same side as u before the wavelet from u reaches r. (If the path passes throughan endpoint of h, then an arti�cial wavefront claims r; otherwise the last obstaclevertex on the path claims r.) Thus, a bisector event for (u; v) is detected during thecomputation of W (e; h) or W (h), and v is marked by Rule 3b.24

v

p

z

r
h

e

u w

x

q

Figure 11: The shaded path from z to r claims r before the wavelet from u, andfrom the same side of h as u.Next consider what happens if the predecessor vertex z lies on the boundary ofthe well-covering region U(e). Let h be a boundary edge of U(e) incident to z. Inthis case we detect a bisector event involving v when we advance the wavefront frome to output(e): if z lies between the bisectors (u; v) and (v; w), then v is markedby Rule 3a or 4; if z is not between the bisectors, the segment zp intersects one ofthe bisectors, say (u; v), and we detect a bisector event for (u; v) in advancing thewavefront from e to output(e).Finally, consider the case in which z = s lies inside U(e). If z is not betweenthe bisectors (u; v) and (v; w), segment zp intersects one of them and the proof isas above. Let r be the intersection of (u; v) with h, and let t be the intersection of(v; w) with h. The convex quadrilateral bounded by subsegments of e, ur, h, andtw is contained inside U(e). Hence if z is between the bisectors (u; v) and (v; w), theentire segment rt is visible from z (that is, 4zrt is empty) and so v's claim on h iseliminated by z. Therefore v is marked by Rule 3b. This completes the proof. 2Lemma 4.9 If a generator v participates in a bisector event of SPM (s) in a cell c, then vis marked in c.Proof. If a bisector has an endpoint on an opaque edge of c, it either emanates froman obstacle vertex on the edge, or it is de�ned by two generators that claim part ofthe opaque edge. Rules 1 and 4 guarantee that all such generators are marked in c.If a generator v that contributes to an approximate wavefront in c is unmarked, thenby Rule 2a there must be transparent edges e and f on the boundary of c such thatW (e) and W (f) both contain the generator subsequence u; v; w, for some u and w.Without loss of generality assumeW (e) enters c andW (f) leaves c. If v participatesin a bisector event of SPM (s) in c, then at least one point p inside the region Rbounded by e, f , (u; v), and (v; w) is not claimed by v in SPM (s). Let z be thetrue predecessor of p. Let r and t be the intersections of (u; v) and (v; w) with f ,respectively. Region R is contained in the convex quadrilateral Q bounded by ur, rt,tw, and the line supporting e. Because u; v; w is a subsequence of W (e), no vertex25

on the same side of e as v claims any point of the side of Q collinear with e; thatis, zp does not cross that side of Q. If r and t are both claimed by v in SPM (s),then ur 2 �(s; r), and wt 2 �(s; t). In this case �(s; p) cannot cross ur or wt, andhence it must cross rt. The intersection of zp with rt is a point q that satis�es thehypothesis of Lemma 4.8, and so v is marked in c. On the other hand, if either r ort is not claimed by v in SPM (s), that vertex satis�es the hypothesis of Lemma 4.8,and so v is marked in c. 2The following technical lemma shows that the approximate wavefronts are not too di�er-ent from the true wavefronts; this lets us bound the number of marks made by the markingrules.Lemma 4.10 Let B be the set of pairs (e; b) of transparent edges e and bisectors b suchthat b crosses e in some approximate wavefront, but the same crossing does not occur inSPM (s). Then jBj = O(n).Proof. Let (e; b) be a pair in B. Bisector b is de�ned by two generators u and v.The proof of Lemma 4.8 notes that each generator (except possibly s) is outside oron the boundary of U(e). That proof also shows that b's intersection with e in someapproximate wavefront (that is, the presence of u and v in W (e)) is proof that uand v claim points on the boundary of U(e) (in input(e)) in SPM (s). Let p = b\ e.Because (e; b) is not an incident pair in SPM (s), there must be at least one bisectorevent in SPM (s) that lies in the interior of U(e) between the line segments up andvp. We can charge the early demise of b to any one of these bisector events.The segments pu and pv are disjoint inside U(e) from the corresponding segmentsde�ned by any other pair (e; b0) 2 B|in the modi�ed shortest path problem in whichthe obstacles are O [feg, the segments pv and pu belong to �(s; p), and hence theyare disjoint from any other such segments. Thus the sector bounded by *pu and *pvis disjoint inside U(e) from the sector de�ned by any other pair (e; b0) 2 B, so eachbisector event inside U(e) is charged at most once for all pairs in B that have eas the �rst element of the pair. Each cell in the conforming subdivision belongs toO(1) well-covering regions U(e). Hence the sum over all transparent edges e of thenumber of bisector events in U(e) is only O(n). This total is an upper bound on jBj.2Lemma 4.11 The total number of marked generators over all cells is O(n).Proof. We begin by de�ning a propagation region for each edge e. For anytransparent edge e, let P (e) be the collection of cells through which wavefrontspropagate on the way from e to all edges f 2 output(e). Clearly P (e) � U(e) [fU(f) j f 2 output(e)g. The number of cells in P (e) is constant, since joutput(e)j isconstant, and so is the number of cells in U(f) for any f . Furthermore, since everycell of P (e) is within a constant number of cells of e, each cell c belongs to P (e0) foronly a constant number of edges e0.The total number of generator-cell marks made under Rule 1 is clearly O(n).26

Each P (e) has constant complexity, so there are O(n) edge pairs (e; f), where eis transparent and f is either transparent and in output(e), or opaque and inside oron the boundary of P (e). From this it follows that the number of marks made byRules 2a and 3a is O(n). Similarly, there are O(n) Rule 4 marks in which the waveletfrom v claims an endpoint of the opaque edge, or is the �rst or last non-arti�cialwavelet in W (e).Any Rule 4 mark not yet counted involves a generator v that does not reach anyopaque edge endpoint when propagated forward from e. Because v is not the �rst orlast non-arti�cial wavelet in W (e), there is a generator u such that v's claim on e inW (e) is bounded on the left by bisector (u; v). We can assume that (u; v) intersectse in SPM (s); by Lemma 4.10 there are only O(n) bisector-edge pairs that intersectin approximate wavefronts but not in SPM (s). Bisector (u; v) terminates in P (e),either on the opaque edge or in a bisector event before the opaque edge. Let uscharge the marking of v at e to this endpoint of (u; v) in SPM (s). Because each cellbelongs to P (e0) for a constant number of edges e0, each vertex of SPM (s) is chargedO(1) times. Since jSPM (s)j = O(n), the number of Rule 4 marks is O(n).The proofs for Rules 2b and 3b are similar to that for Rule 4. We begin withthe proof for Rule 3b. We can assume that the interval claimed by v on e in W (e)is bounded by two bisectors (u; v) and (v; w), for two non-arti�cial generators uand w; the �rst and last generators in W (e), counted separately, sum to at mostO(n) overall. Furthermore, we can assume that (u; v) and (v; w) both intersect e inSPM (s); there are only O(n) bisector-edge pairs that appear in some approximatewavefront but not in SPM (s) (Lemma 4.10). At least one of the two bisectors failsto reach the boundary of P (e) in SPM (s), because Rule 3b applies, and a detectedbisector event implies the existence of an actual bisector event no later than the pointof detection; we charge the marking of v to that bisector endpoint. Each bisectorevent gets charged O(1) times, and there are O(n) bisector events in SPM (s).To bound the number of Rule 2b marks, consider where the generator v lies.There is at most one generator v inside U(e), and so O(n) marks for such generatorsoverall. If v lies outside U(e), there is at least one edge in input(e) where v is markedby Rule 3b because of the shortening of v's claim on e. Charge the Rule 2b markat e to this Rule 3b mark. There are O(n) Rule 3b marks and hence O(n) Rule 2bmarks. 2We defer the �ner details of the propagation algorithm to Section 5, and instead describethe second phase of the algorithm next, namely, the shortest path map computation.4.2 Computing the Shortest Path MapAt the end of the propagation phase, approximate wavefronts for all transparent edges havebeen computed. Furthermore, for every cell c, a set of marked generators is known; eachmarked generator is in the approximate wavefront of one of the boundary edges of c, andall but O(1) of them contribute to a bisector event either in c or in one of O(1) nearbycells. The algorithms of Lemma 4.6 and Section 5 let us compute the marked generators inO(logn) time apiece. 27

We now show how to break the interior of a cell c into active and inactive regionssuch that no vertices of SPM (s) lie in the inactive regions. By Lemma 4.9, no unmarkedgenerator contributes to a bisector event in c. A bisector de�ned by a marked generator andan unmarked neighbor belongs to SPM (s). All such bisectors are disjoint. They partition cinto regions such that each region is claimed only by marked generators or only by unmarkedgenerators. These are the active and inactive regions, respectively. See Figure 12. Theactive regions can be computed in time proportional to the number of marked generatorsin c, since the order of the generators along the boundary of c is known.
A

I

A

A

A

A

A

A

I

I

IFigure 12: Active regions (white) and inactive regions (shaded). Each re-gion-bounding bisector is de�ned by one marked and one unmarked generator.The boundary of an active region consists of O(1) segments. Each segment is a trans-parent edge fragment, an opaque edge, or a bisector in SPM (s). Let e be a transparentedge fragment bounding an active region, and let W (e) be the wavefront that enters theactive region by crossing e. In the absence of wavefronts from other transparent edges,W (e) partitions the active region into pieces we call S-faces, each with a unique predecessorin W (e). These S-faces may not cover the active region, since each point in an S-face mustbe connected to its predecessor by a segment that intersects e. Denote this partition byS(e). S(e) is essentially a shortest path map, restricted to the active region and consid-ering only generators in W (e). If a point p lies in an S-face of S(e) with predecessor v,then S(e) assigns weight jpvj+ d(v; s) to p. Points outside any S-face are assigned in�niteweight by S(e). We can compute S(e) in O(m logm) time, where m = jW (e)j, by using thepropagation algorithm and data structure of Section 5.The following lemma shows how to combine the wavefronts incident to di�erent bound-ary edges of an active region.Lemma 4.12 Given the approximate wavefronts on the boundary of a cell c and a set of kmarked generators in those wavefronts, we can compute the vertices of SPM (s) inside c intime O(k log k).Proof. Consider an active region inside c and two transparent edge fragments e andf on the boundary of this active region. We can use the merge step from a standarddivide-and-conquer Voronoi diagram algorithm to compute the portion of the region28

nearer to W (e) than to W (f), using weighted distance, in time O(jW (e)j+ jW (f)j).More speci�cally, assume that S(e) and S(f) have both been computed. Let m =jW (e)j+ jW (f)j. Each of S(e) and S(f) de�nes a distance function on the points ofthe active region. The point-wise minimum of these two functions determines whichpoints are nearer toW (e) than toW (f) under weighted distance. Consider a point pin the S-face for some generator v 2 W (e). Point p belongs to v's S-face in SPM (s)only if all of the segment pv is closer to v than to any generator in W (f). The setof points p such that the entire segment from p to its predecessor is closer to W (e)than to W (f) is bounded by a single chain � of O(m) hyperbolic arcs. (The numberof arcs follows from Lemma 3.2.) To �nd �, �rst trace along a ray emanating fromsome generator v 2 W (e), marching through S(e) and S(f) simultaneously, untilthe ray reaches the boundary of c or reaches a point whose weight in S(f) equalsits weight in S(e). This takes O(m) time, since a line cuts O(m) edges of S(e) andS(f). Then trace outward from this point along �. Each arc of � is a hyperboladetermined by the generators of the S-faces of S(e) and S(f) containing the currentpoint; trace along the hyperbola until it leaves one of the two S-faces, then followthe hyperbola determined by the next pair of S-faces, etc. This procedure takesO(1) time per arc of �, or O(m) time altogether. See Figure 13.
e

f

vFigure 13: To �nd the region closer to W (e) than to W (f) under weighteddistance, trace a ray from some v 2 W (e) through S(e) and S(f) until it hitsa point equidistant from the two wavefronts, then trace outward from the pointalong the bisector �.The tracing procedure computes the region closer to W (e) than to W (f) for oneedge f . Intersecting the results for all such edges f on the boundary of the activeregion produces the region R(e) claimed by W (e) in SPM (s). Intersecting R(e)with S(e) gives the vertices of SPM (s) to which W (e) contributes. We repeat thiscomputation for each transparent edge fragment to �nd all the vertices of SPM (s)in the active region. Applying this algorithm to all active regions �nds all verticesof SPM (s) inside c.The partition S(e) determined by each edge fragment e participates O(1) times ina Voronoi-style merge, so the total cost of merging is O(k). Hence the running timeis dominated by the propagation algorithm, which takes O(k log k) time altogether.2 29

Lemma 4.13 The shortest path map vertices computed cell-by-cell can be combined to buildSPM (s) in additional O(n logn) time.Proof. To compute SPM (s), we compute all its edges separately, then use a stan-dard plane sweep to assemble them, as follows. Create a list of the bisector endpointsdiscovered in the computation of Lemma 4.12, each identi�ed by a key consisting oftwo generators. Put each three-bisector endpoint into the list three times, once foreach bisector. Put each bisector/edge collision in once, labeled with the generatorsof the bisector. Now sort the list to group together endpoints belonging to eachbisector. Take the endpoints belonging to the bisector of a generator pair (v; w)and sort them along the hyperbola determined by the weighted generators v and w.This determines all edges of SPM (s) on the hyperbola. Doing this for all pairs thatappear as keys in the sorted list gives all O(n) hyperbolic arcs of SPM (s). Finally,with a standard plane sweep [23], we can combine these arcs with the edges of O tobuild the subdivision SPM (s). 25 An Implementation of the Wavefront PropagationIn this section, we give the implementation details of our algorithm. We describe the datastructures used by our algorithm, and �ner details of the propagation algorithm.5.1 The Data StructuresAn approximate wavefront is a list of generators (obstacle vertices). Our algorithm performsthe following two types of operations on these lists:1. Standard list operations: insert, delete, concatenate, split, �nd previous and nextelements, and search. The search operation locates the position of a query point inthe list of bisectors de�ned by the generators at a particular time.2. Priority queue operations: we assign each generator in the list a priority, and the datastructure needs to update priorities and �nd the minimum priority in the list.Both of these types of operations can be supported by a data structure based on balancedbinary trees, for example red-black trees, with the generators at the leaves. In particular,the list operations take O(logn) time each because the maximum list length is O(n). Thepriority queue operations are supported by adding a priority �eld to the nodes of the binarytree: each node records the minimum priority of the leaves in its subtree. Each priorityqueue operation takes O(logn) time, while the list operations retain their O(logn) bound.We also require our data structure to be fully persistent|we need the ability to operateon past versions of any list. Each of the two kinds of operations uses O(1) storage pernode of the binary tree, so we can make the data structure fully persistent by path-copying.Each of our operations a�ects O(logn) nodes of the tree, including all the ancestors of everya�ected node. Once we have determined which nodes an operation will a�ect, and beforethe operation modi�es any node, we copy all of the nodes that will be a�ected, then modifythe copies. This creates a new version of the tree while leaving the old version unchanged.The data structure uses O(m logn) storage, where m is the total number of data structureoperations, and keeps the O(logn) per-operation time bound quoted above.30

Lemma 5.1 There is a linear-space data structure that represents an approximate wave-front and supports list operations and priority queue operations in O(logn) time per op-eration. The data structure can be made fully persistent at the expense of an additionalO(logn) space per operation.5.2 Details of the Wavefront PropagationUsing the data structures just described, we now show how to propagate an approximatewavefront from edge to edge. In particular, given an approximate wavefrontW (e), we showhow to compute W (e; g) for every edge g 2 output(e). In the process, we also determinethe time of �rst contact between W (e; g) and the endpoints of g.We describe how to compute W (e; g) for all the transparent edges g on the boundary ofe's cell. Because the edges of output(e) belong to a constant number of cells in the neigh-borhood of e, we can use this primitive to compute W (e; g) for all g 2 output(e). When wepropagate the wavefront cell-by-cell, we e�ectively split W (e; g) into multiple pieces, eachlabeled by the sequence of transparent edges it follows from e to g. We assemble W (e; g)out of these component wavefronts by concatenating pieces that correspond to topologi-cally equivalent paths inside U(e). (Recall that for a pair e and g, there may be severalconstrained wavefrontsW (e; g),W (e0; g), etc., topologically distinguished by the paths theyfollow among the islands inside U(e).) Each component piece is a list of generators; adja-cent pieces may contain a single duplicate generator, namely the generator that claims thecommon endpoint. Before concatenation of the lists, one copy of the duplicate generatoris deleted. In Figure 14, W (e; g) is assembled from W (e0; g) and W (e00; g), where e0 and e00are two edges on the boundary of g's cell.
e'

e

g

e"Figure 14: W (e; g) may reach g via multiple paths.5.2.1 Preparing the Cells for PropagationThe propagation algorithm that follows assumes that the cell c is convex. When c isnonconvex, which is the case for subcells of an annulus cell, we temporarily break c intoconvex subcells by adding transparent edges parallel to e through the points of nonconvexity,as illustrated by Figure 15.Let f 6= e be another transparent edge on the boundary of c. Our propagation algorithmassumes the following invariant: 31

e e

obstacleFigure 15: Preparing nonconvex cells for wave propagation.Propagation Invariant: When a wavefrontW (e; f) is propagated for distance2jf j beyond f , it intersects only a constant number of cells of the conformingsubdivision of the free space.The edges of the conforming subdivision S 0 already satisfy the Propagation Invariant,since each edge f is well-covered with parameter 2. However, we need to be more carefulin dealing with a cell derived from an annulus. We subdivide each of the newly added,nonconvexity-removing edges into O(1) pieces, each no longer than the edges of S on theannulus's outer boundary (one-eighth the side length of the outer square, by the uniformedge property of the conforming subdivision). Let H denote the convex hull of e and theinner square of the annulus. If H intersects a newly added edge f , then we further partitionf \ H into pieces no longer than the inner boundary's edges (one-eighth the side lengthof the inner square). We illustrate this last step in Figure 16. Because f is parallel to e,and the inner boundary of the annulus is well separated from the outer boundary (cf. theminimum clearance property of the conforming subdivision S), the total length of edgesinside H is proportional to the side length of the inner square. It follows that the partitionstep creates only O(1) edges.The subdivided edges satisfy the Propagation Invariant: for any such edge f , let g0 bean edge of c such that W (e; f) leaves c by passing through g0. Edge g0 is an edge of S 0,the conforming subdivision of free space; it is a fragment of an edge g of S, the conformingsubdivision for the vertices. The construction of S 0 in Lemma 2.2 ensures that there areO(1) cells of S 0 within shortest path distance 2jgj of g0. The subdivision of nonconvexity-removing edges guarantees that jf j � jgj, which implies that the Propagation Invariantholds for edge f .5.2.2 Simulating the Wavefront Propagation Across Convex CellsSo far we have used a wavefront in its static form, namely, as a sequence of generatorswhose bisectors intersect an edge in the subdivision. We now describe a dynamic form ofthe wavefront, in which we track changes in the combinatorial structure of the wavefrontas it sweeps across a cell. In particular, we simulate the evolution of a wavefront W (e)as it sweeps across a cell c after entering it through the edge e; the cell c is a convex cellsatisfying the Propagation Invariant. Our simulation detects and processes any bisectorevents involving the generators of W (e) that may occur inside c. Events are processed in32

e

H

fFigure 16: Subdividing the added edges.order of increasing distance from s, that is, in simulation time order. Generators are markedas events are processed, though the description below does not necessarily itemize all themarks made.Let W denote the current dynamic wavefront at any time during the simulation. At thestart of the simulation, we haveW = W (e), the approximate wavefront that passes throughe|it is a list of generators, each claiming some portion of e. Every generator v 2 W de�nesa pair of bisectors with its neighbors in the list. If v is the �rst generator in the list, thenits �rst bisector is the ray from v through the endpoint of e at v's end of the list; the lastbisector for the last generator is de�ned similarly. If v is an endpoint of e, then there is no�rst bisector (or last bisector, as appropriate).To process bisector events in order, we maintain the corresponding generators of W in apriority queue. The priority of a generator v is the weighted distance to the point at whichthe two bisectors de�ned by v intersect beyond e; the priority is in�nite if the bisectorsdo not intersect beyond e. Speci�cally, if the bisectors de�ned by v and its neighborsintersect ahead of e, either in c or beyond it, at a point p, then priority(v) = jvpj+ d(v; s).Our simulation of the wavefront propagation processes these bisector events in order ofincreasing priority up to some maximum priority tstop, which is determined by the shape ofc, as explained below. This limit tstop is the minimum of individual tstop(f) values for eachtransparent edge f on c. Initially, we set tstop = 1 and tstop(f) = 1 for all f . We alsoinitialize an empty set T , which is used to hold generators whose priorities need to be resetafter the simulation.At each step of the simulation, we extract the event with minimum priority from thequeue; let v be the generator vertex producing this event. If the event occurs inside c (thatis, the intersection point corresponding to the event lies in c), then we delete v from thegenerator list and recompute the priorities of its neighbors. We mark v in W (e) for thecell c; in addition, we also mark v for a constant number of cells near c to satisfy Rule 3 ofSection 4.1.2.If, however, v's event occurs outside c, then we set priority(v) = 1, and add v to theset T . The generator list is not changed in this case, because we have found the correctintersection between the boundary of c and the wavelet from v, at least locally. If we wereto process all the bisector events of W in strict time order, the generators on either side of33

v might participate in further bisector events outside c before the last bisector event insidec occurred. However, we are not interested in those events now. Setting priority(v) to 1avoids processing those events outside c.We compute the intersection points of the two bisectors de�ned by v with the boundaryof c. If either intersection lies on an opaque edge, or if they lie on di�erent transparent edgeswith an opaque edge between, mark the generator v for cell c and O(1) neighbors to satisfyRule 4 of Section 4.1.2. If either of the intersection points, say x, lies on a transparent edge,say f , then we update tstop as follows:tstop(f) = min(tstop(f); d(v; s) + jvxj+ jf j)tstop = min(tstop; tstop(f)):The second term of the minimum in the �rst line above is a time at which the wavefrontW certainly will have swept over f ; it is also no more than 2jf j greater than the time atwhich the wavefront W �rst contacts f .When we reach priority tstop, either tstop =1 and all events inside c have been processed,or tstop < 1 and there is a transparent edge f on the boundary of c with tstop(f) = tstop.The de�nition of tstop(f) ensures that all the bisector events needed to produce W (e; f)have been processed. We compute the static wavefront W (e; f) from the current dynamicwavefrontW , as follows. We �rst locate the endpoints of f in W by searching outward fromone of the bisectors in W that intersects f|there is at least one such bisector. At this pointwe mark the endpoint-claiming generators to satisfy Rule 2. We split the current generatorlist at the endpoints of f ; this breaks up the wavefront into three parts: one that passesthrough f (in fact, once the generator priorities are reset, this part becomes W (e; f)), andthe other two that pass on the left and right of f . We continue with the simulation processon the latter two pieces independently, after we have reset tstop in each piece to be theminimum of tstop(g) over the transparent edges g in that piece.If we stop because tstop = 1, we split the current generator list at all the transparentedge endpoints, producing W (e; f) for each transparent edge f , plus some wavefront piecesthat hit only opaque edges.If no transparent edges remain in some piece, all bisectors in the piece hit an opaqueedge. We mark all the generators in that piece for cell c and in O(1) nearby cells to satisfyRule 4, as well as making all necessary marks for Rules 2 and 3.When we �nish, we reset the priority of each vertex in the temporary set T based on thebisectors it de�nes with its neighbors in the (new) list. This ensures that each wavefrontfragment W (e; f) has its priorities set properly.Once we have computed the wavefront W (e; f), we determine the time of �rst contactbetween this wavefront and each endpoint of f . Each endpoint p lies in the region claimedby some v 2 W (e); v is the �rst or last generator in W (e; f). The time of �rst contactis d(v; s) + jvpj. (Because of visibility constraints, p may not be claimed by any generatorin W (e); recall that W (e; f) is constrained to reach f by paths passing through e andcontained in U(f). In this case the time of �rst contact is in�nite.)The propagation algorithm performs O(1) priority queue and list operations per bisectorevent processed, plus O(1) per edge of the conforming subdivision. Each operation takesO(logn) time and space. Because the wavefront data structure is fully persistent, all the34

modi�cations to a single wavefront list W (e) are independent: for example, a wavefrontW (e; f) may share generators with a wavefront W (e; g), for f; g 2 output(e), but thatoverlap causes no problems.We summarize the main result of the preceding discussion in the following lemma.Lemma 5.2 Every bisector event processed in the procedure above either (1) lies inside c,(2) involves a generator whose region is truncated by an opaque edge of c, (3) is associatedwith tstop(f) being set to a �nite value for the �rst time for some transparent edge f of c,or (4) lies within shortest path distance 2jf j of a transparent edge f of c. If the number ofevents is m, then the procedure takes O(m logn) time.As argued in the proof of Lemma 4.11, our simulation of the wavefront propagationdiscovers a bisector event for a generator v within a constant number of cells of a truebisector event for v in the shortest path map SPM (s). By the Propagation Invariant, thebisector events processed during the propagation of a wavefront W (e) across a cell c liewithin a constant number of cells near the edge e (cf. Lemma 5.2 (4)). We conclude thata generator v is marked for a constant number of cells in the vicinity of each of the truebisector events involving v. Thus, the total number of events processed and generatorsmarked during the wavefront propagation is O(n). This concludes the proof of our mainresult:Theorem 5.3 Let O be a family of polygonal obstacles in the plane with pairwise disjointinteriors and a total of n vertices. Given a point s, we can construct the shortest path mapfrom s with respect to O in time O(n logn) and space O(n logn).The shortest path map SPM (s) can be preprocessed for point location, after which ashortest path query from s to any point t in the plane can be answered in time O(logn) [10,16]. A shortest path �(s; t) can be computed in additional time O(k), where k is the numberof edges in the path.6 Constructing a Conforming SubdivisionThis section contains the proof of Theorem 2.1. It gives an algorithm to construct an �-conforming subdivision for a set V of n points in the plane. The main part of the algorithmconstructs a 1-conforming subdivision of size O(n) in O(n logn) time. The following lemmashows how to transform this subdivision into an �-conforming subdivision of size O(�n) inO(�n) additional time.Lemma 6.1 Let V be a set of n points, and let S1 be a 1-conforming subdivision for Vof size O(n). For any � > 1, we can build an �-conforming subdivision S� for V withcomplexity O(�n) in time O(�n). If S1 is a strong 1-conforming subdivision, then S� is astrong �-conforming subdivision.Proof. Subdivide each edge of S1 into d�e equal-length pieces. De�ne the well-covering region of each edge e in S� to be the same as the well-covering region inS1 of the edge of S1 of which e is a fragment. These operations can be performed35

in O(�n) time. We show below that the subdivision thus de�ned satis�es properties(C1){(C3). Text in [brackets] applies if S1 is strongly 1-conforming.(C1) S� has the same set of cells as S1, so each cell of S� contains at most one pointof V in its closure.(C2) Each internal edge e� of S� is well-covered with parameter �, since it satis�esconditions (W1), (W2), and (W3) [(W30)]. Let e1 be the edge of S1 of whiche� is a fragment. Let C�(e�) be the set of cells of S� whose union U�(e�) is thewell-covering region of e�. De�ne C1(e1) and U1(e1) analogously.(W1) U�(e�) covers the same area as U1(e1), so e� is contained in its interior.(W2) Each edge of each cell in C1(e1) is divided in d�e pieces in C�(e�) , so thetotal complexity of C�(e�) is O(�).(W3) [(W30)]Let f� be an edge of S� on [or outside] the boundary of U�(e�), and let f1be the edge of S1 from which it is derived. The Euclidean distance betweene� and f� is at least as large as the distance between e1 and f1, which isat least max(je1j; jf1j) � max(�je�j; �jf�j).(C3) Well-covering regions in S� are the same as in S1, so each contains at most onevertex of V .This establishes the lemma. 2Before we describe the construction of the 1-conforming subdivision, we need a fewde�nitions.6.1 The i-boxes and i-quadsWe �x a Cartesian coordinate system in the plane. For any integer i, an ith-order grid inthis coordinate system is the arrangement of all lines x = k2i and y = k2i, where k rangesover all integers. Each face of this grid is a square of size 2i � 2i, whose lower-left cornerlies at a point (k2i; l2i), for a pair of integers k; l. We call each such face an i-box .Any 4 � 4 array of i-boxes is called an i-quad. Though an i-quad has the same sizeas an (i + 2)-box, it is not necessarily an (i + 2)-box because it may not be a face in the(i+ 2)-order grid. The four non-boundary i-boxes of an i-quad form its core; that is, thecore of an i-quad is a 2� 2 array of i-boxes. Observe that an i-box b may have up to fouri-quads that contain b in their cores.Our algorithm for building a 1-conforming partition of the point set V is a bottom-up procedure. The algorithm simulates a growth process in which we grow a square boxaround each data point, until the entire plane is covered by these boxes. The simulationworks in discrete stages numbered �2; 0; 2; 4; It produces a subdivision of the planeinto orthogonal cells. The key object associated with a data point p in stage i is an i-quadcontaining p in its core. In fact, the following stronger condition holds inductively: each(i�2)-quad constructed in stage (i�2) lies in the core of some i-quad constructed in stage i.In each stage, we maintain only a minimal set of quads. The set of quads in stage i isdenoted Q(i). This set is partitioned into equivalence classes under the transitive closureof the overlap relation|two quads q and q0 are in the same equivalence class if there is36

a sequence of quads q = q0; q1; : : : ; qm = q0 2 Q(i) such that qj and qj+1 overlap (have acommon interior point) for all j = 0; 1; : : : ; m�1. Let fS1(i); : : : ; Sk(i)g denote the partitionof Q(i) into equivalence classes in the ith stage, and let �i denote the equivalence relation.The region of the plane covered by quads in one class of this partition is called a com-ponent . Each component in stage i is either an i-quad or the union of i-quads. We canclassify each component as either a simple component or a complex component. A compo-nent at stage i is simple if (1) its outer boundary is an i-quad and (2) it contains exactlyone (i� 2)-quad of Q(i� 2) in its interior. Otherwise, the component is complex.6.2 The InvariantsAs the algorithm progresses, we draw the boundaries of certain components. Each boundaryedge is a straight line segment, parallel to one of the axes, and together these edges subdividethe plane into orthogonal cells. The critical property of our subdivision is the followingconforming property :Invariant 1: For any edge e and cell c of the subdivision, c has an interiorpoint within distance jej of e if and only if c and e are incident (their closuresintersect). Thus there are at most six cells within distance jej of any edge e.Our algorithm draws edges of increasing lengths, and so we never need to subdividepreviously drawn edges inside a component. In order to help maintain Invariant 1, we willalso enforce the following auxiliary invariant.Invariant 2: The boundary of each complex component in stage i is subdividedinto edges of length 2i that are aligned with the ith-order grid.Our algorithm does not actually draw the outer boundary of a simple component untiljust before it merges with another component to form a complex component. Indeed, thisis crucial to ensure that the �nal subdivision has only O(n) size, and not �(n logA), whereA is the maximum aspect ratio of a triangle in the Delaunay triangulation of the inputpoints [3].There are two main parts to our algorithm|one involves growing the (i � 2)-quadsof stage (i � 2) to i-quads of stage i, and the other involves computing and maintainingthe equivalence classes and drawing subdivision edges to satisfy Invariants 1 and 2. Thesetasks are performed by procedures growth and build-subdivision, respectively. We postponethe discussion of growth till later, but introduce the necessary terminology to allow us todescribe build-subdivision.Given an i-quad q, growth(q) is an (i+2)-quad containing q inside its core. For a familyS of i-quads, growth(S) is a minimal set of (i+ 2)-quads satisfying the following:8 q 2 S; 9 �q 2 growth(S) s.t. �q = growth(q):As mentioned earlier, up to four (i + 2)-quads may qualify for the role of growth(q). Wewill describe later how the procedure growth chooses growth(q), but for now we will usegrowth(q) as a unique (i + 2)-quad returned by the procedure growth . We also use thenotation �q to denote growth(q). 37

6.3 Details of build-subdivisionBy proper scaling and translation of the plane, we assume that either the horizontal or thevertical distance between any two points in V is at least 1, and no point coordinate is amultiple of 1=4. For every point p 2 V , we compute a (�2)-quad with p in the upper left(�2)-box of its core; this choice ensures that quads of di�erent points are disjoint. Thesequads form the initial set of quads Q(�2)|each quad in Q(�2) forms its own singletoncomponent under the equivalence class in stage �2. We regard all quads in Q(�2) assimple components. We draw a (�2)-box around each point p. Each of these (�2)-boxes iscontained in the core of its (�2)-quad. (The (�2)-quads are not drawn.) Invariants 1 and 2are both clearly satis�ed at this stage. The pseudo-code below describes the details of thealgorithm build-subdivision. This pseudo-code is correct, but not particularly e�cient; ane�cient implementation is presented in Section 6.5.

38

Algorithm build-subdivisionwhile jQ(i)j > 1 do1. Increment i : i = i+ 2.2. (� Compute Q(i) from Q(i� 2). �)(a) Initialize Q(i) = ;.(b) for each equivalence class S of Q(i� 2) doQ(i) = Q(i)[growth(S).(c) for every pair of i-quads q; q0 2 Q(i) doif q \ q0 6= ;, set q �i q0.(d) Extend �i to an equivalence relation by transitive closure,and compute the equivalence classes.3. (� Process simple components of �i�2 that are about to mergewith some other component. �)for each q 2 Q(i� 2) do(a) Let �q = growth(q) as computed in Step 2.(b) if q is a simple component of Q(i� 2)but �q is not a simple component of Q(i) thenDraw the boundary box of q and subdivide each ofits sides into four edges at the (i� 2)-order grid lines.4. (� Process complex components. �)for each equivalence class S of Q(i) doLet S 0 = fq 2 Q(i� 2) s.t. growth(q) 2 Sg.if jS 0j > 1 then (� S is complex �)(a) Let R1 = [q2S0 fthe core of growth(q)g.(b) Let R2 = [q2S0 fthe region covered by qg.(c) Draw (i� 2)-boxes to �ll the region between theboundaries of R1 and R2.(d) Draw i-boxes to �ll the region between the boundariesof R1 and S; break each cell boundary with an endpointincident to R1 into four edges of length 2i�2, to satisfyInvariant 1.endwhileLemma 6.2 The subdivision computed by the algorithm build-subdivision satis�es Invari-ants 1 and 2.Proof. We prove by induction that the invariants hold inside the family of quadsQ(i), for all i. The initial family of quads Q(�2) clearly satis�es the two invariants.We show that no step of the algorithm build-subdivision ever violates these invariants.39

Step 2 computes growth(S) for each equivalence class of Q(i�2), and then computesQ(i). No new edges are drawn in this step.The only edges drawn in Step 3 are on the boundaries of simple components.Let q be an (i� 2)-quad that is a simple component of Q(i� 2). By de�nition, thesingle (i� 4)-quad of Q(i � 4) contained in q lies in its core, and thus is separatedfrom the outer boundary of q by a gap of at least 2i�2 on all sides. Hence the edgesalready drawn in the core satisfy Invariant 1: they have length no more than 2i�2(actually 2i�4, except when i = 0), and are separated from the boundary of q bya gap of at least 2i�2. We draw the boundary of q in Step 3; since any previouslydrawn edges within q lie in its core, the new edges satisfy Invariant 1. Invariant 2holds vacuously.Step 4 subdivides the region covered by each complex component S. Again, theboundary of S is separated from any components of Q(i�2) contained in it by a gapat least the width of an i-box. Step 4(c) adds (i�2)-boxes to pad the region coveredby Q(i� 2) out to the boundaries of i-boxes. By Invariant 2, the newly drawn boxessatisfy Invariant 1 with respect to the previously drawn edges; they clearly satisfyInvariant 1 with respect to each other's edges. Step 4(d) packs the area betweenthe core and the boundary of S with i-boxes, and breaks the segments incident topreviously drawn cells into four pieces to guarantee Invariant 1 with respect to thosecells. (The previously drawn edges on the core boundary have length 2i�2, so byinduction the cells incident to them have side lengths at least 2i�2. It follows thatthe cells inside the core satisfy Invariant 1 with respect to the newly drawn segmentsof length 2i�2.) The segments on the boundary of S are unbroken, so Invariant 2holds at the next stage of the algorithm. This completes the proof. 2Lemma 6.3 The subdivision produced by build-subdivision has size O(n).Proof. We show that the algorithm draws a linear number of edges altogether. Thenumber of edges drawn in Step 3 is proportional to the number drawn in Step 4|wedraw a constant number of edges in Step 3 for each simple component that merges toform a complex component at the next stage. The number of edges drawn in Step 4for a complex component S is O(jS 0j), the number of (i � 2)-quads whose growthsconstitute S. The key observation in proving the linear bound is that the total sizeof Q decreases every two stages by an amount proportional to the total number ofquads in complex components. This fact, which we prove in the next subsection(Lemma 6.5), can be expressed as follows: If ei edges are drawn in stage i, thenjQ(i+ 2)j � jQ(i� 2)j � �(ei):That is, there exists an absolute constant � such that�ei � jQ(i� 2)j � jQ(i+ 2)j:If we sum this inequality over all even i � 0, the right hand side telescopes, and weobtain �Xi ei � jQ(�2)j+ jQ(0)j � 2:40

Since jQ(�2)j = n, we have Pi ei � (2n � 2)=�. The total number of edges in thesubdivision is O(n). 2Lemma 6.4 The subdivision produced by build-subdivision is strongly 1-conforming andsatis�es the following additional properties: (1) all edges of the subdivision are horizontalor vertical, (2) each face is either a square or a square-annulus (with subdivided boundary),(3) each annulus has the minimum clearance property, (4) each face has the uniform edgeproperty, and (5) every point of V is contained in a square face.
e

Figure 17: A well-covering region U(e). The boundary of I(e) is shown dashed.Proof. Strong 1-conformity is a consequence of Invariant 1, as we now show.Condition (C1) is trivially true, since each point is initially enclosed by a square. Toestablish well-covering (Condition (C2)), let I(e) be the union of the (at most six)cells incident to an edge e. By Invariant 1, the distance from e to any edge outsideor on the boundary of I(e) is at least jej. Edge e may be collinear with other edgesof the two cells on whose boundary it lies. We de�ne C(e) to be the set of cellsincident to any of these collinear edges; U(e), the union of these cells, is a supersetof I(e). See Figure 17. Because the two cells with e as a boundary edge meet onlyalong edges collinear with e, this de�nition of U(e) means that for any edge f on oroutside the boundary of U(e), I(f) does not contain both cells incident to e. Butthis implies, by Invariant 1, that e is on or outside the boundary of I(f), and hencethe distance from e to f is at least jf j. Edge e certainly lies in the interior of U(e)(Condition (W1)). Condition (W2) follows because C(e) is the union of I(e0) forO(1) edges e0 collinear with e, jI(e0)j � 6 for each e0, and each cell has constantcomplexity. As noted above, the minimum distance between e and any edge f onor outside the boundary of U(e) is at least max(jej; jf j), which establishes Condition(W30). Condition (C3) follows from the observation that a well-covering region U(e)includes a vertex v of V if and only if e is an edge of the square containing v. Thisis because each vertex-containing square is the inner square of a square annulus inthe subdivision. No edge belongs to two such squares, so Condition (C3) holds.41

Properties (1){(5) hold by construction. This completes the proof. 26.4 The Algorithm growth()In this subsection, we describe our algorithm for computing growth(S) for a set of i-quads S,and prove that the number of quads decreases every two stages by an amount proportionalto the total complexity of the complex components. Let S � Q(i) be a set of i-quadsforming a complex component under the equivalence relation �i. Recall that growth(S) is aminimal set of (i+2)-quads such that each i-quad of S lies in the core of some (i+2)-quadin growth(S). We will show thatjgrowth(growth(S))j � �jSj;for an absolute constant 0 < � < 1. The pseudo-code below describes an unoptimizedversion of our algorithm for computing growth(S). The algorithm works by building agraph on the quads in S. Algorithm growth(S)0. Set growth(S) = ;.1. for each pair of quads q1; q2 2 S doif q1 [q2 can be contained in a 2� 2 array of (i+ 2)-boxes, thenPut an edge between q1 and q2.2. Compute a maximal matching in the graph computed in Step 1.3. for each edge (q1; q2) in the maximal matching doChoose an (i+ 2)-quad �q containing q1; q2 in its core.Set growth(q1) = growth(q2) = �q, and add �q to growth(S).4. for each unmatched quad q 2 S doSet growth(q) = �q, where �q is an (i+ 2)-quad containing q in its core.Add �q to growth(S).In this algorithm, Step 1 builds a graph whose nodes are the i-quads of S; two quads q1and q2 have an edge between them if their union q1 [q2 lies in some 2� 2 array of (i+ 2)-boxes. The maximum node degree of this graph is O(1) since only a constant number ofi-quads can touch any i-quad q. Thus, a maximal matching in this graph has �(jEj) edges.Each i-quad at stage i maps to an (i+ 2)-quad at stage (i+ 2). Since each matching edgecorresponds to two i-quads that map to the same (i+ 2)-quad, it clearly follows thatjgrowth(S)j = jSj � �(jEj):The crucial fact to prove is that jEj is a constant fraction of jSj at stage (i+ 2).Lemma 6.5 Let S � Q(i) be a set of two or more i-quads such that growth(S) is a complexcomponent under the equivalence relation �i+2. Then jgrowth(growth(S))j � �jSj, for anabsolute constant 0 < � < 1. 42

Proof. We show that either jgrowth(S)j < (3=4)jSj, or at least half of the quads ofgrowth(S) can be contained in a 2 � 2 array of (i+ 2)-boxes with some other quadof growth(S).If jgrowth(S)j < (3=4)jSj, then we are done, because the following inequalityobviously holds: jgrowth(growth(S))j � jgrowth(S)j � (3=4)jSj. Therefore, supposethat jgrowth(S)j � (3=4)jSj. Then at least half the i-quads of S are not matchedin Step 2 of the function growth(), and their growths contribute more than half ofthe (i+ 2)-quads of growth(S). Consider one such i-quad q 2 S. Since S is a non-singleton equivalence class, there exists another i-quad q0 2 S that overlaps q. Let�q = growth(q) and �q0 = growth(q0). By assumption, �q 6= �q0. The cores of �q and �q0both contain the overlap region q \ q0, so the cores must overlap. Therefore bothcores are contained within a 3� 3 array of (i+ 2)-boxes, and both the (i+ 2)-quads�q and �q0 are contained within a 5� 5 array of (i+2)-boxes. This ensures that �q and�q0 are joined by an edge in the graph of growth(S): any two (i + 2)-quads whosebounding box is contained in a 5 � 5 array of (i + 2)-boxes can be covered by a2 � 2 array of (i + 4)-boxes. Hence the number of edges in the maximal matchingof growth(S) is
(jSj), which proves the inequality jgrowth(growth(S))j � �jSj forsome � < 1. 2Since the number of edges drawn at stage i, call it ei, is proportional to the number of(i�2)-quads whose growths belong to complex components, the preceding lemma establishesthe earlier claim that jQ(i+ 2)j � jQ(i� 2)j � �(ei):For any q; q0 2 S, we have growth(q) = growth(q0) only if q and q0 are touching|theirclosures intersect|otherwise q and q0 cannot be contained in the core of the same (i+ 2)-quad. We use this fact to implement the procedure growth(S) to run in time O(jSj log jSj):each quad of S touches at most a constant number of other quads, and we can computewhich quads touch using an O(jSj log jSj) plane sweep algorithm [23]. From the set oftouching pairs we can compute the graph edges in Step 1 of growth(S) in O(jSj) additionaltime. All other steps of growth(S) take time proportional to the graph size, which is O(jSj).6.5 An O(n logn) Implementation of build-subdivisionIn order to keep the time complexity of build-subdivision independent of the aspect ratioof the points, we process a simple component only when it is about to merge with anothercomponent. In other words, the amount of processing is proportional to the number ofboundary edges drawn at any stage. Except for Step 2(b), which computes growths, andStep 2(c), which detects overlapping i-quads, all other steps can be implemented to run intime proportional to the number of edges drawn in the subdivision. (Steps 3 and 4 use theadjacency information computed in Step 2(c) to run in linear time.)We maintain the simple components and the complex components ofQ(i) in two separatesets. We compute growth(S) explicitly for the complex components, but only implicitlyfor the simple components. Suppose that q is a singleton component of Q(i � 2j), andgrowthj(q) 2 Q(i) is the result of applying the growth() operator j times. If growthk(q)is simple for all positive k � j, then growthj(q) can be determined in constant time from43

q using the
oor operation. The set of simple components of Q(i) is maintained as a setof singletons from earlier stages; when we determine that a simple component is about tomerge with another component (Step 2(c)), we compute the simple component explicitly.The transitive closure can be computed in time proportional to the total size of the complexcomponents, which is proportional to the number of edges drawn at this stage. Since the�nal subdivision has size O(n), all the work except that in Steps 2(b) and 2(c) takes a linearamount of time. In the following we show how to use a minimum spanning tree algorithmto implement Step 2(c) in O(n logn) time.6.5.1 The Merging of i-quadsBefore we present the algorithm, we discuss the distance properties satis�ed by points thatlie in the same equivalence class in stage i. We say that a quad q is a containing i-quad ofa point u 2 V if q 2 Q(i) and u lies in q's core. A point u belongs to an equivalence classS 2 Q(i) if there is a containing i-quad of u in S.Lemma 6.6 Let u be a point of V and let q 2 Q(i) be a containing i-quad of u. Then theminimum L1 distance between u and the outer boundary of q is 2i.Proof. The lemma depends on the property that u lies in the core of q. Since q hasside length 2i+2, and u lies at least a quarter of this distance away from the outerboundary, the lemma follows. 2In the following, the notation d1(u; v) denotes the distance between the points u and vunder the L1 norm.Lemma 6.7 Let u and v be two points of V that belong to di�erent equivalence classes ofQ(i). Then d1(u; v) > 2� 2i.Proof. Let qu and qv be two containing i-quads for u and v, respectively. Sinceu and v lie in di�erent equivalence classes, these i-quads do not intersect. ByLemma 6.6, each of the points lies at least a distance 2i away from the outer bound-aries of their i-quads, which immediately gives the lower bound on d1(u; v) statedin the lemma. 2Lemma 6.8 Let u; v 2 V be two points and let qu; qv, respectively, be two i-quads of Q(i)containing them. If qu \ qv 6= ;, then d1(u; v) < 6� 2i.Proof. By Lemma 6.6, the maximum distance between u and the outer boundaryof qu is at most 3� 2i. The same holds for v and qv , which implies the upper boundon d1(u; v). 26.5.2 Minimum Spanning TreesLet VS be the set of points in the core of some component S 2 Q(i). Our implementationof build-subdivision is based on the observation that the longest edge of the L1 minimumspanning tree of VS has length less than 6 � 2i. To make this observation more precise,we de�ne G(i) to be the graph on V containing exactly those edges whose L1 length is atmost 6� 2i, and de�ne MSF (i) to be the minimum spanning forest of G(i).44

Lemma 6.9 The points contained in any component of Q(i) belong to a single tree ofMSF (i).Proof. Let S be a component of Q(i). By Lemma 6.8, the points contained in Scan be linked by a tree with edges shorter than 6 � 2i. For any bipartition of thepoints of VS , the minimum weight edge linking the two subsets is shorter than 6�2i.The minimum spanning tree of VS has all edges shorter than 6 � 2i, and thereforeVS belongs to a single tree of MSF (i). 2Lemma 6.10 If i-quads q1 and q2 belong to di�erent components of Q(i), then their pointsbelong to di�erent trees of MSF (i� 2).Proof. Every edge from a point in q1's component to any point outside thatcomponent has length greater than 2 � 2i, by Lemma 6.7. The points of quadsq1 and q2 are in the same tree of MSF (i� 2) only if every bipartition of V thatseparates the points of q1 from those of q2 is bridged by an edge of length less than6� 2i�2. But the bipartition separating the points of q1's component of Q(i) fromthe rest of V has bridge length greater than 2� 2i > 6� 2i�2. 2Our algorithm is based on an e�cient construction of MSF (i) for all i such thatMSF (i) 6= MSF (i� 2). The standard algorithm for computing a geometric minimum span-ning tree is well-suited to our needs. We compute the L1 Delaunay triangulation of Vin O(n logn) time [6], then run Kruskal's MST algorithm [8]. Kruskal's algorithm insertsthe O(n) Delaunay edges into the current minimum spanning forest in sorted order fromshortest to longest; any edge that joins two trees of the forest is retained, and all other edgesare dropped. For each edge e added to the forest, we compute k = 2l12 log2(jej=6)m, whichdetermines the stage k at which e is added to MSF (k). By stopping just before each stagechange, we produce MSF (i) for each even i such that MSF (i) 6= MSF (i� 2) in O(n logn)total time.
45

Implementation of build-subdivisionFor each T 2 MSF (i), maintain the corresponding set of i-quads in Q(i) that arethe containing quads for the vertices of T . Call this set Q(i; T).Initialize i = �2. Initialize MSF (�2) to be a forest of singleton vertices. For eachvertex v 2 V , Q(�2; fvg) is a singleton quad with v in its core.Maintain a set N of trees in MSF (i) such that for each T 2 N , jQ(i; T)j > 1;that is, T 's component is not a singleton quad. Initialize N = ;.while jQ(i)j > 1 doiold = i;if jN j > 0 then i = i+ 2else Set i to the smallest even i0 > i such that MSF (i0) 6= MSF (i).foreach edge e of MSF (i) not in MSF (iold) doLet T1 and T2 be the trees linked by e.foreach Tx 2 fT1; T2g doif Tx 2 N thenRemove Tx from N .elseCompute the singleton (i� 2)-quad in Q(i� 2; Tx).Join T1 and T2 to get T 0, and put T 0 in N .Set Q(i� 2; T 0) = Q(i� 2; T1)[Q(i� 2; T2).end(� Invariant: if T 2 N , then Q(i� 2; T) is correctly computed. �)foreach T 2 N do2(a) Initialize Q(i; T) = ;.2(b) for each equivalence class S of Q(i� 2; T)) doQ(i; T) = Q(i; T)[growth(S).2(c{d) Compute the equivalence classes of Q(i; T) by plane sweep.3{4 Perform Steps 3 and 4 of build-subdivision on Q(i; T).if jQ(i; T)j= 1 then Delete T from N .endendwhileThe implementation of build-subdivision above replaces Steps 1 and 2 of build-subdivisionwith more e�cient code based on minimum spanning trees. First, we process only stagesat which something happens: MSF (i) changes, or there are complex components of Q(i)whose growth computation is nontrivial. (This optimization is not usually signi�cant; itmatters only if the ratio of maximum to minimum point separation is greater than 2n.)Second, we compute growth(S) only for complex components and for simple components46

that will merge with another component soon, and compute the equivalence classes of Q(i)only for this same set of quads. Simple components that are well-separated from others arenot involved in the computation.The running time of this algorithm is dominated by the O(k log k) required for a planesweep [23] of k = jQ(i; T)j quads in Step 2(c{d). There are O(k) quads in complex com-ponents either in Q(i; T) or in Q(i + 2; T), so there are O(k) edges drawn for these quadsat stage i or i+ 2. We amortize this cost by charging O(log k) per edge of the subdivision,getting O(n logn) time overall. The computation of the Delaunay triangulation and theminimum spanning forest contributes a term of the same asymptotic magnitude.We have established the following lemma.Lemma 6.11 Algorithm build-subdivision can be implemented to run using O(n logn) stan-dard operations on a real RAM, plus O(n)
oor and base-2 logarithm operations.Lemmas 6.1, 6.3, 6.4, and 6.11 establish the main theorem of this section.Conforming Subdivision Theorem For any � � 1, every set of n points in the planeadmits a strong �-conforming subdivision of O(�n) size satisfying the following additionalproperties: (1) all edges of the subdivision are horizontal or vertical, (2) each face is either asquare or a square-annulus (with subdivided boundary), (3) each annulus has the minimumclearance property, (4) each face has the uniform edge property, and (5) every data pointis contained in the interior of a square face. Such a subdivision can be computed in timeO(�n+ n logn).7 Extensions and Concluding RemarksWe have presented a worst-case optimal algorithm for the planar, Euclidean shortest pathproblem. Our algorithm uses the wavefront propagation method and builds a shortest pathmap, which can be used to answer shortest path queries from a �xed source in logarithmictime. We introduced several new ideas and techniques in order to implement the wavefrontpropagation optimally. Perhaps the most original contribution of our paper is the ideaof a conforming subdivision|it is a quad-tree-like subdivision that seems especially usefulfor line segments. We expect this subdivision to �nd other applications in computationalgeometry.Our wavefront simulation is highly \local" in the sense that all interactions amongbisectors occur within \small" regions (well-covering regions). Obviously, we still requirethe bisectors to satisfy some global properties, such as the ones stated in Lemmas 3.2and 3.3, but the locality of processing allows our algorithm to extend to several moregeneral instances of the shortest path problem. These include generalizations involving theshape and the number of sources. We sketch below the modi�cations necessary for some ofthese extensions.Non-Point SourcesWhen the source is not a point, but rather a more complex geometric shape such as a linesegment or a disk, then the initial wavelet originating from the source has a more compli-cated form: it is the Minkowski sum of a disk and the source. However, the intermediate47

generators are still just the obstacle vertices, and they generate circular wavelets. Thus,except for initialization and propagating the initial wavelets, the rest of the wavefront prop-agation algorithm does not change. The initialization involves computing \direct" distancesto all the cells that are within a constant number of cells of the the source, which can bedone easily in O(n logn) time.Multiple SourcesComputing shortest paths in the presence of multiple sources is equivalent to computing a\geodesic Voronoi diagram": a partition of the free space into regions so that all points ina region have the same nearest source and the combinatorial structure of the shortest pathto that source is also the same for all points in the region. To help visualize the process, wemight imagine that the wavefront of each source has a distinct color; in the end, the regionclaimed by each source acquires the color of its source.During the initialization, we compute direct distances between each source and thecorners of its well-covering regions; if well-covering regions overlap, we use the Voronoidiagram of the sources to decide which corner is closer to which source. Again, this can bedone in O(n logn) time initially. We maintain a common priority queue for all the sources,and as each obstacle vertex is claimed, it acquires the color of its claiming source. Knowingthe color of each generator helps us determine whether a bisector is bounding two regionsbelonging to the same source or two di�erent sources. In all other respects, the processingof bisectors in cells is the same as in the original algorithm.Other GeneralizationsThe ideas mentioned above also work for multiple sources with speci�ed release times. Inparticular, each source has associated with it an initial \delay" and its wavelet is issuedafter the speci�ed delay. The delays are easily handled by our algorithm: just add the delaytime of each source to its initial priority queue entries. The rest of the algorithm proceedsas before.Open ProblemsFinally, we conclude with two open problems.1. Can the space complexity of our algorithm be reduced to linear?2. Does our wavefront propagation method extend to the shortest path problem on thesurface of a convex polytope?AcknowledgmentWe are grateful to an anonymous referee for a thoughtful and thorough review; the referee'ssuggestions signi�cantly improved the presentation of our results.48

References[1] T. Asano. An e�cient algorithm for �nding the visibility polygons for a polygonalregion with holes. Transactions of IECE of Japan, E-68:557{559, 1985.[2] Ta. Asano, Te. Asano, L. Guibas, J. Hershberger, and H. Imai. Visibility of disjointpolygons. Algorithmica, 1(1):49{63, 1986.[3] M. Bern, D. Eppstein, and J. R. Gilbert. Provably good mesh generation. In Proc. of31st IEEE Symposium on Foundations of Computer Science, pages 231{241, 1990.[4] B. Chazelle. A theorem on polygon cutting with applications. In Proceedings of the23rd IEEE Symposium on Foundations of Computer Science, pages 339{349, 1982.[5] L. P. Chew. There are planar graphs almost as good as the complete graph. J. Comput.Syst. Sci., 39:205{219, 1989.[6] L. P. Chew and R. L. Drysdale. Voronoi diagrams based on convex distance functions.In Proceedings of 1st ACM Symposium on Computational Geometry, pages 235{244,1985.[7] K. L. Clarkson. Approximation algorithms for shortest path motion planning. InProceedings of 19th Symposium on Theory of Computing, pages 56{65, 1987.[8] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press, 1993.[9] E. W. Dijkstra. A note on two problems in connection with graphs. Num. Mathematik,1:269{271, 1959.[10] H. Edelsbrunner, L. Guibas, and J. Stol�. Optimal point location in a monotonesubdivision. SIAM J. Comput., 15:317{340, 1986.[11] M. Fredman and R. Tarjan. Fibonacci heaps and their uses in improved networkoptimization algorithms. J. ACM, 34:596{615, 1987.[12] S. K. Ghosh and D. M. Mount. An output-sensitive algorithm for computing visibilitygraphs. SIAM J. Comput., 20(5):888{910, 1991.[13] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan. Linear time algo-rithms for visibility and shortest path problems inside triangulated simple polygons.Algorithmica, 2:209{233, 1987.[14] J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopyclass. Comp. Geom.: Theory and Appl., 4:63{97, 1994.[15] S. Kapoor and S. N. Maheshwari. E�cient algorithms for Euclidean shortest paths andvisibility problems with polygonal obstacles. In Proceedings of the 4th ACM Symposiumon Computational Geometry, pages 172{182, 1988.[16] D. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput., 12:28{35,1983. 49

[17] D. T. Lee and F. P. Preparata. Euclidean shortest paths in the presence of rectilinearbarriers. Networks, 14(3):393{410, 1984.[18] J. S. B Mitchell. A new algorithm for shortest paths among obstacles in the plane.Annals of Mathematics and Arti�cial Intelligence, 3:83{106, 1991.[19] J. S. B. Mitchell. Shortest paths among obstacles in the plane. Internat. J. Comput.Geom. Appl., 6:309{332, 1996.[20] J. S. B. Mitchell, D. M. Mount, and C. Papadimitriou. The discrete geodesic problem.SIAM J. Comput., 16(4):647{668, 1987.[21] J. Mitchell, D. Mount, and S. Suri. Query-sensitive ray shooting. In Proc. 10th Annu.ACM Sympos. Comput. Geom., pages 359{368, 1994.[22] M. H. Overmars and E. Welzl. New methods for computing visibility graphs. InProceedings of the 4th ACM Symposium on Computational Geometry, pages 164{171,1988.[23] F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag, NewYork, 1985.[24] J. Reif and J. Storer. Shortest paths in the plane with polygonal obstacles. J. ACM,41(5):982{1012, 1994.[25] H. Rohnert. Shortest paths in the plane with convex polygonal obstacles. Inf. Process.Lett., 23:71{76, 1986.

50

