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Abstract

We propose an optimal-time algorithm for a classical problem in plane computational
geometry: computing a shortest path between two points in the presence of polygonal
obstacles. Our algorithm runs in worst-case time O(nlogn) and requires O(nlogn)
space, where n is the total number of vertices in the obstacle polygons. The algorithm
is based on an efficient implementation of wavefront propagation among polygonal ob-
stacles, and it actually computes a planar map encoding shortest paths from a fixed
source point to all other points of the plane; the map can be used to answer single-
source shortest path queries in O(logn) time. The time complexity of our algorithm
is a significant improvement over all previously published results on the shortest path
problem. Finally, we also discuss extensions to more general shortest path problems,
involving non-point and multiple sources.

1 Introduction

1.1 The Background and Our Result

The Euclidean shortest path problem is one of the oldest and best-known problems in
computational geometry. Given a planar set of polygonal obstacles with disjoint interiors,
the problem is to compute a shortest path between two points avoiding all the obstacles.
Due to its simple formulation and obvious applications in routing and robotics, the problem
has drawn the attention of many researchers in computational geometry; we mention only
a few papers most relevant to our work [4, 13, 14, 17, 18, 19, 25].

The problem of computing shortest paths in the presence of a single obstacle has received
special attention, due to its applications in various geometric problems involving a simple
polygon [4, 13, 14, 17]. The roles of free space and obstacle space have traditionally been
reversed in this special case: the interior of the polygon represents the free space and
the boundary of the polygon represents an impenetrable obstacle. After several years of
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continued efforts, an optimal, linear-time algorithm is now known for computing a shortest
path in a simple polygon [13, 14].

The general case of multiple obstacles, however, has proved to be substantially more
difficult. There have been two fundamentally different approaches to the problem—the
visibility graph method and the shortest path map method.' The visibility graph method
is based on constructing a graph whose nodes are the vertices of the obstacles and whose
edges are pairs of mutually visible vertices. The shortest path between two vertices can be
found by running any Dijkstra-type algorithm on this graph [8, 9, 11]. This approach fueled
intense research on computing visibility graphs, culminating in an optimal O(nlogn + F)
time algorithm by Ghosh and Mount [12], where F is the number of edges in the graph.
Unfortunately, the visibility graph can have Q(n?) edges in the worst case, and so any
shortest path algorithm that depends on an explicit construction of the visibility graph will
have a similar worst-case running time [1, 2, 15, 22, 25]. A “holy grail” of this approach is
to build and search only the portion of the visibility graph that is relevant to the shortest
path computation, but no noteworthy progress has been made on that front.

The second approach tries to solve a more general problem: for a given source point s,
build a shortest path map (a subdivision of the plane) so that all points of a region have
the same vertex sequence in their shortest path to s. This map is an encoding of shortest
paths from s to all points of the plane. The shortest path map approach seems inherently
more geometric than the graph-theoretic method based on visibility graphs. Nevertheless,
most algorithms using the shortest path map approach also have Q(n?) worst-case running
times—however, their running times typically have the form O(nkg(n)), where k is the
number of obstacles and ¢g(n) is a sublinear function, such as the poly-logarithm [15, 18, 24].
Thus, for a small number of obstacles, these bounds approach the time complexity for a
single obstacle. Mitchell has recently published an algorithm for computing a shortest path
map that runs in O(n3/2+5) time and space [19], for any ¢ > 0, with the constant in the
big-Oh notation depending on e¢. Mitchell’s algorithm uses some advanced range searching
data structures to compute the vertices of the shortest path map.

The only lower bound known for the shortest path problem is ©Q(nlogn) in the algebraic
computation tree model, and so there remained a relatively large gap between the known
upper and lower bounds on the problem. (The lower bound follows easily by a reduction
from sorting.) Nevertheless, there had been a general belief in the computational geometry
community that an almost-linear-time algorithm must be achievable.

In this paper, we validate this belief by presenting an optimal O(nlogn) time algorithm
for computing shortest paths in the presence of polygonal obstacles; n denotes the total
number of vertices in all the obstacle polygons. Our algorithm takes the shortest path
map approach and builds a subdivision of the plane, which after an additional linear-time
preprocessing can be used to answer shortest path queries from a fixed point [10, 16].

A key idea in our algorithm is a special, quad-tree-style subdivision of the plane with
respect to an arbitrary set of points P. This subdivision, called a conforming subdivision,
divides the plane into a linear number of cells using horizontal and vertical edges so that the
following critical condition holds: each point of P lies in a separate cell, and there are O(1)
cells within distance «|e| of every subdivision edge e, where |e| is the length of e and « is
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a parameter (we choose a = 2 for our application). Though a subdivision into square cells
with this property can be obtained using a quad-tree construction of Bern et al. [3], that
subdivision has size O(nlog A), where A is the aspect ratio of the Delaunay triangulation
of P. Our subdivision achieves its linear upper bound by enforcing a weaker condition; in
particular, cells in our subdivision may be nonconvex and the subdivision itself may not
be connected. Nevertheless, our conforming subdivision appears to be a useful tool and
is likely to have other applications. In particular, we discuss extensions of our technique
that can handle generalized versions of the shortest path problem. These include versions
with multiple sources (the “geodesic Voronoi diagram”) or non-point sources such as line
segments or disks.

1.2 An Overview of the Algorithm

We use a technique dubbed the continuous Dijkstra method in the literature [18, 19, 20].
It simulates the expansion of a wavefront from a point source in the presence of polygonal
obstacles. The wavefront at time ¢ consists of all points of the plane whose shortest-path
distance to the source is t. The boundary of the wavefront is a set of cycles, each composed
of a sequence of circular arcs. Each arc, called a wavelet, is generated by an obstacle vertex
already covered by the wavefront; the vertex is called the generator of its wavelet. The
meeting point between two adjacent wavelets sweeps along a bisector curve, which is either
a straight line or a hyperbola. Simulating the wavefront requires processing events that
change its topology. These events fall into two categories: wavefront-wavefront collisions and
wavefront-obstacle collisions. The ability to process these events efficiently is the key to a
fast algorithm for the shortest path problem. Detecting and processing these events quickly,
however, appears to be quite difficult, and except for the recent result of Mitchell [19], all
previous algorithms employing the continuous Dijkstra method have led to no better than
an Q(n?) worst-case time bound.

We introduce two new ideas to speed up the implementation of the wavefront propa-
gation method: a quad-tree-style subdivision of the plane, and an approximate wavefront.
Our first idea is to recognize that advancing a wavefront from event to event can be difficult
without a sufficiently well-behaved subdivision of the plane to guide the propagation. We
build a special subdivision of size O(n) on the vertices of the obstacles, temporarily ignoring
the line segments between them. Each cell of this subdivision, called a conforming subdivi-
ston, has a constant number of straight line edges, contains at most one obstacle vertex, and
satisfies the following crucial property: for any edge e of the subdivision, there are O(1) cells
within distance 2|e| of e. We then insert the obstacle line segments into the subdivision,
but maintain both the linear size of the subdivision and its conforming property—except
now a non-obstacle edge e has the property that there are O(1) cells within shortest path
distance 2|e| of the edge. These cells form the units of our propagation algorithm: in each
step, we advance the wavefront through one cell. Since each cell has constant descriptive
complexity, we are able to do the propagation in a cell efficiently.

Inside a cell, a wavefront-obstacle event is relatively easy to handle. However, a wavefront-
wavefront event is more complex. There are two types of wavefront-wavefront events,
depending on whether or not the colliding wavelets are neighbors in the wavefront. The col-
lision of neighboring wavelets occurs when a wavelet is engulfed by the expanding wavelets



of its two neighbors. This event is easy to detect and process. The collisions between non-
neighboring wavelets, however, are more troublesome, and to process them we introduce
our second idea: the approximate wavefront.

When trying to propagate the wavefront across a boundary edge of a cell, we abandon
the idea of computing the wavefront exactly; instead, we maintain two separate wavefronts,
approaching the edge from opposite sides. FEach of these wavefronts is an approzimate
wavefront, representing the wavefront that hits the edge from only one side.

We use timers to make a conservative estimate of the time each edge is engulfed by
the wavefront, and discard any parts of the wavefront arriving at a cell boundary after a
timer at that boundary edge goes off. A critical task of these timers is to ensure that the
wavefront-wavefront collisions of the true shortest path map are detected during approxi-
mate wavefront propagation in a small neighborhood of their actual location. The algorithm
propagates the approximate wavefront, remembering the wavefront-wavefront collisions and
updating the wavefront so that it has enough information to act as an approximate wave-
front at any time.

At the end of the propagation phase, we collect all the collision information, then use
Voronoi diagram techniques in each cell to compute the collision events in that cell precisely.
The collisions determine the edges of the final shortest path map.

This paper contains seven sections. Section 2 describes our conforming subdivision of
the free space, and Section 6 gives the details of its construction. Section 3 presents the
key shortest path properties used by our algorithm. Section 4 describes our algorithm for
computing a shortest path map. The data structures and finer details of our algorithm are
discussed in Section 5. We close in Section 7 with some discussion and open problems.

2 A Conforming Subdivision of the Free Space

The input to our shortest path problem is a source vertex s and a family of obstacles
O = {01,09,...,0}, where each obstacle is a simple polygon and the closures of any
two obstacles are disjoint. (It is not hard to extend our algorithm to handle more general
polygonal obstacles, but for convenience we limit our discussion to disjoint, non-nested
obstacles.) The total number of vertices in all the obstacles is n. The plane minus the
interiors of all obstacle polygons is called the free space, and a path is called legal if it lies
entirely in the free space—that is, a legal path is disjoint from the interiors of all obstacle
polygons in the family . Given two points in the plane, a Fuclidean shortest path between
them is a legal path of minimum total length connecting the two points.

A key ingredient of our shortest path algorithm is a special subdivision of the plane
into cells of constant descriptive complexity. We construct this subdivision in two steps:
the first step builds a subdivision by considering only the vertices of the obstacle polygons;
the second step inserts the obstacle edges into the subdivision. Our algorithm for the first
step (constructing a conforming subdivision for points) is somewhat complicated and quite
independent of our main topic, the shortest paths, and so we have moved its presentation
to Section 6 at the end of the paper. In the present section, we assume the construction for
points, and describe how to modify this subdivision when obstacle edges are inserted. We
start with some preliminary definitions.



2.1 The Well-covering Regions

Our subdivision is inspired by quad-trees, though it is best implemented bottom-up. A
crucial property of our subdivision is the well-covering of its internal edges. Given a straight-
line subdivision § of the plane, an edge e € § is said to be well-covered with parameter o if
the following three conditions hold:

(W1) There exists a set of cells C(e) C S such that e lies in the interior of their union. The
union is denoted U(e) = {c| c € C(e)}.

(W2) The total complexity of all the cells in C(e) is O(«).

(W3) If fis an edge on the boundary of the union ¢(e), then the Euclidean distance between
e and f is at least a - max (|el, | f]).

The edge is strongly well-covered if the stronger condition (W3’) holds:

(W3') If f is an edge on or outside the boundary of the union U(e), then the Euclidean
distance between e and f is at least « - max (Je|, | f]).

In either case, the region U(e) is called the well-covering region of e. Our wavefront sim-
ulation algorithm cares only about the distance between e and the edges on the boundary
of U(e); that is, it requires its subdivision edges to be well-covered, but not strongly well-
covered. The strong condition on the distance between e and the edges outside ¢ (e) is used
only in our construction of the conforming subdivision (cf. Lemma 2.2).

Let V' denote the set of vertices of the obstacle polygons, plus the source vertex s. A
subdivision § is called a (strong) a-conforming subdivision for V' if

(C1) Each cell of § contains at most one point of V' in its closure (interior plus boundary),
(C2) Each edge of S is (strongly) well-covered with parameter «, and

(C3) The well-covering region of every edge of & contains at most one vertex of V.

The subdivision is called “conforming” because Conditions (C1) and (C3) force it to
conform to the distribution of points in V. Figure 1 shows an example of a well-covering
region in a l-conforming subdivision. The region U(e), drawn shaded, is not necessarily a
minimal well-covering region; rather, it is the region constructed by our algorithm.

Our algorithm is based on a 2-conforming subdivision for V. For convenience, in the
rest of the paper we use the term conforming to mean 2-conforming; when the conformity
parameter is not 2, we state it explicitly.

2.2 Computing a Conforming Subdivision

Our strong conforming subdivision & is similar to a quad-tree in that all its edges are
horizontal or vertical. However, the cells of & may be nonconvex and the subdivision
itself may be disconnected. Each cell is reasonably well-behaved, though—there is at most
one hole per cell. More specifically, each cell is either a square or a square-annulus (a
square minus a square—see Figure 2); the boundaries of these squares, however, may be
subdivided into a constant number of edges. Each square-annulus also has the following
minimum clearance property:



Figure 1: Part of a strong l-conforming subdivision of a set of points. The
shaded region is the union of cells ¢ (e) forming a well-covering of e.

Minimum clearance property: The minimum width of an annulus in the
subdivision (the minimum distance from the inner square to the outer square)
is at least one quarter of the side length of the outer square.

Annuli and square faces are both subject to the uniform edge property:

Uniform edge property:

e Every edge on the outer square of an annulus has length 1/(4[a]) times
the side length of the outer square. Every edge on the inner square has
length 1/(4[a]) times the side length of the inner square.

e The lengths of edges on the boundary of a square cell differ by at most a
factor of 4.

Our algorithm for computing a strong conforming subdivision of V is presented in Section 6;
describing it here would cause an unduly long digression. We simply state the main result
from Section 6:

Theorem 2.1 (Conforming Subdivision Theorem) For any o > 1, every set of n
points in the plane admits a strong a-conforming subdivision of O(an) size satisfying the
following additional properties: (1) all edges of the subdivision are horizontal or vertical,
(2) each face is either a square or a square-annulus (with subdivided boundary), (3) each
annulus has the minimum clearance property, (4) each face has the uniform edge property,
and (5) every data point is contained in the interior of a square face. Such a subdivision
can be computed in time O(an + nlogn).

We modify the strong conforming subdivision of V to accommodate the edges of the
obstacles, producing a conforming subdivision of the free space. In the modified subdivision,
there are two types of edges: the edges introduced by the subdivision construction and the



Figure 2: A square-annulus. The distance from the inner square to the outer
square is at least 1/4 the side length of the outer square.

original obstacle edges. To distinguish between them, we call the former transparent edges
and the latter opaque edges; a wavefront can pass through the transparent edges, but it is
blocked by the opaque edges. We require that all transparent edges be well-covered in the
conforming subdivision of the free space (but not strongly so). Conditions (W1) and (W3)
in the definition of well-covering are modified for the subdivision of free space as follows:

(Wlg) Let e be a transparent edge of S. There exists a set of cells C(e) C S such that e is
contained in the closure of the union of cells U (e) = {c | c € C(e)}.

(W3gs) Let e and f be two transparent edges of S such that f lies on the boundary of the
well-covering region ¢/ (e). Then the shortest path distance between e and f is at least
a-max (le|, | f])-

Condition (W3¢) ensures that e does not touch any transparent boundary edge of U(e),
although it may touch opaque boundary edges.

Figure 3 shows an example of a well-covering region with obstacles. The lemma be-
low shows how to modify a strong conforming subdivision of obstacle vertices to obtain a
conforming subdivision of the free space. This subdivision of free space has the additional
property that each obstacle vertex is incident to a transparent edge.

Remark: Our shortest path algorithm computes the distance from the source to the endpoints of
all the transparent edges. The condition in the following lemma that each obstacle vertex is incident
to a transparent edge ensures that the distance to each obstacle vertex is correctly computed.

Lemma 2.2 Fvery family of disjoint simple polygons with a total of n vertices admits a
2-conforming subdivision of the free space with size O(n) in which each obstacle vertex is
incident to a transparent edge.

ProoF. Let § be a strong 2-conforming subdivision for V' (the source vertex plus
the vertices of the obstacle polygons), constructed according to Theorem 2.1. § has
O(n) vertices, edges, and faces (also referred to as cells), and each face is either



\
\

Figure 3: Part of a 1-conforming subdivision of free space. The shaded region
is the well-covering region U(e).

a square or a square-annulus. Overlaying the obstacle edges on top of & cuts the
plane into O(n2) cells. We call a face of this new subdivision Soverlay nterestingif its
boundary contains an obstacle vertex or a vertex of §. For every vertex of O and for
every vertex of 8, we keep intact the cells in Soyerlay to which the vertex is incident
(at most four cells per S vertex and two cells per obstacle vertex). We delete every
edge fragment of S not on the boundary of one of these interesting cells.

Partition each cell containing an obstacle vertex v by extending edges vertically
up and down from v. This cuts the cell into at most three convex pieces (since the
cell is derived from a square of §). Let ¢ be the square in § that contains v, and
let & be the length of the shortest edge on the boundary of ¢. Subdivide each of
the added vertical edges incident to v into pieces of length at most § (this produces
O(1) vertical edge fragments, since there are O(1) edges on the boundary of ¢, all of
approximately equal lengths, by the uniform edge property).

In the resulting subdivision, call it &', all cells are convex except those derived
from square-annuli. Every nonconvexity in Soverlay is derived from a nonconvexity
in either § or O, since each face is the intersection of a face of § with a face in
the arrangement of obstacle segments. Hence all nonconvex faces of Syverlay are
interesting cells. Any face in Soverlay With an obstacle vertex on the boundary is
cut into convex pieces by the vertical edges added through the vertex. The only
other nonconvex vertices in Sgverlay are annulus vertices. Each edge fragment that is
deleted lies on the common boundary of two uninteresting faces; its deletion creates
no new nonconvexities.

If a cell ¢ of § has p edges on its boundary, then each subcell of ¢ in &’ that
contains one of ¢’s vertices has size at most 2p + O(1)—each convex corner of ¢ may
be cut off by an obstacle edge, adding an extra edge, and two obstacle edges may
enter and exit through the same edge, leaving an obstacle vertex in the cell. Adding
vertical edges through each obstacle vertex splits a cell into at most three subcells,



with at most O(1) additional edges shared between them. Because each cell of S
has constant complexity, the same is true of the interesting cells of &’. It follows
that the total complexity of the interesting cells is O(n). Each uninteresting cell of
S’ (without a vertex of § or V') has at most eight edges—four edge fragments from
S and four from O. Each vertex in &’ is a vertex of an interesting cell, so & has
O(n) vertices, and, by planarity, O(n) faces. See Figure 4 for a simplified example
of the construction of &’. In the remainder of the proof, we show that the portion
of &’ outside all obstacles in O is a conforming subdivision of the free space.
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=
A

|
//‘r'// /

Figure 4: Constructing a conforming subdivision of the free space, given a strong
conforming subdivision for the obstacle vertices. The shaded cells on the right
are interesting cells.

Condition (C1) is easily satisfied: each vertex of V' lies in its own square cell in
S. These cells are interesting, and hence are retained (possibly subdivided) in &'
Each cell of Syverlay therefore contains at most one vertex of V in its closure.

To show that all transparent edges of &’ are well-covered (Condition (C2)), con-
sider such an edge ¢’. Edge ¢’ may be a fragment of an edge e € S (possibly e = ¢€’),
or it may be a fragment of a vertical edge added incident to an obstacle vertex. In
the former case, define & = U(e). In the latter case, €' is inside a square ¢ of S;
define U to be the union of U(e) over all edges of ¢. Note that the boundary of U
is covered by edge fragments in S (and hence in Soyerlay), but need not be in &'
some edge fragments on the boundary of I/ may be erased in the construction of
§’. That is, U is a union of cells of S (and hence of Soyerlay), but not necessarily
of §’. Region U satisfies Conditions (Wlg) and (W3g); the latter holds because
U satisfies Condition (W3) for the transparent edges of S, and hence for those of
Soverlay- However, because U is not necessarily a union of cells of &', and may be
cut into a non-constant number of pieces by the obstacle polygons, we cannot use it
directly as the well-covering region of ¢’ in §’.

We intersect ¢/ with free space. This partitions I/ into connected components
Ri, Ry, . ... Exactly one component, call it Ry, contains e¢’. We show that each R; is
a union of O(1) cells of Syverlay; and hence that it has constant total complexity. We
argue that for each cell cin S, only a constant number of Sgyerlay subcells of ¢ belong
to R;. If two subcells of ¢ in Soverlay both belong to R;, then the obstacle edges
separating them must have endpoints either inside ¢, or contained in one or more
holes of U if U is multiply connected. See Figure 5. If we walk along the boundary
of R;, we visit subcells of ¢ repeatedly. Between each pair of different subcells of ¢,



we traverse the boundary of a different hole of & (or the outer boundary of U, or
the unique obstacle vertex inside /). Because i has O(1) holes, only O(1) subcells
of ¢ belong to R;.

Figure 5: A cell of #f may be partitioned into many subcells in Soyerlay, but only
O(1) of them belong to any one R;.

For any given component R;, let ¢(R;) be the cells of Soyerlay in By |c(R;)] = O(1).
Corresponding to each ¢ € ¢(R;), there is a unique cell ¢/ in &’ such that ¢ C ¢'.
Cell ¢ is a strict subset of ¢ if and only if some edge of ¢ was erased during the
construction of &’. If ¢ is a strict subset of ¢/, then ¢’ is an uninteresting cell, and
hence has at most eight edges. Thus both ¢ and ¢ have constant complexity. Define

d(R;)) ={c | €8 and ¢ C ¢ for some ¢ € ¢(R;)}.

We have |¢/(R;)| = O(Jc(R;)]) = O(1).

If ¢ is nonconvex, it may be the case that some cell ¢’ of 8’ that intersects R; also
intersects another component R;, that is, ¢/(R;) N ¢/(R;) # 0. See Figure 6. Let us
say that two components are connected, R; ~ R;, if and only if ¢/(R;) N '(R;) # 0,
and extend ~ to an equivalence relation by transitive closure.

We define Y’ = U(€’), the well-covering region for ¢’ in &', to be the union of
d(R;) for all R; in the equivalence class of Ry under the ~ relation. We argue that 4/’
has constant complexity. Let R be the set of R; that contain a vertex of S or Q. The
set of cells ¢/(R) = Ug,cg ¢ (1) has O(1) total complexity. Further, if R; ¢ R, then
d(R;) is a single convex cell with O(1) complexity (because all transparent edges of
c(R;) inside U have been deleted). If such a cell ¢ = ¢/(R;) does not intersect any
component in R, then the union of ¢/(R;) for all R; ~ R; is just the single cell ¢’.
On the other hand, if ¢ does intersect some R; € R, ¢/Uc/(R;) is identical to ¢/(R;).
Because edge ¢’ was not deleted, Ry € R. It follows that &’ C ¢/(R), and hence U’
satisfies Condition (W2).

The definition of U(e’) implies that every transparent edge f’ on the boundary
of U(e') is outside or on the boundary of . Edge f’is a subset of some edge f of
S, so the Euclidean distance from €’ to f’ is at least 2- max(|€’|, | f'|). It follows that
Condition (W3g) holds. Condition (Wlg) holds by construction.
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Figure 6: R; and R; are disjoint components of U (€) in Soyerlay. i is partitioned
by a vertical line inside ¢ (e), so ¢(R;) consists of two cells; ¢(R;) is a single cell.
d'(R;) intersects both R; and R;, so R; ~ R;. Note that ¢/(R;) may have
transparent edges outside U (e).

Let us now establish Condition (C3). A well-covering region /(€’) in &’ contains
no obstacle vertex that lies outside the well-covering region f in S from which U (e’)
is derived, since no edges of S that bound vertex-containing cells are deleted. If ¢’
is a fragment of an edge e of S, then its well-covering region ¢ (€’) in &’ contains at
most one obstacle vertex, since the same is true for i/ = U(e) in S. If € is one of
the edges added to &’ inside a vertex-containing square, its well-covering region I is
the union of O(1) well-covering regions of §. Each component region contains the
square and its vertex, and no other vertex; hence the well-covering region of ¢’ in &’
also satisfies Condition (C3).

This completes our proof that &’ is a conforming subdivision of the free space
corresponding to the set of obstacles O. O

Our next lemma shows that the conforming subdivision described above can be com-
puted in O(nlogn) time.

Lemma 2.3 The linear-size conforming subdivision of free space described in Lemma 2.2
can be built in time O(nlogn).

ProOOF. We start with a strong 2-conforming subdivision S of the obstacle vertices;
S is computed in O(nlogn) time, by Theorem 2.1. In O(nlogn) additional time, we
build a point-location data structure for the obstacle polygons, so that given a query
point ¢, we can in O(logn) time find the obstacle edge immediately to the left, right,
above, or below ¢ [10, 16]. The edges of 8" are obstacle edges, transparent edges on
the boundary of kept cells, and transparent edges incident to obstacle vertices. To
identify the second kind of edges, we trace the boundary of each kept cell separately.
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Each kept cell is contained in a single cell of § and has at least one vertex on its
boundary, so we trace starting from each vertex. Tracing along an obstacle edge
is easy, since the next transparent edge intersected is one of the O(1) edges on the
boundary of the current cell in §. We use the point-location structure to trace
along transparent edges: the next cell vertex is either a vertex of §, or it is the first
obstacle point hit by the ray that the current point and edge define. This tracing
takes O(nlogn) time altogether. The third kind of edges can be computed in O(n)
total time by local operations in each cell containing an obstacle vertex. To stitch
the three kinds of edges into a single adjacency structure &', we use an O(nlogn)
time plane sweep algorithm [23]. 0

This completes our discussion of the conforming subdivision. Our shortest path algo-
rithm, described in Section 4, relies heavily on the well-covering property of this subdivision.
But first we establish some key geometric properties of shortest paths used by our algorithm.

3 Geometric Properties of Shortest Paths

This section summarizes the properties of shortest paths we use in our algorithm. Most of
these definitions and lemmas have appeared earlier [17, 18, 24]; we include them here for
completeness.

The triangle inequality implies that a FEuclidean shortest path turns only at obstacle
vertices. Shortest paths need not be unique, though—for instance, every obstacle polygon
O; has at least one point on its boundary reached by two shortest paths; the two shortest
paths together form a cycle enclosing the polygon. We use the notation 7(p, ¢) to denote
the set of shortest paths connecting two points p and ¢. The length of any path in 7(p, q) is
the shortest path distance between p and ¢, denoted d(p, q). (Clearly, if one or both points
lie inside an obstacle, there is no legal path between them; their shortest path distance is
assumed to be infinite.) If the shortest path between p and ¢ is the line segment pg, then p
and ¢ are said to be mutually visible. We occasionally use d(X,Y) to denote the shortest
path distance between two sets of points X and Y, which is the minimum d(z,y) over all
pairs of points ¢ € X and y € Y.

We consider the problem of computing shortest paths from a fixed point s to all points
of the free space. We define the weight of an obstacle vertex to be its shortest path distance
to s. Given an arbitrary point p in free space, its weighted distance to a visible vertex u
is defined as |pu| + d(u,s)—the straight-line distance from p to u plus the shortest path
distance from u to s. Obviously, the shortest path distance d(p, s) is the minimum weighted
distance between p and all vertices visible to p.

The predecessor of an arbitrary point p is defined as the vertex (or vertices) of V' adjacent
to p in w(p, s); recall that V includes both s and the obstacle vertices. A predecessor of
p is necessarily visible from p. (If p and s are mutually visible, then s is a predecessor of
p.) The shortest path map of a particular source point s, denoted SPM (s), is a subdivision
of the plane into two-dimensional regions such that all the points in one region have the
same, unique predecessor. Points on region boundaries have multiple predecessors. These
boundaries are pieces of bisectors—a bisector is the locus of points equidistant (by weighted
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distance) from two obstacle vertices, and it is in general an arc of a hyperbola. Figure 7
shows an example of a shortest path map.

|
L]

Figure 7: SPM (s) and a wavefront sweeping it.

The next three lemmas establish some fundamental properties of shortest paths and
shortest path maps.

Lemma 3.1 The set of points in the plane with multiple predecessors has measure zero.

ProoF. A point p with two obstacle vertices u and v as predecessors lies on the
bisector of u and v, which is the hyperbola determined by the equation

7l + d(u, ) = [70] + d(v, 5).
There are at most O(n?) such hyperbolas, and each has measure zero. a

There are two types of edges in the subdivision SPM (s): (portions of) obstacle edges
and arcs of hyperbolas determined by pairs of weighted vertices. The hyperbolic arcs may
degenerate to straight lines—this happens when the weights of two vertices are equal, or
differ by precisely the distance between the vertices; in the latter case the vertex with
smaller weight is a predecessor of the other vertex. The vertices of SPM(s) are of three
types: the obstacle vertices, the intersections of obstacle edges with (bisector) hyperbolic
arcs, and the intersections of two or more bisectors; each of the last variety of vertices has
three or more predecessors. The following lemma proves a linear upper bound on the total
size of a shortest path map.

Lemma 3.2 The shortest path map SPM(s) has O(n) vertices, edges, and faces. FEach
edge is a segment of a line or a hyperbola.

ProoF. We first observe that each face of SPM (s) is star-shaped, with the unique
predecessor vertex for the face in its kernel—this follows from Lemma 3.1, which
shows that interior points of a face have a unique predecessor.

The key step in the proof is to show that each obstacle vertex is the predecessor
vertex for at most one face in SPM(s). Consider a vertex u that is the predecessor
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of a face I, and let pred(u) be the set of predecessors of u; observe that d(u,s) =
|ut| + d(v, s), for any v € pred(u).

By the triangle inequality, if a point p is visible from a vertex v € pred(u), with
v, u, p not collinear, then p cannot have u as its predecessor. Let R(u,v) denote the
region of the free space that is visible from « but not visible from v € pred(u). Then
R(u,v) lies in an angular wedge around u of less than 180°. Define

R(u)= () R(u,v).
vEpred(u)

Clearly, F' C R(u). We claim that there is at most one face of SPM (s) in R(u) with
u as its predecessor. Suppose there were two faces, Iy and F3, both having u as
their unique predecessor. The faces F; and F5 have exactly one point in common:
the vertex u. In the space between F} and Fy, there is a point p arbitrarily close
to u with predecessor z such that z is distinct from both u and pred(u). In other
words, |pu| + d(u,s) > |pz|+ d(z,s). However, as p moves towards u, the difference
in the distance shrinks, and finally d(u,s) = [uz| + d(z,s). But then z must be a
predecessor of u, contradicting the hypothesis. Thus, a vertex u is a predecessor of
at most one face in the shortest path map.

Finally, to prove the linear upper bound on the size of the shortest path map,
recall that the number of obstacle vertices is n; the remaining vertices border at least
three faces of SPM(s) (for this argument, we count the obstacle polygons as faces
of the shortest path map). Since the number of faces is O(n), Euler’s formula for
planar graphs implies that the total number of vertices is also O(n). This completes
the proof. a

Lemma 3.3 Let u and v be two obstacle vertices that lie on the same side of a line . If
intersects the bisector generated by uw and v more than once, the intersections lie on opposite
sides of the line supporting uv.

ProoF. If the bisector is a straight line, the claim follows readily. Otherwise, the
bisector is a hyperbola, and let us consider an arbitrary point p on this bisector.
Every point on pu has u as its predecessor, and every point on pv has v as its
predecessor. Points in the interiors of pu and pv have only one predecessor since
they are not on the bisector. See Figure 8. If the half-bisector on one side of wv
intersects ¢ at two points p and ¢, then there is an intersection of pu with g or po
with gu that is not on the bisector and yet has two predecessors—a contradiction.
O

With these preliminaries in place, we can now describe our shortest path algorithm,
which works by propagating a wavefront through the conforming subdivision of the free
space.

4 The Shortest Path Algorithm

Our algorithm uses the continuous Dijkstra method [18, 19, 20], which simulates a unit-speed
wavefront expanding from a point source and spreading among the obstacles. At simulation
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Figure 8: The intersection of gu with pv has two predecessors, even though it is
not on a bisector—a contradiction.

time t, the wavefront consists of points whose shortest-path distance to the source is t. The
wavefront is a set of disjoint paths and closed cycles. Each path or cycle is a sequence of
circular arcs, called wavelets. Each wavelet is centered on an obstacle vertex that is already
covered by the wavefront, called the generator of the wavelet. As the wavefront expands, the
meeting point of two adjacent wavelets sweeps along a bisector curve, which is the hyperbolic
bisector of the two wavelets” generators. The endpoints of paths in the wavefront are formed
where wavelets meet obstacle boundaries; these endpoints sweep along obstacle boundaries
as the wavefront expands. During the wavefront simulation, the topology of the wavefront
is changed by events of two types: wavefront-wavefront collisions and wavefront-obstacle
collisions.

Our shortest path algorithm has two phases: a wavefront propagation phase, followed
by a map computation phase. The first phase simulates the wavefront and determines
approximate locations of all the wavefront collision events. The second phase uses this
information to build the shortest path map in each cell of the conforming subdivision. In
the following two subsections, we describe the details of these two phases, deferring the data
structures and implementation issues of the propagation until the next section.

4.1 The Propagation Algorithm

Our algorithm works by propagating the wavefront through the cells of the conforming
subdivision of the free space. The wavefront propagates between adjacent cells only across
transparent edges; it dies upon meeting an opaque edge.

Propagating the exact wavefront appears to be quite difficult, so we content ourselves
with computing two “single-sided” approximations to the wavefront at each transparent
edge. Specifically, at each transparent edge, we compute two approzimate wavefronts, pass-
ing through the edge in opposite directions. An approximate wavefront represents the
wavefront reaching an edge from one side of the edge only. We can think of an approximate
wavefront as labeling each point p on the edge with the time at which the approximate wave-
front reaches p. The true distance d(p, s) is the minimum of the two labels from opposite
sides of the edge.

Remark: In some cases we can determine that a portion of a wavefront arrives at an edge after
the wavefront from the other side of the same edge, and in such cases we drop the part that arrives
later. In that sense, an approximate wavefront is not necessarily a complete representation of all the
wavelets coming from one side of the edge.

An approximate wavefront at an edge e is represented as a sequence of obstacle vertices
weighted with their shortest path distances from s. These vertices are the generators of
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the wavelets in the approximate wavefront. All the generators in an approximate wavefront
sequence lie on the same side of e, since the approximate wavefront passes through e in
one direction only. The core of our algorithm is a method for computing an approximate
wavefront at an edge e based on the approximate wavefronts of nearby edges. These nearby
edges are formalized in the following with the definitions of input(e) and output(e).

We denote by input(e) the set of edges whose approximate wavefronts are used to com-
pute the approximate wavefronts at e. This set consists of the transparent edges on the
boundary of U(e), the well-covering region of e (cf. Section 2.1). To compute the approx-
imate wavefront at e, we propagate the approximate wavefronts from input(e) to e inside
U(e). The propagation algorithm introduces bends only at obstacle vertices in the closure
of U(e); that is, the shortest paths corresponding to the wavefront do not bend except at
obstacle vertices. Because I/ (e) need not be convex (nor even simply connected), noncon-
vexities of U (e) may block the wavefronts from some edges of input(e) from reaching e.
Typically, the paths corresponding to blocked wavefronts either run into obstacles outside
U(e), or they pass through free space outside U(e) and re-enter through other edges of
input(e).

We denote by output(e) the set of edges to which the approximate wavefronts of e will
be passed; output(e) = input(e) U{f | e € input(f)}. We set output(e) to contain input(e)
because our algorithm for detecting wavefront collision events depends on output(e) having
a cycle enclosing e.

Lemma 4.1 For any transparent edge e, output(e) contains a constant number of edges.

Proor. Because [U(f)| = O(1) for all f, and each U(f) is a connected set of cells
of &', no edge e can belong to input(f) for more than O(1) edges f. o

Our simulation of the wavefront propagation is loosely synchronized. For a transparent
edge ¢ = ab, we define d(e,s) = min(d(a, s),d(b,s)); this is a rough estimate of d(e, s),
since d(e,s) < d(e,s) < d(e, s) + 1le|. We compute the approximate wavefronts for e at the
first time we are sure that e has been completely covered by wavefronts from the edges in
input(e). This time is J(e, s) + |e|, the approximate time at which the expanding wavefront
first hits an endpoint of e, plus the length of e. It is a conservative estimate of the time
when e is completely run over by the wavefront.

We compute J(e, s)+|e| on the fly for each edge e using a variable covertime(e). Initially,
for every edge e whose well-covering region I (e) includes the source point s, we calculate
an upper bound on J(e7 s) directly, considering only straight-line paths inside ¢ (e), and set
covertime(e) to this upper bound plus |e|. For all other edges, we initialize covertime(e) =
co. Thus covertime(e) is not equal to d(e, s) + |e| only for edges ¢ = ab such that 7(a,s)
or w(b, s) crosses the boundary of ¢(e). The simulation maintains a time parameter ¢, and
processes edges in order of their covertime(-) values. The main loop of the simulation is as
follows:
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while there is an unprocessed transparent edge do

endwhile

PROPAGATION ALGORITHM

1. Select the edge e with minimum covertime(e), and set t := covertime(e).

2. Compute the approximate wavefronts at e based on the approximate wave-
fronts from all edges f € input(e) satisfying covertime(f) < covertime(e).
Compute d(v, s) exactly for each endpoint v of e.

3. For each edge g € output(e), compute the time ¢, when the approxi-
mate wavefront from e first engulfs an endpoint of ¢g. Set covertime(g) :=
min (covertime(g), ty + |g|).

The following lemma proves the consistency of our algorithm—it shows that covertime()

is correctly maintained and that the edges required for processing e are already processed.
The details of Step 2 appear in Sections 4.1.1 and 4.1.2; the computation of ¢, in Step 3 is
described in Section 5.

Lemma 4.2 During the wavefront propagation, the following invariants hold:

If the wavefront of an edge f € input(e) contributes to an approximate wavefront of
e, then d(f,5) +1f] < d(ess) +el.
The value of covertime(e) is updated a constant number of times.

The final value of covertime(e) is d(e, s)+ |e|. This value is reached no later than the
simulation clock reaches that time.

Edge e is processed at simulation time J(e, s) + |el.

PRroor.

(a) Any wavelet that contributes to the approximate wavefront at e must reach e
at some time t. with d(e,s) < t. < d(e,s) + |e|. Such a wavelet reaches e either by
traveling straight from s inside U(e), or by passing through a transparent edge f €
input(e) at an earlier time ¢;, with d(f,s) <t < dN(f7 s)+ | f| and to >ty +d(e, f).
By Condition (W3g) of a well-covering region with parameter 2, d(e, f) > 2|f|,
and so t. > d(f,s) + 2|f|. Since J(f7 s) < d(f,s)+ %|f|7 we can conclude that
d(f,s) +[f] < de,s) + el

(b) The value of covertime(e) is updated only when an edge f is processed such
that f € input(e) or e € input(f). There are O(1) such edges, by Lemma 4.1. of
well-covering.

(¢), (d) We prove these by induction on the simulation clock. Claims (¢) and (d) hold
for the edges whose initial covertime(-) values are not infinite. The wavelet that first
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reaches an endpoint of e (at t. = d(e, s)) passes through some f € input(e). By
induction and the proof of (a), f has already been processed before the simulation
clock reaches t., and so covertime(e) is set to d(e, s) + |e| no later than t. = d(e, s).
The variable covertime(e) cannot be set to any smaller value, because no approximate
wavefront can reach the endpoints of e earlier than d(e, s). It follows that e will be
processed at simulation time d(e, s) + |e|. ]

Lemma 4.3 For every vertex v of our conforming subdivision, the propagation algorithm
correctly determines the distance d(v, s) before v is used as a generator in any wavefront.

PrOOF. Every vertex v of the conforming subdivision is an endpoint of a transparent
edge e. The wavefront that determines d(v, s) either reaches v from s by traveling
only inside ¢ (e), or it passes through an edge f € input(e) such that covertime(f) <
covertime(e). In the former case, initialization computes d(v,s) correctly; in the
latter case, Step 2 of the propagation algorithm implies that d(v,s) is correctly
computed. If v is an obstacle vertex, it may appear as a generator in a wavefront, but
it will not be used until after d(v, s) is computed at time d(e, s) +|e| (Lemma 4.2(d)).
O

While a well-covering region U (e) has constant complexity, it is not necessarily simply-
connected; consider, for instance, the case of a square annulus. Consequently, there may
be multiple, topologically distinct paths from a boundary edge f € input(e) to e. In
order to avoid comparing paths of different topologies, we split the wavefront We) into
topologically-equivalent pieces. In particular, let W (e) denote one of the two approximate
wavefronts passing through e. In computing W (e) from aset {W(f) | f € input(e)}, we use
topologically constrained versions of the incoming wavefronts, denoted W (f, e). A wavefront
W (f, e) is a portion of W (f) that follows a single topological path inside U (e) from f to e.

If U(e) contains islands, there are multiple topologically distinct paths from an edge
f € input(e) to e. When we need to refer to multiple topologically distinguished wavefronts
from a single edge f to e, we use primed notation: W(f,e), W(f', e), etc.

If two points p,q € e are hit by a single topologically constrained wavefront W(f, e),
then the segments connecting p and ¢ to their predecessors among the generator vertices
in W(f) intersect f and e, and the quadrilateral bounded by those segments and f and e
is a subset of U(e). (The paths are not always segments: if an obstacle vertex v lies in the
well-covering region of e and the path from f to p turns at v, then the predecessor of p
in W(f,e) may be v. Even in this case, the paths from p and ¢ to f can be continuously
deformed to each other inside U(e).) For any point p € e, the shortest path 7 (p,s) passes
through some f € input(e) (unless s € U(e)), so constraining the source wavefronts to pass
through input(e) does not lose any essential information.

4.1.1 The Artificial Wavefronts

When we compute the approximate wavefronts at a transparent edge e, we allow limited
interaction between waves coming from opposite sides of the edge. This lets us eliminate
some waves coming from one side of the edge that are dominated by waves from the other
side. The interaction between the wavefronts from two sides is implemented using artificial
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wavefronts. These artificial wavefronts are our only mechanism for pruning the wavefront
that arrives second at a transparent edge. We depend on artificial wavefronts to elimi-
nate dominated wavefronts within a constant number of cells of where they first become
dominated.

Consider a horizontal transparent edge e, and let v be an endpoint of e. We introduce
an artificial wavefront with generator v and weight d(v,s) into the computation of both
approximate wavefronts at e. The triangle inequality implies that d(p,s) < d(v,s) + |vp|,
for any point p € e. If the artificial wavefront reaches p € e before the wavefront from
below e reaches p, then p is surely reached first by the upper wavefront, and so there is
no need to propagate the lower wavefront through p. See Figure 9 for an illustration. In
essence, an artificial wavefront is a convenient mechanism for discarding parts of the actual
wavefront that are completely dominated by some other part of the wavefront. A generator
of an artificial wavefront is not passed on to output(e) as part of the approximate wavefront,
unless it is also a vertex of O.

Remark: An artificial wavefront is just a conceptual device that lets us argue about shortest
paths without having to exhibit a specific shortest path. We use this technique in our proofs (e.g.
Lemma 4.8) to discard generators at a cell boundary if the wavelet from an artificial wavefront
reaches that boundary before the wavelets from those generators—since the path passing through
an artificial generator is no shorter than the true path from the predecessor of the artificial generator,
the paths from the losing generators cannot be shortest paths.

from s

Figure 9: An artificial wavefront generated by v. If d(v, s) 4 |vp| is less than the
time at which the wavefront from below reaches p, then p is reached first by a
wavefront from above.

When we compute the approximate wavefront passing through e from below (that is,
coming from predecessors below ¢), the contributing wavefronts are the following:

1. All wavefronts W (f,e) for f € input(e) and f below the line supporting e. (If f
intersects the line supporting e, we split W(f, e) in two, and keep only the portion
W(f’,e) that comes from the part of f below e.)

2. An artificial wavefront expanding from each endpoint of e. An artificial wavefront
generator v has weight d(v, s).

The contributing wavefronts for the approximate wavefront passing through e from above
are symmetric. The wavefront coming directly from s is handled separately.

The approximate wavefront from below is what the true wavefront would be if we were
to block off the wavefront from above by adding extra obstacles. In physical terms, we
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can imagine replacing the transparent edge e with an (open) opaque obstacle segment. The
opaque segment absorbs the wavefront from above, but the open endpoints let the wavefront
from above pass through to generate artificial wavefronts. (Open endpoints are needed only
to guard against the case in which an actual obstacle segment shares an endpoint of e,
in which case replacing e with a closed segment would prevent artificial wavefronts from
passing through the endpoint.)

Consider a set of wavefronts that reach e from the same side. We say that a contributing
wavefront W (f) claims a point p € e if W(f) reaches p before any other contributor from
the same side of e.

Lemma 4.4 Let e be horizontal, and let W(f,e) and W (g,e) be two contributors to the
approzimate wavefront that passes through e from below. Let x and ' be points on e claimed
by W (f,e), and let y be a point on e claimed by W (g, e). Then y cannot lie between x and z'.

Proor. Consider the shortest paths 7(z,s), m(2',s), and 7(y,s) in the modified
environment in which e has been replaced by an open, opaque segment. These paths
connect z and z’ to f, and y to g, inside U(e). Shortest paths w(z,s), w(2',s),
and m(y,s) do not cross. The subpaths of m(z,s) and n(a’,s) inside U(e) can be
continuously deformed to each other inside U(e), so ¢ is not between them. It
follows that y is not between them, either. a

Lemma 4.5 Let u and v be two obstacle vertices, both generating wavelets that are con-
stdered when the approzimate wavefront passing through an edge e from below is computed.
Then the bisector generated by u and v intersects e at most once in SPM (s).

PROOF. Suppose the bisector intersects e twice. Without loss of generality assume
u lies inside the loop formed by the bisector and e. If the bisector intersects e twice
in SPM(s), then the segment from u to its predecessor must intersect e between the
two bisector intersections. This means that d(e, s) < d(u, s); in fact, d(e, s) + 2|e| <
d(u,s). Hence d(e,s) + |e| < d(u,s), and u cannot contribute to the approximate
wavefront at e: it does not become a generator until after e is processed, contradicting
the assumption that both w and v contribute to the approximate wavefront at e. O

Lemma 4.6 Given W(f, e) for each f below e that contributes to W (e), we can compute
the interval of e claimed by each W (f,e) in O(1+k) total time, where k is the total number
of generators in all wavefronts W(f, ) that are absent from W e).

Proor. For each contributing wavefront W(f, e), we show how to determine the
portion of e claimed by W (f,e) if only one other contributing wavefront W (g, e) is
present. Lemma 4.4 implies that this portion is contiguous. The intersection of these
claimed portions, taken over all other contributors W (g, €), is the part of e claimed
by W(f,e) in W(e).

In constant time we determine whether the claim of W (f, e) is left or right of that
of W(g,e). If both W(f, e) and W (g, €) reach the left endpoint of e, in constant time
check which one reaches it sooner. Otherwise, one of W (f,e) and W (g, €) reaches a
point on e that is left of any point reached by the other, and this point determines
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Figure 10: The contribution of b to W (e) is constrained to be left of p, and right
of x, and therefore does not exist.

the ordering. Without loss of generality, assume that the claim of W (f,e) is left of
that of W (g, e).

By Lemma 4.4, we can combine the two wavefronts using only local operations.
Let a denote the generator in W (f, e) claiming the rightmost point on e. Let p, be
the left endpoint of a’s interval on e. Similarly, let b denote the generator in W (g, €)
claiming the leftmost point on e, and let p, be the right endpoint of b’s interval
on e. Compute the bisector of a and b, and let its intersection with e be the point z.
(By Lemma 4.5, there is only one intersection point in SPM(s). If the hyperbola
generated by a and b intersects e twice, then a is to the left of b at only one of the
intersections, and we use that intersection as z.) See Figure 10. If = is to the left
of pa, then delete a from W (f, e); if x is to the right of py, then delete b from W (g, e);
in either case, redefine a, b, p,, pp, recompute z, and repeat this test. If p, is left
of py and z lies between them, then  is the right endpoint of W(f, €)’s claim in the
presence of W (g, e).

By combining the claimed regions for all contributors W (f, ), we construct the
approximate wavefront at e. The time bound follows since we spend constant time
per generator that is deleted for each pair of wavefronts, and the total number of
wavefronts W(f, e) to be merged is also a constant. This finishes the proof. O

Lemma 4.7 Any generator deleted during the construction of an approximate wavefront at
edge e does not contribute to the true wavefront at e. Fvery generator that contributes to
the true wavefront at e either is s or belongs to one of the approzimate wavefronts at e.

PrOOF. The first part is clear—every deleted generator is dominated by some other
generator at e. The second part follows by induction from two facts: any wavelet
that contributes to the true wavefront at e must come either from s inside U(e)
or through one of the edges in input(e) (by the definition of well-covering). The
approximate wavefronts at input(e) are ready before they are needed to construct
W (e) (by Lemma 4.2). ]
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4.1.2 The Bisector Events

When we propagate an approximate wavefront W (e) to output(e), we may detect bisector
events, which are intersections of bisectors with each other or with obstacles. Bisector
events are detected in two ways: 1) during the computation of W e, ¢) from W (e) for some
g € output(e); 2) during the merging process described in Lemma 4.6.

1. Bisector events of the first kind are detected when we simulate the advance of the
wavefront from e to ¢ to compute W (e, ¢); the details of this simulation are discussed
in Section 5. In particular, if two generators u and v are non-adjacent in W(e) but
become adjacent at any time during the propagation from e to g, then there is a
bisector event involving u and v.

2. Bisector events of the second kind are detected during merging. If a generator v
contributes to one of the input wavefronts W (e, g) but not to the merged wavefront
W {(g) at g, then v is involved in a bisector event on the way from e to g. (As a special
case, if a generator’s claim on W(g) is shortened (but not eliminated) by an artificial
wavefront, then that generator is also considered to have a bisector event. This adds
at most two extra bisector events for each edge ¢.)

Our algorithm detects bisector events in a small neighborhood of their actual location in
SPM (s). To ensure that all bisector events are properly localized, we mark the generators
that participate in a bisector event in O(1) cells near where the event is detected: if a
generator v is involved in a bisector event in a cell ¢, then v is guaranteed to belong to a
set of marked generators for ¢. However, the set of marked generators for a cell ¢ may be
a superset of the generators that actually participate in bisector events in ¢. We will show
that the total number of generators marked in all the cells is O(n). The precise rules for
marking the generators are given below.
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MARKING RULES FOR (GENERATORS

1. If a generator v lies in a cell ¢, then mark v in c.

2. Let e be a transparent edge, and let W(e) be the approximate wavefront
coming from some generator v’s side of e.

(a) If v claims an endpoint of e in W (e), or if it would do so except for
an artificial wavefront, then mark v in all cells incident to the claimed
endpoint.

(b) If v’s claim in W (e) is shortened or eliminated by an artificial wavefront,
then mark v in the cell on v’s side of e.

3. Let e and f be two transparent edges with f € output(e). Mark v in both
the cells that have e as an edge if one of the following events occurs:

(a) v claims an endpoint of f in W{(e, f);

(b) v participates in a bisector event detected either during the com-
putation of W (e, f) from W (e), or during the merging step at f
(Lemma 4.6). (We also mark v as having a bisector event if v’s claim
on W (f) is shortened by an artificial wavefront.)

4. If v claims part of an opaque edge when it is propagated from an edge e
toward output(e), mark v in both cells with e on their boundary.

Rules 2a and 3a both apply when a wavefront claims an endpoint of an edge. The
main difference between the two rules is that Rule 2a puts marks in cells near the claimed
endpoint, and Rule 3a puts marks in cells near the source edge of the wavefront.

A generator may contribute to a wavefront more than once in the wavefront sequence;
each mark applies to only one instance of the generator in the sequence. The following
technical lemma is used in the proof of Lemma 4.9 to establish the correctness of the
marking rules.

Lemma 4.8 Let v be a generator that contributes to an approximate wavefront W(e). Sup-
pose there is a point p € e that is claimed by v in W (e) but not in SPM (s) (because a wave
from the other side of e reaches p first). Then v is marked in the cell ¢ on v’s side of e.

ProoOF. If v is unmarked in ¢, there must be generators u and w such that u, v, w
are consecutive in W (e)—otherwise Rule 2 would apply. The bisectors (u,v) and
(v, w) must exit from ¢ (e) through the same transparent edge h—otherwise Rule
3 or 4 would apply. For the same reason, the region bounded by (u, v), (v, w), h, and
e is a subset of of U (e)—if the region contained a non-#/(e) island, v would claim an
endpoint of a boundary edge of that island. Edge h is by definition part of input(e).
Consider the point p € e that is claimed by v in the approximate wavefront W (e)
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but not in the true wavefront at e, and suppose that the true predecessor of p is
z # v. The vertex z is either an obstacle vertex or the source s. In the former case,
z lies outside ¥ (e) or on its boundary 0l (e)—by Condition (C3), ¢ (e) contains at
most one obstacle vertex, so any vertex not strictly outside {(e) must be connected
to points outside U (e) by opaque edges. Vertex z may lie strictly inside U (e) only if
z=s.

Let us first assume that z lies outside the well-covering region ¢/ (e)—the proof
simplifies in the other case, which is considered below. Let ¢ denote the intersection
point between Zp and input(e) closest to p (recall that input(e) C output(e), and
input(e) C 0lU(e)). Based on the position of ¢ relative to the bisectors (u,v) and
(v, w), we argue that v must have been involved in a bisector event detected by our
algorithm, and thus marked in cell ¢.

First, consider the case in which ¢ lies between the bisectors (u,v) and (v, w)
on the edge h. Now, since |gp| > |h| (by the well-covering property), the endpoints
of h are engulfed by a wavefront from z or from some other generator before the
wavefront from z reaches p at time d(z,s) 4+ |[Zp|. The artificial wavefronts from
h’s endpoints will cover h before time d(z,s) + |Zp| + |h|. By assumption we have
d(v,s)+ |vp| > d(z,s)+ |Zp|. The wavefront from v cannot reach e earlier than
d(v, s)+|vp|—|e|]. By well-covering with parameter 2, d(e, h) is at least |e|+]|h|, and so
the wavefront from v reaches h no earlier than d(v, s)+|vp|+|h| > d(z, s)+|zp|+]h|,
at which time & is already covered by the artificial wavefront. The claim of v on A
is shortened by the artificial wavefront (in fact, v’s claim is eliminated completely),
and so it must be marked by Rule 3b.

In the second case, ¢ is not between the bisectors (u,v) and (v, w) on h. The
segment §p must intersect one of the bisectors. Without loss of generality, assume
Gp intersects bisector (u,v). Since every point on gp has z as its predecessor in
SPM (s), the bisector (u,v) does not reach 0U(e) in SPM(s). We show that our
propagation and merging algorithms will detect a bisector event for (u,v). Let r be
the intersection point between the bisector (u,v) and the edge h. As noted in the
discussion after Lemma 4.3, the triangle defined by the segments @r, oF, and e is
a subset of U(e). Bisector (u,v) crosses the triangle boundary on e and at r, but
nowhere else. The larger region R bounded by e, h, wr, and bisector (v, w) also is a
subset of U (e), and it contains point p. Because gp crosses into R to intersect (u,v),
and it does not intersect the (v, w) or h sides of R, gp must intersect ur; let  be the
point of intersection. The wavelet from z reaches z before the one from u, so the
path z — & — r, starting at time d(z, s), reaches r before the path u — r, starting
at time d(u, s). Observe also that the path z — @ — r is a legal path—it lies in free
space. Now, consider the shortest path from z to r inside the triangle Azzr that
does not cross h or any obstacle edge (see Figure 11). Because z — & — r lies in free
space, such a path exists, and is shorter than z — 2 — ». This path claims r from
the same side as u before the wavelet from u reaches r. (If the path passes through
an endpoint of h, then an artificial wavefront claims r; otherwise the last obstacle
vertex on the path claims r.) Thus, a bisector event for (u, v) is detected during the

computation of W(e, h) or W(h), and v is marked by Rule 3b.
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Figure 11: The shaded path from z to r claims r before the wavelet from u, and
from the same side of h as wu.

Next consider what happens if the predecessor vertex z lies on the boundary of
the well-covering region U (e). Let h be a boundary edge of U{(e) incident to z. In
this case we detect a bisector event involving v when we advance the wavefront from
e to output(e): if z lies between the bisectors (u,v) and (v, w), then v is marked
by Rule 3a or 4; if z is not between the bisectors, the segment Zp intersects one of
the bisectors, say (u,v), and we detect a bisector event for (u,v) in advancing the
wavefront from e to output(e).

Finally, consider the case in which z = s lies inside ¢ (e). If z is not between
the bisectors (u,v) and (v, w), segment Zp intersects one of them and the proof is
as above. Let r be the intersection of (u,v) with h, and let ¢ be the intersection of
(v,w) with h. The convex quadrilateral bounded by subsegments of e, ur, h, and
tw is contained inside I{(e). Hence if z is between the bisectors (u, v) and (v, w), the
entire segment rt is visible from z (that is, Azrt is empty) and so v’s claim on h is
eliminated by z. Therefore v is marked by Rule 3b. This completes the proof. O

Lemma 4.9 If a generator v participates in a bisector event of SPM (s) in a cell ¢, then v
s marked in c.

PRrOOF. If a bisector has an endpoint on an opaque edge of ¢, it either emanates from
an obstacle vertex on the edge, or it is defined by two generators that claim part of
the opaque edge. Rules 1 and 4 guarantee that all such generators are marked in c.
If a generator v that contributes to an approximate wavefront in ¢ is unmarked, then
by Rule 2a there must be transparent edges e and f on the boundary of ¢ such that
W (e) and W (f) both contain the generator subsequence u, v, w, for some u and w.
Without loss of generality assume W (e) enters ¢ and W (f) leaves c. If v participates
in a bisector event of SPM (s) in ¢, then at least one point p inside the region R
bounded by e, f, (u,v), and (v,w) is not claimed by v in SPM(s). Let z be the
true predecessor of p. Let r and t be the intersections of (u,v) and (v, w) with f,
respectively. Region R is contained in the convex quadrilateral @) bounded by ur, rt,
tw, and the line supporting e. Because u, v, w is a subsequence of W (e), no vertex
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on the same side of e as v claims any point of the side of () collinear with e; that
is, Zp does not cross that side of Q. If r and ¢ are both claimed by v in SPM(s),
then wr € (s, r), and wt € n(s,t). In this case 7(s,p) cannot cross ur or wt, and
hence it must cross ri. The intersection of Zp with rf is a point ¢ that satisfies the
hypothesis of Lemma 4.8, and so v is marked in ¢. On the other hand, if either r or
t is not claimed by v in SPM (s), that vertex satisfies the hypothesis of Lemma 4.8,
and so v is marked in c. a

The following technical lemma shows that the approximate wavefronts are not too differ-
ent from the true wavefronts; this lets us bound the number of marks made by the marking
rules.

Lemma 4.10 Let B be the set of pairs (e,b) of transparent edges e and bisectors b such
that b crosses e in some approvimate wavefront, but the same crossing does not occur in

SPM(s). Then |B| = O(n).

ProOF. Let (e,b) be a pair in B. Bisector b is defined by two generators u and v.
The proof of Lemma 4.8 notes that each generator (except possibly s) is outside or
on the boundary of /(e). That proof also shows that b’s intersection with e in some
approximate wavefront (that is, the presence of uw and v in W(e)) is proof that u
and v claim points on the boundary of ¢(e) (in input(e)) in SPM(s). Let p=>bne.
Because (e, b) is not an incident pair in SPM (s), there must be at least one bisector
event in SPM (s) that lies in the interior of I/ (e) between the line segments @p and
vp. We can charge the early demise of b to any one of these bisector events.

The segments pu and pv are disjoint inside ¢/ (e) from the corresponding segments
defined by any other pair (e, ') € B—in the modified shortest path problem in which
the obstacles are O U{e}, the segments pv and pu belong to 7 (s, p), and hence they
are disjoint from any other such segments. Thus the sector bounded by pu and pv
is disjoint inside ¢ (e) from the sector defined by any other pair (e, ') € B, so each
bisector event inside I{(e) is charged at most once for all pairs in B that have e
as the first element of the pair. Each cell in the conforming subdivision belongs to
O(1) well-covering regions U (e). Hence the sum over all transparent edges e of the
number of bisector events in ¢ (e) is only O(n). This total is an upper bound on |B|.
O

Lemma 4.11 The total number of marked generators over all cells is O(n).

Proor. We begin by defining a propagation region for each edge e. For any
transparent edge e, let P(e) be the collection of cells through which wavefronts
propagate on the way from e to all edges f € output(e). Clearly P(e) C U(e) U
{U(f) | f € output(e)}. The number of cells in P(e) is constant, since |output(e)] is
constant, and so is the number of cells in U(f) for any f. Furthermore, since every
cell of P(e) is within a constant number of cells of e, each cell ¢ belongs to P(¢’) for
only a constant number of edges €.

The total number of generator-cell marks made under Rule 1 is clearly O(n).
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Each P(e) has constant complexity, so there are O(n) edge pairs (e, f), where e
is transparent and f is either transparent and in output(e), or opaque and inside or
on the boundary of P(e). From this it follows that the number of marks made by
Rules 2a and 3ais O(n). Similarly, there are O(n) Rule 4 marks in which the wavelet
from v claims an endpoint of the opaque edge, or is the first or last non-artificial
wavelet in W (e).

Any Rule 4 mark not yet counted involves a generator v that does not reach any
opaque edge endpoint when propagated forward from e. Because v is not the first or
last non-artificial wavelet in W (e), there is a generator u such that v’s claim on e in
W (e) is bounded on the left by bisector (u,v). We can assume that (u, v) intersects
e in SPM(s); by Lemma 4.10 there are only O(n) bisector-edge pairs that intersect
in approximate wavefronts but not in SPM(s). Bisector (u,v) terminates in P(e),
either on the opaque edge or in a bisector event before the opaque edge. Let us
charge the marking of v at e to this endpoint of (u,v) in SPM (s). Because each cell
belongs to P(€’) for a constant number of edges €, each vertex of SPM (s) is charged
O(1) times. Since |SPM (s)] = O(n), the number of Rule 4 marks is O(n).

The proofs for Rules 2b and 3b are similar to that for Rule 4. We begin with
the proof for Rule 3b. We can assume that the interval claimed by v on e in W{(e)
is bounded by two bisectors (u,v) and (v, w), for two non-artificial generators u
and w; the first and last generators in W (e), counted separately, sum to at most
O(n) overall. Furthermore, we can assume that (u,v) and (v, w) both intersect e in
SPM (s); there are only O(n) bisector-edge pairs that appear in some approximate
wavefront but not in SPM (s) (Lemma 4.10). At least one of the two bisectors fails
to reach the boundary of P(e) in SPM (s), because Rule 3b applies, and a detected
bisector event implies the existence of an actual bisector event no later than the point
of detection; we charge the marking of v to that bisector endpoint. Each bisector
event gets charged O(1) times, and there are O(n) bisector events in SPM (s).

To bound the number of Rule 2b marks, consider where the generator v lies.
There is at most one generator v inside ¢/ (e), and so O(n) marks for such generators
overall. If v lies outside ¢ (e), there is at least one edge in input(e) where v is marked
by Rule 3b because of the shortening of v’s claim on e. Charge the Rule 2b mark
at e to this Rule 3b mark. There are O(n) Rule 3b marks and hence O(n) Rule 2b
marks. O

We defer the finer details of the propagation algorithm to Section 5, and instead describe
the second phase of the algorithm next, namely, the shortest path map computation.

4.2 Computing the Shortest Path Map

At the end of the propagation phase, approximate wavefronts for all transparent edges have
been computed. Furthermore, for every cell ¢, a set of marked generators is known; each
marked generator is in the approximate wavefront of one of the boundary edges of ¢, and
all but O(1) of them contribute to a bisector event either in ¢ or in one of O(1) nearby
cells. The algorithms of Lemma 4.6 and Section 5 let us compute the marked generators in

O(log n) time apiece.
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We now show how to break the interior of a cell ¢ into active and inactive regions
such that no vertices of SPM (s) lie in the inactive regions. By Lemma 4.9, no unmarked
generator contributes to a bisector event in ¢. A bisector defined by a marked generator and
an unmarked neighbor belongs to SPM (s). All such bisectors are disjoint. They partition ¢
into regions such that each region is claimed only by marked generators or only by unmarked
generators. These are the active and inactive regions, respectively. See Figure 12. The
active regions can be computed in time proportional to the number of marked generators
in ¢, since the order of the generators along the boundary of ¢ is known.

A I A

Figure 12: Active regions (white) and inactive regions (shaded). Each re-
gion-bounding bisector is defined by one marked and one unmarked generator.

The boundary of an active region consists of O(1) segments. Each segment is a trans-
parent edge fragment, an opaque edge, or a bisector in SPM (s). Let e be a transparent
edge fragment bounding an active region, and let W (e) be the wavefront that enters the
active region by crossing e. In the absence of wavefronts from other transparent edges,
W (e) partitions the active region into pieces we call S-faces, each with a unique predecessor
in W(e). These S-faces may not cover the active region, since each point in an S-face must
be connected to its predecessor by a segment that intersects e. Denote this partition by
S(e). S(e) is essentially a shortest path map, restricted to the active region and consid-
ering only generators in W{(e). If a point p lies in an S-face of S(e) with predecessor v,
then S(e) assigns weight |po| 4+ d(v, s) to p. Points outside any S-face are assigned infinite
weight by S(e). We can compute S(e) in O(mlogm) time, where m = |W (e)|, by using the
propagation algorithm and data structure of Section 5.

The following lemma shows how to combine the wavefronts incident to different bound-
ary edges of an active region.

Lemma 4.12 Given the approximate wavefronts on the boundary of a cell ¢ and a set of k
marked generators in those wavefronts, we can compute the vertices of SPM (s) inside ¢ in

time O(klogk).
Proor. Consider an active region inside ¢ and two transparent edge fragments e and

f on the boundary of this active region. We can use the merge step from a standard
divide-and-conquer Voronoi diagram algorithm to compute the portion of the region
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nearer to W(e) than to W(f), using weighted distance, in time O(|W (e)|+ |W (f)]).
More specifically, assume that S(e) and S(f) have both been computed. Let m =
|[W(e)|4+ W (f)|. Each of S(e) and S(f) defines a distance function on the points of
the active region. The point-wise minimum of these two functions determines which
points are nearer to W (e) than to W (f) under weighted distance. Consider a point p
in the S-face for some generator v € W(e). Point p belongs to v’s S-face in SPM (s)
only if all of the segment pv is closer to v than to any generator in W (f). The set
of points p such that the entire segment from p to its predecessor is closer to W (e)
than to W (f) is bounded by a single chain I' of O(m) hyperbolic arcs. (The number
of arcs follows from Lemma 3.2.) To find I', first trace along a ray emanating from
some generator v € W{(e), marching through S(e) and S(f) simultaneously, until
the ray reaches the boundary of ¢ or reaches a point whose weight in S(f) equals
its weight in S(e). This takes O(m) time, since a line cuts O(m) edges of S(e) and
S(f). Then trace outward from this point along I'. Each arc of ' is a hyperbola
determined by the generators of the S-faces of S(e) and S(f) containing the current
point; trace along the hyperbola until it leaves one of the two S-faces, then follow
the hyperbola determined by the next pair of S-faces, etc. This procedure takes
O(1) time per arc of I', or O(m) time altogether. See Figure 13.

Figure 13: To find the region closer to W(e) than to W(f) under weighted
distance, trace a ray from some v € W(e) through S(e) and S(f) until it hits
a point equidistant from the two wavefronts, then trace outward from the point
along the bisector I'.

The tracing procedure computes the region closer to W (e) than to W(f) for one
edge f. Intersecting the results for all such edges f on the boundary of the active
region produces the region R(e) claimed by W{(e) in SPM(s). Intersecting R(e)
with S(e) gives the vertices of SPM (s) to which W (e) contributes. We repeat this
computation for each transparent edge fragment to find all the vertices of SPM (s)
in the active region. Applying this algorithm to all active regions finds all vertices

of SPM (s) inside c.

The partition S(e) determined by each edge fragment e participates O(1) times in
a Voronoi-style merge, so the total cost of merging is O(k). Hence the running time
is dominated by the propagation algorithm, which takes O(klogk) time altogether.
a

29



Lemma 4.13 The shortest path map vertices computed cell-by-cell can be combined to build
SPM (s) in additional O(nlogn) time.

Proor. To compute SPM (s), we compute all its edges separately, then use a stan-
dard plane sweep to assemble them, as follows. Create a list of the bisector endpoints
discovered in the computation of Lemma 4.12, each identified by a key consisting of
two generators. Put each three-bisector endpoint into the list three times, once for
each bisector. Put each bisector/edge collision in once, labeled with the generators
of the bisector. Now sort the list to group together endpoints belonging to each
bisector. Take the endpoints belonging to the bisector of a generator pair (v, w)
and sort them along the hyperbola determined by the weighted generators v and w.
This determines all edges of SPM (s) on the hyperbola. Doing this for all pairs that
appear as keys in the sorted list gives all O(n) hyperbolic arcs of SPM (s). Finally,
with a standard plane sweep [23], we can combine these arcs with the edges of O to

build the subdivision SPM (s). o

5 An Implementation of the Wavefront Propagation

In this section, we give the implementation details of our algorithm. We describe the data
structures used by our algorithm, and finer details of the propagation algorithm.

5.1 The Data Structures

An approximate wavefront is a list of generators (obstacle vertices). Our algorithm performs
the following two types of operations on these lists:

1. Standard list operations: insert, delete, concatenate, split, find previous and next
elements, and search. The search operation locates the position of a query point in
the list of bisectors defined by the generators at a particular time.

2. Priority queue operations: we assign each generator in the list a priority, and the data
structure needs to update priorities and find the minimum priority in the list.

Both of these types of operations can be supported by a data structure based on balanced
binary trees, for example red-black trees, with the generators at the leaves. In particular,
the list operations take O(logn) time each because the maximum list length is O(n). The
priority queue operations are supported by adding a priority field to the nodes of the binary
tree: each node records the minimum priority of the leaves in its subtree. Each priority
queue operation takes O(logn) time, while the list operations retain their O(logn) bound.

We also require our data structure to be fully persistent—we need the ability to operate
on past versions of any list. Each of the two kinds of operations uses O(1) storage per
node of the binary tree, so we can make the data structure fully persistent by path-copying.
Each of our operations affects O(log n) nodes of the tree, including all the ancestors of every
affected node. Once we have determined which nodes an operation will affect, and before
the operation modifies any node, we copy all of the nodes that will be affected, then modify
the copies. This creates a new version of the tree while leaving the old version unchanged.
The data structure uses O(mlogn) storage, where m is the total number of data structure
operations, and keeps the O(logn) per-operation time bound quoted above.
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Lemma 5.1 There is a linear-space data structure that represents an approximate wave-
front and supports list operations and priority queue operations in O(logn) time per op-
eration. The data structure can be made fully persistent at the expense of an additional
O(logn) space per operation.

5.2 Details of the Wavefront Propagation

Using the data structures just described, we now show how to propagate an approximate
wavefront from edge to edge. In particular, given an approximate wavefront W (e), we show
how to compute W (e, g) for every edge g € output(e). In the process, we also determine
the time of first contact between W (e, g) and the endpoints of ¢.

We describe how to compute W (e, ¢) for all the transparent edges ¢ on the boundary of
e’s cell. Because the edges of output(e) belong to a constant number of cells in the neigh-
borhood of e, we can use this primitive to compute W (e, g) for all g € output(e). When we
propagate the wavefront cell-by-cell, we effectively split W (e, ¢) into multiple pieces, each
labeled by the sequence of transparent edges it follows from e to g. We assemble W (e, g)
out of these component wavefronts by concatenating pieces that correspond to topologi-
cally equivalent paths inside U(e). (Recall that for a pair e and g, there may be several
constrained wavefronts W (e, g), W (€', g), etc., topologically distinguished by the paths they
follow among the islands inside ¢(e).) Each component piece is a list of generators; adja-
cent pieces may contain a single duplicate generator, namely the generator that claims the
common endpoint. Before concatenation of the lists, one copy of the duplicate generator
is deleted. In Figure 14, W (e, ¢) is assembled from W (e', g) and W (e”, g), where ¢’ and ¢”
are two edges on the boundary of g’s cell.

Figure 14: W (e, g) may reach ¢g via multiple paths.

5.2.1 Preparing the Cells for Propagation

The propagation algorithm that follows assumes that the cell ¢ is convex. When ¢ is
nonconvex, which is the case for subcells of an annulus cell, we temporarily break ¢ into
convex subcells by adding transparent edges parallel to e through the points of nonconvexity,
as illustrated by Figure 15.

Let f # e be another transparent edge on the boundary of ¢. Our propagation algorithm
assumes the following invariant:
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obstacle

e e

Figure 15: Preparing nonconvex cells for wave propagation.

Propagation Invariant: When a wavefront W (e, f) is propagated for distance
2| f| beyond f, it intersects only a constant number of cells of the conforming
subdivision of the free space.

The edges of the conforming subdivision & already satisfy the Propagation Invariant,
since each edge f is well-covered with parameter 2. However, we need to be more careful
in dealing with a cell derived from an annulus. We subdivide each of the newly added,
nonconvexity-removing edges into O(1) pieces, each no longer than the edges of S on the
annulus’s outer boundary (one-eighth the side length of the outer square, by the uniform
edge property of the conforming subdivision). Let H denote the convex hull of e and the
inner square of the annulus. If H intersects a newly added edge f, then we further partition
f N H into pieces no longer than the inner boundary’s edges (one-eighth the side length
of the inner square). We illustrate this last step in Figure 16. Because f is parallel to e,
and the inner boundary of the annulus is well separated from the outer boundary (cf. the
minimum clearance property of the conforming subdivision §), the total length of edges
inside H is proportional to the side length of the inner square. It follows that the partition
step creates only O(1) edges.

The subdivided edges satisfy the Propagation Invariant: for any such edge f, let ¢’ be
an edge of ¢ such that W{(e, f) leaves ¢ by passing through ¢’. Edge ¢’ is an edge of &',
the conforming subdivision of free space; it is a fragment of an edge g of §, the conforming
subdivision for the vertices. The construction of &’ in Lemma 2.2 ensures that there are
O(1) cells of 8" within shortest path distance 2|g| of ¢’. The subdivision of nonconvexity-
removing edges guarantees that |f| < |g|, which implies that the Propagation Invariant

holds for edge f.

5.2.2 Simulating the Wavefront Propagation Across Convex Cells

So far we have used a wavefront in its static form, namely, as a sequence of generators
whose bisectors intersect an edge in the subdivision. We now describe a dynamic form of
the wavefront, in which we track changes in the combinatorial structure of the wavefront
as it sweeps across a cell. In particular, we simulate the evolution of a wavefront W (e)
as it sweeps across a cell ¢ after entering it through the edge e; the cell ¢ is a convex cell
satisfying the Propagation Invariant. Our simulation detects and processes any bisector
events involving the generators of W(e) that may occur inside ¢. Events are processed in
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Figure 16: Subdividing the added edges.

order of increasing distance from s, that is, in simulation time order. Generators are marked
as events are processed, though the description below does not necessarily itemize all the
marks made.

Let W denote the current dynamic wavefront at any time during the simulation. At the
start of the simulation, we have W = W (e), the approximate wavefront that passes through
e—it is a list of generators, each claiming some portion of e. Every generator v € W defines
a pair of bisectors with its neighbors in the list. If v is the first generator in the list, then
its first bisector is the ray from v through the endpoint of € at v’s end of the list; the last
bisector for the last generator is defined similarly. If v is an endpoint of e, then there is no
first bisector (or last bisector, as appropriate).

To process bisector events in order, we maintain the corresponding generators of W in a
priority queue. The priority of a generator v is the weighted distance to the point at which
the two bisectors defined by v intersect beyond e; the priority is infinite if the bisectors
do not intersect beyond e. Specifically, if the bisectors defined by v and its neighbors
intersect ahead of e, either in ¢ or beyond it, at a point p, then priority(v) = |vp| + d(v, s).
Our simulation of the wavefront propagation processes these bisector events in order of
increasing priority up to some mazximum priority ts.,, which is determined by the shape of
¢, as explained below. This limit ¢s,, is the minimum of individual ¢s.,(f) values for each
transparent edge f on c. Initially, we set t5,, = 00 and tg,,(f) = oo for all f. We also
initialize an empty set T, which is used to hold generators whose priorities need to be reset
after the simulation.

At each step of the simulation, we extract the event with minimum priority from the
queue; let v be the generator vertex producing this event. If the event occurs inside ¢ (that
is, the intersection point corresponding to the event lies in ¢), then we delete v from the
generator list and recompute the priorities of its neighbors. We mark v in W (e) for the
cell ¢; in addition, we also mark v for a constant number of cells near ¢ to satisfy Rule 3 of
Section 4.1.2.

If, however, v’s event occurs outside ¢, then we set priority(v) = oo, and add v to the
set T'. The generator list is not changed in this case, because we have found the correct
intersection between the boundary of ¢ and the wavelet from v, at least locally. If we were
to process all the bisector events of W in strict time order, the generators on either side of
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v might participate in further bisector events outside ¢ before the last bisector event inside
c occurred. However, we are not interested in those events now. Setting priority(v) to oo
avoids processing those events outside c.

We compute the intersection points of the two bisectors defined by v with the boundary
of c. If either intersection lies on an opaque edge, or if they lie on different transparent edges
with an opaque edge between, mark the generator v for cell ¢ and O(1) neighbors to satisfy
Rule 4 of Section 4.1.2. If either of the intersection points, say z, lies on a transparent edge,
say f, then we update tyy,, as follows:

tstop(f) = min(tstop(f)v d(U, S) + |W| + |f|)

tstop = min (tstopv tstop (f))

The second term of the minimum in the first line above is a time at which the wavefront
W certainly will have swept over f; it is also no more than 2|f| greater than the time at
which the wavefront W first contacts f.

When we reach priority ¢, either ¢4, = 0o and all events inside ¢ have been processed,
Or tsop < 00 and there is a transparent edge f on the boundary of ¢ with ts0,(f) = tstop.
The definition of ¢4, (f) ensures that all the bisector events needed to produce W (e, f)
have been processed. We compute the static wavefront W (e, f) from the current dynamic
wavefront W, as follows. We first locate the endpoints of f in W by searching outward from
one of the bisectors in W that intersects f—there is at least one such bisector. At this point
we mark the endpoint-claiming generators to satisfy Rule 2. We split the current generator
list at the endpoints of f; this breaks up the wavefront into three parts: one that passes
through f (in fact, once the generator priorities are reset, this part becomes W (e, f)), and
the other two that pass on the left and right of f. We continue with the simulation process
on the latter two pieces independently, after we have reset ¢s,, in each piece to be the
minimum of ¢s,,(g) over the transparent edges ¢ in that piece.

If we stop because ¢4, = 00, we split the current generator list at all the transparent
edge endpoints, producing W (e, f) for each transparent edge f, plus some wavefront pieces
that hit only opaque edges.

If no transparent edges remain in some piece, all bisectors in the piece hit an opaque
edge. We mark all the generators in that piece for cell ¢ and in O(1) nearby cells to satisfy
Rule 4, as well as making all necessary marks for Rules 2 and 3.

When we finish, we reset the priority of each vertex in the temporary set T based on the
bisectors it defines with its neighbors in the (new) list. This ensures that each wavefront
fragment W (e, f) has its priorities set properly.

Once we have computed the wavefront W e, f), we determine the time of first contact
between this wavefront and each endpoint of f. Each endpoint p lies in the region claimed
by some v € W{(e); v is the first or last generator in W (e, f). The time of first contact
is d(v, s) + |vp|. (Because of visibility constraints, p may not be claimed by any generator
in Wi(e); recall that Wi(e, f) is constrained to reach f by paths passing through e and
contained in U(f). In this case the time of first contact is infinite.)

The propagation algorithm performs O(1) priority queue and list operations per bisector
event processed, plus O(1) per edge of the conforming subdivision. Each operation takes
O(logn) time and space. Because the wavefront data structure is fully persistent, all the
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modifications to a single wavefront list W (e) are independent: for example, a wavefront
W (e, f) may share generators with a wavefront W (e, g), for f,g € output(e), but that
overlap causes no problems.

We summarize the main result of the preceding discussion in the following lemma.

Lemma 5.2 Fvery bisector event processed in the procedure above either (1) lies inside c,
(2) involves a generator whose region is truncated by an opaque edge of ¢, (3) is associated
with tsop(f) being set to a finite value for the first time for some transparent edge f of c,
or (4) lies within shortest path distance 2|f| of a transparent edge f of c. If the number of
events is m, then the procedure takes O(mlogn) time.

As argued in the proof of Lemma 4.11, our simulation of the wavefront propagation
discovers a bisector event for a generator v within a constant number of cells of a true
bisector event for v in the shortest path map SPM (s). By the Propagation Invariant, the
bisector events processed during the propagation of a wavefront W(e) across a cell ¢ lie
within a constant number of cells near the edge e (cf. Lemma 5.2 (4)). We conclude that
a generator v is marked for a constant number of cells in the vicinity of each of the true
bisector events involving v. Thus, the total number of events processed and generators
marked during the wavefront propagation is O(n). This concludes the proof of our main
result:

Theorem 5.3 Let O be a family of polygonal obstacles in the plane with pairwise disjoint
interiors and a total of n vertices. Given a point s, we can construct the shortest path map
from s with respect to O in time O(nlogn) and space O(nlogn).

The shortest path map SPM (s) can be preprocessed for point location, after which a
shortest path query from s to any point ¢ in the plane can be answered in time O(logn) [10,
16]. A shortest path 7 (s,?) can be computed in additional time O(k), where k is the number
of edges in the path.

6 Constructing a Conforming Subdivision

This section contains the proof of Theorem 2.1. It gives an algorithm to construct an a-
conforming subdivision for a set V' of n points in the plane. The main part of the algorithm
constructs a 1-conforming subdivision of size O(n) in O(nlogn) time. The following lemma
shows how to transform this subdivision into an a-conforming subdivision of size O(an) in
O(an) additional time.

Lemma 6.1 Let V be a set of n points, and let S be a 1-conforming subdivision for V
of size O(n). For any a > 1, we can build an a-conforming subdivision S, for V with
complexity O(an) in time O(an). If 81 is a strong 1-conforming subdivision, then S, is a
strong a-conforming subdivision.

Proor. Subdivide each edge of S; into [«] equal-length pieces. Define the well-
covering region of each edge e in &, to be the same as the well-covering region in
&1 of the edge of Sy of which e is a fragment. These operations can be performed
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in O(an) time. We show below that the subdivision thus defined satisfies properties
(C1)—(C3). Text in [brackets] applies if Sy is strongly 1-conforming.

(C1) S, has the same set of cells as &1, so each cell of S, contains at most one point
of V in its closure.

(C2) Each internal edge e, of &, is well-covered with parameter a, since it satisfies
conditions (W1), (W2), and (W3) [(W3’)]. Let e; be the edge of Sy of which
€, is a fragment. Let C,(e,) be the set of cells of S, whose union U, (e, ) is the
well-covering region of e,. Define Cy(ey) and U (e1) analogously.

(W1) U, (en) covers the same area as Ui (e1), so e, is contained in its interior.

(W2) Each edge of each cell in Cq(eq) is divided in [a] pieces in Cy(ey) , so the
total complexity of C,(e,) is O(a).

(W3) [(W3')]
Let f, be an edge of S, on [or outside] the boundary of U, (e, ), and let f;
be the edge of &; from which it is derived. The Euclidean distance between
e, and f, is at least as large as the distance between e; and fi, which is
at least max(le1|,|f1]) > max(a|es|, @|fa])-

(C3) Well-covering regions in S, are the same as in Sy, so each contains at most one
vertex of V.

This establishes the lemma. O

Before we describe the construction of the l-conforming subdivision, we need a few
definitions.

6.1 The i-boxes and i-quads

We fix a Cartesian coordinate system in the plane. For any integer ¢, an ¢th-order grid in
this coordinate system is the arrangement of all lines z = k2" and y = k2', where k ranges
over all integers. Each face of this grid is a square of size 2° x 2°, whose lower-left corner
lies at a point (in, 122')7 for a pair of integers k,l. We call each such face an i-boz.

Any 4 x 4 array of ¢-boxes is called an i-quad. Though an i-quad has the same size
as an (¢ + 2)-box, it is not necessarily an (i + 2)-box because it may not be a face in the
(¢ + 2)-order grid. The four non-boundary i-boxes of an i-quad form its core; that is, the
core of an i-quad is a 2 X 2 array of i-boxes. Observe that an i-box b may have up to four
i-quads that contain b in their cores.

Our algorithm for building a 1-conforming partition of the point set V is a bottom-
up procedure. The algorithm simulates a growth process in which we grow a square box
around each data point, until the entire plane is covered by these boxes. The simulation
works in discrete stages numbered —2,0,2,4,.... It produces a subdivision of the plane
into orthogonal cells. The key object associated with a data point p in stage ¢ is an ¢-quad
containing p in its core. In fact, the following stronger condition holds inductively: each
(1 —2)-quad constructed in stage (i —2) lies in the core of some i-quad constructed in stage ¢.

In each stage, we maintain only a minimal set of quads. The set of quads in stage ¢ is
denoted Q(¢). This set is partitioned into equivalence classes under the transitive closure
of the overlap relation—two quads ¢ and ¢’ are in the same equivalence class if there is
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a sequence of quads ¢ = qo,¢1,...,0n = ¢ € Q(¢) such that ¢; and ¢;4; overlap (have a
common interior point) forall j = 0,1,...,m—1. Let {S1(7), ..., Sk(?) } denote the partition
of Q(7) into equivalence classes in the ith stage, and let =; denote the equivalence relation.

The region of the plane covered by quads in one class of this partition is called a com-
ponent. Each component in stage ¢ is either an ¢-quad or the union of i-quads. We can
classify each component as either a simple component or a complex component. A compo-
nent at stage ¢ is simple if (1) its outer boundary is an i-quad and (2) it contains exactly
one (¢ — 2)-quad of Q(i — 2) in its interior. Otherwise, the component is complex.

6.2 The Invariants

As the algorithm progresses, we draw the boundaries of certain components. Each boundary
edge is a straight line segment, parallel to one of the axes, and together these edges subdivide
the plane into orthogonal cells. The critical property of our subdivision is the following
conforming property:

Invariant 1: For any edge e and cell ¢ of the subdivision, ¢ has an interior
point within distance |e| of e if and only if ¢ and e are incident (their closures
intersect). Thus there are at most six cells within distance |e| of any edge e.

Our algorithm draws edges of increasing lengths, and so we never need to subdivide
previously drawn edges inside a component. In order to help maintain Invariant 1, we will
also enforce the following auxiliary invariant.

Invariant 2: The boundary of each complex component in stage ¢ is subdivided
into edges of length 2° that are aligned with the ¢th-order grid.

Our algorithm does not actually draw the outer boundary of a simple component until
just before it merges with another component to form a complex component. Indeed, this
is crucial to ensure that the final subdivision has only O(n) size, and not ©(nlog A), where
A is the maximum aspect ratio of a triangle in the Delaunay triangulation of the input
points [3].

There are two main parts to our algorithm—one involves growing the (i — 2)-quads
of stage (i — 2) to i-quads of stage 7, and the other involves computing and maintaining
the equivalence classes and drawing subdivision edges to satisfy Invariants 1 and 2. These
tasks are performed by procedures growth and build-subdivision, respectively. We postpone
the discussion of growth till later, but introduce the necessary terminology to allow us to
describe build-subdivision.

Given an i-quad ¢, growth(q) is an (i+2)-quad containing ¢ inside its core. For a family
S of i-quads, growth(S) is a minimal set of (¢ + 2)-quads satisfying the following:

VqesS, 3qe€ growth(S) s.t. q= growth(q).

As mentioned earlier, up to four (i + 2)-quads may qualify for the role of growth(q). We
will describe later how the procedure growth chooses growth(q), but for now we will use
growth(q) as a unique (¢ 4+ 2)-quad returned by the procedure growth. We also use the
notation ¢ to denote growth(q).
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6.3 Details of build-subdivision

By proper scaling and translation of the plane, we assume that either the horizontal or the
vertical distance between any two points in V is at least 1, and no point coordinate is a
multiple of 1/4. For every point p € V, we compute a (—2)-quad with p in the upper left
(—2)-box of its core; this choice ensures that quads of different points are disjoint. These
quads form the initial set of quads Q(—2)—each quad in Q(—2) forms its own singleton
component under the equivalence class in stage —2. We regard all quads in Q(—2) as
simple components. We draw a (—2)-box around each point p. Each of these (—2)-boxes is
contained in the core of its (—2)-quad. (The (—2)-quads are not drawn.) Invariants 1 and 2
are both clearly satisfied at this stage. The pseudo-code below describes the details of the
algorithm build-subdivision. This pseudo-code is correct, but not particularly efficient; an
efficient implementation is presented in Section 6.5.
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ALGORITHM build-subdivision

while |Q(7)| > 1 do
1. Increment 2: =1+ 2.
2. (x Compute Q(1) from Q(i —2). %)
(a) Initialize Q(i) = 0.
(b) for each equivalence class S of Q(i —2) do
Q(1) = Q(i) U growth(S).
(¢) for every pair of i-quads ¢, ¢ € Q(i) do
it gng £0,set g=; ¢
(d) Extend =; to an equivalence relation by transitive closure,
and compute the equivalence classes.

3. (x Process simple components of =,_o that are about to merge
with some other component. %)
for each ¢ € Q(i — 2) do
(a) Let ¢ = growth(q) as computed in Step 2.
(b) 1if ¢ is a simple component of Q(i — 2)
but G is not a simple component of Q(¢) then
Draw the boundary box of ¢ and subdivide each of
its sides into four edges at the (i — 2)-order grid lines.

4. (* Process complex components. )

for each equivalence class S of Q(i) do
Let 5" = {q € Q(i — 2) s.t. growth(q) € S}.
if |S’| > 1 then (xS is complex )

(a) Let Ry = U,es {the core of growth(q)}.

(b) Let Ry = Ugecg {the region covered by ¢}.

(c) Draw (i — 2)-boxes to fill the region between the
boundaries of Ry and R».

(d) Draw i-boxes to fill the region between the boundaries
of Ry and S; break each cell boundary with an endpoint
incident to Ry into four edges of length 272, to satisfy
Invariant 1.

endwhile

Lemma 6.2 The subdivision computed by the algorithm build-subdivision satisfies Invari-
ants 1 and 2.

PrOOF. We prove by induction that the invariants hold inside the family of quads

(1), for all i. The initial family of quads Q(—2) clearly satisfies the two invariants.
We show that no step of the algorithm build-subdivision ever violates these invariants.
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Step 2 computes growth(S) for each equivalence class of Q(¢ —2), and then computes
Q(7). No new edges are drawn in this step.

The only edges drawn in Step 3 are on the boundaries of simple components.
Let ¢ be an (¢ — 2)-quad that is a simple component of Q(i — 2). By definition, the
single (i — 4)-quad of Q(¢ — 4) contained in ¢ lies in its core, and thus is separated
from the outer boundary of ¢ by a gap of at least 2°=2 on all sides. Hence the edges
already drawn in the core satisfy Invariant 1: they have length no more than 2¢~2
(actually 2i=% except when i = 0), and are separated from the boundary of ¢ by
a gap of at least 2=2. We draw the boundary of ¢ in Step 3; since any previously
drawn edges within ¢ lie in its core, the new edges satisfy Invariant 1. Invariant 2
holds vacuously.

Step 4 subdivides the region covered by each complex component S. Again, the
boundary of S is separated from any components of Q(i—2) contained in it by a gap
at least the width of an 7-box. Step 4(c) adds (i — 2)-boxes to pad the region covered
by Q(i —2) out to the boundaries of i-boxes. By Invariant 2, the newly drawn boxes
satisfy Invariant 1 with respect to the previously drawn edges; they clearly satisfy
Invariant 1 with respect to each other’s edges. Step 4(d) packs the area between
the core and the boundary of S with ¢-boxes, and breaks the segments incident to
previously drawn cells into four pieces to guarantee Invariant 1 with respect to those
cells. (The previously drawn edges on the core boundary have length 272 so by
induction the cells incident to them have side lengths at least 2°=2. Tt follows that
the cells inside the core satisfy Invariant 1 with respect to the newly drawn segments
of length 272.) The segments on the boundary of S are unbroken, so Invariant 2
holds at the next stage of the algorithm. This completes the proof. a

Lemma 6.3 The subdivision produced by build-subdivision has size O(n).

ProoF. We show that the algorithm draws a linear number of edges altogether. The
number of edges drawn in Step 3 is proportional to the number drawn in Step 4—we
draw a constant number of edges in Step 3 for each simple component that merges to
form a complex component at the next stage. The number of edges drawn in Step 4
for a complex component S is O(|S’]), the number of (¢ — 2)-quads whose growths
constitute S. The key observation in proving the linear bound is that the total size
of Q decreases every two stages by an amount proportional to the total number of
quads in complex components. This fact, which we prove in the next subsection
(Lemma 6.5), can be expressed as follows: If e; edges are drawn in stage 7, then

Qi +2)] < [Q(i—2)] — O(e).
That is, there exists an absolute constant # such that
fei < QG —2)|—Q(i +2)].

If we sum this inequality over all even ¢ > 0, the right hand side telescopes, and we
obtain

B3 e < 1Q(=2)|+[Q(0)] - 2.
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Since |Q(—2)| = n, we have ), e; < (2n — 2)/3. The total number of edges in the
subdivision is O(n). o

Lemma 6.4 The subdivision produced by build-subdivision is strongly 1-conforming and
satisfies the following additional properties: (1) all edges of the subdivision are horizontal
or vertical, (2) each face is either a square or a square-annulus (with subdivided boundary),
(3) each annulus has the minimum clearance property, (4) each face has the uniform edge
property, and (5) every point of V is contained in a square face.

Figure 17: A well-covering region ¢ (e). The boundary of I(e) is shown dashed.

ProOOF. Strong l-conformity is a consequence of Invariant 1, as we now show.
Condition (C1) is trivially true, since each point is initially enclosed by a square. To
establish well-covering (Condition (C2)), let I(e) be the union of the (at most six)
cells incident to an edge e. By Invariant 1, the distance from e to any edge outside
or on the boundary of I(e) is at least |e|. Edge e may be collinear with other edges
of the two cells on whose boundary it lies. We define C(e) to be the set of cells
incident to any of these collinear edges; U (e), the union of these cells, is a superset
of I(e). See Figure 17. Because the two cells with e as a boundary edge meet only
along edges collinear with e, this definition of Z{(e) means that for any edge f on or
outside the boundary of ¢(e), I(f) does not contain both cells incident to e. But
this implies, by Invariant 1, that e is on or outside the boundary of I(f), and hence
the distance from e to f is at least |f|. Edge e certainly lies in the interior of U (e)
(Condition (W1)). Condition (W2) follows because C(e) is the union of I(e’) for
O(1) edges €' collinear with e, |I(¢/)] < 6 for each €', and each cell has constant
complexity. As noted above, the minimum distance between e and any edge f on
or outside the boundary of I (e) is at least max(|e], | f|), which establishes Condition
(W3'). Condition (C3) follows from the observation that a well-covering region i (e)
includes a vertex v of V if and only if e is an edge of the square containing v. This
is because each vertex-containing square is the inner square of a square annulus in
the subdivision. No edge belongs to two such squares, so Condition (C3) holds.
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Properties (1)—(5) hold by construction. This completes the proof. 0

6.4 The Algorithm growth()

In this subsection, we describe our algorithm for computing growth(S) for a set of i-quads 9,
and prove that the number of quads decreases every two stages by an amount proportional
to the total complexity of the complex components. Let S C Q(i) be a set of i-quads
forming a complex component under the equivalence relation =;. Recall that growth(95) is a
minimal set of (74 2)-quads such that each i-quad of S lies in the core of some (i + 2)-quad
in growth(S). We will show that

|growth(growth(S))| < k|9,

for an absolute constant 0 < & < 1. The pseudo-code below describes an unoptimized
version of our algorithm for computing growth(S). The algorithm works by building a
graph on the quads in S.

ALGORITHM growth(S)

0. Set growth(S) = 0.
1. for each pair of quads ¢1,92 € S do
if g1 U g2 can be contained in a 2 x 2 array of (i + 2)-boxes, then
Put an edge between ¢y and ¢5.
2. Compute a maximal matching in the graph computed in Step 1.
3. for each edge (¢1,¢2) in the maximal matching do
Choose an (¢ 4+ 2)-quad ¢ containing g1, gz in its core.
Set growth(q1) = growth(qz) = ¢, and add ¢ to growth(S5).
4. for each unmatched quad ¢ € S do
Set growth(q) = ¢, where ¢ is an (i + 2)-quad containing ¢ in its core.
Add ¢ to growth(S5).

In this algorithm, Step 1 builds a graph whose nodes are the t-quads of S; two quads ¢
and ¢z have an edge between them if their union ¢; U ¢ lies in some 2 X 2 array of (i 4 2)-
boxes. The maximum node degree of this graph is O(1) since only a constant number of
i-quads can touch any i-quad ¢. Thus, a maximal matching in this graph has ©(|F|) edges.
Each i-quad at stage 7 maps to an (i + 2)-quad at stage (¢ + 2). Since each matching edge
corresponds to two i-quads that map to the same (¢ + 2)-quad, it clearly follows that

lgrowth(S)| = 1] - ().
The crucial fact to prove is that |F| is a constant fraction of |S| at stage (i + 2).

Lemma 6.5 Let S C Q(i) be a set of two or more i-quads such that growth(S) is a complex
component under the equivalence relation =;4o. Then |growth(growth(S))| < k|S|, for an
absolute constant 0 < k < 1.
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Proor. We show that either |growth(S)| < (3/4)|S], or at least half of the quads of
growth(S) can be contained in a 2 X 2 array of (i + 2)-boxes with some other quad
of growth(S5).

If |growth(S)| < (3/4)|S], then we are done, because the following inequality
obviously holds: |growth(growth(S))| < |growth(S)| < (3/4)|S]|. Therefore, suppose
that |growth(S)| > (3/4)|S|. Then at least half the i-quads of S are not matched
in Step 2 of the function growth(), and their growths contribute more than half of
the (¢ + 2)-quads of growth(S). Consider one such i-quad ¢ € S. Since S is a non-
singleton equivalence class, there exists another i-quad ¢’ € S that overlaps ¢. Let
q = growth(q) and ¢ = growth(q’). By assumption, ¢ # ¢’. The cores of ¢ and ¢’
both contain the overlap region ¢ N ¢’, so the cores must overlap. Therefore both
cores are contained within a 3 x 3 array of (¢ + 2)-boxes, and both the (¢ + 2)-quads
g and ¢’ are contained within a 5 x 5 array of (i 4+ 2)-boxes. This ensures that ¢ and
¢ are joined by an edge in the graph of growth(S): any two (i + 2)-quads whose
bounding box is contained in a 5 x 5 array of (i 4+ 2)-boxes can be covered by a
2 x 2 array of (¢ + 4)-boxes. Hence the number of edges in the maximal matching
of growth(S) is Q(|5]), which proves the inequality |growth(growth(S))| < r|S] for
some x < 1. a

Since the number of edges drawn at stage 7, call it e;, is proportional to the number of
(1—2)-quads whose growths belong to complex components, the preceding lemma establishes
the earlier claim that

Qi +2)] < [Q(i-2)| — O(e).

For any ¢,¢" € 5, we have growth(q) = growth(q’) only if ¢ and ¢’ are touching—their
closures intersect—otherwise ¢ and ¢’ cannot be contained in the core of the same (i + 2)-
quad. We use this fact to implement the procedure growth(S) to run in time O(]S|log|S]|):
each quad of S touches at most a constant number of other quads, and we can compute
which quads touch using an O(|S]|log|S|) plane sweep algorithm [23]. From the set of
touching pairs we can compute the graph edges in Step 1 of growth(S) in O(|S|) additional
time. All other steps of growth(S) take time proportional to the graph size, which is O(].S]).

6.5 An O(nlogn) Implementation of build-subdivision

In order to keep the time complexity of build-subdivision independent of the aspect ratio
of the points, we process a simple component only when it is about to merge with another
component. In other words, the amount of processing is proportional to the number of
boundary edges drawn at any stage. Except for Step 2(b), which computes growths, and
Step 2(c), which detects overlapping i-quads, all other steps can be implemented to run in
time proportional to the number of edges drawn in the subdivision. (Steps 3 and 4 use the
adjacency information computed in Step 2(c) to run in linear time.)

We maintain the simple components and the complex components of Q(7) in two separate
sets. We compute growth(S) explicitly for the complex components, but only implicitly
for the simple components. Suppose that ¢ is a singleton component of Q(i — 2j), and
growth’ (q) € Q(i) is the result of applying the growth() operator j times. If growth®(q)
is simple for all positive & < j, then growthj(q) can be determined in constant time from
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q using the floor operation. The set of simple components of Q(7) is maintained as a set
of singletons from earlier stages; when we determine that a simple component is about to
merge with another component (Step 2(c)), we compute the simple component explicitly.
The transitive closure can be computed in time proportional to the total size of the complex
components, which is proportional to the number of edges drawn at this stage. Since the
final subdivision has size O(n), all the work except that in Steps 2(b) and 2(c) takes a linear
amount of time. In the following we show how to use a minimum spanning tree algorithm
to implement Step 2(c) in O(nlogn) time.

6.5.1 The Merging of i-quads

Before we present the algorithm, we discuss the distance properties satisfied by points that
lie in the same equivalence class in stage . We say that a quad ¢ is a containing t-quad of
a point u € V if ¢ € Q(¢) and u lies in ¢’s core. A point u belongs to an equivalence class
S € Qi) if there is a containing i-quad of u in S.

Lemma 6.6 Let u be a point of V and let ¢ € Q(i) be a containing i-quad of u. Then the
minimum L., distance between u and the outer boundary of q is 2.

PrOOF. The lemma depends on the property that u lies in the core of ¢. Since ¢ has
side length 272, and u lies at least a quarter of this distance away from the outer
boundary, the lemma follows. a

In the following, the notation d..(u,v) denotes the distance between the points u and v
under the L., norm.

Lemma 6.7 Let u and v be two points of V that belong to different equivalence classes of
Q(i). Then doo(u,v) > 2 x 2°.

Proor. Let ¢, and ¢, be two containing i-quads for u and v, respectively. Since
u and v lie in different equivalence classes, these i-quads do not intersect. By
Lemma 6.6, each of the points lies at least a distance 2° away from the outer bound-
aries of their i-quads, which immediately gives the lower bound on d..(u,v) stated
in the lemma. a

Lemma 6.8 Let u,v € V be two points and let q,, q,, respectively, be two i-quads of Q(7)
containing them. If ¢, N q, # 0, then doo(u,v) < 6 X 2%

ProoF. By Lemma 6.6, the maximum distance between « and the outer boundary
of ¢, is at most 3 x 2. The same holds for v and ¢,, which implies the upper bound
on de (u, v). ]

6.5.2 Minimum Spanning Trees

Let Vs be the set of points in the core of some component S € Q(¢). Our implementation
of build-subdivision is based on the observation that the longest edge of the L., minimum
spanning tree of Vg has length less than 6 x 2°. To make this observation more precise,
we define Gi(¢) to be the graph on V containing exactly those edges whose L., length is at
most 6 x 2¢, and define MSF (i) to be the minimum spanning forest of G (3).
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Lemma 6.9 The points contained in any component of Q(i) belong to a single tree of

MSF (i).

ProoF. Let S be a component of Q(7). By Lemma 6.8, the points contained in S
can be linked by a tree with edges shorter than 6 x 2°. For any bipartition of the
points of Vs, the minimum weight edge linking the two subsets is shorter than 6 x 2.
The minimum spanning tree of Vs has all edges shorter than 6 x 2!, and therefore
Vs belongs to a single tree of MSF (). o

Lemma 6.10 [fi-quads q1 and gy belong to different components of Q(i), then their points
belong to different trees of MSF (i — 2).

ProOOF. Every edge from a point in ¢;’s component to any point outside that
component has length greater than 2 x 2¢, by Lemma 6.7. The points of quads
¢1 and ¢z are in the same tree of MSF (i — 2) only if every bipartition of V' that
separates the points of ¢; from those of ¢, is bridged by an edge of length less than
6 x 2172, But the bipartition separating the points of ¢;’s component of Q(i) from
the rest of V' has bridge length greater than 2 x 20 > 6 x 272, a

Our algorithm is based on an efficient construction of MSF(:) for all 7 such that
MSF (i) # MSF (i — 2). The standard algorithm for computing a geometric minimum span-
ning tree is well-suited to our needs. We compute the Lo Delaunay triangulation of V
in O(nlogn) time [6], then run Kruskal’s MST algorithm [8]. Kruskal’s algorithm inserts
the O(n) Delaunay edges into the current minimum spanning forest in sorted order from
shortest to longest; any edge that joins two trees of the forest is retained, and all other edges
are dropped. For each edge e added to the forest, we compute k = 2[% 10g2(|e|/6ﬂ7 which
determines the stage &k at which e is added to MSF (k). By stopping just before each stage
change, we produce MSF'(¢) for each even i such that MSF (i) # MSF (¢ — 2) in O(nlogn)
total time.
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IMPLEMENTATION OF build-subdivision

For each T' € MSF (i), maintain the corresponding set of i-quads in Q(z) that are
the containing quads for the vertices of T'. Call this set Q(7,T).

Initialize 7 = —2. Initialize MSF(—2) to be a forest of singleton vertices. For each
vertex v € V., @(—2,{v}) is a singleton quad with v in its core.

Maintain a set A of trees in MSF (i) such that for each T € N, [Q(i,T)| > 1;
that is, 7’s component is not a singleton quad. Initialize A" = 0.

while |Q(7)| > 1 do
lold = 13
if [M|>0theni=1i42
else Set i to the smallest even ¢/ > 7 such that MSF (i) # MSF (7).
foreach edge e of MSF (i) not in MSF (iy4) do
Let T1 and T3 be the trees linked by e.
foreach T, € {T},7T5} do
if T, € N then
Remove 7T, from A.
else
Compute the singleton (i — 2)-quad in Q(7 —2,1;).
Join Ty and T5 to get T7, and put 77 in N.
Set Qi —2,T)=Q(i—2,T1) U Q(i — 2,T3).

end
(x Invariant: if T € N, then Q(i — 2,T) is correctly computed. x)

foreach T € N do
2(a) Initialize Q(7,7T) = 0.
2(b) for each equivalence class S of Q(i —2,7T)) do

Q(:,T) = Q(:,T) U growth(S).

2(c-d) Compute the equivalence classes of Q(i,7T) by plane sweep.
3-4  Perform Steps 3 and 4 of build-subdivision on Q(i,T).
if |Q(:,T)| =1 then Delete T' from N.

end

endwhile

The implementation of build-subdivision above replaces Steps 1 and 2 of build-subdivision
with more efficient code based on minimum spanning trees. First, we process only stages
at which something happens: MSF(i) changes, or there are complex components of Q(7)
whose growth computation is nontrivial. (This optimization is not usually significant; it
matters only if the ratio of maximum to minimum point separation is greater than 2".)
Second, we compute growth(S) only for complex components and for simple components
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that will merge with another component soon, and compute the equivalence classes of Q(7)
only for this same set of quads. Simple components that are well-separated from others are
not involved in the computation.

The running time of this algorithm is dominated by the O(klogk) required for a plane
sweep [23] of k = |Q(¢,T)| quads in Step 2(c—d). There are O(k) quads in complex com-
ponents either in Q(¢,T) or in Q(i 4 2,7, so there are O(k) edges drawn for these quads
at stage ¢ or ¢ + 2. We amortize this cost by charging O(log k) per edge of the subdivision,
getting O(nlogn) time overall. The computation of the Delaunay triangulation and the
minimum spanning forest contributes a term of the same asymptotic magnitude.

We have established the following lemma.

Lemma 6.11 Algorithm build-subdivision can be implemented to run using O(nlogn) stan-
dard operations on a real RAM, plus O(n) floor and base-2 logarithm operations.

Lemmas 6.1, 6.3, 6.4, and 6.11 establish the main theorem of this section.

Conforming Subdivision Theorem For any o > 1, every set of n points in the plane
admits a strong a-conforming subdivision of O(an) size satisfying the following additional
properties: (1) all edges of the subdivision are horizontal or vertical, (2) each face is either a
square or a square-annulus (with subdivided boundary), (3) each annulus has the minimum
clearance property, (4) each face has the uniform edge property, and (5) every data point
is contained in the interior of a square face. Such a subdivision can be computed in time

O(an + nlogn).

7 Extensions and Concluding Remarks

We have presented a worst-case optimal algorithm for the planar, Fuclidean shortest path
problem. Our algorithm uses the wavefront propagation method and builds a shortest path
map, which can be used to answer shortest path queries from a fixed source in logarithmic
time. We introduced several new ideas and techniques in order to implement the wavefront
propagation optimally. Perhaps the most original contribution of our paper is the idea
of a conforming subdivision—it is a quad-tree-like subdivision that seems especially useful
for line segments. We expect this subdivision to find other applications in computational
geometry.

Our wavefront simulation is highly “local” in the sense that all interactions among
bisectors occur within “small” regions (well-covering regions). Obviously, we still require
the bisectors to satisfy some global properties, such as the ones stated in Lemmas 3.2
and 3.3, but the locality of processing allows our algorithm to extend to several more
general instances of the shortest path problem. These include generalizations involving the
shape and the number of sources. We sketch below the modifications necessary for some of
these extensions.

Non-Point Sources

When the source is not a point, but rather a more complex geometric shape such as a line
segment or a disk, then the initial wavelet originating from the source has a more compli-
cated form: it is the Minkowski sum of a disk and the source. However, the intermediate
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generators are still just the obstacle vertices, and they generate circular wavelets. Thus,
except for initialization and propagating the initial wavelets, the rest of the wavefront prop-
agation algorithm does not change. The initialization involves computing “direct” distances
to all the cells that are within a constant number of cells of the the source, which can be
done easily in O(nlogn) time.

Multiple Sources

Computing shortest paths in the presence of multiple sources is equivalent to computing a
“geodesic Voronoi diagram”: a partition of the free space into regions so that all points in
a region have the same nearest source and the combinatorial structure of the shortest path
to that source is also the same for all points in the region. To help visualize the process, we
might imagine that the wavefront of each source has a distinct color; in the end, the region
claimed by each source acquires the color of its source.

During the initialization, we compute direct distances between each source and the
corners of its well-covering regions; if well-covering regions overlap, we use the Voronoi
diagram of the sources to decide which corner is closer to which source. Again, this can be
done in O(nlogn) time initially. We maintain a common priority queue for all the sources,
and as each obstacle vertex is claimed, it acquires the color of its claiming source. Knowing
the color of each generator helps us determine whether a bisector is bounding two regions
belonging to the same source or two different sources. In all other respects, the processing
of bisectors in cells is the same as in the original algorithm.

Other Generalizations

The ideas mentioned above also work for multiple sources with specified release times. In
particular, each source has associated with it an initial “delay” and its wavelet is issued
after the specified delay. The delays are easily handled by our algorithm: just add the delay
time of each source to its initial priority queue entries. The rest of the algorithm proceeds
as before.

Open Problems

Finally, we conclude with two open problems.

1. Can the space complexity of our algorithm be reduced to linearl’

2. Does our wavefront propagation method extend to the shortest path problem on the
surface of a convex polytopel’
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