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Abstract

Fractal image compression is a new technique for encoding images com-
pactly. It builds on local self-similarities within images. Image blocks are seen
as rescaled and intensity transformed approximate copies of blocks found else-
where in the image. This yields a self-referential description of image data,
which — when decoded — shows a typical fractal structure. This paper pro-
vides an elementary introduction to this compression technique. We have cho-
sen the similarity to a particular variant of vector quantization as the most
direct approach to fractal image compression. We discuss the hierarchical
quadtree scheme and vital complexity reduction methods. Furthermore, we
survey some of the advanced concepts such as fast decoding, hybrid methods,
and adaptive partitionings. We conclude with a list of relevant WEB resources
including complete public domain C implementations of the method and a
comprehensive list of up-to-date references.

1 Introduction

About ten to fifteen years ago fractal techniques were introduced in computer graphics
for modeling natural phenomena. One of these new ideas came from a mathemat-
ical theory called iterated function systems (IFS). This theory had previously been
developed in 1981 by John Hutchinson, however, without any technical applications
in mind. It was Michael Barnsley and his research group from the Georgia Institute
of Technology who first saw and realized the potential of iterated function systems
for modeling of, e.g., clouds, trees, and leaves. Although other modeling techniques
in computer graphics such as procedural modeling and L-systems are dominating the
IF'S approach, one of the visions of Barnsley — namely that of encoding entire im-
ages using [F'S turned into one of the most innovative techniques in the image
compression field at present. Back in 1987 Barnsley and Sloan speculated [BaSI87]
about very high compression ratios and announced that it was possible to transmit
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such compressed image files at video rates over normal telephone lines. However,
at that time nobody seemed to know exactly how to faithfully reproduce images at
reasonable compression rates with IFS. What was the problem? The fractals that
one can easily generate with an iterated function system are all of a particular type.
They are images which can be seen as collages of deformed and intensity transformed
copies of themselves. Thus, in an IFS encoding of a picture of a face one should see
tiny little distorted copies of the face everywhere. This seemed not only unnatural
but also technically infeasible. Then, in 1989, Arnaud Jacquin, one of the graduate
students of Barnsley, realized a first automatic fractal encoding system in his disser-
tation [Jacq89c|, leaving behind the rigid thinking in terms of global IFS mappings.
This broke the ice for a new direction of research in image coding.

1.1 The fractal goldrush

The basic new idea in Jacquin’s approach was very simple. An image should not be
thought of as a collage of copies of the entire image, but of copies of smaller parts of
it. For example, a part of a cloud certainly does not look like an entire landscape with
clouds, but it doesn’t seem so unlikely to find another section of some cloud or some
other structure in the image that looks like the given cloud section. Thus, the general
approach is to first subdivide the image into a partition — fixed size square blocks in
the simplest case — and then to find a matching image portion for each part. This
setup has been known as a local or partitioned iterated function system (PIFS). The
development of Jacquin was like that of an engine. Around the engine he built a
first vehicle, a workable image compression implementation. However, how to design
such a vehicle in an optimal way remained to be investigated. And there were lots
of open questions: for example, how should the image be segmented, where should
one search for matching image portions, how should the intensity transformation be
designed, and most annoyingly the algorithm as proposed and as given later
in the form of a C code in the book of Barnsley and Hurd [BaHu93] was creepingly
slow. Thus, methods for acceleration were urgently needed. This set the stage for a
crowd of researchers mostly from mathematics, electrical engineering and computer
science. Since its launching in 1994, the IEEE ICIP (International Conference on
Image Processing), worldwide most prominent scientific image processing convention,
regularly features a section on fractal image coding. We have tried to keep track of
the publications dealing directly with this subject, see the bibliography in this chapter
for a listing and our ftp site (Section 5) for many of the PostScript files. Figure 1
shows graphically the growth of the field in terms of the total number of publications.

One of the good things of standards is that people can build further research
and applications on them, thereby accelerating scientific progress. This is just what
happened after Yuval Fisher made his well written C code for an adaptive quadtree
based fractal encoder available on the world wide web with a thorough theoretical
and practical documentation in his book [Fish94a]. Then, in the summer of 1995,
Fisher organized a NATO Advanced Research Institute on fractal methods for analysis
and encoding of images, held in Trondheim, Norway. This was the first conference
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Figure 1: Total number of publications on fractal image compression.

devoted to the fractal approach. Another one followed, set up by the Georgia Institute
of Technology and Iterated Systems, Inc., in Atlanta' in March 1996.

1.2 Four views of fractal image compression

As with any new methodology it is interesting to study interpretations from different
perspectives. Several such views of fractal image compression have been considered:

1. Iterated function systems (IFS). Such systems are operators in metric
spaces and were introduced in a mathematical paper by Hutchinson? in 1981,
who showed that they have fractal subsets as attractors. This motivated Barns-
ley to search for an image compression system that models images as attractors
of IFSs. Jacquin’s solution of 1989 relies on a crucial modification of IFSs,
namely that the mappings involved have domains that cover only part of the
image. Thus, such IFSs were called local [BaHu93] or partitioned [Fish94a].

2. Self vector quantization. The basic fractal encoding is almost the same as a
particular type of product code vector quantization (VQ), namely the so-called
mean-removed shape-gain vector quantization (MRSG-V()) [Rale93]. In that
approach an image block is approximated by the sum of a DC component and
a scaled copy of an image block taken from the VQ codebook. Fractal encoding
differs from MRSG-V(Q because the codebook is not explicitly available at the
decoder but rather given implicitly in a self-referential manner.

3. Self-quantized wavelet subtrees. Recently it has been noticed by Davis
[Davi9ha] and others that in some cases the fractal encoding is equal to a certain

!The First Annual Leadership Conference on Multimedia Imaging Technology and Applications.
2J. Hutchinson, Fractals and Self-Similarity, Indiana University Journal of Mathematics, vol. 30,
pp. 713-740, 1981.
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type of wavelet transform coding. The idea is to organize the (Haar) wavelet
coefficients in a tree and to approximate subtrees by scaled copies of other
subtrees closer to the root of the wavelet tree. See also Section 4.4.

4. Convolution transform coding. Also recently, it has been observed [Saup96b]
that the operations carried out when searching a matching image region for a
given one essentially are equivalent to a convolution operation. Only one of the
convolution coefficients is selected for the fractal code. This establishes a close
relation to common transform coding.

Each of these views of fractal encoding has led to a better understanding of the
subject and inspired new research. For example, the similarities to VQ had already
been studied by Jacquin [Jacq93] who, in fact, had imported useful classification
methods, developed for VQ, to his fractal encoder. Moreover, the analogy to trans-
form coding provides a new lossless technique for accelerating fractal encoding making
use of the fast convolution transform, carried out in the frequency domain. The re-
lationship to wavelets opens up interesting possibilities for hybrid codes which may
hold the strongest prospects for the best rate-distortion curves available with fractal
techniques.

In the following we will adopt the view point of self vector quantization rather
than the traditional approach by iterated function systems. It is more straightforward
since it is discrete by nature.

1.3 Vector quantization

Vector quantization (VQ) is a generalization of scalar quantization. In scalar quanti-
zation individual real or integer numbers are coded by an index listed in a fixed table
of quantization values. For example, rounding to the nearest integer can be consid-
ered as a simple form of scalar quantization. In computer graphics quantization is
associated mostly with undesirable artifacts, also known as aliasing. Geometric prim-
itives such as lines and polygons need to be represented in terms of intensity values
sampled on a regular discrete grid of pixels which necessarily leads to these artifacts.
The art of vector quantization addresses the general problem of minimizing the errors
associated with any quantization. Thus, the question is,

how to quantize if you must.

And clearly there are cases where quantization is a “must.” For example, consider
displaying a true color image using graphics hardware supporting only a color lookup
table of, say, 256 colors. Such a configuration is common in PCs and workstations as
well. There are two problems to be distinguished here.

1. The quantizer. Given a table of 256 color vectors C = {y1,..., Y256}, ¥i €
[0,1]%,i = 0,...,255, called codebook, and a pixel color vector z € [0,1]3, find
the index 7 € {1,...,256} such that the codebook vector y; approximates the
given color x best. In other words, define an optimal partitioning of the color
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space [0, 1]* into regions Ry, . .., Rose so that the quantization is declared by the
mapping @ : [0,1]* — C, where Q(x) = y; if and only if z € R;.

2. The codebook design. Given an ensemble or a category of images, design
an optimal size 256 codebook for color quantization. In other words, the color
look-up table needs to be defined so that the quantization process described
above yields the least color distortion for an image on average.

In order to solve these problems one needs a measure of how well a pixel color is
approximated by an entry from the codebook. Such functions are called distortion
measures in quantization theory. Most commonly, the squared Euclidean distance is

used for this purpose,
n

d(z,y) =y (a®) —y®)?
k=1

where n denotes the dimension of the quantizer (which is n = 3 for color quantization)
and z®) is the k-th component of the vector z. With this distortion measure the
quantizer is a so-called nearest-neighbor-quantizer, because the codebook vector with
minimal distortion for a given query vector x is the one that minimizes the Euclidean
distance to x. The codebook design problem is very hard; only suboptimal solutions
are obtainable in practice.

Optimal design of color look-up tables has been an issue in computer graphics re-
search.? Interestingly, also fractal space-filling curves have been used in this context.*

To discuss the codebook design let us assume the more general case of quantizing
n-dimensional data vectors x1, ...,z € R" using a codebook C' = {yi,...,yny} and
the squared Euclidean distortion measure.> There are two optimality conditions, that
need to be satisfied in an optimal quantizer.

1. Nearest neighbor condition. Given a codebook C, the optimal partition
cells R; satisty

R, C{z e R" | d(z,y;) < d(z,y,) for all j}
Thus, the distortion for a given vector x is d(z, Q()) = miny, cc d(7, y;).

2. Centroid condition. Given a partition R;,..., Ry the optimal codebook
C ={y,...,yn} consists of the centroids of the regions:

Y 1k, ()75

Z_;‘Vi] ]‘Ri (.Z‘])

3P. Heckbert, Color image quantization for frame buffer display, ACM Trans. Comput. Gr. 16,3
(1982) 297-307. S. J. Wan, S. K. M. Wong, P. Prusinkiewicz, An algorithm for multidimensional
data clustering, ACM Trans. on Math. Software 14,2 (1988) 153-162.

4R. J. Stevens, A. F. Lehar, F. H. Preston, Manipulation and presentation of multidimensional
image data using the Peano scan, IEEE Trans. on Pattern Analysis and Machine Intelligence PAMI-
5,5 (1983) 520 526.

5The hasty reader may skip these details and go on to page 107.

y; = cent(R;) =
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Here 1p(x) denotes the indicator function, i.e., its value is 1 if € R and 0
otherwise. In other words, the codebook vectors are the averaged vectors from
the corresponding regions.

Given a training sequence of vectors and a codebook (), an improved codebook C,, 4
can be generated using the two optimality conditions. This is called a generalized
Lloyd iteration.

1. Step 1. Given a codebook C,, = {y7",...,y¥N}, partition the training set
Z1,...,2y € R" into subsets R]" using the nearest neighbor condition, i.e.,

R = {ay | d(ak,y") < d(xy, yj") for all j}
with a suitable tie-breaking rule.

2. Step 2. Using the centroid condition compute the centroids cent(R;) and define
the codebook C,, 1 = {y"'cent(R™) | i =1,...,N}.

This procedure can be iterated. Starting out with an initial codebook C'y with nearest-
neighbor quantizer )y the total distortion after the m-th such iteration is

M M

Dr, = kz::l d(z, Qm (1)) = k; y?él(g:n d(zy, U;n)

It follows from the optimality conditions that the sequence of total distortions Dy, Dy, . ..

is decreasing. Since the distortions are bounded from below by 0 the sequence must

converge to a limit. Moreover, since there are only finitely many different partitions

of a finite set of training vectors it can be shown that the limit is achieved after a
finite number of iterations. However, in practice a termination criterion

Dm o Dm+1

<e
D,, -

with a user specified tolerance € is adopted. The mathematical theory for vector
quantization and its many variants can be found, e.g., in the book of Gersho and
Gray,? from which we have borrowed some of the notation as given in this section.

The method is straightforward to apply to grey scale images. Images are parti-
tioned into blocks of fixed size, e.g., 4 x 4 pixels. These blocks are scanned row by
row yielding vectors of dimension n = 16. Several images may be used to generate
training vectors, an initial codebook is selected (there are several sophisticated algo-
rithms for this), and generalized Lloyd iterations are performed until the convergence
criterion is fulfilled. The resulting codebook can be used to encode a given image
which normally is assumed to be different from the training images. Figure 2 shows
as an example a small section of a reconstructed image along with the original.”

6A. Gersho, R. Gray, Vector Quantization and Signal Compression, Kluwer Academic Publishers,
Boston, 1991.

"See http://isdl.ee.washington.edu/ COMPRESSION /homepage.html for a C-code implementa-
tion of the full search vector quantization scheme described here. This package was also used to
generate the codebooks and encodings.
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Figure 2: Standard vector quantization of a section of the Lenna test image (original
on left) using a codebook of 512 blocks of size 4 x 4. The attainable PSNR with this
approach is about 31.2 dB for the Lenna test image.

When evaluating the resulting VQ encoding of an image two closely related quan-
tities need to be observed. The first one is the compression ratio. It is defined as the
ratio of the file size of the original image representation to that of the encoded version
of it. For the example in the figure the compression ratio is easily calculated. The
original file size is 8 x 5122 bits, since it is an image of 512 by 512 pixels, each one
carrying an 8 bit intensity value. The compressed version requires 9 x (512/4)? bits,
since 9 bits suffice to store the index from the set {1,...,512} and there are (512/4)?
image blocks to be encoded. Thus, the compression ratio is about 14.2. The other
quantity measures quality. It is an open problem defining the visual quality of an
image approximation in a mathematically expressible way. Thus, most authors use
the simple root-mean-square (rms) error or peak-to-peak signal-to-noise ratio (PSNR).
For 8-bit gray scale images the PSNR is defined as

2552 2552
PSNR =10log,; ——— = 10log;; —

b )2
ms-error T pixels 2iri (Dij — pij)

where p; ; and p; ; denote the pixel intensities in the original and in the approximation
respectively. The PSNR expresses the ratio of the maximal signal power to that of
the error, also called quantization noise. It is measured in units of decibel (1 dB =
one tenth of a logarithmic unit).

In a variable rate encoder different compression ratios can be realized which lead
to encodings of varying quality. Thus, in order to compare different encoders or
different parameter settings in one encoder one needs to record several points given
by (compression ratio, PSNR) in a graph for both methods. When connecting some
of these points we get curves that are called rate-distortion curves. The higher the
curve in the graph the better the encoder. Sometimes rate-distortion curves specify
the bitrate in place of the compression ratio. The bitrate simply is the file size in bits
divided by the number of pixels.



o) J.ooaupe, . riamzaoul, 1. riartenstelin

1.4 Mean-removed shape-gain vector quantization

The standard VQ approach may produce the best possible rate-distortion curves,
however, this can be achieved only with larger block sizes. But very large codebooks
are impractical for two reasons. Firstly, the storage requirements for the codebook
vectors at encoder as well as at the decoder are a hindrance. Secondly, the codebook
design algorithm breaks down because of the huge time-complexity involved. For
example, at a fixed bitrate of 1 bit/pixel (i.e., at fixed compression ratio 8) the
codebook size is 2¢, where d denotes the block size in pixels. Clearly, already for 8 x 8
blocks such large codebooks are much beyond the capabilities of computers today.

For this reason there exist many variations of VQ in which codebooks with certain
structures are used which makes them computable but suboptimal, i.e., this reduces
the performance of the approach in terms of quality. One of the methods used is
called product code vector quantization, and a particular variant of it is considered
here, namely mean-removed shape-gain VQ (MRSG-VQ). As the name suggests, a
vector R € R" to be encoded is written as

R=s-D+4+o0-1

where 1 = (1,...,1)T € R™ and s,0 are scalars. D = (dy,...,d,)" is a zero-mean
and unit-variance shape-vector, i.e.,

n
Yodi=0, Y di=1
i=1 i=1

With two scalar codebooks for s and o and a vector codebook of shape vectors
the quantized form of the input vector R is

R =~ sing,(r) Dindp(R) + Oind,(r)1

where inds(R), indp(R), and ind,(R) are appropriate indices generated by the quan-
tizer. Roughly, the scheme separately encodes the mean, the standard deviation, and
the shape of a given vector. In effect, by considering all three codebooks simultane-
ously, a very large joint codebook is obtained. For example, if the codebook sizes for
s, 0, and D are 32, 128, and 4096 respectively, we get a total of 224 vectors that can
be represented exactly.

We do not give details for the codebook design in this case.® Instead we present in
Figure 3 the result of a particular design of 64 blocks of size 4 x 4 pixels. Using a given
shape block from the codebook different blocks can be generated using different gains
s and means o. Figure 4 shows these blocks for one example shape block from Figure 3.
Using this approach blocks from an image can be approximated by an encoder. The
decoder having access to the codebook and receiving the code consisting of the indices
for the scalar gains and means and the indices for the shape vectors reassembles the
approximation as shown in Figure 5. Finally, Figure 6 shows the performance that
can be attained by this approach when using different sizes of the shape codebook.

8See, e.g., the book of Gersho and Gray or the article M. J. Sabin, R. M. Gray, Product code
vector quantizers for waveform and voice coding, IEEE Trans. Acoust. Speech Signal Process. 32
(1984) 474-488.
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Figure 3: Visualization of a shape codebook in mean-removed shape-gain vector
quantization. It consists of 64 blocks of size 4 x 4 pixels with zero mean and unit
variance. For the display the vector components have been multiplied with a gain of
180 and are added to the mean of 127.
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Figure 4: Visualization of the MRSG-VQ product code blocks for the second shape
block in the third row of Figure 3. The scalar codebooks for the gain and mean
contain only eight values as shown in the graph.
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Figure 5: Visualization of the MRSG-VQ codec. The test image Lenna is encoded
using the shape codebook of size 64 shown in Figure 3. The uniform scalar quantizers
for the gain and the offset use 32 and 128 levels respectively. The picture shows only
an enlarged section (32 by 32 pixels) of the entire image in order to better see the

pixels and the image blocks. The PSNR for the entire image approximation is 34.6
dB
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1.5 MRSG self-VQ and the fractal baseline encoder

The basic form of fractal image compression is very similar to mean-removed shape-
gain V(). The difference between the two is that in V@ a fixed, trained codebook
is used, while in fractal image encoding an image adaptive codebook is used, which
consists of blocks taken from the original image. This may seem like a contradiction
since it is just the job of the decoder to recover the original and, thus, the decoder
cannot have access to the codebook. So, if the image is encoded blockwise as scaled
copies of other image blocks plus constant gray blocks, then how can the decoder
reconstruct the original?

Let us give an example where for simplicity we encode just a single real number
instead of an image, say m = 3.1415... We assume that the codebooks for the scale
and offset are

s €{0,0.25,0.5,0.75}, o€ {0.0,0.4,0.8,1.2,1.6,2.0}.

The “shape codebook” consists of just one number, namely 7 itself. Table 1 lists all
the possible numbers s - ™ 4+ 0 where s and o are from the given codebooks.

scale offset o

s 0.00 | 0.40 | 0.80 | 1.20 | 1.60 | 2.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.25 | 0.79 | 1.19 | 1.59 | 1.99 | 2.39 | 2.79
0.50 | 1.567 | 1.97 | 2.37 | 2.77 | 3.17 | 3.57
0.75 | 2.36 | 2.76 | 3.16 | 3.56 | 3.96 | 4.36

Table 1: This table lists all numbers rounded to two decimals that can be represented
by sm 4+ o when using the scalar codebooks for s and o as shown.
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Figure 6: Codebook size vs. distortion curve for MRSG- V() using blocks of size 4 x 4
and shape codebooks of various sizes. The uniform scalar quantizers for the gain and
the mean use 32 and 128 levels respectively. The test image is 512 x 512 Lenna.

We see that s = 0.75 and o = 0.8 gives the best approximation of 7, namely
s-m+0=075-m+08=3.1561...
Thus, the encoder may pass the following information to the decoder:
The original number is about 0.75 times itself plus 0.8.

The error in this approximation is not specified, and, of course, there are many
numbers that satisfy this description. Lacking any other information, the decoder
could determine anyone of them. However, one of them is a unique, special number
x, namely the one that is ezactly 0.75 times itself plus 0.8, i.e.,

z=0.75-2+0.8.

Solving this equation we obtain x = 3.2, which should be taken as the decoded
number. Thus, the encoder approximates the input number using the codebooks for
s and o and the original number, while the decoder cannot recover this approximation,
but instead produces the unique number, which is characterized by the property, that
the encoder could approximate it with no error when using the given coefficients.

The resulting equation x = 0.75x + 0.8 is easy to solve. But when we deal with
images containing thousands of numbers (pixel intensities) the corresponding system
of equations that arises in fractal image compression is so large, that it cannot be
solved directly but only by iteration. This can also be demonstrated with our little
toy example. If we define an operator T': R — R by Tz = 0.75x + 0.8, then the
encoder statement is simply 7 = T'wr, and we have to solve the fixed point equation
x = Tz. Given an arbitrary initial guess xy we iteratively apply 7', which yields

.’E1:T.Z'0, .Z'QZT.’El, .TgZT.’EQ,...
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Here we get with zq =0, e.g.,

z; = 0.8

oy = 0.75-08+40.8=14
r3 = 0.75-1.4+08=1.85
xry = 2.1875

and then x19 = 3.06. .., 299 = 3.192. . ., and x39 = 3.1995 ... This sequence of iterates
converges to the fixed point 3.2, which is also called the attractor for the operator
T. This is not a coincidence. Whenever the scaling factor is less than 1 in absolute
value, |s| < 1, convergence to the fixed point ensues. The analogous property holds
for the case of images considered next.

The encoder proceeds in a similar fashion as in MRSG-VQ. Here, the shape code-

book is not given a priori as the result of some training and design process. Instead
the shape codebook consists of image blocks extracted from the original image that
has to be encoded. This implies that these blocks are not normalized to zero mean
and unit variance. This “fractal” codebook is highly adaptive. Each image has its
own codebook. Here is an example.
Example codebook. Suppose that the image is segmented into blocks of size 4 x 4
pixels, called ranges. Each range block R must be approximated as R ~ sD + ol,
where D is a 4 x 4 block from the shape codebook. Consider any domain block of
size 8 X 8 in the image. Then shrink the block by pixel averaging to the desired size
of 4 x 4 pixels. All such blocks are added to the shape codebook. For an image of
size 512 x 512 this process yields a huge codebook with (512 — 7)? = 255025 blocks.
In order to reduce the number of blocks to a more manageable size one may consider
only those domain blocks that have their upper left corner pixel on a regular square
grid with a spacing [ > 1. For example, with [ = 8 we would obtain a set of 4096
adjacent domain blocks, which is often used in practice.

The encoder has to solve the following problem. For each range block the best
approximation R =~ sD + ol needs to be found. In fractal encoding the coefficients
s and o are called scaling and offset. To obtain optimal s, o, and D, a scan of
all codebook blocks D should be performed. For each codebook block D the best
coefficients s and o need to be determined. In the above one dimensional example for
7 we computed a table of all possibilities and chose the best one. In principle this
can also be done for vectors or image blocks as required here. However, for all but
the smallest scalar codebooks for s and o this is computationally infeasible. It takes
too long. Fortunately, there exists a shortcut. If we work with the Euclidean norm
when making the selection of the best coefficients, i.e., when minimizing

E(D,R) = min||R — (sD + o1)|

we can use the well known method of least squares to find the optimal coefficients
directly as follows.
Given the two blocks R and D with n pixel intensities, r,...,r, and dy,...,d,
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we have to minimize the quantity

The best coefficients s and o are

(X diry) — (07 di) (07 1)

B n Z?:l d% - ( ?:1 di)2
and

0= l (Zrls’Zdl)
n\i= i=1

With s and o given the square error is

T Li=1 =1 i=1 i=1

n_gzﬂ

=1

If the denominator in equation (1) is zero, then s = 0 and 0o = >, r;/n.
This procedure yields two real numbers s and o. For the encoding we can only
use the quantized values from the scalar codebooks. Usually, one employs uniform

scalar quantization amounting to a rounding operation.

In summary the baseline fractal encoder with fixed block size operates in the

following steps.

1. Image segmentation. Segment the given image using a fixed block size, e.g.,

4 x 4. The resulting blocks are called ranges R;.

2. Domain pool and shape codebook. By stepping through the image with a step
size of [ pixels horizontally and vertically create a list of domain blocks from
the image, which are twice the range size. By averaging four pixels each shrink
the domain blocks to match the size of the ranges. This produces the codebook

of blocks D;.

3. The search. For each range block R an optimal approximation R ~ sD + ol is

computed in the following steps:

(a) For each codebook block D; compute an optimal approximation R & sD;+

ol in three steps:

i. Perform the least squares optimization using formulas (1) and (2),

yielding a real coefficient s and an offset o.

ii. Quantize the coefficients using, e.g., a uniform quantizer.

iii. Using the quantized coefficients s and o compute the error E(R, D;).

(b) Among all codebook blocks D; find the block D) with minimal error

E(R, Dy,) = min; E(R, D).
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(c) Output the code for the current range block consisting of indices for the
quantized coefficients s and o and the index k identifying the optimal
codebook block D,.

As already mentioned the output code of this baseline fractal encoder is not a code
with which a decoder can directly recover an approximation of the original. Instead
we have a description of an operator. Similar to the code for 7 we now have the
following result of the encoder:

Given the original image along with its partitioning in square ranges re-
place each range R by the corresponding block sD + ol as specified by
the code. The resulting image, called collage, is an approximation of the
original.

Thus, the code is nothing but the prescription of an image operator 7. Given any
image ¢y one can carry out the operations given in the code, arriving at another
image, T'go. When applying T to the original image f, we obtain T'f, the collage, and
the encoder result can be stated as f ~ T'f. The error of this approximation is called
the collage error. Tt is defined as the sum of the square errors F(D, R)? taken over all
ranges R of the image partition. From this sum the corresponding root-mean-square
(rms) error or peak-to peak signal-to-noise ratio (PSNR) can be calculated.

Just as in the case of 7 and lacking any other information, the best job that the
decoder can do is to compute the fixed point ¢ = T'g. This is the image which,
encoded by T gives a perfect encoding, i.e., one for which the collage error vanishes.
In practice the decoder computes the fixed point by iteration of T". Thus, starting
with an arbitrary initial image gy, we get

g =Tg0, go=Tg, g5=Tgo,...

and this sequence of images should converge to an attractor, which is the desired fixed
point ¢ = T'g. A sufficient condition for this to happen is the contractivity of the image
operator 71" in the coefficients are less than 1 in absolute value. Then the contraction
mapping principle guarantees the convergence. Moreover, a corollary of this principle,
which has been called the collage theorem in context with fractal encodings states that
the overall error, i.e., the error in the attractor relative to the original is bounded by
1/(1 — s) times the collage error, where s denotes the contractivity of 7" which is less
than 1 in absolute value.® This is the motivation for the encoder to minimize the
collage error under the constraint that the scaling coefficient be sufficiently small.
The mathematics behind these principles have been discussed many times and we do
not reproduce this material here.'’

9This condition is sufficient but not necessary. Even the contractivity condition can be weakened
to so-called eventual contractivity. In some special cases (domain blocks are unions of ranges, see
[Oien93]) no restrictions on the scaling coefficients need to be imposed at all.

19Tn connection with iterated function systems and fractal image encoding we refer the interested
reader to the books [Barn88b, BaHu93, Fish94a] and also to Chaos and Fractals, H.-O. Peitgen, H.
Jirgens, D. Saupe, Springer-Verlag, New York, 1992.
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However, we make a remark regarding the size of the domain blocks. Usually they
are chosen to be twice as large as the corresponding range blocks. The contractivity
condition for the image operator does not require a geometric contraction of domain
blocks. Therefore, it is possible to use domains that are of any size, for example, they
could be of the same size as the ranges (see, e.g., [BDBKS94]). It seems, however, that
the error propagation at the decoder is generally worse when the geometric scaling
factor is too small. Therefore, shrinking the domains to half their size is practical
from a computational point of view and seems to produce the best looking results. It
would be interesting to study this issue in detail.

It is common practice to enlarge the domain pool by including blocks obtained by
rotating by multiples of 90 degrees and by reflection. This makes the codebook eight
times as large. Larger codebooks generally improve rate-distortion curves. However,
our recent systematic study [Saup96¢] shows that the same or even better quality of
the encodings can be achieved by enlarging the domain pool by just reducing the step
size with which the image is scanned by domains. Therefore, the extra complexity
that isometries introduce to the algorithm cannot be justified.

The compression ratio can be computed from

8 x (block size in pixels)
#bits for s + #bits for o + [log,(8 x codebook size) |

compression ratio =

Here the nominator is the number of bits contained in a range block of the 8-bit
grey scale image. In the denominator the codebook size is multiplied by 8 in order
to account for the isometries (rotations and reflections). Table 2 summarizes the
performances of this simple method and compares them for different range block
sizes.

range PSNR (dB) encoding | compression
block size | collage | attractor | time (sec) ratio

4 x4 36.96 36.66 147.48 4.4

8 X 8 31.15 31.27 69.93 17.7

16 x 16 | 27.02 26.89 59.61 70.5

32 x 32 | 23.55 23.32 54.76 281.0

Table 2: Example performances of the fractal baseline encoder for the Lenna test
image. The collage error in the second column is typically larger than that for the
attractor recovered at the decoder, i.e., the PSNR is smaller. The encoding times
were measured on an SGI Indy workstation running an R4600SC 133 MHz processor
with the public domain quadtree encoder of Yuval Fisher. The domain pool consists
of partially overlapping domains.

One particular feature of fractal image compression is the fact that images are
described only implicitly as fixed points of an image operator and with no reference
to any particular image scale or size in terms of pixels. Thus, the fractal code can
be decoded at any resolution yielding details at all scales. This justifies calling the
method a fractal one. Of course, it is clear that the detail generated from decodings at
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Figure 7: Fractal versus traditional zoom. From an encoding of the Lenna image
(PSNR = 34.3 dB, compression ratio = 14.16) we decode the image with enlargement
factors of 1, 2, 4, 8, and 12. The left column shows a section of the results. The right
column presents the same zoom sequence applied to the original image.
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much larger scale shown, e.g., in Figure 7, are only artificial. They do not truthfully
represent any detail of the original. Yet this feature of resolution independence is
useful in two regards. Firstly, the artificial details in the image are, due to the self-
referential character of the code, somewhat consistent with the global appearance
of the objects pictured. They look more “natural” than images obtained by mere
pixel replication or interpolation. Secondly, this feature can be used as an image
enhancement tool. A poor low-resolution image can be fractally encoded and then
decoded at a larger resolution resulting in an enhanced version.

What we have described in this section — the baseline fractal encoder using fixed
block sizes — is the most rudimentary version of fractal image compression and only
meant to illustrate the essentials of it. There are many issues that are necessary to
deal with in more detail when it comes to an efficient encoder capable of producing
quality encodings: the partitioning, the choice of transformations, the domain pool
selection, the encoder and decoder complexity, entropy coding of the fractal code,
and so on. In the following sections we address some of these issues.

2 The adaptive quadtree encoder

An adaptive partitioning of an image may hold strong advantages over encoding range
blocks of fixed size. There may be homogeneous image regions in which a sufficient
collage can be attained using large blocks, while in high contrast regions smaller block
sizes may be required to arrive at the desired quality. The first approach (already
taken by Jacquin) was to consider square blocks of varying sizes, e.g., being 4, 8, and
16 pixels wide. This idea leads to the general concept of using a quadtree partition,
first explored in the context of fractal coding in [JaFiB092, BeDeKe92|. In contrast
to fixed block size encodings the output file must also contain the specification of the
quadtree underlying the encoding.

The use of variable partitionings makes it possible to design a variable rate en-
coder. The user may specify goals for either the image quality or the compression
ratio. The encoder can recursively break up the image into suitable portions until ei-
ther criterion is reached. In more detail the algorithm targeting fidelity might proceed
as follows.

1. Define a tolerance for the root-mean-square error E(R, D)/+/#pixels in R of
the collage, a minimal and a maximal range size. Partition the image into
ranges of maximal size.

2. Initialize a stack of ranges by pushing the maximal size ranges onto it.
3. While the stack is nonempty carry out the following steps:

(a) Pop arange block R from the stack and search the corresponding codebook
yielding an optimal approximation R ~ sD+o01 and a least error E(D, R).

(b) If the root-mean-square error is less than the tolerance or if the range size
is equal to the minimum range size, then save the code for the range, i.e.,
s, o, isometry, and address of D. If s =0, do not store the rest.
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Figure 8: Results of two encodings using quadtree partitionings. Shown are a low
and a medium quality encoding with error images (large errors scaled to black) and
corresponding quadtrees. The PSNR values are 28.3 dB (left) and 32.0 dB (right).
The compression ratios are 37.5 and 17.8.
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Figure 9: Rate-distortion curves for the fractal quadtree encoder and the test image
Lenna 512 x 512. Shown are the results for two runs with differing domain pool sizes.
The small domain pool contains only non-overlapping domains, while the large pool
is generated using a fixed step size of 4 pixels horizontally and vertically. In each case
we also show the achieved PSNR quality of the collage. The difference between the
collage and attractor curves stems from the error propagation at the decoder. The
corresponding cpu run times are given in Figure 10.
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Figure 10: Run times for the fractal quadtree encodings of Figure 9. Measurements
were taken on an SGI Indy workstation running an R4600SC 133 MHz processor. For
speed the classification of domains and ranges was employed.
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Figure 11: Decoder speed for varying maximal scaling factors s,,,,. The compression
ratios for these encodings are about the same, between 18 and 19.

(c) Otherwise partition R into four quadrants and push them onto the stack.

By using different fidelity tolerances for the collage one obtains a series of en-
codings of varying compression ratios and fidelities. Two such encodings along with
their error images and quadtrees are shown in Figure 8. We computed several more
quadtree encodings, the results of which are summarized in Figures 9 and 10 showing
rate-distortion curves and PSNR versus encoding time. All experiments were done
using the quadtree encoder of Fisher [Fish94a] (see also the section on WEB resources
below).

The decoder for the quadtree codes proceeds in the same way as for the case of
fixed block size encodings, i.e., by iteration of the collage image operator. Only 7 or 8
iterations are required to get sufficiently close to the attractor. In Figure 11 we study
the effect of changing the maximal allowable scaling factor s,,,,. Allowing scaling
factors larger than 1 may destroy the contractivity property of the image operator,
but this does not necessarily harm the convergence at the decoder. The reason for
this is that the operator may be eventually contractive, i.e., only an iterate of T is
a contraction even though T itself is not. Larger maximal scaling factors s,,,, may
be tempting as one may get better collages. However, enlarging the allowed range of
s without also increasing the bit allocation for the storage of s may actually worsen
the result as shown in the figure. The reason is that the quantization of the scaling
factors becomes less accurate.

We do not further elaborate on the various aspects of quadtree encodings. They
are very well covered and documented in the book [Fish94a].
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3 Complexity reduction techniques

Fractal image compression allows fast decoding but suffers from long encoding times.
The time consuming part of the encoding step is the search for an appropriate domain
for each range. The number of possible domains that theoretically may serve as
candidates is prohibitively large. For example, the number of arbitrarily sized square
subregions in an image of size n by n pixels is of order O(n?®). Thus, one must
impose certain restrictions in the specification of the allowable domains. In a simple
implementation one might consider as domains, e.g., only sub-squares of a limited
number of sizes and positions. This defines the so-called domain pool. Now for
each range in the partition of the original image all elements of the domain pool are
inspected. If the number of domains in the pool is Np, then the time spent for each
search is linearin Np, O(Np). Several methods have been devised to reduce the time
complexity of the encoding. In this section we review these methods. At the start we
have to set up some notation.

3.1 A formula for the least squares error based on projections

For the discussion in this section let us assume that an image is partitioned into non-
overlapping square range blocks of size N x N. This is not a restriction since it will
be clear how the principles described carry over to more general partitions.

We consider each range block as a vector R in the linear vector space R" where
n = N x N. The conversion from a square subimage of side length N to a vector of
length n = N? can be accomplished, e.g., by scanning the block line by line. Working
with vectors in place of 2D-arrays simplifies the notation considerably without losing
generality.

The domain pool is a collection of square blocks which are typically larger than
the ranges and taken also from the image, called domain blocks. The domain pool is
enlarged by including blocks obtained after applying the eight isometrical operators
to the domain blocks (i.e., rotations and reflections). Finally, by pixel averaging, the
size of these blocks is reduced to the size of a range block. The resulting blocks are
called codebook blocks.

In the encoding process for a range block a search through the codebook blocks is
required. A vector representing a codebook block will be denoted by D. A small set
of p < n blocks independent from the image is also considered. We represent them
by the vectors By, By, ..., B, € R", which are chosen so as to form an orthonormal
basis of a p-dimensional subspace of R™. They are known as the fized basis blocks''.
The encoding problem can then be stated as the least squares problem

P
E(D,R)=  win [|R—(aD+ k; beB)| = min [|R — Az, (3)
where A is an n x (p + 1) matrix whose columns are D, By, By,..., B, and © =

1Here we generalize the discussion from the previous section, where only one fixed basis block
has been considered, namely 1. The scaling and offset coefficients s and o are now called a and b, .
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(a,by,...,b,) € RP*! is a vector of coefficients.'? This problem should be solved for
all codebook blocks D and the one which gives the smallest error || R—(aD+Y"4 b, By)||
is selected on condition that the value of the scaling factor a for the codebook block
D ensures the convergence of the decoding process (e.g., by requiring |a| < 1). This
condition on a can be removed when one uses the orthogonalized representation of
Oien [Oien93]. A basic result of linear algebra states that if the codebook block D
is not in the linear span of the fixed basis blocks By, ..., B,, then the minimization
problem (3) has the unique solution

z=(ATA)ATR

where the matrix AT = (AT A)"1 AT is also known as the pseudo-inverse of A. Thus,
the range block R is approximated by the collage block AATR where AAT is the
orthogonal projection matrix onto range(A). Now let P be the orthogonal projection
operator which projects R™ onto the subspace B spanned by only the fixed basis
blocks By, By, ..., B,. Thus, by orthogonality of the fixed basis blocks we have for
RecR"

P P
PR = Z b By = Z(R, By.) By.
k=1 k=1
Then the range block R has a unique orthogonal decomposition R = OR + PR
where the operator O = I — P projects onto the orthogonal complement B~. For
Z = (z1,...,2,) € R"\B, we define the operator

¢(Z) = == (4)

Now for a given domain block D ¢ B the collage block AAT R can be given explicitly

as
p

AATR = (R, ¢(D))p(D) + > _(R. By)By. (5)
k=1
To get the least squares error we use the orthogonality of ¢(R), By, ..., B, to express
the range block R as

p

R = (R, ¢(R)) #(R) + > (R, By)B. (6)

k=1

We insert the result for R in the first part of the collage block AATR in (5) and after
three lines of computations find that

(R, 0(D)d(D) = (R, ¢(R)) (6(D), 6(R)) (D).

I2Note that we use the norm of the error in place of the squared norm. This simplifies the notation
for the following sections. Moreover, in practice usually the root mean square error (rms) is used
equivalently in place of E(D, R). This is just E(D, R)/+/n. We use the notation (-, -) for the common

inner product in R", thus, ||z|| = /(z,z).
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Thus, the collage block can be rewritten as
p
AATR = (R, ¢(R)) (¢(D), ¢(R + > (R.By)B (7)
k=1

Using (6) and (7) we can now compute the error

E(D,R)=||R — AA*R||= /(R — AA*R,R — AA*R).
The result follows after a few lines of calculations, namely

E(D, R) R)) /1~ { (R))2. (8)

Thus, the minimization of the error E(D, R) among domain codebook blocks D
can be achieved using an angle criterion: The minimum of E(D, R) occurs when the
squared inner product (¢(D), ¢(R))? is maximal. Since

(6(D), $(R))* = cos” L(¢(D), (1))
this means minimizing the angle /(¢(D), ¢(R)), or, equivalently Z(OD,OR).

3.2 Feature vectors

In the feature vector approach introduced by Saupe in [Saup94a, Saup94b, Saup95a]
a small set of d real-valued keys is devised for each domain which make up a d-
dimensional feature vector. These keys are carefully constructed such that searching
in the domain pool can be restricted to the nearest neighbors of a query point, i.e.,
the feature vector of the current range. Thus, the sequential search in the domain
pool is substituted by multi-dimensional nearest neighbor searching which can be run
in logarithmic time.

We consider a set of N codebook blocks Dy,..., Dy, € R" and a range block
R € R". We let E(D;, R) denote the smallest possible error of an approximation of
the range data R by an affine transformation of the codebook block D;. In terms of
a formula, this is

P
E(D;,R) = mln ||B (aD; +>_ by By)||

aabl 1111 k=1

The following theorem provides the mathematical foundation for our feature vector
approach.

Theorem 1 [Saup94a, Saup94b).
Let n > 2 and X = R"\B. Define the function A : X x X — [0,v/2] b

A(D, R) = min (||¢(R) + ¢(D)]|, [[#(1) — ¢(D)]]).
For D;, R € X the error E(D;, R) is given by

B(Di, R) = (R, 6(R)) g(A(D;, )
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where
A2
9(A) = A1 = —-.

Proof. The least squares approximation of a range block R was given by equation

(5) in Section 3.1:
p

(R, 6(D)) ¢(D) + > (R, By) By. (9)
k=1
By orthogonality we can express the range block as
P
= (R, ¢(R)) (R) + > (R, B)Bs. (10)
k=1
Using this in the first expression (9) we obtain
p
(R, d(R)) (¢(D), o(R Z (R, By)B (11)

for the least squares approximation of R. The square of the difference of (6) and (7)
gives us the least squares error and is calculated as

E(D,R) R))\/1—( (R))2.

Since

[¢(R) = ¢(D)|| = \/2(1 £ (6(D). #(R)))

we have

= \/2(1 - [(8(D), $(R)))).
Solving for [{(¢(D), ¢(R))| and inserting the square of the result in the formula for
E(D, R) completes the proof.

The theorem states that the least squares error E(D;, R) is proportional to the
simple function g of the Euclidean distance A between the projections ¢(D;) and
#(R) (or —¢(D;) and ¢(R)). Since g(A) is a monotonically increasing function for
0 < A < 2 we conclude that the minimization of the errors E(D;, R) for i =
1,...,Np is equivalent to the minimization of the distance expressions A(D;, R).
Thus, we may replace the computation and minimization of N least squares errors
E(D;, R) by the search for the nearest neighbor of ¢(R) € R" in the set of 2Np
vectors +¢(D;) € R". The problem of finding closest neighbors in Euclidean spaces
has been thoroughly studied in computer science. For example, a method using kd-
trees that runs in expected logarithmic time is presented by Friedman, Bentley, and
Finkel'® together with pseudo code. After a preprocessing step to set up the required
kd-tree, which takes O(N log N) steps, the search for the nearest neighbor of a query
point can be completed in expected logarithmic time, O(log N). However, as the

13Friedman, J. H., Bentley, J. L., Finkel, R. A., An algorithm for finding best matches in logarith-
mic expected time, ACM Trans. Math. Software 3,3 (1977) 209-226.
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dimension d increases, the performance may suffer. A method that is more efficient
in that respect, presented by Arya et al'*, produces a so-called approximate nearest
neighbor. For domain pools that are not large other methods, that are not based on
space-partitioning trees, may perform better. For example, the modified equal average
nearest neighbor search (ENNS)!® seems to be one of the best. Before we turn to
practical issues, we remark, that we can use the result of the Theorem 1 in order to
identify all codebook blocks D; that satisfy a given tolerance criterion F(R, D;) < .
In other words, solving the equality for A in the expression for the error F(D, R)
in the theorem yields a necessary and sufficient condition for a codebook block D to
fulfill the tolerance criterion.

Corollary 2 (A necessary and sufficient condition)
Let § > 0 andn > 2. Let R and D be in R"\B with (R, $(R)) > §. Then E(D,R) =
ming s, ser ||[R — (aD 4+ X b By)|| < 6 if and only if

62
A(D,R) < 22J1W,

where A(D, R) is defined as in Theorem 1.

Proof. From Theorem 1, B(D, R) = (R, $(R)) g(A(D, R)) with g(A) = Ay/1 — &%,
Thus, for 0 < A < v/2 we have E(D, R) < § if and only if A*~4A%+46%/(R, ¢(R))? >
0. From this the assertion easily follows.

The condition (R, ¢(R)) > § does not impose any restrictions. To see this, observe
that in the case of (R, ¢(R)) < ¢ we already have

B(D, R) = (R, 6(R)) |1 = (6(D), 6(R))? < (R, 6(R)) < 6.

for any codebook block D. Thus, it suffices to encode R only using the fixed basis
blocks, i.e., by >-%_, by By.

We continue with some remarks on generalizations and implications of the theory
presented above. In practice, there is a limit in terms of storage for the feature
vectors of domains and ranges. For example, the keys for ranges of size of 8 by 8
pixels require 64 floating point numbers each. Thus, 32K domains from a domain
pool would already fill 8 MB of memory on a typical workstation, while we would
like to work with pools of a hundred thousand and more domains. To cope with this
difficulty, we settle for a compromise and proceed as follows. We down-filter all ranges
and domains to some prescribed dimension of moderate size, e.g., d = 4 x 4 = 16.
Moreover, each of the d components of a feature vector is quantized (8 bits/component
suffice). This allows the processing of an increased number of domains and ranges,

4 Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., Wu, A., An optimal algorithm for
approzimate nearest neighbor searching, Proc. 5th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (1994) 573 582.

5Lee, C.-H., Chen, L. H, Fast closest codeword search algorithm for vector quantization, IEE
Proc.-Vis. Image Signal Process. 141, 3 (1994) 143-148.
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however, with the implication that the formula of the theorem is no longer exact but
only approximate. This, however, is not a severe disadvantage as pointed out in the
following remark and as demonstrated by many experiments [Saup95b].

The approach of pixel averaging in order to reduce the dimensionality of the
domains and ranges (64 and higher is typical) to a more feasible number (here d = 16)
may be improved by better concentrating relevant subimage information in the d
components. Based on our report [Saup94a] Barthel et al [BSVN94] have suggested
and implemented an alternative reduction of dimension. They have used a two-
dimensional discrete cosine transformation (DCT) of the projected codebook blocks
+¢(D;). The distance preserving property of the unitary transform carries over the
result of Theorem 1 to the frequency domain and nearest neighbors of DCT coefficient
vectors will yield the smallest least squares errors. In practice one computes the DCT
for all domains and ranges. Then, from the resulting coefficients, the DC component
is ignored and the next d coefficients are normalized and make up the feature vector.

Because of the downfiltering and the quantization of both the feature vectors and
the coefficients a, by, ..., b,, it can happen that the nearest neighbor in feature vector
space is not the codebook block with the minimum least squares error using quantized
coefficients. Moreover, it could yield a scaling factor a being too large to be allowed.
To take that into consideration, we search the codebook not only for the nearest
neighbor of the given query point but also for, say, the next 5 or 10 nearest neighbors
(this can still be accomplished in logarithmic time using a priority queue). From this
set of neighbors the non-admissible domains are discarded and the remaining domains
are compared using the ordinary least squares approach. This also takes care of the
problem from the previous remark, namely that the estimate by the theorem is only
approximate. While the domain corresponding to the closest point found may not be
the optimal one, there are usually near-optimum alternatives among the candidates.

We make two technical remarks concerning memory requirements for the kd-tree.
Firstly, it is not necessary to create the tree for the full set of 2Ny keys in the
domain pool. We need to keep only one multi-dimensional key per domain, e.g., by
keeping only the key which has a non-negative first component (multiply key by —1
if necessary). In this set-up a kd-tree of all 2N vectors has two symmetric main
branches (separated by a coordinate hyperplane), thus, it suffices to store only one of
them. Secondly, there is some freedom in the choice of the geometric transformation
that maps a domain onto a range coming from the 8 possible rotations and reflections
of a square subimage. This will create a total of 8 entries per domain in the kd-tree,
enlarging the size of the tree. However, we can get away without this tree expansion.
To see this, just note that we may instead consider the 8 transformations of the range
and search the original tree for nearest neighbors of each one of them.

The preprocessing time to create the data structure for the multi-dimensional
search is not a limitation of the method as demonstrated by our experiments.

A forerunner of feature vectors as described above has been presented by Hiirtgen
and Stiller [HuSt93]. As in the classification of Fisher, Jacobs, and Boss an image
block is partitioned into its four quadrants and their mean intensities are computed.
Then a vector consisting of four bits is constructed as follows: the i-th bit is 1 if
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the mean of the i-th quadrant is above the overall mean, and 0 otherwise. Thus, in
the terminology of his paper, this is our feature vector after downsampling to size
d = 2 x 2 and quantizing to 1 bit per component. Due to these strict limitations a
nearest neighbor search is not practical, rather, these vectors serve as a means for
classification into 16 classes. Then a range is compared only with codebook blocks
from the same class.

3.3 Classification schemes

The classification as described below has been explained only for the case p = 1, where
just one fixed basis block of constant intensity B = 1/+/n(1,...,1) is used. However,
at this point we already notice that the method extends to the general case allowing
p > 1, provided that certain modifications are made. Essentially, this amounts to
considering the transformed domains ¢(D;) in place of the original domains.

3.3.1 Jacquin’s approach

In his original work [Jacq89b, Jacq92] Jacquin used a classification scheme coming
from a study of Ramamurthi and Gersho'. The domain blocks are classified ac-
cording to their perceptual geometric features. Only three major types of blocks are
differentiated: shade blocks, edge blocks, and midrange blocks. In shade blocks the
image intensity varies only very little, while in edge blocks a strong change of inten-
sity occurs, e.g., along a boundary of an object displayed in the image. The class of
edge blocks is further subdivided into two subclasses: simple and mixed edge blocks.
Midrange blocks have larger intensity variations than shade blocks, but there is no
pronounced gradient as in an edge block. Thus, these blocks typically are blocks
containing texture. Since ranges that would be classified as shade blocks can be ap-
proximated well by the constant fixed block B, scaled by an appropriate factor b, it
is not necessary to search for a corresponding domain for them (in effect setting the
coefficient a = 0). Thus, in this scheme there are really only two (major) classes, one
of which must be searched for each non-shade block range.

3.3.2 Classification by intensity and variance

A more elaborate classification technique was proposed by Boss, Fisher and Jacobs
[JaFiBo92, Fish94b]. It works as follows. A square range or domain is subdivided
into its four quadrants (upper left, upper right, lower left, and lower right). In the
quadrants the average pixel intensities A; and the corresponding variances V; are
computed (i =1,...,4). Tt is easy to see that one can always orient (rotate and flip)
the range or domain such that the average intensities are ordered in one of the three
ways:

major class 1. A; > Ay > A3 > Ay,

16Ramamurthi, B., Gersho, A., Classified vector quantization of images, IEEE Trans. Commun.,
COM-34, 1986.
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major class 2: A; > Ay > Ay > As,
major class 3: A; > Ay > Ay > Aj.

Once the orientation of the range or domain has been fixed accordingly, there are 24
different possible orderings of the variances which define 24 subclasses for each major
class. If the scale factor a in the approximation aD + bB of the range block R is
negative then the orderings in the classes must be modified accordingly. Thus, for a
given range two subclasses out of 72 need to be searched in order to accommodate
positive and negative scale factors.

Although successful this approach is not satisfying in the sense that a notion of
neighboring classes is not available. So if the search in one class does not yield a
sufficiently strong match for a domain, one cannot easily extend the search to any
neighboring classes. A solution for this problem has been given by Caso, Obrador and
Kuo in [CaObKu95], where the unflexible ordering of variances of an image block has
been replaced by a vector of variances. These variance vectors are strongly quantized
leading to a collection of classes where each class has a neighborhood of classes which
can be searched. Another solution is offered by clustering methods discussed below.

3.3.3 Archetype classification

A method that defines the classes a priori by some empirical studies carried out
on a collection of training images is the archetype classification presented by Boss
and Jacobs in [BoJa94]. An archetype for a set of codebook blocks is given by that
particular codebook block that can best cover all others in the usual least squares
sense. For a set of blocks D; this is the block D,

D, = argrrlljilfp#zkrzlyibn ||D; — (aDy + bB)||.

Starting out from an arbitrary classification (e.g., the one given by Fisher et al above)
of subimage blocks taken from a set of training images one can compute the archetype
for each class. Then the blocks are reclassified according to the archetype by which
they can be covered best. This yields a new classification, and the process of archetype
computation and reclassification is repeated until self-consistency, i.e., until no further
change occurs in an iteration. The final set of archetypes becomes a part of the
encoder. Given an image to be compressed, the encoder defines the domain pool and
classifies all codebook blocks, i.e., for each codebook block the archetype is found
that can best cover the block under consideration. In this way it can be expected
that a given range can be covered very well by a block in the corresponding class.
In fact, this is verified in the experiments reported in the paper. Thus, in order to
arrive at a certain image fidelity, one needs to search fewer classes, which saves some
computing time. On the other hand, the classification process is more elaborate. As
a result, a conventional classification scheme is overall faster for low quality image
encoding, while the best image fidelity can be attained much faster using the archetype
classification.
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3.3.4 Clustering methods

In clustering methods domains and ranges are grouped around cluster centers which
are computed either adaptively from the test image or from a set of training im-
ages. The classes will depend on the clustering algorithm chosen, and on the cri-
terion function used to describe the quality of the clustering. The first attempt
to adaptive clustering with Kohonen’s Self-Organizing Map (SOM) for fractal im-
age compression was presented in [BoMe92]. However, the reported results were
not satisfying. An implementation employing frequency sensitive competitive learn-
ing is reported in [WaKi93]. An efficient clustering method based on the LBG al-
gorithm was proposed in [OiLeRa92, Leps93, Oien93, LeOi94]. These important
works introduced also a block decimation technique to perform the clustering and
the searching at a low dimensional space. In [Hamz95], the SOM approach has
been successfully combined with the block intensity classification of Fisher et al.
[FiJaB092, Fish94a], and the nearest neighbor approach of Saupe [Saup94b] to yield
a distance based classification scheme. In the following we explain our clustering
approach. Let {£¢(D1),...,£¢(Dn,)} be the set of projected codebook blocks. We
want to partition this set into a finite number of disjoint subsets (clusters) defined
by representatives (cluster centers) such that vectors in the same cluster are closer
to each other than vectors in different clusters. The quality of the clustering can
be measured by a criterion function that one tries to optimize. For example, one
can choose to construct the cluster centers such that the sum of squared Euclidean
distances J = SN ||¢(D;) — m(o(D;)||*> + || — ¢(D;) — m(—p(D;))]|? is minimized.
Here m(+¢(D;)) denotes the cluster center closest to the projected codebook block
+¢(D;). A cluster of center m is formed by grouping around m all projected code-
book blocks having m as their nearest neighbor. After the cluster centers have been
designed, the set of projected codebook blocks {£¢(Dy),...,£¢(Dn,)} is clustered
by mapping each vector +¢(D;) to its nearest cluster center. A range block R is
encoded in two steps. First, we map its feature vector ¢(R) to its closest cluster
center m(¢(R)). Then the range block R is compared only to the codebook blocks
whose feature vectors are in the cluster of center m(¢(R)). This corresponds to a
1-class search. We can evidently search in more classes by considering the next near-
est cluster centers of ¢(R). This will yield more accurate encodings at the expense
of increased time. The reason why the method works is obvious. Suppose that both
é(D;) (or —¢(D;)) and ¢(R) are close enough to cluster center m. Then the triangu-
lar inequality ensures that A(D;, R) is small enough. Thus, by Theorem 1, codebook
block D; will provide a good match for range block R. To avoid the heavy compu-
tations involved when the blocks have a high dimension, the clustering is performed
at a low dimension. However, contrary to ien’s approach, we orthonormalize the
blocks after decimation.

3.3.5 Invariant moments

In [Nova93a], Novak assigns a 4-dimensional feature vector to each block. The com-
ponents of the feature vector are certain moment invariants defined from the grey
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level distribution within the block. A useful property of these moment invariants is
that they are invariant with respect to the geometric transformation, i.e., one feature
vector suffices for each domain. The isometric versions of that domain block then
have the same moment vector. However, the moments are not invariant w.r.t. the
affine transformation regarding the luminance. To cope with this problem Novak pro-
posed a normalization procedure. There are three problems with this approach: The
negative intensity blocks are omitted from consideration causing the loss of some of
the possible fidelity. The values of the invariant moments range over several orders of
magnitude, thus, a logarithmic rescaling becomes necessary before nearest neighbor
search becomes feasible. And then, most importantly, the method is intuitive in the
sense that no supporting theory is given to the goal that closeness in the feature
space ensures good approximations in the least squares sense. The fact is, that such
a theory cannot exist. Novak worked with triangular partitioning, and Frigaard con-
tinued the work in [Frigd5| using a quadtree partitioning. However, Frigaard does
not normalize feature vectors with respect to mean and variance in order to make the
moments invariant relative to the affine luminance transformation. He reports that
normalizing would in fact degrade the overall quality of an encoding of an image,
which apparently documents the weakness of the method.

Gotting, Ibenthal, and Grigat [GolbGr95] and Popescu and Yan [PoYa93] also
pursue complexity reduction using invariant moments of different types.

3.4 Functional methods

In [BeDeKe92|, Bedford, Dekking and Keane proposed a criterion which tells when
a codebook block cannot provide a good approximation to a range block. The idea
is to compare not ranges agains domains, but rather to compare ranges and domains
independently against a certain unit vector. Only when these comparisons come out
about the same can a range be covered by a given domain. One can thus reduce the
encoding time by eliminating a large number of codebook blocks. We do not give
their original result but generalize to arbitrary unit vectors and also to the case of
fractal image compression with several fixed basis blocks.

Theorem 3 [SaHa94a/(A necessary condition)
Let 6 > 0, and let U be a unit vector in R". Let R and D be in R™ with (R, $(R)) > 0.
If E=mingy,, per||R— (aD + Y] bpByg)|| <6 then

(12)

{o(R), U)| - |<¢(D),U>|‘ <. |2- 241 R SR

Proof. We compute using the Cauchy-Schwarz inequality

({o(R), U)| = (o(D), U)])* < (($(R), U) — (¢(D), U}))*
[(6(R) — ¢(D),U)|” < [|6(R) — ¢(D)|* - [[U]]"
16(R) = o(D)|I* =2 — 2(8(R), (D). (13)
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If p denotes (¢(R), ¢(D)), then the square of the error is E? = (R, ¢(R))?*(1 — p?) (see
the proof of Theorem 1). Thus, it follows from the assumption F < ¢ that

(R, 6(R))*(1 - p*) < 0%

We may assume p > 0 (otherwise replace D by —D) and obtain

52
p= Jl‘ OB

Inserting this result in the inequality (13) completes the proof. It is easy to check
that in the case p = 1 where B is spanned by the fixed block of constant intensity,
B=(1,1,...,1)/y/n, we have for any block Z € R"

1 _ _
o(7) = 7 (21 —Z,..., 20 — Z),

where Z = (21 + -+ + 2,)/n is the average intensity and V(Z) = Y7_, (2 — Z)? the
n-fold variance. This is the special case given in [BeDeKe92] where the condition
(R, #(R)) > 4 was stated as V(R) > §2.

The algorithm to encode a range block R can be described as follows:

Algorithm 4 (A functional algorithm)

1. Choose a tolerance § and a unit vector U.

2. (Preprocessing) For every codebook block D compute |{p(D),U)]|.
For each range R do:
3. Compute (R, $(R)) and the upper bound in (12).

4. If (R, ¢(R)) < 6, then no search is needed since a = 0 gives the least squares
error E = (R, $(R)) < § for any codebook block D.

5. If (R, ¢(R)) > & then compute |(¢(R),U)| and reject all the codebook blocks D
for which the inequality (12) of Theorem 3 is not fulfilled.

It is possible to enhance this functional method by considering several unit vectors
U for the criterion in the theorem. In this way one can expect to discard a larger set
of domain blocks for a given range block.

In an efficient implementation of the functional method above one would not scan
the entire domain pool to extract those domains that pass the test of the theorem.
Instead, with any functional method it is better to proceed along the following algo-
rithm:

Algorithm 5 (General functional method)

Assume that a function F : R" — R is given such that |F(R) — F(D)| < e implies
that the range R can be covered well by the domain D. Let the domain pool be denoted
by {D1,...,Dn,}. In a preprocessing step do:
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1. For every domain D € {Dy,...,Dy,} compute F (D).

2. Sort all domains according to the functional value in a linear array and relabel
domains such that F(Dy) < F(Dy) <--- < F(Dy,)-

For each range R do:

3. Compute F(R) and the upper bound eg (e.g., the right term in (12) of Theo-
rem 3).

4. Using, e.g., the bisection method find the indices ko, k1 such that |F(R) —
F(Dy,)| < eg if and only if kg < k < ky.

5. Check all domains Dy, with ko < k < k;.

In this procedure a list of candidate domains Dy, is produced in O(log Np) time while
the full scan rejecting the domains that do not pass the test takes O(Np) time.

3.5 Tree structured methods

Besides the dimensional reduction and the variance based classification mentioned
above Caso, Obrador and Kuo propose a tree structured search in [CaObKu95]. The
pool of codebook blocks is recursively organized in a binary tree. Initially two (parent)
blocks are chosen randomly from the pool. Then all blocks are sorted into one of two
bins depending on by which of the two parent blocks the given block can be covered
best in the least squares sense. This results in a partitioning of the entire pool into two
subsets. The procedure is recursively repeated for each one of them until a prescribed
bucket size is reached. Given a range one can then compare this block with the blocks
at the nodes of the binary tree until a bucket is encountered at which point all of the
codebook blocks in it are checked. This does not necessarily yield the globally best
match. However, the best one (or a good approximate solution) can be obtained by
extending the search to some nearby buckets. A numerical test based on the angle
criterion is given for that purpose. The procedure is related to the nearest neighbor
approach since the least squares criterion (minimize F(D, R)) is equivalent to the
distance criterion (minimize A(¢(D), ¢(R)). Thus, the underlying binary tree can be
considered to be randomized version of the kd-tree structure we have used here.
Van der Walle [Wall95] worked on a wavelet representation of fractal image com-
pression, where similarly to ordinary fractal image compression, range vectors (cor-
responding to subtrees of the tree of wavelet coefficients) have to be matched with
domain vectors (also corresponding to nodes of the wavelet tree), which may be scaled
by an arbitrary scaling factor. For each node a feature vector is generated based on
angles between the coefficient vectors and axes in the wavelet coefficient space. These
vectors are then sorted into a multi-dimensional space-partitioning data structure
within which the fast search is organized. In terms of distances of feature vectors
+¢(D) the interpretation is as follows: We define a small set of anchor points in
feature space (e.g., at the positions of the main principal components of the set of
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all feature vectors). For each (projected and normalized) codebook block as well as
for each range block we compute the distances A to the anchor points. Then a point
in feature space that is close to a given range feature vector must necessarily have
distances to the anchor points that are near those of the range. To facilitate the
search for such codebook blocks, the blocks can be organized in a tree structure.

3.6 Multiresolution approaches

Two multi-resolution approaches for encoder complexity reduction are presented by
Dekking in [Dekk95a, Dekk95b], and by Lin and Venetsanopoulos in [LiVe95a]. The
idea is to use the grey value pyramid associated with an image to reduce the cost
of the search. The search is first performed at a low resolution of the image. If no
matches can be found at this resolution, then no matches can be found at a finer
resolution. The computational savings are due to the fact that less computations of
the least squares optimization are needed at a coarser resolution. For a more precise
description let us introduce some notations. A grey value pyramid of an image f seen

as a 2-D array is defined as the sequence of images f(©, ..., f"), where f() = f and
1 1
fWG5) =7 2 fH@i+m, 2 +1)
m,l=0
for k =0,...,r — 1 and 0 < 4,5 < 2*. Similarly, one can obtain range blocks and

domain blocks at resolution k£ from those at resolution k£ + 1. The basic result in
[Dekk95a] can be stated as follows.

Theorem 6 Let R% and D be respectively a range block and a codebook block at
resolution k. Then E(D®+D RE+)) > p(D®) | R(K)),

However, since not all domains at resolution k£ + 1 have corresponding domains at
resolution k, applying the theorem as stated above will take into consideration only
domains of resolution £+ 1 who have their corners at positions (2i,25). To circumvent
this problem, one may consider a pyramid tree, where every resolution £ 4+ 1 domain
at (i, 7) has four resolution & domain children at (24, 2j), (2i+1, 27), (2i,25+1), (2i +
1,25+1). It is also remarked that one cannot discard a k+1 resolution domain simply
because its k resolution children has a scaling factor sy such that |s;| > 1. Actually
one may find cases where |s;| > 1 but sg.1 = 0.

Another method, related to the multiresolution approach, is the dimension reduc-
tion presented by Caso, Obrador and Kuo in [CaObKu95]. An incremental procedure
at the pixel level has been given by Bani-Eqgbal in [Bani94].

3.7 Fast search via fast convolution

Most of the techniques discussed above are [ossy in the sense that they trade in
a speedup for some loss in image fidelity. In contrast, with a [ossless method the
codebook block with the minimal (collage) error is obtained rather than an acceptable
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but suboptimal one. The method presented in this section is the first one that takes
advantage of the fact that the codebook blocks, taken from the image, are usually
overlapping. The fast convolution  based on the convolution theorem and carried
out in the frequency domain — is ideally suited to exploit this sort of codebook
coherence. The essential part of the basic computation in fractal image compression
is a certain convolution [Saup96b, SaHar96a|. To see that denote by (-,-) the inner
product in a Euclidean space of dimension n (= number of pixels in a range block).
For a range block R and codebook block D the optimal coefficients are
n{(D,R) — (D, 1) (R, 1) 1

W(D.D) (D1 0 (L= sD ).

S =

For any (s,o0) the error F(D, R) can be regarded as a function of (D, R), (D, D),
(D,1), (R, R), and (R, 1). Its evaluation requires 23 floating point operations. Typ-
ically, the computations are organized in two nested loops:

e Global preprocessing: compute (D, D), (D, 1) for all codebook blocks D.
e For each range R do:
e Local preprocessing: compute (R, R), (R, 1).
e For all codebook blocks D do:
e Compute (D, R) and E(D, R).

The calculation of the inner products (D, R) dominates the computational cost
in the encoding. The codebook blocks D are typically defined by downfiltering the
image to half its resolution. Any subblock in the downfiltered image, that has the
same shape as the range, can be considered a codebook block for that range. In this
setting the inner products (D, R) are nothing but the finite impulse response (FIR)
of the downfiltered image with respect to the range. In other words, the convolution
(or, more precisely, the cross-correlation) of the range R with the downfiltered im-
age is required. This discrete two-dimensional convolution can be carried out more
efficiently in the frequency domain when the range block is not too small (convolu-
tion theorem). This procedure takes the inner product calculation out of the inner
loop and places it into the local preprocessing where the inner products (D, R) for
all codebook blocks D are obtained in one batch by means of fast Fourier transform
convolution. Clearly, the method is lossless.

Moreover, the global preprocessing requires a substantial amount of time, but can
be accelerated by the same convolution technique. The products (D, 1) are obtained
by convolution of the downfiltered image with a range block where all intensities
are set equal (called range shape matriz). The sum of the squares is computed in
the same way where all intensities in the downfiltered image are squared before the
convolution.

3.8 Fractal image compression without searching

Complexity reduction methods that are somewhat different in character are based
on reducing the domain pool rigorously to a small subset of all possible domains.
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For example, in the work that followed Monro and Dudbridge [MoDu92a] for each
range the codebook block to be used to cover the range is uniquely predetermined
to be a specific block that contains the range block [WoMo095]. A similar idea has
been pursued by Hiirtgen and Stiller [HuSt93] where the search area for a domain is
restricted to a neighborhood of the current range. Additionally, a few sparsely spaced
domains far from the range are taken into account as an option. Iterated Systems,
Inc., seems also to prefer a local searching [GeLu96].

In [Saup96a] we considered a parametrized and non-adaptive version of domain
pool reduction by allowing an adjustable number of domains to be excluded (ranging
from 0% to almost 100%) and investigated the effects on computation time, image
fidelity and compression ratio. We showed that there is no need for keeping domains
with low intensity variance in the pool. Eliminating a fraction 1 — «, a € (0, 1], of
the domain pool consisting of the domains with least variance yields a lean and more
productive domain pool. Using the adaptive quadtree method of Fisher [Fish94a,
Appendix A] we showed the following:

1. The computation time scales linearly with a.

2. Even for low values of o, e.g., a = 0.15, there is no degradation in image quality.
On the contrary, the fidelity improves slightly.

Signes [Sign95] and Kominek [Komi95b] pursue similar ideas for domain pool reduc-
tion. An adaptive version of spatial search based on optimizing the rate-distortion
performance is presented in [BSVN94].

4 More advanced issues

4.1 The partitioning

The partitionings mentioned so far are the fixed block size approach and the quadtree
scheme. Of course, there are many other methods for partitioning the image support.
What characterizes a good partition for fractal image compression? It should divide
the image in regions that show similarity to other areas of the image. The fractal code
consists of the partition information and of the transform coefficient information. We
will only accept the higher coding costs of irregular partitions if those partitions lead
to a better quality in terms of rate distortion curves. While using fixed block size
image tilings, e.g. with squares, triangles or rectangles, our partition costs are zero
and all information is in the transform part. The weakness of those partitions is their
non-adaptivity to the image content. The opposite approach would be represented by
contour coding: the lion’s share of information is given by the partition code. As you
may guess, the optimal approach will lie somewhere in the middle of those extremes.
The methods used can be classified as hierarchical partitionings and split-and-merge
methods.
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Hierarchical partitionings:

e The quadtree scheme [BeDeKe92, JaFiBo92] can be considered as a first
step towards adaptivity. If for a given square range there is no domain which
fits well, the range is divided into four equally sized subsquares. This is done
recursively with some given bounds for the minimum and maximum range size.
Note what has changed: the partitioning is depending on the search result and
there are different range sizes. During the procedure some ranges will be rejected
and subdivided, thus, rendering the corresponding search void. Therefore, the
maximal range size must not be chosen too large in order to avoid a large
number of useless searches. The cost for storing the partition information is
small. It amounts to a quadtree describing the splitting structure.

e In HV (horizontal-vertical) partitioning [FiMe94| the image is segmented
into rectangles (see Figure 13). If for a given rectangular range block no ac-
ceptable domain match is found, the block is split into two rectangles either
by a horizontal or a vertical cut. The splitting is based on block uniformity
and also incorporates a rectangle degeneration prevention mechanism. For the
range R = (7;)o<i<No<j<m, the biased differences of vertical and horizontal
pixel intensity sums, respectively, are computed:

hj = M1 Z Tij — Z Fig+1 ]

7

min(i, N —i — 1)

Uy = N 1 (z]: Tij — %:Ti+l,j) .

The maximal value of these differences determines splitting direction and posi-
tion. A decision tree containing this information has to be stored.

The resulting number of different range shapes leads to a higher time com-
plexity. In spite of the higher cost for storing the partition information, the
simulation results show a considerable rate-distortion improvement over the
quadtree scheme.

e A further step in adaptivity is polygonal partitioning [Reus94b]. Based on
the work of Wu and Yao'” this is actually similar to HV partitioning including
in addition 45° and 135° cutting directions.

Split and merge:

e Davoine et al. [DaBeCh93, DaCh94] advocate the use of Delaunay triangu-
lations as partitioning method. The advantage of triangulations is the uncon-
strained orientation of edges. The Delaunay triangulation is the triangulation

17X. Wu and C. Yao, Image coding by adaptive tree-structured segmentation, in: Proceedings
DCC’91 Data Compression Conference, J. A. Storer and M. Cohn (eds.), IEEE Comp. Soc. Press,
1991.
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Figure 14: Rate distortion performance of the evolutionary and the quadtree methods
using Lenna.

which maximizes the minimal interior angle. This imposes some regularity.
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The method works as follows: starting with a Delaunay triangulation of a set
of regular distributed points, the partition is refined by splitting non-uniform
triangles (as measured by standard deviation). This splitting step is performed
by adding an additional point at the barycenter and recomputing the Delaunay
triangulation for this new set of points. The splitting is stopped via a uniformity
criterion. In the merging pass, a vertex p is removed if all triangles with vertex
p have approximately the same mean value, and again the Delaunay triangula-
tion of this new set of points is computed. In another paper [DaSvCh95] the
authors also allow the merging of two triangles when the resulting quadrilateral
is convex and both triangles have more or less the same grey value distribution.

e The region-based fractal coder using heuristic search of Thomas and
Deravi [ThDe95] is another split and merge approach. First, the image is split
in atomic square blocks, e.g., of size 4 x 4 or 8 x 8. Then neighboring blocks are
merged successively to build larger ranges of irregular shapes. Since one ends up
with only a few large ranges there are only a few transformations to store. But
the large sizes and the irregular shapes of the ranges prohibit the conventional
best domain search, therefore a heuristic strategy has to be employed. Thomas
and Deravi give three methods differing in the level of sophistication. With
the simple algorithm, for a seed atomic block an optimal domain match is
searched. Then it is checked whether this transformation can be extended to a
block neighboring the seed range. This extension step is stopped by a distortion
criterion. Another seed is selected and the procedure goes on until the whole
image is coded. This algorithm is then improved by some updating procedures
and built-in competition between ranges.

e Another adaptive partitioning method using evolutionary computation is
presented in [SaRu96a]. Here, for a fixed size square block partition a fractal
code is sought as in standard fractal coding, but for each range the best d
codebook entries are kept in a list together with the optimal scaling and offset
parameters. We take N times this configuration as the starting population for
the evolution. The offspring are built by randomly merging two neighboring
blocks; the fractal code is modified by only considering the transformations
kept in the lists of those two blocks. A selection is performed by only keeping
the fittest configurations in terms of collage error. A comparison of this method
and the quadtree scheme is given in Figure 14. Figure 12 shows a partition in
which the image support is split into 1000 ranges.

4.2 The block transformation

In fractal image compression, the coding of an image f consists of finding a contractive
mapping T'® whose fixed point g = Tg is the best possible approximation of f. The
collage theorem [Barn88b] states that by minimizing the distance between f and T'f,

18The contractivity of T is only a sufficient condition. A more general condition is the eventual
contractivity of T
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it is expected to minimize the distance between the fixed point ¢ and the image f.
When choosing the mapping 7" one should keep in mind the following constraints
[Oien94]

e I should not be linear, otherwise its fixed point is the zero image.

o T' should be computationally and structurally simple, in order to provide simple
collage optimization, fast decoding, and simple analysis.

o The fixed point of T should be robust with respect to the quantization of its
parameters.

In his original approach, Jacquin coded each range block by a linear combination
of one codebook block and one block of fixed intensity. It can be easily shown that in
this case the mapping 7' is affine, i.e, T'f = Af + b, where A is an N x N matrix and
b € RY. Here N is the total number of pixels in the image. In this section we will
describe more general mappings proposed in the literature. For the sake of clarity, we
will take the following approach. Since an image is equal to the union of the ranges,
a mapping T will be defined implicitly by specifying its action on each single range.

Let R = (ry,...,7,)7 be a range block. Let D; = (d},...,d")", i=1,...,Np be
a codebook block. A more general formulation for the least squares problem (3) is

n

min e —te(z1, . Tm) ) 14
(z1,...xm )T €ER™ k:l{ k k( 1 )} ( )

where tg (21, ..., 7)) = t(d}, ..., d,ICVD; T1,...,Ty). Thus in our formulation, the collage
of the range block R is the block

tl(l'l, C ,.Z‘m)

to(z1, .., o)

If all functions #; have continuous partial derivatives with respect to all x;, then a

necessary condition for x = (xq,...,2,,)? to solve (14) is
0 & 2 :
a—Z{rk—tk(:cl,...,xm)} =0,7=1,...,m (15)
Lj k=1

The mapping T" has an affine form if there exists an n x m matrix M such that
tl(l'l, C ,.Z‘m)
: = Mz (16)
to(z1,. .., o)
For example, the fixed size baseline encoder of Section 2.1.5 is the simple case
d 1
M=\ : :
d, 1
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A modified version is the encoder introduced by Oien [Oien93, OiLe94a]. By sub-
tracting the mean % from each coefficient dj, in the above matrix, it is shown
that for a special choice of the domain pool, one can obtain a fast decoder (see the
section on fast decoding).

Utilizing several fixed blocks By,..., B, has been suggested by many researchers
[OiLeRa91, Monr93a, Monr93b]. It corresponds to the matrix

di by ... b;
M= SR
d, b} by
Other attempts consisted of using several codebook blocks D; ..., D; [GhHu93a,
GhHu94a, GhHu94b, Vine94]. In this case the matrix M has the structure
di ... ody b ... b
M = : R
din ...odioby oL b,

One may as well use the square of the codebook block coefficients. With this setting

one gets

d? d; 1

M = R
d d, 1

All these variants aim at providing a tighter collage for the given range block. Unfor-

tunately, they suffer from longer encoding times. Furthermore, the code for a range

block is clearly more expensive than in the baseline encoder. For the case of several

codebook blocks, there is an additional complication in ensuring the contractivity

of the mapping 7' [GhHu94b|. Nevertheless, as long as the linearity condition (16)

holds, we have the following result.

Theorem 7 The minimization problem (14) has at least one solution xo. Moreover,
if the columns of the matrixz M are independent, then xy is unique and it is given by

zg = (M"M) 'M"R.

The case where the linearity condition is not assumed has not yet been sufficiently
explored. Lin and Venetsanopoulos [LiVe94a, LiVe94b| used a scheme where m = 4

and
1

.. =+ )
tk (‘rla 7:174) 1 + em1k1+m2k2+m3 + Xyq

Here (kq, ko) is the 2-D representation of k (remember that we converted the square
block into a vector). At a fixed bit rate, the authors report a visually better decoded
image and a faster decoding. However, they concede difficulties in the solving of the
least squares problem (14).
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4.3 Color and video

Very little work has been published on color fractal image compression. This may
be due to the fact that encoding color images can be considered as a straightforward
extension of the encoding of monochrome images. For example, Fisher [Fish94a]
recommends not to encode the RGB components individually. It is advised to deter-
mine the YIQ values first. Then, each YIQ channel can be encoded separately, the
[- and Q-channels being encoded at a lower bit rate than the Y-channel. However,
in [Bogd95a], the green (G) component is encoded individually and it is then used to
predict the other components.

For fractal compression of image sequences there are two main approaches. The
simplest one is to separately encode each 2-D frame or only a section of it by a fast
fractal coder [MoNi95]. A variant is to take profit of domain blocks from previous
frames [FiRoSh94|. The second technique is to consider time as a third variable and
to apply fractal coding to the 3-D range and domain blocks [LiNoF093, BaVo95]. Of
course hybrid methods are also possible. An overview on fractal video coding can be
found in [GhHu96h|.

4.4 Wavelets and fractal image compression

In fractal coding usually a square block of size 2" x 2" is approximated by another
image block of size 27! x 2"*! under an affine mapping. Thus, one tries to find similar
structures at two different scales (this can be expressed as a two-scale difference
equation as pointed out, e.g., in [Bogd94b]). Since fractals have the property of
self-similarity at different scales, it is natural to use multiresolution methods for an
analysis of fractal coding. The first approach in this direction was done by Baharav et
al. in [BaMaKa93, BaMaKa94]. Let us explain their ideas briefly by an example. For
a given 512 x 512 grey scale image, partitioned into non-overlapping 16 x 16 blocks,
a fractal code C' is determined in the standard way, considering the domain pool of
nonoverlapping 32 x 32 blocks. C contains the information of 32 - 32 transformations.
In the decoding, C' is used to compute the attractor A; of size 512 x 512. But C
can also be iteratively applied to an arbitrary 256 x 256 image, partitioned into 8 x 8
blocks, gaining an attractor As, or to an 128 x 128 image, partitioned into 4 x 4 blocks,
giving an attractor As, and so on. Thus, one ends up with a pyramid A;, Ao, ..., A5,
describing different resolutions of the attractor A;. The relationship between those
layers can be easily understood, e.g., using the Haar discrete wavelet transform.
Such explicit formulations of fractal coding by means of wavelet analysis are given
in the papers of Davis [Davi95al, van de Walle [Wall95], Krupnik et al. [KrMaKa95]
and Simon [Simo95a, Simo95b]. The earlier published paper [RiCa94] of Rinaldo and
Calvagno also contains the main ideas used for combining wavelets and fractal coding.
After applying the Haar transform, a range or a domain is given by the block
mean and a wavelet subtree, as depicted in Figure 15. Averaging and subsampling
of the domain block essentially translate into truncating the domain wavelet subtree
by cutting off the leaves. For symmetrical or antisymmetrical wavelets, isometry
operations are easily incorporated. Thus, in fractal coding a scaled version of the
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Figure 15: Left: 4 x 4 range (black), 8 x 8 domain (shaded). Right: the corresponding
wavelet subtrees; the crossed shaded parts of the domain wavelet subtree can be used
for a prediction of the range wavelet subtree.

truncated domain tree is used as a prediction for a range wavelet subtree. Note
that the subtree gives the dynamic part of a block; the mean value has to be stored
separately (see ien’s orthogonalization method). The orthogonality of the wavelet
transform allows the computation of the scaling parameters in the wavelet domain
(when using the I norm).

With the knowledge of the range block means and the tree transformation pa-
rameters, decoding is performed by predicting higher frequency coefficients by lower
frequency coefficients. The number of octaves decoded in this manner determines the
resulting attractor resolution.

The Haar wavelet is used to demonstrate the mechanisms of fractal coding in
time-frequency space. The use of higher order wavelets gives visually much better
results, since there is no strict blocking of the ranges. In other words, with higher
order wavelets one works with overlapped partitions. The elimination of the tiling
effects is one of the main features of the combined fractal wavelet approach.

Another main advantage can be seen in Davis’ self-quantization of subtree (SQS)
scheme. Here, fractal methods in the wavelet domain are combined with zerotree
coding, scalar coding and a clever way of using the various schemes optimally. Com-
paring SQS to Shapiro’s embedded zerotree wavelet coder!'?, it is no surprise that the
SQS scheme achieves competitive compression ratio results.

4.5 Hybrid methods: entropy constrained frequency-domain
encoding

In their papers [BaVo94, BSVN94, Bart95], Barthel et al. have introduced several
improvements for fractal coding that led to impressive results (for the 512 x 512

193, Shapiro, Embedded image coding using zerotrees of wavelet coefficients, IEEE Trans. on Signal
Processing 41,12 (1993) 3445-3462.
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Lenna image a PSNR of 30 dB at a compression ratio of 80:1 is reported). Here we
will restrict our attention to the modified value (luminance) transformations. Let
D be the 2-dimensional Fourier transform of an image block D € R"; d; should
refer to the i-th coefficient in the zig-zag scanned transform block D. The range-
domain correspondence R = sD+01, s,0 € R, when represented in frequency domain
translates into

71 s-d; 0
7:2 S'dg 0
Tn S'dn 0

To decorrelate the s and o parameters, this is changed to

7:1 S1 Czl (0]
7:2 S dg 0
7271 S - Czn 0

where s; is a fixed parameter in [0, 1). This is called a modified 1st order (luminance)
transform. In the case of s; = 0 it leads to @ien’s orthogonalization method. Barthel
recommends the use of s; = 0.5.

The optimal coefficients in the least square sense are given by

Oopt = T1 — s1d;

n 7 ~
i=2 d;7;

n 72
=2 d7

Sopt =

We get an even better match between a range and a domain by using the following
higher order transforms. If a spectral coefficient 7; is not well approximated by s, -d;,
the value 7; is coded separately:

(721_ (S]'(j/]_ _O_
722 S'dg 0
Aol 0 Tl
Lf.n_ LS"Czn_ _6_

This is called a 2nd order transform; correspondingly, by changing m spectral coeffi-
cients one gets an m + 1 order transform.

Thus, by allowing this wider class of transforms, we are able to get better approx-
imations. Since there are many more choices, the optimization becomes difficult. The
proposed optimization strategy is based on entropy constrained code refinement:
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1. Initialization: find a fractal code by only considering the class of modified
first order transforms.

2. Refinement: change that block code which gives the biggest decrease in dis-
tortion (MSE) at lowest (bitrate) cost by increasing the order of the transform
by one.

3. Stop at a given MSE or rate level

This is the global strategy. But how do we find, e.g., the best 2nd order transform
for a given block? Since the optimal solution to this problem is too expensive to
compute, the recommendation is to use the following greedy strategy: change the
spectral coefficient which is responsible for the highest error component in the collage
error.

4.6 Hybrid methods: VQ-enhanced fractal image compres-
sion

Though evoked by some authors, combining fractal coding with vector quantization
(VQ) has not been deeply investigated. In [Jacq93] it is only suggested that fractal
coding should be employed for sharp-edge blocks, whereas vector quantization is more
advantageous for other blocks. Gharavi-Alkhansari and Huang [GhHu94b| claim that
vector quantization can be seen as a special case of their generalized transform. An
interesting study was presented in [Leps93, Ral.e93] where the performance of a fractal
image coder and a product code vector quantizer have been compared.

In [HaMuSa96a, HaMuSa96b] we investigate how to take advantage of a vector
quantization codebook in order to enhance the performance of a fractal image coder.

First, a set of fixed cluster centers is designed as explained in [Hamz95] (see Section
2.3.3.4). Then these cluster centers are normalized. The new cluster centers can be
considered as an integral part not only of the encoder but also of the decoder. The
hybrid scheme works as follows. If the least squares approximation of a range block
by an affine transformation of its nearest cluster center m, is “good enough”, then
the cluster center will serve as a V() codebook block. Otherwise, the range block will
be encoded by a domain block. The requirement “good enough” can be for example
the fulfilment of one of the two conditions:

%E(R, me) < 6 (17)
" E(R,m.) < (1+¢€)E(R,D) (18)

for all codebook blocks D in the cluster with center m.. Here € and 0 are parameters
of our method. In this way, the bit rates can be improved by a clever choice of the
ratio of the number of cluster centers to the number of domain blocks used in the
fractal code. For example, if we denote by Ny the number of range blocks and by Ny
the number of range blocks VQ encoded, then our hybrid scheme will improve the rate
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of the fractal coder if N7 > pNT’}g, where 27 is the number of domain blocks and 2* is
the number of cluster centers. In the above computation, one bit per range has been
included to specify the way a range block has been encoded. Furthermore, the new
scheme reduces the complexity of the already fast algorithm described in [Hamz95]
since the search for a matching codebook block is only started if the cluster center
was not able to provide an acceptable approximation. As discussed in [Hamz95],
the search for a matching codebook block can be extended to neighboring clusters.
Note that for VQ-encoded range blocks no contractivity condition on the scaling
factor is required. Moreover, the offset of a VQ-encoded range block reduces to its
DC value. The decoding proceeds as with a conventional fractal decoder, i.e, through
iterations from any initial image with the advantage, however, that the reconstruction
of the VQ-encoded range regions is already obtained after the first iteration. Thus,
in addition to a less complex decoder, we expect to obtain a faster convergence.

Our experimental results showed that the hybrid scheme was able to improve the
performance of the conventional fractal coder in all its aspects. The rate-distortion
curve was ameliorated, and both the encoding and the decoding were faster.

4.7 Fast decoding

One of the most remarkable features of fractal image compression is the simplicity of
the decoder. The reconstruction of the image is obtained by iterating the mapping T’
on any initial image fy. Since the mapping 1" is contractive, the contraction mapping
principle ensures the convergence of the sequence of iterates {T%(fy)} to the fixed
point g. Typically, the baseline decoder needs less than 10 iterations to converge.
However, for applications where the speed of the decoding is vital (e.g., in real-time
video), one may wish to find faster methods.

4.7.1 Fast decoding with orthogonalization

Oien’s encoding scheme [Oien93] requires a codebook where each domain block con-
sists of a union of range blocks. However, its impressive aspects fully justify this
restriction. Some of these are:

e a convergence of the decoding in a finite number of iterations without any
constraints on the scaling factors; this number depends only on the domain and
range sizes.

e a convergence at least as fast as in the conventional scheme.

e a pyramid-structured decoding algorithm with a low computational complexity.

4.7.2 Hierarchical decoding

In [BaMaKa93, BaMaKa94] Baharav et al. proposed a fast decoding algorithm based
on a hierarchical interpretation of the PIFS-code. Essentially the method prescribes
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Figure 16: PSNR vs. iteration step for the 512 x 512 Lenna image. The image
was encoded with Fisher’s quadtree code with the default parameters (three-level
quadtree, one-class search). Curve (1) corresponds to the conventional decoding,
curve (2) to the method with codebook update.

the usual iteration for the decoding, however, with the modification, that the iter-
ations are carried out at a coarse resolution of the image. Once the fixed point of
the PIFS at the coarse resolution is reached, a deterministic algorithm is used to
find the fixed point at any higher resolution (compare Section 4.4). The savings in
computation are due to the fact that the iterations are applied to a vector of low
dimension.

4.7.3 Codebook update

This method introduced in [Hamz96a] works in the spirit of the Gauss-Seidel method.
Each time a new range block is computed, the domain blocks used in the decoding
and covering these range blocks are updated. In [Hamz96b] we prove the convergence
of the decoding if the scaling factors are less than one. Experimental results show
that our method converges faster than the conventional procedure (see Figure 16).

4.7.4 Other methods

The simple scheme of Monro and Dudbridge [MoDu92bh, MoDu95, Dudb94| has a fast
noniterative decoding algorithm giving an exact reconstruction of the fixed point. In
[DoVa95] the dependency between domain blocks and range blocks is analyzed. As a
consequence it is shown that the decoding can be made faster by reconstructing in a
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noniterative way some of the range blocks.

5 WEB resources

The increasing interest in fractal image compression has led to the creation of many
World Wide Web resources dedicated to this field. The following is a list of some of
the most important ones.

e Yuval Fisher’s site at http://inls.ucsd.edu/y/Fractals/ contains valuable informa-
tion on bibliographies, books, conferences, announcements, internet resources, pa-
pers and software. A C quadtree code capable of encoding images in a few seconds,
decoding at arbitrary resolution, and achieving high compression ratios is also avail-
able.

e [terated Systems, Inc at http://www.iterated.com/ offers commercial software on
video and still image compression.

e The University of Bath Image Processing Group at http://dmsun4.bath.ac.uk/ has
a demonstration video decoder based on the Bath fractal transform.

e The Waterloo Montreal Verona fractal research initiative at http://links.uwaterloo.ca/
is designed to further the theoretical understanding of the mathematics of fractals
and its application to signal processing. It contains repositories of fractal compres-
sion software and papers. Results of various compression schemes are compared
against a 32 element suite.

e The Groupe Fractales site at http://www-syntim.inria.fr/fractales/ is mainly con-
secrated to fractal analysis.

e Brendt Wohlberg from the University of Cape Town has a BibTex format biblio-
graphy in http://dipl.ee.uct.ac.za/fractal.bib.html/.

e John Hart’s home page at http://www.eecs.wsu.edu/~hart has many interesting
links to fractal compression stuff.

Our University of Freiburg ftp site at
ftp://ftp.Informatik.Uni-Freiburg.DE/documents/papers/fractal/
contains papers, software and a regularly updated bibliography.

The first international meeting dedicated to fractal image encoding and analysis
was held in Trondheim in Norway in July 1995. A Web site of this meeting, a NATO
ASI, is in http://inls.ucsd.edu/y/ASI/.

Fractal coding is also discussed in the newsgroups comp.compression,
comp.compression.research and sci.fractals.

Acknowledgments. The authors thank Bertram Ganz, Luigi Grandi and Matthias
Ruhl for producing most of the figures. Also we thank Yuval Fisher for making his
C-code for the fractal quadtree encoding available on the internet. It surely served
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