
Fractal Image CompressionAn Introductory OverviewDietmar Saupe, Raouf Hamzaoui, Hannes Hartenstein�
AbstractFractal image compression is a new technique for encoding images com-pactly. It builds on local self-similarities within images. Image blocks are seenas rescaled and intensity transformed approximate copies of blocks found else-where in the image. This yields a self-referential description of image data,which | when decoded | shows a typical fractal structure. This paper pro-vides an elementary introduction to this compression technique. We have cho-sen the similarity to a particular variant of vector quantization as the mostdirect approach to fractal image compression. We discuss the hierarchicalquadtree scheme and vital complexity reduction methods. Furthermore, wesurvey some of the advanced concepts such as fast decoding, hybrid methods,and adaptive partitionings. We conclude with a list of relevant WEB resourcesincluding complete public domain C implementations of the method and acomprehensive list of up-to-date references.1 IntroductionAbout ten to �fteen years ago fractal techniques were introduced in computer graphicsfor modeling natural phenomena. One of these new ideas came from a mathemat-ical theory called iterated function systems (IFS). This theory had previously beendeveloped in 1981 by John Hutchinson, however, without any technical applicationsin mind. It was Michael Barnsley and his research group from the Georgia Instituteof Technology who �rst saw and realized the potential of iterated function systemsfor modeling of, e.g., clouds, trees, and leaves. Although other modeling techniquesin computer graphics such as procedural modeling and L-systems are dominating theIFS approach, one of the visions of Barnsley | namely that of encoding entire im-ages using IFS | turned into one of the most innovative techniques in the imagecompression �eld at present. Back in 1987 Barnsley and Sloan speculated [BaSl87]about very high compression ratios and announced that it was possible to transmit�Address: Institut f�ur Informatik, Universit�at Freiburg, Am Flughafen 17, 79110 Freiburg, Ger-many. Email: saupe,hamzaoui,hartenst@informatik.uni-freiburg.de. This paper is a revised versionof Chapter 2 from Fractal Models for Image Synthesis, Encoding and Analysis, D. Saupe, J. Hart(eds.), SIGGRAPH '96 Course Notes XX, New Orleans, Aug. 1996.1



2 D. Saupe, R. Hamzaoui, H. Hartensteinsuch compressed image �les at video rates over normal telephone lines. However,at that time nobody seemed to know exactly how to faithfully reproduce images atreasonable compression rates with IFS. What was the problem? The fractals thatone can easily generate with an iterated function system are all of a particular type.They are images which can be seen as collages of deformed and intensity transformedcopies of themselves. Thus, in an IFS encoding of a picture of a face one should seetiny little distorted copies of the face everywhere. This seemed not only unnaturalbut also technically infeasible. Then, in 1989, Arnaud Jacquin, one of the graduatestudents of Barnsley, realized a �rst automatic fractal encoding system in his disser-tation [Jacq89c], leaving behind the rigid thinking in terms of global IFS mappings.This broke the ice for a new direction of research in image coding.1.1 The fractal goldrushThe basic new idea in Jacquin's approach was very simple. An image should not bethought of as a collage of copies of the entire image, but of copies of smaller parts ofit. For example, a part of a cloud certainly does not look like an entire landscape withclouds, but it doesn't seem so unlikely to �nd another section of some cloud or someother structure in the image that looks like the given cloud section. Thus, the generalapproach is to �rst subdivide the image into a partition | �xed size square blocks inthe simplest case | and then to �nd a matching image portion for each part. Thissetup has been known as a local or partitioned iterated function system (PIFS). Thedevelopment of Jacquin was like that of an engine. Around the engine he built a�rst vehicle, a workable image compression implementation. However, how to designsuch a vehicle in an optimal way remained to be investigated. And there were lotsof open questions: for example, how should the image be segmented, where shouldone search for matching image portions, how should the intensity transformation bedesigned, and | most annoyingly | the algorithm as proposed and as given laterin the form of a C code in the book of Barnsley and Hurd [BaHu93] was creepinglyslow. Thus, methods for acceleration were urgently needed. This set the stage for acrowd of researchers mostly from mathematics, electrical engineering and computerscience. Since its launching in 1994, the IEEE ICIP (International Conference onImage Processing), worldwide most prominent scienti�c image processing convention,regularly features a section on fractal image coding. We have tried to keep track ofthe publications dealing directly with this subject, see the bibliography in this chapterfor a listing and our ftp site (Section 5) for many of the PostScript �les. Figure 1shows graphically the growth of the �eld in terms of the total number of publications.One of the good things of standards is that people can build further researchand applications on them, thereby accelerating scienti�c progress. This is just whathappened after Yuval Fisher made his well written C code for an adaptive quadtreebased fractal encoder available on the world wide web with a thorough theoreticaland practical documentation in his book [Fish94a]. Then, in the summer of 1995,Fisher organized a NATO Advanced Research Institute on fractal methods for analysisand encoding of images, held in Trondheim, Norway. This was the �rst conference
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yearFigure 1: Total number of publications on fractal image compression.devoted to the fractal approach. Another one followed, set up by the Georgia Instituteof Technology and Iterated Systems, Inc., in Atlanta1 in March 1996.1.2 Four views of fractal image compressionAs with any new methodology it is interesting to study interpretations from di�erentperspectives. Several such views of fractal image compression have been considered:1. Iterated function systems (IFS). Such systems are operators in metricspaces and were introduced in a mathematical paper by Hutchinson2 in 1981,who showed that they have fractal subsets as attractors. This motivated Barns-ley to search for an image compression system that models images as attractorsof IFSs. Jacquin's solution of 1989 relies on a crucial modi�cation of IFSs,namely that the mappings involved have domains that cover only part of theimage. Thus, such IFSs were called local [BaHu93] or partitioned [Fish94a].2. Self vector quantization. The basic fractal encoding is almost the same as aparticular type of product code vector quantization (VQ), namely the so-calledmean-removed shape-gain vector quantization (MRSG-VQ) [RaLe93]. In thatapproach an image block is approximated by the sum of a DC component anda scaled copy of an image block taken from the VQ codebook. Fractal encodingdi�ers from MRSG-VQ because the codebook is not explicitly available at thedecoder but rather given implicitly in a self-referential manner.3. Self-quantized wavelet subtrees. Recently it has been noticed by Davis[Davi95a] and others that in some cases the fractal encoding is equal to a certain1The First Annual Leadership Conference on Multimedia Imaging Technology and Applications.2J. Hutchinson, Fractals and Self-Similarity, Indiana University Journal of Mathematics, vol. 30,pp. 713{740, 1981.



4 D. Saupe, R. Hamzaoui, H. Hartensteintype of wavelet transform coding. The idea is to organize the (Haar) waveletcoe�cients in a tree and to approximate subtrees by scaled copies of othersubtrees closer to the root of the wavelet tree. See also Section 4.4.4. Convolution transform coding. Also recently, it has been observed [Saup96b]that the operations carried out when searching a matching image region for agiven one essentially are equivalent to a convolution operation. Only one of theconvolution coe�cients is selected for the fractal code. This establishes a closerelation to common transform coding.Each of these views of fractal encoding has led to a better understanding of thesubject and inspired new research. For example, the similarities to VQ had alreadybeen studied by Jacquin [Jacq93] who, in fact, had imported useful classi�cationmethods, developed for VQ, to his fractal encoder. Moreover, the analogy to trans-form coding provides a new lossless technique for accelerating fractal encoding makinguse of the fast convolution transform, carried out in the frequency domain. The re-lationship to wavelets opens up interesting possibilities for hybrid codes which mayhold the strongest prospects for the best rate-distortion curves available with fractaltechniques.In the following we will adopt the view point of self vector quantization ratherthan the traditional approach by iterated function systems. It is more straightforwardsince it is discrete by nature.1.3 Vector quantizationVector quantization (VQ) is a generalization of scalar quantization. In scalar quanti-zation individual real or integer numbers are coded by an index listed in a �xed tableof quantization values. For example, rounding to the nearest integer can be consid-ered as a simple form of scalar quantization. In computer graphics quantization isassociated mostly with undesirable artifacts, also known as aliasing. Geometric prim-itives such as lines and polygons need to be represented in terms of intensity valuessampled on a regular discrete grid of pixels which necessarily leads to these artifacts.The art of vector quantization addresses the general problem of minimizing the errorsassociated with any quantization. Thus, the question is,how to quantize if you must.And clearly there are cases where quantization is a \must." For example, considerdisplaying a true color image using graphics hardware supporting only a color lookuptable of, say, 256 colors. Such a con�guration is common in PCs and workstations aswell. There are two problems to be distinguished here.1. The quantizer. Given a table of 256 color vectors C = fy1; : : : ; y256g; yi 2[0; 1]3; i = 0; : : : ; 255, called codebook, and a pixel color vector x 2 [0; 1]3, �ndthe index i 2 f1; : : : ; 256g such that the codebook vector yi approximates thegiven color x best. In other words, de�ne an optimal partitioning of the color



Fractal Image Compression | An Introductory Overview 5space [0; 1]3 into regions R1; : : : ; R256 so that the quantization is declared by themapping Q : [0; 1]3 ! C, where Q(x) = yi if and only if x 2 Ri.2. The codebook design. Given an ensemble or a category of images, designan optimal size 256 codebook for color quantization. In other words, the colorlook-up table needs to be de�ned so that the quantization process describedabove yields the least color distortion for an image on average.In order to solve these problems one needs a measure of how well a pixel color isapproximated by an entry from the codebook. Such functions are called distortionmeasures in quantization theory. Most commonly, the squared Euclidean distance isused for this purpose, d(x; y) = nXk=1(x(k) � y(k))2where n denotes the dimension of the quantizer (which is n = 3 for color quantization)and x(k) is the k-th component of the vector x. With this distortion measure thequantizer is a so-called nearest-neighbor-quantizer, because the codebook vector withminimal distortion for a given query vector x is the one that minimizes the Euclideandistance to x. The codebook design problem is very hard; only suboptimal solutionsare obtainable in practice.Optimal design of color look-up tables has been an issue in computer graphics re-search.3 Interestingly, also fractal space-�lling curves have been used in this context.4To discuss the codebook design let us assume the more general case of quantizingn-dimensional data vectors x1; : : : ; xM 2 Rn using a codebook C = fy1; : : : ; yNg andthe squared Euclidean distortion measure.5 There are two optimality conditions, thatneed to be satis�ed in an optimal quantizer.1. Nearest neighbor condition. Given a codebook C, the optimal partitioncells Ri satisfy Ri � fx 2 Rn j d(x; yi) � d(x; yj) for all jgThus, the distortion for a given vector x is d(x;Q(x)) = minyj2C d(x; yj).2. Centroid condition. Given a partition R1; : : : ; RN the optimal codebookC = fy1; : : : ; yNg consists of the centroids of the regions:yi = cent(Ri) := PMj=1 1Ri(xj)xjPMj=1 1Ri(xj)3P. Heckbert, Color image quantization for frame bu�er display, ACM Trans. Comput. Gr. 16,3(1982) 297{307. S. J. Wan, S. K. M. Wong, P. Prusinkiewicz, An algorithm for multidimensionaldata clustering, ACM Trans. on Math. Software 14,2 (1988) 153{162.4R. J. Stevens, A. F. Lehar, F. H. Preston, Manipulation and presentation of multidimensionalimage data using the Peano scan, IEEE Trans. on Pattern Analysis and Machine Intelligence PAMI-5,5 (1983) 520{526.5The hasty reader may skip these details and go on to page 107.



6 D. Saupe, R. Hamzaoui, H. HartensteinHere 1R(x) denotes the indicator function, i.e., its value is 1 if x 2 R and 0otherwise. In other words, the codebook vectors are the averaged vectors fromthe corresponding regions.Given a training sequence of vectors and a codebook Cm an improved codebook Cm+1can be generated using the two optimality conditions. This is called a generalizedLloyd iteration.1. Step 1. Given a codebook Cm = fym1 ; : : : ; ymNg, partition the training setx1; : : : ; xM 2 Rn into subsets Rmi using the nearest neighbor condition, i.e.,Rmi = fxk j d(xk; ymi ) � d(xk; ymj ) for all jgwith a suitable tie-breaking rule.2. Step 2. Using the centroid condition compute the centroids cent(Ri) and de�nethe codebook Cm+1 = fym+1i cent(Rmi ) j i = 1; : : : ; Ng.This procedure can be iterated. Starting out with an initial codebook C0 with nearest-neighbor quantizer Q0 the total distortion after the m-th such iteration isDm = MXk=1 d(xk; Qm(xk)) = MXk=1 minyj2Cm d(xk; ymj ):It follows from the optimality conditions that the sequence of total distortionsD0; D1; : : :is decreasing. Since the distortions are bounded from below by 0 the sequence mustconverge to a limit. Moreover, since there are only �nitely many di�erent partitionsof a �nite set of training vectors it can be shown that the limit is achieved after a�nite number of iterations. However, in practice a termination criterionDm �Dm+1Dm � �with a user speci�ed tolerance � is adopted. The mathematical theory for vectorquantization and its many variants can be found, e.g., in the book of Gersho andGray,6 from which we have borrowed some of the notation as given in this section.The method is straightforward to apply to grey scale images. Images are parti-tioned into blocks of �xed size, e.g., 4 � 4 pixels. These blocks are scanned row byrow yielding vectors of dimension n = 16. Several images may be used to generatetraining vectors, an initial codebook is selected (there are several sophisticated algo-rithms for this), and generalized Lloyd iterations are performed until the convergencecriterion is ful�lled. The resulting codebook can be used to encode a given imagewhich normally is assumed to be di�erent from the training images. Figure 2 showsas an example a small section of a reconstructed image along with the original.76A. Gersho, R. Gray, Vector Quantization and Signal Compression, Kluwer Academic Publishers,Boston, 1991.7See http://isdl.ee.washington.edu/COMPRESSION/homepage.html for a C-code implementa-tion of the full search vector quantization scheme described here. This package was also used togenerate the codebooks and encodings.
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Figure 2: Standard vector quantization of a section of the Lenna test image (originalon left) using a codebook of 512 blocks of size 4� 4. The attainable PSNR with thisapproach is about 31.2 dB for the Lenna test image.When evaluating the resulting VQ encoding of an image two closely related quan-tities need to be observed. The �rst one is the compression ratio. It is de�ned as theratio of the �le size of the original image representation to that of the encoded versionof it. For the example in the �gure the compression ratio is easily calculated. Theoriginal �le size is 8 � 5122 bits, since it is an image of 512 by 512 pixels, each onecarrying an 8 bit intensity value. The compressed version requires 9� (512=4)2 bits,since 9 bits su�ce to store the index from the set f1; : : : ; 512g and there are (512=4)2image blocks to be encoded. Thus, the compression ratio is about 14.2. The otherquantity measures quality. It is an open problem de�ning the visual quality of animage approximation in a mathematically expressible way. Thus, most authors usethe simple root-mean-square (rms) error or peak-to-peak signal-to-noise ratio (PSNR).For 8-bit gray scale images the PSNR is de�ned asPSNR = 10 log10 2552ms-error = 10 log10 25521# pixelsPi;j(p̂i;j � pi;j)2where pi;j and p̂i;j denote the pixel intensities in the original and in the approximationrespectively. The PSNR expresses the ratio of the maximal signal power to that ofthe error, also called quantization noise. It is measured in units of decibel (1 dB =one tenth of a logarithmic unit).In a variable rate encoder di�erent compression ratios can be realized which leadto encodings of varying quality. Thus, in order to compare di�erent encoders ordi�erent parameter settings in one encoder one needs to record several points givenby (compression ratio, PSNR) in a graph for both methods. When connecting someof these points we get curves that are called rate-distortion curves. The higher thecurve in the graph the better the encoder. Sometimes rate-distortion curves specifythe bitrate in place of the compression ratio. The bitrate simply is the �le size in bitsdivided by the number of pixels.



8 D. Saupe, R. Hamzaoui, H. Hartenstein1.4 Mean-removed shape-gain vector quantizationThe standard VQ approach may produce the best possible rate-distortion curves,however, this can be achieved only with larger block sizes. But very large codebooksare impractical for two reasons. Firstly, the storage requirements for the codebookvectors at encoder as well as at the decoder are a hindrance. Secondly, the codebookdesign algorithm breaks down because of the huge time-complexity involved. Forexample, at a �xed bitrate of 1 bit/pixel (i.e., at �xed compression ratio 8) thecodebook size is 2d, where d denotes the block size in pixels. Clearly, already for 8�8blocks such large codebooks are much beyond the capabilities of computers today.For this reason there exist many variations of VQ in which codebooks with certainstructures are used which makes them computable but suboptimal, i.e., this reducesthe performance of the approach in terms of quality. One of the methods used iscalled product code vector quantization, and a particular variant of it is consideredhere, namely mean-removed shape-gain VQ (MRSG-VQ). As the name suggests, avector R 2 Rn to be encoded is written asR = s �D + o � 1where 1 = (1; : : : ; 1)T 2 Rn and s; o are scalars. D = (d1; : : : ; dn)T is a zero-meanand unit-variance shape-vector, i.e.,nXi=1 di = 0; nXi=1 d2i = 1With two scalar codebooks for s and o and a vector codebook of shape vectorsthe quantized form of the input vector R isR � sinds(R)DindD(R) + oindo(R)1where inds(R), indD(R), and indo(R) are appropriate indices generated by the quan-tizer. Roughly, the scheme separately encodes the mean, the standard deviation, andthe shape of a given vector. In e�ect, by considering all three codebooks simultane-ously, a very large joint codebook is obtained. For example, if the codebook sizes fors, o, and D are 32, 128, and 4096 respectively, we get a total of 224 vectors that canbe represented exactly.We do not give details for the codebook design in this case.8 Instead we present inFigure 3 the result of a particular design of 64 blocks of size 4�4 pixels. Using a givenshape block from the codebook di�erent blocks can be generated using di�erent gainss and means o. Figure 4 shows these blocks for one example shape block from Figure 3.Using this approach blocks from an image can be approximated by an encoder. Thedecoder having access to the codebook and receiving the code consisting of the indicesfor the scalar gains and means and the indices for the shape vectors reassembles theapproximation as shown in Figure 5. Finally, Figure 6 shows the performance thatcan be attained by this approach when using di�erent sizes of the shape codebook.8See, e.g., the book of Gersho and Gray or the article M. J. Sabin, R. M. Gray, Product codevector quantizers for waveform and voice coding, IEEE Trans. Acoust. Speech Signal Process. 32(1984) 474{488.
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Figure 3: Visualization of a shape codebook in mean-removed shape-gain vectorquantization. It consists of 64 blocks of size 4 � 4 pixels with zero mean and unitvariance. For the display the vector components have been multiplied with a gain of180 and are added to the mean of 127.
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Figure 4: Visualization of the MRSG-VQ product code blocks for the second shapeblock in the third row of Figure 3. The scalar codebooks for the gain and meancontain only eight values as shown in the graph.
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QFigure 5: Visualization of the MRSG-VQ codec. The test image Lenna is encodedusing the shape codebook of size 64 shown in Figure 3. The uniform scalar quantizersfor the gain and the o�set use 32 and 128 levels respectively. The picture shows onlyan enlarged section (32 by 32 pixels) of the entire image in order to better see thepixels and the image blocks. The PSNR for the entire image approximation is 34.6dB1.5 MRSG self-VQ and the fractal baseline encoderThe basic form of fractal image compression is very similar to mean-removed shape-gain VQ. The di�erence between the two is that in VQ a �xed, trained codebookis used, while in fractal image encoding an image adaptive codebook is used, whichconsists of blocks taken from the original image. This may seem like a contradictionsince it is just the job of the decoder to recover the original and, thus, the decodercannot have access to the codebook. So, if the image is encoded blockwise as scaledcopies of other image blocks plus constant gray blocks, then how can the decoderreconstruct the original?Let us give an example where for simplicity we encode just a single real numberinstead of an image, say � = 3:1415 : : : We assume that the codebooks for the scaleand o�set are s 2 f0; 0:25; 0:5; 0:75g; o 2 f0:0; 0:4; 0:8; 1:2; 1:6; 2:0g:The \shape codebook" consists of just one number, namely � itself. Table 1 lists allthe possible numbers s � � + o where s and o are from the given codebooks.scale o�set os 0.00 0.40 0.80 1.20 1.60 2.000.00 0.00 0.00 0.00 0.00 0.00 0.000.25 0.79 1.19 1.59 1.99 2.39 2.790.50 1.57 1.97 2.37 2.77 3.17 3.570.75 2.36 2.76 3.16 3.56 3.96 4.36Table 1: This table lists all numbers rounded to two decimals that can be representedby s� + o when using the scalar codebooks for s and o as shown.
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Figure 6: Codebook size vs. distortion curve for MRSG-VQ using blocks of size 4� 4and shape codebooks of various sizes. The uniform scalar quantizers for the gain andthe mean use 32 and 128 levels respectively. The test image is 512� 512 Lenna.We see that s = 0:75 and o = 0:8 gives the best approximation of �, namelys � � + o = 0:75 � � + 0:8 = 3:1561 : : :Thus, the encoder may pass the following information to the decoder:The original number is about 0:75 times itself plus 0:8.The error in this approximation is not speci�ed, and, of course, there are manynumbers that satisfy this description. Lacking any other information, the decodercould determine anyone of them. However, one of them is a unique, special numberx, namely the one that is exactly 0:75 times itself plus 0:8, i.e.,x = 0:75 � x+ 0:8:Solving this equation we obtain x = 3:2, which should be taken as the decodednumber. Thus, the encoder approximates the input number using the codebooks fors and o and the original number, while the decoder cannot recover this approximation,but instead produces the unique number, which is characterized by the property, thatthe encoder could approximate it with no error when using the given coe�cients.The resulting equation x = 0:75x + 0:8 is easy to solve. But when we deal withimages containing thousands of numbers (pixel intensities) the corresponding systemof equations that arises in fractal image compression is so large, that it cannot besolved directly but only by iteration. This can also be demonstrated with our littletoy example. If we de�ne an operator T : R ! R by Tx = 0:75x + 0:8, then theencoder statement is simply � � T�, and we have to solve the �xed point equationx = Tx. Given an arbitrary initial guess x0 we iteratively apply T , which yieldsx1 = Tx0; x2 = Tx1; x3 = Tx2; : : :



12 D. Saupe, R. Hamzaoui, H. HartensteinHere we get with x0 = 0, e.g.,x1 = 0:8x2 = 0:75 � 0:8 + 0:8 = 1:4x3 = 0:75 � 1:4 + 0:8 = 1:85x4 = 2:1875and then x10 = 3:06 : : : ; x20 = 3:192 : : :, and x30 = 3:1995 : : : This sequence of iteratesconverges to the �xed point 3:2, which is also called the attractor for the operatorT . This is not a coincidence. Whenever the scaling factor is less than 1 in absolutevalue, jsj < 1, convergence to the �xed point ensues. The analogous property holdsfor the case of images considered next.The encoder proceeds in a similar fashion as in MRSG-VQ. Here, the shape code-book is not given a priori as the result of some training and design process. Insteadthe shape codebook consists of image blocks extracted from the original image thathas to be encoded. This implies that these blocks are not normalized to zero meanand unit variance. This \fractal" codebook is highly adaptive. Each image has itsown codebook. Here is an example.Example codebook. Suppose that the image is segmented into blocks of size 4 � 4pixels, called ranges. Each range block R must be approximated as R � sD + o1,where D is a 4 � 4 block from the shape codebook. Consider any domain block ofsize 8� 8 in the image. Then shrink the block by pixel averaging to the desired sizeof 4 � 4 pixels. All such blocks are added to the shape codebook. For an image ofsize 512� 512 this process yields a huge codebook with (512� 7)2 = 255025 blocks.In order to reduce the number of blocks to a more manageable size one may consideronly those domain blocks that have their upper left corner pixel on a regular squaregrid with a spacing l > 1. For example, with l = 8 we would obtain a set of 4096adjacent domain blocks, which is often used in practice.The encoder has to solve the following problem. For each range block the bestapproximation R � sD + o1 needs to be found. In fractal encoding the coe�cientss and o are called scaling and o�set. To obtain optimal s, o, and D, a scan ofall codebook blocks D should be performed. For each codebook block D the bestcoe�cients s and o need to be determined. In the above one dimensional example for� we computed a table of all possibilities and chose the best one. In principle thiscan also be done for vectors or image blocks as required here. However, for all butthe smallest scalar codebooks for s and o this is computationally infeasible. It takestoo long. Fortunately, there exists a shortcut. If we work with the Euclidean normwhen making the selection of the best coe�cients, i.e., when minimizingE(D;R) = mins;o jjR� (sD + o1)jjwe can use the well known method of least squares to �nd the optimal coe�cientsdirectly as follows.Given the two blocks R and D with n pixel intensities, r1; : : : ; rn and d1; : : : ; dn



Fractal Image Compression | An Introductory Overview 13we have to minimize the quantitynXi=1(s � di + o� ri)2:The best coe�cients s and o ares = n (Pni=1 diri)� (Pni=1 di) (Pni=1 ri)nPni=1 d2i � (Pni=1 di)2 (1)and o = 1n  nXi=1 ri � s nXi=1 di! : (2)With s and o given the square error isE(D;R)2 = 1n " nXi=1 r2i + s s nXi=1 d2i � 2 nXi=1 diri + 2o nXi=1 di! + o  on� 2 nXi=1 ri!# :If the denominator in equation (1) is zero, then s = 0 and o = Pni=1 ri=n.This procedure yields two real numbers s and o. For the encoding we can onlyuse the quantized values from the scalar codebooks. Usually, one employs uniformscalar quantization amounting to a rounding operation.In summary the baseline fractal encoder with �xed block size operates in thefollowing steps.1. Image segmentation. Segment the given image using a �xed block size, e.g.,4� 4. The resulting blocks are called ranges Ri.2. Domain pool and shape codebook. By stepping through the image with a stepsize of l pixels horizontally and vertically create a list of domain blocks fromthe image, which are twice the range size. By averaging four pixels each shrinkthe domain blocks to match the size of the ranges. This produces the codebookof blocks Di.3. The search. For each range block R an optimal approximation R � sD + o1 iscomputed in the following steps:(a) For each codebook blockDi compute an optimal approximationR � sDi+o1 in three steps:i. Perform the least squares optimization using formulas (1) and (2),yielding a real coe�cient s and an o�set o.ii. Quantize the coe�cients using, e.g., a uniform quantizer.iii. Using the quantized coe�cients s and o compute the error E(R;Di).(b) Among all codebook blocks Di �nd the block Dk with minimal errorE(R;Dk) = miniE(R;Di).



14 D. Saupe, R. Hamzaoui, H. Hartenstein(c) Output the code for the current range block consisting of indices for thequantized coe�cients s and o and the index k identifying the optimalcodebook block Dk.As already mentioned the output code of this baseline fractal encoder is not a codewith which a decoder can directly recover an approximation of the original. Insteadwe have a description of an operator. Similar to the code for � we now have thefollowing result of the encoder:Given the original image along with its partitioning in square ranges re-place each range R by the corresponding block sD + o1 as speci�ed bythe code. The resulting image, called collage, is an approximation of theoriginal.Thus, the code is nothing but the prescription of an image operator T . Given anyimage g0 one can carry out the operations given in the code, arriving at anotherimage, Tg0. When applying T to the original image f , we obtain Tf , the collage, andthe encoder result can be stated as f � Tf . The error of this approximation is calledthe collage error. It is de�ned as the sum of the square errors E(D;R)2 taken over allranges R of the image partition. From this sum the corresponding root-mean-square(rms) error or peak-to peak signal-to-noise ratio (PSNR) can be calculated.Just as in the case of � and lacking any other information, the best job that thedecoder can do is to compute the �xed point g = Tg. This is the image which,encoded by T gives a perfect encoding, i.e., one for which the collage error vanishes.In practice the decoder computes the �xed point by iteration of T . Thus, startingwith an arbitrary initial image g0, we getg1 = Tg0; g2 = Tg1; g3 = Tg2; : : :and this sequence of images should converge to an attractor, which is the desired �xedpoint g = Tg. A su�cient condition for this to happen is the contractivity of the imageoperator T in the coe�cients are less than 1 in absolute value. Then the contractionmapping principle guarantees the convergence. Moreover, a corollary of this principle,which has been called the collage theorem in context with fractal encodings states thatthe overall error, i.e., the error in the attractor relative to the original is bounded by1=(1� s) times the collage error, where s denotes the contractivity of T which is lessthan 1 in absolute value.9 This is the motivation for the encoder to minimize thecollage error under the constraint that the scaling coe�cient be su�ciently small.The mathematics behind these principles have been discussed many times and we donot reproduce this material here.109This condition is su�cient but not necessary. Even the contractivity condition can be weakenedto so-called eventual contractivity. In some special cases (domain blocks are unions of ranges, see[Oien93]) no restrictions on the scaling coe�cients need to be imposed at all.10In connection with iterated function systems and fractal image encoding we refer the interestedreader to the books [Barn88b, BaHu93, Fish94a] and also to Chaos and Fractals, H.-O. Peitgen, H.J�urgens, D. Saupe, Springer-Verlag, New York, 1992.



Fractal Image Compression | An Introductory Overview 15However, we make a remark regarding the size of the domain blocks. Usually theyare chosen to be twice as large as the corresponding range blocks. The contractivitycondition for the image operator does not require a geometric contraction of domainblocks. Therefore, it is possible to use domains that are of any size, for example, theycould be of the same size as the ranges (see, e.g., [BDBKS94]). It seems, however, thatthe error propagation at the decoder is generally worse when the geometric scalingfactor is too small. Therefore, shrinking the domains to half their size is practicalfrom a computational point of view and seems to produce the best looking results. Itwould be interesting to study this issue in detail.It is common practice to enlarge the domain pool by including blocks obtained byrotating by multiples of 90 degrees and by re
ection. This makes the codebook eighttimes as large. Larger codebooks generally improve rate-distortion curves. However,our recent systematic study [Saup96c] shows that the same or even better quality ofthe encodings can be achieved by enlarging the domain pool by just reducing the stepsize with which the image is scanned by domains. Therefore, the extra complexitythat isometries introduce to the algorithm cannot be justi�ed.The compression ratio can be computed fromcompression ratio = 8� (block size in pixels)#bits for s + #bits for o + dlog2(8� codebook size)eHere the nominator is the number of bits contained in a range block of the 8-bitgrey scale image. In the denominator the codebook size is multiplied by 8 in orderto account for the isometries (rotations and re
ections). Table 2 summarizes theperformances of this simple method and compares them for di�erent range blocksizes. range PSNR (dB) encoding compressionblock size collage attractor time (sec) ratio4 � 4 36.96 36.66 147.48 4.48 � 8 31.15 31.27 69.93 17.716 � 16 27.02 26.89 59.61 70.532 � 32 23.55 23.32 54.76 281.0Table 2: Example performances of the fractal baseline encoder for the Lenna testimage. The collage error in the second column is typically larger than that for theattractor recovered at the decoder, i.e., the PSNR is smaller. The encoding timeswere measured on an SGI Indy workstation running an R4600SC 133 MHz processorwith the public domain quadtree encoder of Yuval Fisher. The domain pool consistsof partially overlapping domains.One particular feature of fractal image compression is the fact that images aredescribed only implicitly as �xed points of an image operator and with no referenceto any particular image scale or size in terms of pixels. Thus, the fractal code canbe decoded at any resolution yielding details at all scales. This justi�es calling themethod a fractal one. Of course, it is clear that the detail generated from decodings at
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Figure 7: Fractal versus traditional zoom. From an encoding of the Lenna image(PSNR = 34.3 dB, compression ratio = 14.16) we decode the image with enlargementfactors of 1, 2, 4, 8, and 12. The left column shows a section of the results. The rightcolumn presents the same zoom sequence applied to the original image.



Fractal Image Compression | An Introductory Overview 17much larger scale shown, e.g., in Figure 7, are only arti�cial. They do not truthfullyrepresent any detail of the original. Yet this feature of resolution independence isuseful in two regards. Firstly, the arti�cial details in the image are, due to the self-referential character of the code, somewhat consistent with the global appearanceof the objects pictured. They look more \natural" than images obtained by merepixel replication or interpolation. Secondly, this feature can be used as an imageenhancement tool. A poor low-resolution image can be fractally encoded and thendecoded at a larger resolution resulting in an enhanced version.What we have described in this section | the baseline fractal encoder using �xedblock sizes | is the most rudimentary version of fractal image compression and onlymeant to illustrate the essentials of it. There are many issues that are necessary todeal with in more detail when it comes to an e�cient encoder capable of producingquality encodings: the partitioning, the choice of transformations, the domain poolselection, the encoder and decoder complexity, entropy coding of the fractal code,and so on. In the following sections we address some of these issues.2 The adaptive quadtree encoderAn adaptive partitioning of an image may hold strong advantages over encoding rangeblocks of �xed size. There may be homogeneous image regions in which a su�cientcollage can be attained using large blocks, while in high contrast regions smaller blocksizes may be required to arrive at the desired quality. The �rst approach (alreadytaken by Jacquin) was to consider square blocks of varying sizes, e.g., being 4, 8, and16 pixels wide. This idea leads to the general concept of using a quadtree partition,�rst explored in the context of fractal coding in [JaFiBo92, BeDeKe92]. In contrastto �xed block size encodings the output �le must also contain the speci�cation of thequadtree underlying the encoding.The use of variable partitionings makes it possible to design a variable rate en-coder. The user may specify goals for either the image quality or the compressionratio. The encoder can recursively break up the image into suitable portions until ei-ther criterion is reached. In more detail the algorithm targeting �delity might proceedas follows.1. De�ne a tolerance for the root-mean-square error E(R;D)=p#pixels in R ofthe collage, a minimal and a maximal range size. Partition the image intoranges of maximal size.2. Initialize a stack of ranges by pushing the maximal size ranges onto it.3. While the stack is nonempty carry out the following steps:(a) Pop a range block R from the stack and search the corresponding codebookyielding an optimal approximation R � sD+o1 and a least error E(D;R).(b) If the root-mean-square error is less than the tolerance or if the range sizeis equal to the minimum range size, then save the code for the range, i.e.,s, o, isometry, and address of D. If s = 0; do not store the rest.
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Figure 8: Results of two encodings using quadtree partitionings. Shown are a lowand a medium quality encoding with error images (large errors scaled to black) andcorresponding quadtrees. The PSNR values are 28.3 dB (left) and 32.0 dB (right).The compression ratios are 37.5 and 17.8.
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Figure 9: Rate-distortion curves for the fractal quadtree encoder and the test imageLenna 512�512. Shown are the results for two runs with di�ering domain pool sizes.The small domain pool contains only non-overlapping domains, while the large poolis generated using a �xed step size of 4 pixels horizontally and vertically. In each casewe also show the achieved PSNR quality of the collage. The di�erence between thecollage and attractor curves stems from the error propagation at the decoder. Thecorresponding cpu run times are given in Figure 10.
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Figure 10: Run times for the fractal quadtree encodings of Figure 9. Measurementswere taken on an SGI Indy workstation running an R4600SC 133 MHz processor. Forspeed the classi�cation of domains and ranges was employed.
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Figure 11: Decoder speed for varying maximal scaling factors smax. The compressionratios for these encodings are about the same, between 18 and 19.(c) Otherwise partition R into four quadrants and push them onto the stack.By using di�erent �delity tolerances for the collage one obtains a series of en-codings of varying compression ratios and �delities. Two such encodings along withtheir error images and quadtrees are shown in Figure 8. We computed several morequadtree encodings, the results of which are summarized in Figures 9 and 10 showingrate-distortion curves and PSNR versus encoding time. All experiments were doneusing the quadtree encoder of Fisher [Fish94a] (see also the section on WEB resourcesbelow).The decoder for the quadtree codes proceeds in the same way as for the case of�xed block size encodings, i.e., by iteration of the collage image operator. Only 7 or 8iterations are required to get su�ciently close to the attractor. In Figure 11 we studythe e�ect of changing the maximal allowable scaling factor smax. Allowing scalingfactors larger than 1 may destroy the contractivity property of the image operator,but this does not necessarily harm the convergence at the decoder. The reason forthis is that the operator may be eventually contractive, i.e., only an iterate of T isa contraction even though T itself is not. Larger maximal scaling factors smax maybe tempting as one may get better collages. However, enlarging the allowed range ofs without also increasing the bit allocation for the storage of s may actually worsenthe result as shown in the �gure. The reason is that the quantization of the scalingfactors becomes less accurate.We do not further elaborate on the various aspects of quadtree encodings. Theyare very well covered and documented in the book [Fish94a].



Fractal Image Compression | An Introductory Overview 213 Complexity reduction techniquesFractal image compression allows fast decoding but su�ers from long encoding times.The time consuming part of the encoding step is the search for an appropriate domainfor each range. The number of possible domains that theoretically may serve ascandidates is prohibitively large. For example, the number of arbitrarily sized squaresubregions in an image of size n by n pixels is of order O(n3). Thus, one mustimpose certain restrictions in the speci�cation of the allowable domains. In a simpleimplementation one might consider as domains, e.g., only sub-squares of a limitednumber of sizes and positions. This de�nes the so-called domain pool. Now foreach range in the partition of the original image all elements of the domain pool areinspected. If the number of domains in the pool is ND, then the time spent for eachsearch is linear in ND, O(ND). Several methods have been devised to reduce the timecomplexity of the encoding. In this section we review these methods. At the start wehave to set up some notation.3.1 A formula for the least squares error based on projectionsFor the discussion in this section let us assume that an image is partitioned into non-overlapping square range blocks of size N �N . This is not a restriction since it willbe clear how the principles described carry over to more general partitions.We consider each range block as a vector R in the linear vector space Rn wheren = N �N . The conversion from a square subimage of side length N to a vector oflength n = N2 can be accomplished, e.g., by scanning the block line by line. Workingwith vectors in place of 2D-arrays simpli�es the notation considerably without losinggenerality.The domain pool is a collection of square blocks which are typically larger thanthe ranges and taken also from the image, called domain blocks. The domain pool isenlarged by including blocks obtained after applying the eight isometrical operatorsto the domain blocks (i.e., rotations and re
ections). Finally, by pixel averaging, thesize of these blocks is reduced to the size of a range block. The resulting blocks arecalled codebook blocks.In the encoding process for a range block a search through the codebook blocks isrequired. A vector representing a codebook block will be denoted by D. A small setof p < n blocks independent from the image is also considered. We represent themby the vectors B1; B2; : : : ; Bp 2 Rn, which are chosen so as to form an orthonormalbasis of a p-dimensional subspace of Rn. They are known as the �xed basis blocks11.The encoding problem can then be stated as the least squares problemE(D;R) = mina;b1;:::;bp2R kR� (aD + pXk=1 bkBk)k = minx2Rp+1 jjR� Axjj; (3)where A is an n � (p + 1) matrix whose columns are D;B1; B2; : : : ; Bp and x =11Here we generalize the discussion from the previous section, where only one �xed basis blockhas been considered, namely 1. The scaling and o�set coe�cients s and o are now called a and b1.



22 D. Saupe, R. Hamzaoui, H. Hartenstein(a; b1; : : : ; bp) 2 Rp+1 is a vector of coe�cients.12 This problem should be solved forall codebook blocksD and the one which gives the smallest error jjR�(aD+Pp1 bkBk)jjis selected on condition that the value of the scaling factor a for the codebook blockD ensures the convergence of the decoding process (e.g., by requiring jaj < 1). Thiscondition on a can be removed when one uses the orthogonalized representation of�ien [Oien93]. A basic result of linear algebra states that if the codebook block Dis not in the linear span of the �xed basis blocks B1; : : : ; Bp, then the minimizationproblem (3) has the unique solution�x = (ATA)�1ATRwhere the matrix A+ = (ATA)�1AT is also known as the pseudo-inverse of A. Thus,the range block R is approximated by the collage block AA+R where AA+ is theorthogonal projection matrix onto range(A). Now let P be the orthogonal projectionoperator which projects Rn onto the subspace B spanned by only the �xed basisblocks B1; B2; : : : ; Bp. Thus, by orthogonality of the �xed basis blocks we have forR 2 Rn PR = pXk=1 bkBk = pXk=1hR;BkiBk:Then the range block R has a unique orthogonal decomposition R = OR + PRwhere the operator O = I � P projects onto the orthogonal complement B?. ForZ = (z1; : : : ; zn) 2 RnnB, we de�ne the operator�(Z) = OZjjOZjj: (4)Now for a given domain block D =2 B the collage block AA+R can be given explicitlyas AA+R = hR; �(D)i�(D) + pXk=1hR;BkiBk: (5)To get the least squares error we use the orthogonality of �(R); B1; : : : ; Bp to expressthe range block R as R = hR; �(R)i�(R) + pXk=1hR;BkiBk: (6)We insert the result for R in the �rst part of the collage block AA+R in (5) and afterthree lines of computations �nd thathR; �(D)i�(D) = hR; �(R)i h�(D); �(R)i�(D):12Note that we use the norm of the error in place of the squared norm. This simpli�es the notationfor the following sections. Moreover, in practice usually the root mean square error (rms) is usedequivalently in place of E(D;R). This is just E(D;R)=pn. We use the notation h�; �i for the commoninner product in Rn, thus, jjxjj =phx; xi.



Fractal Image Compression | An Introductory Overview 23Thus, the collage block can be rewritten asAA+R = hR; �(R)i h�(D); �(R)i�(D) + pXk=1hR;BkiBk: (7)Using (6) and (7) we can now compute the errorE(D;R) = jjR� AA+Rjj = qhR� AA+R;R� AA+Ri:The result follows after a few lines of calculations, namelyE(D;R) = hR; �(R)iq1� h�(D); �(R)i2: (8)Thus, the minimization of the error E(D;R) among domain codebook blocks Dcan be achieved using an angle criterion: The minimum of E(D;R) occurs when thesquared inner product h�(D); �(R)i2 is maximal. Sinceh�(D); �(R)i2 = cos2 6 (�(D); �(R))this means minimizing the angle 6 (�(D); �(R)), or, equivalently 6 (OD;OR).3.2 Feature vectorsIn the feature vector approach introduced by Saupe in [Saup94a, Saup94b, Saup95a]a small set of d real-valued keys is devised for each domain which make up a d-dimensional feature vector. These keys are carefully constructed such that searchingin the domain pool can be restricted to the nearest neighbors of a query point, i.e.,the feature vector of the current range. Thus, the sequential search in the domainpool is substituted by multi-dimensional nearest neighbor searching which can be runin logarithmic time.We consider a set of ND codebook blocks D1; : : : ; DND 2 Rn and a range blockR 2 Rn. We let E(Di; R) denote the smallest possible error of an approximation ofthe range data R by an a�ne transformation of the codebook block Di. In terms ofa formula, this is E(Di; R) = mina;b1;:::;bp2R kR� (aDi + pXk=1 bkBk)k:The following theorem provides the mathematical foundation for our feature vectorapproach.Theorem 1 [Saup94a, Saup94b].Let n � 2 and X = RnnB. De�ne the function � : X �X ! [0;p2] by�(D;R) = min (jj�(R) + �(D)jj; jj�(R)� �(D)jj):For Di; R 2 X the error E(Di; R) is given byE(Di; R) = hR; �(R)i g(�(Di; R))



24 D. Saupe, R. Hamzaoui, H. Hartensteinwhere g(�) = �s1� �24 :Proof. The least squares approximation of a range block R was given by equation(5) in Section 3.1: hR; �(D)i�(D) + pXk=1hR;BkiBk: (9)By orthogonality we can express the range block asR = hR; �(R)i�(R) + pXk=1hR;BkiBk: (10)Using this in the �rst expression (9) we obtainhR; �(R)i h�(D); �(R)i�(D) + pXk=1hR;BkiBk (11)for the least squares approximation of R. The square of the di�erence of (6) and (7)gives us the least squares error and is calculated asE(D;R) = hR; �(R)iq1� h�(D); �(R)i2:Since jj�(R)� �(D)jj = q2(1� h�(D); �(R)i)we have �(D;R) = q2(1� jh�(D); �(R)ij):Solving for jh�(D); �(R)ij and inserting the square of the result in the formula forE(D;R) completes the proof.The theorem states that the least squares error E(Di; R) is proportional to thesimple function g of the Euclidean distance � between the projections �(Di) and�(R) (or ��(Di) and �(R)). Since g(�) is a monotonically increasing function for0 � � � p2 we conclude that the minimization of the errors E(Di; R) for i =1; : : : ; ND is equivalent to the minimization of the distance expressions �(Di; R).Thus, we may replace the computation and minimization of ND least squares errorsE(Di; R) by the search for the nearest neighbor of �(R) 2 Rn in the set of 2NDvectors ��(Di) 2 Rn. The problem of �nding closest neighbors in Euclidean spaceshas been thoroughly studied in computer science. For example, a method using kd-trees that runs in expected logarithmic time is presented by Friedman, Bentley, andFinkel13 together with pseudo code. After a preprocessing step to set up the requiredkd-tree, which takes O(N logN) steps, the search for the nearest neighbor of a querypoint can be completed in expected logarithmic time, O(logN). However, as the13Friedman, J. H., Bentley, J. L., Finkel, R. A., An algorithm for �nding best matches in logarith-mic expected time, ACM Trans. Math. Software 3,3 (1977) 209{226.



Fractal Image Compression | An Introductory Overview 25dimension d increases, the performance may su�er. A method that is more e�cientin that respect, presented by Arya et al14, produces a so-called approximate nearestneighbor. For domain pools that are not large other methods, that are not based onspace-partitioning trees, may perform better. For example, the modi�ed equal averagenearest neighbor search (ENNS)15 seems to be one of the best. Before we turn topractical issues, we remark, that we can use the result of the Theorem 1 in order toidentify all codebook blocks Di that satisfy a given tolerance criterion E(R;Di) � �.In other words, solving the equality for � in the expression for the error E(D;R)in the theorem yields a necessary and su�cient condition for a codebook block D toful�ll the tolerance criterion.Corollary 2 (A necessary and su�cient condition)Let � > 0 and n � 2. Let R and D be in RnnB with hR; �(R)i � �. Then E(D;R) =mina;b1;:::;bp2R kR� (aD +Ppk=1 bkBk)k � � if and only if�(D;R) � vuuut2� 2vuut1� �2hR; �(R)i2 ;where �(D;R) is de�ned as in Theorem 1.Proof. From Theorem 1, E(D;R) = hR; �(R)i g(�(D;R)) with g(�) = �q1� �24 .Thus, for 0 � � � p2 we have E(D;R) � � if and only if �4�4�2+4�2=hR; �(R)i2 �0: From this the assertion easily follows.The condition hR; �(R)i � � does not impose any restrictions. To see this, observethat in the case of hR; �(R)i < � we already haveE(D;R) = hR; �(R)iq1� h�(D); �(R)i2 � hR; �(R)i < �:for any codebook block D. Thus, it su�ces to encode R only using the �xed basisblocks, i.e., by Ppk=1 bkBk.We continue with some remarks on generalizations and implications of the theorypresented above. In practice, there is a limit in terms of storage for the featurevectors of domains and ranges. For example, the keys for ranges of size of 8 by 8pixels require 64 
oating point numbers each. Thus, 32K domains from a domainpool would already �ll 8 MB of memory on a typical workstation, while we wouldlike to work with pools of a hundred thousand and more domains. To cope with thisdi�culty, we settle for a compromise and proceed as follows. We down-�lter all rangesand domains to some prescribed dimension of moderate size, e.g., d = 4 � 4 = 16.Moreover, each of the d components of a feature vector is quantized (8 bits/componentsu�ce). This allows the processing of an increased number of domains and ranges,14Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., Wu, A., An optimal algorithm forapproximate nearest neighbor searching, Proc. 5th Annual ACM-SIAM Symposium on Discrete Al-gorithms (1994) 573{582.15Lee, C.-H., Chen, L. H, Fast closest codeword search algorithm for vector quantization, IEEProc.-Vis. Image Signal Process. 141, 3 (1994) 143{148.



26 D. Saupe, R. Hamzaoui, H. Hartensteinhowever, with the implication that the formula of the theorem is no longer exact butonly approximate. This, however, is not a severe disadvantage as pointed out in thefollowing remark and as demonstrated by many experiments [Saup95b].The approach of pixel averaging in order to reduce the dimensionality of thedomains and ranges (64 and higher is typical) to a more feasible number (here d = 16)may be improved by better concentrating relevant subimage information in the dcomponents. Based on our report [Saup94a] Barthel et al [BSVN94] have suggestedand implemented an alternative reduction of dimension. They have used a two-dimensional discrete cosine transformation (DCT) of the projected codebook blocks��(Di). The distance preserving property of the unitary transform carries over theresult of Theorem 1 to the frequency domain and nearest neighbors of DCT coe�cientvectors will yield the smallest least squares errors. In practice one computes the DCTfor all domains and ranges. Then, from the resulting coe�cients, the DC componentis ignored and the next d coe�cients are normalized and make up the feature vector.Because of the down�ltering and the quantization of both the feature vectors andthe coe�cients a; b1; : : : ; bp, it can happen that the nearest neighbor in feature vectorspace is not the codebook block with the minimum least squares error using quantizedcoe�cients. Moreover, it could yield a scaling factor a being too large to be allowed.To take that into consideration, we search the codebook not only for the nearestneighbor of the given query point but also for, say, the next 5 or 10 nearest neighbors(this can still be accomplished in logarithmic time using a priority queue). From thisset of neighbors the non-admissible domains are discarded and the remaining domainsare compared using the ordinary least squares approach. This also takes care of theproblem from the previous remark, namely that the estimate by the theorem is onlyapproximate. While the domain corresponding to the closest point found may not bethe optimal one, there are usually near-optimum alternatives among the candidates.We make two technical remarks concerning memory requirements for the kd-tree.Firstly, it is not necessary to create the tree for the full set of 2ND keys in thedomain pool. We need to keep only one multi-dimensional key per domain, e.g., bykeeping only the key which has a non-negative �rst component (multiply key by �1if necessary). In this set-up a kd-tree of all 2ND vectors has two symmetric mainbranches (separated by a coordinate hyperplane), thus, it su�ces to store only one ofthem. Secondly, there is some freedom in the choice of the geometric transformationthat maps a domain onto a range coming from the 8 possible rotations and re
ectionsof a square subimage. This will create a total of 8 entries per domain in the kd-tree,enlarging the size of the tree. However, we can get away without this tree expansion.To see this, just note that we may instead consider the 8 transformations of the rangeand search the original tree for nearest neighbors of each one of them.The preprocessing time to create the data structure for the multi-dimensionalsearch is not a limitation of the method as demonstrated by our experiments.A forerunner of feature vectors as described above has been presented by H�urtgenand Stiller [HuSt93]. As in the classi�cation of Fisher, Jacobs, and Boss an imageblock is partitioned into its four quadrants and their mean intensities are computed.Then a vector consisting of four bits is constructed as follows: the i-th bit is 1 if



Fractal Image Compression | An Introductory Overview 27the mean of the i-th quadrant is above the overall mean, and 0 otherwise. Thus, inthe terminology of his paper, this is our feature vector after downsampling to sized = 2 � 2 and quantizing to 1 bit per component. Due to these strict limitations anearest neighbor search is not practical, rather, these vectors serve as a means forclassi�cation into 16 classes. Then a range is compared only with codebook blocksfrom the same class.3.3 Classi�cation schemesThe classi�cation as described below has been explained only for the case p = 1, wherejust one �xed basis block of constant intensity B = 1=pn(1; : : : ; 1) is used. However,at this point we already notice that the method extends to the general case allowingp > 1, provided that certain modi�cations are made. Essentially, this amounts toconsidering the transformed domains �(Di) in place of the original domains.3.3.1 Jacquin's approachIn his original work [Jacq89b, Jacq92] Jacquin used a classi�cation scheme comingfrom a study of Ramamurthi and Gersho16. The domain blocks are classi�ed ac-cording to their perceptual geometric features. Only three major types of blocks aredi�erentiated: shade blocks, edge blocks, and midrange blocks. In shade blocks theimage intensity varies only very little, while in edge blocks a strong change of inten-sity occurs, e.g., along a boundary of an object displayed in the image. The class ofedge blocks is further subdivided into two subclasses: simple and mixed edge blocks.Midrange blocks have larger intensity variations than shade blocks, but there is nopronounced gradient as in an edge block. Thus, these blocks typically are blockscontaining texture. Since ranges that would be classi�ed as shade blocks can be ap-proximated well by the constant �xed block B, scaled by an appropriate factor b, itis not necessary to search for a corresponding domain for them (in e�ect setting thecoe�cient a = 0). Thus, in this scheme there are really only two (major) classes, oneof which must be searched for each non-shade block range.3.3.2 Classi�cation by intensity and varianceA more elaborate classi�cation technique was proposed by Boss, Fisher and Jacobs[JaFiBo92, Fish94b]. It works as follows. A square range or domain is subdividedinto its four quadrants (upper left, upper right, lower left, and lower right). In thequadrants the average pixel intensities Ai and the corresponding variances Vi arecomputed (i = 1; : : : ; 4). It is easy to see that one can always orient (rotate and 
ip)the range or domain such that the average intensities are ordered in one of the threeways: major class 1: A1 � A2 � A3 � A4,16Ramamurthi, B., Gersho, A., Classi�ed vector quantization of images, IEEE Trans. Commun.,COM-34, 1986.



28 D. Saupe, R. Hamzaoui, H. Hartensteinmajor class 2: A1 � A2 � A4 � A3,major class 3: A1 � A4 � A2 � A3.Once the orientation of the range or domain has been �xed accordingly, there are 24di�erent possible orderings of the variances which de�ne 24 subclasses for each majorclass. If the scale factor a in the approximation aD + bB of the range block R isnegative then the orderings in the classes must be modi�ed accordingly. Thus, for agiven range two subclasses out of 72 need to be searched in order to accommodatepositive and negative scale factors.Although successful this approach is not satisfying in the sense that a notion ofneighboring classes is not available. So if the search in one class does not yield asu�ciently strong match for a domain, one cannot easily extend the search to anyneighboring classes. A solution for this problem has been given by Caso, Obrador andKuo in [CaObKu95], where the un
exible ordering of variances of an image block hasbeen replaced by a vector of variances. These variance vectors are strongly quantizedleading to a collection of classes where each class has a neighborhood of classes whichcan be searched. Another solution is o�ered by clustering methods discussed below.3.3.3 Archetype classi�cationA method that de�nes the classes a priori by some empirical studies carried outon a collection of training images is the archetype classi�cation presented by Bossand Jacobs in [BoJa94]. An archetype for a set of codebook blocks is given by thatparticular codebook block that can best cover all others in the usual least squaressense. For a set of blocks Di this is the block Dk,Dk = argminDk Xi6=kmina;b jjDi � (aDk + bB)jj:Starting out from an arbitrary classi�cation (e.g., the one given by Fisher et al above)of subimage blocks taken from a set of training images one can compute the archetypefor each class. Then the blocks are reclassi�ed according to the archetype by whichthey can be covered best. This yields a new classi�cation, and the process of archetypecomputation and reclassi�cation is repeated until self-consistency, i.e., until no furtherchange occurs in an iteration. The �nal set of archetypes becomes a part of theencoder. Given an image to be compressed, the encoder de�nes the domain pool andclassi�es all codebook blocks, i.e., for each codebook block the archetype is foundthat can best cover the block under consideration. In this way it can be expectedthat a given range can be covered very well by a block in the corresponding class.In fact, this is veri�ed in the experiments reported in the paper. Thus, in order toarrive at a certain image �delity, one needs to search fewer classes, which saves somecomputing time. On the other hand, the classi�cation process is more elaborate. Asa result, a conventional classi�cation scheme is overall faster for low quality imageencoding, while the best image �delity can be attained much faster using the archetypeclassi�cation.



Fractal Image Compression | An Introductory Overview 293.3.4 Clustering methodsIn clustering methods domains and ranges are grouped around cluster centers whichare computed either adaptively from the test image or from a set of training im-ages. The classes will depend on the clustering algorithm chosen, and on the cri-terion function used to describe the quality of the clustering. The �rst attemptto adaptive clustering with Kohonen's Self-Organizing Map (SOM) for fractal im-age compression was presented in [BoMe92]. However, the reported results werenot satisfying. An implementation employing frequency sensitive competitive learn-ing is reported in [WaKi93]. An e�cient clustering method based on the LBG al-gorithm was proposed in [OiLeRa92, Leps93, Oien93, LeOi94]. These importantworks introduced also a block decimation technique to perform the clustering andthe searching at a low dimensional space. In [Hamz95], the SOM approach hasbeen successfully combined with the block intensity classi�cation of Fisher et al.[FiJaBo92, Fish94a], and the nearest neighbor approach of Saupe [Saup94b] to yielda distance based classi�cation scheme. In the following we explain our clusteringapproach. Let f��(D1); : : : ;��(DND)g be the set of projected codebook blocks. Wewant to partition this set into a �nite number of disjoint subsets (clusters) de�nedby representatives (cluster centers) such that vectors in the same cluster are closerto each other than vectors in di�erent clusters. The quality of the clustering canbe measured by a criterion function that one tries to optimize. For example, onecan choose to construct the cluster centers such that the sum of squared Euclideandistances J = PNDi=1 jj�(Di)�m(�(Di))jj2 + jj � �(Di)�m(��(Di))jj2 is minimized.Here m(��(Di)) denotes the cluster center closest to the projected codebook block��(Di). A cluster of center m is formed by grouping around m all projected code-book blocks having m as their nearest neighbor. After the cluster centers have beendesigned, the set of projected codebook blocks f��(D1); : : : ;��(DND)g is clusteredby mapping each vector ��(Di) to its nearest cluster center. A range block R isencoded in two steps. First, we map its feature vector �(R) to its closest clustercenter m(�(R)). Then the range block R is compared only to the codebook blockswhose feature vectors are in the cluster of center m(�(R)). This corresponds to a1-class search. We can evidently search in more classes by considering the next near-est cluster centers of �(R). This will yield more accurate encodings at the expenseof increased time. The reason why the method works is obvious. Suppose that both�(Di) (or ��(Di)) and �(R) are close enough to cluster center m. Then the triangu-lar inequality ensures that �(Di; R) is small enough. Thus, by Theorem 1, codebookblock Di will provide a good match for range block R. To avoid the heavy compu-tations involved when the blocks have a high dimension, the clustering is performedat a low dimension. However, contrary to �ien's approach, we orthonormalize theblocks after decimation.3.3.5 Invariant momentsIn [Nova93a], Novak assigns a 4-dimensional feature vector to each block. The com-ponents of the feature vector are certain moment invariants de�ned from the grey



30 D. Saupe, R. Hamzaoui, H. Hartensteinlevel distribution within the block. A useful property of these moment invariants isthat they are invariant with respect to the geometric transformation, i.e., one featurevector su�ces for each domain. The isometric versions of that domain block thenhave the same moment vector. However, the moments are not invariant w.r.t. thea�ne transformation regarding the luminance. To cope with this problem Novak pro-posed a normalization procedure. There are three problems with this approach: Thenegative intensity blocks are omitted from consideration causing the loss of some ofthe possible �delity. The values of the invariant moments range over several orders ofmagnitude, thus, a logarithmic rescaling becomes necessary before nearest neighborsearch becomes feasible. And then, most importantly, the method is intuitive in thesense that no supporting theory is given to the goal that closeness in the featurespace ensures good approximations in the least squares sense. The fact is, that sucha theory cannot exist. Novak worked with triangular partitioning, and Frigaard con-tinued the work in [Frig95] using a quadtree partitioning. However, Frigaard doesnot normalize feature vectors with respect to mean and variance in order to make themoments invariant relative to the a�ne luminance transformation. He reports thatnormalizing would in fact degrade the overall quality of an encoding of an image,which apparently documents the weakness of the method.G�otting, Ibenthal, and Grigat [GoIbGr95] and Popescu and Yan [PoYa93] alsopursue complexity reduction using invariant moments of di�erent types.3.4 Functional methodsIn [BeDeKe92], Bedford, Dekking and Keane proposed a criterion which tells whena codebook block cannot provide a good approximation to a range block. The ideais to compare not ranges agains domains, but rather to compare ranges and domainsindependently against a certain unit vector. Only when these comparisons come outabout the same can a range be covered by a given domain. One can thus reduce theencoding time by eliminating a large number of codebook blocks. We do not givetheir original result but generalize to arbitrary unit vectors and also to the case offractal image compression with several �xed basis blocks.Theorem 3 [SaHa94a](A necessary condition)Let � > 0, and let U be a unit vector in Rn. Let R and D be in Rn with hR; �(R)i � �.If E = mina;b1;:::;bp2R jjR� (aD +Pp1 bkBk)jj � � then����jh�(R); Uij � jh�(D); Uij���� � vuuut2� 2vuut1� �2hR; �(R)i2 : (12)Proof. We compute using the Cauchy-Schwarz inequality(jh�(R); Uij � jh�(D); Uij)2 � (h�(R); Ui � h�(D); Ui)2= jh�(R)� �(D); Uij2 � jj�(R)� �(D)jj2 � jjU jj2= jj�(R)� �(D)jj2 = 2� 2h�(R); �(D)i: (13)



Fractal Image Compression | An Introductory Overview 31If � denotes h�(R); �(D)i, then the square of the error is E2 = hR; �(R)i2(1��2) (seethe proof of Theorem 1). Thus, it follows from the assumption E � � thathR; �(R)i2(1� �2) � �2:We may assume � � 0 (otherwise replace D by �D) and obtain� � vuut1� �2hR; �(R)i2 :Inserting this result in the inequality (13) completes the proof. It is easy to checkthat in the case p = 1 where B is spanned by the �xed block of constant intensity,B = (1; 1; : : : ; 1)=pn, we have for any block Z 2 Rn�(Z) = 1qV (Z)(z1 � z; : : : ; zn � z);where z = (z1 + � � �+ zn)=n is the average intensity and V (Z) = Pnk=1(zk � z)2 then-fold variance. This is the special case given in [BeDeKe92] where the conditionhR; �(R)i � � was stated as V (R) � �2.The algorithm to encode a range block R can be described as follows:Algorithm 4 (A functional algorithm)1. Choose a tolerance � and a unit vector U .2. (Preprocessing) For every codebook block D compute jh�(D); Uij.For each range R do:3. Compute hR; �(R)i and the upper bound in (12).4. If hR; �(R)i < �, then no search is needed since a = 0 gives the least squareserror E = hR; �(R)i � � for any codebook block D.5. If hR; �(R)i � � then compute jh�(R); Uij and reject all the codebook blocks Dfor which the inequality (12) of Theorem 3 is not ful�lled.It is possible to enhance this functional method by considering several unit vectorsU for the criterion in the theorem. In this way one can expect to discard a larger setof domain blocks for a given range block.In an e�cient implementation of the functional method above one would not scanthe entire domain pool to extract those domains that pass the test of the theorem.Instead, with any functional method it is better to proceed along the following algo-rithm:Algorithm 5 (General functional method)Assume that a function F : Rn ! R is given such that jF (R)� F (D)j � �R impliesthat the range R can be covered well by the domain D. Let the domain pool be denotedby fD1; : : : ; DNDg. In a preprocessing step do:



32 D. Saupe, R. Hamzaoui, H. Hartenstein1. For every domain D 2 fD1; : : : ; DNDg compute F (D).2. Sort all domains according to the functional value in a linear array and relabeldomains such that F (D1) � F (D2) � � � � � F (DND).For each range R do:3. Compute F (R) and the upper bound �R (e.g., the right term in (12) of Theo-rem 3).4. Using, e.g., the bisection method �nd the indices k0; k1 such that jF (R) �F (Dk)j � �R if and only if k0 � k � k1.5. Check all domains Dk with k0 � k � k1.In this procedure a list of candidate domains Dk is produced in O(logND) time whilethe full scan rejecting the domains that do not pass the test takes O(ND) time.3.5 Tree structured methodsBesides the dimensional reduction and the variance based classi�cation mentionedabove Caso, Obrador and Kuo propose a tree structured search in [CaObKu95]. Thepool of codebook blocks is recursively organized in a binary tree. Initially two (parent)blocks are chosen randomly from the pool. Then all blocks are sorted into one of twobins depending on by which of the two parent blocks the given block can be coveredbest in the least squares sense. This results in a partitioning of the entire pool into twosubsets. The procedure is recursively repeated for each one of them until a prescribedbucket size is reached. Given a range one can then compare this block with the blocksat the nodes of the binary tree until a bucket is encountered at which point all of thecodebook blocks in it are checked. This does not necessarily yield the globally bestmatch. However, the best one (or a good approximate solution) can be obtained byextending the search to some nearby buckets. A numerical test based on the anglecriterion is given for that purpose. The procedure is related to the nearest neighborapproach since the least squares criterion (minimize E(D;R)) is equivalent to thedistance criterion (minimize �(�(D); �(R)). Thus, the underlying binary tree can beconsidered to be randomized version of the kd-tree structure we have used here.Van der Walle [Wall95] worked on a wavelet representation of fractal image com-pression, where similarly to ordinary fractal image compression, range vectors (cor-responding to subtrees of the tree of wavelet coe�cients) have to be matched withdomain vectors (also corresponding to nodes of the wavelet tree), which may be scaledby an arbitrary scaling factor. For each node a feature vector is generated based onangles between the coe�cient vectors and axes in the wavelet coe�cient space. Thesevectors are then sorted into a multi-dimensional space-partitioning data structurewithin which the fast search is organized. In terms of distances of feature vectors��(D) the interpretation is as follows: We de�ne a small set of anchor points infeature space (e.g., at the positions of the main principal components of the set of



Fractal Image Compression | An Introductory Overview 33all feature vectors). For each (projected and normalized) codebook block as well asfor each range block we compute the distances � to the anchor points. Then a pointin feature space that is close to a given range feature vector must necessarily havedistances to the anchor points that are near those of the range. To facilitate thesearch for such codebook blocks, the blocks can be organized in a tree structure.3.6 Multiresolution approachesTwo multi-resolution approaches for encoder complexity reduction are presented byDekking in [Dekk95a, Dekk95b], and by Lin and Venetsanopoulos in [LiVe95a]. Theidea is to use the grey value pyramid associated with an image to reduce the costof the search. The search is �rst performed at a low resolution of the image. If nomatches can be found at this resolution, then no matches can be found at a �nerresolution. The computational savings are due to the fact that less computations ofthe least squares optimization are needed at a coarser resolution. For a more precisedescription let us introduce some notations. A grey value pyramid of an image f seenas a 2-D array is de�ned as the sequence of images f (0); : : : ; f (r); where f (r) = f andf (k)(i; j) = 14 1Xm;l=0 f (k+1)(2i+m; 2j + l)for k = 0; : : : ; r � 1 and 0 � i; j < 2k: Similarly, one can obtain range blocks anddomain blocks at resolution k from those at resolution k + 1. The basic result in[Dekk95a] can be stated as follows.Theorem 6 Let R(k) and D(k) be respectively a range block and a codebook block atresolution k: Then E(D(k+1); R(k+1)) � E(D(k); R(k)):However, since not all domains at resolution k + 1 have corresponding domains atresolution k; applying the theorem as stated above will take into consideration onlydomains of resolution k+1 who have their corners at positions (2i; 2j). To circumventthis problem, one may consider a pyramid tree, where every resolution k + 1 domainat (i; j) has four resolution k domain children at (2i; 2j); (2i+1; 2j); (2i; 2j+1); (2i+1; 2j+1): It is also remarked that one cannot discard a k+1 resolution domain simplybecause its k resolution children has a scaling factor sk such that jskj > 1: Actuallyone may �nd cases where jskj > 1 but sk+1 = 0:Another method, related to the multiresolution approach, is the dimension reduc-tion presented by Caso, Obrador and Kuo in [CaObKu95]. An incremental procedureat the pixel level has been given by Bani-Eqbal in [Bani94].3.7 Fast search via fast convolutionMost of the techniques discussed above are lossy in the sense that they trade ina speedup for some loss in image �delity. In contrast, with a lossless method thecodebook block with the minimal (collage) error is obtained rather than an acceptable



34 D. Saupe, R. Hamzaoui, H. Hartensteinbut suboptimal one. The method presented in this section is the �rst one that takesadvantage of the fact that the codebook blocks, taken from the image, are usuallyoverlapping. The fast convolution | based on the convolution theorem and carriedout in the frequency domain | is ideally suited to exploit this sort of codebookcoherence. The essential part of the basic computation in fractal image compressionis a certain convolution [Saup96b, SaHar96a]. To see that denote by h�; �i the innerproduct in a Euclidean space of dimension n (= number of pixels in a range block).For a range block R and codebook block D the optimal coe�cients ares = nhD;Ri � hD; 1i hR; 1inhD;Di � hD; 1i2 ; o = 1n (hR; 1i � shD; 1i) :For any (s; o) the error E(D;R) can be regarded as a function of hD;Ri; hD;Di,hD; 1i, hR;Ri, and hR; 1i. Its evaluation requires 23 
oating point operations. Typ-ically, the computations are organized in two nested loops:� Global preprocessing: compute hD;Di, hD; 1i for all codebook blocks D.� For each range R do:� Local preprocessing: compute hR;Ri; hR; 1i.� For all codebook blocks D do:� Compute hD;Ri and E(D;R).The calculation of the inner products hD;Ri dominates the computational costin the encoding. The codebook blocks D are typically de�ned by down�ltering theimage to half its resolution. Any subblock in the down�ltered image, that has thesame shape as the range, can be considered a codebook block for that range. In thissetting the inner products hD;Ri are nothing but the �nite impulse response (FIR)of the down�ltered image with respect to the range. In other words, the convolution(or, more precisely, the cross-correlation) of the range R with the down�ltered im-age is required. This discrete two-dimensional convolution can be carried out moree�ciently in the frequency domain when the range block is not too small (convolu-tion theorem). This procedure takes the inner product calculation out of the innerloop and places it into the local preprocessing where the inner products hD;Ri forall codebook blocks D are obtained in one batch by means of fast Fourier transformconvolution. Clearly, the method is lossless.Moreover, the global preprocessing requires a substantial amount of time, but canbe accelerated by the same convolution technique. The products hD; 1i are obtainedby convolution of the down�ltered image with a range block where all intensitiesare set equal (called range shape matrix). The sum of the squares is computed inthe same way where all intensities in the down�ltered image are squared before theconvolution.3.8 Fractal image compression without searchingComplexity reduction methods that are somewhat di�erent in character are basedon reducing the domain pool rigorously to a small subset of all possible domains.



Fractal Image Compression | An Introductory Overview 35For example, in the work that followed Monro and Dudbridge [MoDu92a] for eachrange the codebook block to be used to cover the range is uniquely predeterminedto be a speci�c block that contains the range block [WoMo95]. A similar idea hasbeen pursued by H�urtgen and Stiller [HuSt93] where the search area for a domain isrestricted to a neighborhood of the current range. Additionally, a few sparsely spaceddomains far from the range are taken into account as an option. Iterated Systems,Inc., seems also to prefer a local searching [GeLu96].In [Saup96a] we considered a parametrized and non-adaptive version of domainpool reduction by allowing an adjustable number of domains to be excluded (rangingfrom 0% to almost 100%) and investigated the e�ects on computation time, image�delity and compression ratio. We showed that there is no need for keeping domainswith low intensity variance in the pool. Eliminating a fraction 1 � �, � 2 (0; 1], ofthe domain pool consisting of the domains with least variance yields a lean and moreproductive domain pool. Using the adaptive quadtree method of Fisher [Fish94a,Appendix A] we showed the following:1. The computation time scales linearly with �.2. Even for low values of �, e.g., � = 0:15, there is no degradation in image quality.On the contrary, the �delity improves slightly.Signes [Sign95] and Kominek [Komi95b] pursue similar ideas for domain pool reduc-tion. An adaptive version of spatial search based on optimizing the rate-distortionperformance is presented in [BSVN94].
4 More advanced issues4.1 The partitioningThe partitionings mentioned so far are the �xed block size approach and the quadtreescheme. Of course, there are many other methods for partitioning the image support.What characterizes a good partition for fractal image compression? It should dividethe image in regions that show similarity to other areas of the image. The fractal codeconsists of the partition information and of the transform coe�cient information. Wewill only accept the higher coding costs of irregular partitions if those partitions leadto a better quality in terms of rate distortion curves. While using �xed block sizeimage tilings, e.g. with squares, triangles or rectangles, our partition costs are zeroand all information is in the transform part. The weakness of those partitions is theirnon-adaptivity to the image content. The opposite approach would be represented bycontour coding: the lion's share of information is given by the partition code. As youmay guess, the optimal approach will lie somewhere in the middle of those extremes.The methods used can be classi�ed as hierarchical partitionings and split-and-mergemethods.



36 D. Saupe, R. Hamzaoui, H. HartensteinHierarchical partitionings:� The quadtree scheme [BeDeKe92, JaFiBo92] can be considered as a �rststep towards adaptivity. If for a given square range there is no domain which�ts well, the range is divided into four equally sized subsquares. This is donerecursively with some given bounds for the minimum and maximum range size.Note what has changed: the partitioning is depending on the search result andthere are di�erent range sizes. During the procedure some ranges will be rejectedand subdivided, thus, rendering the corresponding search void. Therefore, themaximal range size must not be chosen too large in order to avoid a largenumber of useless searches. The cost for storing the partition information issmall. It amounts to a quadtree describing the splitting structure.� In HV (horizontal-vertical) partitioning [FiMe94] the image is segmentedinto rectangles (see Figure 13). If for a given rectangular range block no ac-ceptable domain match is found, the block is split into two rectangles eitherby a horizontal or a vertical cut. The splitting is based on block uniformityand also incorporates a rectangle degeneration prevention mechanism. For therange R = (rij)0�i<N;0�j<M , the biased di�erences of vertical and horizontalpixel intensity sums, respectively, are computed:hj = min(j;M � j � 1)M � 1  Xi ri;j �Xi ri;j+1! ;vi = min(i; N � i� 1)N � 1 0@Xj ri;j �Xj ri+1;j1A :The maximal value of these di�erences determines splitting direction and posi-tion. A decision tree containing this information has to be stored.The resulting number of di�erent range shapes leads to a higher time com-plexity. In spite of the higher cost for storing the partition information, thesimulation results show a considerable rate-distortion improvement over thequadtree scheme.� A further step in adaptivity is polygonal partitioning [Reus94b]. Based onthe work of Wu and Yao17 this is actually similar to HV partitioning includingin addition 45o and 135o cutting directions.Split and merge:� Davoine et al. [DaBeCh93, DaCh94] advocate the use of Delaunay triangu-lations as partitioning method. The advantage of triangulations is the uncon-strained orientation of edges. The Delaunay triangulation is the triangulation17X. Wu and C. Yao, Image coding by adaptive tree-structured segmentation, in: ProceedingsDCC'91 Data Compression Conference, J. A. Storer and M. Cohn (eds.), IEEE Comp. Soc. Press,1991.
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Figure 12: A partition with 1000 rangesgained via evolutionary coding. Figure 13: An HV partition with 1000range blocks.
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Figure 14: Rate distortion performance of the evolutionary and the quadtree methodsusing Lenna.which maximizes the minimal interior angle. This imposes some regularity.



38 D. Saupe, R. Hamzaoui, H. HartensteinThe method works as follows: starting with a Delaunay triangulation of a setof regular distributed points, the partition is re�ned by splitting non-uniformtriangles (as measured by standard deviation). This splitting step is performedby adding an additional point at the barycenter and recomputing the Delaunaytriangulation for this new set of points. The splitting is stopped via a uniformitycriterion. In the merging pass, a vertex p is removed if all triangles with vertexp have approximately the same mean value, and again the Delaunay triangula-tion of this new set of points is computed. In another paper [DaSvCh95] theauthors also allow the merging of two triangles when the resulting quadrilateralis convex and both triangles have more or less the same grey value distribution.� The region-based fractal coder using heuristic search of Thomas andDeravi [ThDe95] is another split and merge approach. First, the image is splitin atomic square blocks, e.g., of size 4�4 or 8�8. Then neighboring blocks aremerged successively to build larger ranges of irregular shapes. Since one ends upwith only a few large ranges there are only a few transformations to store. Butthe large sizes and the irregular shapes of the ranges prohibit the conventionalbest domain search, therefore a heuristic strategy has to be employed. Thomasand Deravi give three methods di�ering in the level of sophistication. Withthe simple algorithm, for a seed atomic block an optimal domain match issearched. Then it is checked whether this transformation can be extended to ablock neighboring the seed range. This extension step is stopped by a distortioncriterion. Another seed is selected and the procedure goes on until the wholeimage is coded. This algorithm is then improved by some updating proceduresand built-in competition between ranges.� Another adaptive partitioning method using evolutionary computation ispresented in [SaRu96a]. Here, for a �xed size square block partition a fractalcode is sought as in standard fractal coding, but for each range the best dcodebook entries are kept in a list together with the optimal scaling and o�setparameters. We take N times this con�guration as the starting population forthe evolution. The o�spring are built by randomly merging two neighboringblocks; the fractal code is modi�ed by only considering the transformationskept in the lists of those two blocks. A selection is performed by only keepingthe �ttest con�gurations in terms of collage error. A comparison of this methodand the quadtree scheme is given in Figure 14. Figure 12 shows a partition inwhich the image support is split into 1000 ranges.4.2 The block transformationIn fractal image compression, the coding of an image f consists of �nding a contractivemapping T 18 whose �xed point g = Tg is the best possible approximation of f . Thecollage theorem [Barn88b] states that by minimizing the distance between f and Tf ,18The contractivity of T is only a su�cient condition. A more general condition is the eventualcontractivity of T .



Fractal Image Compression | An Introductory Overview 39it is expected to minimize the distance between the �xed point g and the image f .When choosing the mapping T one should keep in mind the following constraints[Oien94]� T should not be linear, otherwise its �xed point is the zero image.� T should be computationally and structurally simple, in order to provide simplecollage optimization, fast decoding, and simple analysis.� The �xed point of T should be robust with respect to the quantization of itsparameters.In his original approach, Jacquin coded each range block by a linear combinationof one codebook block and one block of �xed intensity. It can be easily shown that inthis case the mapping T is a�ne, i.e, Tf = Af + b, where A is an N �N matrix andb 2 RN . Here N is the total number of pixels in the image. In this section we willdescribe more general mappings proposed in the literature. For the sake of clarity, wewill take the following approach. Since an image is equal to the union of the ranges,a mapping T will be de�ned implicitly by specifying its action on each single range.Let R = (r1; : : : ; rn)T be a range block. Let Di = (di1; : : : ; din)T ; i = 1; : : : ; ND bea codebook block. A more general formulation for the least squares problem (3) ismin(x1;:::;xm)T2Rm nXk=1frk � tk(x1; : : : ; xm)g2 (14)where tk(x1; : : : ; xm) = t(d1k; : : : ; dNDk ; x1; : : : ; xm): Thus in our formulation, the collageof the range block R is the block0BB@ t1(x1; : : : ; xm)...tn(x1; : : : ; xm) 1CCAIf all functions tk have continuous partial derivatives with respect to all xi, then anecessary condition for x = (x1; : : : ; xm)T to solve (14) is@@xj nXk=1frk � tk(x1; : : : ; xm)g2 = 0; j = 1; : : : ; m (15)The mapping T has an a�ne form if there exists an n�m matrix M such that0BB@ t1(x1; : : : ; xm)...tn(x1; : : : ; xm) 1CCA = Mx (16)For example, the �xed size baseline encoder of Section 2.1.5 is the simple caseM = 0BB@ d1 1... ...dn 1 1CCA



40 D. Saupe, R. Hamzaoui, H. HartensteinA modi�ed version is the encoder introduced by �ien [Oien93, OiLe94a]. By sub-tracting the mean d1+:::+dnn from each coe�cient dk in the above matrix, it is shownthat for a special choice of the domain pool, one can obtain a fast decoder (see thesection on fast decoding).Utilizing several �xed blocks B1; : : : ; Bp has been suggested by many researchers[OiLeRa91, Monr93a, Monr93b]. It corresponds to the matrixM = 0BB@ d1 b11 : : : b1p... ... ... ...dn bn1 : : : bnp 1CCA :Other attempts consisted of using several codebook blocks Di1 ; : : : ; Dil [GhHu93a,GhHu94a, GhHu94b, Vine94]. In this case the matrix M has the structureM = 0BB@ di11 : : : dil1 b11 : : : b1p... ... ... ... ... ...di1n : : : diln bn1 : : : bnp 1CCA :One may as well use the square of the codebook block coe�cients. With this settingone gets M = 0BB@ d21 d1 1... ... ...d2n dn 1 1CCA :All these variants aim at providing a tighter collage for the given range block. Unfor-tunately, they su�er from longer encoding times. Furthermore, the code for a rangeblock is clearly more expensive than in the baseline encoder. For the case of severalcodebook blocks, there is an additional complication in ensuring the contractivityof the mapping T [GhHu94b]. Nevertheless, as long as the linearity condition (16)holds, we have the following result.Theorem 7 The minimization problem (14) has at least one solution x0. Moreover,if the columns of the matrix M are independent, then x0 is unique and it is given byx0 = (MTM)�1MTR:The case where the linearity condition is not assumed has not yet been su�cientlyexplored. Lin and Venetsanopoulos [LiVe94a, LiVe94b] used a scheme where m = 4and tk(x1; : : : ; x4) = � 11 + ex1k1+x2k2+x3 + x4:Here (k1; k2) is the 2-D representation of k (remember that we converted the squareblock into a vector). At a �xed bit rate, the authors report a visually better decodedimage and a faster decoding. However, they concede di�culties in the solving of theleast squares problem (14).



Fractal Image Compression | An Introductory Overview 414.3 Color and videoVery little work has been published on color fractal image compression. This maybe due to the fact that encoding color images can be considered as a straightforwardextension of the encoding of monochrome images. For example, Fisher [Fish94a]recommends not to encode the RGB components individually. It is advised to deter-mine the YIQ values �rst. Then, each YIQ channel can be encoded separately, theI- and Q-channels being encoded at a lower bit rate than the Y-channel. However,in [Bogd95a], the green (G) component is encoded individually and it is then used topredict the other components.For fractal compression of image sequences there are two main approaches. Thesimplest one is to separately encode each 2-D frame or only a section of it by a fastfractal coder [MoNi95]. A variant is to take pro�t of domain blocks from previousframes [FiRoSh94]. The second technique is to consider time as a third variable andto apply fractal coding to the 3-D range and domain blocks [LiNoFo93, BaVo95]. Ofcourse hybrid methods are also possible. An overview on fractal video coding can befound in [GhHu96b].4.4 Wavelets and fractal image compressionIn fractal coding usually a square block of size 2r � 2r is approximated by anotherimage block of size 2r+1�2r+1 under an a�ne mapping. Thus, one tries to �nd similarstructures at two di�erent scales (this can be expressed as a two-scale di�erenceequation as pointed out, e.g., in [Bogd94b]). Since fractals have the property ofself-similarity at di�erent scales, it is natural to use multiresolution methods for ananalysis of fractal coding. The �rst approach in this direction was done by Baharav etal. in [BaMaKa93, BaMaKa94]. Let us explain their ideas brie
y by an example. Fora given 512� 512 grey scale image, partitioned into non-overlapping 16� 16 blocks,a fractal code C is determined in the standard way, considering the domain pool ofnonoverlapping 32� 32 blocks. C contains the information of 32 � 32 transformations.In the decoding, C is used to compute the attractor A1 of size 512 � 512. But Ccan also be iteratively applied to an arbitrary 256� 256 image, partitioned into 8� 8blocks, gaining an attractor A2, or to an 128�128 image, partitioned into 4�4 blocks,giving an attractor A3, and so on. Thus, one ends up with a pyramid A1; A2; :::; A5,describing di�erent resolutions of the attractor A1. The relationship between thoselayers can be easily understood, e.g., using the Haar discrete wavelet transform.Such explicit formulations of fractal coding by means of wavelet analysis are givenin the papers of Davis [Davi95a], van de Walle [Wall95], Krupnik et al. [KrMaKa95]and Simon [Simo95a, Simo95b]. The earlier published paper [RiCa94] of Rinaldo andCalvagno also contains the main ideas used for combining wavelets and fractal coding.After applying the Haar transform, a range or a domain is given by the blockmean and a wavelet subtree, as depicted in Figure 15. Averaging and subsamplingof the domain block essentially translate into truncating the domain wavelet subtreeby cutting o� the leaves. For symmetrical or antisymmetrical wavelets, isometryoperations are easily incorporated. Thus, in fractal coding a scaled version of the
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Figure 15: Left: 4�4 range (black), 8�8 domain (shaded). Right: the correspondingwavelet subtrees; the crossed shaded parts of the domain wavelet subtree can be usedfor a prediction of the range wavelet subtree.truncated domain tree is used as a prediction for a range wavelet subtree. Notethat the subtree gives the dynamic part of a block; the mean value has to be storedseparately (see �ien's orthogonalization method). The orthogonality of the wavelettransform allows the computation of the scaling parameters in the wavelet domain(when using the l2 norm).With the knowledge of the range block means and the tree transformation pa-rameters, decoding is performed by predicting higher frequency coe�cients by lowerfrequency coe�cients. The number of octaves decoded in this manner determines theresulting attractor resolution.The Haar wavelet is used to demonstrate the mechanisms of fractal coding intime-frequency space. The use of higher order wavelets gives visually much betterresults, since there is no strict blocking of the ranges. In other words, with higherorder wavelets one works with overlapped partitions. The elimination of the tilinge�ects is one of the main features of the combined fractal wavelet approach.Another main advantage can be seen in Davis' self-quantization of subtree (SQS)scheme. Here, fractal methods in the wavelet domain are combined with zerotreecoding, scalar coding and a clever way of using the various schemes optimally. Com-paring SQS to Shapiro's embedded zerotree wavelet coder19, it is no surprise that theSQS scheme achieves competitive compression ratio results.4.5 Hybrid methods: entropy constrained frequency-domainencodingIn their papers [BaVo94, BSVN94, Bart95], Barthel et al. have introduced severalimprovements for fractal coding that led to impressive results (for the 512 � 51219J. Shapiro, Embedded image coding using zerotrees of wavelet coe�cients, IEEE Trans. on SignalProcessing 41,12 (1993) 3445{3462.



Fractal Image Compression | An Introductory Overview 43Lenna image a PSNR of 30 dB at a compression ratio of 80:1 is reported). Here wewill restrict our attention to the modi�ed value (luminance) transformations. LetD̂ be the 2-dimensional Fourier transform of an image block D 2 Rn; d̂i shouldrefer to the i-th coe�cient in the zig-zag scanned transform block D̂. The range-domain correspondence R = sD+o1; s; o 2 R, when represented in frequency domaintranslates into 266664 r̂1̂r2...̂rn 377775 =
2666664 s � d̂1s � d̂2...s � d̂n

3777775 + 266664 o0...0 377775To decorrelate the s and o parameters, this is changed to266664 r̂1̂r2...̂rn 377775 =
2666664 s1 � d̂1s � d̂2...s � d̂n

3777775 + 266664 o0...0 377775where s1 is a �xed parameter in [0; 1). This is called a modi�ed 1st order (luminance)transform. In the case of s1 = 0 it leads to �ien's orthogonalization method. Barthelrecommends the use of s1 = 0:5.The optimal coe�cients in the least square sense are given byoopt = r̂1 � s1d̂1sopt = Pni=2 d̂ir̂iPni=2 d̂2iWe get an even better match between a range and a domain by using the followinghigher order transforms. If a spectral coe�cient r̂i is not well approximated by sopt �d̂i,the value r̂i is coded separately:266666666664
r̂1̂r2...̂ri...̂rn
377777777775 =

2666666666664
s1 � d̂1s � d̂2...0...s � d̂n

3777777777775 +
266666666664
o0...t...0
377777777775This is called a 2nd order transform; correspondingly, by changing m spectral coe�-cients one gets an m + 1 order transform.Thus, by allowing this wider class of transforms, we are able to get better approx-imations. Since there are many more choices, the optimization becomes di�cult. Theproposed optimization strategy is based on entropy constrained code re�nement:



44 D. Saupe, R. Hamzaoui, H. Hartenstein1. Initialization: �nd a fractal code by only considering the class of modi�ed�rst order transforms.2. Re�nement: change that block code which gives the biggest decrease in dis-tortion (MSE) at lowest (bitrate) cost by increasing the order of the transformby one.3. Stop at a given MSE or rate levelThis is the global strategy. But how do we �nd, e.g., the best 2nd order transformfor a given block? Since the optimal solution to this problem is too expensive tocompute, the recommendation is to use the following greedy strategy: change thespectral coe�cient which is responsible for the highest error component in the collageerror.4.6 Hybrid methods: VQ-enhanced fractal image compres-sionThough evoked by some authors, combining fractal coding with vector quantization(VQ) has not been deeply investigated. In [Jacq93] it is only suggested that fractalcoding should be employed for sharp-edge blocks, whereas vector quantization is moreadvantageous for other blocks. Gharavi-Alkhansari and Huang [GhHu94b] claim thatvector quantization can be seen as a special case of their generalized transform. Aninteresting study was presented in [Leps93, RaLe93] where the performance of a fractalimage coder and a product code vector quantizer have been compared.In [HaMuSa96a, HaMuSa96b] we investigate how to take advantage of a vectorquantization codebook in order to enhance the performance of a fractal image coder.First, a set of �xed cluster centers is designed as explained in [Hamz95] (see Section2.3.3.4). Then these cluster centers are normalized. The new cluster centers can beconsidered as an integral part not only of the encoder but also of the decoder. Thehybrid scheme works as follows. If the least squares approximation of a range blockby an a�ne transformation of its nearest cluster center mc is \good enough", thenthe cluster center will serve as a VQ codebook block. Otherwise, the range block willbe encoded by a domain block. The requirement \good enough" can be for examplethe ful�lment of one of the two conditions:1pnE(R;mc) � � (17)or E(R;mc) � (1 + �)E(R;D) (18)for all codebook blocks D in the cluster with center mc. Here � and � are parametersof our method. In this way, the bit rates can be improved by a clever choice of theratio of the number of cluster centers to the number of domain blocks used in thefractal code. For example, if we denote by NR the number of range blocks and by N1the number of range blocks VQ encoded, then our hybrid scheme will improve the rate



Fractal Image Compression | An Introductory Overview 45of the fractal coder if N1 > NRp�k ; where 2p is the number of domain blocks and 2k isthe number of cluster centers. In the above computation, one bit per range has beenincluded to specify the way a range block has been encoded. Furthermore, the newscheme reduces the complexity of the already fast algorithm described in [Hamz95]since the search for a matching codebook block is only started if the cluster centerwas not able to provide an acceptable approximation. As discussed in [Hamz95],the search for a matching codebook block can be extended to neighboring clusters.Note that for VQ-encoded range blocks no contractivity condition on the scalingfactor is required. Moreover, the o�set of a VQ-encoded range block reduces to itsDC value. The decoding proceeds as with a conventional fractal decoder, i.e, throughiterations from any initial image with the advantage, however, that the reconstructionof the VQ-encoded range regions is already obtained after the �rst iteration. Thus,in addition to a less complex decoder, we expect to obtain a faster convergence.Our experimental results showed that the hybrid scheme was able to improve theperformance of the conventional fractal coder in all its aspects. The rate-distortioncurve was ameliorated, and both the encoding and the decoding were faster.4.7 Fast decodingOne of the most remarkable features of fractal image compression is the simplicity ofthe decoder. The reconstruction of the image is obtained by iterating the mapping Ton any initial image f0: Since the mapping T is contractive, the contraction mappingprinciple ensures the convergence of the sequence of iterates fT k(f0)g to the �xedpoint g: Typically, the baseline decoder needs less than 10 iterations to converge.However, for applications where the speed of the decoding is vital (e.g., in real-timevideo), one may wish to �nd faster methods.4.7.1 Fast decoding with orthogonalization�ien's encoding scheme [Oien93] requires a codebook where each domain block con-sists of a union of range blocks. However, its impressive aspects fully justify thisrestriction. Some of these are:� a convergence of the decoding in a �nite number of iterations without anyconstraints on the scaling factors; this number depends only on the domain andrange sizes.� a convergence at least as fast as in the conventional scheme.� a pyramid-structured decoding algorithm with a low computational complexity.4.7.2 Hierarchical decodingIn [BaMaKa93, BaMaKa94] Baharav et al. proposed a fast decoding algorithm basedon a hierarchical interpretation of the PIFS-code. Essentially the method prescribes
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Figure 16: PSNR vs. iteration step for the 512 � 512 Lenna image. The imagewas encoded with Fisher's quadtree code with the default parameters (three-levelquadtree, one-class search). Curve (1) corresponds to the conventional decoding,curve (2) to the method with codebook update.the usual iteration for the decoding, however, with the modi�cation, that the iter-ations are carried out at a coarse resolution of the image. Once the �xed point ofthe PIFS at the coarse resolution is reached, a deterministic algorithm is used to�nd the �xed point at any higher resolution (compare Section 4.4). The savings incomputation are due to the fact that the iterations are applied to a vector of lowdimension.4.7.3 Codebook updateThis method introduced in [Hamz96a] works in the spirit of the Gauss-Seidel method.Each time a new range block is computed, the domain blocks used in the decodingand covering these range blocks are updated. In [Hamz96b] we prove the convergenceof the decoding if the scaling factors are less than one. Experimental results showthat our method converges faster than the conventional procedure (see Figure 16).4.7.4 Other methodsThe simple scheme of Monro and Dudbridge [MoDu92b, MoDu95, Dudb94] has a fastnoniterative decoding algorithm giving an exact reconstruction of the �xed point. In[DoVa95] the dependency between domain blocks and range blocks is analyzed. As aconsequence it is shown that the decoding can be made faster by reconstructing in a



Fractal Image Compression | An Introductory Overview 47noniterative way some of the range blocks.5 WEB resourcesThe increasing interest in fractal image compression has led to the creation of manyWorld Wide Web resources dedicated to this �eld. The following is a list of some ofthe most important ones.� Yuval Fisher's site at http://inls.ucsd.edu/y/Fractals/ contains valuable informa-tion on bibliographies, books, conferences, announcements, internet resources, pa-pers and software. A C quadtree code capable of encoding images in a few seconds,decoding at arbitrary resolution, and achieving high compression ratios is also avail-able.� Iterated Systems, Inc at http://www.iterated.com/ o�ers commercial software onvideo and still image compression.� The University of Bath Image Processing Group at http://dmsun4.bath.ac.uk/ hasa demonstration video decoder based on the Bath fractal transform.� The WaterlooMontreal Verona fractal research initiative at http://links.uwaterloo.ca/is designed to further the theoretical understanding of the mathematics of fractalsand its application to signal processing. It contains repositories of fractal compres-sion software and papers. Results of various compression schemes are comparedagainst a 32 element suite.� The Groupe Fractales site at http://www-syntim.inria.fr/fractales/ is mainly con-secrated to fractal analysis.� Brendt Wohlberg from the University of Cape Town has a BibTex format biblio-graphy in http://dip1.ee.uct.ac.za/fractal.bib.html/.� John Hart's home page at http://www.eecs.wsu.edu/�hart has many interestinglinks to fractal compression stu�.Our University of Freiburg ftp site atftp://ftp.Informatik.Uni-Freiburg.DE/documents/papers/fractal/contains papers, software and a regularly updated bibliography.The �rst international meeting dedicated to fractal image encoding and analysiswas held in Trondheim in Norway in July 1995. A Web site of this meeting, a NATOASI, is in http://inls.ucsd.edu/y/ASI/.Fractal coding is also discussed in the newsgroups comp.compression,comp.compression.research and sci.fractals.Acknowledgments. The authors thank Bertram Ganz, Luigi Grandi and MatthiasRuhl for producing most of the �gures. Also we thank Yuval Fisher for making hisC-code for the fractal quadtree encoding available on the internet. It surely servedas a catalyst for our research and that of many others as well.
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