
On the Construction of Correct Compiler Back-Ends:An ASM ApproachWolf Zimmermann(University of Karlsruhe, Germanyzimmer@ipd.info.uni-karlsruhe.de)Thilo Gaul(University of Karlsruhe, Germanygaul@ipd.info.uni-karlsruhe.de)Abstract: Existing works on the construction of correct compilers have at least oneof the following drawbacks: (i) correct compilers do not compile into machine code ofexisting processors. Instead they compile into programs of an abstract machine whichignores limitations and properties of real-life processors. (ii) the code generated bycorrect compilers is orders of magnitudes slower than the code generated by unveri�edcompilers. (iii) the considered source language is much less complex than real-life pro-gramming languages. This paper focuses on the construction of correct compiler back-ends which generate machine-code for real-life processors from realistic intermediatelanguages. Our main results are the following: (i) We present a proof approach basedon abstract state machines for bottom-up rewriting system speci�cations (BURS) forback-end generators. A signi�cant part of this proof can be parametrized with the in-termediate and machine language. (ii) The performance of the code constructed by ourapproach is in the same order of magnitude as the code generated by non-optimizingunveri�ed C-compilers.Key Words: Compiler, Operational Semantics, Veri�cation, Abstract State Machine,Back-End GeneratorCategory: D.3.4, D.2.41 IntroductionUsually, correctness proofs of programs assume that programs are written inhigher-level languages. However, any program is compiled into binary code andit is this code that is executed. Therefore, the correctness of programs dependsalso on the correctness of the compiler, and on the correctness of the processor.This paper discusses aspects for the construction of realistic correct compilers.Realistic correct compilers should produce machine code for real-life processors.The performance of the generated code should be comparable to machine codeproduced by usual compilers.Any work on the construction of correct compilers must formalize the informalspeci�cation of the source and target languages, and assume that the implemen-tation of the target language is correct. The correctness of compilers is thende�ned w.r.t. these formalizations. In our framework, we assume that the ma-chine language of concrete processors and basic operating system routines (suchas I/O, virtual address management) are implemented correctly. We considerimperative languages and concrete processors (here: the DEC-Alpha family).The semantics of imperative languages as well as machine languages of concrete

Journal of Universal Computer Science, vol. 3, no. 5 (1997), 504-567
submitted: 20/12/96, accepted: 20/5/97, appeared: 28/5/97  Springer Pub. Co.

processors is naturally described by state transformations. The formalization isbased on Abstract State Machines (formerly: evolving algebras), because theseare a well-suited device for formalizing state transformations. The correctnessde�nition is based on simulations of abstract state machines. Our goal is toconstruct correct compilers that produce e�cient code.1.1 Related WorkIn this subsection we analyze reasons why other methods to construct cor-rect compilers fail to produce e�cient machine code for real-life processors.The �rst work on correct compilers is [McCarthy and Painter 1967]. Most ofthe following work on correct compilation is based on denotational semantics(e.g. [Paulson 1981, Mosses 1982, Wand 1984, Brown et al. 1992, Mosses 1992,Palsberg 1992]), structural operational semantics (e.g. [Diehl 1996]), or on re�ne-ment e.g. [Buth et al. 1992], [Buth and M�uller-Olm 1993], [Hoare et al. 1993],[M�uller-Olm 1995], [M�uller-Olm 1996], [B�orger and Rosenzweig 1992],[B�orger et al. 1994], [B�orger and Durdanovic 1996]). Most of these works do notcompile high-level programming languages into assembler languages. Instead,they design abstract machines, interpreters for these machines, and compileinto code of these abstract machines. To our knowledge, only [M�uller-Olm 1995,M�uller-Olm 1996, B�orger et al. 1994, B�orger and Durdanovic 1996, Moore 1989]and ProCos [Hoare et al. 1993] discuss transformations into machine code.[B�orger et al. 1994, B�orger and Durdanovic 1996] use also abstract state ma-chines for the formalization of the source and target language.The semantics-based approaches lead to monolithical compilers [Espinosa 1995,Tofte 1990]. Compilers constructed by these approaches translate into programsof machine-independent high-level abstract machines. These programs are inter-preted. Consequently, the performance of the code generated by these compilersis poor and by three to four orders of magnitude slower than the code gener-ated by compilers used in practice [Palsberg 1992]. From traditional compilerconstruction it is well-known that the introduction of intermediate languages isnecessary for compiling programs of high-level languages into e�cient machinecode. Hence, our approach uses the concept of intermediate languages for theconstruction of the correct compilers. Additionally, this decomposition of thecompilation simpli�es our correctness proofs.The re�nement-based approaches preserve the program structure. Especially,the approaches re�ne expressions to a post�x form. Consequently, the code gen-erated by these compilers is machine code for stack machines. Therefore, it isno surprise that all the works which consider compilation into machine codechose the transputer as the target machine [M�uller-Olm 1995, M�uller-Olm 1996,B�orger et al. 1994, B�orger and Durdanovic 1996]. However, it is well-known thatthe execution of a purely stack-based code is slow on register-based processors.In order to construct correct compilers which produce e�cient machine code, it isnecessary to reorganize the program structure. For the �rst time, this article con-siders correct compilation into machine-code of a register-based RISC-processor(the DEC-Alpha processor family).

505Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

1.2 Our ApproachThere are two main issues that distinguish our approach for the construction ofcorrect compilers from others: (i) we introduce intermediate languages, and (ii)the program structure is reorganized.A compiler which compiles a higher level language SL into a machine languageTL uses a sequence of intermediate languages SL = IL0 ; : : : ; ILn = TL, if the lev-els of languages di�er too much. Instead of compiling SL-programs directly intoTL-programs, SL-programs are compiled into IL1 -programs which are then com-piled into IL2 -programs etc. The levels of the intermediate languages ILi ; ILi+1do not di�er too much. In this article, we will give a precise de�nition of this ter-minology. The concrete choice of intermediate languages is an engineering task.We therefore choose intermediate languages as used in the classical compilerarchitecture (see Figure 1). The intermediate languages di�er from the sourcelanguage that they are usually data structures representing the programs insteadof being de�ned by a context-free grammar. Since our aim is to deal with com-piler correctness, we formalize the notion of languages and their semantics suchthat source languages, intermediate languages and target languages are coveredby this formalization.The basic idea of a semantics de�nition is to de�ne a family of abstract statemachines, i.e. one abstract state machine per program. The reason for this de-cision is that it is convenient to distinguish the transformation of a programfrom mapping the state space. The state space may depend on the particularprogram.We suggest the following method for proving correctness of compilations froman intermediate language ILi to ILi+1 :1. Merge the two languages2. Prove the correctness of compilation by means of simulation of abstract statemachines.The former is based on homomorphisms between ASMs. The latter is similar tosimulation proofs in complexity and computability theory.One of the sources of ine�ciencies in the generated code is the compilationof expressions. Therefore, we focus on this part of the compilation in order todemonstrate (ii). The compilation of expressions is a typical compiler back-endtask. Compiler back-ends transform low-level intermediate language programsinto machine programs. In this article we consider a typical class of intermediatelanguages which have the following characteristics: The program is represented asa set of basic block graphs. A basic block is a sequence of instructions where onlythe last instruction is a jump. Jump targets are restricted to the �rst instructionof basic blocks, i.e., each basic block has a unique label and these labels are usedas operands of jumps.Target machines usually have a di�erent instruction set, a memory and someregisters. The program is stored in the memory of the target machine. A programcounter contains the address of the next instruction to be executed. Some or allof the arithmetic operations may use only other operands than registers or smallinteger or address values, i.e. expressions contained in intermediate languageinstructions must be implemented by a sequence of machine instructions.Today, the components of compilers can be generated from a speci�cation Sof the transformation rules. One of the generation approaches for back-ends

506 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

assumes that S is given as a bottom-up term rewrite system [Emmelmann 1992,Proebsting 1995, Nymeyer et al. 1996, Nymeyer and Katoen 1996]. If we wouldhave a correct generator applying the transformation rules, then it would besu�cient to prove the correctness of the compiling relation speci�ed by S. Weshow that under general conditions, the correctness of S can be reduced to somelocal correctness conditions on single transformation rules, which can be provenindependently. There are two simple proof strategies which check these localcorrectness conditions. These strategies are implemented in PVS. We proved acomplete speci�cation of a DEC-Alpha Back-End with these strategies usingPVS. Therefore, the approach allows easy extensions of speci�cations.In section 2, we introduce our basic terminology,
analysis

transformation

code generation

character sequence

abstract syntax tree

intermediate code

machine codeFigure 1: Architecture ofCorrect Compilers

de�ne abstract state machines and homomorphismson abstract state machines. Section 3 introduce ourformalization of languages. In particular, it describesthe framework for de�ning the data structures rep-resenting languages and the operational semantics.The latter is a template for de�ning a family of ab-stract state machines. Based on these de�nitions,the correctness of compilers and the notion of closelyrelated languages is de�ned. Section 4 introducesour architecture for correct compilers, introducesterm-rewriting system based construction of com-piler back-ends and concludes with a precise def-inition of the problem solved in this article. Thefollowing sections show how correctness of com-piler back-ends can be proven. Section 5 shows thedecomposition of the problem into correctness re-quirements on the single term-rewrite rules. Sec-tion 6 shows how these requirements can be proven.Section 7 concludes our work. Appendix A de�nesthe part of the abstract state machines for the ex-ample languagesBB , BB�, and L�. We recommendto consult this appendix for the de�nition of re-quirements on languages. Appendix B shows howerrors in the speci�cations of compiler back-ends can be found. It demonstratesthis by an error which was detected during the application of our method. Itwould be hard to detect this error after an implementation of a compiler. Ap-pendix C summarizes notations commonly used in this article.2 FoundationsOur languages are de�ned operationally by abstract state machines (formerlyevolving algebras) [Gurevich 1995]. Subsection 2.1 recalls the basic de�nitionsand properties of signatures, algebras and term-rewrite systems used in this arti-cle. Subsection 2.2 de�nes the notation and properties of abstract state machine.The notation is taken from [Gurevich 1995].

507Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

2.1 Signatures, Algebras and Term Rewriting SystemsA signature � is a family of sets (�n)n2N. f 2 �n is an n-ary function symbol.A term over the signature � (short:�-term) is de�ned as usual. T (�) denotesthe set of terms over the signature �. A �-algebra A consists of a carrier setU and of a total function [[f]]A : Un ! U for each f 2 �n, n 2 N. [[f]]A isthe interpretation of f in algebra A. [[�]]A can be extended to T (�) by de�ning[[f(t1; : : : ; tn)]]A = [[f]]A([[t1]]A; : : : ; [[tn]]A) for each n-ary function f 2 �n, ti 2T (�), i = 1; : : : ; n. We omit the index A if it is clear from the context.Throughout the article, we assume that there is an element ? 2 �0 representingunde�ned values. A universe V is a predicate such that [[V]]A is identi�ed withthe set fx : [[V]]A(x)g for any �-algebra A. The set of universes S � � is calledthe sorts of �. The universe BOOL is de�ned by [[BOOL]] = ftrue; falseg. A n-ary function f : U1�� � �Un ! V 2 �n from universe U1�� � ��Un to an universeV is an n-ary operation on the carrier set U such that [[f]](a1; : : : ; an) 2 V forall a1 2 U1; : : : an 2 Un and [[f]](a) = ? otherwise. A term t 2 T (�) is a U-termi� [[t]] 2 [[U]], denoted by t 2 U . An algebra with carrier set T (�),[[f]](t1; : : : ; tn) = �f(t1; : : : ; tn) if t1 2 U1; : : : ; tn 2 Un? otherwisefor each f : U1 � � � � � Un ! V 2 �n n S, and [[V]] = ff(t1; : : : ; tn) : f :U1� � � ��Un ! V ^ t1 2 U1 � � � tn 2 Ung is the �-term algebra. We assume thateach f 2 � is strict in ?, i.e.[[f]](� � � ? � � �) = ?. U v V denotes the fact that[[U]]T (�) � [[V]]T (�) for sorts U , V . Since T (�) is initial among the �-algebras,[[U]]A � [[V]]A for all �-algebras A.In the following, we use the data-types in table 1 without further explanation.x:l is an abbreviation for cons(x ; l) and � denotes the concatenation of lists.snoc(l ; x) adds element x to the end of list l. li denotes the i-th element of a listl, and lhi : ji denotes the sublist hli; li+1; : : : ; lji. The type N denotes the universeof natural numbers. We use the usual arithmetic operations. The concrete useType Meaning OperationsA�B pairs consisting of type A and B (�; �), fst , sndT � list of elements of type T cons , hi, tail , front , liBOOL truth values the logical operatorsTable 1: Standard Data-Typesbecomes clear from the context.Let � and �0 be two signatures with sorts S and S0, respectively. A signaturemorphism maps the sorts and function symbols of the one signature on the sortsand function symbols of the other signature, i.e. it is a mapping � : � ! �0suchthat �(f) : �(U1)�� � ���(Un)! �(V) 2 �0 for every f : U1�� � ��Un ! V 2 �.Mappings � : T (�)! T (�0) may be de�ned by a basis, i.e. a mapping �� : � !�0 [T (�0) such that for every f 2 �i, i > 0, ��(f) 2 �0. The mapping � :T (�)! T (�0) de�ned by �(f(t1; : : : ; tn)) = ��(f)(�(t1; : : : ; tn)) is the canonical

508 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

extension of ��. Any mapping � : S ! T (�0) where S is a �nite set of �-termscan be extended canonically in a similar way. In this case we use also � to denotethis canonical extension.Let A be a �-algebra and A0 be a �0-algebra with carrier sets U and U 0, re-spectively. A mapping from A into A0 must map operators of A to operatorsof A0 and the universe U to the universe U 0. Suppose � : T (�) ! T (�0) isa canonical extension of a mapping �� : � ! �0 [T (�0). It is useful if iscompatible to �, i.e. ([[?]]A) = [[?]]A0 , ([[f]]A) = [[��(f)]]A0 for all f 2 �0and ([[f]]A(a1; : : : ; an)) = [[��(f)]]A0((a1); : : : ; (an)) for all a1; : : : ; an 2 U ,f 2 � n�0. Observe that � maps terms to terms while maps interpretationsof terms to interpretations of terms. Such a mapping : A ! A0 is called a��-algebra homomorphism. It is not hard to prove that ([[t]]A) = [[�(t)]]A0 for allt 2 T (�). A ��-homomorphism : A ! A0 is a mono-morphism (epi-morphism,isomorphism) i� 0 is injective (surjective, bijective).Let � be a signature with sorts S. A �-algebra homomorphism � : A ! A0is a mapping �0 : U ! U 0 such that �0(?) = ? and �0([[f]]A(a1; : : : ; an)) =[[f]]A0(�0(a1); : : : ; �0(an)) for each n 2 N, f 2 �n and each ai 2 U . Observe thata 2 [[V]]A implies �0(a) 2 [[V]]A0 for every universe V 2 �.Let � and �0 be two signatures such that � � �0 and A0 be a �0-algebrawith carrier set U 0. We can restrict A0 to the interpretation of f 2 � and �-terms. The �-restriction A0j� is the algebra with the carrier set U 0 and the theoperations [[f]]A0 for each f 2 �.Throughout the article we use the following:Assumption: Any mapping �� : � ! T (�0),and ��-algebra homomorphism �preserve BOOL, the logical constants true and false , and the logical operators.�Let � be a signature and V be a set of symbols disjoint from �. T (�; V)denotes the set of terms over signature � and variables V . A substitution � :T (�; V) ! T (�; V) is the canonical extension of a mapping �� : V ! T (�; V)where ��(v) 6= v for only a �nite number of variables. We denote substitutions by� = [x1=t1] : : : [xn=tn] where �(xi) = t1 and �(v) = v for v 6= xi. Subterms of aterm a denoted by occurences. An occurence is a �nite list of natural numbers.The subterm of term t at occurence o, denoted by t[o] is recursively de�ned asfollows: t[hi] = t and t[snoc(o; i)] = ti if t[o] = f(t0; : : : ; tn�1) for a f 2 �n.In this case t[snoc(o; i)] is unde�ned if i � n. t[o=u] denotes the term t wherethe subterm at o is replaced by term u. A term t 2 T (�; V) matches a termt0 2 T (�; V) i� there is a substitution such that �(t) = t0.A term-rewrite rule over signature � and variables V is a pair t=̂t0 of termst; t0 2 T (�; V) where each variable occurring in t0 also occurs in t. A term-rewrite system (TRS) is a set of term-rewrite rules. Let R be a TRS. A termt 2 T (�) rewrites into a term t0 2 T (�), denoted by t ,!R t0, i� there is a rulelhs=̂rhs 2 R and an occurence o such that �(lhs) = t[o] and t0 = t[o=�(rhs)].As usual, +,!R denotes the transitive closure and �,!R the re
exive, transitiveclosure of ,!R. The notion of normal forms, noetherian and con
uent TRS isde�ned as usual. NFR(t) denotes the (unique) normal form of term t for noethe-rian and con
uent TRS.A conditional term-rewrite rule is a quadruple of terms with variables, denotedby if t1 = t2 mathbfthen t3=̂t4. A conditional TRS is a set of conditional orunconditional term-rewrite rules. Let A be a �-algebra. A term t 2 T (�) A-

509Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

rewrites into a term t0 2 T (�), i� either there is an unconditional rule lhs=̂rhssuch that there is an occurence o such that �(lhs) = t[o] and t0 = t[o=�(rhs)],or there is a conditional rule if t1 = t2 then lhs=̂rhs such that �(lhs) = t[o]and t0 = t[o=�(rhs)], and [[�(t1)]]A = [[�(t2)]]A. The above de�nitions can beextended straightforwardly to BURS and conditional TRS.��-homomorphisms carry over to TRS:Theorem1. Let � and �0 be two signatures, R be a noetherian and con
uentTRS, �� : � ! �0 [T (�0) be a mapping, and � : T (�; V) ! T (�0; V) be itscanonical extension. Then, the following properties hold:(a) Let � : V ! T (�) be a substitution and �0 : V ! T (�0) be the substitutionsuch that �0(v) = �(�(v)) for all v 2 V . Then, �0(�(t)) = �(�(t)) for allt 2 T (�).(b) Let �(R) = f�(lhs)=̂�(rhs) : lhs=̂rhs 2 Rg. Then t �,!R t0 implies �(t) �,!R�(t0). If �(t) is a normal form, then t is a normal form. If �(R) is con
uentthen R is con
uent. If �(R) is noetherian, then R is noetherian. These impli-cations are equivalences, if � is injective. If �(R) is noetherian and con
uent,then NF�(R)(�(t)) = �(NFR(t)) for all t 2 T (�). �.2.2 Abstract State MachinesIn this subsection we introduce the notion of ASMs and ASM-homomorphisms.An abstract state machine (short: ASM) is a tuple A = (�;Q; S;!; I), where �is a signature, Q is a set of �-algebras (the states) with the same carrier set, Sis a set of sorts (the super-universe), !� Q� Q is the transition relation, andI � Q is the set of initial states. The relation ! is de�ned by a �nite collectionof transition rules of the formif Cond then Updates endif.where Cond 2 BOOL and Update is a �nite set of updates, i.e. of pairs lhs := rhs ,lhs ; rhs 2 T (�). A rule is applicable in state q0 i� [[Cond]]q0 = true. Let q0 bea state before and q be a state after applying an applicable rule. Then, for anyupdate f(t1; : : : ; tn) := t, we have[[f]]q(x1; : : : ; xn) = � [[t]]q0 if for all i, 1 � i � n, [[ti]]q0 = xi[[f]]q0(x1; : : : ; xn) otherwiseIf [[f(t1; : : : ; tn)]]q0 6= [[t]]q0 , we also say that q0 ! q executes the update f(t1; : : : ; tn):= t. If several rules are applicable, then one applicable rule is chosen nondeter-ministically. As usual, n! denotes the composition of n state transitions, wherethe composition of relations is de�ned as usual, i.e. �1 � �2 = f(u;w) : 9v :(u; v) 2 �1 ^ (v; w) 2 �2g. �! denotes the re
exive, transitive closure and +! de-notes the transitive closure of!. A state q 2 Q is reachable i� there is an initialstate i 2 I such that i �! q. W.l.o.g. we assume that each q 2 A is reachable.The set F = ff 2 Q : 8q0 2 Q : f 6! q0g is the set of �nal states. An ASM isdeterministic i� for each q 2 Q there is at most one q0 2 Q such that q ! q0.Notations: Let rule1 and rule2 be transition rules or sets of updates.if Cond then rule1 else rule2 is an abbreviation for the two transition rulesif Cond then rule1 and if :Cond then rule2 .

510 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

if cond1 thenif cond2 then rule1else rule2is an abbreviation for the two transition rules if cond1 ^ cond2 then rule1 andif cond1 ^ :cond2 then rule2 . If the else-branch is omitted then the lattertransition rule is omitted. �We distinguish the following classes of functions: Dynamic functions: the inter-pretation of a dynamic function is changed by transition rules, i.e. f is called adynamic function if an assignment of the form f(t1; : : : ; tn) := tn+1 appears ina transition rule. Static functions: the interpretation of a static function is neverchanged.Let � � � be the set of static functions of an ASM A = (�;Q; S;!; I). Therestrictions qj� to � and q0j� to � are identical for all q; q0 2 Q. The �-algebraqj� is the static algebra of A. Universes, true, false and ? are always staticfunctions. We assume that the elements of each sort are representable by staticfunctions, i.e. for each sort V 2 S, x 2 [[V]]X , there is a �-term t such that[[t]]X = x. This implies that for each state q and �-term t, there is a �-term t0such that [[t]]q = [[t0]]q0 . However, the term t0 may be di�erent for di�erent states.This property allows to discuss state changes on the basis of �-terms.External functions allow interaction with the outside world. They need not tobe speci�ed, only some requirements may be speci�ed. Any interpretation ofthis function satis�es at least these requirements. External functions are neverchanged explicitly by a transition rule. However an external function may havedi�erent interpretations in di�erent states.Let A1 = (�1; Q1; S1;!1; I1), A2 = (�1; Q2; S2;!2; I2) be two ASMs withstatic parts X1 and X2, respectively. An ASM-homomorphism � : A1 ! A2recovers the ASM A1 within A2. Formally, � is a triple (��; ;
) consisting of amapping �� : �1 ! �2[T (�2), a ��-homomorphism : X1 ! X2, and a mapping
 : Q1 ! Q2 such that the following conditions are satis�ed for all q; q0 2 Q1:(H1) For all t 2 T (�1) is ([[t]]q) = [[�(t)]]
(q), where � is the canonicalextension of ��.(H2)
(I1) � I2(H3) q !1 q0 implies
(q)!2
(q0).An ASM-homomorphism � is a monomorphism (epimorphism, isomorphism), i�� is injective (surjective,bijective), is a monomorphism (epimorphism, isomor-phism) and
 is injective (surjective bijective). The updates and transition rulescan be mapped by � in the straighforward way, i.e. �(lhs := rhs) = �(lhs) :=�(rhs) and�(if cond then Updates) = if �(cond) then �(Updates):We generalize the notion of a canonical extension by these de�nitions.Lemma 1 Let � = (��; ;
) : A1 ! A2 be an ASM-homomorphism and � be thecanonical extension of ��. If
(q0) !2
(q) executes the update �(lhs) := �(rhs)then q0 !1 q executes the update lhs := rhs . If � is a mono-morphism, then theconverse is also true.

511Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

Proof: Suppose the contrary, i.e.
(q0) !2
(q) executes the update �(lhs) :=�(rhs) but q0 !1 q does not execute the update lhs := rhs . Suppose lhs =f (t1 ; : : : ; tn). Then there are t0i 2 T (�1) such that [[lhs]]q0 = [[f (t 01 ; : : : ; t 0n)]]q0 . Letlhs 0 denote this term. Thus (1) [[lhs 0]]q = [[lhs 0]]q0 , (2) [[�(lhs 0)]]
(q) = [[�(rhs)]]
(q0),and (3) [[�(lhs 0)]]
(q0) 6= [[�(rhs)]]
(q0). Obviously, (1) and (H1) imply that[[�(lhs 0)]]
(q0) = [[�(lhs 0)]]
(q). This implies together with (2) that [[�(lhs 0)]]
(q0) =[[�(rhs)]]
(q0) in contradiction to (3). If � is a mono-morphism, the assumptionthat the converse is violated leads to a similar contradiction using (H1) and thefact that is a mono-morphism. �Lemma 1 can be used to de�ne
 inductively, based on an injective mapping
 : I1 ! I2 satisfying (H1) for all i 2 I1.Lemma 2 (De�ning
) Let A1 = (�1; Q1; S1;!1; I1), A2 = (�1; Q2; S2;!2; I2) be two ASMs with static parts X1 and X2, respectively. Furthermore, let�� : �1 ! �2 [T (�2) be an injective mapping, : X1 ! X2 be a ��-mono-morphism, and
 : I1 ! I2 be an injective mapping satisfying (H1) for alli 2 I1. Then
 can be extended to an injective mapping
 : Q1 ! Q2 such that� = (��; ;
) : A1 ! A2 is an ASM-homomorphism.Proof: Let q 2 Q1, we extend
 such that i n!1 q implies i n!2
(q).
 is de�nedby induction on n. The base case n = 0 is obvious. If n > 0, then there is a stateq0 such that i n�1! 1 q0 !1 q. By induction, we have
 already extended such that
(i) n�1! 2
(q0). Let if cond then Updates the transition rule applied on q0 suchthat q0 !1 q. By the induction hypothesis, [[�(cond)]]
(q0) = ([[cond]]q) = true.Thus, there is a state �q 2 Q2 obtained from
(q0) by the updates �(Updates),i.e.
(q0)! �q. De�ning
(q) = �q will do the job: (H3) is obviously satis�ed. (H1)can be shown by an easy structural induction on t. �Thus, it is su�cient to de�ne
 on the initial states.3 LanguagesIn this section, we formalize programming languages by ASMs. Our formalizationcaptures the structure of programs (Subsection 3.1) as well as their operationalsemantics (Subsection 3.2). Since the formalization is used for proving the cor-rectness of compilers or constructing correct compilers, it is convenient to de�neall languages used in a compiler (source language, target language, intermediatelanguages) within the same framework. The natural view on target machinesand imperative programming languages is an operational view, i.e. instructionsare executed which transform states. Consequently, it is natural to de�ne thesemantics operational by ASMs. The concrete examples of languages consideredin this article are discussed in appendix A. The reader may consult this appendixto understand our motivations.Every program interacts with its environment (e.g. I/O). Thus, parts of a statecan be observed by an environment (e.g. read from an input stream or writeinto an output stream). The observable behavior are the state changes of theseparts. Informally, a correct compiler needs only to ensure the preservation ofthe observable behavior. Subsection 3.3 shows this formalization of the notionof correct compilers. It is based on a notion of simulation of ASMs similar to

512 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

complexity and computability. We show decomposition theorems which allowthe introduction of intermediate languages (vertical decomposition) and inter-mediate states in computations (horizontal decomposition).The basic idea of constructing a correct compiler is to design a sequence ofintermediate languages IL1 ; : : : ; ILn such that the languages ILi and ILi+1 areclosely related. This relation is formalized in subsection 3.4.3.1 Structure of Programming LanguagesThe formalization of the notion of a language should capture all languages usedby a compiler. After syntax analysis, source programs are usually trees; inter-mediate programs are some data structures which may contain control
ow in-formation (e.g. basic block graphs), and target programs are sequences of wordsstored in the memory of the target machine. As discussed above, we assume thatany language has the notion of an instruction. For the operational semantics, itis convenient to assume that programs de�ne a control
ow, i.e. an executionorder on instructions.A language is a tuple L = (�L; SL; �L; INSTR;PROG;well de�nedL; IL) where�L is a signature (the program structure), SL is a set of sorts, �L is a signature(the control
ow), INSTR 2 SL is the sort of instructions,PROG 2 SL is thesort of programs, well de�nedL : PROG ! BOOL is a predicate (the staticsemantics), and IL is a (�L [�L [fwell de�nedLg)-algebra where ILj�L =T (�L), i.e. the restriction of IL to �L is equal to �L-term algebra. The signatureof instructions is the largest set �L � �L satisfying (i) INSTR 2 �L for everyf : T1 � � � � � Tk ! INSTR 2 �L or (ii) for every f : T1 � � � � � Tk ! T 2 �,f : T1 � � � � � Tk ! T 2 �L and T1; : : : ; Tk 2 �L, if T 2 �L, i.e., �L contains theconstructor for building instructions.INSTR-terms correspond to instructions and PROG-terms correspond to pro-grams. Obviously, T (�) contains all INSTR-terms. The functions in �L de�nethe abstract syntax tree of programming languages. The sorts in SL representsyntactic constructs. well de�nedL de�nes some (static) semantic conditions onprograms (e.g. correct typings etc.). � 2 L denotes that � is a well-de�nedPROG-term, i.e. [[well de�ned(�)]]IL = true. A language L1 is a sublanguage ofL2, denoted by L1 � L2 i� � 2 L1 implies � 2 L2.Remark: We do not consider the styles how languages can be de�ned. Forhigher imperative programming languages, e.g. it is possible to de�ne �L bycontext-free grammars. The tree representation of a structure tree correspondsthen uniquely to an abstract syntax tree. The whole language may be de�nedby Montages[Pierantonio and Kutter 1997] since they also de�ne control
ow,static semantics and instructions. �Example 1 (Basic Block Graphs) Figure 2 shows an example program ofthe language BB of basic block graphs, de�ned in (cf. Appendix A.1). The blocksare given by boxes, labels are numbers. �Notation: Let L be a language and U 2 SL. U� denotes the set of U -termswhich are sub-terms of �. In particular INSTR� denotes the set of instructionsof program �. E.g. consider the program in Figure 2. Then we have LABEL� =

513Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

0: readint(local(intconst 1))condjump(intequal(cont(local(intconst 1)); intconst 0); 0 ; 1)1: stop Figure 2: A Basic Block Programf0 ; 1g,EXPR� = � intconst0 ; intconst 1 ; local(intconst1)intequal(local(intconst1); intconst 0); 0 ; 1)� ;INSTR� = (readint(local(intconst1)condjump(intequal(local(intconst1); intconst 0); 0 ; 1)stop) ;and BLOCK � is the set of the two blocks depicted in Figure 2. �Appendix A contains the parts of the de�nitions of the example languages usedin this article.3.2 Operational Semantics of Programming LanguagesIn our approach, each program � 2 L has its own ASM A�. The basic idea isthat A� has an instruction pointer IP referring to an instruction of �, and thetransition rule for the instruction referred by IP de�nes the updates. However,the signature of the dynamic functions and static functions of these ASMs areidentical, the transition rules for particular instructions f(t1; : : : ; tn) for the samefunctor f have the same shape, and the initial states are closely related. Thecomponents where the ASMs di�er are the universes and the state space. E.g.,the interpretation of IP is always an INSTR�-term. At the end of this sectionwe formalize the notion of observable behavior of programs, i.e. the behaviorwhich can be observed by the environment on which the programs interact. Thebasic idea for de�ning an operational semantics is that an operational semanticsserves as a template such that A� can be derived from this template.In the following let L be a language. A static part of an operational semantics Lis a triple StatL = (�;U ;X) where � is a signature satisfying �L[�L � �, U isa set of sorts satisfying SL � U , and X is a �-algebra such that Xj�L[�L = IL.The static part of a language L is used to model the static algebra of the ASMsfor � 2 L. 	L = �L(�L [�L) denotes the static functions not used for de�ningprograms.A StatL-signature of the dynamic part of an operational semantics of L is apair DynL = (�; IP ;
) where � is a signature (dynamic functions) satisfying� \ � = ;, IP 2 T (� [�) is an INSTR-term (the instruction pointer), and
 � � is the set of observable functions.Notation:We use the constant prog which is substituted by the program � 2 Lfor the de�nition of the ASM A� for �. �.� are the dynamic functions of the ASMs for � 2 L. The observable functions arethose dynamic functions (constants) which can be observed by the environment.

514 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

Example 2 (Basic Block Graphs, continued) (cf. Appendix A.1) The staticpart of the operational semantics of BB contains the operations on the data typesof BB . These data types and operations are the same as on the DEC-Alpha. Theinstruction pointer is implicitly given by the block pointer BP and the programcounter PC referring to the instructions within a block. Other dynamic func-tions model the memory (function content), pointers to the local and globalenvironment, and I/O-streams. The latter are observable. �An operational semantics must contain information to de�ne the initial statesand the transition relation of the ASMs for � 2 L. The idea is to de�ne initialstates by updates and transition rules by instantiating some rules with variablesand expanding macros.In the following de�nitions let StatL be a static part of an operational semanticsL, DynL a StatL-signature of a dynamic part of an operational semantics of L,� be a signature satisfying � \ (� [�) = ;, and V a set of variables whereV \ (� [� [�) = ;. � is used later for the signature of macros.A (StatL;DynL; �;V)-macro is a term-rewrite rule lhs=̂rhs where lhs ; rhs 2T (� [� [�;V). A (StatL;DynL; �;V)-update is a pair lhs := rhs wherelhs = f (t1 ; : : : ; tn) for a f 2 �, t1; : : : ; tn 2 T (� [� [�;V) and rhs 2 T (� [� [�;V). Updates are re�ned into updates performed by the ASMs for theprograms � 2 L. A (StatL;DynL; �;V)-rule is pair IP = f (x1 ; : : : ; xk) ; rhswhere x1; : : : ; xk 2 V ,(O1) f : T1 � � � � � TK ! INSTR for T1; : : : ; Tk 2 �L, and(O2) there is an m � 0 such that1rhs = if cond1 then Updates1elsif cond2 then Updates2...elsif condm then Updatesmelse Updates0 ,cond1 ; : : : ; condm 2 T (� [� [�;V), and Updates0 ; : : : ;Updatesmare sets of (StatL;DynL; �;V)-updates.f(x1; : : : ; xk); rhs is closed if rhs contains at most the variables fx1; : : : ; xk; �g.Closed (StatL;DynL; �;V)-rules are re�ned into transition rules of the ASMsfor the programs � 2 L by substituting the variables. A substitution � can beextended to updates and rules straightforwardly.Notation: We use the following conventions to denote (StatL;DynL; �;V)-rules. A rule f(x1; : : : ; xk); rhs is denoted byif IP = f (x1 ; : : : ; xk) then UpdatesIf Updates0 = ; then the else-branch is omitted.if IP = f (x1 ; : : : ; xi�1 ; t ; xi+1 ; : : : ; xk)then if cond1 then Updates1elsif cond2 then Updates2...elsif condm then Updatesmelse Updates01 m = 0 means rhs = Updates0 .

515Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

for a term t 2 T (�L) is an abbreviation forif IP = f (x1 ; : : : ; xi�1 ; xi ; xi+1 ; : : : ; xk)then if xi = t ^ cond1 then Updates1elsif xi = t ^ cond2 then Updates2...elsif xi = t ^ condm then Updatesmelsif xi = t then Updates0 �An operational semantics of L is a tupleA L = (StatL;DynL;M ;V ;Macros ; Init ;Trans)where StatL is the static part of A L , DynL is the StatL-signature of the dynamicpart of A L , � is a signature satisfying �\(�[�) = ; (the signature of macros),V a set of variables satisfying V \ (� [� [�) = ;,(O3) Macros is a set (StatL;DynL; �;V)-macros de�ning a noetherianand con
uent TRS such that NF (t) 2 T (� [�) for every t 2 T (�[� [M),(O4) Init is a set of (StatL;DynL; �;V)-updates (initializations) contain-ing at most the variable �, NF (lhs) = f (t1 ; : : : ; tn) for an f 2 � and�-terms t1; : : : ; tn, and NF (rhs) 2 T (�) for each lhs := rhs 2 Init ,and(O5) Trans is a set of closed (StatL;DynL; �;V)-rules (the transitions).The ASM for � de�ned by A L is the ASM A� = (��; Q�; S�;!�; I�) de�ned bythe following properties (P1){(P5):(P1) S� = U .(P2) �� = �� [�.(P3) Any q 2 Q� is an algebra with qj� = X and [[t]]q 2 [[B�]]X for anyB 2 S�.(P4) i 2 I i� [[NF (lhs)]]i = [[NF (rhs)]]i for all lhs := rhs 2 Init .(P5) !� is de�ned by a set of transition rules obtained from trans in thefollowing way: For any instruction f(t1; : : : ; tn) 2 INSTR� and anyruleIP = f (x1 ; : : : ; xk); if cond1 then Updates1elsif cond2 then Updates2...elsif condm then Updatesmelse Updates0in Trans , the ASM A� has the transition ruleif IP = f (t1 ; : : : ; tk) thenif NF (�(cond1)) then NF (�(Updates1))elsif NF (�(cond2)) then NF (�(Updates2))...elsif NF (�(condm)) then NF (�(Updatesm))else NF (�(Updates0))

516 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

where � = [x1=t1] : : : [xm=tm]. Here, � and NF are extended to sets ofupdates, i.e. �(Updates) = f�(lhs) := �(rhs) : lhs := rhs 2 Updatesgand NF (Updates) = fNF (lhs) := NF (rhs) : lhs := rhs 2 Updatesg.Thus, the operational semantics for a language L de�nes a family (A�)�2L ofabstract state machines.Notation: A L also denotes this family of ASMs. �Example 3 (Basic Block Graphs, continued) Figure 3 shows the initialstates and the transitions of the ASM of the program � de�ned by the opera-tional semantics of BB (cf. Appendix A.1). The de�nition of eval is applied inconstructing the transition rules.Each initial state i 2 I satis�es:[[inp]]i = [[standard input]]X[[out]]i = [[hi]]X[[BP]]i = 0[[IP]]i = readint(local(intconst1))[[loc]]i = [[bot of stack]]X[[glob]]i = [[bot of stack]]XThe transition rules areif IP = readint(local(intconst 1))then content 8 (loc �A 8) := hd(inp)inp := tl(inp)PC := next(PC)andif IP = condjump(intequal(local(intconst 1); intconst 0); 0 ; 1)then if content 8 (loc �A 8) =I 0then BP := 0PC := 0else BP := 1PC := 0Figure 3: Initial States and Transition Rules of the ASM for the Program in Figure 2Computation sequences denote sequences of state transitions of A�. Formally, acomputation sequence of program � 2 L is a �nite or in�nite sequence qq overQ� satisfying the following conditions:(B1) qq = hqi : i 2 Ni i� q0 2 I� and qi !� qi+1 for all i 2 N and(B2) qq = hqi : 0 � i � ni (n 2 N) i� q0 2 I� , qi !� qi+1 for all 0 � i < nand qn is a �nal state.

517Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

A computation sequence is terminating i� it is �nite. We denote computationsequences byq0 !� q1 !� q2 � � �The behavior B� of program � 2 L is the set of computation sequences of � 2 L.� is terminating i� every sequence in B� is �nite. B�(i) = fqq 2 B� : hd (qq) = igis the behavior of � on initial state i 2 I�. � is deterministic in the strong sensei� jB�(i)j = 1 for all i 2 I . � is terminating on i 2 I� i� any computationsequence in B�(i) is terminating. A language L is deterministic in the strongsense i� each � 2 L is deterministic in the strong sense.Example 4 (Basic Block Graphs, continued) Consider the BB -program inFigure 2 and its ASM in Figure 3. For any state i 2 I�, where [[inputstream]]i =[[h0 ; : : :i]]X is the in�nite sequence of 0, it isB�(i) = fi! q1 ! q01 ! q2 ! q02 � � �g:Table 2 shows the interpretation of the dynamic functions in the states of thecomputation sequence. If [[inpstream]]X is a in�nite sequence containing a value[[PC]] [[BP]] [[inp]] [[out]] [[loc]] [[glob]]qj , j � 1 0 0 [[tl j�1 (inp)]]X [[hi]]X [[bot of stack]]X [[bot of stack]]Xq0j , j � 1 1 0 [[tl j (inp)]]X [[hi]]X [[bot of stack]]X [[bot of stack]]X[[content 8 (a)]]qj = � [[0I]]X if [[a]]X = [[bot of stack �A 8]]X[[content 8 (a)]]i otherwise[[content 8 (a)]]q0j = [[content 8 (a)]]qjTable 2: Interpretation of the States in B�(i)di�erent from 0, i.e.[[inpstream]]X = [[h0; : : : ; 0| {z }n ; x ; : : :i]]X for a n � 0;thenB0�(i) = fi! q1 ! q01 ! � � � ! qn ! qn ! qn+1g:Table 3 shows the interpretation of the dynamic functions in the states of thecomputation sequence of B0�(i).The state qn+1 is �nal. � does not terminate, but it terminates on initial stateswhere [[inp]]i is di�erent from the in�nite sequence of zeros. � is not deterministicin the strong sense. �

518 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

[[PC]] [[BP]] [[inp]] [[out]] [[loc]] [[glob]]qj 0 0 [[tl j�1 (inp)]]X [[hi]]X [[bot of stack]]X [[bot of stack]]Xq0j 1 0 [[tl j (inp)]]X [[hi]]X [[bot of stack]]X [[bot of stack]]Xqn+1 0 1 [[tln(inp)]]X [[hi]]X [[bot of stack]]X [[bot of stack]]X[[content 8 (a)]]qj = � [[0I]]X if [[a]]X = [[bot of stack �A 1I]]X[[content 8 (a)]]i otherwise[[content 8 (a)]]q0j = ([[0I]]X if j 6= n and [[a]]X = [[bot of stack �A 1I]]X[[xI]]X if j = n and [[a]]X = [[bot of stack �A 1I]]X[[content 8 (a)]]i otherwiseTable 3: Interpretation of the States in B0�(i)Two states q; q0 2 Q� are
-equivalent, denoted by q �
 q0 i� [[f]]q = [[f]]q0 forall f 2
. It is not hard to see that �
 is an equivalence relation on Q�. [q]
denotes the
-equivalence class of state q. [Q]
 is the set of all
-equivalenceclasses. q �q0 q �
 q0 means that no interaction with the environment took place,e.g. there is no input/output operation during the state transitions from q to q0.Let qq be a computation sequence for � 2 L. The observable part obqq of qq is a�nite or in�nite sequence of
-equivalence classes satisfying the following threeconditions:(B3) If qq = hqi : i 2 Ni and there is an increasing in�nite sequence hrj :j 2 Ni such that r0 = 0 and qh �
 qk for all j 2 N, rj � h; k < rj+1then obqq = h[qrj] : j 2 Ni.(B4) If qq = hqi : i 2 Ni and there is an increasing �nite sequencehr1; : : : rni such that r0 = 0, qh �
 qk for all 0 � j < n, rj � h; k <rj+1, and qh �
 qk for all h; k � rn then obqq = h[qr1]; : : : ; [qrn]i.(B5) If qq = hq1 ; : : : ; qmi and there is an increasing �nite sequence hr1; : : : rnisuch that r0 = 0, rn � m, qh �
 qk for all 0 � j < n, rj �h; k < rj+1, and qh �
 qk for all rn � h; k � m then obqq =h[qr1]; : : : ; [qrn]i.Figure 4 visualizes the ideas of observable parts of a computation sequence. The
i q q q q q q

21 3 4 5 6I/O I/O I/OFigure 4: Observable Behavior

519Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

observable behavior of � is the set OB� = fobqq : qq 2 B�g. The observablebehavior on an
-equivalence class [i]
 for an i 2 I is the set OB�([i]
) =fqq 2 OB� : hd(qq) = [i]
g. A program � is deterministic in the weak sense ifjOB�([i]
)j = 1 for all i 2 I . A language L is deterministic in the weak sensei� each � 2 L is deterministic in the weak sense. Two consequetive states ina computation sequence are either in the same
-equivalence class or in dif-ferent
-equivalence classes. Hence, behaviours can be decomposed in maximalsubsequences of
-equivalent states:Lemma 3 Let qq 2 B� be a computation sequence for a program � 2 L. Thenthe following conditions hold:(B6) If qq = hqi : i 2 Ni and f[qi]
 : i 2 Ng is in�nite, then there existsan increasing in�nite sequence hji : i 2 Ni 2 N� such that(B6-a) qji 6�
 qji+1 for all i 2 N,(B6-b) qh �
 qj0 for all 0 � h � j0, and(B6-c) qh �
 qji _ qh �
 qji+1 for all i 2 N, ji � h � ji+1.(B7) If qq = hqi : i 2 Ni and f[qi]
 : i 2 Ng is �nite, then there exists a�nite increasing sequence hj0; : : : ; jni 2 N� such that (B6-b),(B7-a) qji 6�
 qji+1 for all 0 � i < n,(B7-b) qh �
 qjn for all h � jn, and(B7-c) qh �
 qji _ qh �
 qji+1 for all 0 � i < n, ji � h � ji+1.(B8) If qq = hq0 ; : : : ; qmi then there exist a �nite increasing sequencehj0; : : : ; jni 2 N� such that (B7-a), (B6-b),(B7-c) and(B8-a) qh �
 qjn for all jn � h � m.Proof: The claim follows by induction from the fact that qi �
 qi+1_qi 6�
 qi+1for all qi ! qi+1. �The sequences hji : i 2 Ni and hj0; : : : jni in (B6){(B8) are called witnesses ofthe observable behavior of qq . Lemma 3 immediately implies theCorollary 4 Let qq 2 B� be a computation sequence for � 2 L and jj be awitness of of the observable behavior of qq . Then: jj = hji : i 2 Ni i� obqq =h[qji]
 : i 2 Ni and jj = hj0 ; : : : ; jmi i� obqq = h[qj1]
 ; : : : ; [qjm]
i. �Example 5 (Observable Behavior) Consider the operational semantics forBB in Example 3, the programs in Figure 5, and suppose
 = finp; outg. Thewriteint instruction writes an integer to the output stream. The programs consistof a single basic block.Let � and �0 denote the left and right program, respectively. For any initial statei 2 I� , B� contains the computation sequenceqq = i !� q1 !� q2 !� q3 !� q4where [[inp]]qj = [[inp]]i for all 1 � j � 4, [[IP]]q4 = stop,[[out]]i = [[out]]q1 = [[hi]]X[[out]]q2 = [[out]]q3 = [[h0I i]]X[[out]]q4 = [[h0I ; 1Ii]]X

520 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

0: intassign(local(intconst0); intconst 0)intassign(local(intconst1); intconst 1)writeint(cont(local(intconst0)))writeint(cont(local(intconst1)))stop0: intassign(local(intconst0); intconst 0)writeint(cont(local(intconst0)))intassign(local(intconst0); intconst 1)writeint(cont(local(intconst0)))stopFigure 5: Two Equivalent BB -programsThe de�nition of the remaining interpretations is left to the reader. It is easy tosee that OB� = f[i]
 ! [q3]
 ! [q4]
g where[[out]]q = [[hi]]X for all q 2 [i]
[[out]]q = [[h0Ii]]X for all q 2 [q2]
[[out]]q = [[h0I ; 1Ii]]X for all q 2 [q4]
At [i]
 there is no output, at [q3]
 0 is written, and at [q4]
 1 is written. h0; 2; 4iis a witness for the observable behavior of qq . This is not the only witness:h1; 3; 4i is also a witness for the observable behavior of qq .For any initial state i0 2 I�0 , B�0 contains the computation sequenceqq 0 = i !�0 q 01 !�0 q 02 !�0 q 03 !�0 q 04where [[inp]]q0j = [[inp]]i for all 1 � j � 4, [[IP]]q04 = stop,[[out]]i = [[out]]q01 = [[out]]q02 = [[hi]]X[[out]]q03 = [[h0Ii]]X[[out]]q04 = [[h0I ; 1Ii]]XThe de�nition of the remaining interpretations is left to the reader. It is easy tosee that OB�0 = f[i 0]
 ! [q 03]
 ! [q 04]
g where[[out]]q = [[hi]]X for all q 2 [i0]
[[out]]q = [[h0Ii]]X for all q 2 [q03]
[[out]]q = [[h0I ; 1Ii]]X for all q 2 [q04]
At [i0]
 there is no output, at [q03]
 0 is written, and at [q04]
 1 is written. h0; 3; 4iis a witness of the observable behavior of qq 0 but h0; 2; 4i is not a witness of theobservable behavior of qq 0. The two observable behaviors are equivalent. If thetwo programs are executed, then they produce the same output. In general,with the above choice of
, the observable behavior of BB -programs is theirI/O-behavior. �

521Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

We �nish this subsection by de�ning semantics monomorphisms2. Let L be alanguage, and A L , A 0L be two operational semantics for L. A semantics mono-morphism means that A L is contained in A 0L in some sense. An L-semanticsmonomorphism � : A L ! A 0L is a pair (��;), where �� : � [� [� ! �0 [� 0 [�0 [T (� 0 [�0 [�0) is a injective mapping which can be canonically extendedto an injective mapping � on T (� [� [�), macros, updates, and transitionrules, : X ! X 0 is a ��-monomorphism, and each of the following propertiesare satis�ed:(SH1) ��(f) = f for all f 2 �L [�L, i.e., programs are preserved by �.(SH2) If f 2
 has positive arity, then ��(f) 2
0. If f 2
 is a constant,then there is an n-ary g 2
0 and terms t1; : : : ; tn 2 T (� 0 [�0 [�0)such that ��(f) = g(t1; : : : ; tn).(SH3) If f 2 � has positive arity, then ��(f) 2 �0. If f 2 � is a constant,then there is an n-ary g 2 �0 and terms t1; : : : ; tn 2 T (� 0 [�0 [�0)such that ��(f) = g(t1; : : : ; tn).(SH4) If f 2 � has positive arity, then ��(f) 2 �0. If f 2 � is a constant,then there is an n-ary g 2 �0 and terms t1; : : : ; tn 2 T (� 0 [�0 [�0)such that ��(f) = g(t1; : : : ; tn).(SH5) �(MacrosL) � Macros 0L,�(InitsL) � Inits 0L, and �(TransL) � Trans 0L.The following theorem shows that semantics monomorphisms A L ! A 0L inducemonomorphisms on the ASM for � 2 L de�ned by A L into the ASM for � de�nedby A 0L :Theorem2 Semantics Homomorphisms and ASM-Homomorphisms.Let L be language, A L , A 0L be two operational semantics for L, and � = (��;) :A L ! A 0L an L-semantics monomorphism. Then for every � 2 L there exists a
 : I ! I 0 such that (��; ;
) : A� ! A0� is an ASM-monomorphism.Proof: Let be � 2 L. By Theorem 1, (SH5), (O3), (O5), and (P5), �(rule) isa transition rule of A0� for every transition rule rule of A� . By Lemma 2, it issu�cient to prove that there is an injective mapping
 : I ! I 0 satisfying (H1)for all i 2 I1. For each state i 2 I and term t 2 T (� [�), there is a termt0 2 T (�) such that [[t]]i = [[t0]]X . Since is a ��-monomorphism ([[t0]]X) =[[�(t0)]]X 0 . It remains to show that there is an initial state i0 2 I 0 such that[[�(t)]]i0 = [[�(t0)]]X 0 . By (P4) i is initial i� [[NF (lhs)]]i = [[NF (rhs)]]i for alllhs := rhs 2 Inits. Since � is an L-semantics monomorphism, Init 0 and � isinjective, �(NF (lhs)) := �(NF (rhs)) 2 Inits 0 by Theorem 1. Thus any initialstate i0 2 I 0 satis�es [[�(NF (lhs))]]i0 = [[NF (rhs)]]i0 . Structural induction onthe structure of terms t shows that there is an initial state i0 2 I 0 such that[[�(t)]]i0 = [[�(t0)]]X 0 . �Semantics monomorphisms are used to embed a language L into a superlanguageL0 � L such that their behaviour is the same. The consequence is that the ASMsA� 2 A L and A0� 2 A L0 are isomorphic. The motivation for requirement (SH3)is that some dynamic constants can be stored in registers. E.g. the dynamicconstants loc and glob of the language BB de�ned in Appendix A.1 are storedin registers 1 and 2. Thus, ��(loc) = reg(1) and ��(glob) = reg(2). This is anarbitrary decision by the compiler writer.2 Homomorphisms are not needed and would complicate the de�nitions.

522 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

3.3 Correct CompilationsA compiler which compiles programs �1 2 L1 into a program �2 2 L2 imple-ments a relation C : L1 ! L2. Intuitively, C is correct if �1 and �2 have the sameobservable behavior if �1 and �2 are deterministic in the weak sense. For exam-ple the two programs in Figure 4 can be considered as a correct compilation ofeach other. This example shows that a correctness de�nition based on semanticsmonomorphisms would be too strong. Instead, we base the correctness de�nitionon simulations, i.e. A�2 simulates A�1 in a sense similar to the notion of simu-lations used in complexity and computability theory. This subsection discussesan adequate formalization of these ideas (including the case of non-determinismin the weak sense), lifts the correctness de�nition from the observable behaviorto the behavior, and discusses some general proof techniques.In this subsection L1 and L2 are languages with operational semantics A L1 andA L2 , respectively. To distinguish their components we index them with 1 and 2,respectively. A�;k is the ASM for � 2 Lk de�ned by A Lk , k = 1; 2.De�nition 5 (�-Simulation of Computation Sequences) Let qq1 and qq2be computation sequences of �1 and �2 respectively, and � : [Q�;2]
2 ! [Q�;1]
1an injective mapping. qq2 �-simulates qq1 i� either both computation sequencesare terminating or both sequences are non-terminating, the observable parts ofqq1 and qq2 have the same length, and the following conditions are satis�ed:(S1) If obqq1 = h[qi]
1 : i 2 Ni and obqq2 = h[q0i]
2 : i 2 Ni then�([q0i]
2) = [qi]
1 for all i 2 N.(S2) If obqq1 = h[q1]
1 ; : : : ; [qn]
1i and obqq2 = h[q01]
2 ; : : : ; [q0n]
2i then�([q0i]
2) = [qi]
1 for all 1 � i � n. �If � is bijective, then qq2 and qq1 are �-observable equivalent.Since � is not necessarily surjective, the fact that qq2 �-simulates qq1, does notimply that qq1 ��1-simulates qq2. However, if � is bijective this implication holds.Figure 6 illustrates De�nition 5. The notion of �-simulations is transitive.
ρ ρ ρ ρ

i q q q q q q
21 3 4 5 6I/O I/O I/O

I/O I/O I/O

i’ 1q’ 2q’ 3
q’ 4q’

5q’
6q’Figure 6: �-Simulation of Computation Sequences

523Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

Lemma 6 Let be qq1, qq2, and qq3 be computation sequences of �1, �2, and �3,respectively. Furthermore let �0 : [Q�3]
3 ! [Q�2]
2 and � : [Q�2]
2 ! [Q�1]
1be injective mappings. If qq3 �0-simulates qq2 and qq2 �-simulates qq1, then qq3(� � �0)-simulates qq1.Proof: The proof is straightforward and left to the reader. �Example 6 (Example 5, continued) The computation sequences of the pro-grams �1 and �2 are observable equivalent. The relation � is the identity. �Correct compilers preserve the termination properties of the program to be com-piled. For simplicity we do not consider abnormal termination due to resourcelimitations of the target machine in this article. However, it is not di�cult toextend our notion of correctness taking into account limited resources. The ob-servable behavior of the compiled program can be mapped injectivly into theobservable behavior of the corresponding uncompiled program.De�nition 7 (Compiler Correctness) �2 2 L2 is a correct compilation of�1 2 L1 i� there is an injective mapping � : [Q�2]
2 ! [Q�1]
1 such that thefollowing conditions are satis�ed:(CC1) For each i2 2 I�2 and qq2 2 B�2(i2)), there is an i1 2 �([i2]
2) anda qq1 2 B�1(i1) such that qq2 �-simulates qq1.(CC2) �([I�2]
2) = [I�1]
1 .A compiler C : L1 ! L2 is correct w.r.t. A L1 and A L2 , i� for all �1 2 L1 every�2 2 C(�1) is a correct compilation of �1. �Lemma 6 implies immediately theTheorem3 Vertical Decomposition. Let L1, L2 and L3 be languages andC1 : L1 ! L2 and C2 : L2 ! L3 be correct w.r.t. A L1 and A L2 , and A L2 andA L3 , respectively. Then C2 � C1 : L1 ! L3 is correct w.r.t. A L1 and A L3 .Theorem 3 allows the use of traditional compiler architectures for the construc-tion of correct compilers using ASMs. Any intermediate language used in acompiler can be introduced by proving just the correctness of the compilationof one intermediate language to another.De�nition 7 implies several properties.Lemma 8 Let �2 be a correct compilation of �1. Then there is an injectivemapping � : [Q�2]
2 ! [Q�1]
1 such that (CC2) and the following propertiesare satis�ed:(CC3) For each h[q0i]
2 : i 2 Ni 2 qq 2 OB�2 : h�([q0i]
2) : i 2 Ni 2 OB�2 .(CC4) For each h[q01]
2 ; : : : ; [q0n]
2i 2 qq 2 OB�2 : h�([q01]
2); : : : ; �([q0n]
2)i 2OB�2(CC5) If �1 terminates on every i1 2 I�1 , then �2 terminates on everyi2 2 I�2 .

524 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

Proof: Let �2 be a correct compilation of �1. By De�nition 7, there is an injectivemapping � : [Q�2]
2 ! [Q�1]
1 satisfying (CC1) and (CC2). We show that � alsosatis�es (CC3){(CC5). (CC3) follows directly from (CC1) and (S1). It also easyto see that (CC1) and (S2) imply (CC4). Suppose there is an in�nite computationsequence qq 0 2 B�2 (i.e. �2 does not terminate on every i2 2 I�2). By (CC1),there is a computation sequence qq 2 B�1 such that qq 0 �-simulates qq . Then,by De�nition 5, qq is non-terminating, i.e. �1 does not terminate on an i1 2 I1.�Remark: The converse of Lemma 8 is not true. E.g. suppose that �2 does notterminate on a state i2 2 I�2 . Then there is an in�nite computation sequenceqq 0 = hq0i : i 2 Ni. Suppose further, that obqq0 is terminating (cf. (B4)). Lemma 8only ensures that there is a mapping � and a computation sequence qq 2 B�1such that (S2) is satis�ed. Obviously, obqq is �nite (cf. (CC4)). However, (CC2){(CC5) do not exclude that qq is non-terminating. If the latter happens for allrelations � satisfying (CC2){(CC5), then �2 cannot be a correct compilation of�1. �A compiler de�nes a relation � on states not on its equivalence classes. Thisrelation � must induce a function � on
-equivalence classes satisfying De�nition7.Theorem4 Necessary and Su�cient Condition for �-Simulation. �2 isa correct compilation of �1 i� there is a relation � � Q�1 �Q�2 satisfying(CC6) 8(q1; q01); (q2; q02) 2 � : q1 �
1 q2 , q01 �
2 q02,(CC7) 8[q2] 2 [Q�2]
29q0 2 [q2]; q 2 Q�1 : (q; q0) 2 �, and(CC8) 8i 2 I�19q 2 [i]
1 ; q0 2 Q�2 : (q; q0) 2 � ^ 9i0 2 I�2 : q0 �
2 i0,such that for any qq 0 2 B�2 there exist qq 2 B�1 and witnesses jj and ll for theobservable behavior of qq and qq 0, respectively, satisfying the following condi-tions:(CC9) If ll = hli : i 2 Ni, then jj = hji : i 2 Ni and (qji ; qli) 2 � for alli 2 N.(CC10) If ll = hl0; : : : ; lmi, then jj = hj0; : : : ; jmi and (qji ; qli) 2 � for alli = 0; : : : ;m.(CC11) qq 0 is terminating i� qq is terminating.Proof: \(":De�ne �� � [Q�1]
1 � [Q�2]
2 by ([q]
1 ; [q0]
2) 2 �� i� (q1; q2) 2 �.It is easy to see that (CC6) and (CC7) imply that �� is an injective mapping[Q�2]
2 ! [Q�1]
1 . Furthermore, (CC8) implies that �� satis�es (CC2). Let beqq 0 2 B�2 . Then there exist qq 2 B�1 and witnesses jj and ll for the observablebehavior of qq and qq 0, respectively, such that (CC9){(CC11) are satis�ed. Itremains to show that qq 0 ��-simulates qq . By (CC11) qq is terminating i� qq 0is terminating. Suppose qq 0 = hq0i : i 2 Ni. Then qq = hqi : i 2 Ni is non-terminating. Suppose further that ll is in�nite. By the de�nition of witnessesobqq0 = h[q 0li]
2 : i 2 Ni. By (CC9), jj is also in�nite, implying obqq = h[qji]
2 :i 2 Ni. (CC9) implies that ��([q0li]
2) = [qji]
2 for all i 2 N. The cases that qq isnon-terminating and ll is �nite, and the case that qq is �nite imply (CC10) bya similar reasoning.\)": Let be qq 0 2 B�2 . Then there is a qq 2 B�1 such that qq 0 ��-simulates qq(by (CC1)). Thus, (CC11) is satis�ed. Consider the case obqq0 = h[�q 0i]
2 : i 2 Ni.

525Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

Then (S1) implies that obqq = h��([�q 0i]
2) : i 2 Ni. Let ll and jj be witnessesof the observable behavior of qq 0 and qq , respectively. Then q0li 2 [�qi]
2 andqji 2 ��([�q0i]
2) for all i 2 N. � must be de�ned such that (qji ; qli) 2 � for alli 2 N. Obviously, this de�nition satis�es (CC9). The case obqq0 = h[�q0]; : : : [�qm]iproves analogously (CC10). It remains to show that � satis�es (CC6){(CC8).Obviously (q; q0) 2 � implies ([q]
1 ; [q0]
2) 2 �. Thus, the fact that �� is aninjective mapping immediately implies (CC6) and (CC7). It is also easy to seethat (CC1) implies (CC8). �Figure 7 illustrates Theorem 4.
ρ ρ ρ

i q q q q q q
21 3 4 5 6I/O I/O I/O

I/O I/O I/O

i’ 1q’ 2q’ 3
q’ 4q’

5q’
6q’

ρ

ρ ρ ρ ρ

ρFigure 7: Theorem 4Remark: � has to be implemented by a compiler. By properties (CC6){(CC10),� ensures that at least the observable behavior of the ASM A� is preserved by theASM A�0 . The relation � used in compilers is usually more speci�c: it containsmemory mapping, the relation between instructions of � and �0 etc. Howeverit is hard to de�ne � for real programming languages and machine languagesexplicitly. We de�ne � as a composition of several explicitly de�ned relations (cf.De�nition 21 in section 5). For the following discussions (until De�nition 21),the precise de�nition of � is not important. �We say that qq0 �-simulates qq if � is a relation satisfying (CC6)|(CC10).Theorem5 Horizontal Decomposition. Let �1 2 L1 and �2 2 L2, and � �Q�1 �Q�2 be a relation satisfying (CC6){(CC8), ��1(I�2) � I�1 , and �(F�2)3 �F�1 . Suppose that for all (q1; q01) 2 � and states q02 2 �(Q�2) satisfying(HD1) q01 +!�2 q02 and q0 �
2 q01 _ q0 �
2 q02 for all states q0 such thatq01 �!�1 q0 �!�1 q2,there is a state q2 2 Q�1 such that (q2; q02) 2 �, q01 �
2 q02 implies q1 �
1 q2,(HD2) q1 +!�1 q2, and q �
1 q1 _ q �
1 q2 for all states q such thatq1 �!�1 q �!�1 q2.3 Remind that F� are the �nal states of �

526 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

Then �2 is a correct compilation of �1.Proof: We �rst show that(HD3) for any pre�x qq 0 = hq 00 ; : : : ; q 0ni of a computation sequence of A�2satisfying q0n 2 �(Q�1) there is a pre�x qq = hq0 ; : : : ; qmi of a com-putation sequence of A�1 satisfying (qm; q0n) 2 � and (CC10).We prove (HD3) by induction on the length of qq 0. If qq 0 = hi 0i then there isan i 2 I�1 such that (i; i0) 2 �, because ��1(I�2) � I�1 . De�ning qq = hii willdo the job. Suppose now that qq 0 = hq 00 ; : : : ; q 0ni for a q0n 2 �(Q�1). Let q0m thelast state before n with q0m 2 �(Q�1). By (HD1), q0i �
2 q0m or q0i �
2 q0n forall i = m; : : : ; n. By induction hypothesis there is a pre�x cqq = hq0; : : : ; qli ofa computation sequence of A�1 satisfying (CC10) and (ql; qm) 2 �. By (HD2),there are states ql+1; : : : ; qr such that ql ! ql+1 ! � � � ! qr, (qr; q0n) 2 �,and qj �
1 ql _ qj �
1 qr. qr is chosen such that qr �
1 ql if q0n �
2 q0m.The sequence qq = hq0 ; : : : ; ql ; ql+1 ; : : : ; qr i is pre�x of a computation sequenceof A�2 . We �nally have to show that (CC10) is satis�ed for qq 0 and qq . Letll = hl0 ; : : : ; lsi and jj = hj0 ; : : : ; jsi be witnesses for the sequences hq00; : : : ; qmiandcqq satisfying (CC10). If q0n �
2 q0m, the same witnesses prove that (CC10) issatis�ed. Otherwise, ll = hl0 ; : : : ; ls ;ni and jj = hj0 ; : : : ; js ; ri prove that (CC10)is satis�ed.Suppose qq 0 is non-terminating and obqq0 is in�nite. Then any pre�x of qq 0satis�es (HD3). The in�nity of obqq0 implies (CC9). Suppose qq 0 is terminating.Then the last state of qq is �nal which implies that the last state of qq is also�nal, i.e. qq is terminating. Finally, assume that qq 0 is non-terminating. Bytaking a pre�x qq 00 of qq which is large enough, it is easy to prove that forevery n 2 N , there is a pre�x cqq satisfying (HD3) of a computation sequence qqsatisfying (CC9) and (CC10) such that the length of cqq is larger than n, i.e. q1is non-terminating. Thus (CC11) also holds. �Figure 8 illustrates the idea behind Theorem 5.
* * * *

* * * *

ρ ρ ρ ρ

q q q q

q’ q’ q’ q’

0

0

1

1

2

2

3

3Figure 8: Horizontal DecompositionRemark: In a compiler sequences s of L1 instructions are transformed locally(using global information) into sequences s0 of L2-instructions. The basic ideato prove the correctness of compilation by proving (HD1){(HD3) for the statetransitions induced by s and s0. However, we will see that (HD1){(HD3) cannotalways be ensured without some additional assumptions. �

527Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

3.4 Closely Related LanguagesThe basic idea in practical compilers is to introduce a sequence of intermediatelanguages IL0 ; : : : ; ILn and to compile correctly ILi -programs to ILi+1 -programsi = 0; : : : ; n � 1. This approach leads to a correct compiler by Theorem 3. Thereason for the decomposition into intermediate languages is that the correctnessof Ci : ILi ! ILi+1 is easier to prove and to implement, if the languages ILiand ILi+1 are closely related. This subsection formalizes the notion of closelyrelated languages.Informally, two languages L1 and L2 are closely related, if they either thereis a one-to-one relation between their control structures (control
ow related),or there is a one-to-one relation between their instruction set (instruction setrelated). A compiler C : L1 ! L2 can then focus on either mapping the instruc-tions set while preserving the control
ow or mapping the control
ow whilepreserving the instruction set. In this sense, the pair of languages BB and BB�is an example of the former and the pair of languages BB� and L� of the latter(cf. appendix A). Since our goal is to prove correctness of compilers, we cannotignore the operational semantics in this de�nition.We �rst de�ne control
ow related languages. Informally, a language L1 is control
ow related to a language L2 i� additionally to the above properties, it is possibleto de�ne an operational semantics of L1 using the state space of L2. This newoperational semantics is de�ned such that it is an image of a L1-operationalsemantics monomorphism. The consequence is that it is possible to run L1-programs on the state space of L2. This approach allows to extend L1 by L2-instruction and to describe the compilation C : L1 ! L2 as source-to-sourcecompilation.The state space is usually divided into two parts: Dynamic functions occurringin the instruction pointer IP are related to the control
ow (CR1). The otherdynamic functions represent the state of the memory. Since the control
ow of L1corresponds to a subset of the control
ow of L2, the dynamic functions occur-ring in IPL1 have to correspond uniquely to the dynamic functions occurring inIPL2 (CR2). The observable functions of L1 must correspond to the observablefunctions of L2 (CR3).De�nition 9 (Control Flow Related Languages) Let L1 and L2 be twolanguages with an operational semantics A L1 and A L2 , respectively, � = (�2 n�2)[�1, and U = (U2nSL2)[SL1 . L1 is control
ow related to L2 i� �2\� = ;,�L1 = �L2 , there is an injective mapping �� : �1 [�1 ! �2 [�2 [T (�2 [�), a�-algebra X , and a ��-monomorphism : X1 ! X such that (SH2), (SH3), andthe following conditions are satis�ed:(CR1) For every f : T1 � � � � � Tk ! Tk+1 2 �L1 [�L1 , it is ��(f) = f and��(Ti) = Ti for i = 1; : : : ; k + 1.(CR2) For every f : T1�� � ��Tk ! T 2 �L1 occurring in IP1 , it is ��(f) = fand ��(Ti) = Ti for i = 1; : : : ; k + 1. Furthermore �(IP1) = IP1 =IP2 .(CR3) Xj�L1[�L1 = IL1 , and [[f]]X = [[f]]X2 for every f 2 � n (�1 [�L1).�.The condition (CR1) states that the interpretation of all static functions in �1except those for de�ning the structure and control-
ow of L1-programs can be

528 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

mapped by a ��-monomorphism to the interpretation of the static functions of L2which are not used for de�ning the structure and control-
ow of L2-programs.The following lemma states that L1-programs can be \executed on the statespace of L2".Lemma 10 (Interpretation of L1 by L2) Let L1 and L2 be two languageswith operational semantics A L1 and A L2 , respectively, such that L1 is control-
ow related to L2. Let �, U , ��, , and X be de�ned as in De�nition 9, and� be the canonical extension of �� (together with ��(f) = f for all f 2 M . LetA 0L1 = (Stat 0;Dyn 0;M1 ;V1 ; �(Macros1); �(Inits1); �(Trans1)) where Stat 0 =(�;U ;X) and Dyn 0 = (�L2 ; IP1 ; ��(
1)). Then A L1 is an operational semanticsfor L1 and � = (��;) : A L1 ! A L2 is an L1-semantics monomorphism.Proof: We �rst show that A 0L1 is an operational semantics for L1. Since �L1 [�L1 � �, SL1 � U 0, and (CR3), Stat 0 is a static part of A 0L . (CR2), (SH2)and �2 \ � = ; show that Dyn 0 is a Stat 0-signature of the dynamic part ofA 0L . Obviously, each �(lhs)=̂�(rhs) is a (Stat 0;Dyn 0;M ;V)-macro. Theorem 1together with the fact that Macros1 satis�es (O3) implies that �(Macros1)also satis�es (O3). The fact that �(Inits1) satis�es (O4) is proven analogously.Let f(x1; : : : ; xn) ; rhs a (Stat1 ;Dyn1 ;M1 ;V1)-rule. Since �(f(x1; : : : ; xn) ;rhs) = f (x1 ; : : : ; xn); �(rhs), this pair satis�es (O1) and (O2) using Stat 0 andDyn 0 instead of Stat1 and Dyn1 . Thus, f(x1; : : : ; xn); �(rhs) is a(Stat 0;Dyn 0;M ;V)-rule which is closed i� f(x1; : : : ; xn); rhs is closed. There-fore (O5) holds for �(Trans1).It remains to show that � is an L1-semantics monomorphism. �� is injectiveand is an algebra monomorphism. (SH2) and (SH3) are satis�ed by De�ni-tion 9.(CR1) implies (SH1). (SH4) is satis�ed since ��(f) = f for all f 2 M1.�Informally, if L1 is instruction-set related to L2 i� additionally to the one-to-one correspondence of the instruction set (CR5), the state space except thosedynamic functions used for the instruction pointer is the same (CR4), the inter-pretation of all static functions of L2 except those used for building programsfrom instructions is the same (CR6), and for any program � 2 L1, there existsa program �0 2 L2 such that the program �0 executes the same sequences ofinstructions as � performing the same updates except those a�ecting the in-struction pointer (CR7).De�nition 11 (Instruction-Set Related Languages) Let L1 and L2 be twolanguages with an operational semantics A L1 and A L2 , respectively, �1 be thesignature of L1-instructions, and �2 the signature of L2-instructions, 	1 be thestatic functions not used by L1 and 	2 be de�ned analogously. L1 is instructionset related to L2 i�(CR4) f 2 �1 \�2 for all f not occurring in IP1 and IP2 ,
2 =
1,(CR5) There is a bijective mapping � : T (�2) ! T (�1) and an injectivesignature morphism � : 	2 ! 	1,(CR6) an algebra monomorphism : X2j	2[�2 ! X1j	1[�1 such that ([[t]]X2) = [[�(�(t))]]X1 for every t 2 T (2 [�2), and

529Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

(CR7) there is a mapping
 : T (�L2 [�L2) ! 2T (�L1[�L1) such that[�2L2
(�) = f� : � 2 L1g and for all �0 2 L2, � 2
(�0), there is aninjective mapping � : Q�0 ! Q� satisfying the following conditions:(a) For all q 2 Q�0 and terms t 2 T (2 [�2 [�2), ([[t]]q) =[[�(t)]]�(q) . Especially, ([[IP2]]q) = [[�(IP1)]]�(q).(b) �(I�0) � I�.(c) For all q; q0 2 Q�0 , q !2 q0 implies �(q)!1 �(q0). �The next lemma shows that it is possible to compile correctly L1-programs intoL2 programs using the mapping � de�ned by (CR7).Lemma 12 Let L1 and L2 be two languages with operational semantics A L1and A L2 , respectively, such that L1 is instruction-set related to L2. Then, for any� 2 L1, there is a �0 2 L2 such that �0 is a correct compilation of �. Moreover,for any computation sequence qq = hqi : i 2 Ni of �0, �(qq) = h�(qi) : i 2 Ni is acomputation sequence of �0 and for any computation sequence qq = hq0 ; : : : ; qn iof �0, �(qq) = h�(q0); : : : ; �(qn)i is a computation sequence of �.Proof: The second claim on computation sequences implies that �0 is a correctcompilation of � using Theorem 4. To prove the second claim choose a �0 2 L2such that � 2
(�0). The claim follows easily by induction on the length of thecomputation using (CR7). �We �nish this subsection with summarizing the two de�nitions:De�nition 13 (Closely Related Languages) Let L1 and L2 be two langua-ges with an operational semantics A L1 and A L2 , respectively. L2 is closely relatedto L1 i� L2 is control-
ow related to L1 or L2 is instruction-set related to L1. �4 Constructing Correct Compiler Back-EndsIn this section we derive an architecture for correct compiler back-ends.We assume that a back-end compiles basic block graphs into machine programswhere the target machine is a register machine with a limited number of regis-ters, eventually of di�erent type (e.g. the DEC-Alpha processor, appendix A.2).However, the concrete instruction set is not important for our considerations.Subsection 4.1 de�nes the class of intermediate languages and machine languagesfor which our approach works. This classes contain commonly used intermediatelanguages and machine languages for most of the commercial processors.It turns out that machine languages are usually not closely related to interme-diate languages. In subsection 4.2 we show how to construct a language BMLsuch that the target language is instruction-set related to BML, and BML iscontrol-
ow related to the intermediate language, provided that the target lan-guage and intermediate language belongs to the above classes. The basic idea toconstruct BML is that BML-programs are basic block graphs, but contain al-ready target machine instructions instead of intermediate language instructions.Thus a back-end is divided into two components: code selection for compiling theintermediate language to BML and the code linearization for compiling BMLinto the machine language TL.

530 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

Subsection 4.3 introduces a speci�cation technique for specifying the transforma-tions of intermediate language instructions to target machine instructions. Thisspeci�cation technique is based on BURS. However, it assigns registers whenapplying a term-rewrite rule. We show that the correctness of applying term-rewrite rules may depend on the register assignment. Therefore, a planning andnormalization is added which annotate the intermediate language program withadditional information (e.g. register assignment) and normalize the intermediatelanguage program by source-to-source transformation (cf. Subsection 4.4). Theterm-rewrite rules are then applied conditionally based on the annotations ofthe intermediate language program.4.1 Basic Block Languages and Typical Machine LanguagesThe de�nition of a basic block language captures the basic block structure,classi�es the instruction set into jump and non-jump instructions, but leavesopen the concrete instruction set. Thus, it captures a wide range of intermediatelanguages used in traditional compilers. The languages BB and BB� describedin Appendices A.1 and A.3 are examples of basic block languages.De�nition 14 (Basic Block Language) A language IL with the operationalsemantics A IL is a basic block language i� the following conditions are satis�ed:(BB1) There are sorts BLOCK ;LABEL; JUMP ;EXPR 2 SL, representingbasic blocks, labels, jump instructions, and expressions, respectively.It holds JUMP v INSTR.(BB2) There are functions newblock : LABEL � INSTR� ! BLOCK ,makeprog : LABEL� BLOCK � ! PROG 2 �L. These are the onlyfunctions in �L with result sort BLOCK and PROG , respectively.(BB3) For each f : T1 � � � � � Tk ! INSTR 2 �L, it is Ti 6= INSTR for alli = 1; : : : ; k. If there are functions g : S1 � � � � � Sl ! Ti such thatthere is a 1 � j � l with Sj = Ti, then Ti v EXPR.(BB4) If jump : T1 � � � � � Tk ! JUMP 2 �L, then for all i = 1; : : : ; keither Ti v EXPR or Ti = LABEL.(BB5) There are functions start : PROG ! LABEL, next : N ! N,block label : BLOCK ! LABEL, get block : LABEL � PROG !BLOCK , get instr : N � BLOCK ! INSTR 2 �IL. The interpreta-tion IIL satis�es the equalities shown in Figure 9.(BB6) If wd IL(prog) is true, then each basic block ends with a sequenceof jump instructions. Any other instruction of a basic block mustnot be a jump instruction. Furthermore, for any label used in aninstruction, there is exactly one basic block in the program with thislabel.(BB7) There are sorts ADDR, VALUE 2 UIL. Their elements are calledaddresses and values, respectively.(BB8) There are constants BP : LABEL, PC : N 2 �IL (the block pointerand program counter) and a function content : ADDR ! VALUE 2� (the memory). Furthermore IP = get instr(PC ; block (BP ; prog)).For any f : T1�� � ��Tn ! T 2 �IL n fPC ;BPg it is Ti 2 UIL nSIL.

531Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

(BB9) There is a function eval : EXPR ! VALUE 2 �IL. For any f :T1 � � � � � Tk ! T 2 � with T � EXPR, there is a macroeval (f (x1 ; : : : ; xk))=̂F (g1 (x1); : : : ; gk (xk))where F : U1 � � � � � Uk ! VALUE 2 �IL [�IL such that for alli = 1; : : : ; k Ti v EXPR implies Ui v VALUE and gi = eval .(BB10) Init IL contains at least the updates BP := start(prog) and PC := 0 .(BB11) For any instruction jump : T1 � � � � � Tk ! JUMP , if there is atransition rule jump(x1 ; : : : ; xk) ; rhs 2 TransIL, then for everyi = 1; : : : ; k rhs contains the updates BP := xi and PC := 0 i�Ti = LABEL.block (BP ; prog) is the current block. IP IL is the current instruction. �For all l; l0 : LABEL, i 2 N, blcks : BLOCK �, instrs : INSTRS�:start(makeprog(l ; blcks)) = lnext(i) = i+ 1block label(newblock(l ; instrs)) = lget block(l ;makeprog(l 0; hi)) = ?get instr(i ; newblock(l ; instrs)) = instrs iget block(l ;makeprog(l 0; blcks)) =� hd(blcks) if [[block label(hd(blcks))]]IIL = [[l]]IILget block(l ;makeprog(l 0; tl(blcks))) otherwiseFigure 9: Interpretation of the Control Flow de�ned by (BB5)Remark: For most intermediate language used in compilers, it is possible tode�ne a basic block structure according to De�nition 14. (BB1) introduces thenotion of basic blocks, labels and jumps and de�nes that jumps are special in-structions. The interpretation of labels is left open. The intermediate languagedesigner is free to chose any interpretation. The function newblock states thateach basic block has a label and consists of a �nite sequence of instructions. Aprogram consists of a label and a list of basic blocks, formalized by makeprog .Informally, the label de�nes the block where the execution of the program starts.(BB3) states that instructions are de�ned non-recursively. However, their com-ponents may de�ned recursively. Any such recursively de�ned component is anexpression. E.g. this allows that the right hand side of integer assignments areinteger expressions. (BB4) states that a jump instruction can have only expres-sions or labels as arguments. This allows for example to de�ne conditional jumpsand jumps corresponding to case instructions. The meaning of a jump instruc-tion is that under certain conditions (depending on the expressions), the controljumps to the �rst instruction of the block with a label which is an argument ofthe jump instruction (cf. also (BB11)).

532 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

start computes the label of the block to start the execution. (cf. also (BB10)).get block (l ; prog) de�nes the block with label l. This function is partial. If itis de�ned, get block is unique (cf. (BB6)). get instr(i ; block) selects the i-thinstruction of block . These de�nitions are only used for de�ning initializationsand transitions. Requirement (BB4) ensures that there is no jump instructionjumping to the interior of a basic block.Addresses may also be values. It might be even reasonable that labels and nat-ural numbers are values. If the instruction set contains procedure calls, it is areasonable way to store the label and natural number in the memory (cf. (BB8))to continue after the return with the command following the call. Often thememory is the same as on the target machine. In this case, we use the samemacros as the target machine (cf. Fig. 11). If the intermediate language allowsindirect addresses, then the memory must be able to store addresses. However,these are requirements due to particular assumptions on the instruction set. Theblock pointer points to the block where the current instruction is executed andPC gives the index in the basic block of this instruction. (BB8) states that thereare no other dynamic functions referring to the program. (BB9) states the thereis an expression evaluation macro which is inductively de�ned over the structureof expressions. �The requirements to machine languages are similarly general. We just assumethat there are registers, the program is stored somewhere in the memory of themachine, and the values which can be stored in the memory are �xed-lengthBit-sequences. However, we allow that the machine instructions are able to dealwith values represented by Bit-sequences of di�erent lengths. The registers maybe able to store values represented by longer Bit-Sequences. We require that thelength is a multiple of the values which can be stored at the memory. This is atypical situation in assembler languages. In the machine language of the DEC-Alpha Processor Family described in Appendix A.2 for example, the memorystores bytes which are 8-Bit sequences while registers may store quads whichare 64-Bit sequences. However, there are machine instructions which operate on32-Bit sequences and 64-Bit sequences as well.De�nition 15 (Typical Machine Language) A languageTL is a typical ma-chine language if TL and its operational semantics A TL satisfy the followingconditions:(ML1) There are sorts ADDR;CELL 2 STL. Their interpretation is iso-morphic to BIT l and BIT s , respectively, for a s 2 N, l 2 N. l isthe address size, s is the cell size. We assume that l is an integralmultiple of s.(ML2) �TL = � makeinstr : BIT k ! INSTRmakeprog : ADDR � INSTR� ! PROG � for a k 2 Nwhere k is an integral multiple of s. k is the instruction size.(ML3) There are functions start : PROG ! ADDR, next : ADDR !ADDR, addr instr : N � PROG ! ADDR, get instr : ADDR �PROG ! INSTR 2 �TL. The interpretation ITL satis�es the equal-ities shown in Figure 10.(ML4) well de�nedTL(makeprog(a; instrs)) i� a is aligned and each instruc-tion of instrs is valid.

533Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

(ML5) There is a sort VALUE 2 UTL where [[VALUE]]XTL = r]i=1 [[BIT ji s]]for a r > 0, 1 � j1 < j2 < � � � < jr.(ML6) �TL contains at least the functions PC : ADDR, content : ADDR !CELL, and reg : BITm ! BIT h , where m > 0 and h is an inte-gral multiple of the cell size s. h is the register size. FurthermoreIP = get instr(PC ; prog). IP is called the current instruction. �TLcontains at least the functions �A : ADDR � BIT k ! ADDR and�R : BITm � BITm ! BITm .(ML7) �TL contains at least the functions content i : ADDR ! BIT i�s ,content i : ADDR ! BIT i�s , �rst cell i : BIT is ! BIT s ,last cells i :BITS is ! BITS (i�1)s 1 � i � jr where jr is de�ned by (ML5), reg i :BITm ! BIT i�h , reg i : BITm ! BIT i�h , �rst word i : BIT ih !BIT h , and last words i : BITS ih ! BITS (i�1)h for 1 � i � djrs.Figure 11 shows the de�ning macros.(ML8) InitML contains at least the update PC := start(prog)(ML9) For every � 2 TL the ASM A� de�ned by AML is deterministic.A TL-instruction instr is a jump-instruction i� its transition rule contains anupdate PC := t di�erent from PC := next(PC). �For all a; a0 : ADDR, instrs : INSTR�:start(makeprog(a; instrs)) = a[[next (a)]]ITL = [[a�A k=s]]ITLaddr instr(i ;makeprog(a; instrs)) = a0get instr(a;makeprog(a 0; instrs)) =� instrs i if addr instr(i ;makeprog(a; instrs))? if for all j 2 N : addr instr(i ;makeprog(a; instrs)) 6= a ;where [[a0]]ITL = [[a�A (i� 1) � s]]ITL and (i� 1) � s is identi�ed with thebit sequence of length k representing (i� 1)s.Figure 10: Interpretation of the Functions required by (ML3)Remark: The sorts ADDR;CELL are required, since the program is storedin the memory. CELL represents the Bit sequences which can be stored in onememory cell. Usually, CELL is isomorphic to bytes. However for being
exible, wecannot require that the size of a memory cell is one byte. The only requirementis that processors operate on sequences of bits. Often, the address size is anintegral multiple of the cell size. makeinstr ensures that instructions are k-Bitsequences. Since these sequences must be stored in the memory, it is a reasonable

534 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

content i(a) =̂ content(a) � content i�1 (a �A 1); i = 2 ; : : : ; jrcontent 1 (a) =̂ (a)reg i(a) =̂ reg(a) � reg i�1 (a �R 1); i = 2 ; : : : ; djrs=hereg1 (a) =̂ reg(a)content i(a) := x =̂ content(a) := �rst cell i(x)content i�1(a� 1) := last cells i(x); i = 2 ; : : : ; jrcontent 1(a) := x =̂ content(a) := xreg i(a) := x =̂ reg(a) := �rst word i(x)reg i�1(a� 1) := last words i(x); i = 2 ; : : : ; djrs=hereg1(a) := x =̂ reg(a) := xFigure 11: Macros required by (ML7)assumption that k is a multiple of s. The �rst argument in makeprog is the lowestaddress where the program is stored in the memory. W.l.o.g. we assume that theinstruction at this address is also the address where the execution starts (cf.(ML3) and (ML8)). The formalization of (ML4) is left to the reader. Alignmentmeans that in order to store k Bits in memory cells of size s-Bits, the last r-Bitsmust be 0 for a r > 0. In some processors, not every Bit-sequence representsan instruction. Since we do not want to exclude this possibility, the secondrequirement is needed.The function start computes the address where the execution starts. addr instris being de�ned such that a program makeprog(a; instrs) is stored consecutivelyin the memory, starting with the address a. get instr(a; prog) computes theinstruction stored at address a. Many processors operate on values representedby bit sequences of di�erent length. E.g. the DEC-Alpha processor family canoperate on bit sequences of length 32, 64, and 128. However, these bit sequencesare stored consecutively in the memory. Therefore it is reasonable to require thattheir length is a multiple of the cell size s (cf. (ML5)).PC is the program counter. It contains the address of the instruction to be exe-cuted. content models the memory of the processor. reg models the registers of aprocessor. There are 2m such registers. This requirement does not exclude thatsome of these registers are special (e.g. address registers, status registers). Weassume that reg contains all the registers which can be addressed directly by theprogrammer. In general, it is not necessary to require that registers are addressedwith m Bits. The instruction may determine which kind of register is chosen (e.g.accumulators or address registers). In this case, less than m Bits are su�cient toaddress the registers. E.g. the language L� described in Appendix A.2 containsregisters for storing QUADs and
oating point registers. The instructions deter-mine which registers are used. For example, the instruction for adding
oatingpoint numbers use always the
oating point registers. �A is used to add relativeaddresses onto base addresses. �R has the same meaning for register addresses.These functions are used to specify the macros required by (ML7).

535Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

The macro content i (a) is used to read i consecutive cells of the memory startingfrom a. The result is the concatenation of the bit sequences of these cells, i.e. a bitsequence of length is. Similarly, reg i reads i consecutive registers. In both casesthere may requirements that addresses and register addresses are aligned. How-ever, these restrictions may exclude some instructions (cf.(ML4)). If a programis well-de�ned, no unaligned addresses are used. content i(a) is used to store se-quences of length is at i consecutive memory cells starting from a. The functions�rst cell i and last cells i select and delete the �rst s Bits from bit sequences oflength is, respectively. These functions are auxiliary functions useful to de�nethe above memory accesses. Similarly, �rst word i and last word i are auxiliaryfunctions used to de�ne the access to the registers. Their precise de�nition isstraightforward and left to the reader. It is useful to have some other macrosde�ning functions to shorten and extend Bit-sequences (cf. Appendix A.2). Thelatter may be signed and unsigned extensions. �Typical machine languages are usually not closely related to basic block lan-guages. They cannot be control-
ow related since (CR1) contradicts (BB5) and(ML5), and (CR2) contradicts (BB8) and (ML6). If the instruction set of a basicblock language contains recursively de�ned expressions, then a typical machinelanguage cannot be instruction-set related to the basic block language, since(ML2) implies that (CR5) is violated.4.2 The ArchitectureSince typical machine languages are usually not closely related to basic blocklanguages, we introduce a further language BML (called basic block machinelanguage) such that the machine language is closely related to BML and BMLis closely related to the basic block language. Typical machine languages di�erin their instruction set as well as in their control structures. Hence, BML musteither keep the control structure of the intermediate using the instruction set ofthe machine language or keep the instruction set of the intermediate languageusing the control structures of the machine language. We decide to choose theformer approach because this is commonly chosen in compilers.Assumption: Let IL be a basic block language and TL be a typical machinelanguage. For simplicity, we assume the following properties:(A1) 	IL = �IL n (�IL [�IL) = (�TL n (�TL [�TL)) [fADDR;CELL),i.e. the signature is equal except the signature of programs.(A2) [[T]]XIL = [[T]]XTL for every universe T 2 UIL\	IL and [[t]]XIL = [[t]]XTLfor every t 2 T (IL), i.e. the interpretation of the sorts and 	IL-termsis equal in both static algebras.(A3) [[LABEL]]XIL = [[ADDR]]XTL and ADDR v VALUE , i.e. labels areaddresses and addresses are values.(A4)
IL =
TL, content : ADDR ! CELL 2 �IL, any f 2 �IL n (�TL[fPC ;BPg is a constant f : VALUE . �TL n freg i ; reg i : BITm !BIT ihg � �IL, and Macros IL contains the corresponding de�nitionsshown in Figure 11.(A5) Any target machine jump instruction contains exactly one jump tar-get. �These assumptions are satis�ed by the languages BB and L� (cf. Appendices A.1and (A.2). We now de�ne .0the de�nition of basic block machine language BML

536 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

obtained from a basic block language IL and a typical machine language TLsatisfying the above assumptions. Informally, BML builds basic blocks usingTL-instructions instead of IL-instructions. Every static function f 2 �IL exceptthose in the signature �IL of instructions are interpreted equally by XIL andXBML if BML has the same instruction set as IL. If we would \replace" the sub-algebra Xj�IL by the trivial algebra and \replace" the sub-algebra Xj�BML , thentwo resulting algebras would be the same. Before we de�ne basic block machinelanguages, we formalize this \replacement": Let L be a basic block languagewith the signature �L of instructions, the static signature �L and the staticalgebra XL. The instruction set ignoring algebra of XL is the algebra XL;� withthe properties shown in Figure 12. The replacement can then be formalized byrequiring that XIL;� = XBML;�.[[T]]XL;� = 8><>: f�T g if T 2 �L[[T]]XL if T 2 	Lblocks if T = BLOCKprogs if T = PROGLwhere blocks = fnewblock(l ; h�; : : : ; �| {z }n i) : l 2 [[LABELS]]XL;� ; n 2 Ng andprogs = fmakeprog(l ; bb) : l 2 [[LABELS]]XL;� ^ 9n 2 N; b1 ; : : : ; bn 2 blocks :bb = hb1 ; : : : ; bnig. For every f : T1 � � � � � Tn ! T 2 �L:[[f]]XL;� (a1; : : : ; an) =8>>>>>><>>>>>>:�T if T 2 �L and ai = �Ti , i = 1; : : : ; n[[f]]XL (a1; : : : ; an) if f 2 	Lnewblock (l ; x) if f = newblock , l 2 [[LABELS]]XL;� ;and x is a list of �INSTRLmakeprog(l ; x) if f = makeprog , l 2 [[LABELS]]XL;� ;and x is a list of elements of blocks? otherwiseList operations are interpreted as usualFigure 12: Instruction Set Ignoring Algebras of XLDe�nition 16 (Basic Block Machine Language) Let IL be a basic blocklanguage with operational semantics A IL and TL be a typical machine languagewith operational semantics A TL . A basic block language BML with operationalsemantics A BML is the basic block machine language obtained from IL and TLi� the following conditions are satis�ed:(BM1) �BML = fmakeinstr : BIT k ! INSTRg[fjump : BIT k�LABEL!JUMPg. well de�ned is being de�ned such that makeinstr(b) is aninstruction i� b is a non-jump instruction and makeinstr(b;L) is aninstruction i� b is a jump instruction.(BM2) �BML = �ILn�IL[�BML, �BML = �IL, SBML = (SIL[STL)\�BML,and IBML;� = IIL;�.

537Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

(BM3) �BML = 	IL [�BML [�BML, UBML = �BML \ (UIL [UBML), andXBML;� = XIL;�.(BM4) �BML = fPC : N;BP : LABELg [(�TL n fPCg) and for anyconstant f : VALUE 2 �IL n �BML, there is a macro f=̂t and�f := x=̂t0 := x for terms t; t0 2 T (BML [�BML) and variablesx 2 VBML(BM5) The set MacrosBML contains all macros of MacrosTL, the macros ofIL used for the initializations of the functions corresponding to themacros de�ned by (BM4), and the macros de�ned by (BM4).(BM6) The set InitBML contains all initialization of InitTL except those withleft hand side PC , it contains the initializations de�ned in (BB10),and it contains the initialization �f := m i� f := m 2 InitIL for allconstants f de�ned as in (BM4).(BM7) The set TransBML consists of all transition rules of TransTL fornon-jump instructions, and a transition rule jump(b; l) ; rhs 0 foreach jump instruction of TL where b ; rhs 2 TransTL and rhs 0is obtained from rhs by replacing the updates PC := t where t 6=next(PC) with BP := l ; PC := 0 . �(BM1) makes jump instructions explicit such that there is a one-to-one corre-spondence between TL-instructions and BML-instructions. (BM2) states thatthe instruction set of IL is replaced by the instruction set of TL, and that theinterpretation of the control
ow is the same as in IL except for instructions.(BM3) states the same for the rest of the static functions. (BM4) states thatexcept for the dynamic functions used to refer to the program, the state spaceis the same as the state space of TL. (BM6) states that the same initializationsas by IL are executed. (BM7) states that the transition rules are the same asin TL except for jump instructions where the jumps are based on changing theblock pointer.Such a basic block machine language will do the job:Theorem6. Let IL be a basic block language with operational semantics A IL ,TL be a typical machine language with operational semantics A TL and BMLbe the basic block machine language obtained from IL and TL with operationalsemantics A BML . Then BML is control-
ow related to IL and TL is instruction-set related to BML.Proof: We prove the �rst claim and leave the second to the reader. The key tothe proof is the algebra X required by De�nition 9. For our purpose the choiceX = XIL will do the job. This is possible due to assumption (A1){(A4). issimply the identity. Furthermore, we de�ne ��(f) = f for all f 2 �BML and��(f) = t for all macros f=̂t introduced by (BM4). It is not hard to see thatthe properties (SH2), (SH3), (CR1), (CR2) and (CR3) are satis�ed with thesede�nitions. �The compilation of IL-programs to BML-programs is called code selection andthe compilation of BML-programs to TL-programs is called the code lineariza-tion. We focus here on the former. The language BB� is the merge of thelanguages BB and L�. In particular, it uses the macros loc=̂regquad(1) andglob=̂regquad(2). The transition rules mentioned explicitly in Appendix A.3 arethe jump instructions obtained by (BM7) from the instructions B , BR, and JMPof the DEC-Alpha assembly language.

538 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

4.3 Generation of Code-selection by Term-RewritingTerm rewriting is commonly used in compiler back-end generators for the speci-�cation of the transformation to be performed by the code selection. Throughoutthe whole subsection we assume that IL is a basic block language with opera-tional semantics A IL , TL is a target language with operational semantics A TL ,and BML is the basic block machine language obtained from IL and TL. Addi-tionally to assumptions (A1){(A5), we assume that(A6) the target language contains macros f(x1; : : : ; xn)=̂makeinstr(f �x1 �� � ��xn) for each operation code f which is not a jump instruction andmacros f(x1; : : : ; xn; l)=̂jump(f �x1�� � ��xn; l), where xi 2 V [BIT �and l 2 V [LABEL. IM � MTL denotes the signature of theseinstruction macros.This assumption allows to describe patterns of the machine instructions. In Ap-pendix A.2 we used this technique to describe the machine instructions of theDEC-Alpha Assembly Language.This subsection introduces a speci�cation method based on term-rewriting forthe compiling relation CS : IL ! BML for the code selection. Since transfor-mation rules are applied locally, a BML-program is obtained by successivelyapplying these rules until the program contains only BML-instructions. Hence,during this transformation process, programs may contain target machine aswell as intermediate language instructions. Therefore, we extend BML with in-termediate language instructions. Just adding the transition rules from IL willdo the job. We extend expressions by registers such that intermediate languageinstructions can read and write registers. During this transformations, registersmust be assigned to store values resulting from expression evaluations. Figure 13shows the whole transformational process with the participating languages.IL 3 �0 2 ML� �1 � � � �� �n�1| {z }2ML �ML 3 �n 2 BML�� �0 2 TL� �� �0 is the linearization. � is the application of one transformation rule.Figure 13: Transformations and Languages Used in Compiler Back-EndsDe�nition 17 (Merged Language) A language ML = merge(IL;BML) withoperational semantics AML is a merge of BML and IL i�(M1) �ML = �BML[�IL[fReg : BITm ! EXPR, �ML = �IL, IMLj�IL[�IL =IIL, IMLj�BML[�BML = IBML, and wdBML is extended such that alsointermediate language instructions and expressions Reg(n) are al-lowed.(M2) �ML = �BML [�IL,XMLj�IL[�IL = XIL, XMLj�BML[�BML = XBML,and UML = UIL [UBML.(M3) �ML = �BML,
ML =
BML, and IPML = IPBML.

539Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

(M4) �ML = �IL [�BML, VML = VIL [VBML, MacrosML = Macros IL [MacrosBML [feval (Reg(x))=̂reg(x)g, InitsML = InitsIL [InitsBML,and TransML = TransIL [TransBML. �(M1) states that the instruction set contains instructions from IL as well asfrom BML, that the control
ow is the same as in IL, and that the access to aregister is an expression. (M2) states that the interpretation of static functionsand universes extends the interpretations of the universes of IL and BML. Wecan embed IL and BML into the merged language ML:Theorem7. Let ML = merge(IL;BML) be the merged language with opera-tional semantics AML . Then IL � ML, BML � ML, there is an IL-semanticsmonomorphism �1 : A IL ! AML , and a BML-language monomorphism �2 :AML ! AML .Proof: The property of sublanguages follows directly from (M1). We de�ne themonomorphism �1 by de�ning ��(f) = f for all f 2 �ML [�ML [�ML and��(f) = NFML(f) for f 2 �IL n �ML. By (M3), ��(f) = NFML(f) is the onlypossibility of f 62 �ML [�ML [�ML, by (BM4) this f must be a constant anda macro f=̂t exists. Using (M4), it is easy to prove that this de�nition satis�es(SH1){(SH5). The ��-monomorphism : XIL ! XBML is the identity (using(M2)). The existence of �2 can be proven analogously. �De�nition 18 (Term-Rewrite-Systems for Back-Ends) Let ML =merge(IL;BML) be the merged language. A back-end term-rewrite rule is a triplerule = (t ! X ; fm1 ; : : : ;mng) where t 2 T (�IL; V), mi 2 T (�BML; V) whereeach mi has the form mi = f(t1; : : : ; tk) for an f 2 IM , ti 2 V [BITS �,and X 2 VML [f�g. The variables are called the non-terminals of the rule. Aterm-rewrite system for back-ends (TRSBE) is a set of back-end term rewriterules.Let � 2 ML be a program. rule is applicable to an instruction instr 2 INSTR� i�there is an occurence o and a matching � : V ! T (�ML; V) with �(instr [o]) = t 0and for every v with �(v) 6= v there is an a 2 BITSm such that �(v) = Reg(a)for an a 2 BITSm . If X = �, then rule is only applicable if o = ".A register assignment for the application of rule on instr at occurence o is asubstitution ��;instr ;o such that for v = X and every v occurring in m1; : : : ;mnwhich does not occur in t there is an a 2 BITSm such that ��;instr ;o(v) = Reg(a).The application of rule to an instruction instr 2 INSTR� at occurence o yieldsa program �0 2 ML (denoted � � �0), where instr is replaced by the sequenceof instructions �0(m1); : : : ;�0(mn); instr [o=�0(t)] where instr [o] matches t withsubstitution �, �0 = � [��;instr ;o , and ��;instr ;o is a register assignment forthe application of rule on instr at o. A TRSBE is correct i� �0 is a correctcompilation for every �; �0 2 BML such that � �� �0. �Remark: We allowed only bit sequences as arguments of machine instructions.If �0 is applied to a machine instruction, then a is substituted instead of Reg(a).The precise formalization is left to the reader. As usual, �� is the re
exive,transitive closure of �. The code selection must �nd for any program � of theintermediate language IL a program �0 2 IL0 such that � �� �0, and �0 is acorrect compilation of �. �

540 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

Example 7 The following rules specify a small part of the compilation fromBB into BB� (cf. appendix A):intassign(L;R)! �; fSTQ(R; 0 ;L)g (1)intassign(local(intconst i16);R)! �; fSTQ(R; i16 ; 1)g (2)intadd(X ;Y)! Z; fADD(X ;Y ;Z ;Q)g (3)local(intconst i16)! X; fLDQ(1 ; i16 ;X)g (4)intadd(X ; intconst(intconst i16))! Y ; fADDI (X ; i16 ;Y ;Q)g (5)intconst i32 ! X; (LDA(T1 ; i32 :L; 31)ZBI (T1 ;#111111002 ;T1)LDAH (X ; i32 :H;T1)) (6)cont(X)! Y ; fLDQ(X ; 0 ;Y)g (7)content (local(intconst i16))! X; fLDQ(1 ; i16 ;X)g (8)If ik occurs in a rule, this is an abbreviation for 2k rules: ik stands for any integeri 2 f�2k; : : : ; 2k � 1g. Register R31 is always zero. Rule (6) is necessary, since32-bit integers cannot occur as operands of DEC-Alpha machine instructions.i32 denotes a 32-bit integer, i32:L denotes the lower two bytes of i32, and i32:Hdenotes the upper two bytes of i32. Table 4 shows the sequence of applications ofrules and the register assignments for producing code of the statement V := V +1intassign(local (intconst8); intadd (cont(local (intconst8)); intconst1)):Observe, that register R1 is preassigned and stores the current address de�nedby local . Observe, that instead of applying rule (8) we could also apply rulesStep Program and Registers Rule0 intassign(local(intconst 8); intadd(cont(local(intconst 8)); intconst1))1 LDQ(1 ; 8 ; 3); intassign(local(intconst 8); intadd(Reg(3); intconst 1)) (8)�(X) = Reg(3)2 LDQ(1 ; 8 ; 3); ADDI (3 ; 1 ; 3 ;Q); intassign(local(intconst 8);Reg(3)) (5)�(X) = Reg(3); �(Y) = Reg(3)3 LDQ(1 ; 8 ; 3); ADDI (3 ; 1 ; 3 ;Q); STQ(3 ; 8 ; 1) (2)�(R) = Reg(3)Table 4: Term-Rewrite Based Compilation(4) and (7) to load the address in a separate step. Also we could apply rules(6) and (3), instead of rule (5). It is easy to see that the code produced by theapplication of these more simple rules is worse than the code in Table 4. �Remark: In practice, it is possible to assign costs to each term-rewrite ruleand to determine the cost optimal application of rules [Emmelmann 1992]. Thisrequires a planning phase which covers the subterm with the rules to be applied.Figure 14 shows the result of the planning phase for the term and the sequenceof rules of example 7. The term is visualized as a tree. In the second phase these

541Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

intplus

intconst

local

R2

intassign

cont

local
rule(2)

R2

rule (8)

intconst
8

intconst 8

1

rule (5)Figure 14: Planning of Code Selection by Term-Rewritingrules are actually applied by the mechanism described above. We did not yetsay anything about the concrete choice of registers.[Emmelmann 1992] assumes that there are in�nitely many registers available.After generation of code, these registers are assigned to the available registers.In contrast, we integrate register assignment with the planning phase. Furtherdetails are discussed in Subsection 4.4. �Since code selection can be viewed as a rewriting system �� de�ned by aTRSBE, it is possible to de�ne properties such as con
uence of a TRSBE anda Noetherian TRSBE. Our TRSBE are always Noetherian if term-rewrite rulesX ! Y fm1; : : : ;mkg, where X and Y are non-terminals, are excluded or or-dered, respectively. Example 7 shows that �� is usually not con
uent.It is not hard to see that the correctness of TRSBE depends on the registerassignment:Example 8 Consider the instructionintassign(local(intconst8); intadd(cont(local(intconst 8)); cont(local(intconst 16))))Table 5 shows a code-generation for the term-rewriting in example 7. We as-sume that the register R1 contains the base address of the local environment.It is easy to see, that this compilation is incorrect, if [[content(local �A 8)]]q 6=[[content(local �A 16)]]q in the state q before the execution of the statement.However, if we would replace in step (2) the assignment �(X) = R2 with theassignment �(X) = R3, then the produced code would be correct. Therefore,the rules are correct in a sense to be explained later.The reason, why the compilation of the instruction in example 8 fails is thatwe wrote a value in register R2 although the old value would be needed. Theproblem for determining an adequate � is called the register assignment problem.The basic idea is now to add a planning and normalization which preassignsregisters and rules to the programs such that it can be decided during application,whether the value contained in the register is needed later in the execution ornot. Furthermore, if there are not su�ciently many registers, then a source-to-source transformation is applied for storing the values of expressions into anunused memory cell. Again, the compiler must provide enough information to

542 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

Step Program and Registers Rule(0) intassign(local(intconst8);intadd(cont(local(intconst 8)); cont(local(intconst 16))))(1) LDQ(1 ; 8 ; 3);intassign(local(intconst8); intadd(Reg(3); cont(local(intconst 16)))) (8)�(X) = Reg(3)(2) LDQ(1 ; 8 ; 3); LDQ(1 ; 16 ; 3);intassign(local(intconst8); intadd(Reg(3);Reg(3))) (8)�(X) = Reg(3)(3) LDQ(1 ; 8 ; 3); LDQ(1 ; 16 ; 3); ADD(3 ; 3 ; 3 ;Q);intassign(local(intconst8);Reg(3)) (3)�(X) = �(Y) = �(Z) = Reg(3)(4) mathitLDQ(1; 8; 3); LDQ(1 ; 16 ; 3); ADD(3 ; 3 ; 3 ;Q); STQ(3 ; 8 ; 1) (2)�(X) = R2Table 5: Generation of code with erroneous register assignmentensure that this memory cell is really unused. For simplicity, we assume that�TL has enough registers.4.4 Planning Term-RewritingThe planning annotates programs with register assignments and term-rewriterules such that it can be decided whether the application of a term-rewrite ruleis legal under the register assignment. The basic idea is then to apply a term-rewrite rule conditionally using the annotations, i.e. at each sub-term whichis annotated with a term-rewrite rule, this rule is applied using the registerassignment annotations, provided it is legal. For simplicity, we assume that eachregister used for the evaluation of expressions is read just once, after it is written(i.e. common subexpressions are not eliminated). At the end of this subsection,we sketch a more general register assignment.For the rest of this subsection, we assume that IL is a basic block language withoperational semantics A IL , TL is a typical machine language with operationalsemantics A TL , BML is the basic block machine language obtained from IL andTL, ML is the merge of the languages IL and BML (cf. Figure 13), and R is aTRSBE.Notation: In this subsection, the index ML is omitted for the components oflanguage ML (e.g. � is the signature of ML-programs.De�nition 19 (Annotations) A rule annotation is a partial mapping rule :PROG�LABEL�N�N� ! R. A rule annotation rule for program � is correcti� for all (i; l; o) with rule(�; i ; l ; o) = t 0 ! X ; fm1 ; : : : ;mng, the followingconditions are satis�ed:(RA1) instr = get instr(�; i ; l) is de�ned and instr [o] is well-de�ned.(RA2) o = hi i� X = �.(RA3) There is a substitution � such that t0 = �(instr [o]), rule(�; i ; l ; o �o0) 6= ? for all o0 2 N� satisfying �(v) 6= v;Reg(a), and for every

543Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

v 2 V satisfying �(v) 6= v an every o00 2 N� , o00 6= hi, which is aproper pre�x of o0, it holds rule(�; i ; l ; o � o00) 6= ?.(RA4) For every i 2 N, l 2 LABEL�, get instr(�; i ; l) = instr 2 INSTR�implies that rule(�; i ; l ; hi) 6= ?.A register annotation w.r.t. a rule annotation is a mapping regassign : PROG �LABEL � N � N� ! SET (BITm). regassign is correct for program � i� for all(i; l; t) the following conditions are satis�ed:(RA5) rule(�; i ; l ; o) 6= ? implies regassign(�; i ; l ; o) 6= ?.(RA6) jregassign(�; i ; l ; o)j is the number of non-terminals occurring inrule(�; i ; l ; o) which do not occur in the left hand side of this rule.(RA7) If t0 is the left hand side of rule(�; i ; l ; o) and �(t0) = instr [o], thenfor all o0 2 N� satisfying �(v) = instr [o � o0] 6= Reg(a), there is ak 2 regassign(�; i ; l ; o).(RA8) Let RR be the set of registers used in the macro de�nitions speci�edby (BM4). Then regassign(�; i ; l ; o) \ RR = ;. �.Remark: (RA3) and (RA4) states that each instruction is covered by the pat-terns corresponding to the left hand side of the rules, i.e. each leaf of a patterncorresponds to the root of another pattern. Register assignments are associatedwith rule (cf. (RA5)). (RA6) states that there are enough registers to assign inorder to apply the corresponding rule. The conditions in (RA7) states that theregister assignments corresponding to the leaves of a pattern ensure that thereenough registers to store the value for each leaf. The requirement (RA8) statesthat registers used for storing global information (e.g. the dynamic constants locand glob in the basic block language BB , cf. Appendix A.1). �There are algorithms which compute correct rule annotations [Emmelmann 1992]and register allocation algorithms which compute correct register annotations[Waite and Goos 1984, Section 10.2.1]. For this article, it is su�cient to knowthat there are such algorithms. During the application of rules of R, annotationsare consumed.A rule t ! X ; fm1; : : : ;mng is applicable i� the following two conditions aresatis�ed:(AP1) rule(�; i ; l ; o) = t ! X ; fm1 ; : : : ;mng, and(AP2) Let instr = get instr(�; i ; l). For all k 2 regassign(�; i ; l ; o) it isk 62 RR, and for all o0 2 N� instr [o0] = Reg(k) implies that o is apre�x of o0.(AP1) states that only those rules are applied which are annotated. The con-sequence of (AP2) is that every register k 2 regassign must not occur in instroutside of t = instr [o]. This is due to the following Lemma, which can easily beproven by induction using (AP1) and (AP2):Lemma 20 (Invariant on Registers) Let � 2 IL be an annotated program.Then for any program �0 2 ML such that � � �0, the following condition holds:(AP3) For any instruction instr 2 INSTR�0 which is not a BML-instruction,there is no k 2 BITm such that Reg(k) occurs more than once ininstr . Furthermore there is no k 2 RR such that Reg(k) occurs ininstr .

544 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

Proof: Initially � contains no registers at all. (AP3) is therefore satis�ed triv-ially. Suppose � satis�es (AP3) and � � �0. By De�nition 18 no term-rewriterule can be applied onto machine instructions. Therefore there is a rule ap-plied at occurence o of a non-machine instruction instr = get instr(�; i ; l). Theninstr 0 = instr [o=Reg(k)] for a k 2 regassign(�; i ; l ; o). (AP2) and (AP3) togetherimply that there is no other subterm of instr 0 equal to Reg(k). �.Consequently, each value written into a register is just read once. Conditions(AP1) and (AP2) can be checked obviously at compile time. We therefore spe-cialize � such that a rule is applied only if (AP1) and (AP2) is satis�ed. If wewould know that for every �; �0 2 ML, ����0, that �0 is a correct compilation of�, then a compiler must just �nd a derivation from a � 2 IL to a �0 2 BML. Ob-viously, there is an algorithm �nding such a derivation just using the annotatedprogram. Therefore, the code selection has the architecture shown in Figure 15.Thus, for construction of correct code selection it remains to show that �re every� 2 IL; �0 2 BML such � �� �0, �0 is a correct compilation of �.

�0 2 BB�?Generator forCode Selection?normalized annotated � 2 BB?NormalizationPlanning -annotated� 2 BB-TRSBE ?Registers ?� 2 BB?

Figure 15: Architecture of Code SelectionRemark: If values of common subexpressions are stored in registers which areused later, then a new annotation is introduced referring to the register con-taining the value. In this case the requirement (AP2) is strengthen to assignno register whose value is still needed. Using the new annotation this can becomputed again at compile time. �

545Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

5 Correctness of Code Selection by Term RewritingIn this section we show that it is su�cient to prove independently the local prop-erties for each term-rewrite rule in a TRSBE in order to ensure the correctness ofa TRSBE. Throughout this section we assume that IL is a basic block languagewith operational semantics A IL , TL is a typical machine language with opera-tional semantics A TL , BML is the basic block machine language obtained fromIL and TL, ML is the merge of the languages IL and BML (cf. Figure 13), andR is a TRSBE with the same assumptions as in subsection 4.4. In particular, weassume that any program � 2 ML is correctly annotated and � is de�ned bythe conditional application on conditions (AP1) and (AP2).The approach is the following: First, we show that R is correct, if �0 is a correctcompilation of � for all �; �0 2 ML such that � � �0 by using Theorem 3. Then,we de�ne a relation � and properties on the applied rule such that we can applyTheorem 5 to prove that �0 is a correct compilation of � for all �; �0 2 ML suchthat � � �0. Finally, we give su�cient conditions for proving these propertiesof applied transformation rules. In particular, we show that these properties ofsingle term-rewrite rules can be proven just using the macros and transition rulesof BML and IL.Theorem8 Vertical Decomposition. If for all �1; �2 2 ML such that �1��2,�2 is a correct compilation of �1, then �0 is a correct compilation of � for every� 2 IL; �0 2 BML satisfying � �� �0.Proof: Let � 2 IL. Then also � 2 ML. Let A�;IL the ASM of � de�ned by A IL ,andA�;ML the ASM of � de�ned by AML . Applying Theorem 3 inductively showsthat �0 2 ML is a correct compilation of � 2 ML, if ����0. Thus, there is a rela-tion � � Q�;ML�Q�0;ML such that for every computation sequence qq 0 2 A�0;MLthere is a computation sequence qq 2 A�;ML such that qq 0 �-simulates qq . Sincethere is an BML-semantics monomorphism �2 : A BML ! AML (cf. Theorem 7),there is an ASM-monomorphism �2 = (��2; 2;
2) : A�0;BML ! A�0;ML. Fromproperty (H3) follows immediately that for any computation sequence qq ofA BML , there is a computation sequence qq 0 of AML such that qq
�12 -simulatesqq . Hence, for any computation sequence qq of A BML , there is a computationsequence qq 2 A�;ML such that qq 0 (
�12 � �)-simulates qq .Theorem 7 implies that there is also an IL-semantics monomorphism �1 : AML !A IL . Thus, there is an ASM-monomorphism �1 = (��1; 1;
1) : A�;ML ! A�;IL.(M4) ensures that
1(I�;IL) = I�;ML and for any state q 2
(Q�;IL), q !�;ML q0implies q0 2
(Q�;IL), i.e.
1 is bijective. Then we can argue as above to showthat for any computation sequence qq of A BML there is a computation sequenceqq 2 A�;IL such that qq
�12 � � �
1-simulates qq . �Thus, it is su�cient to show that �0 is a correct compilation of � for all �; �0 2 MLsuch that �� �0. Observe that these compilations are source-to-source transfor-mations. The basic idea is to de�ne � adequately such that each single instruc-tions which remains unchanged has the same e�ect in � and �0.For the de�nition of � we have to know for each instruction in the program theregisters containing a value which is required later. These informations can becomputed easily when the register annotations are computed. Therefore, we as-sume an annotation used : PROG�LABEL�N ! SET (BITm). r 2 used(�; i; l)i� r contains a value that must not be destroyed. This annotation is updated

546 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

when applying term-rewrite rules. In our case, initially used(�; i; l) is the setof registers used to represent f 2 �IL n �ML. When applying a term-rewriterule t ! Xfm1; : : : ;mng at an instruction instr , then the annotations of anyunchanged instructions remain unchanged and the annotations for the new in-structions is a simple live analysis for basic blocks (cf. [Waite and Goos 1984,Chapter 13.3]) starting from the set used of the instruction after instr .Since we have now formalized the notion whether a register contains at a certaininstruction a value which is needed later, we can de�ne �.De�nition 21 (�) Let �; �0 2 ML where �0 is obtained from � by applyingt ! X ; fm1; : : : ;mng at instr = get instr(�; i; l) for a i 2 N, l 2 LABELS .Furthermore, let A� and A�0 be the ASMs de�ned by AML . Then we de�ne� � Q� �Q�0 i� the following conditions are satis�ed:(�1) For all q such that [[BP]]q = l0 6= l: [[f]]q = [[f]]q0 for all f 2 �MLnfreggand [[reg(k)]]q = [[reg(k)]]q0 for all k 2 used(�; i; l).(�2) The same properties de�ned by (�1) are also satis�ed for all q with[[BP]]q = l and [[PC]]q � i.(�3) For all q such that [[BP]]q = l and [[PC]] > i: [[f]]q = [[f]]q0 for allf 2 �ML n fPC ; regg,[[PC]]q0 = � [[PC]]q + n if X 6= �[[PC]]q + n� 1 if X = � ;and [[reg(k)]]q = [[reg(k)]]q0 for all k 2 used(�; i; l). �We now prove the precondition of Theorem 8:Theorem9 Horizontal Decomposition. Let �; �0 2 ML where �0 is obtainedfrom � by applying t! X ; fm1; : : : ;mng at instr = get instr(�; i; l) for a i 2 N,l 2 LABELS . Furthermore, let A� and A�0 be the ASMs de�ned by AML . Sup-pose that the following two conditions are satis�ed:(LC1) If X 6= �, then for all (q; q0) 2 � such that [[BP]]q = l and [[PC]]q = i,and any sequence q01; : : : ; q0n; q0n+1 2 Q�2 satisfying q0 !�0 q01 andq0i !�0 q0i+1 for all i = 1; : : : ; n, then there is a state q̂ 2 Q� suchthat q !� q̂ and (q; q̂) 2 �.(LC2) If X 6= �, then for all (q; q0) 2 � such that [[BP]]q = l and [[PC]]q =i, and any sequence q01; : : : ; q0n; q0n 2 Q�2 satisfying q0 !�0 q01 andq0i !�0 q0i+1 for all i = 1; : : : ; n� 1, then there is a state q̂ 2 Q� suchthat q !� q̂ and (q; q̂) 2 �.Then, �0 is a correct compilation of �.Proof: We show that for any (q; q0) 2 � where [[BP]]q 6= l or [[PC]]q 6= i and allstates q00 2 Q�0 such that q0 !�2 q00, there is a state q̂ 2 Q� satisfying q !�1 q̂and (q̂; q00) 2 �. If this is satis�ed, we can use Theorem 5 to conclude togetherwith (LC1), (LC2) that �0 is a correct compilation of �. Let instr = [[IP]]q .Using (�1){(�3) it is easy to see that also [[IP]]q0 = instr . Let trans be thetransition rule used to obtain q00. Then, trans can also be applied at q to obtainq̂. Obviously, q0 !�2 q00 executes an update f(t1; : : : ; tn) := tn+1 i� q !�1 q̂executes the update f(t1; : : : ; tn) := tn+1. The executed updates are equal i�

547Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

[[ti]]q = [[ti]]q0 for i = 1; : : : ; n (except the update pc := pc + 1 for the casedescribed by (�3)). The latter can be proven by a simple structural inductionon the terms ti 2 T (� [�) using the fact that if ti contains a subterm reg(k)then k 2 used(�; l; i� 1). �Figure 16 visualizes (LC1), (LC2) and the case described in the proof of Theo-rem 9.
1(m)

ρ

n

q’’

q’q’

ρ

q

1(m)
q’

ρ

σ σ
1

q

q’ n(m)
q

ρ

n

q’’
q’

ρ

q

instr

σ σ
1q’ n(m)

q’n
instr’

(LC1)

(LC2)

instr’

instr

ρ

q’’

q

Figure 16: Visualization of (LC1), (LC2) and the Proof of Theorem 9It follows immediately theCorollary 22 Suppose that for all �; �0 2 ML where �0 is obtained from �by applying t ! X ; fm1; : : : ;mng at instr = get instr(�; i; l) for a i 2 N, l 2LABELS , (LC1) and (LC2) is satis�ed. Then for all �1 2 IL, �2 2 BML suchthat �1 �� �2, �2 is a correct compilation of �1.It is obvious that De�nition 21 contains the minimal requirements such thatTheorem 5 can be proven. It is natural to ask why it is not required that (q; q0) 2� implies [[reg(k)]]q = [[reg(k)]]q0 for every k 2 BITSm? The reason is that (LC1)and (LC2) need not to be satis�ed. The machine instructions �(mi) may write avalue into register k not used by instr but just by instr 0 (e.g. the register used forX). Then [[reg(k)]]q̂ 6= [[reg(k)]]qn+1 is possible. These are precisely such registerswhere De�nition 21 does not require equality.We �nish the section by showing how to prove (LC1) and (LC2). First, we reduce(LC1) to expression evaluation.Lemma 23 Let �; �0 2 ML where �0 is obtained from � by applying t !X ; fm1; : : : ;mng on instr = get instr(�; i; l) at occurence o for a i 2 N, l 2LABELS . Furthermore, let A� and A�0 be the ASMs de�ned by AML . SupposeX 6= � and let the states q; q0; q01; : : : ; q0n+1 be de�ned as by (LC1). Let o �be the substitution used in the application of that rule. Furthermore, assume�(X) = Reg(k). If [[NF (eval (instr [o]))]]q = [[reg(k)]]qn , then (LC1) is satis�ed.Proof: It is su�cient to show that for every o 6= hi where e = instr [o] is anexpression, the following two properties hold.

548 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

(i) [[NF (eval (e))]]q0n = [[NF (eval (e)]]q if Reg(k) does not occur in e, and(ii) [[NF (eval (e[o=Reg(k)]))]]q0n = [[NF (eval (e)]]q if Reg(k) occurs e.Then we can argue as in the proof of Theorem 5 that there is a q̂ 2 Q� suchthat q !� q̂ performs the same updates as q0n ! q0n+1. Since m1; : : : ;mn con-tains no registers r 62 used(�; i; l), and every �(mi) only changes contents ofregisters and pc, it follows [[f]]q0n = [[f]]q for every f 2 � n freg ;PC g and[[reg(r)]]q0n = [[reg(r)]]q for all r 2 used(�0; i + n; l) n fkg. Using these propertiesand [[NF (eval (instr [o]))]]q = [[reg(k)]]qn , it is now a simple structural inductionto prove every subterm of instr 0 is evaluated to the same value. �From this Lemma and Corollary 22 follows immediately theCorollary 24 Suppose that for all �; �0 2 ML where �0 is obtained from �by applying t ! X ; fm1; : : : ;mng at instr = get instr(�; i; l) for a i 2 N, l 2LABELS , (LC2) and the following condition holds:(LC3) If X 6= �, then for all states (q; q0) 2 � such that [[BP]]q = land [[PC]]q = i, and any sequence q01; : : : ; q0n; q0n+1 2 Q�2 satisfyingq0 !�0 q01 and q0i !�0 q0i+1 for all i = 1; : : : ; n, it is [[NF (eval (t0))]]q =[[reg(k)]]q0n , where �(X) = Reg(k) is the register assigned to X whenapplying the term-rewrite ruleThen �2 is a correct compilation of �1 for all programs �1 2 IL; �2 2 BML suchthat �1 �� �2. �Conditions (LC2) and (LC3) are called the local correctness conditions of rulet ! X ; fm1; : : : ;mng. The next section shows how these local correctness con-ditions can be proven.It is remarkable that Corollary 24 is just based on the general requirementsde�ned by basic block languages and typical machine languages. The other as-sumptions (A1){(A6), the property of assigning exclusively registers, and thatexpressions have no side e�ects can be removed, but would complicate consider-ably the proofs. Removing (A1){(A6) would lead to a more complex monomor-phism �1 : A IL ! AML is more complicated. Adding memory locations is notdi�cult: it is just an extension of the annotation (although the normalizationcould be de�ned such that the approach described in this section is always ap-plicable). If expressions can also have side-e�ects then a combination of (LC2)and (LC3) is necessary.6 Correctness of Term Rewrite RulesIn Section 5 we reduced the correctness of a TRSBE T to proving the localcorrectness of T (cf. Corollary 24). However (LC2) and (LC3) quantify over allstates. This suggests to execute the state transitions symbolically using the rulesin AML . In particular:1. If the rule is t! X fm1; : : : ;mng, the proof proceeds by the following steps:First, evaluate e symbolically, i.e. compute NF (eval (t)). Then the updatesby the transition rules mi ; rhs are executed symbolically and normalizedfor i = 1; : : : ; n in that order. Finally reg(k) and NF (eval (t)) are compared.If they are equal then (LC3) is satis�ed.

549Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

2. If the rule is t! � fm1; : : : ;mng the proof proceeds by the following steps:First, the updates of the rule t ; rhs are performed symbolically. Thenthe updates by the transition rules mi ; rhs are executed symbolically andnormalized for i = 1; : : : ; n in that order. Then, we have to compare alldynamic functions updated by one of the rules.These two proof strategies are mechanized using the proof checker PVS[Dold and Gaul 1996]. They are justi�ed by the way how ASMs are obtainedfrom the operational semantics: The transition rules for the instructions of theconcrete program is obtained by substituting the variables in the correspondingrules in Trans and simplifying them using Macros :Consider for example a program � 2 ML and a instruction instr =get instr(�; i; l), i 2 N; l 2 LABELS . Suppose f(x1; : : : ; xn) ; rhs 2 Transsuch that there is a substitution � with �(f(x1; : : : ; xn)) = instr . The, a sym-bolic update lhs := rhs is executed by the above approach i� the transitionrule for instr executes the update NF (�(lhs := rhs)). Similarly, we have for anysubexpression e0 of t NF (eval (e0)) = s i� [[NF (eval (�(e)))]]q = [[NF (�(s))]]q forall q 2 Q�.We show now three typical local correctness proofs according to the above strate-gies for the languages de�ned in Appendix A. ML denotes the mnerge of thelanguages BB and BB�. For other proofs, we refer to [Dold and Gaul 1996].Lemma 25 (Local Correctness of Rule 3) Let �; �0 2 ML be arbitrary pro-grams with � � �0, A� and A�0 their ASMs in AML , q 2 Q� a state with[[IP]]q = instr where the ruleintadd (X;Y)! Z fADD(X;Y; Z;Q)gis applied onto instr to obtain � from �0, � the corresponding substitution,q0 2 Q�0 be a state such [[IP]]q0 = ADD(�(X); �(Y); �(Z); Q), and q00 2 Q�0 bethe state such that q0 !�0 q00. Then, for any � � Q��Q�0 satisfying De�nition 21(q; q0) 2 � implies [[eval (intadd (�(X); �(Y)))]]q = [[Regquad(�(Z))]]q00 .Proof: By the de�nition of eval (cf. Appendix A.1) we obtain[[eval (intadd (�(X); �(Y)))]]q = [[Regquad(�(X))]]q �I [[Regquad(�(Y))]]q : (9)The execution of ADD(�(X); �(Y); �(Z); Q) performs the updateRegquad(�(Z)) := Regquad(�(X)) �I Regquad(�(Y)) (cf. the rule ADD in Ap-pendix A.2). Thus[[Regquad(�(Z))]]q00 = [[Regquad(�(X))]]q0 �I [[Regquad(�(Y))]]q0 : (10)Since (q; q0) 2 �, [[Regquad(�(X))]]q = [[Regquad(�(X))]]q0 and [[Regquad(�(Y))]]q =[[Regquad(�(Y))]]q0 . Thus, the right hand sides of (9) and (10) are equal and there-fore[[eval (intadd (�(X); �(Y)))]]q = [[Regquad(�(Z))]]q00 : �Rule 6 for loading 32-bit integer constants generates more than one machineinstructions.

550 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

Lemma 26 (Local Correctness of Rule 6) Let �; � 2 ML be arbitrary pro-grams with ���0, A� and A�0 their ASMs in AML , q 2 Q� a state with [[IP]]q =instr where rule 6 is applied onto instr to obtain � from �0, � be the correspond-ing substitution, q0 2 Q�0 be a state such [[IP]]q0 = LDA(�(T1); i32h0 : 15i; 31),and q00 2 Q�0 be the state such that q0 !�0 q1 !�0 q2 !�0 q00. Then, for any� � Q� �Q�0 satisfying De�nition 21 (q; q0) 2 � implies[[eval (intconst i32)]]q = [[Regquad]]q00 (�(X)).Proof: The transition rules for machine instructions LDA (load address) andZBI (zero-bytes-immediate) are de�ned in Appendix A.2. The proof uses thefollowing de�nitions: sl = (i32)h15 i and sh = (i32)h31 iWith these de�nitions, we obtain the following equalities using the macros inAppendix A.2:Sext16 (i32h0 : 15i) = s48l � (i32)h0 : 15 i (11)Sext16 (i32h16 : 31i) = s48h � (i32)h16 : 31 i (12)and ByteZap(x; o) = extract(x; 7; (o)h7 i) � � � � � extract(x; 0; (o)h0 i), whereextract(x; i; b) = �00000000 if b = 1(x)hi � 8 : i � 8 + 7 i if b = 0E:g: ByteZap(x; 11111100) = 048 � (x)h0 : 15 i: (13)Similarly, LogShiftL(x; n) = (x)h0 : 63 � ni � 0n, e.g.LogShiftL(Sext16 (i32h16 : 31i); 16) = s32h � (i32)h16 : 31 i � 016: (14)By the de�nition of eval (cf. Appendix A.1), it is[[eval (intconstx)]]q = x (15)The transition rule for LDA (cf. Appendix A.2) implies that the following updateis performed to obtain q1: Regquad(�(T1)) := Regquad(31)�I Sext16 (i32h0 : 15i).With the above de�nitions, (11), and the fact that on the DEC-Alpha[[Regquad]]q̂(31) = 0 for all states q̂, we obtain:[[Regquad(�(T1))]]q1 = s48l � (i32)h0 : 15 i (16)Then the instruction ZBI (�(T1);#11111100; �(T1)) is executed. The transitionrule for ZBI shows, that the update Regquad(�(T1)) :=ByteZap(Regquad(�(T1)); 11111100) is performed. Thus, we obtain from (13)and (16)[[Regquad(�(T1))]]q2 = 048 � (i32)h0 : 15 i: (17)

551Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

q00 is then reached by executing LDAH (X; i32h16 : 31i; T1). Hence, on q2 theupdate Regquad (�(X)) := Regquad(�(T1))�I LogShiftL(Sext16 (i32h16 : 31i); 16)is performed. With (17) and (14) we obtain:[[Regquad(�(X))]]q00 = (048 � (i32)h0 : 15 i)�I (s32h � (i32)h16 : 31 i � 016)= (s32h � (i32)h16 : 31 i � (i32)h0 : 15 i) (18)(De�nition of �I)= i32 (19)�Remark: In our �rst attempt rule 6 was designed erroneously. We forgot thatthe instruction LDA applies a sign extension onto the 16-bit integer operand.Appendix B shows the e�ect when we try to prove the faulty version of rule 6.�The above lemmas are proven according to the �rst strategy. We �nish thissection with proving the local correctness of rule 2 by the second strategy.Lemma 27 (Local Correctness of Rule 2) Let �; �0 2 L be arbitrary pro-grams with � � �0, A� and A�0 their ASMs in AML , q 2 Q� a state with[[IP]]q = intassign(local (intconst i16);Reg(i)), q̂ be the state such that q !� q̂,q0 2 Q�0 be a state such [[IP]]q0 = STQ (i; i16; 1), and q00 2 Q�0 be the state suchthat q0 !�0 q00. Then, for any � � Q� � Q�0 satisfying De�nition 21 (q; q0) 2 �implies [[content]]q̂ = [[content]]q00 .Proof: The rule for intassign (cf. Appendix A.1) shows, that the transition toq̂ performs the update content(eval (local (intconst i16)) := eval(Reg(i)). By thede�nition of BB� (cf. Subsection A.3), eval (Reg(i)) = regquad(Reg(i)) and bythe de�nition of eval , eval(local (intconst i16)) = loc �A i16. Since on BB�, wehave chosen loc=̂regquad(1), we have[[content]]q̂(a) = � [[regquad(i)]]q if a = [[regquad(1)]]q �A i16[[content(a)]]q otherwise (20)By the rule for STQ (cf. Appendix A.2), the following update is performed onq0: content(regquad(1)�I Sext16 (i16)) := regquad(i)Since �I = �A and Sext16 (i16) = i16 algebraically, it holds[[content]]q00 (a) = � [[regquad(i)]]q0 if a = [[regquad(1)]]q0 �A i16[[content(a)]]q0 otherwise (21)If (q; q0) 2 �, then [[regquad(1)]]q = [[regquad(1)]]q0 , [[regquad(i)]]q =[[regquad(i)]]q0 , and [[content]]q = [[content]]q0 . Hence, the right hand sides of (20)and (21) are equal. Thus, [[content]]q̂ = [[content]]q00 . �

552 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

7 ConclusionsIn this article we showed how to construct correct compiler back-ends whichtransform intermediate languages (basic block graphs) into binary machine codewith BURS. First, the problem was decomposed by introducing intermediatelanguages based on Theorem 3. The code generation works in two phases: Firstthe basic block structure is kept while intermediate language instructions aretransformed into machine instructions (code selection). Second, the basic blockgraphs with machine instructions are mapped into the memory of the targetmachine (code linearization). The focus of this article was on the construction ofa correct code selection. The approach is based on a well-known code generationtechnology used in practice, the term-rewrite systems. The latter are speci�ca-tions for code selections. A correct generator which performs term-rewriting canbe used for obtaining a correct code selection, provided the speci�cation usedfor generation was correct.We reduced the correctness of term-rewriting systems T to proving indepen-dently for each rule of T a local correctness condition (Corollary 24) by condition-ally applying the rules. The condition is a requirement on register assignment.In section 6 we showed two simple, mechanizable proof strategies for proving thelocal correctness.Except of the local correctness of term-rewrite rules, none of the proofs in thisarticle made speci�c assumptions on the instruction set of the intermediate lan-guage and target machine. Hence, these proofs need not be redone if a newback-end is designed. We showed that a generator can be parametrized with aterm-rewrite system, the intermediate language, the target language, and theregister assignment algorithms. Therefore, if such correct generators and reg-ister assignments are available, only the local correctness of the term-rewriterules is required for construction of correct code selection. Since the correctnessof register assignments is checked when term-rewrite-rules are applied, registerassignment algorithms can be used without proving their correctness. Therefore,we can apply di�erent register assignment algorithms until the correctness con-dition is satis�ed. For completeness it is just necessary to apply one veri�edregister assignment algorithm. This idea is similar to the idea of program check-ing [Blum and Kannan 1995]. In summary, for the construction of a correct codeselection, it is su�cient to prove the local correctness of the term-rewriting sys-tem specifying the code selection.First experiments show that the quality of the binary machine code generatedby our correct compiler back-ends is orders of magnitudes faster than code gen-erated by correct compilers constructed by other approaches [Palsberg 1992,Diehl 1996]. [Diehl 1996] has the best results so far. Table 6 shows the compari-son between our approach, the approach in [Diehl 1996] (SIMP), and a standardunveri�ed C-compiler. Loop is a program that initializes a variable with a posi-tive integer and decrements this integer by one until the content of this variableis zero, Sieve implements the sieve of Eratosthenes.Our correct compiler back-end is the �rst work on the construction of correctcompilers which produces binary machine code whose performance is on the sameorder of magnitude as unveri�ed standard C-compilers. For improving the codeperformance, new term-rewrite rules may be added. For keeping the correctnessof code selection it is su�cient to prove the local correctness of the new rules.Thus, our approach allows incremental improvement of the code selection.

553Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

DEC-Alpha Intel-Pentium SIMPVeri�x C-Compiler C-Compiler AM in CIterations non-opt opt non-opt opt non-opt opt minLoop 10000 0.57ms 0.57ms 0.35ms 0.31ms 0.62ms 0.50ms 5.0s100M 5.72s 5.70s 3.49s 3.05s 6.12s 5.04s 13h53m�Sieve 1 1.63ms 1.23ms 0.82ms 0.56ms 1.02ms 0.89ms 4.00s10000 16.35s 12.26s 8.25s 5.65s 10.23s 8.94s 11h6m�DEC-Alpha: DEC-AXP(233MHz), OSF1, CC: DEC(V4.2)Intel-Pentium: Pentium(133MHz), Linux, CC: GNU(V2.7.0)SIMP: Pentium, execution times from [Diehl 1996], abstract machine implemented in CIterations: Loop: loop iterations, Sieve: searching the primes less than thousand, n times repeatedSIMP: line 1 from [Diehl 1996], line 2 extrapolation(�) on repeated iterationsOptimization (opt):Verifix: Peephole, C: Option -O4, SIMP: minimal execution timesTable 6: Comparison of the Performance of the Machine Code generated by CorrectCompilersOur vision is that correct compilers can be constructed by well-known compi-lation techniques, and if a library of correct data structures, algorithms, andgenerators is provided, then for the correctness of any transformation of oneintermediate language to another, it is su�cient to prove local correctness prop-erties of transformation rules similar to those of term-rewrite rules. The aboveperformance results show that this approach seems feasible to construct realisticcorrect compilers compiling programs of real-life programming languages intobinary machine code of real processors, and produce e�cient code.Acknowledgements: This work is supported by the Deutsche Forschungsgemein-schaft project Go 323/3-1 Veri�x (Construction of Correct Compilers). We are gratefulto our colleagues in Veri�x. Especially, we thank Axel Dold for formalizing and checkingthe local correctness proofs in this article with the proof checker PVS. We would liketo thank the anonymous referees for reading it very carefully. Their comments helpedto improve our article drastically. Our colleagues Uwe Assmann, Axel Dold, SabineGlesner, Gerhard Goos and Martin Trapp carefully read a preliminary version of thisarticle and suggested us considerable improvements.A Abstract Machines for the LanguagesSubsection A.1 introduce abstract state machines for basic block graphs. Sub-section A.2 introduces the abstract state machines for the DEC-Alpha processorfamily. It is not our purpose to show how these descriptions can be obtainedfrom informal language de�nitions. We refer to [Gurevich and Huggins 1993,Wallace 1995]. Subsection A.3 describes the DEC-Alpha basic block graphs ob-tained after code selection.A.1 Basic Block Graphs BBA BB -program is given by a set of basic blocks where each block consists of asequence of instructions where the last one in a block is a jump or stop. INSTR

554 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

denotes the universe of instructions. The data types are the type of 64-bit integersINT , the double precision
oating point numbers FLT , the booleans BOOL, andthe addresses ADDR on the target machine.VALUE denotes the union of all those uni-

T
ar

ge
t M

ac
hi

ne

loc

glob

PC

BP

Figure 17: Basic block graphs
verses. Expressions are de�ned on these ty-pes and include integer and
oating pointexpressions, boolean and address expressions(INTEXPR, FLTEXPR, ADDREXPR,BOOLEXPR), EXPR is the sort which isa union of these expressions (EXPR =INTEXPR[FLTEXPR [: : :). Expressionsare evaluated by eval : EXPR ! VALUEwhich is de�ned recursively over its struc-ture. The semantics is parameterized withthe data types and the basic operations ofthe target machine. The ASMs have thefollowing dynamic functions: an programcounter (PC : INSTR), a basic block pointer(BP), a pointer to the local environment(loc : ADDR), a pointer to the global envi-ronment (glob : ADDR), a history hist=̂LABEL� N� which contains the stackof procedure calls not yet completed, and the memory which is accessed withdynamic content : ADDR ! CELL. The access to the memory is relative to locor glob. In the program this is denoted by local (i) and global (i), respectively. Foraccessing larger values, we use the macros contenti, contenti shown in Figure11.A.1.1 The language speci�cationThe sorts of BB areSBB = f LABEL; INTEXPR;FLTEXPR;BOOLEXPR;ADDREXPR;INSTR; JUMP ;BLOCK ;PROG gThe signature of programs is�BB = f intadd : INTEXPR � INTEXPR ! INTEXPR
tadd : FLTEXPR � FLTEXPR ! FLTEXPRintsub : INTEXPR � INTEXPR! INTEXPR: : :int2
t : INTEXPR! FLTEXPRintequal : INTEXPR � INTEXPR ! BOOLEXPRintgreater : INTEXPR � INTEXPR ! BOOLEXPR: : :
tequal : INTEXPR � INTEXPR! BOOLEXPR: : :

555Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

booland : BOOLEXPR � BOOLEXPR ! BOOLEXPR: : :readint : INTEXPR ! INSTRwriteint : INTEXPR � INTEXPR! INSTRintassign : ADDREXPR � INTEXPR ! INSTR
tassign : ADDREXPR � FLTEXPR ! INSTR: : :condjump : BOOLEXPR � LABEL� LABEL! JUMPjump : LABEL! JUMPcall : LABEL� N ! INSTRreturn : N ! INSTRstop : JUMPlocal : INTEXPR! ADDREXPRglobal : INTEXPR! ADDREXPRcont : ADDREXPR ! EXPRintconst i : INTEXPR(�231 � i < 231)boolconst b : BOOLEXPR(b 2 ftrue; falseg): : :newblock : LABEL� INSTR� ! BLOCKmakeprog : LABEL�BLOCK� ! PROG gThe control
ow is de�ned by�BB = f start : PROG ! LABELget instr : N �BLOCK ! INSTRget block : LABEL� PROG ! BLOCKnext : N ! N gThe interpretation is de�ned in Figure 9.The instruction pointer is de�ned by IP = get instr(PC; block(BP; prog))A.1.2 Operational semantics�A is the add operation on addresses of the machine, which is in our case equiv-alent to �I . Instructions consist of assignment instructions for di�erent kind ofexpressions, jumps and procedure calls.The universes not de�ned in the language areU = f ADDR; INT ;FLT ;BOOL;CELL gThe interpretation of these universes are 64-bit sequences, except CELL, whichis an 8-bit sequence.� = f 0A; 1A; : : : : ADDR: : : ;�1I ; 0I ; 1I ; : : : : INT�I : INT � INT ! INT

556 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

�F : INT � INT ! FLT�A : ADDR � INT ! ADDR	I : INT � INT ! INT: : :=I : INT � INT ! BOOL=F : FLT � FLT ! BOOL: : :^B : BOOL� BOOL! BOOLtrue : BOOLfalse : BOOL gThe operations on the universes are de�ned as by the DEC-Alpha machine lan-guage. The constants represent bit sequences.Dynamic functions:�BB = f PC : N (instruction counter)BP : LABEL (basic block pointer)content : ADDR ! CELL (the memory)loc : ADDR (current address of local procedure variables)glob : ADDR (address of global variables)inp : VALUE� (input stream)out : VALUE� (output stream)hist : (LABEL� N)� gThe macros needed for the evaluation of expressions (macros de�ning contentare shown in Figure 11)�BB :eval(intadd(e1; e2)) =̂ eval(e1)�I eval(e2)eval(
tadd(e1; e2)) =̂ eval(e1)�F eval(e2)eval(intsub(e1; e2)) =̂ eval(e1)	I eval(e2): : :eval(booland(e1; e2)) =̂ eval(e1) ^B eval(e2): : :eval(intconst c) =̂ cIeval(intequal(e1; e2)) =̂ eval(e1) =I eval(e2): : :eval(local(e) =̂ loc �A eval(e)eval(global(e) =̂ glob �A eval(e)eval(cont(i)) =̂ content 8(eval(i))We �nish the de�nition with some transition rules:

557Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

ASM1if IP = intassign(a; e) thencontent 8(eval(a)) := eval(e);PC := next(PC)endif ASM2if IP = jump(b) thenBP := b;PC := 0endif if IP = condjump(e; b1; b2) thenif eval(e) then BP := b1;PC := 0;else BP := b2;PC := 0endifendif ASM3if IP = call(P; k) thenloc := loc �A k;hist := (BP ;PC):hist ;BP := P ;PC := 0endif if IP = return(k) thenloc := loc 	A k;hist := tail(hist);BP := fst(head(hist));PC := next(snd(head(hist)))endifThe initializations are:BP := startPC := 0loc := bot of stackglob := bot of stackwhere bot of stack is an external constant de�ned by the operating system.A.2 The Dec-Alpha Processor Family L�In this section we sketch the formal representation of the DEC-Alpha based onthe informal speci�cation in the manufacturer manual [Sites 1992]. The formal-ization shows parts of the derived language speci�cation and the operationalsemantics. It includes the instruction set, addressing modes, register �les andthe memory, i.e. it models the programmer's view. We do not describe the com-plete instructions of the DEC-Alpha assembly language. We describe only thoseused in this article, more details can be found in [Gaul and Zimmermann 1995].The addressable memory unit is a byte. In order to load and store quadwords {the usual integer type for DEC-Alpha architectures { or
oats we introduce thefunction content8 : QUAD ! VALUE which loads and stores 8 bytes from/intomemory. For example, fetching a quadword or
oat from memory is carried outby concatenating 8 subsequent bytes starting at the given address. Register arealways accessed as full QUADs, that means there is no byte-access to registers.

558 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

A.2.1 The language speci�cationThe sorts of programs are ADDR; CELL; INSTR; and PROG. The inter-pretation of ADDR and CELL is isomorphic to BIT 64 and BY TEb=BIT 8,respectivly.�L� = f makeinstr : BIT k � INSTRmakeprog : ADDR � INSTR ! PROG g�L� = f start : PROG �ADDRnext : ADDR ! ADDRaddr instr : N � PROG ! ADDRget instr : ADDR � PROG ! INSTR gFor the interpretation of the Control Flow see Figure 10, section 4.1.A.2.2 The operational semanticsThe operational semantics uses the sorts QUAD and DOUBLE which are 64-bit sequences. It is not necessary to introduce or distinguish these sorts, but itmakes the speci�cation more readable. Furthermore, we use the sorts BYTE andLONG, which are isomorphic to BIT 8 and BIT 32, respectively. Operations onQUADs and DOUBLEs are the same as those de�ned by BB.The dynamic functions of L� are:reg : BIT 6 ! QUAD [DOUBLEcontent : ADDR! BYTEPC : ADDRFurthermore: IP = get instr(PC; prog)The speci�cation uses the following macro de�nitions �L� : (for de�nitions ofcontent and reg see Figure 11)BYTE b= BIT8QUAD b= BIT64DOUBLE b= BIT64 Regquad (X) b= reg(0:X)Reg
t (X) b= reg(1:X)The reg macros re
ect the two di�erent kinds of registers. Furthermore, a se-ries of macros is used to de�ne the bit-sequences and to interpret them. Thesemacros de�ne the bit-sequences representing instructions in a symbolic way. Theexpansion of these terms always leads to bit-sequences. The way how these bit-sequences are obtained is described in the instruction manual. We demonstratethis by the ADD-instruction (See �gure 18). For this article it is su�cient toknow that there is an expansion according to the instruction manual.LDA : BIT 5 � BIT 16 �BIT 5 ! INSTRLDA(ireg1 ; disp; ireg2) Load address (ireg2 + disp) to ireg1

559Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

31 26 25 21 20 16 15 12 11 5 4 00 1 0 0 0 0 a a a a a b b b b b 0 0 0 0 0 1 0 0 0 0 0 c c c c copcode register a register b type + function code register cFigure 18: Bit-sequence representing the ADD-instruction of type QUADLDQ : BIT 5 � BIT 16 � BIT 5 ! INSTRLDQ(reg1 ; disp; ireg2) Load integer from memory (ireg2 + disp) to reg1LDT : BIT 5 � BIT 16 � BIT 5 ! INSTRLDT (reg1 ; disp; ireg2) Load
oat from memory (ireg2 + disp) to reg1STQ : BIT 5 � BIT 16 � BIT 5 ! INSTRSTQ(reg1 ; disp; ireg2) Store integer reg1 to memory (ireg2 + disp)STF : BIT 5 � BIT 16 � BIT 5 ! INSTRSTF (reg1 ; disp; ireg2) Store
oat � pointreg1 to memory (ireg2 + disp)ADD : BIT 5 � BIT 5 � BIT 5 �BIT ! INSTRADD(reg1 ; reg2 ; reg3 ; type) Add reg1 + reg2 into reg3 ; all of type 0type 0BR : BIT 5 � BIT 21 ! INSTRBR(ireg ; o�s) Branch unconditionally to o�set 0o�s 0; relative to PC ; ireg = PCBEQ : BIT 5 � BIT 21 ! INSTRBEQ(ireg ; o�s; cond) Check condition 0equal 0 on ireg ; branch conditionallyBLT : BIT 5 � BIT 21 ! INSTRBLT (ireg ; o�s; cond) Check condition 0less � than 0 on ireg ; branch conditionally: : :JMP : BIT 5 � BIT 5 ! INSTRJMP(ireg1 ; ireg2) Jump to address contained in ireg2 ; ireg1 = PCIntTest (EQ, op) = (op =I 0642)IntTest (LT, op) = ((op)h63 i = 12)IntTest (LE, op) = (IntTest (LT, op) _ IntTest (EQ, op)): : :Furthermore, the following macros are used in the transition rules:Sextn : BITn ! QUAD sign extends its argument to a 64-bit integer:Sextn(X) b= Xn�1: : : : :Xn�1| {z }64�n times :XLogShiftL : QUAD � BIT 6 ! QUAD shifts logically the �rst argumentby the amount of the second argumentto the left. It is de�ned by 2k macros(0 � k � 63).LogShiftL(X; k) b= Xh0 : 64� ki_h 0; : : : ; 0| {z }k iANDn : BITn�BITn ! BITn de�nes the bitwise and for sequences of n-bits:AND1(0; b) b= 0AND1(1; b) b= bANDn(0:X; b:Y) b= 0:ANDn�1(X;Y)

560 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

ANDn(1:X; b:Y) b= b:ANDn�1(X;Y)In arithmetic operations (ADD; : : :) the type of the operation is destinguishedby one bit, denoted by: Qb=1; F b=0Finally we give some transition rules. For simplicity we omit the exception han-dling: ASM4STOREif PC = STQ(ra; disp; rb) thencontent 8(Regquad (rb)�A Sext16 (disp)) := Regquad (ra)PC := next(PC)endifendifif PC = STT(ra ; disp; rb) thencontent 8(Regquad (rb)�A Sext16 (disp)) := Reg
td(ra)PC := next(PC)endif ASM5LOADif PC = LDQ(ra; disp; rb)thenRegquad (ra) := content(Regquad (rb)�A Sext16 (disp))PC := next(PC)endifif PC = LDT(ra ; disp; rb)thenReg
td (ra) := content(Regquad(rb)�A Sext 16 (disp))PC := next(PC)endifif PC = LDA(ra; disp; rb) thenRegquad (ra) := Regquad (rb)�A Sext16 (disp)PC := next(PC)endifArithmetic operations are de�ned analogously: ASM6ADDif PC = ADD(ra ; rb; rc; type) thenif type = F then Reg
td (rc) := Reg
td (ra)�F Reg
td(rb)PC := next(PC)if type = Q then Regquad (rc) := Regquad (ra)�Q Regquad (rb)PC := next(PC)endifendif

561Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

ASM7BRANCHif PC = BR(ra; disp) thenRegquad (ra) := next(PC)PC := PC �A 4�A LogShiftL(Sext21 (disp); 2)endifif PC = BEQ(ra; disp) thenif IntTest(0EQ0;Regquad(ra) then PC := next(PC)�A LogShiftL(Sext21 (disp); 2)else PC := next(PC)endif ASM8JUMPif PC = JMP(ra; rb) thenRegquad (ra) := next(PC)PC := (Regquad(rb)AndQ11622 00endifA.3 Dec-Alpha Basic Block Graphs BB�The operational semantics of DEC-Alpha basic block graphs can be de�neduniquely from the operational semantics of the basic block graphs and the DEC-Alpha processor family. Consider DEC-Alpha basic block graph � and its ab-stract state machine A. The sorts of A contain the sorts of the target machine(except the instruction set which is partially di�erent). Additionally, it containsthe same sort LABEL as the basic block graphs. The signature of A containsthe same dynamic functions as the abstract state machines for the DEC-Alphaexcept the instruction pointer. Instead, it contains the instruction pointer, thebasic block pointer and the procedure pointer of the basic block graph. loc andglob are de�ned by the macros loc=̂Regquad(R1) and glob=̂Regquad(R2), respec-tively.The transition rules are the same as on the DEC-Alpha except the jump in-struction.BBAlpha cointains amoung other the following transition rules:if IP = jump(B(ra; disp); L) thenBP := LPC := 0endifif IP = jump(JMP (ra; rb); L) thenBP := LPC := 0endif
if IP = jump(BR(ra; disp; cond); L) thenif IntTest(Regquad(ra); cond) thenBP := LPC := 0elsePC := next(PC)endifendifRemark: Other processors than DEC-Alpha may contain a status register andconditional jumps are based on whether some particular bits are set or not.Then, b is omitted, type are comparisons of checking whether a certain statusbit is set or not, and the test content(b) type is just replaced by type. �

562 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

B Error detectionDetecting faulty parts in code generator speci�cations usually is a tedious job.Sometimes testing the generated code with sample input does a good job, butespecially the transformation to concrete machine instructions is highly erro-neous, because the e�ects of machine dependent data manipulations and sidee�ects are often not easy to realize.The following example is taken from our own development cycle of a completecompiling speci�cation. It shows the faulty variant of our example of section 6,that occurred while developing with our students:intconst i32 �! X �LDA (T1; i32h0 : 15i; R31)LDAH (X; i32h16 : 31i; T1)� (22)Intuitively our sequence seems to do a good job: The low-word is �rst loaded intoT1 (instruction 1), and then the high-word is shifted by the length of a wordand added to the low-word in T1 . We try now to prove the local correctness ofrule 22, i.e. we try to prove thePresumption 28 (Local Correctness of Rule 22) Let �; � 2 L be arbitraryprograms with ���0, A� and A�0 their ASMs in A L , q 2 Q� a state with [[IP]]q =instr where rule 22 is applied onto instr to obtain � from �0, � be the correspond-ing BE-substitution, q0 2 Q�0 be a state such [[IP]]q0 = LDA(�(T1); i32:L; R31; L),and q00 2 Q�0 be the state such that q0 !�0 q1 !�0!�0 q00. Then, for any� � Q� � Q�0 satisfying the requirements de�ned in subsection 3.3 (q; q0) 2 �implies [[eval (intconst i32)]]q = [[Regquad]]q00 (�(X)).For proving the correctness we proceed as in section 6. We use the same nota-tions as in the proof of lemma 26. Analogous to this proof, we show (15) and(16). By the rule for LDA, the update Regquad(�(X)) := Regquad (�(T1)) �ILogShiftL(Sext16 (i32:H); 16) is performed on q1. With (16) and (14) we obtain:[[Regquad]]q00 (�(X)) = s48l � (i32)h0 : 15 i �I s32h � (i32)h16 : 31 i � 016:However, i32 = s48l � (i32)h0 : 15 i �I s32h � (i32)h16 : 31 i � 016 only if sl = 0.Therefore, the above rule is faulty if 16-th bit of i32 is set. This error is very to�nd with software testing, because it only occurs, if bit 15 of the desired integerconstant is non-zero. A solution is to compensate the sign extension with anarithmetic operation or to zero the sign extended bits after the �rst instruction.This version was chosen for rule 6 in subsection 4.3.C NotationsSignatures are denoted by capital greek letters. Sorts and universes are denotedby capital letters; usually taken from the end of the alphabet. Mappings andhomomorphisms and denoted by lower case greek letters. Algebras and ASMsare denoted by calligraphic letters. Symbols de�ned by signatures are denoted bylower case letters. An additional notation is that of indexing ASM. If an ASMAi is indexed with index i, then �i refers to the signature, Qi to the states,Si to the sorts, !i to the transition relation, and Ii to the initial states of Ai,respectively. Fi refers to the set of �nal states of Ai.Table 7{Table 10 summarizenotations commonly used in this article.

563Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

t[o] subterm of t at occurence o Subsection 2.1t[o=t0] the term obtained from t by replacing t[o]by t0 Subsection 2.1T (�) set of terms over signature � Subsection 2.1T (�;V) set of terms over signature � and variablesV Subsection 2.1[[t]]A interpretation of term t in algebra A Subsection 2.1T (�) term algebra of terms over signature � Subsection 2.1� = [x1=t1] � � � [xn=tn] substitution of variables by terms Subsection 2.1t[u=u0] the term t where sub-term u is replaced byu0 Subsection 2.1Aj� restriction of an algebra Subsection 2.1t1=̂t2 term-rewrite rule Subsection 2.1 - rewrite relation de�ned by a TRS Subsection 2.1NFR(t) normal form of term t w.r.t. a noetherianand con
uent TRS Subsection 2.1i; i0; i1; : : : initial states of an ASM Subsection 2.2q; q0; q1; : : : states of an ASM Subsection 2.2�;� 0; �1; : : : static functions of an ASM Subsections 2.2, 3.2X ;X 0;X1; : : : static algebra of an ASM Subsections 2.2, 3.2�; �0; �1; : : : ASM-homomorphisms Subsection 2.2U v V [[U]]T (�) � [[V]]T (�) Subsection 2.1Table 7: Notations de�ned in Section 2
�L program structure of language L Subsection 3.1�L control structure of language L Subsection 3.1SL sorts of language L Subsection 3.1INSTR sort of instructions Subsection 3.1PROG sort of programs Subsection 3.1IL interpretation of control and programstructure of language L Subsection 3.1�L signature of instructions of language L Subsection 3.1�; �; : : : programs Subsection 3.1IP instruction pointer Subsection 3.2StatL static part of an operational semantics ofL Subsection 3.2	; 	 0; 	1; : : : static functions of an operational seman-tics of L not used by the control and pro-gram structure Subsection 3.2DynL dynamic part of an operational semanticsof L Subsection 3.2Table 8: Notations de�ned in Section 3 (1)

564 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

�;�0; �1; : : : dynamic functions of an operational se-mantics of L Subsection 3.2
;
0;
1; : : : observable dynamic functions of an opera-tional semantics of L Subsection 3.2�;�0; �1; : : : signature of macros of an operational se-mantics of L Subsection 3.2A L operational semantics of a language L Subsection 3.2A� ASM of � in A L Subsection 3.2qq ; qq 0; : : : computation sequence of a program � 2 L Subsection 3.2B� behavior of program � Subsection 3.2�

-equivalence relation Subsection 3.2[q]

-equivalence class of state q Subsection 3.2obqq observable behavior of qq Subsection 3.2OB� observable behavior of program � Subsection 3.2jj ; ll ; jj 0; ll 0; : : : witnesses of observable behavior of qq Subsection 3.2�; �0; �1; : : : L-semantics monomorphisms Subsection 3.2�; �̂; �0; : : : relations between
-equivalence classes orstates Subsection 3.2C compiling relation Subsection 3.3Table 9: Notations de�ned in Section 3 (2)
JUMP sort of jump instructions in basic blockgraphs De�nition 14BLOCK sort of basic blocks De�nition 14EXPR sort of expressions De�nition 14LABEL sort of labels De�nition 14ADDRESS sort of addresses De�nition 14, 15VALUE sort of values De�nition 14, 15BP block pointer De�nition 14PC program counter De�nition 14, 15IM signature of instruction macros Subsection 4.3t! X; fm1; : : : ;mng back-end term-rewrite rule De�nition 18��;instr ;o register assignment for application of a ruleon instr at occurence o De�nition 18� rewrite relation of term-rewrite systems forback-ends De�nition 18rule rule annotation De�nition 19regassign register assignment De�nition 19Table 10: Notations de�ned in Section 4

565Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

References[Blum and Kannan 1995] M. Blum and S. Kannan. Designing programs that checktheir work. Journal of the ACM, 42(1):269{291, 1995.[B�orger and Rosenzweig 1992] E. B�orger and D. Rosenzweig. The WAM-de�nitionand Compiler Correctness. Technical Report TR-14/92, Dip. di informatica,Univ. Pisa, Italy, 1992.[B�orger et al. 1994] Egon B�orger, Igor Durdanovic, and Dean Rosenzweig. Occam:Speci�cation and Compiler Correctness.Part I: The Primary Model. InU. Montanari and E.-R. Olderog, editors, Proc. Procomet'94 (IFIP TC2Working Conference on Programming Concepts, Methods and Calculi).North-Holland, 1994.[B�orger and Durdanovic 1996] E. Brger and I. Durdanovic. Correctness of compilingoccam to transputer. The Computer Journal, 39(1):52{92, 1996.[Brown et al. 1992] D. F. Brown, H. Moura, and D. A. Watt. Actress: an action se-mantics directed compiler generator. In Compiler Compilers 92, volume 641of Lecture Notes in Computer Science, 1992.[Buth et al. 1992] B. Buth, K.-H. Buth, M. Fr�anzle, B. v. Karger, Y. Lakhneche,H. Langmaack, and M. M�uller-Olm. Provably correct compiler developmentand implementation. In U. Kastens and P. Pfahler, editors, Compiler Con-struction, volume 641 of Lecture Notes in Computer Science. Springer-Verlag,1992.[Buth and M�uller-Olm 1993] Bettina Buth and Markus M�uller-Olm. Provably CorrectCompiler Implementation. In Tutorial Material { Formal Methods Europe'93, pages 451{465, Denmark, April 1993. IFAD Odense Teknikum.[Diehl 1996] S. Diehl. Semantics-Directed Generation of Compilers and Abstract Ma-chines. PhD thesis, Universit�at Saarbr�ucken, 1996.[Dold and Gaul 1996] A. Dold and T.S. Gaul. Local correctness of term rewrite basedcode generators. Working paper, University of Karlsruhe/Ulm, September`96, 1996.[Emmelmann 1992] H. Emmelmann. Code selection by regularly controled termrewriting. In R. Giegerich and S.L. Graham, editors, Code Generation - Con-cepts, Tools, Techniques, Workshops in Computing. Springer-Verlag, 1992.[Espinosa 1995] David A. Espinosa. Semantic Lego. PhD thesis, Columbia University,1995.[Gaul and Zimmermann 1995] T.S. Gaul and W. Zimmermann. An Evolving Algebrafor the Alpha Processor Family. Veri�x Working Paper [Veri�x/UKA/4],University of Karlsruhe, 1995.[Gurevich 1995] Y. Gurevich. Evolving Algebras: Lipari Guide. In E. B�orger, editor,Speci�cation and Validation Methods. Oxford University Press, 1995.[Gurevich and Huggins 1993] Y. Gurevich and J. Huggins. The Semantics of the CProgramming Language. In CSL '92, volume 702 of LNCS, pages 274{308.Springer-Verlag, 1993.[Hoare et al. 1993] C.A.R. Hoare, He Jifeng, and A. Sampaio. Normal Form Approachto Compiler Design. Acta Informatica, 30:701{739, 1993.[McCarthy and Painter 1967] J. McCarthy and J.A. Painter. Correctness of a com-piler for arithmetical expressions. In J.T. Schwartz, editor, Proceedings of aSymposium in Applied Mathematics, 19, Mathematical Aspects of ComputerScience. American Mathematical Society, 1967.[Moore 1989] J. Strother Moore. System veri�cation. Journal of Automated Reason-ing, 5(4):409{410, December 1989.[Mosses 1982] P. D. Mosses. Abstract semantic algebras. In D. Bj�rner, editor, For-mal description of programming concepts II, pages 63{88. IFIP IC-2 WorkingConference, North Holland, 1982.[Mosses 1992] P. D. Mosses. Action Semantics. Cambridge University Press, 1992.

566 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

[M�uller-Olm 1995] Markus M�uller-Olm. An Exercise in Compiler Veri�cation. Inter-nal report, CS Department, University of Kiel, 1995.[M�uller-Olm 1996] Markus M�uller-Olm. Modular Compiler Veri�cation. PhD thesis,Techn. Fakult�at der Christian-Albrechts-Universit�at, Kiel, June 1996. Er-scheint als LNCS Band im Springer-Verlag.[Nymeyer and Katoen 1996] Albert Nymeyer and Joost-Pieter Katoen. Code Genera-tion based on formal BURS theory and heuristic search. Technical report inf95-42, University of Twente, 1996.[Nymeyer et al. 1996] Albert Nymeyer, Joost-Pieter Katoen, Ymte Westra, and HenkAlblas. Code Generation = A* + BURS. In Tibor Gyimothy, editor, Com-piler Construction (CC), volume 1060 of Lecture Notes in Computer Science,pages 160{176. Springer-Verlag, April 1996.[Palsberg 1992] J. Palsberg. An automatically generated and provably correct com-piler for a subset of ada. In IEEE International Conference on ComputerLanguages, 1992.[Paulson 1981] L. Paulson. A compiler generator for semantic grammars. PhD thesis,Stanford University, 1981.[Pierantonio and Kutter 1997] A. Pierantonio and P. W. Kutter. Montages speci�ca-tions of realistic programming languages. Journal of Universal ComputerScience, this volume, 1997.[Proebsting 1995] Todd A. Proebsting. BURS automata generation. ACM Transac-tions on Programming Languages and Systems, 17(3):461{486, May 1995.[Sites 1992] Richard L. Sites. Alpha Architecture Reference Manual. Digital Equip-ment Corporation, 1992.[Tofte 1990] M. Tofte. Compiler Generators. Springer Verlag, 1990.[Waite and Goos 1984] William M. Waite and Gerhard Goos. Compiler Construction.Springer Verlag, 1984.[Wallace 1995] C. Wallace. The Semantics of the C++{Programming Language. InE. B�orger, editor, Speci�cation and Validation Methods. Oxford UniversityPress, 1995.[Wand 1984] M. Wand. A semantic prototyping system. SIGPLAN Notices,19(6):213{221, June 1984. SIGPLAN 84 Symp. On Compiler Construction.

567Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...

