
Object-Oriented Modeling and Simulation of
Optical Burst Switching Networks

Joel J. P. C. Rodrigues, Nuno M. Garcia,
Mário M. Freire

Department of Informatics
University of Beira Interior

Covilhã, Portugal
{joel, mario}@di.ubi.pt; ngarcia@ngarcia.net

Pascal Lorenz
IUT

University of Haute Alsace
Colmar, France

lorenz@ieee.org

Abstract— Optical Burst Switching (OBS) is becoming an
interesting technology for the optical Internet, since it does
not need optical buffers like Optical Packet Switching
(OPS), and is capable of a better performance than Optical
Circuit Switching (OCS). Although OBS has been recently
object of intense research, it still raises a number of
important questions. Due to the high costs of an OBS
network infrastructure, simulators are a good choice for
predicting the behavior of this kind of networks. In this
paper, we describe the proposal, implementation and
validation of a simulator for OBS networks. The
simulator, named OBSim, mimics the behavior of OBS
networks in an Object-Oriented approach.

Keywords-Modeling; Simulation tool; Optical Burst Switching

I. INTRODUCTION
Recent research activities in the area of Optical Burst

Switching (OBS) [1-7] show that this technology may be
probably an important part of the near future Internet. OBS is a
compromise between Optical Circuit Switching (OCS) and
Optical Packet Switching (OPS) [8], and may be implemented
through various signaling protocols. OBS has some special
characteristics [9], such as: i) Granularity: the size of a
transmission unit in OBS is between OCS and OPS; ii) Data
and control separation: control information is transmitted in a
separate channel; iii) Unidirectional reservation: resources are
reserved using a unidirectional messaging system (assuming
one-way reservation scheme); iv) Burst with variable size: the
size of each burst may not be fixed [10]; v) No buffering of
data: once de data is sent, it must reach destination only with
the delay inherent to the medium – the propagation delay of the
signal in the optical fiber (assuming that no limited buffering
(e.g. fiber delay lines) is used).

OBS node equipment includes, besides the Optical Cross
Connect (OXC), a signaling engine, that processes the bursts
control messages, and the switching matrix. Up to now, several
signaling protocols have been proposed. Here, we consider the
following five signaling protocols with one-way reservation
schemes: JIT [3], JET [1], Horizon [2], JumpStart [4], and JIT+
[6]. These protocols follow two types of reservation of the
OXC resources: immediate or delayed. JIT and JIT+ perform

immediate reservation of the wavelength at the OXC while JET
and Horizon delay the reservation of the wavelength at the
OXC just before the data burst arrives. JumpStart has a set of
messages that allow the protocol to reserve the resources in the
OXC either delayed or immediately. Some protocols are more
demanding on the signaling engine hardware and software than
others, but not necessarily more efficient.

OBS technology raises a number of significant questions,
as to analyze the performance of different wavelength routing
schemes, different signaling protocols, and relate these with
user profiles and network topologies, considering various
shapes of traffic load on each node. These questions may be
answered with a simulator to mimic the behavior of an OBS
network, given the inexistence of such networks in the real
world. However, there are some OBS networks demonstrators
reported in [4, 11, 12]. Previous works in optical networks
simulators are based on packet traffic (e.g. IP networks), which
is significantly different from the aggregated packet traffic in
an OBS network, since bursts are transmitted through the OBS
network in a transparent way, in the sense that the network
does not recognizes neither the end of burst nor its content.
Therefore, a new tool is needed in order to include the specific
features of OBS traffic at the network layer. This paper
proposes an object-oriented approach for the development of
an OBS simulator.

The remainder of this paper is organized as follows. In
section II we present an overview of the modeling and
simulation techniques. In section III, we describe the design of
OBSim simulator, including a detailed overview of its main
characteristics, design considerations. Validation of the
simulator results is discussed in section IV. Main conclusions
are presented in section V.

II. OBS NETWORK MODELING AND SIMULATION
Regarding network simulation, research tools fall into three

different categories: analytical tools, in situ measurements, and
simulators [13]. OBSim is an event driven, stochastic,
symbolic simulator. Event driven simulators are a class of
models in which data flows to the pace of events of some type;
other simulators may be activity driven or time driven, namely
when the simulator responds to some kind of user interaction
(internal or external, user initiated or not) and the last, when the

Globecom 2004 Workshops 0-7803-8798-8/04/$20.00 ©2004 IEEE
IEEE Communications Society

288

software runs at the tick of a clock [14]. In OBSim, the events
that run on the simulator are messages. These may be sent by
the users, or generated at a node, as defined by the signaling
protocols presented previously. Stochastic simulators, opposed
to deterministic simulators, rely on random entities (usually
random variables of numerical value) to simulate the
randomness of real-life events. In OBSim, we used the Java
class Random, who generates pseudo-random values (of
several types), using a congruential algorithm. Pseudo random
variables must pass two tests that certify, first, the homogeneity
of its distribution, and second, the independence of the
generated values [14]. Java class Random satisfies these
conditions. Symbolic simulators use some type of symbols to
copy the behavior of real elements. In OBSim, theses symbols
are Java classes, which are instantiated as needed by the
software, according to the input data provided initially by the
user.

Figure 1. OBS network with 6 nodes and 9 links.

Figure 2. Classes instantiated when user 2a sends burst to user 5x.

Fig. 1 shows a simple example of an OBS network, used in
this paper to support and present the discussed design and
entities. We consider a network with 6 nodes (the OXC and its
corresponding signaling engine, numbered from 1 to 6) and 9
links (data and signaling channels are shown separately). Fig. 2
presents a scheme and an Unified Modeling Language (UML)
diagram that illustrates how a burst being sent from one user
(user ‘a’ connected to node ‘2’) to another user (user ‘x’
connected to node ‘5’) deploys and uses a set of class instances
in the simulator.

III. DESIGN OF THE OBSIM SIMULATOR
To study the problem and the characteristics of burst traffic

in OBS networks, we need to evaluate the performance of

different signaling protocols. This is achieved by studying its
performance and behavior under different traffic conditions
and network topologies. Our simulator mimics the behavior of
a custom OBS network defined by the user. This simulator,
called OBSim, allows us to assess and compare the
performance of signaling protocols and load profiles to a given
network topology. Previous works focus on simulating traffic
for several types of networks and were primarily designed to
simulate TCP/IP traffic. The main example is ns-2 (network
simulator version 2) [15], developed on C++ and based on a
project started in 1989, which has been widely used for
network protocol performance studies [16]. While developing
OBSim, we had access to the simulator developed by Teng and
Rouskas from North Caroline State University [6, 7], and to the
OBS-ns simulator released by DAWN Networking Research
Lab from University of Maryland [17]. Both simulators were
developed under C++ programming language. There have been
also other developments in the area of simulation, such as
OWns [16, 18], being this simulator an extension to the ns-2. In
[19] we have found the IND Simulation Library, which is an
object-oriented class library for event-driven simulation
implemented in C++. These classes have been designed for
support of performance evaluation of communication
networks. Our OBSim is a tool that also gathers contributes
from all these previous work in the area of network simulation.

A. Objectives
OBSim is designed to implement a model of OBS networks

based on objects, that allows to estimate the burst loss
probability performance of different signaling protocols, to
study the influence of different network profiles on the
performance of OBS networks, to evaluate the performance of
OBS networks for network topologies defined by the user, and
compare this with the performance of other technologies, and
to test new signaling protocols, easily programmed in an
Object-Oriented Programming (OOP) built model.

B. Design Considerations
As we needed a simulator independent of existing network

data encapsulation protocols, we built OBSim from scratch.
Java was the programming language chosen to build OBSim
for several reasons, namely: 1) the quality and ease of use Java
available programming tools; 2) the robustness of Java in
object and memory handling; and 3) the wide platform
portability of the code.

We made several assumptions while building OBSim.
These assumptions occur in respect of the definition of the
signaling protocols. Concerning network modeling, these are
the following: 1) All the nodes work in an independent and
similar way. 2) All time scales are normalized in time-slots. 3)
A path is used by a burst or by a control message,
independently of the state of the network. 4) When a signal
(burst or signaling message) arrives to a node, it follows a
predefined path calculated previously by the Dijkstra algorithm
[20]. 5) Between two consecutive nodes, the wavelength used
is chosen by the algorithm defined for the source node initially
by the user: random or first-free [21].

Concerning the modeling of network traffic, the basic
assumptions are: 1) Messages arriving to a node follow an

Globecom 2004 Workshops 0-7803-8798-8/04/$20.00 ©2004 IEEE
IEEE Communications Society

289

exponential distribution (or a variant of the exponential
distribution) [22-26]. 2) Users are responsible for the burst
generation process, that is, neither the ingress node nor any
other node processes the burst. 3) One node may generate, at
the most, one message by time-slot or time period. 4) Bursts
are sent uniformly to every node in the network, with the
exception that a node cannot send messages to itself. 5) The
size of a burst is limited [10].

OBSim maintains an event queue that accepts and removes
events, and forwards each event to its corresponding object
(that with other objects compose the virtual network) so it can
be processed.

C. Abstraction in OBSim
Abstraction in OBSim is achieved by the behavior of the

objects of the model. The OBS network we want to simulate, is
a set of defined real-world objects (eventually, real-world
objects yet to be real-objects), each having its function and
behavior, each interacting with the remain objects of the
network according to a defined set of rules (e.g. the algorithms
of the signaling engines). As an example, the network topology
defined initially by the user is processed according to the
Dijkstra Algorithm, and for each pair of nodes, is defined a
route. Fig. 3 shows some of the routes found by the algorithm.

Figure 3. Six of the fifteen defined routes for topology of Fig. 1

D. Components
To simulate an OBS network, we defined several objects

(Java classes), each having methods that may be activated by
other objects. These mechanisms, common in Object Oriented
Programming (OOP) languages such as Java and C++, namely,
inheritance, polymorphism, encapsulation, and also, dynamic
instantiation and dynamic memory management, allow us to
create a working model that behaves like the real OBS network
would. Time flow is simulated through a queue of events, ruled
by a clock, and is introduced forward. Fig. 2 and Fig. 4 show
how a potentially existing OBS network is virtualized in Java
classes. As shown, each link is composed of two nodes, and a
node may belong to more than one link (e.g. node ‘5’). Along
with node and link, other classes were created to model the
behavior of an OBS network. Fig. 5 shows the UML class
diagram with the most important classes of the simulator.

The main method is defined in Obs class and this calls
several other objects, in particular, the following: i)
NetworkFactory, that builds the network from the topology
file; this process is the virtualization that builds the class

Network; ii) Network, composed by Links and Nodes; iii)
RouteBuilder, that builds a route for any two nodes, and stores
these routes in the PathTable; this class implements the
Dijkstra algorithm [20, 27]; iv) PathTable manages the paths
defined by RouteBuilder; v) Global stores and manages the
global constants and variables of the simulator; v) Simulator,
which starts the burst request actions from each user at every
node; vi) EventQueue manages all the Events according to the
Clock class; vi) And the classes ErrorMsg and DebugMsg,
which manage the output of the debugging and error messages.

It may also be seen that the Node class is a generalization
for classes NodeJIT, NodeJET, NodeHorizon, NodeJumpStart,
and NodeJITP, which in turn, model the nodes of these
signaling protocols. With this approach, the addition of a new
protocol can be made by defining a new class and
implementing it with its own set of specific algorithms.

NetworkObject is the generalization class for Node, User
and Event. These are the main actors of an OBS network, and
their behavior and interaction, as seen before, creates instances
of classes like Link, Connection, Event and Message. In a non-
parallel approach, classes NetworkBuilder, Network, Simulator,
EventQueue (and Clock), RouteBuilder and PathTable, along
with classes ErrorMsg and DebugMsg are instantiated only
once. Classes Node, Link and User are instantiated as many
times as defined in the network topology file. Other classes are
instantiated as many times as needed, either by the stochastic
workflow of the simulator, either by running algorithms like
Dijkstra and WRAs.

Figure 4. UML object diagram modeling an OBS network

E. Session traffic generation
Traffic generation is an important issue in the model. As we

have an event driven simulator, we initially need to simulate
the need to transmit bursts between nodes. As seen before, in a
simulation, we assume that the bursts are sent evenly to every
node in the network. Since every burst must be preceded by a
signaling message, and since users connected to nodes send
bursts at a random time, we considered that time between these
messages follow an exponential distribution, simple or with an
offset [24, 25]. The traffic is then simulated when the OBSim
starts to process the event queue, which was, at the start of the
program, loaded with requests (messages) from the users.
These requests, when processed, normally generate more
messages that are added to the queue. Each time a message is
added to the queue, the simulator timer generates a time

Globecom 2004 Workshops 0-7803-8798-8/04/$20.00 ©2004 IEEE
IEEE Communications Society

290

interval according with the distribution defined by the user, and
this time is added to the simulator clock, defining the time the
event will be scheduled to happen.

F. Scenario generation
The network scenario is read from a text file that defines

the number of nodes, the number of connections, the allowed
attributes for each node, and the definition of the existing links
in the network. The creation of the network abstraction – the
network model that supports the simulation – is accomplished
by the classes defined in the program. Fig. 4 is an UML
diagram that partially illustrates the abstraction programmed in
OBSim, for the example network showed in figure 1. In Fig. 5

we show the most important classes in the simulator. These
classes are responsible for the virtualization of the model.

G. Input Interface
The input interface of the simulator allows the definition of

several simulation attributes. The network is fully defined with
these attributes and the attributes described for each node and
each link in the text file mentioned earlier. The parameters used
to configure the model of the OBS network are the following:
Signaling protocol, Generation distribution function, Burst
generation ratio, Available data channels per link, Switch
signal process time, Switch setup time, User to node delay,
User timeout, and Network topology file.

Figure 5. UML class diagram for OBSim

IV. SIMULATOR VALIDATION
Validation is a key issue to entrust the use of the results

given by any simulator. Perros [14] defines the validation of
the model as the verification of five steps: 1) Check the
pseudo-random numbers generator. 2) Check the stochastic
variable generator. 3) Check the logic of the simulation
program. 4) Relationship validity. 5) Output validity.

In OBSim, the accuracy of the pseudo-random number
generator is guaranteed by the Java language definition
standards, and confirmed through the Qui-Squared test, and the
Independence test performed on the Java class Random [14,
28]. The stochastic variable generators have been separately
validated by [22, 25, 26]. The logic of the simulator and the

validity of the relationships are inherent to the design of the
signaling protocols, and to the Java programming environment,
referred before. The output validity has been achieved through
comparison with the results of [6]. For this purpose, we have
run a sample simulation considering a single OBS node, in
isolation, for JIT, JET, and Horizon signaling protocols. It is
assumed that [6]: TOXC = 10ms, TSetup(JIT) = 12.5µs,
TSetup(JET) = 50µs, TSetup(Horizon) = 25µs, the mean burst
size 1/µ was set to 50ms, and burst arrival rate λ, is such that
λ/µ = 32, assuming 64 users per node.

Fig. 7 shows the burst blocking probability as a function of
the number of data channels per link for the OBS network
presented above, given by OBSim and compared to the results
presented in [6]. As may be seen in this figure, the results

Globecom 2004 Workshops 0-7803-8798-8/04/$20.00 ©2004 IEEE
IEEE Communications Society

291

obtained by OBSim are in a close range of those published by
[6]. The small variation perceived is expectable because of the
stochastic nature of the events that are modeled.

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

8 16 24 32 40 48 56 64
Number of data channels

Bu
rs

t b
lo

ck
in

g
pr

ob
ab

ilit
y

Analysis for JIT, [6]
Simulation for JET, [6]
Simulation for Horizon, [6]
Simulation for JIT, OBSim
Simulation for JET, OBSim
Simulation for Horizon, OBSim

Figure 6. Burst blocking probability, as a function of number of data
channels per link (F), in a single OBS node for JIT, JET and Horizon

signaling protocols given by OBSim compared to results in [6]

V. CONCLUSIONS
In this paper we presented the objectives, design,

implementation and validation of a simulator for OBS
networks, we named OBSim. This simulator implements a
model of OBS networks based on objects, which allows
measuring the performance of a custom designed OBS
network. The results of the simulator have been validated, and
thus the simulator may be used as a tool to predict the behavior
of the OBS networks.

ACKNOWLEDGMENT
Part of this work has been supported by the Group of

Networks and Multimedia of the Institute of
Telecommunications – Covilhã Lab, Portugal, in the
framework of the Project PIONEER.

REFERENCES
[1] C. Qiao and M. Yoo, "Optical burst switching (OBS) - A new paradigm

for an optical Internet," Journal of High Speed Networks, vol. 8, pp. 69-
84, 1999.

[2] J. S. Turner, "Terabit burst switvhing," Journal of High Speed Networks,
vol. 8, pp. 3-16, 1999.

[3] J. Y. Wei and R. I. McFarland, "Just-in-Time signaling for WDM optical
burst switching networks," Journal of Lightwave Technology, vol. 18,
pp. 2019-2037, 2000.

[4] I. Baldine, G. Rouskas, H. Perros, and D. Stevenson, "JumpStart - A
Just-In-Time Signaling Architecture for WDM Burst-Switched
Networks," IEEE Communications Magazine, vol. 40, pp. 82-89, 2002.

[5] C. Qiao and M. Yoo, "Choices, Features and Issues in Optical Burst
Switching," 1999.

[6] J. Teng and G. N. Rouskas, "A Detailed Analisys and Performance
Comparison of Wavelength Reservation Schemes for Optical Burst
Switched Networks," Submited for publication, 2003.

[7] J. Teng and G. N. Rouskas, "A Comparison of the JIT, JET, and Horizon
Wavelength Reservation Schemes on A Single OBS Node," presented at
WOBS 2003, Dallas, Texas, 2003.

[8] C. S. R. Murthy and M. Gurusamy, WDM Optical Networks, Concepts,
Design and Algorithms. New Jersey: Prentice Hall PTR, 2002.

[9] L. Xu, "Performance Analysis of Optical Burst Switched Newtorks," in
Department of Computer Science. Raleigh: North Carolina State
University, 2002.

[10] C. Qiao and M. Yoo, "A Taxonomy of Switching Techniques," in
Optical WDM Networks - Principles and Practice, K. M. Sivalingam
and S. Subramaniam, Eds.: Kluwer Academic Publishers, 2000.

[11] I. Baldine, M. Cassada, A. Bragg, G. Karmous-Edwards, and D.
Stevenson, "Just-in-Time Optical Burst Switching Implementation in the
ATDnet All-Optical networking Testbed," presented at Globecom 2003,
San Francisco, Ca, 2003.

[12] L. McAdams, I. Richer, and S. Zabele, "TBONE: TestBed for all-
Optical NEtworking," presented at IEEE/LEOS Summer Topical
Meetings, 1994.

[13] P. Bartford and L. Landweber, "Bench-style Network Research in an
Internet Instance Laboratory," ACM SIGCOMM Computer
Communications Review, vol. 33, pp. 21, 2003.

[14] H. Perros, "Computer Simulation Techniques: The definitive
introduction!," (at December 18th, 2003): North Carolina State
University, http://www.csc.ncsu.edu/faculty/perros/, 2003.

[15] Dawn Networking Research Labs, "The network simulator ns-2," (at
January 10th, 2004), http://www.isi.edu/nsnam/ns/, 2002.

[16] N. M. Bhide and K. M. Sivalingam, "Design of OWns: Optical
Wavelength Division Multiplexing (WDM) Network Simulator,"
presented at First SPIE Optical Networking Workshop, Dallas, TX,
2000.

[17] DAWN Networking Research Lab, "DAWN Research Lab," (at January
15th, 2004): DAWN Research Lab, http://dawn.cs.umbc.edu/, 2004.

[18] B. Wen, N. M. Bhide, R. K. Shenai, and K. M. Sivalingam, "Optical
Wavelength Division Multiplexing (WDM) Network Simulator (OWns):
Architecture and Performance Studies," in SPIE Optical Networks
Magazine, vol. Special Issue on "Simulation, CAD, and Measurement of
Optical Networks, 2001, pp. 16-26.

[19] Institute of Communication Networks and Computer_Engineering, "IND
Simulation Library," (at February 17th, 2004): University of Stuttgart,
http://www.ikr.uni-stuttgart.de/INDSimLib/, 2004.

[20] A. V. Goldberg and R. E. Tarjan, "Expected Performance of Dijkstra's
Shortest Path Algorithm," 1996.

[21] L. Li and A. K. Somani, "Dynamic wavelength routing techniques and
their performance analyses," in Optical WDM Networks - Principles and
Practice, K. M. Sivalingam and S. Subramaniam, Eds.: Kluver
Academic Publishers, 2000.

[22] S. Ma and C. Ji, "Modeling heterogeneous network traffic in wavelet
domain," IEEE / ACM Transactions on Networking, vol. 9, pp. 634-649,
2001.

[23] A. W. Moore, "Measurement based management of network resources,"
in Computer Laboratory. Cambridge: University of Cambridge, 2002.

[24] V. Paxson and S. Floyd, "Wide Area Traffic: The Failure of Poisson
Modeling," IEEE Transactions on Networking, vol. 3, pp. 226-244,
1995.

[25] A. Schäefer, "Self-Similar Network Traffic," (at February 3rd, 2004),
http://goethe.ira.uka.de/~andreas/Research/Fractal_Traffic/Fractal_Traff
ic.html, 2003.

[26] W. T. Willinger and R. M. S. Sherman, "Self-similarity through High-
Variability: Statistical Analysis of Ethernet LAN Traffic at the source
level," IEEE / ACM Transactions on Networking, pp. 71-86, 1997.

[27] Y. Alavi, G. Chartrand, L. Lesniak, D. R. Lick, and C. E. Wall, Graph
Theory with Applications to Algorithms and Computer Science. New
York: John Wiley & Sons, 1985.

[28] Sun Microsystems Inc., "Class Math," (at December 12th, 2003),
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Math.html/, 2003.

Globecom 2004 Workshops 0-7803-8798-8/04/$20.00 ©2004 IEEE
IEEE Communications Society

292

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

