
UNIVERSITY OF CALIFORNIA

Los Angeles

Efficient Routing and Quality of Service Support for Ad

Hoc Wireless Networks

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Tsu-Wei Chen

1998

c Copyright by

Tsu-Wei Chen

1998

The dissertation of Tsu-Wei Chen is approved.

Jack Carlyle

Leonard Kleinrock

Mani B. Srivastava

Mario Gerla, Committee Chair

University of California, Los Angeles

1998

ii

To my wife, Hui-Yin

iii

TABLE OF CONTENTS

1 Introduction : 1

1.1 Background: Wireless Mobile Networks 2

1.1.1 The Single-hop Wireless Network 2

1.1.2 The Multi-hop Wireless Network 3

1.2 Scope of This Research . 5

1.2.1 Efficient Wireless Routing with QoS constraints 5

1.2.2 Support of Renegotiable QoS 5

1.2.3 Testbed Implementation . 6

1.3 Contributions of This Research . 6

2 Routing in Wireless Networks - A Review: : : : : : : : : : : : : : : : : 9

2.1 Network Model . 9

2.2 Distributed Bellman-Ford . 10

2.2.1 Looping in Distributed Bellman Ford 11

2.3 Link State . 11

2.4 Path Finding . 13

2.5 On-demand Routing . 14

2.6 Zone Routing . 15

2.7 Summary . 16

3 Global State Routing : 18

iv

3.1 The Protocol Overview . 18

3.2 Algorithm . 19

3.2.1 Information Dissemination 20

3.2.2 Fisheye . 22

3.2.3 Shortest Path Computation 24

3.3 Complexity . 25

3.4 Performance Analysis . 27

3.4.1 Simulator . 27

3.4.2 Performance Measurements 29

3.4.3 Simulation Results . 37

3.5 List of Detailed Algorithms . 43

4 Routing with QoS Reports : 48

4.1 Motivation . 49

4.2 VC Management . 51

4.3 QoS Extension for Distributed Bellman-Ford 53

4.4 QoS Extension for Global State Routing 54

4.5 Simulation Results . 54

4.5.1 DBF . 55

4.5.2 GSR . 56

4.6 Summary . 57

5 QoS Renegotiation : 59

v

5.1 Introduction . 59

5.2 The SWAN Environment . 61

5.3 System Implementation . 63

5.3.1 Policy . 64

5.3.2 Mechanism . 65

5.4 System Functions . 68

5.4.1 Bandwidth Reservation . 68

5.4.2 QoS Renegotiation . 69

5.5 Fault Tolerant Experiments and Analysis 70

5.5.1 QoS Renegotiation Experiment 70

5.5.2 Network Link Failure Experiment 74

5.6 Summary . 81

6 Adaptive QoS for Multimedia Applications in Wireless Networks : : : : 83

6.1 Overview . 84

6.2 QoS Notification Programming Model 85

6.2.1 Network Layer API . 86

6.2.2 Network Monitor . 87

6.2.3 QoS Notification API . 90

6.3 Source Adaptation to QoS Change 91

6.4 Experimental Results . 94

6.4.1 Emulated Channel . 95

6.4.2 Wireless Network . 96

vi

6.5 Summary . 100

7 Conclusion : 102

7.1 Contributions . 102

7.2 Future Work . 103

References : 105

vii

L IST OF FIGURES

1.1 A Single Hop Network . 3

1.2 A Multihop Network . 4

2.1 An example of Distance Vector Routing 11

2.2 Routing loop in Distance Vector Routing 12

2.3 An example of Link State Routing 13

2.4 An example of Path Finding . 14

2.5 An example of On-demand Routing 15

3.1 Fresh update: phase 1 . 21

3.2 Fresh update: phase 2 . 22

3.3 Scope of fisheye . 23

3.4 Message reduction using fisheye . 24

3.5 Two Mobility Models . 29

3.6 Inaccuracy: 40 nodes . 31

3.7 Inaccuracy: 60 nodes . 32

3.8 Inaccuracy: 80 nodes . 32

3.9 Weighted inaccuracy: 40 nodes . 33

3.10 Weighted inaccuracy: 60 nodes . 33

3.11 Weighted inaccuracy: 80 nodes . 34

3.12 Packet number: 40 nodes . 35

3.13 Packet number: 60 nodes . 36

viii

3.14 Packet number: 80 nodes . 36

3.15 Message size: 40 nodes . 37

3.16 Message size: 60 nodes . 38

3.17 Message size: 80 nodes . 38

3.18 Inaccuracy at different update intervals: GSR 40

3.19 Inaccuracy at different update intervals: DBF 41

3.20 Overhead at different update intervals: GSR 41

3.21 Connectivity vs. TX. range . 42

3.22 GSR: Inaccuracy vs. TX. range (I=3) 43

4.1 Path crossing several clusters . 52

4.2 Packet Received Ratio for DBF+QoS 56

4.3 Packet Received Ratio for GSR+QoS 57

5.1 SWAN system architecture . 61

5.2 TDD scheme of SWAN . 62

5.3 Layout of SWAN system software 64

5.4 List of the API . 66

5.5 The architecture for multiple queues scheme 67

5.6 Realizable throughput for a system without QoS 71

5.7 Realizable throughput for a system with QoS 73

5.8 Topology for a network link failure experiment 75

5.9 Received bandwidth in Link 2 using VC-QoS 76

ix

5.10 Received bandwidth in Link 2 using UDP 78

5.11 Before Link 2 fails, with QoS support 79

5.12 After Link 2 fails, with QoS support 80

5.13 Before Link 2 fails, without QoS support 81

5.14 After Link 2 fails, without QoS support 82

6.1 A schematic of QoS notification programming model 86

6.2 QoS Monitoring and Analysis . 88

6.3 QoS Reporting . 89

6.4 QoS Notification . 90

6.5 A state diagram of sampling rate and packet size adaptation mechanism. 93

6.6 Histogram of the available bandwidth on the emulated channel. 95

6.7 Histogram of audio transmission in the emulated channel. 96

6.8 No Adaptation . 98

6.9 Adaptation on Sampling Rate . 98

6.10 Adaptation on Packet Size . 99

6.11 Adaptation on Both Sampling Rate and Packet Size 99

x

L IST OF TABLES

3.1 Complexity Comparison . 25

5.1 ioctl(): parameters . 66

5.2 Summary of delay jitters observed in two schemes 80

xi

ACKNOWLEDGMENTS

I am particularly grateful to my advisor and committee chair, Mario Gerla. His support,

patience, and guidance made this work possible. Thanks alsoto all other members in my com-

mittee, Jack Carlyle, Leonard Kleinrock, Mani Srivastava,for their suggestions and comments

and the time in reviewing this dissertation.

I have benefited a great deal from the stimulating discussionwith my former colleagues at

Bell Laboratories: Michael Lyu, John Trotter, Cormac Sreenan, Paul Krzyzanowski and Mani

Srivastava. They provided me valuable comments on my investigation on QoS in wireless

networks. In particular, Michael is the model of ideal researcher whom I always hope to

emulate. I also thank him for his continuous encouragement and support in the past two years.

I am also indebted to all the members in the network research lab for making my tenure

at UCLA so enjoyable. I would like to recognize the followingcolleagues: Ilya Slain, Yuri

Romanenko, Kyle Bae, Ching-Chuan Chiang, Ronn Ritke, Gary Pei, Eric Wu, Jack Tsai and

Chunhung Lin. Also, I would like to thank two undergraduate students: Chia-Yi Wang and

Mark Fernie. Especially, Chia-Yi, Mark and Kyle helped the project on multihop wireless

testbed, Ilya and Yuri helped the project on the adaptive QoS, and Ronn Ritke have read and

commented on the draft version of this dissertation.

Most importantly, I would like to thank my love wife, Hui-Yin. Without her sacrifices, love

and moral support, I would definitely not be able to concentrate on my research during my

most productive period.

Last but not least, I would like to thank to my parents for all their love and support, and to

my brother for always sharing his valuable experiences in the world of engineering.

xii

V ITA

1968 Born, Taipei, Taiwan, R.O.C.

1986–1990 B.S. (Computer Science and Information Engineering), National

Taiwan University, Taipei, Taiwan, R.O.C.

1990–1992 Computer Engineer, The Missile Base Depot, Chinese Army, Tai-

wan.

1992-1993 M.S. (Computer Science), UCLA.

1994–1996 Teaching Assistant, Computer Science Department, UCLA.

1996 Member of Technical Staff-I, Bell Laboratories, Lucent Technolo-

gies, Murray Hill, New Jersey.

1996–present Research Assistant, Computer Science Department, UCLA.

xiii

PUBLICATIONS

Tsu-Wei Chenand Mario Gerla, “Global State Routing: A New Routing Scheme for

Ad-hoc Wireless Networks”, inICC ’98, Atlanta, 1998.

Ilya Slain, Tsu-Wei Chen and Mario Gerla, “Experiments on QoS Adaptation for

Speech Delivery in Wireless Networks”, in UCLA CS Technical Report (#980010),

1998.

Tsu-Wei Chen, Jack Tzu-Chieh Tsai and Mario Gerla, “Performance of QoS routing

in a multihop, wireless ATM networks”, inICUPC ’97, San Diego, 1997.

T.-W. Chen, P. Krzyznowsky, M. R. Lyu, C. J. Sreenan and J. A. Trotter, “A VC-

Based API for Renegotiable QoS in Wireless ATM Networks”, inICUPC ’97, San

Diego, 1997.

T.-W. Chen, P. Krzyznowsky, M. R. Lyu, C. J. Sreenan and J. A. Trotter, “Renegotiable

Quality of Service - A New Scheme for Fault Tolerance in Wireless Networks”, in

Proceeding of the 27th FTCS, Seattle, 1997.

Y.U. Cao,T.-W. Chen, M.D. Harris, A. B. Kahng, M. A. Lewis and A.D. Stechert, “A

Remote Robotics Laboratory on the Internet”, in INET ’95, Honolulu, 1995.

xiv

ABSTRACT OF THEDISSERTATION

Efficient Routing and Quality of Service Support for Ad

Hoc Wireless Networks

by

Tsu-Wei Chen

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 1998

Professor Mario Gerla, Chair

One feature that distinguishes the ad hoc wireless network from traditional wired net-

works and PCS (personal communication network) is that all hosts in an ad hoc wire-

less network are allowed to move freely without the need for static access points. This

distinct feature, however, presents a great challenge to the design of the routing scheme

and the support of multimedia services, since the link quality and the network topology

may be fast changing as hosts roam around.

In this dissertation, we investigate the behaviors of existing routing algorithms.

None of them satisfies the stringent requirements of ad hoc wireless networks. These

requirements include: high accuracy, low overhead, scalability in a largenetwork, the

possibility of providing QoS routing, etc.. Therefore, we propose a new routing ap-

proach for ad hoc wireless network: Global State Routing (GSR). Similar to link state

routing, GSR maintains a global view of network topology. But unlike link state rout-

ing, GSR uses the fisheye technique to keep the control message small, thus reducing

the consumption of bandwidth by control overhead. As a result, GSR can be scaled for

use in networks with large populations. GSR can also be extended with QoS parame-

xv

ters to perform QoS routing for multimedia applications.

In order to validate the results in our investigation, all schemes are simulated and/or

implemented in our testbed at UCLA. The implementation of our testbed also involves

the creation of several new features in the operating system to provides QoS support

in wireless networks, and the creation of new applications which fully utilize this QoS

information. With the integration of these features across various layers, we can realize

a truly mobile, multimedia, multihop wireless network.

xvi

Efficient Routing and Quality of Service Support

for Ad Hoc Wireless Networks

Tsu-Wei Chen

April 28, 1998

CHAPTER 1

Introduction

Research of Quality of Service (QoS), as the name suggests, is to study the level of

user satisfaction of the services provided by the communication system. In computer

networks, the goal for the QoS support is to achieve a more deterministic communi-

cation behavior, so that information carried by the network can be better preserved,

and the network resources can be better utilized. This concept is not new. In fact, it

has been widely discussed in the context of high speed wired networks, including both

datagram and real-time services. The ATM (Asynchronous Transfer Mode) network,

for instance, has made a great emphasis on the support of QoS for traffic of different

classes. Recently, the Internet, one of the most widely used data networks, also has

recognized the importance of QoS in supporting multimedia services. Tremendous

efforts have been made by the IETF (Internet Engineering Task Force) to enhancethe

current Internet.

However, these achievements of supporting QoS in traditional wired networks are

not directly applicable to wireless environments, where transmission speed is rela-

tively slow, interference is relatively high, and the network topology is very dynamic.

These characteristics do not exist in wired networks, but they pose a major challenge

in providing multimedia service to mobile users.

In this dissertation, we present our work toward the support of multimedia appli-

cations over wireless networks. Among many network functions in different layers,

1

two are especially targeted, namely, routing and renegotiable QoS support. Routing in

wireless networks is one of the most fundamental problems for mobile computing. Its

main purpose is to determine the path to connect two mobile stations. Renegotiable

QoS permits us to readjust resource allocation so as to optimize quality, with consid-

erations of dynamic topology and unreliable channel conditions in wireless networks.

By means of efficient wireless routing at the network layer and renegotiable QoSin

the application layer, the level of satisfaction of multimedia service users in wireless

networks will be greatly improved.

1.1 Background: Wireless Mobile Networks

Based on the hop distance of packet transfers, wireless networks can be classified into

two types: single-hop and multi-hop. The single-hop network generally requires pre-

configured, fixed infrastructures. It is aiming at the provision of wireless access in

a civilian area. The multihop network, on the other hand, does not rely on a fixed

infrastructure, thus can provide a more flexible service, for example, in a rural area.

These two different wireless networks are detailed below.

1.1.1 The Single-hop Wireless Network

In a single-hop wireless network, the whole service area is divided into several smaller

service regions called cells. In each cell, at least one base station is allocated to provide

network service to mobile hosts in the cell. The mobile host connects to the network

by establishing a wireless connection to the base station. The connections among

base stations are usually provided by high speed wired backbone. Fig. 1.1 shows an

abstracted model of single-hop network.

2

Figure 1.1: A Single Hop Network

Because of the wired backbone, wireless communications in single-hop network

only exist between a mobile host and the associated base station. The end to end

delivery of data packet relies mostly on the technology available for wired backbone.

The major challenge in single hop network is the hand off problem caused by host

mobility. The process of “hand off” happens when a host moves out of the transmission

range of the current base station, and enters a cell served by another base station.

In order to keep the connection alive and maintain a seamless packet delivery, extra

procedures have to be performed. Proposed schemes in this are can be found in [RW94,

PH95].

1.1.2 The Multi-hop Wireless Network

The drawback of a single hop network is that it requires a pre-established communica-

tion backbone, which is infeasible under certain circumstances. For example, battle-

field, disaster (flood, fire, earthquake) recovery, search and rescue, or exploration of an

3

Figure 1.2: A Multihop Network

unpopulated area, etc. Applications of these types require an instant infrastructure to

carry multimedia information. The multi-hop wireless mobile network, also called “ad

hoc” network, serves this need because it relies merely on the wireless communication

and allow host mobility. An abstracted example of multihop networks are shown in

Fig. 1.2.

In a multihop network, all hosts move freely and do not require any fixed commu-

nication infrastructures. However, due to the limit of radio transmitted power, not all

radios are within range of each other. Distinct from the “hand off” problem in single-

hop network, the challenge in multihop networks is how to relay data packets from one

host to another, and how to do it efficiently. Research in this area can be tracked back

to the ’70’s, when DARPA started the Packet Radio Network (PRNET) project [JT87].

The PRNET focused on the support of datagram traffic. In ’90, the PRNET successors,

WAMIS and GLOMO, focus on the issue of multimedia support.

4

1.2 Scope of This Research

Inspired by the WAMIS project, our work focuses on the QoS issue in multihop, ad

hoc networks. Following is the research proposed in our work.

1.2.1 Efficient Wireless Routing with QoS constraints

An efficient routing protocol is the foundation of a multi-hop wireless network. For

real time services, it is critical for a routing protocol to consider both reachability and

connection quality. Therefore, the goals of our research in wireless routing are: first,

the routing scheme has to be efficient so that the network information can be rapidly

disseminated to all hosts without wasting too many bandwidth. Second, the routing

scheme should provide link quality for the network management layer so that when a

new call is issued, the network management layer decides whether to accept thiscall

based on network conditions. Third, with QoS in mind, the routing algorithm will not

only find out a path can reach the destination, but also a path which satisfies users QoS

requirements.

1.2.2 Support of Renegotiable QoS

Multimedia applications place stringent requirements on networks for deliveringmul-

timedia content in real-time. Compared to the requirements of traditional data-only

applications, these new requirements generally include high bandwidth availability,

low packet loss rate, and a low variation in packet delivery time. Unfortunately, in a

wireless environment, no guarantee on these requirements can be safely made in the

fact of mobility. Therefore, in order to maintain same level of acceptable quality over

such networks, we need to take a new look at QoS support. Namely, we proposed

5

the concept of renegotiable QoS, which requires interaction between applicationand

network system. Based on this concept, we show that the information quality canbe

greatly improved even in an unreliable network.

1.2.3 Testbed Implementation

Implementation is another important goal for our research. With this goal in mind,

our work not only has to be valid from the theoretical point of view. It also has to be

robust enough to be implemented and used in a real environment. Our testbed is based

on portable, laptop PCs, equipped with wireless devices operating in the unlicensed

spread spectrum band. Our protocols are implemented in various sublayers. Several

experimental applications are also implemented to validate and verify the system.

1.3 Contributions of This Research

This dissertation presents research toward the goal of a multimedia, wireless mobile

networks. The document is organized according to the outline below:� Evaluation of Existing Wireless Routing Algorithms In order to study rout-

ing in a mobile environment, we survey the existing routing algorithms, for both

wired and wireless networks. Through a series of complex analysis and compre-

hensive simulations, we evaluate the pros and cons of different algorithms when

applied to wireless networks. Chapter 2 surveys the existing schemes for routing

in wireless networks.� Global State RoutingBased on the observation of existing routing schemes, we

found that the impact of control overhead and host mobility are seldom consid-

ered in the previous works. Realizing this, we proposed the Global State Routing

6

(GSR), which is an improved version of link state routing. GSR is more efficient

for wireless networks, and can be easily extended to deal with QoS routing. It

is also more accurate than traditional distance vector routing in tracking shortest

path in presence of mobility. The details of GSR is reported in chapter 3.� Fisheye RoutingThe principle of fisheye routing is to maintain high accurate

routing information for nodes close-by, but less accurate for nodes far away.

This approach handles the exchange of network information in a more efficient

way. Each node exchanges network information with its neighbor at two different

update frequencies. The higher frequency is used for exchanging information for

nodes withinn hop distance, where only a relatively small number of nodes are

covered. The lower frequency is used for exchanging information about nodes

out siden hop distance, the majority of the nodes. Through a series of simulation

and analyses, fisheye routing exhibits great reduction in control message size,

and the routing accuracy is about the same as those without fisheye. More details

on fisheye can also be found in chapter 3.� QoS RoutingQoS routing presents a great challenge in both wired and wireless

network. Our work towards it includes two steps: 1) routing with QoS informa-

tion, this can help the admission control function in preventing network overload;

2) find out a QoS satisfactory route, this can help load balancing in a low speed

wireless network. We report the results of our QoS routing in chapter 4.� Renegotiable QoS SupportQoS routing can provide a path which meets QoS

requirements at call setup time. However, it is not guaranteed that the QoSre-

quirements will be met in the life of the connection. In a wireless network with

host mobility, topology changes and interference in radio communication may

invalidate the initial guarantees. Realizing this, we have designed a renegotiable

7

QoS scheme that provides a renegotiation function between user applications and

network systems. The implementation of this work is reported in chapter 5.� Multimedia on demand system with QoS adaptationWith renegotiable QoS

support, we present a programming model for multimedia application such that

the information can be better preserved. Based on this model, an on-demand

audio system has been implemented and the information carried over the unstable

link is greatly improved. Chapter 6 has detailed description on this on demand,

QoS adaptive, audio system.

8

CHAPTER 2

Routing in Wireless Networks - A Review

Routing is the function in the network layer which determines the path from a source

to a destination for the traffic flow. In wireless networks, due to the host mobility,

network topology may change from time to time. It is critical for the routing protocol

to deliver data packets efficiently between source and destination. In the past, several

approaches were proposed to provide wireless routing by adapting techniques devel-

oped in the wired networks. In this chapter, we first introduce the network model that

we use through out this dissertation, then we survey the existing schemes proposed

for end to end routing in wireless networks, including traditional distance vector, link

state routing, as well as newer path-finding and on-demand routing, in the following

sections.

2.1 Network Model

The ad-hoc network under consideration is a homogeneous network such that all mo-

bile hosts have the same computation power, memory capacity and communication

capability. With this assumption, the network can be modeled as an undirected graphG = (V;E), whereV is a set ofjV j nodes andE is a set ofjEj undirected links

connecting nodes inV . Each node has a unique identifier and represents a mobile host

with a wireless communication device which has transmission rangeR (free space

9

propagation model), and an infinite storage space. Nodes can move around and ran-

domly change their directions of movement independently. An undirected link(i; j)
connecting two nodesi andj is formed when the distance betweeni andj becomes

less than or equal toR. Link (i; j) is removed fromE when nodei andj move apart,

and out of their transmission ranges.

2.2 Distributed Bellman-Ford

Many existing routing schemes for ad hoc wireless network are based on the distributed

Bellman-Ford’s (DBF) algorithm. These schemes are also referred to as distance vec-

tor (DV) schemes. In the distributed Bellman-Ford algorithm, every nodei maintains

a routing table which is a matrix containing distance and successor informationfor

every destinationj, where distance is the length of the shortest distance fromi to j and

successor is a node that is next toi on the shortest path toj. To keep the shortest path

information up to date, each node periodically exchanges its routing table with neigh-

bors. Based on the routing tables received with respect to its neighbors, nodei learns

the shortest distances to all destinations from its neighbors. Thus, for each destinationj, nodei selects a nodek from its neighbors as the successor to this destination (or

the next hop) such that the distance fromi throughk to j will be the minimum. This

newly computed information will then be stored in nodei’s routing table and will be

exchanged in the next routing update cycle. Fig. 2.1 shows an example of DV routing.

The advantages of DBF are its simplicity and computation efficiency due to its

distributed characteristic. However, it is well known that DBF is slow to converge

when topology change, and has the tendency to create routing loops, especially when

the link conditions are not stable [BG87]. These problems are described below.

10

D

1

3

2

4

S

dist(D)=1
next(D)=D

dist(D)=3
next(D)=5

dist(D)=0
next(D)=D

dist(D)=2
next(D)=1

dist(D)=2
next(D)=1

dist(D)=3
next(D)=3

dist(D)=2
next(D)=1

dist(D)=1
next(D)=D

2

Figure 2.1: An example of Distance Vector Routing

2.2.1 Looping in Distributed Bellman Ford

The existence of routing loops is due to the fact that in DBF, nodes compute the shortest

path and choose their successors in a fully distributed fashion, based on information

that may not correctly reflect the actual network topology. An example is shown in

Fig. 2.2.

The discussion of looping problem can also be found in [BG87]. Partial remedies

like split-horizonand poisoned-reversewere developed and used in wired network

protocol like RIP [Hed88]. However,split-horizonandpoisoned-reverseare still in-

sufficient for solving the loop problem in wireless networks [Gar89a].

2.3 Link State

Another algorithm that is also widely used in many existing routing protocols, such as

OSPF [Moy94], is the link state (LS) routing. Although LS routing is seldom used for

11

D

1

3

2

4

S

dist(D)=3
next(D)=3

dist(D)=2
next(D)=1

dist(D)=BRK
next(D)=-1

D

1

3

2

4

S

dist(D)=BRK
next(D)=-1

dist(D)=BRK

dist(D)=BRK
next(D)=-1

next(D)=-1
dist(D)=4

dist(D)=3

dist(D)=4
next(D)=4

dist(D)=3

dist(D)=4
next(D)=4next(D)=4

next(D)=3

dist(D)=4
next(D)=4

dist(D)=4
next(D)=4

next(D)=3

dist(D)=5
next(D)=5

2 2

Figure 2.2: Routing loop in Distance Vector Routing

wireless networks, it has more potential for providing customized routing solutionfor

various routing criteria. This is because paths are computed base on the global network

topology, as opposed to the abstracted network view reported by neighboring nodes.

An example of link state routing is shown in Fig. 2.3. In LS routing, whenever

a node detects a change in its local connectivity to, it floods a new link state packet

containing its updated local connectivity. Other nodes are notified of this change when

the link state packet arrives, so their view of network topology can then be modified

accordingly. From this aspect, LS responds faster to topology changes than DBF, and

is about the same as on-demand routing, which will be covered shortly. It computes

routes in a centralized fashion, so it is easy to prevent routing loops. However, since

LS also relies on flooding to disseminate information about the connectivity changes

of nodes, the control overhead of flooding makes LS inferior to DBF or on-demand

approach in a wireless mobile environment, despite the accuracy it provides. Another

problem in LS is that a node may fail to discover the true topology change if the whole

12

{S,1,4}

{2,4}

{S,2,3}

{1}

{D,2,3}
{1,4}

D

1

3

4

S

2

Figure 2.3: An example of Link State Routing

network has been divided into two parts and then recovered. Solution to this problem

can be found in [Jaf86].

2.4 Path Finding

New approaches based on DBF to provide loop-free routing specially for wireless

network have appeared recently, such as the Destination-Sequenced DistanceVector

(DSDV) [PB94] and the Wireless Routing Protocol (WRP) [MG95]. Even though

the looping problem is solved in these approaches, there is still a problem of routing

inaccuracy in DBF which may degrade network performance. This routing inaccuracy

is caused by the fact that in a network utilizing DBF, nodes don’t have a global view

of the network status; thus their routing decisions are made only locally optimized;it

does not necessarily guarantee a globally optimized solution in a mobile environment.

In addition, as DBF only maintains a single path to a destination, it lacks the ability to

adapt to link failures and it requires more extension works to support multicasting.

13

dist(D)=3
next(D)=3
pred(D)=1

dist(D)=2
next(D)=1
pred(D)=1

dist(D)=0
next(D)=D

dist(D)=1
next(D)=D
pred(D)=1

dist(D)=2
next(D)=1
pred(D)=1

dist(D)=1
next(D)=D
pred(D)=1

dist(D)=2
next(D)=1
pred(D)=1

D

1

3

4

S

2

dist(D)=3
next(D)=2
pred(D)=1

Figure 2.4: An example of Path Finding

An example of path finding is shown in Fig. 2.4. Here we see the computation for

the shortest path from node S to node D. Based on the path predecessor information

collectively received by node S, node S learns that in order to reach node D, it has to

visit node 1 first, and to reach node 1, it has to visit node 2 first. Thus a whole path

starting from node S, than node 2, than node 1, than node D, is computed.

2.5 On-demand Routing

Besides DBF, On-demand routing, also known as diffusion computation (DC) is an-

other scheme used for routing in wireless network, such as the Lightweight Mo-

bile Routing (LMR) protocol [CE95] and Temporally-Ordered Routing Algorithms

(TORA) [PC97].

In the on-demand routing scheme, a node builds up a route by flooding a query

to all nodes in the network. The query packet “picks up” the IDs of the intermediate

14

D

1

3

2

4

S

query(D)

query(D) query(D)

query(D)

query(D)

query(D)

reply(D)

D

1

3

4

S

query(D)

reply(D)

reply(D)

reply(D)

reply(D)

reply(D)

reply(D)2 2

Figure 2.5: An example of On-demand Routing

nodes and stores them in a path field. On detecting the query, the destination or any

other node who has already learned the path to destination answers the query by send-

ing a “source routed” response packet back to the sender. Since multiple responses

may be produced, multiple paths may be computed and maintained. After the paths

are computed, any link failure will trigger another query/response so the routing can al-

ways be kept up to date. Though approaches based on DC reflect higher accuracy and

faster response to network changes, they introduce excessive control overhead since

they require frequent flooding, especially when mobility is high and traffic is dense

and uniformly distributed. As a result, on-demand routing protocols are only suitable

for wireless network with high bandwidth, small packet transmission delays and very

sparse traffic.

2.6 Zone Routing

Zone routing [Has96] is another routing protocol designed for the ad hoc environment.

It is a hybrid of on-demand routing with any existing routing protocol. In zone routing,

15

each nodes defines its own zone as the nodes within certain distance of itself. Two

different routing schemes are required for zone routing. For routing inside the zone,

any routing schemes, including DBF or LS, can be used. The goal for this intra-zone

routing is to maintain a full information about the reachability of nodes within the

region. For the inter-zone routing, it uses the on-demand routing to find the path.

Combining these two routing schemes, zone routing operates like this: when there is

a traffic needs to be routed, it checks whether the destination is within the zone. If

it is, since the intra-zone routing scheme maintains the necessary information, it can

be routed directly. When it comes to route a traffic to a destination outside a node’s

zone, zone routing searches for the path by multicasting request packets to the border

nodes, using the shortest paths provided by the intra-zone protocol. If this destination

is known by some border nodes, the response packets will then be sent back to the

source. Otherwise, the border nodes keep requesting their border nodes, in the same

fashion, for a route to the destination.

The advantage of zone routing is its scalability, as it reduces the need for a large

storage for the routing table. But since it resembles the on-demand routing, it has the

same problem of connection delay, and the termination of request packets.

2.7 Summary

Since DBF computes routes distributedly based on abstracted information, it tends

to create routing loops and reacts slowly to a link failure. Link State routing suffers

from the flooding overhead, so does on-demand routing. None of them satisfies the

stringent requirement of supporting multimedia traffic in wireless networks. In order

to support multimedia traffic, the routing algorithm needs to compute routes subject to

different QoS constraints. This can be done best using global network knowledge, like

16

in link state. However, for efficiency, the ideal routing algorithm should not rely on

flooding to disseminate the information, since this may cause excessive control packet

overhead.

17

CHAPTER 3

Global State Routing

In this chapter, we present a new routing scheme for ad-hoc wireless networks. The

goal is to provide an accurate routing solution while the control overhead is kept low.

The network efficiency is achieved even when host mobility is high and network band-

width is limited. Our proposed scheme is named “Global State Routing” (GSR). Sim-

ilar to LS, GSR generates accurate routing decisions by taking advantage of the global

network information. However, this information is disseminated in the network in a

way that is more similar to DV. That is, the control packets are only exchangedlocally.

To reduce the control overhead GSR is composed of several techniques which willbe

described in the following sections. Along with a detailed description, the performance

of GSR and other protocols are compared at the end of this chapter.

3.1 The Protocol Overview

To introduce the concept of GSR protocol, we use the same ad-hoc wireless network

model defined in the previous chapter. Information that is maintained at each nodei
includes one list and three tables. They are: a neighbor listAi, a topology tableTTi,
a next hop tableNEXTi and a distance tableDi. Ai is defined as a set of nodes that

are adjacent to nodei. That is,Ai = fx j (x 2 V) and(link (i; x) exists)g. One entry

is allocated for each destinationj in tableTTi which contains two parts:TTi:LS(j)
18

andTTi:SEQ(j). TTi:LS(j) denotes the link state information reported by nodej,
andTTi:SEQ(j) denotes the timestamp indicating the time nodej generates this link

state information. Similar, for every destinationj, NEXTi(j) denotes the next hop to

forward packets destined toj on the shortest path, andDi(j) denotes the distances of

the shortest path fromi to j.
Additionally, a weight function,weight: E ! Z+0 , is defined for each link. If min-

hop shortest path is considered, it simply returns 1 if two nodes have direct connection.

Otherwise, it returns1. This weight function can be replaced with other functions for

routing with different metrics (e.g. bandwidth). Various metrics will be usedfor QoS

routing, we report them in Chapter 5.

3.2 Algorithm

The detailed pseudo code of GSR protocol is listed in Section 3.5. As shown in

NodeInit(i), each nodei initially starts with an empty neighbor listAi, and an empty

topology tableTTi. After its local variables are initialized, it learns about its neighbors

by examining the sender field of each packet in its inbound queue,PktQueue. That is,

assuming that all nodes can be heard byi arei’s neighbors, nodei adds these senders’

IDs to its list,Ai.
Nodei then invokesPktProcess(i)to process the received routing messages, which

contain the topology information prepared and disseminated by its neighbors. This

topology information is indeed the link states that used by link state routing. Proce-

durePktProcess(i)makes sure that only the most up to date link state information is

recorded by comparing the embedded sequence number,pkt:SEQ(j), with the ones

stored in nodei’s local memory, for each destinationj. If there is any entry in the in-

19

coming message that has a newer sequence number for destinationj, TTi:LS(j) will

be replaced bypkt:LS(j), andTTi:SEQ(j) will be replaced bypkt:SEQ(j).
After the routing messages are examined, nodei rebuilds the routing table based

on the newly computed topology table and then broadcasts the new information to its

neighbors. This process is periodically repeated.

3.2.1 Information Dissemination

The key difference between GSR and traditional LS is the way routing information

is disseminated. In LS, link state packets are generated and flooded into thenetwork

whenever a node detects topology changes. GSR does not flood the link state packets.

Instead, nodes in GSR maintain a link state table based on the up-to-date information

received from neighboring nodes, and periodically exchange it with their local neigh-

bors only. Information is disseminated as the link state with larger sequencenumbers

replaces the one with smaller sequence numbers. In this respect, it is similar to DBF (or

more precisely, the DSDV [PB94]) where the value of distances is replacedaccording

to the time stamp of sequence number.

To prepare the update message, the most intuitive way is to simply use the topology

table. But doing so may cause large size update message which consumes considerable

amount of bandwidth. To avoid that, GSR uses two techniques to reduce the size of up-

date message without sacrificing too much in routing accuracy. These two techniques

are fresh update and fisheye.

3.2.1.1 Fresh Update

Fresh update allows a node to disseminate only the information that is useful to at least

one of its neighbors. Consider the information for destinationj maintained at nodei,
20

if it is the oldest among alli’s neighbors, it is useless for nodei to disseminate this

information. By eliminating the updating for obsolete network information, the sizeof

routing message can be reduced.

0

5

1

2

4

3

198
221
63
29
298
84

SEQ

197
220
62
30
299
84

SEQ

196
219
62
29
299
85

SEQ

199
220
62
28
297
83

SEQ

197
220
64
27
298
84

SEQ

195
219
62
28
298
86

SEQ

Figure 3.1: Fresh update: phase 1

Two phases of message update are required in GSR. In the first phase, Each nodei
broadcasts a sequence number vector (SNV) that contains all destinations maintained

in its own local storage. This SNV indicates the “freshness” of each host information

that nodei is based on. In the second phase, nodei compares its own SNV with those

received in phase one, if nodei has an entry which has the oldest (smallest) sequence

number, nodei removes this entry from its update message. After nodei scan through

the entries for all destinations, the resulting update table is ready to be disseminated.

Fig. 3.1 and 3.2 show the two phases in fresh update. In Fig. 3.1, all nodes broadcast

their own SNV to their intermediate neighbors. Consider node 3 in Fig. 3.2, after

comparing all entries in its own SNV and SNVs from its neighbor nodes, 1 and 4, only

the entries that printed in bold are the ones worth for dissemination.

21

0

5

1

2

4

3

0:{1}
1:{0,2,3}
3:{1,4}
4:{5,2,3}

197
220
30
299

GST SEQ

Figure 3.2: Fresh update: phase 2

3.2.2 Fisheye

Another approach used to reduce the size of update message is called “Fisheye”. In

[KS71], Kleinrock and Stevens proposed the fisheye technique to reduce the size of

information required to represent graphical data. The original idea of fisheye is to

maintain high details for information within a range of a certain point of interest; and

less detail while the distance to the point of interest increases. For routing, this fish-

eye approach can be interpreted as maintaining a highly accurate network information

about the immediate neighborhood of a node, with progressively less detail as it moves

away from the node.

Fig. 3.3 illustrates the application of fisheye in a mobile, wireless network. In

this figure, we show the scope of fisheye for the center node. The small circles with

number inside represent the mobile hosts in the network. The large circles plot the

fisheye scope of the center node. The scope of fisheye is defined as the nodes that

22

1

2

3

4

5

6
7

8 9

10

11

1213

14 15
16 17

18 19

20

21

2223

24
25

26

27

28

29

30

31

32
34

35

36

Hop=1

Hop=2

Hop>2

9

Figure 3.3: Scope of fisheye

can be reached within a certain number of hops. In our case, three scopes are shown

and they represent the scope of 1-hop, 2-hop and 3-hop. Nodes that are located within

scopes of different hop distances are plotted as black, grey and white, representing

scope of 1-hop, 2-hop and 3-hop, respectively.

The reduction of message size is achieved by updating the network information for

nearby nodes at a higher frequency for better accuracy. For remote nodes which are

outside the fisheye scope, a lower frequency is used for smaller packet overhead in

average. The detailed operation of this fisheye update is listed in Section 3.5. Pro-

cedureRoutingUpdate(i)scans through the update message and filters out entries that

have hop distance larger than the fisheye scope. Fig. 3.4 depicts this operation. In this

figure, entries in bold face indicate the actual messages to be disseminatedinto the

network. The rest of the entries will still be sent out eventually, but at a muchlower

frequency. As a result, considerable amount of link state entries are suppressed so that

the message size is reduced.

23

0

5

1

2

4

3

0:{1}
1:{0,2,3}
2:{5,1,4}
3:{1,4}
4:{5,2,3}
5:{2,4}

1
0
1
1
2
2

GST HOP

0:{1}
1:{0,2,3}
2:{5,1,4}
3:{1,4}
4:{5,2,3}
5:{2,4}

2
1
2
0
1
2

GST HOP

0:{1}
1:{0,2,3}
2:{5,1,4}
3:{1,4}
4:{5,2,3}
5:{2,4}

2
2
1
1
0
1

GST HOP

Figure 3.4: Message reduction using fisheye

3.2.3 Shortest Path Computation

FindSP(i)creates a shortest path tree rooted ati. In principle, any existing shortest

path algorithm can be used to create the tree. In this paper, however, the procedure

listed in Section 3.5 is based on the Dijkstra’s algorithm [Sed83] with modifications

so that the next hop table (NEXTi) and the distance tables(Di) are computed in parallel

with the tree reconstruction.

At nodei, FindSP(i)initiates withP = fig, then it iterates untilP = V . In each

iteration, it searches for a nodej such that nodej minimizes the value of(Di(k) +weight(k; j)), for all j andk, wherej 2 V � P , k 2 Ai andweight(k,j) 6= 1. Once

nodej is found,P is augmented withj, D(j) is assigned toD(k) +weight(k; j) and

NEXTi(j) is assigned tonexti(k). That is, as the shortest path fromi to j has to go

throughk, the successor fori to j is the same successor fori to k.

24

3.3 Complexity

In this section, we analyze the complexity of the GSR scheme and compare it withtwo

other routing schemes: DBF and LS. The complexity is studied under five aspects:

1. Computation Complexity (CC): the number of computation steps for a node to

perform a routing computation after an update message is received;

2. Memory Complexity (MC): the memory space required to store the routing in-

formation;

3. Data Complexity (DC): the aggregate size of control packets exchanged by a

node in each time slot;

4. Packet Complexity (PC): the average number of routing packets exchanged by a

node in each time slot;

5. Convergence Time (CT): the times requires to detect a link change.

Protocol CC MC DC PC CT

GSR O(N2) O(N � d) O(d) +O(N � d)=I O(1) O(D � I)
LS O(N2) O(N2) O(jN j)=I O(N) O(D)
DBF O(N) O(N) O(N)=I O(1) O(N � I)

Table 3.1: Complexity Comparison

Table 3.1 shows the results of our comparison. In the table,N denotes the number

of nodes in network (jV j), D denotes the maximum hop distance, the diameter, in

25

the network,d andI denote the degree of node connectivity and the routing update

interval, respectively.

GSR and LS have the same memory complexity and computation complexity as

both of them maintain the network topology for the whole network and use Dijk-

stra’s algorithm to compute shortest path routes. Dijkstra’s algorithm requires typi-

cally O(N2) steps to compute the shortest paths from one source to all destinations,

although it is possible to reduce it toO(NlogN) [Sed83].O(N2) memory space is re-

quired to store the network topology represented by a connection matrix. As for DBF,

it has complexity ofO(N) for computing and memory, as it only keeps the distance

information for each destination, and computes shortest paths in a distributed fashion.

The data complexity of GSR isO(d) + O(N � d)=I, which is smaller than LS’sO(jEj)=I, and is close to DBF’sO(N)=I, asd is usually a small number. In GSR, with

the fisheye technique, each node broadcasts information about allO(d) intermediate

neighbors within its fisheye scope in each routing update. For the rest of of nodes, GSR

updates them at a longer update interval, thus the amortized cost of updating the remote

hosts isO(N � d)=I, whereI is the long update interval used for remote hosts update.

LS, on the other hand, requires each node not only broadcasts its link state packets to

all hosts in the network, but also forward link state packets received from others for

the purpose of flooding. Therefore, in a extremely high mobility environment where

all nodes detect topology changes in almost every update interval, excessive amount

of these small link state packets will be flooded into the network. As a result,a node

may process as many asN link states flooded by itself and the rest. This issue, to be

addressed shortly, can be verified through simulations.

Similar to the data complexity, as LS transmits one short packet for each link state

update, its packet complexity can be as high asO(N) when the mobility is high. On the

26

other hand, both GSR and DBF broadcast their routing messages in group, so fewer,

but longer packets can be used to optimize the MAC throughput.

Lastly, the convergence time of GSR is also superior than that of DBF. This is

because GSR and LS both compute route based on the global network information, a

breakage on a link can be determined by a node as long as it receives the information

of this link. DBF try to compute an alternate path to bypass the broken link. If the

alternate path does not exist, DBF cannot detect it until the hop count for that node is

iterated to the value of infinity, which can be as large asN .

3.4 Performance Analysis

Unlike in [MG95, PB94, CE95, PC97], where a wireless network is simulatedby a

static network with higher link failure rate, we used a truly mobile environment in our

simulator to determine the connectivity among mobile hosts. The strategy of using

static network with link failures is not sufficient to represent a true mobile environ-

ment where link failures are mostly caused by node mobility. Therefore, we study the

performance of GSR as well as other schemes by simulating a truly mobile network

with different protocols implemented.

3.4.1 Simulator

The simulation is programmed in C++ to simulate a virtual environment of 500�
500 unit2. An arbitrary number of nodes, representing the mobile hosts, can move

independently within this virtual space. The maximum moving speed and the number

of nodes are given at run time. We execute the simulation for the cases of node number

ranging from 40 to 80 and moving speed ranging from 0 to 150 units per time slots.

27

The moving pattern of nodes in the simulation is based on a realistic trajectory

model instead of the Brownian� model. Fig. 3.5 illustrates these two models. The

difference between the two models is: in the realistic model, the new movingdirection

at time�+1 is computed based on the previous direction at time� plus a steering angle,

which is generated randomly by a normal distribution process with mean = 0, deviation

= 10 degrees. That is, at each simulation time tick, a node changes its direction by a

range of -10 to +10 degrees. In the Brownian model, the moving direction of a node at

time�+1 is generated randomly from a uniform distribution process ranging from 0 to

360 degree, so it is independent of its previous direction at time� . In both models, the

moving speed is determined by a uniform process range from 0 to the maximum speed

specified at run time. We in fact have evaluated the routing scheme for both models.

Interestingly enough, its performance is usually better in the Brownian model than in

the trajectory model. This is so because, in the Brownian model, a node’s movement

is independent of its previous status, hence the moving effects in a series of iterations

are not correlated; thus, nodes are usually in the same region in the long run. In the

realistic model, however, nodes are more likely to keep moving on their trajectories.

Thus the topology change is more significant than what is observed in the realistic

model. However, as we believe that the trajectory model operates closer to the real

world than the Brownian model, it is the one used in the rest of this paper.

Additionally, the following assumptions are also used in the simulation:

1. no node failure during simulation;

2. node number is always constant in the run time of simulation;

3. time slotted system;�We borrow this name from the Brownian motion of molecules.

28

ϕ(τ)|v()|

|v(+1)|
ϕ(τ+1)

ϕ(τ)
|v()|

Realistic Model Brownian Model

ϕ(τ)

ϕ(τ+1)

rand_normal(0,10) ϕ(τ+1) =

|v()| = rand_uniform(0,V)

rand_uniform(0,360)

|v(+1)|

τ

τ τ

τ

ττ

ϕ(τ+1) = ϕ(τ) +

τ+1|v()| = |v()| + rand_uniform(-ACC,ACC)

Figure 3.5: Two Mobility Models

4. radio transmission range is fixed atR, which is specified at the beginning of the

simulation;

5. two nodes can hear each other only if they are within each other’s transmission

range. That is, the open space channel model is used.

Based on the mobility models and parameters, we developed simulators for three

routing schemes: DBF, LS and our GSR. DBF and LS are based on the scheme de-

scribed in [Tan96]. Both DBF and GSR can be executed with a routing update interval

(I) specified at run time. By default,I is set to 3 (one update per three time slots),

while in LS, nodes flood link state packets whenever they detect changes in theirlocal

connectivities.

3.4.2 Performance Measurements

Two metrics are used to evaluate the routing performances: routing inaccuracy and

control overhead. Using them, we examine the impact to the performance for different

mobility values, update intervals and radio transmission distances.

29

3.4.2.1 Routing Inaccuracy

Routing inaccuracy is checked by comparing the next hop table with the tables gen-

erated by an off-line entity. This off-line entity has the knowledge of exact network

topology at every time slot and computes the optimal solution for each node. However,

giving the same weight to error entries regardless of their distance to the source is not

fair. As an incorrect next hop value for a node which is still far away, may be less

critical than those for a node that is close by. Therefore, we used both weighted and

unweighted in our comparison.

The unweighted inaccuracy for nodei, Ai, is defined as:Ai = Xnexti(k)6=nextiM (k) 1
This is simply a count for the number of different entries.

The weighted inaccuracy is defined as:Âi = 1D Xnexti(k)6=nextiM (k)(D � hopi(k) + 1)
And the overall routing inaccuracy is computed by averagingAi for unweighted case,

or Âi for weighted case, for alli 2 N :Inaccuracyi = 1N Xi2N(Ai or Âi)
whereN , nexti(), hopi(), D are defined in section III, andnextiM () is the next hop

table computed by the off-line algorithm.

For example, let us consider the nodei in a network with its radiiD equals to 8. If

the next hop information for nodej is different than what is computed by the off-line

entity, and the hop distance indicated by the off-line table is 5, the effect of this error

30

is computed as1� (D� 5 + 1)=D. SubstitutingD with 8, we get0:5 for this error. If

unweighted inaccuracy is used, we get1 for this error.

Fig. 3.6 to 3.8 show the unweighted inaccuracy of different routing schemes at

different node densities, using. Fig. 3.9 to 3.11 show the weighted inaccuracy. As

these figures show, LS performs best in all conditions, since it reacts fastest to the

topology changes. GSR performs less accurately than LS in some cases, but by not

much. This is because in a mobility environment, a change on a link far away from

the source does not necessarily cause a change in the routing table at the source. Thus

using a slower update frequency won’t affect the routing accuracy by much. In fact,

Fig. 3.6 to 3.11 all show that the accuracy of GSR is almost identical to LS, and is

much better than DBF.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

In
ac

cu
ra

cy

Mobility (unit/timeslot)

40 nodes

DBF
LS

GSR

Figure 3.6: Inaccuracy: 40 nodes

31

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

In
ac

cu
ra

cy

Mobility (unit/timeslot)

60 nodes

DBF
LS

GSR

Figure 3.7: Inaccuracy: 60 nodes

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

In
ac

cu
ra

cy

Mobility (unit/timeslot)

80 nodes

DBF
LS

GSR

Figure 3.8: Inaccuracy: 80 nodes

32

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

In
ac

cu
ra

cy
 (

W
ei

gh
te

d)

Mobility (unit/timeslot)

40 nodes

DBF
LS

GSR

Figure 3.9: Weighted inaccuracy: 40 nodes

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

In
ac

cu
ra

cy
 (

W
ei

gh
te

d)

Mobility (unit/timeslot)

60 nodes

DBF
LS

GSR

Figure 3.10: Weighted inaccuracy: 60 nodes

33

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

In
ac

cu
ra

cy
 (

W
ei

gh
te

d)

Mobility (unit/timeslot)

80 nodes

DBF
LS

GSR

Figure 3.11: Weighted inaccuracy: 80 nodes

3.4.2.2 Control Overhead

The control overhead is evaluated by examining the average number of routing control

packets exchanged on each link. The reason for using the number of control packets

instead of the total size of control packets is due to the characteristics of the regular

radio devices and MAC layer protocol. It is known that a radio device spends more

time to switch from receiving mode. This typically exceeds the time used forsending

a small packet. If spread spectrum is used, the acquisition time will become even more

significant. Based on these considerations, we believe that the number of packets

transmitted is as important as the cumulative number of control data bytes for the

overhead evaluation.

In LS scheme, we account for each link state packet that is generated by a node

either because it detects the topology changes, or it receives one from its neighbors

and forwards it for the purpose of flooding, as each of them requires a transition for

the radio device from receiving mode to transmitting mode. For DBF type algorithm,

34

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160

C
on

tr
ol

 O
ve

rh
ea

d
(p

ac
ke

t/n
od

e/
tim

es
lo

t)

Mobility (unit/timeslot)

40 nodes

DBF
LS

GSR

Figure 3.12: Packet number: 40 nodes

a routing table update is counted as one packet. This is under the assumption that the

routing table can be transmitted in a constant number of MAC layer frames.

Fig. 3.12-3.14 show the average number of control messages on y axis for different

algorithms, versus the maximum moving speed of moving nodes on x axis. The unit

on y is the average number of messages transmitted on each link in each timeslot, and

the unit on x axis is unit distance per time slot.

As expected, both DBF and GSR algorithms have a flat distribution of packet over-

head, which means the overhead of both cases remain constant regardless of the mobil-

ity, because nodes in both cases exchange routing information periodically with only

their adjacent neighbors. On the other hand, with LS schemes, the overhead is much

worst than DBF and GSR which means more packets are generated. The figures also

show that as degree of mobility becomes higher, the overhead for LS increases. This

validates the argument that due to the flooding mechanism, LS is not suitable for high

mobility environments.

35

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160

C
on

tr
ol

 O
ve

rh
ea

d
(p

ac
ke

t/n
od

e/
tim

es
lo

t)

Mobility (unit/timeslot)

r0 nodes

DBF
LS

GSR

Figure 3.13: Packet number: 60 nodes

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160

C
on

tr
ol

 O
ve

rh
ea

d
(p

ac
ke

t/n
od

e/
tim

es
lo

t)

Mobility (unit/timeslot)

80 nodes

DBF
LS

GSR

Figure 3.14: Packet number: 80 nodes

36

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

C
on

tr
ol

 O
ve

rh
ea

d
(b

yt
es

/n
od

e/
tim

es
lo

t)

Mobility (unit/timeslot)

40 nodes

DBF
LS

GSR

Figure 3.15: Message size: 40 nodes

Fig. 3.15 to 3.17 show the average message size exchanged in each time slot. Obvi-

ously, GSR out performs LS with the help of fresh update and fisheye. And similar to

DBF, the increase in mobility doesn’t cause any impact on the message size,since both

DBF and GSR update their routing information at a fixed update frequency, unlike LS

where routing updates are driven by topology changes.

3.4.3 Simulation Results

As the purpose of GSR is to provide a routing scheme that is efficient in a wireless

network with node mobility. We evaluate the impact to its performance due to changes

in mobility, update interval and radio transmission range.

3.4.3.1 Mobility Impact

As Fig. 3.15 shows, the control overhead for LS increases rapidly as nodes move at

higher speeds. In a real network, this represents that an unmanageable flood of packets

37

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

C
on

tr
ol

 O
ve

rh
ea

d
(b

yt
es

/n
od

e/
tim

es
lo

t)

Mobility (unit/timeslot)

60 nodes

DBF
LS

GSR

Figure 3.16: Message size: 60 nodes

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

C
on

tr
ol

 O
ve

rh
ea

d
(b

yt
es

/n
od

e/
tim

es
lo

t)

Mobility (unit/timeslot)

80 nodes

DBF
LS

GSR

Figure 3.17: Message size: 80 nodes

38

overwhelms the radio channel and dominates the packet queue in each node. On the

other hand, mobility has no effect on control overhead for DBF and GSR. This is

reasonable because in LS, routing updates are event driven: a node sends a link state

packet into a network whenever changes in its neighborhood are detected. And a large

amount of this link state packet will then be generated due to the flooding mechanism.

Apparently, as node mobility increases, it is more likely for a node to detect topology

changes and then tremendous amounts of control packets are triggered.

The impact of mobility to routing inaccuracy is, however, distinct from the impact

to control overhead. Overall, higher mobility causes higher inaccuracy for allthree

schemes. LS always performs the best in every mobility value, as shown inFig. 3.6.

LS sustains inaccuracy equal to or lower than 15% even at a node speed of 160 units per

time slot, while DBF provides poorly acceptable routing solutions. Our GSR performs

between DBF and LS: in the low speed range, GSR performs closely to LS; while in

the high speed range, it becomes worse but is still better than DBF.

3.4.3.2 Update Interval

The update interval plays an important role for the routing overhead and inaccuracy.

As we show earlier, LS provides a highly accurate routing solution because update

packets are sent out immediately whenever a node detects a topology change. There

is no delay for such updates. Thus, the update interval in LS is in fact the system

minimum time resolution. For GSR, Fig. 3.18 shows that the inaccuracy is degraded

or improved by adjusting the routing interval up or down. It is obvious that the same

improvement holds for DBF, except that the improvement is not very significant asthe

accuracy is already poor even in the low mobility conditions (Fig. 3.19). As expected,

we note that more improvements can be observed when mobility is high.

39

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

C
on

tr
ol

 O
ve

rh
ea

d
(b

yt
es

/n
od

e/
tim

es
lo

t)

Mobility (unit/timeslot)

GSR

I = 1 slot
I = 2 slots
I = 3 slots
Link State

Figure 3.18: Inaccuracy at different update intervals: GSR

For GSR, the improvement of control overhead when using longer update interval

can be clearly observed in Fig. 3.20.

3.4.3.3 Radio Transmission Range

The range of radio transmission determines the degree of node connectivity. As shown

in Fig. 3.21, the larger the transmission range the larger the connectivity degree. Thus

the larger the control packet size for GSR and LS, as we pointed out in in Table 3.1.

Fig. 3.22 shows the decrease in the routing error rate as the transmission range

increases. It is because that a larger transmission range implies that more nodes can

be reached in one hop without requiring a routing decision. However, as indicated

in [GT95], the spatial reuse is less efficient when the transmission range is large.

It is interesting to note that in Fig. 3.22, the worst case doesn’t happen whenR =80, which is the smallest range in our simulation. Instead, it happens at aboutR =150, regardless of what the mobility is. This is because that the average hop distance

40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100 120 140 160

C
on

tr
ol

 O
ve

rh
ea

d
(p

ac
ke

t/n
od

e/
tim

es
lo

t)

Mobility (unit/timeslot)

DBF

I= 1 slot
I= 2 slots
I= 3 slots
I= 4 slots

Figure 3.19: Inaccuracy at different update intervals: DBF

0

10

20

30

40

50

60

0 20 40 60 80 100

C
on

tr
ol

 O
ve

rh
ea

d
(p

ac
ke

t/n
od

e/
tim

es
lo

t)

mobility (unit/timeslot)

GSR

I = 1 slots
I = 2 slots
I = 3 slots
Link State

Figure 3.20: Overhead at different update intervals: GSR

41

0

10

20

30

40

50

60

50 100 150 200 250 300 350 400 450 500

D
eg

re
e

of
 C

on
ne

ct
iv

ity

TX Range

0 unit/timeslot
25 units/timeslot
50 units/timeslot
50 units/timeslot
50 units/timeslot

Figure 3.21: Connectivity vs. TX. range

increases as transmission range decrease. That is, more hops are required to reach a

destination. Therefore, routing errors at far away destinations are more likely to be

eliminated by the inaccuracy weighting function.

42

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

50 100 150 200 250 300 350 400 450 500

R
ou

tin
g

In
ac

cu
ra

cy

TX Range

0 unit/timeslot
25 units/timeslot
50 units/timeslot
75 units/timeslot

100 units/timeslot

Figure 3.22: GSR: Inaccuracy vs. TX. range (I=3)

3.5 List of Detailed Algorithms

proc NodeInit(i) �
foreach j 2 V doAi(j) �;Di(j) 1;

NEXT i(j) �1;SEQi(j) �1;
odAi Ai [fx j link (i; x) existsg;TTi:LS(i) Ai;Di(i) 0;
NEXT i(i) i;ti 0;SEQi(i) ti;

.

43

proc Node(i) �
NodeInit(i);
while TRUE do

if PktQueue6= � !! packet received

foreachpkt 2 PktQueuedoAi Ai [fpkt:sourceg
if pkt:type= SeqNumVectType

foreachx 2 N do

SeqVecti(x) Min (SeqVecti(x);Pkt:seq(i))
od

fi

if pkt:type= UpdateMessageType

PktProcess(i; pkt)
fi

if pkt:type= DataPktType

PktForward(Pkt)
fi

od;
fi

FindSP(i);
if (clock() modUpdateInterval) = 0

RoutingUpdate(i);
fi

CheckNeighbors(i);TTi:LS(i) Ai;
od

.
44

proc RoutingUpdate(i) �ti ti + 1;TTi:SEQ(i) ti;TTi:LS(i) �;
foreachx 2 Ai doTTi:LS(i) TTi:LS(i) [fxg;
od

message:SenderId i;
message:TT fi; TTig;
foreachx 2 N do

if (clock() modGlobalUpdate) 6= 0
if (SeqV ecti(x) < TTi:SEQ(x)) ^ (Di(x) < FishEyeScope)

message:TT message:TT [fi; TTi:LS(x)g;
fi else

message:TT message:TT [fi; TTi:LS(x)g;
fi

od

broadcast(j;message) to all j 2 Ai;
.

45

proc FindSP(i) �
Dijkstra’s shortest-path algorithmP fig;Di(i) 0;
foreachx 2 fj j (j 2 V) ^ (j 6= i)g do

if x 2 TTi:LS(i)
thenDi(x) weight(i; x);

NEXT i(k) k;
elseDi(x) 1; NEXT i(k) �1;

fi

od

while P 6= V do

foreachk 2 V � P; l 2 P do

Find (l; k) such that

weight(l; k) = minfDi(l) + weight(l; k)g;
odP P [fkg;Di(k) Di(l) + weight(l; k);
NEXT i(k) NEXT i(l);

od

.

46

proc PktProcess(i; pkt) �
source pkt:source;TTi:LS(j) TTi:LS(j) [fsourceg;
foreach j 2 V do

if (j 6= i) ^ (pkt:SEQ(j) > TTi:SEQ(j))
then beginTTi:SEQ(j) pkt:SEQ(i);TTi:LS(j) pkt:LS(i);

end

fi

od

.

proc CheckNeighbors(i) �
foreach j 2 Ai do

if weight(i; j) =1Ai = Ai � fjg;
fi

od

.

47

CHAPTER 4

Routing with QoS Reports

Up to now, most of the routing protocols that have been proposed for ad hoc wire-

less networks optimized the solution for only one metric: hop distance. For datagram

traffic, single metric routing based on hop distance may be sufficient. However, when

multimedia traffic is concerned, these single metric routing schemes may cause net-

work congestion on some particular links thus the QoS is degraded.

Based on this consideration, we figure that in order to provide QoS support, it is

necessary to effectively control the total traffic that can flow into thenetwork system.

And the key to a successful admission control is QoS routing. The goals for QoS

routing are two-fold. First, the QoS routing schemes can help admission control.That

is, routing protocol not only provides route to destination, but also computes the QoS

that is supportable on a route during the process of route computation. The network

control mechanism decides whether to accept a new connection request by examining

whether the route given by the route finding scheme still has sufficient QoS to adapt

this new connection. Secondly, QoS routing schemes that consider multiple constraints

provide better load balance by allocating traffic on different paths, subject tothe QoS

requirement of different traffic.

In this chapter, we present our approaches to achieve the goal of QoS routing.

These approaches include QoS extensions in DBF type routing, and a heuristic multi-

metric QoS routing that based on GSR.

48

4.1 Motivation

Here, we briefly discuss our motivation and the effectiveness of the proposed QoS

routing approach in attacking the multihop design problems outlined in section 4.2.

Connectivity and QoS maintenance:Routing and QoS information is computed

and disseminated using a distributed algorithms (DBF+QoS), which is robustto node

failures and to topology changes. Convergence to the optimal solution at steady state

is guaranteed. Loops are prevented during transients. The times to converge is some-

what slower than in conventional distance vector or link state algorithms. However,

our experiments show that performance is adequate even at sustained speeds, up to

50 unit/timeslot. The link and processing overhead is about twice that of conven-

tional distance vector algorithms since both distance and bandwidth vector must be

now transmitted and processed.

VC connection setup/maintenance:The knowledge of available bandwidth to

destination enables the source to exercise CAC (Call Admission Control), thus avoid-

ing network overload. Furthermore, the source can adjust the voice/video code param-

eters (e.g., quantization, frame rate etc.) to meet the available bandwidth constraints.

Once a VC connection has been set up, if the primary path fails (because of mobility

or channel degradation), alternate routing provides instant backup (assuming that the

alternate path is disjoint from the min hop path).

Congestion prevention:At call set up time, bandwidth information permits to en-

force effective CAC and to renegotiate rates, if necessary. Furthermore, during the

life of a connection, when the primary path fails because of motion, the alternaterout-

ing and selective discarding features help alleviate congestion by effectively rerouting

traffic and reducing the rate at the same time.

49

Multicast support: Most of the existing multicast routing schemes (e.g., the MBone

DVMRP, PIM, etc) as well as multicast signaling and reservation schemes (e.g., RSVP)

rely on an underlying routing protocol. In the case of multimedia traffic, the routing

protocol must support QoS (more specifically, bandwidth) guarantee. Thus, the pro-

posed QoS routing algorithm is ideally suited to extend to the wireless domain all the

various multicast schemes available in the wired network. In particularly, for multicas-

ting within the wireless network, a novel scheme, inspired to CBT (Core Based Trees),

was been developed, which relies on QoS routing and exploits the cluster structureof

the network [CG].

Wired net interconnection: When a VC is being set up from the wired net (say,

ATM) to a destination in the wireless net, the gateway (e.g., base station) can renegoti-

ate QoS (on the basis of the bandwidth advertised by the wireless network) in orderto

correct the possible wired/wireless mismatch. For example, the rate of thesource can

be reduced, by reducing quantization levels for example. If the connection is a mul-

ticast connection originating from the wired network, it may be undesirable to reduce

the rate for the entire multicast group. Instead, rate adaptation via selective discard-

ing of high resolution substreams (generated by multilayered encoding and carried by

separate VCs) can be performed at the gateway. Selective discarding can also be used

on an already established connection, to adjust to dynamic bandwidth fluctuations in

the wireless network.

Soft handoff: In a multihop wireless network connected to the wired network via

gateways, the handoff procedure from one gateway to the next (as the user moves) is

quite different from that used in single hop, cellular networks. In the multihop case,

the switch-over is determined not by received signal strength, but by hop distance and

available bandwidth to the next gateway. In fact, handoff in the cluster TDMA is

50

simpler than in the cellular case because the dynamic clustering algorithm automati-

cally change in signal strength, by reassigning the user to a new cluster. Furthermore,

the routing algorithm maintains the ”old” connection while the user is negotiating the

”new” connection through the next gateway. Once the user decides to switch over to

a new gateway, it signals the source (in the wired network) to open a new VC through

the gateway. For a short period of time, both connections (via the old and the new

gateway) will coexist, until the old one is timed out. The ability to communicateband-

width information to the wired source is important in the case of transition between

heterogeneous wireless environments (e.g., from indoor high speed wireless LAN to

outdoor low speed wireless MAN). By communicating the bandwidth expected in the

wireless MAN, the user warns the source to reduce the rate, thus assuring softdegra-

dation during the indoor to outdoor transition.

4.2 VC Management

In order to support multimedia service, it is necessary for a network to providecon-

nection oriented scheme so that the resource can be computed and reserved. To this

extend, most researches adapt the “soft state”, or called “Virtual Circuit” method to

achieve this goal. In WAMIS [GT95], Cluster/TDMA and VC with Fast Reservation

is proposed for transporting real time traffic. In the following discussion, weassume

such scheme is used in our ad hoc wireless model.

The Cluster/TDMA provides a easy solution for bandwidth reservation. This is be-

cause gateway which connects neighboring clusters alternate between different spread-

ing codes from slot to slot. For example, the gateway may receive or transmiton code

C1 in slotsf1,3,5,7,9g and receive/transmit on code C2 in slotsf2,4,6,8,10g. Note

that in our routing implementation the gateway can only forward packets acrossclus-

51

ters (i.e., it cannot be used to relay packets internally in a cluster). Itthen follows that

for any path crossing the gateway there cannot be common free slots between incoming

(into the gateway) and outgoing (out of the gateway) link.

C1

C2

C3

C4

A

G1 G2
G3

B

Figure 4.1: Path crossing several clusters

This property greatly simplifies the computation of available bandwidth on a given

path as well as the computation of shortest paths with bandwidth constraints. In fact,

consider a generic path carrying several cluster, as shown in Fig. 4.1. Withineach

cluster, there is still the possibility of free slot overlap between incoming and outgo-

ing links (through the cluster head). This overlap, however can be easily accounted

for locally, allowing us to compute the available bandwidth within each cluster, eg.BW (G2; G3) in Fig. 4.1 Across clusters, there is no free slot overlap. Thus the end to

end bandwidth is simply given by the minimum of the intra-cluster bandwidth. In our

example:BW (A;B) = min (BW (A;G1); BW (G1; G2); BW (G2; G3); BW (G3; B)
(4.1)

An important corollary of EQ. 4.1 is that we can now apply polynomial time bandwidth

constrained shortest path algorithms such as described in [Ger86]. That is, given a

target bandwidth B, we can compute the shortest path between two arbitrary nodes

with bandwidth� B (assuming such path exists) inO(HlgH) time, whereH is the

number of nodes. Moreover, as shown in [Ger86], we can compute all paths between

a given node pair, routed by increasing hop distance and bandwidth.

52

4.3 QoS Extension for Distributed Bellman-Ford

As well known, distance vector routing schemes, such as distributed Bellman-Ford,

are subject to looping and counting-to-infinite problems [PB94]. In a mobile wireless

network, while topology changes are caused by the host motion rather than the link

exception, the looping induced by topology changes can severely affect performance.

Thus, it is imperative to use a loop free routing scheme. Several distance vector loop

free schemes have been reported in the literature [Gar89b][PB94]. We built a QoS

routing protocol based on DSDV (Destination Sequenced Distance Vector)[PB94], be-

cause it provides loop-freedom while making minimum modification to the B-F rout-

ing structure.

Before we describe our QoS extension, let us introduce the DSDV in brief. In

DSDV, each routing table entry carries hop distance and next hop for all available des-

tinations (as in B-F). In addition, each entry is tagged with a sequence number which

originates from the destination station. The routing information is advertisedby broad-

casting periodically and incrementally. Upon receiving the routing information, routes

with more recent sequence numbers are preferred as the basis for making forwarding

decisions. Of the paths with the same sequence number, those with the shortest hop

distance will be used. That information (i.e., next hop and hop distance) is entered in

the routing table, along with the associated sequence number tag.

When the link to the next hop has failed, any route through that next hop is imme-

diately assigned an1 hop distance and its sequence number is updated. When a node

receives a broadcast with an1 metric, and it has a more recent sequence number to

that destination, it triggers a route update broadcast to disseminate the importantnews

about that destination. In [PB94], the DSDV protocol is shown to guarantee loop-free

paths to each destination at all instants.

53

The QoS extension to this DBF protocol is intuitively. In addition to the hop dis-

tances to all destinations, the routing table is now augmented with the information for

available bandwidth observed on each node. The available bandwidth indicates how

many extra bandwidth can be provided by the path leads to the destination. During

the routing computation, DBF computes the shortest path based on the information

provided by neighboring nodes. Similarly, the available bandwidth is also computed.

With this information, each node decides whether to accept for connection request

based on the available bandwidth to the destination. By doing so, the network QoS

can be better preserved as the congestion is less likely to happen.

4.4 QoS Extension for Global State Routing

Since GSR maintains a global view of network status, the extension of QoS in GSR

simply requires augmentation of QoS parameters for each link state entry. Unlike in

DBF, where routes are computed in a distributed fashion, and detailed networkinfor-

mation is lost during the information dissemination, GSR computes a more optimized

route based on the global information. However, this computation for a QoS route

that satisfies multiple addictive metrics (e.g. delay, distance, etc.) is an NP-complete

problem [WC95]. To overcome this, we use a heuristic algorithm, which is similar

to [Iwa96], to compute a sub-optimal route that also satisfies two metrics:end-to-end

delay and bandwidth.

4.5 Simulation Results

The performance of the proposed QoS routing schemes was evaluated in a represen-

tative network example similar to the one used in previous chapter. We first study the

54

improvement of QoS routing based on DBF, then we show that result based on GSR.

The improvement is measured by evaluating the real time traffics carried by the VC

schemes. We assume a congested network so that each source of the VC is generating

packet at a constant data rate. We monitor total packet throughput versus offered traffic

load as stations move at various speeds. In order to compare, the same traffic patterns

are also applied to a network performing standard min-hop routing.

Additionally, real time traffic is modeled by a continuous source which generates

data packets at constant rate. Because of real time constraints, packetswill be dropped

if their “age” in the network exceeds the TTL (time to live) value. In our experiments,

we study traffics of two types, TTL=5 and TTL=9, representing high delay sensitive

traffic and low delay sensitive traffic, respectively.

4.5.1 DBF

As described before, based on the information provided by QoS routing (i.e., number

of slots available on the shortest path to destination), a node can determine whether to

accept a new call. During VC rerouting following a change in topology, congestion

may arise if there is no sufficient bandwidth to support the initial QoS. In this case,

queues tend to grow large. Based on packet age, expired packets are dropped.

The results are reported in Fig. 4.2. As expected, DBF with QoS extension achieves

higher reception rate than standard DBF (in terms of packets received). With DBF+QoS

routing, the packet received ratio is about 5% more than standard DBF for traffic with

TTL=5. Also as expected, less significant improvement is observed for the less QoS-

sensitive traffic (TTL=9).

55

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
ac

ke
t r

ec
ei

ve
d

ra
tio

Mobility (unit/timeslot)

TTL=5, with QoS
TTL=5, without QoQ

TTL=9, with QoS
TTL=9, without QoS

Figure 4.2: Packet Received Ratio for DBF+QoS

4.5.2 GSR

Fig. 4.3 shows the results when QoS is applied to GSR. As shown in the figure,

GSR+QoS does exhibit more substantial improvement in terms of packet received ra-

tio. And since GSR provides more accurate routing information, the overall reception

rate is also higher than DBF+QoS. More over, standard GSR without QoS achieves

even higher throughput than DBF+QoS. This is also due to the help of routing with

accurate network information.

If we examine the behavior as a function of mobile station speed, we notice that

GSR+QoS performs better in low speed range. When the speed increases to 50 unit/timeslot,

the improvements are less significant. This is because at high speeds (i.e., very high

topology change rate), GSR is penalized by the effect of fisheye, which causes slower

convergence for part of nodes (i.e. remote nodes) than it is in link state routing.

56

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
ac

ke
t r

ec
ei

ve
d

ra
tio

Mobility (unit/timeslot)

TTL=5, with QoS
TTL=5, without QoQ

TTL=9, with QoS
TTL=9, without QoS

Figure 4.3: Packet Received Ratio for GSR+QoS

4.6 Summary

In this chapter we have briefly presented the results of applying QoS information to

different routing schemes for ad hoc wireless networks, which includes an “augmen-

tation” of existing loop free DBF routing algorithm, DSDV, and our proposed GSR.

Our proposed GSR routing scheme with QoS extension can be more effectively used

in the support of real time traffic in multihop wireless network, and find applications

in two important scenarios: (a) stand alone, multimedia, multihop networks, and; (b)

wireless, multihop extensions of an ATM network or an Internet. In either case, the

QoS feature of the routing algorithm is instrumental in establishing and maintaining

virtual circuits. In the ATM interconnection case, the QoS routing informationcan be

used to assist in the handoff of the mobile host between different ATM base station.

The simulation results show that both DBF and GSR have improvements on net-

work performance with this augmentation of QoS information. But more substantial

improvements are observed in GSR, because of a more precise network information.

57

Also shown in these results is the tendency to low throughput in all schemes when

mobility increases. This indicates that in a very high mobility environment,all sophis-

ticated routing will fail; and flooding will probably be the most effective scheme for

this situation.

58

CHAPTER 5

QoS Renegotiation

Even with efficient QoS routing in the network layer, it is still not sufficient to provide

QoS guarantee at a constant level in ad hoc wireless networks. Hence, there isa need

for renegotiating existing QoS on an established connection, since the characteristics

of a wireless link may well change during the lifetime of a connection due to mobile

hosts’ movements or external interference. In this chapter we study the QoS issues

from system aspect. We present a QoS scheme with renegotiation capability,define an

API (application programming interface) for the access to this scheme and describe our

implementation for this QoS API on the SWAN system, a wireless ATM network,and

summarize its performance using measurements obtained from a series of experiments

based on different fault scenarios.

5.1 Introduction

Wireless networking is inherently unreliable. Various forms of interferenceon the

wireless link result in changing bandwidth availability and low effective bandwidths

due to high error rates. These problems are exacerbated as users move around. Faults

of this kind require a fresh look at how such networks can be used to support applica-

tions which demand some degree of predictability. We adopt the approach of ATM, in

which QoS is used to form a service contract between applications and the network.

59

We build on that work by recognizing that an unreliable wireless network demands

a more dynamic approach to resource usage. Many applications can deal with vary-

ing bandwidth availability once provided with sufficient knowledge of the resource

climate. Typical examples include audio and video applications which can altertheir

rate or encoding to match the available bandwidth or deal with different error rates.

Our contribution is a QoS scheme which builds on this notion of adaptation by pro-

viding explicit renegotiation. This is similar in spirit to the feedback mechanisms for

non real-time traffic in ATM, but differs in that we aim to provide feedback right up

to the application level, not just to the sending host [SM96]. Thus we incorporate

renegotiation as a key part of our QoS API.

Four elements compose our approach. First, we engage the support for multiple

VCs over a wireless channel, and the usage of a set of per-VC QoS parameters to

influence bandwidth allocation. Second, we define a group of interface routines for

opening, accessing and closing VCs, as well as being able to assign QoS parameters.

These parameters include a description of the traffic type as constant bit-rate(CBR),

variable bit-rate (VBR) or available bit-rate (ABR). CBR and VBR applications have

real-time requirements, e.g. 64 Kbps speech and compressed video. ABR is used for

more traditional applications which can accept much more variability in service. Con-

sistent with our emphasis on adaptation, we accept values for preferred and minimum

bandwidths for a VC. Third, we design a centralized QoS manager to coordinate the

access to a wireless channel. Using parameters supplied via the API, the manager per-

forms admission control, monitors performance on the channel and initiates renegoti-

ation when necessary. Fourth, for each VC, the application provides a callback routine

which is used by the QoS manager to provide feedback as part of renegotiation.

The QoS scheme described above is successfully implemented in a wireless ATM

60

network: SWAN [Agr96], developed in the Lucent Bell Laboratories.

5.2 The SWAN Environment

Wide Area ATM Fabric

Local Area Fabric

Base-stations

Wired Host

Base-stationsCompute
Server

Media Server (video source)

Personal Terminal
(small, simple, low cost) Laptop Computers

Laptops can move between
base-stations and remain
connected

Figure 5.1: SWAN system architecture

The SWAN (Seamless Wireless ATM Network) system, shown in Fig. 5.2, is a

testbed for wireless networked computing. SWAN consists of mobile units which are

usually laptops, and base stations which are connected to a backbone network [Goo90].

Both the base stations and laptops are equipped with a radio interface known as the

FAWN (Flexible Adapter for Wireless Networking) [TC94] card that allows them to

communicate with each other wirelessly. Each base station has a range of 100feet

inside a building, providing access to a local area network for mobiles in their vicinity.

As well as communicating with the base stations the mobiles can communicate with

each other, allowing them to create ad-hoc networks that continually change as the

mobiles move around.

The FAWN card provides a very programmable platform on which to develop in-

terface software, which is important in a testbed. FAWN uses a 2.4 GHz ISMband

61

radio modem whose raw bit rate is 624 Kbps which is divided between incoming and

outgoing connections. The modem has a raw error rate of1�10�5 for a signal strength

of -77 dB which translates to a packet loss of one in 1500 for our 64 byte packets. The

FAWN adapter has four 64 byte packet buffers implemented in hardware to store buffer

complete packets and therefore improve performance. The FAWN card is controlled

by an ARM610 processor which takes the packets from the buffers, processes them

and makes them available to a host computer via a PCMCIA interface.

A simplified diagram of SWAN’s channel access scheme is shown in Fig. 5.2. A

TDD (Time Division Duplex) scheme is used to share the bandwidth between the base

station and the mobile host. The traffic of each direction alternatively transmits a data

burst of 10 ATM cells at a time and then switches to receiving mode for data from the

other direction. Due to the overhead introduced by the TDD scheme and the ATM cell

structure used in SWAN, the available bandwidth is 240 Kbps in each direction.

UPSTREAM DOWNSTREAM UPSTREAM DOWNSTREAM

10 ms 10 ms Time
1 ms (turn-around time)

Figure 5.2: TDD scheme of SWAN

Several other wireless communication devices are available for the localarea net-

work market (e.g. WaveLAN, RangeLAN), and most of them are based on or akin to

the IEEE 802.11 or CSMA/CA (Carrier Sense Multiple Access with Collision Avoid-

ance) schemes. Though a CSMA/CA scheme simplifies the hardware implementation

and provides reasonable efficiency in supporting datagram traffic, its random access

characteristic cannot provide multimedia applications with a predictable bandwidth

62

available on the link. The SWAN system, as described previously, was designed with

ATM traffic in mind. Its TDD scheme assures a constant bandwidth can be granted,at

least when the channel condition is stable. Therefore, SWAN provides a good platform

for realizing our proposed QoS scheme.

Unfortunately, despite the direct support of ATM cells and TDD MAC scheme,

challenges still exist in SWAN when considering the support of multimedia traffic in

a wireless, mobile environment. These challenges include (1) low radio bandwidth;

(2) increasing likelihood of erroneous packets due to lower SNR; (3) lack of a mecha-

nism to support traffic of different classes and (4) lack of an interface to provide link

QoS information to upper layer applications. We will address our approach to these

problems when describing our QoS implementation in the next section.

5.3 System Implementation

To achieve QoS renegotiation in a unreliable wireless environment, We designa mech-

anism that exists in the operating system level (the interface at which theapplications

request resources) for an application to request a grade of service for a networkcon-

nection and for the application to be informed about changes on that connection. In

this section, we describe our approach in detail from two aspects: (1) the policy, in

which we determine how an application can specify its QoS requirements and how it

can be notified of failures so it may adapt to a new environment; (2) the mechanism,

where we address the realization of the policy. Fig. 5.3 shows the layout of SWAN

system.

63

management
ATM connection

ATM data transport
and switching

management

ATM
connection

and
Cell scheduling

multi-priority queues

QoS
Manager and

Cell scheduling

multi-priority queues

QoS
Manager

Wired ATM
adapter

user application

Air Interface Control

Medium Access Control

QoS API

Air Interface Control

Medium Access Control

QoS API

Radio Interface Board
radio signal

(b) At mobile host

Radio Interface Board

(a) At gateway

Figure 5.3: Layout of SWAN system software

5.3.1 Policy

Our goal is to use existing interfaces and facilities provided by widely accepted op-

erating systems, instead of creating an ad-hoc system or proposing a new, proprietary

interface. Therefore we chose Linux, a UNIX-like system, to develop our work.Also,

since SWAN is designed to provide ATM connectivity, we consider the QoS negotia-

tion on a per-VC basis. In our approach, the VCs are instantiated as UNIX devices,

such that one may use theopen() system call to obtain a VC and theclose()

system call to release the VC. During the connection, data is sent and received via

write() andread() system calls.

As soon as a circuit is activated (opened), it is given a default service grade of

unspecified bit rate (UBR) service. This allows applications that do not have QoS

demands to receive the best service effort from the system. If an application does wish

to specify its bandwidth need, it does so with one or moreioctl() system calls (I/O

control).

64

By performing theseioctl() operations, an application may select ABR, CBR,

or UBR services, and specify the associated QoS parameters. Currently,two band-

width parameters (minimum and preferred) have been considered. Supporting these

two bandwidth parameters allows an application to specify a range of acceptable band-

width so that it doesn’t get informed each time when the supported bandwidth changes.

The way an application should be notified of QoS failure is also considered. Using

existing UNIX facilities, the signal mechanism allows the operating system to send a

“QoS failure” message to the application. The application uses thesignal() system

call to setup an exception handler to process this QoS failure event. A similar policy

exists for the reverse operation, where an application receives a signal when the service

failure is removed and returns to its original performance.

5.3.2 Mechanism

In this section we describe in detail the realization for the above policy.We first in-

troduce the usage and functionality of this API, by which the applications specify the

QoS parameters associated with the VC. Then we draw the core of the implementation.

5.3.2.1 The API

The first aspect of creating the desired interface is to provide a device driver for the

VCs and the associated API to manage them. The VCs are implemented as devices

within the UNIX file systems to which the standard system calls can be applied. The

entire API of our implementation is shown in Fig. 5.4. Since it is implemented using

standard UNIX I/O operations, a user program can manipulate its connection just as

an ordinary character device.

The QoS requests are made through theioctl() system call with the application

65

specifying parameters for the type of service, minimum or preferred bandwidth, etc.

The parameters we have implemented for the QoS negotiation are listed in Table 5.1.

The default values shown in the table indicate that an UBR service is assumed to

reserve the system minimum bandwidth, which is zero, if the application does not

make any QoS request.

int open(char *vc_dev_name, int mode);
/* acquire a VC, return -1 if requested VC is in use */

int close(int vc_des);
/* release a VC */

int read(int vc_des, char *buff, int n);
/* read n bytes from a VC */

int write(int vc_des, char *buff, int n);
/* write n bytes to a VC */

int ioctl(int vc_des, int qos_request, long arg);
/* request, negotiate a QoS attribute of a VC */

int signal(int QoS_SIGNAL, void *qos_handler(int));
/* set up a handler for QoS changes */

Figure 5.4: List of the API

QOSREQUEST ARGUMENT DEFAULT

VC SERVICE ABR,CBR,UBR UBR

VC MIN BW n (Kbps) 0 (Kbps)

VC PREFBW m (Kbps) 0 (Kbps)

Table 5.1: ioctl(): parameters

With this API, the application can be easily programmed using a traditional client/server

model: (1) the client and the server first request a VC usingopen(). (2) If the VC

can be opened successfully, the required QoS can be provided by usingioctl()

with parameter values based on the traffic characteristic. (3) Data is transmitted using

66

read() andwrite(). (4) When the program terminates, VCs should be released by

usingclose(). The system routinesignal() listed in Fig. 5.4 is not really a QoS

operation; instead it is used by the application to setup its own QoS interrupt handler

which can renegotiate new QoS agreements when the original service requirements

cannot be met.

5.3.2.2 Multiple Queues Scheme

read() close()open() write() ioctl()
vc_open() vc_read()vc_write() vc_ioctl()

vc_schedule()

INPUTOUTUT

vc_rx()

vc_release()

KERNEL

USER

FAWN HARDWARE

qos_mgr()

qos_table[]

qos_handler()

Fawn Control Unit

Figure 5.5: The architecture for multiple queues scheme

Fig. 5.5 illustrates the block diagram that shows the relationship between userap-

plications and FAWN hardware, as well as the interaction among each module. On the

top, applications in the user level communicate with the QoS mechanism through a set

of interface routines (the API). A group of priority queues are dynamically allocated in

the kernel space. Each queue corresponds to an individual VC. Once a VC is opened

and its QoS is negotiated throughioctl(), which interacts with the QoS manager

67

(qos mgr()) for service and bandwidth specification, the QoS manager translates the

requested service type and bandwidth in terms of time slots for carrying data cells in

each data burst. This information will be kept in a QoS table (qos table()) that

will later be referred by the VC scheduler (vc schedule()). The QoS manager is

also responsible for monitoring the overall link quality through the FAWN hardware,

and providing feedback directly to application when the requested QoS can not be sat-

isfied or when a better service is available. This feedback is implemented through the

UNIX signal, as described in Section 4.2.1.

The VC scheduler reads packets from those activated queues and sends them to

the FAWN hardware for transmission. It serves these multiple queues in a “round-

robin” fashion which allows a control of QoS granularity such that one circuit willnot

dominate the data path with a large chunk of data.

5.4 System Functions

Currently, two major functions provided in this system are bandwidth reservation and

QoS renegotiation. They are the keys to providing multimedia traffic support in wire-

less networks.

5.4.1 Bandwidth Reservation

In SWAN, the radio channel in use is shared between a base station and a mobilehost

in a TDD fashion. Thus the allocated bandwidth can be represented in terms of the

number of time slots devoted to a connection. For example, a connection granted with

one slot in each data burst is served at the bit rate of 24 Kbps (240 Kbps/ 10 slots) in

FAWN’s TDD scheme.

68

During bandwidth reservation, the QoS manager is responsible for converting the

bandwidth requirements into the necessary number of time slots for transmittingthe

data to meet the bandwidth guarantees. If the time slots cannot be allocated, the band-

width request will be rejected by the QoS manager. UBR service is provided by placing

data in slots that are unreserved or unused by CBR/ABR circuits. In addition to pro-

viding service to queues of different QoS requirements, a starvation preventionscheme

is also utilized to prevent starvation on UBR service. In this scheme,at least one data

slot is reserved and shared among all UBR queues in a “round-robin” fashion so no

UBR connection will be starved even if some of them are heavily loaded. This avoids

any dominate usage of one application over the bandwidth of the wireless link.

5.4.2 QoS Renegotiation

In a wired network, QoS is usually guaranteed for the life time of each connection.

In a wireless network with host mobility, however, such a guarantee is not realistic

due to distance, noise or channel fading, etc. On the other hand, many multimedia

applications have used algorithms that can adapt to bandwidths that users specify.For

instance, several video transmission schemes (nv, vic, etc.) can adjusttheir resolution

and frame rates to fit the bandwidth parameters that they are given; several audio appli-

cations may adjust their sampling rate and level of quantization based on the channel

bandwidth. Such properties have not been utilized for a self-adjusting multimediaap-

plication because of the lack of QoS feedback from the traditional packet networklike

the Internet, or even some ATM networks.

In our work, the signaling mechanism we propose informs the applications of the

changes in QoS. The applications can benefit from this mechanism by simply setting

up interrupt handling routines so that when they are notified of a change in QoS, they

69

can adjust their data transmission algorithm based on the current QoS information.

This signaling mechanism was implemented in the QoS manager which has a direct

access to the FAWN hardware to learn about the current status of radio link. Forex-

ample, when the QoS manager detects the decrease in radio bandwidth, it first reduces

the service to the UBR traffic; If such a reduction is not sufficient to guarantee the

requested bandwidth for all ABR and CBR traffics, it then reduces the ABR/CBR ser-

vice rate to its minimum requirement. Finally if the bandwidth is still not sufficient,

the QoS manager will prorate the assigned bandwidth on all CBR and ABR connec-

tions and signal the corresponding handlers created by the applications to notify the

change of QoS. Upon receiving the signal from the QoS manager, the handler in each

application can decide whether to accept the newly assigned QoS, to terminate the

connection, or to renegotiate a new QoS through the provided API.

5.5 Fault Tolerant Experiments and Analysis

We conducted two experimental studies to verify the implementation of our QoS scheme,

and assess the effectiveness of this scheme as a fault tolerant mechanismin the pres-

ence network failures. These experiments are described as follows.

5.5.1 QoS Renegotiation Experiment

The first experiment studies the effect of signal to noise ratio on a wirelesslink in the

SWAN system. As signal to noise ratio decreases the number of erroneous packets

received increases, which maps to a decrease in available bit rate over the link. We

plot the performance of the system as the bit rate decreases (in other words as theerror

rate increases) by measuring the traffic through the system for a system basedon UDP

70

datagram transmission (non QoS system) as well as our QoS based system.

In the experiment we assume that there are three data streams, A, B and C shar-

ing the wireless link from a mobile to a base station that is connected to the network.

Stream A is an ABR stream like anftp file transfer which can use as much data rate

as possible up to some maximum. In our experiment this maximum was 48 Kbps.

Streams B and C are CBR streams, like those used in an uncompressed video trans-

mission. Stream B needs 72 Kbps and stream C 96 Kbps. Stream C can operate at the

lower bit rate of 48 Kbps if it is informed of the change. It can achieve this by reducing

the number of frames per second that it sends.

5.5.1.1 Variation of Throughput for the Non-QoS Case

��

��

��

�$Y
DLOD

EOH
�WK

URX
JK

SX
W�S

HU�
VWU

HD
P�

�.E
SV

�

��

�
7RWDO�WKURXJKSXW��.ESV�

��� ��� ��� ��� ��

6WUHDP�$

6WUHDP�&

6WUHDP�%

��

Figure 5.6: Realizable throughput for a system without QoS

The graph in Fig. 5.6 shows the variation of actual throughput versus the avail-

able data throughput for each of the streams A, B and C. The system’s available data

71

throughput varies along thex axis from 240 Kbps down to zero. The shaded regions

in the graph indicate a range of possible bitrates that data streams achieve, and the

actual data rate tends to oscillate between the maximum and minimum values in each

region. The three streams, A, B and C are presented to the communication channel. In

the first region from 240 to 216 Kbps of throughput, streams A, B and C (whose total

requirement is 216 Kbps) are accommodated.

In the second region, from 216 through about 150 Kbps, the total bandwidth re-

quirements of all the channels cannot be satisfied, and they begin to interfere with

each other. The scheduler attempts to give one third of the total data rate to each of the

channels. Streams B and C can consume the third that they are given. However,stream

A under-utilizes the available data rate because it only needs 48 Kbps, while a third of

the bandwidth in this region varies from 72 to 96 Kbps. This means that there is spare

throughput that streams B and C attempt to use. Both streams have the potential of

getting their full bandwidth at some instances of time, thus the minimum bandwidth in

this region is set by a third of the available data rate and the maximum bandwidth by

the maximum data rate that can be sent by each stream. Even though stream A’sdata

rate requirements do not exceed one third of the available data rate, it is interfered with

by streams B and C which are using some of that capacity by putting large packetsin

the single queue which delay stream A’s packets.

The final range is from 144 through 0 Kbps. Here all three streams can consume a

third of the available bandwidth and compete for the bandwidth evenly.

5.5.1.2 QoS Version

In our implementation of the QoS scheme, all the queues are sharing the available

bandwidth of 240 Kbps (with no errors). As the number of errors increases over the

72

7RWDO�WKURXJKSXW��.ESV�

��

��

��

�

$%5��6WUHDP�$

&%5��6WUHDP�&
&%5��6WUHDP�%

��

��� ��������� �����$Y
DLOD

EOH
�WK

URX
JK

SX
W�S

HU�
VWU

HD
P�

�.E
SV

�

Figure 5.7: Realizable throughput for a system with QoS

link the effective data rate for each of the queues decreases proportionately.Because

the QoS scheme allocates bandwidth on a slot basis the granularity of the available

data rate is one tenth of the total available bandwidth.

The graph in Fig. 5.7 shows how each of the streams A, B and C respond to vari-

ations in the available bit rate. When there are no errors on the link streamA can

operate at 48 Kbps (consuming two of the ten available timeslots), stream B operates

at 72 Kbps and stream C at 96 Kbps. As the error rate increases slightly both streams

B and C need extra timeslots to continue to be provided with their required bit rate.

One slot comes from slack in the system (only 9 of the 10 were in use initially) and the

other comes from stream A, which is an ABR stream and is downgraded to 1 timeslot.

As the data rate reduces further, eventually stream C is unable to have its requested 96

Kbps. At this point the QoS manager sends it a signal telling it to renegotiate its re-

quired bit rate, and since it can operate at 48 Kbps it does so. At about 50 Kbps stream

73

C needs 3 timeslots to provide the 48 Kbps. This allows stream A to use another two

timeslots for its ABR traffic. As the error rate increases the two CBRstreams consume

more timeslots, and correspondingly the bandwidth available for stream A reduces. At

an error rate of about 95 Kbps stream B needs another timeslot to satisfy its data rate

needs. However, since stream A always needs at least 1 timeslot and the CBR traffic

of stream B cannot support a lower bit rate, it is renegotiated to zero. This makes more

bandwidth available for stream A, but as the error rate further increases it gives that

bandwidth to the CBR stream C which eventually stops when the error rate rises to

about 185 Kbps, when the throughput falls to 55 Kbps.

5.5.2 Network Link Failure Experiment

The objective of the next experiment is to examine whether our QoS VC architecture

and implementation scheme truly provides the required fault tolerant mechanisms in

delivering the service it guarantees, and to compare the results with a network without

QoS assurance. In this experiment, we consider link faults due to the failure of radio

interface, particularly when the mobile stations move out of the radio range. That is,

the quality on a failed link will degrade to a level where no data can be transmitted,

and therefore traffic needs to be rerouted to another link in order to maintain session

continuity.

5.5.2.1 Network Topology and Traffic Flow Assumptions

We consider a multi-hop wireless topology based on SWAN environment as shown in

Fig. 5.8. There are four nodes in this network topology: Node A, Node B, Node C, and

Node D. Five SWAN radio links are set up for communication between these nodes,

marked as Link 1 through Link 5 in Fig. 5.8. Without losing generality, we made the

74

Node A

Node B Node D
(Destination)

(Source)

(Source)

Node C (Source)

Link 1

Link 5

Link 4

Link 2

Link 3

Figure 5.8: Topology for a network link failure experiment

following assumptions during the our experiment:

1. Nodes A, B, and C are source nodes while node D is a destination node.

2. Initially, Node A sends a CBR traffic (CBR video 1, abbreviated asv1) to Node

D via Link 1, Node B sends an ABR traffic (ABR datagram, abbreviated asd1) to

Node D via Link 2, and Node C sends a CBR traffic (CBR video 2, abbreviated

asv2) to Node D via Link 3.

3. Bothv1andv2are uncompressed video sessions transmitted at frame rate of 0.5

frame/sec and 1 frame/sec, which yield the constant bit rate of 73 Kbps and 145

Kbps, respectively. The trafficd1 is designed to represent the ordinary datagram

traffic thus we assume it may consume all the bandwidth that is left available.

4. Links 4 and 5 are robust rerouting links in the presence of link failures. When

Link 1 fails, v1 from Node A will be routed to Node B via Link 4, then delivered

to Node D via Link 2. Similarly, Node C will redirectv2 to Node D via Link 5

and Link 2 in the presence of Link 3 failure.

75

5. When Link 2 fails, the ABR traffic from Node B will be redirected to Node D

through Node A (not Node C).

Note these nodes could communicate with other network components (not shown

here) via wired links or other wireless links.

5.5.2.2 Impact on bandwidth utilization

To examine the impact on bandwidth utilization on a particular SWAN link, we con-

duct an experiment to measure transmission efficiency when different traffic sources

have to be rerouted to share bandwidth of another link in the presence of link faults.In

this experiment, the event of fault on Link 1 is at time 15th sec., and later the fault is

recovered at time 85th sec. The event of fault on Link 3 starts at time 35thsec., and its

recovery happens at time 130th sec. During the link down time, the associatedtraffic

is rerouted to Link 2, based on the decision made by the network routing function.

50

100

150

200

0 20 40 60 80 100 120 140 160 180

C
o
n
su

m
e
d
 b

a
n

d
w

id
th

 p
e
r

st
re

a
m

(K
b
p
s)

Time(sec)

v1 starts v1 ends

v2 starts v2 ends

d1(datagram)
v1(video 1)
v2(video 2)

Figure 5.9: Received bandwidth in Link 2 using VC-QoS

76

Fig. 5.9 shows the effect of link failure to the bandwidth usage on Link 2 with

respect to various traffic sessions. At the beginning, trafficd1 is able to use up all the

bandwidth until Link 1 fails. When Link 1 fails, trafficv1 is rerouted to Link 2 by

the routing mechanism. The QoS scheme on Link 2 will then allocate bandwidth used

by d1 to v1, since ABR has lower priority than CBR. Similarly, when Link 3 fails,v2

is granted the required bandwidth after rerouting andd1 can only use the bandwidth

that is left afterv1 andv2. In Fig. 5.9 we also see thatd1 regains bandwidth after the

recovery of Link 1 and Link 3.

As a comparison we repeat the same experiment using a non-QoS scheme (UDP/IP).

The result is shown in Fig. 5.10. In this figure, we observe that due to the lack of a QoS

mechanism, the amount of bandwidth that a connection can utilize is related to how

aggressive the traffic source is. As we have described,v1 generates data at 73 Kbps,

which is much less aggressive thand1. Therefore between time 15th and the 85th sec.,

the quality ofv1 suffers tremendous fluctuations by having to compete withd1. Since

v2 is more aggressive (about 145 Kbps) thanv1, thus between the 35th sec. and the

85th sec., the observed bandwidth shows that all these three sessions get about 1/3 of

the bandwidth (Althoughv1 is in fact slightly less than the other two). Whenv1 stops

at time 85th second,v2andd1both get half of the bandwidth. Also note the fluctuation

between time 15th and 35th sec. is more significant than that between time 85th and

130th sec. This is becausev1 transmits video frames slower (0.5 frame/sec) and tends

to fall behind the competition withd1. Howeverv2 transmits video at a faster pace (1

frame/sec), so it can share the bandwidth withd1 more competitively. Moreover, due

to the overhead of UDP/IP headers, the maximum bandwidth observed by the receiver

here (220 Kbps) is less than previously (240 Kbps) when using QoS VC scheme.

As clearly observed, in this UDP experiment where no QoS is guaranteed, and

77

packets are rerouted correctly after link faults, none of the video sessions get the band-

width they require. Consequently, they become unattractive in their real-time appli-

cations. Furthermore, video sessionv1 suffers great fluctuations during its link fault,

making the bandwidth it grabs from another link annoying and intolerable to its re-

ceivers.

50

100

150

200

0 20 40 60 80 100 120 140 160 180

C
o
n
su

m
e
d
 b

a
n
d
w

id
th

 p
e
r

st
re

a
m

(K
b
p
s)

Time(sec)

v1 starts v1 ends

v2 starts v2 ends

d1(datagram)
v1(video 1)
v2(video 2)

Figure 5.10: Received bandwidth in Link 2 using UDP

5.5.2.3 Impact on Delay Jitter

We also examine the impact to the delay jitter due to a link fault. This time, however,

we consider the fault on Link 2 that carries ABR traffic. According to assumption 5

in Section 5.5.2.1, the routing function in network layer reroutes the ABR traffic from

Link 2 to Link 1 after the link fault occurs. The distributions of inter-framedelay of the

traffic v1 carried by Link 1 before and after the traffic rerouting is shown in Fig. 5.11

and Fig. 5.12.

78

Fig. 5.13 and Fig. 5.14 present results performed under the UDP protocol for the

purpose of comparison. The results are as expected: under the QoS VC scheme, the

delay jitter is well controlled even in the presence of the extra traffic dueto link fault.

On the other hand, using the UDP protocol experiences a completely different result.

V1has a decent delay distribution before Link 2 fails (Fig. 5.13); but once Link 2 fails

andd1 are rerouted to Link 1, the delay jitters exhibit uncontrolled and unexpected

delays(Fig. 5.14). Table 5.2 summarizes the results obtained in Fig. 5.11 through

Fig. 5.14. We see the UDP (with no QoS) experiences severe delay jitter problems

(23.6% overhead) in a heavy traffic situation. Our QoS VC mechanism, on the other

hand, is very stable and efficient. Though in Table 5.2 it seems the QoS VC scheme

introduces more overhead (2.6%, computed as the extra delay in relative percentage to

the UDP with no background traffic) than the UDP does when no other load is added,

overhead introduced by the QoS VC scheme is still less significant then the overhead

caused by the TCP/UDP/IP headers.

0

50

100

150

200

250

300

350

0 0.5 1 1.5 2 2.5 3

F
ra

m
e
 C

o
u
n
t

Inter Frame Time(sec)

Uncompressed Movie

Figure 5.11: Before Link 2 fails, with QoS support

79

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5 2 2.5 3

F
ra

m
e
 C

o
u
n
t

Inter Frame Time(sec)

Uncompressed Movie

Figure 5.12: After Link 2 fails, with QoS support

Transmission scheme QoS-VC UDP(no QoS)

Network load Heavy None Heavy None

Mean delay (sec) 1.224 1.224 1.474 1.193

Overhead 2.6% 2.6% 23.6% 0%

Variance 0.056 0.056 0.112 0.064

Table 5.2: Summary of delay jitters observed in two schemes

80

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5 2 2.5 3

F
ra

m
e
 C

o
u
n
t

Inter Frame Time(sec)

Uncompressed Movie

Figure 5.13: Before Link 2 fails, without QoS support

5.6 Summary

In this chapter, we propose a new concept of renegotiating QoS between network sys-

tem and applications in the ad hoc wireless network. We define such renegotation

scheme with an API which allows applications to specify the required QoS for a con-

nection. Our QoS VC scheme delivers guaranteed QoS when the radio link is stable.

When the quality changes, the applications gets feedback from this mechanism. Thus

instead of an inadequate performance due to insufficient and varying bandwidth, the

traffic source has a chance to adjust and best utilize the changing link quality without

dropping the connection.

The scheme has been successfully implemented on the SWAN system, with ABR,

CBR and VBR supports made available in our current prototype. Modern multimedia

applications can be classified into these three categories. The results obtained from the

experimental studies on QoS management in the presence of network failures show

81

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5 2 2.5 3

F
ra

m
e
 C

o
u
n
t

Inter Frame Time(sec)

Uncompressed Movie

Figure 5.14: After Link 2 fails, without QoS support

that our QoS implementation on the wireless ATM network is a valid, efficient, and

powerful mechanism which provides guaranteed service quality in an unpredictable,

error-prone mobile environment.

82

CHAPTER 6

Adaptive QoS for Multimedia Applications in Wireless

Networks

There is currently a wide variety of multimedia applications that deliver audio and

video over a network. For instance, VIC [MJ95] and VAT [KHW96] are multimedia

applications widely used in Internet. However, few of these applications have mecha-

nisms which can take advantage of QoS information from the network, such as packet

loss rate, delay jitter and available bandwidth so as to achieve a flexibleoperation under

varying network conditions. As a result, adverse traffic conditions can cause signif-

icant degradation in the quality of a multimedia stream in environments like Internet

or wireless networks, where packet loss can be large and packet delivery time cannot

be guaranteed. As reported in [BV98], the perceived audio quality drops sharply as

packet loss reaches 20% for non-adaptive applications even if packet retransmission

techniques are used to replace lost packets.

Hence, applications operating in such environments must be able to dynamically

adjust the characteristics of the multimedia stream to the changing network condi-

tions. In this paper we propose an adaptation scheme for audio applications based on

our QoS Notification Programming Model, in which senders use QoS feedback in-

formation from the receivers to dynamically select audio encoding most appropriate

to the reported network conditions. The selection of audio encoding is based on the

principle of media-scaling. By this principle, the bitrate (and, hence, the quality) of an

83

audio or a video stream is varied to be consistent with the available bandwidth.

Similar concept of application adaptation on data rate has been addressed in [Sis97].

However, this work focused on a traditional wired network, where lost packets are

mostly caused by congestion. In that case, adaptation of data rate may be sufficient

to improve the audio or video quality. Our work deals with wireless networks, where

packet loss may also be caused by interference. The radio interference isnot eas-

ily controllable through input rate regulation, therefore a different strategy must be

used. In this paper, we describe and evaluate an adaptive, flexible audio application,

AudioTool, specifically designed for wireless environments. We demonstrate theef-

fectiveness of this tool using different QoS adaptation strategies. The experimental

results collected while applying the AudioTool in a real wireless network will also be

reported.

6.1 Overview

AudioTool is a Windows NT client/server application for delivering audio streams

to clients over a network connection. It consists of the audio server application and

the client playback application parts. The audio server accepts calls from the clients,

accesses the requested audio record on the hard drive, and streams it to clients over the

network. The client application receives the audio packets and plays them out on the

audio I/O device. The playback takes place in real-time except for the initial buffering

delay.

The characteristic feature of this audio-on-demand application is its ability to dy-

namically adapt the characteristics of the audio stream to changing network QoS. Our

application follows the principles of Application Level Framing (ALF) [CT90], which

84

advocates closer cooperation between functions traditionally associated with network

and application layers. This way, the application can take advantage of the QoSpa-

rameter information provided by the network to adapt to changes in network’s behavior

[Du 97].

AudioTool implements the QoS notification programming model (see Sec. 2) to

provide the audio server with the ability to monitor network conditions at the client

end and react adequately when congestion occurs. More specifically, the server uses

1) the knowledge of bandwidth available on the link for the audio stream, 2) packet

loss rate, and 3) the amount of bandwidth required to support the audio stream, to find

the optimal audio encoding parameters.

6.2 QoS Notification Programming Model

We have developed a network-independent programming model for streaming multi-

media applications, which defines a general mechanism for QoS monitoring of net-

work conditions by the receiver application and for feeding that QoS information back

to the server.

The model is comprised of three main parts: 1) the network layer API, which

provides the interface to network services, 2) the Network Monitor module, which

collects and analyses QoS information from the network, and 3) the Application QoS

Notification API, which accepts this QoS information from the Network Monitorand

processes it. As Fig. 6.1 shows, such separation of the model into three modules allows

the application to achieve the desired network independence: the first two components

shield the Application QoS Notification API from the particulars of the underlying

network technology; hence, it can stay the same even though the services provided

85

Figure 6.1: A schematic of QoS notification programming model

by the network are likely to evolve with time. We will now describe the model’s

components in greater detail.

6.2.1 Network Layer API

Because AudioTool is a Windows NT application, we used WinSock 2 library as our

network API. WinSock functions closely resemble those of the well-known Berkeley

Sockets for UNIX systems. They provide standard network operations for client/server

type applications such as sending and receiving packets, requesting a connection and

accepting a connection request.

In addition to the support for basic network I/O operations, WinSock 2 has a num-

ber of additional features that allow an application to utilize QoS servicesfrom the

network. Specifically, it allows the application to negotiate the desired level of QoS

during connection setup time or even re-negotiate the QoS contract after a connection

has already been setup. These services are supported, correspondingly, by WSACon-

nect() and WSAIoctl() WinSock API functions, which take the extra flowspec descrip-

tor information containing the requested QoS information.

86

Supplying QoS information to WSAConnect() or WSAIoctl(), however, is only

meaningful when the underlying network provides QoS support. For instance, such

QoS specification is essential when using WinSock 2 over an IP network withRSVP

[Tec96]. Our QoS notification programming model, however, does not assume that

such QoS support exists. Therefore, with a network without QoS support, the model

needs to allow for measurement and reporting of network QoS parameters. The Net-

work Monitor described in the next sections serves this purpose.

6.2.2 Network Monitor

The Network Monitor (NetMon) provides a quality of service abstraction for the ap-

plication, so that it can always assume that the network provides QoS support, while

in reality it may not. Its activity consists of the following three parts:1) it monitors the

multimedia stream from the server to the receiver; 2) it measures QoS parameters of

this stream; and 3) it reports this QoS information to the application, so that it can act

appropriately. We will now address these three activities in greater detail and describe

the implementation of Network Monitor in our AudioTool application.

6.2.2.1 Monitoring the multimedia stream

The Network Monitor analyses the information contained in every packet of the mul-

timedia stream to infer the stream QoS parameters. In our AudioTool application, the

NetMon provides an API functionAcceptNewQoSInfo(), which accepts informa-

tion about audio packets coming in from the network (Fig. 6.2).

The audio server generates the sequence number and timestamp information when

it sends a packet over to the receiver. It stores the two numbers in the seqno and

timestamp fields of the audio packet’s transport header. When the packet arrives to the

87

Figure 6.2: QoS Monitoring and Analysis

destination, the receiver extracts these parameters from the header and passes them to

the Network Monitor.

6.2.2.2 Measuring QoS parameters

The Network Monitor uses the sequence number, the timestamp, and the local time

information to determine two QoS parameters of the stream: (1) packet lossrate,lr,
and (2) delay jitter,jt. The NetMon divides time into measuring periods of durationtmp = 1 sec. During each measuring period, it counts the total number of packets

received,ntotal, and the number of packets lost,nlost. It also records the arrival and

send times of the last packet in the measuring period:tLastArrival andtLastSend. The

arrival time is taken to be the system time when the packet arrives tothe receiver,

while the send time is extracted from the packet header. At the end of every periodk, the Network Monitor computes the two QoS parameters with the following simple

calculations: lr(k) = nlost(k)=ntotal(k)jt(k) = [InterArrivalT ime(k)� InterSendT ime(k)]=InterSendT ime(k)
88

Figure 6.3: QoS Reporting

whereInterArrivalT ime(k) = tLastArrival(k)� tLastArrival(k � 1);InterSendT ime(k) = tLastSend(k)� tLastSend(k � 1)
The two parameters are then reported to the receiver application.

6.2.2.3 Reporting QoS information to the application

As shown on Fig. 6.3, the Network Monitor reports three QoS parameters to applica-

tion: the loss rate, delay jitter, and the amount of bandwidth available to the receiver.

While the first two are determined by monitoring the actual packet stream, the third pa-

rameter is not computed but is provided by the user. In the future, available bandwidth

can be provided by QoS routing [CTG97].

The reason for the available b/w information being emulated, rather than being

89

Figure 6.4: QoS Notification

measured like the rest of QoS parameters is because the network layer currently lacks

the facilities necessary to provide such information. If the QoS reporting functions

were incorporated into the network layer (as proposed, for instance, in [Che97]),the

Network Monitor would be able to obtain b/w information directly from the OS. In

this case, there would be no need for QoS Emulator and the value for the available

bandwidth will be based on actual measurements. It is important to note, however, that

regardless of whether some of the QoS information is emulated or not, the Network

Monitor module shields the application from QoS measurement details. Therefore,

the future evolution of network layer services will not affect the generality ofour QoS

notification application programming model.

6.2.3 QoS Notification API

The final component in our QoS Notification model is the API that the receiver appli-

cation provides for QoS reports from the Network Monitor. As shown on Fig. 6.4, this

API consists of a single function, SendQoSUpdate(), which accepts the new QoS pa-

rameters from the Network Monitor. The receiver application then packetizes the QoS

information and transmits it in a special QOSUPDATE control packet to the audio

server, which uses it to maintain the optimal audio encoding for the connection.

90

The rate at which the receiver application transmits QOSUPDATE packets equals

the Network Monitor measuring rate, which is once every second. This relatively high

rate is dictated by the requirements of real-time transmission of audio: ifnetwork

conditions worsen at the receiver end, the audio server must react quickly to gracefully

degrade the audio stream quality so that the client does not experience interruptions in

the transmission.

6.3 Source Adaptation to QoS Change

By receiving QOSUPDATE packets, an audio server is continuously aware of the

network conditions at the receiver end. Upon receiving an update, it makes a decision

on whether to change the current audio sampling rate or leave it intact. This decision

is based upon the following heuristics:

1) If lr > LRUpperThreshold
ThenSamplingRateCurrent = OneStepDownSamplingRate(SamplingRateCurrent)PacketSizeCurrent = PacketSizeCurrent=2

2) If (lr <= LRLowerThreshold)
and (SamplingRateCurrent < BestFitSamplingRate(AvailableBW)
Then SamplingRateCurrent = BestFitSamplingRate(AvailableBW)

91

where:� lr is the loss rate reported by the receiver in the QOSUPDATE message.� AvailableBW is the bandwidth available to the receiver as reported in the

QOSUPDATE message.� SamplingRateCurrent is the sampling rate currently in use by the audio server.� PacketSizeCurrent is the packet size currently in use by the audio server.� OneStepDownSamplingRate() is a function that takes a sampling rate and

returns the next lower sampling rate value. In all, there are only a few possible

sampling rates that the PC audio hardware can work with: 8,000 Hz, 11,025 Hz,

22,050 Hz, and 44,100 Hz. So, for instance,

OneStepDownSamplingRate (22.050 Hz) = 11,025 Hz.� BestFitSamplingRate() is a function that takes the available b/w of a link

as an argument and returns an appropriate sampling rate for PCM audio stream

to be transmitted over this link with no packet loss. So, for instance,

BestFitSamplingRate(75 kbps) = 11,025 Hz.� LRUpperThreshold andLRLowerThreshold are constants.

A state diagram illustrating the dynamics of this heuristic function’s execution is

shown on Fig. 6.5.

This heuristics is based on the assumption that the primary cause of packet lossis

congestion. Hence, when the audio server decreases the audio sampling rate, andthere-

fore, its transmission rate, the packet loss should decrease and the perceived speech

quality should increase.

92

8kHz
240 bytes

11kHz
480 bytes

22kHz
960 bytes

P > TP > TP > T

P<= t P<= t P<= t

P = Packet Loss Rate
T = Upper Threshold
t = Lower Threshold

8kHz
120 bytes

Figure 6.5: A state diagram of sampling rate and packet size adaptation mechanism.

Another, related heuristics decreases the audio packet size in order improve packet

loss characteristics of the channel. When discussing experimental results in the next

section we will show the effectiveness of these two approaches and of their combina-

tion.

Currently, we have definedLRUpperThreshold to be 10%. This number has been

determined by subjectively evaluating the perceived speech quality in thepresence of

varying packet loss rates: we believe that 10% is about the highest tolerable packet

loss rate for general-purpose audio connection, after which the perceived audio qual-

ity drops dramatically. So, if the loss rate exceeds 10%, the server will switch to a

lower sampling rate in the hopes that the packet loss will decrease.LRUpperThreshold is

defined to be zero.

In an environment subject to heavy external interference, such as the wireless net-

work, it is very efficient to dynamically adjust packet rate as a function of interference.

When interference is low, packet size should be large in order to minimize overhead.

When interference is high, packet size should be reduced to minimize the probability

to packet corruption.

93

In our experimental testbed, the WaveLAN radios drop corrupted packets, so, it

is not possible for us to distinguish between loss due to congestion (which should be

counteracted by reducing sampling rate) and the loss due to noise corruption (which

should be corrected by shortening packet length). To overcome this problem, we as-

sume that a given fraction (say 50 %) of the packet loss is due to interference. Thus,

the server reduces the packet size by half whenever excessive lost packetsare reported

from the receiver, until its value reaches the minimum packet size for the WaveLAN

hardware.

6.4 Experimental Results

To investigate the effectiveness of our adaptation model and the improvementin con-

tent preservation, a number of experiments were performed using the AudioTool. Two

test environments were used: one that uses an emulated channel, and the other, which

is a real multihop wireless testbed. For experiments with emulated channel, both server

and client run on the same PC and packets are delivered through a virtual channel.This

virtual channel can be manipulated to produce different levels of packet loss according

to user specifications through the QoS manipulator.

The wireless testbed, on the other hand, consists of Lucent WaveLANs with mul-

tihop routing implementation [Fer97]. For experiments using real wireless network,

the server runs on a stationary Windows NT workstation and the client runs on a mo-

bile Windows 95 laptop. Speech records are transmitted by the server to the client

wirelessly. Since there are several interference sources in the real world, the channel

behavior can not be controlled.

94

Av. B/W

0

50000

100000

150000

200000

250000

0 20 40 60 80 100 120 140 160

time

b
p

s Av. B/W

Figure 6.6: Histogram of the available bandwidth on the emulated channel.

6.4.1 Emulated Channel

The effectiveness of AudioTool is verified on the emulated channel. As shown in

Fig. 6.6, we vary the available bandwidth on the channel manipulator. This causes

congestion and packet drop on the emulated channel. The AudioTool reacts by re-

ducing the sampling rate. Fig. 6.7 shows the histogram of packet loss rate and the

corresponding audio sampling rates. We can see that whenever packet loss rateex-

ceeds 10%, the server drops the sampling rate one step (until it reaches 8 kHz, which

is the minimum supported sampling rate). On the other hand, when there is no packet

loss, the server increases the sampling rate if there is enough available bandwidth. In

this experiment, we can see how the server has managed the packet loss rate byvarying

the sampling rate according to the reported QoS parameters from the client.

Human perceptive evaluation was done by having a group of subjects listen to the

playback generated by the client application. Overall, the audience was able torecog-

nize most of the speech content during the playback, but it also detected the change in

the audio quality whenever the server switched the sampling rate. This indicates that

95

Adaptation dynamics

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140 160

time

Loss

S.R. / 250

Figure 6.7: Histogram of audio transmission in the emulatedchannel.

most of the content are preserved with the existence of packet loss.

6.4.2 Wireless Network

The second set of experiments was performed in a real mobile wireless environment,

where the packet loss resulted from actual network conditions rather than from manual

adjustment of the channel emulator, as used in the previous experiment. Fig. 6.8 to

Fig. 6.11 illustrate the results for following QoS adaptation policies: Fig. 6.8 shows

the results when neither sampling rate nor packet size are used. Fig 6.4.2 and 6.10

show the effect when either sampling rate or packet size is used, respectively. Finally,

Fig. 6.11 shows when both sampling rate and packet size are used for QoS adaptation.

From these results, we make the following observations:

1. The adaptive schemes react promptly to packet loss and jitter, leading toadjust-

ments in sampling rate and packet size which improve performance and drivethe

system to the most effective operational regime.

96

2. The function of lost packets is typically smaller when adaptation is used. Fur-

thermore, sampling rate adaptation permits to operate at higher sampling rates

(up to 22kHz) than without adaptation, where the sampling rate is fixed at 8kHz.

Higher sampling rate gives better quality, for equal packet loss rate. The heavy

loss periods are much longer in the non-adaptive case than in the adaptation one

(compare, for example, Fig. 6.8 and Fig. 6.11). Long audio “black outs”(several

seconds) are extremely disruptive.

3. Packet size adjustment appears to be particularly effective in reducing loss rate

(as shown in Fig. 6.10). This was expected since random channel interference

is the major problem in our experiments. In these conditions, the shorter the

packet, the lower the probability of corruptions. The long burst of lost packets

in Fig. 6.10 in the interval (130-180) is due to particularly strong, persistent

external interference (recall that we have no control on external interference in

our experiments).

4. The adaptation of both packet size and sampling rate provides the best perfor-

mance. Height and width of loss bursts are smallest in this case (see Fig.6.11).

Interestingly, the traces also seem to show an apparent correlation between the ob-

served jitter and packet loss at the receiver. The jitter follows thesame tendencies

as the packet loss, so that its increases and decreases follow those of the packet loss

curve. This observation adds extra justification for our adaptation scheme. Although

our scheme explicitly manages only the packet loss on the channel and does not di-

rectly attempt to decrease the jitter, it does, in fact, appear to improve both of these

parameters because of the correlation that exists between the two.

97

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180 200

time (sec)

Loss

Jitter

Sampling Rate / 250

Figure 6.8: No Adaptation

Adaptation: Sampling Rate

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160 180 200

time (sec)

Loss

Jitter

Sampling Rate / 250

Figure 6.9: Adaptation on Sampling Rate

98

Adaptation: Packet Size

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180 200

time (sec)

Loss

Payload

Jitter

Figure 6.10: Adaptation on Packet Size

Adaptation: Sampling Rate + Packet Size

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180 200

time (sec)

Loss

Jitter

Sampling Rate / 250

Figure 6.11: Adaptation on Both Sampling Rate and Packet Size

99

6.5 Summary

In this paper we presented an adaptation model for audio applications that enables them

to utilize QoS information from the network in order to adapt to the changing network

conditions. The adaptation mechanism is based on a media-scaling technique, in which

an audio server varies the audio sampling rate and packet size to keep thebandwidth

consumption in line with the amount of available network resources. Such continuous

adjustment of the source encoding based on the feedback information from the client

brings down the overall packet loss and results in better perceived content quality.

We have implemented the AudioTool, an audio-on-demand client/server system,

based on the adaptation model. We have run a number of experiments with this ap-

plication on an emulated channel and have confirmed that the use of this model does

bring about audio quality improvements. We have also used this application in a real

mobile multihop testbed and have discovered a correlation between the packet loss and

delay jitter, which suggests that our controls will contribute to an overalllower delay

jitter as well as packet loss rate.

Future work in this area involves extending the model to allow the delivery of

audio information to multiple clients over either unicast or multicast networks. This

extension will be compliant with RTP/RTCP [Sch96] specification, which has explicit

support for multiple recipients. The adaptation mechanism can also be improvedby

using other methods in addition to media-scaling, such as varying audio codec to trade

off bandwidth consumption for audio quality. For instance, an audio server may switch

to CELP encoding (4.8 kbps) from its usual PCM encoding method (64, 88.2, 176.4

kbps), if it finds that lowering the sampling rate will still not bring down the bitrate of

the stream to the appropriate levels.

100

Finally, the model could be improved by giving clients a greater role in the adap-

tation scheme. One possibility is for a client to vary the amount of buffering that is

performed before audio playback. The client could trade-off a longer buffering time

and higher memory consumption for an improvement in audio quality that would come

from the reduction of playback jitter.

101

CHAPTER 7

Conclusion

The ad hoc wireless network presents different challenges in the protocol design in all

layers. The goal of our research is to provide multimedia services in ad hoc wireless

network, and we focus our work on the design of an efficient network routing scheme

and the QoS adaptation in the application and the operating system layers. In this

chapter, we conclude our work proposed in this dissertation.

7.1 Contributions� Global State Routing Based on the current research trend of ad hoc wireless

network, it has been shown that link state type of routing schemes will have more

potential in the future, as long as the control overhead can be kept reasonably low.

Our GSR, which disseminates the topology information without flooding small

packets and reduces the control overhead by the fresh update and the fisheye

technique, presents itself as a best candidate for the routing protocol in wireless

networks.� QoS Routing in Wireless NetworkQoS routing is the key to multimedia sup-

port. The goal is to find n feasible path that provides better end to end QoS.

Our work in QoS routing includes extending the wireless routing protocols, DBF

and GSR, with QoS parameters to help with admission control. Even though

102

these QoS parameters are still preliminary, improvement of network effective

throughput is observed. With GSR providing a more accurate global network

information, the achievable throughput is even more than it is in DBF.� Renegotiable QoSEven with a perfect QoS support in the network facilities,

there are still some uncontrollable issues that make constant QoS guarantee im-

possible. As a result, multimedia service may not satisfy the user need if the

application can not adapt to the changing condition. Such adaptation requires

cooperation between the user application and the network systems. Our work

with renegotiable QoS support in the network system, together with the QoS

adaptation in application layer, provide a better information preservation and a

better tolerance to the network failures, which usually result in a decrease in

quality of service.

7.2 Future Work

Future research has several directions. First of all, hierarchical routing with GSR ex-

hibits a great potential in further reducing the control overhead and local storage. But

the challenge will be the complexity of maintaining the hierarchy information, and the

inaccuracy due to the abstraction of network information. Secondly, the optimal QoS

routing is not achievable in polynomial time, but a simple heuristic algorithm maystill

provide valuable improvement if proper QoS parameters are chosen. We believe that

in a wireless network, mobility should also be considered in making routing decisions.

Finally, all the research results are meaningful only if these results can be carried out

in the real world. Therefore, the ultimate goal for our research is to realize a wireless

environment that provides multimedia service to mobile users. Currently, a prototype

103

that realizes some of our current results has been implemented at UCLA; the next step

will be to further improve what we have now, and make it a more robust system.

104

REFERENCES

[Agr96] P. Agrawal and et al. “SWAN: A Mobile Multimedia Wireless Network.”
In IEEE Personal Communications, pp. 18–33, April 1996.

[BG87] D. Bertsekas and R. Gallager.Routing in Data Networks, chapter 5. Pren-
tice Hall, second edition, 1987.

[BV98] J.-C. Bolot and A. Vega-Garcia. “The Case for FEC-Based Error Control
for Packet Audio in the Internet.” InACM Multimedia Systems, 1998.

[CE95] M. S. Corson and A. Ephremides. “A destributed routing algorithm for
mobile wireless networks.”ACM-Baltzer Journal of Wireless Networks,
1:61–81, January 1995.

[CG] C.-C. Chian and M. Gerla. “Routing in Multihop, Wireless Network.” sub-
mitted for publication.

[Che97] T.-W. Chen and et al. “A New Scheme for Fault Tolerance in Wireless
Networks.” InThe 27th Annual International Symposium on Fault-Tolerant
Computing, 1997.

[CT90] D. Clark and D. Tennenhouse. “Architecural considerations for a new gen-
eration of protocols.”Computer Communication Review, 20(4), September
1990.

[CTG97] T.-W. Chen, J.T. Tsai, and M. Gerla. “QoS routing performance in a multi-
hop, wirelss network.” InIEEE 6th ICUPC, October 1997.

[Du 97] J. Du and et al. “An Extensible Framwork for RTP-based Multimedia Ap-
plications.” In Network and Operating System support for Digial Audio
and Video, pp. 53–60, May 1997.

[Fer97] R.M. Fernie. “Implementation of various routing algorithms for TCP/IP
wireless networking.” Technical report, UCLA, Computer Science Depart-
ment, June 1997.

[Gar89a] J.J. Garcia-Luna-Aceves. “A Minimum-hop Routing Algorithm Based on
distributed Information.” InComputer Networks and ISDN systems, vol-
ume 16, pp. 367–82, 1989.

[Gar89b] J.J. Garcia-Luna-Aceves. “A unified Approach to Loop-Free Routing Us-
ing Dsitance Vectors or Link States.” InACM SIGCOM, pp. 212–23, 1989.

105

[Ger86] M. Gerla. “Bandwidth routing in integrated service networks.” InICCC,
1986.

[Goo90] D.J. Goodman. “Cellular Packet Communications.”IEEE Transactions on
Communications, 38, August 1990.

[GT95] M. Gerla and J. T. Tsai. “Multicluster, mobile, multimedia radionetwork.”
ACM-Baltzer Journal of Wireless Networks, 1(3):255–65, 1995.

[Has96] Z. J. Hass. “A new routing protocol for the reconfigurable wireless net-
works.” In IEEE 6th ICUPC, October 1996.

[Hed88] C. Hedrick. “Routing Information Protocol.” InIETF RFC 1058, 1988.

[Iwa96] A. Iwata and et al. “ATM routing algorithms with multiple QOS Require-
ments for Multimedia Internetworking.” InIEICE Transactions on Com-
munications, volume E79-B(8), pp. 999–1007, August 1996.

[Jaf86] J.M. Jaffe and et al. “Subtle Design Issues in the implementation ofDis-
tributed, Dynamic Routing Algoriths.” InComputer Networks and ISDN
systems, volume 12, pp. 147–58, 1986.

[JT87] J. Jubin and J. D. Tornow. “The DARPA Packet Radio Network Protocols.”
Proceedings of IEEE, 75(1), January 1987.

[KHW96] I. Kouvelas, V. Hardman, and A. Watson. “Lip Synchronization for use
over the internet: Analysis and implementation.” InIEEE Globecom, 1996.

[KS71] L. Kleinrock and K. Stevens. “”Fisheye: A Lenslike Computer Display
Transformation”.” Technical report, UCLA, Computer Science Depart-
ment, 1971.

[MG95] S. Murthy and J.J. Garcia-Luna-Aceves. “A Routing Protocol for Packet
Radio Networks.” InProc. IEEE Mobicom, pp. 86–95, November 1995.

[MJ95] S. McCanne and V. Jacobson. “vic: A flexible framework for packet
video.” In Proc. of ACM Multimedia, 1995.

[Moy94] J. Moy. “OSPF Version 2.” InIETF RFC 1583, 1994.

[PB94] C.E. Perkins and P. Bhagwat. “Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers.” InACM SIG-
COMM’94, pp. 234–44, 1994.

[PC97] V. D. Park and M. S. Corson. “A Highly Adaptive destributed routing al-
gorithm for mobile wireless networks.”IEEE Infocom, 1997.

106

[PH95] J. Porter and A. Hopper. “An overview of the ORL Wireless ATM System.”
In IEEE ATM Workshop, Washington, DC, September 1995.

[RW94] D. Raychaudhuri and N. D. Wilson. “ATM-based Transport Architec-
ture for Multiservices Wireless Personal Communication Networks.”IEEE
JSAC, 12(8):1401–14, October 1994.

[Sch96] H. Schulzrinne and et al. “RTP: A Transport Protocol for Real-Time Ap-
plications.” InRFC 1889, January 1996.

[Sed83] R. Sedgewick.Weighted Graphs, chapter 31. Addision-Wesley, 1983.

[Sis97] D. Sisalem. “End-to-End Quality of Service Control using Adaptive Ap-
plications.” In IFIP Fifth International Workshop on Quality of Service,
1997.

[SM96] C.J. Sreenan and P.P. Mishra.Equus: A QoS Manager for Distributed
Applications, pp. 496,509. Publishers Chapman & Hall, 1996.

[Tan96] Andrew S. Tanenbaum.Computer Networks, Third Edition. Prentice Hall,
1996.

[TC94] J. Trotter and M. Cravatts. “A Wireless Adapter Architecture for Mo-
bile Computing.” InProc. 2nd USENIX Symp. on Mobile and Location-
Independent Comp., pp. 25–31, April 1994.

[Tec96] StarDust Technologies.Windows Sockets 2 Protocol-Specific Annex, Rev.
2.0.3. May 1996.

[WC95] Z. Wang and J. Crowcroft. “QoS Routing for Supporting Resource Reser-
vation.” In University College London White Paper, 1995.

107

