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Abstract. We demonstrate the asymptotic real second order free-
ness of Haar distributed orthogonal matrices and an independent
ensemble of random matrices. Our main result states that if we
have two independent ensembles of random matrices with a real
second order limit distribution and one of them is invariant under
conjugation by an orthogonal matrix, then the two ensembles are
asymptotically real second order free. This captures the known
examples of asymptotic real second order freeness introduced by
Redelmeier [r1, r2].

1. Introduction

The large N behaviour of random matrices has been actively studied
since Wigner’s celebrated semi-circle law was found in 1955, [w]. Sub-
sequently in 1967 Marchenko and Pastur found the limit distribution
for Wishart matrices [mp1], now called the Marchenko-Pastur distribu-
tion. The essential point of these discoveries is that for many ensembles
of random matrices the description of the distribution of the eigenval-
ues gets much simpler in the large N limit. Much subsequent work has
been devoted to expanding and refining this work, see for example the
recent book of Anderson, Guionnet, and Zeitouni [agz].

Another direction of research in random matrices deals with the in-
teraction of independent ensembles of random matrices. In this direc-
tion one studies the limit eigenvalue distribution of sums and products
of ensembles whose limit distributions are already known. The direc-
tion was discovered by Voiculescu in his work on free probability. In
[v1] and later in [v2], Voiculescu showed that independent ensembles
were asymptotically free if at least one was unitarily invariant. Re-
call that if two random variables are freely independent then there is
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a universal rule for finding the mixed moments from the moments of
the individual random variables. One does this either analytically by
using the R and S transform, see [vdn], or combinatorially using free
cumulants, see [ns].

In the last two decades the fluctuations of the eigenvalues have been
studied both in the physics and the mathematics literate, see e.g. [az,
bs, fmp, j, k, kkp]. In [mn] it was shown that the fluctuations of
Wishart matrices could be analyzed using the non-crossing diagrams
introduced in [s], but by using an annulus instead of a disc or line,
see Figure 1, hence all the combinatorial techniques developed by Nica
and Speicher [ns] could be brought to bear on the study of fluctuations.
Thus motivated, second order freeness was introduced in [ms, mśs] and
later higher order freeness in [cmśs].

The point of second and higher order freeness is that it enables one
to do for fluctuation moment and higher order trace-moments what
Voiculesu’s first order freeness did for moments. In particular if two
random variables are second order free and one knows the moments
and the fluctuation moments of each variable then there is a universal
rule for finding fluctuation moments of sums and products, see [mst].

In [cmśs, mn, ms, mśs] the random matrices considered were ei-
ther Hermitian or unitary. This left the question of how to deal with
real symmetric and orthogonal matrices. On the first order level the
techniques of Voiculescu were equally applicable to real and complex
ensembles. However it was shown in [r1, r2] that the universal rule
found in [ms] needed to be modified for the real case; in particular the
transpose of the various operators made an appearance. This led to a
new kind of second order freeness, called real second order freeness in
[r1, r2].

The non-crossing diagrams introduced in [mn] had to augmented by
diagrams in which the orientation of one of the circles was reversed.
The operators on the reversed side get transposed. One can give a
heuristic interpretation of this using maps on surfaces, see [lz]. In the
complex case we only work with orientable surfaces and in the real case
we also have to also deal with non-orientable surfaces. So we imagine
that our surfaces are marked our operators and the graphs tell us how
they get multiplied, see Figure 5. Wherever we put an operator on
the front side of the surface, we put its transpose on the back. The
non-orientability of the surface means that we can cross from font to
back and see the transposed operators, something that we cannot do
in the complex case.

The main result of this paper, Theorem 54, asserts that if {Ai}i and
{Bj}j are independent ensembles of random matrices and if at least one
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of them is invariant under conjugation by an orthogonal matrix then
the ensembles are asymptotically real second order free. The proof of
this theorem occupies nearly the whole paper. This theorem is the
orthogonal version of a theorem in [mśs], where we assumed that one
of the ensembles is invariant under conjugation by an unitary matrix.
While the statements of the two theorems are similar the proofs follow
quite different paths. In [mśs] the asymptotics of the cumulants of the
unitary Weingarten function, from [c], were heavily used. In this paper
we only need the multiplicitivity of the leading order of the orthogonal
Weingarten function, see [cs]. We work with centred elements and
this obviates the need to work with the cumulants of the Weingarten
function.

Illustrative examples. Let us conclude this introduction with some ex-
amples. Suppose that A1, A2, A3, A4 are d × d deterministic matrices
and O is a d × d Haar distributed random orthogonal matrix and U
be a d× d Haar distributed random unitary matrix. From [mśs, Prop.
3.4] we have

E(Tr(UA1U
−1A2)) = d−1 Tr(A1) Tr(A2) and

E(Tr(UA1UA2)) = 0.

According to Proposition 12

E(Tr(OA1O
−1A2)) = d−1 Tr(A1) Tr(A2) and

E(Tr(OA1OA2)) = d−1 Tr(A1A
t
2).

So we already see a bit a difference between the orthogonal and unitary
cases; namely the appearance of transposes in lower order terms. When
we consider covariances we see more differences. First in the unitary
case we have

cov(Tr(UA1U
−1A2),Tr(UA3U

−1A4))

=
d−4

1− d−2
Tr(A1) Tr(A2) Tr(A3) Tr(A4)

+
d−2

1− d−2
Tr(A1A3) Tr(A2A4)

− d−3

1− d−2
{Tr(A1A3) Tr(A2) Tr(A4) + Tr(A1) Tr(A2A4) Tr(A3)} .

Now in the orthogonal case we have

(1 + d−1− 2d−2) cov(Tr(OA1O
−1A2),Tr(OA3O

−1A4))

= d−4{Tr(A1) Tr(A2) Tr(A3) Tr(A4)
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+ Tr(A1) Tr(A2) Tr(At3) Tr(At4)}
− d−3{Tr(A1A3) Tr(A2) Tr(A4) + Tr(A1A

t
3) Tr(A2) Tr(At4)

+ Tr(A1) Tr(A2A4) Tr(A3) + Tr(A1) Tr(A2A
t
4) Tr(At3)}

+ (d−2 + d−3){Tr(A1A3) Tr(A2A4) + Tr(A1A
t
3) Tr(A2A

t
4)}

− d−3{Tr(A1A
t
3) Tr(A2A4) + Tr(A1A3) Tr(A2A

t
4)}.

Note the similarity to the unitary case except that each term of
leading order appears twice–once with no transposes and once with
transposes on A3 and A4. Moreover when the Ai’s are centred, i.e.
Tr(Ai) = 0, the only remaining terms are Tr(A1A3) Tr(A2A4) and
Tr(A1A

t
3) Tr(A2A

t
4). These terms correspond to spoke diagrams which

are discussed in the next section, see Figure 2. By working with cen-
tred elements the number of terms is significantly reduced, it is in this
way that we can skip the calculations requiring the cumulants of the
Weingarten function.

The Organization of the Paper. In section 2 we review the definitions of
non-crossing partitions. In section 3 we use the Weingarten function of
[cs] to compute the trace of a product of orthogonal matrices and inde-
pendent random matrices. This is how the calculations in the examples
above were done. In section 4 we prove two important lemmas on a
special kind of non-crossing partition called a spoke diagram. These
are the only diagrams that survive in the large d limit. In section 5 we
recall the notions of second order freeness from [r1, r2] and prove that
real second order freeness satisfies an associative law. In section 6 we
prove that Haar distributed orthogonal matrices and an independent
ensemble are first order free. That this could be done was already sug-
gested by Voiculescu in [v1] some twenty years ago and was later proved
in [cs, Thm. 5.2]. In section 7 we show that the fluctuation moments
of Haar distributed orthogonal matrices and an independent ensemble
of random matrices satisfy the universal rule required for second order
freeness. In section 8 we show that the third and higher cumulants of
traces of products of Haar distributed orthogonal matrices and an in-
dependent ensemble of random matrices satisfy the final condition for
asymptotic real second order freeness. This completes the proof of their
asymptotic real second order freeness. In section 9 we use this result
to obtain all our other results on asymptotic real second order freeness.
In section 10 we present some concluding remarks and indications of
future work.
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2. Non-crossing diagrams and pairings

Central to the combinatorial approach to freeness is the idea of a non-
crossing partition. A partition of [n] is non-crossing is one in which the
blocks can be drawn in a non-crossing way; see the left half of Figure
1. For second order freeness we need non-crossing annular partitions.
This means we can draw the blocks on an annulus in a non-crossing
way; see the right half of Figure 1. In the case of second order freeness
additional information about the partitions is needed, namely the order
in which they visit the points. For this reason we regard our partitions
as permutations by interpreting the blocks of the partition as cycles in
the cycle decomposition of the corresponding permutation.

Notation 1. For any integer n ≥ 1, let [n] = {1, 2, 3, . . . , n}. Let P(n)
be the set of all partitions of [n]. For any partition π of [n] let #(π)
denote the number of blocks of π, and |π| = n −#(π). The set P(n)
is a partially ordered set in which π ≤ σ means every block of π is
contained in some block of σ. With this order P(n) is partially ordered
set and is in fact a lattice. We denoted the join of two partitions π and
σ by π ∨ σ.

Given a permutation it can be difficult to decide if there is a non-
crossing way of drawing its cycles, however there is an algebraic way to
see if such a diagram exists. Let γ = (1, . . . ,m)(m+ 1, . . . ,m+n) and
let π be a permutation of [m + n] and denote by 〈π, γ〉 the subgroup
of Sn generated by π and γ. If the subgroup 〈π, γ〉 acts transitively on
[m+ n] then we have that π is non-crossing if and only if

#(π) + #(π−1γ) = m+ n. (1)

Note that the condition that 〈π, γ〉 act transitively is the same as re-
quiring that there is at least one cycle of π that contains points in both
cycles of γ. When this happen we shall say that π connects the cycles
of γ

We can extend this to the case of γ having any number of cycles.
Let π and γ be permutations of [n]. Let k be the number of orbits of
〈π, γ〉. Then

#(π) + #(π−1γ) + #(γ) ≤ n+ 2k (2)

with equality only if π is non-crossing with respect to γ, see e.g. [mn,
Remark 2.11].

In the case of real second order freeness we require an additional set
of non-crossing diagrams, we call these reversed non-crossing annular
permutations. If we let γ′ = (1, . . . ,m)(m+n,m+n−1, . . . ,m+2,m+1)
then we say that a permutation π ∈ Sm+n is a reversed non-crossing
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Figure 1. On the left we have the non-crossing
disc permutation (1, 2, 4)(3)(5, 7)(6). On the right we
have the non-crossing annular permutation (1, 2, 9, 7)
(3, 4, 6, 8)(5).

permutation of a (m,n)-annulus if

#(π) + #(π−1γ′) = m+ n.

Notice that this is the same condition as in Equation (1) but γ is
replaced with γ′. Graphically, this corresponds to using the same ori-
entation for labelling the points on each circle; see the right hand side
of Figure 2.

A special kind of a non-crossing annular permutation that we shall
make use of is that of a spoke diagram, see Figure 2. Recall that a
pairing of [n] is a partition in which each block has two elements. We
usually regard a pairing as a permutation, by considering each block to
be a cycle with two elements. By a standard spoke diagram we mean
a non-crossing pairing of an (m,n)-annulus in which all pairs connect
the two circles. Note that means that m = n and there is l such that
m+ 1 ≤ l ≤ 2m such that every cycle of p is of the form (k, γ−k(l)) for
1 ≤ k ≤ m.

By a reversed spoke diagram we mean a reversed non-crossing annu-
lar pairing in which all blocks connect the two circles; see Figure 2. By
a spoke diagram we mean either a standard or reversed spoke diagram.
See Figure 2. Note that means that m = n and there is l such that
m+ 1 ≤ l ≤ 2m such that every cycle of p is of the form (k, γk(l)) for
1 ≤ k ≤ m.

We denote by P2(n) the pairings of [n]. If p is a pairing of [n] and
(r, s) is a cycle of p we shall denote this by (r, s) ∈ p. We denote by
Sp+(m) the set of all standard spoke diagrams and by Sp−(m) the set
of all reversed spoke diagrams.
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Figure 2. On the left we have a non-crossing pairing
of a (6, 6)-annulus in which all blocks connect the two
circles, i.e. a standard spoke diagram. Note that the two
circles have opposite orientations. In the figure on the
right we have a reversed non-crossing pairing of a (6, 6)-
annulus. i.e. a reversed spoke diagram. Note that the
two circles having the same orientation.

Given a permutation π ∈ Sn, we shall frequently consider the cycles
of π as a partition of [n]. This map Sn −→ P(n) forgets the order
of elements in a cycle and so is not a bijection. Conversely given a
partition π ∈ P(n) we put the elements of each block into increasing
order and consider this a permutation. Restricted to pairings this is a
bijection.

3. The Trace of a Product

Given a permutation σ ∈ Sn and d × d matrices A1, . . . , An we let

a
(i)
p,q be the (p, q)-entry of Ai and

Trσ(A1, . . . , An) =
d∑

i1,...,in=1

a
(1)
i1iσ(1)

· · · a(n)iniσ(n)
. (3)

This expression can also be written as a product of traces as follows.
Write σ = c1 · · · ck in cycle form. If c = (i1, . . . , ir) is a cycle of σ we
let Trc(A1, . . . , An) = Tr(Ai1 · · ·Air). Then

Trσ(A1, . . . , An) =
k∏
i=1

Trci(A1, . . . , An).

Let O = (oij) be a d×d Haar distributed random orthogonal matrix
and {Y1, . . . , Yn} be d×d random matrices whose entries have moments
of all orders. Let γ ∈ Sn be a permutation, and let ε1, ε2, . . . , εn ∈
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{−1, 1}. In this section we wish to find a simple expression for

E(Trγ(O
ε1Y1, . . . , O

εnYn)).

We shall use the Weingarten function introduced by Collins and
Śniady [cs]. The Weingarten expresses the expectation E(oi1i−1 · · ·
oini−n) as a sum over pairings of [n]. The first question we need to
address is, for two pairings p and q, the relationship between the cycles
of pq and the blocks of p∨ q. See Figure 3. This is a standard fact; for
the reader’s convenience and to establish our notation we give a proof.

Lemma 2. Let p, q ∈ P2(n) be pairings and (i1, i2, . . . , ik) a cycle of
pq. Let jr = q(ir). Then (jk, jk−1, . . . , j1) is also a cycle of pq, and
these two cycles are distinct; {i, . . . , ik, j1, . . . , jk} is a block of p ∨ q
and all are of this form; 2#(p ∨ q) = #(pq).

Proof. We have pq(ir) = ir+1, thus jr = q(ir) = p(ir+1). Hence
pq(jr+1) = p(q(q(ir+1))) = p(ir+1) = jr. If {i1, . . . , ik} and {j1, . . . , jk}
were to have a non-empty intersection then, for some n, q(pq)n would
have a fixed point, but this would in turn imply that either p or q
had a fixed point, which is impossible. Since {q(ir)}r = {js}s and
{p(js)}s = {ir}r, {i, . . . , ik, j1, . . . , jk} must be a block of p ∨ q. Since
every point of [n] is in some cycle of pq, all blocks must be of this form.
Since every block of p ∨ q is the union of two cycles of pq, we have
2#(p ∨ q) = #(pq). �

Notation 3. Let [−n] = {−n,−n+ 1, . . . ,−2,−1} and [±n] = [−n]∪
[n]. Let δ be the permutation of [±n] which sends k to −k for k ∈ [±n].
Since each cycle of δ is of the form (k,−k), we shall also regard δ as a
pairing of [±n]. If ε ∈ Zn2 = {−1, 1}n, let δε denote the permutation of
[±n] given by k 7→ ε|k|k.

Given π a permutation on [n] we shall regard π also a permutation
of [±n] where for 1 ≤ k ≤ n, we let π(−k) = −k. Let γ be the
permutation of [n] with the one cycle (1, 2, 3, . . . , n), but following the
convention mentioned above we also have γ(−k) = −k for 1 ≤ k ≤ n.

Lemma 4. Let p, q ∈ P2(n) be pairings then #(pq) = #(pδq).

Proof. Note that for 1 ≤ k ≤ n we have pδq(k) < 0 and pδq(−k) > 0.
Thus the elements in an orbit of pδq always alternate in sign. More-
over (pδq)2 = pq. Hence the positive elements of a cycle of pδq form
a cycle of pq. Conversely let (i1, i2, . . . , ir) be a cycle of pq. Then
(i1,−q(i1), i2,−q(i2), . . . , ir,−q(ir)) is a cycle of pδq. This establishes
a bijection between the cycles of pδq and the cycles of pq. �
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1 2 3 4 5 6 7 8

p

q

Figure 3. In this example n = 8, p = (1, 2)(3, 5)
(4, 8)(6, 7), and q = (1, 6)(2, 5)(3, 7)(4, 8). Then pq =
(1, 7, 5)(2, 3, 6)(4)(8) and p ∨ q = {(1, 2, 3, 5, 6, 7)(4, 8)}.

The pairings of [±n] shall be denoted P2(±n). For a pairing p ∈
P2(±n), and a 2n-tuple i = (i1, i−1, . . . , in, i−n) we write i = i ◦ p to
mean that whenever p(r) = s we have ir = is. For a d× d matrix A let
A(−1) = At, the transpose of A, and A(1) = A. For η = (η1, η2, . . . , ηn) ∈
Zn2 and π ∈ Sn, let Tr(π,η)(A1, . . . , An) = Trπ(A

(η1)
1 , . . . , A

(ηn)
n )

Lemma 5. Let p ∈ P2(±n). The there is π ∈ Sn and η ∈ Zn2 such that

d∑
i1,i−1,...,in,i−n=1

i=i◦p

a
(1)
i1i−1

a
(2)
i2i−2
· · · a(k)iki−k · · · a

(n)
ini−n

= Trπ(A
(η1)
1 , . . . , A(ηn)

n )

Proof. We saw that the cycle decomposition of pδ may be written
c1c1

′ · · · cscs′ where ci
′ = δc−1i δ. It is arbitrary which of the pair {ci, ci′}

is called ci and which ci
′.

For each i, choose a representative of each pair {ci, ci′}, say c1, c2, . . . ,
cs. For each i we construct a cycle c̃i as follows. Suppose ci =
(l1, . . . , lr). Let c̃i = (j1, j2, . . . , jr) where

jk =

{
−lk lk < 0

lk lk > 0
and ηjk =

{
−1 lk < 0

1 lk > 0
.

Note that jk = ηjk lk = |lk|. Then we let π = c̃1 · · · c̃s and η =
(η1, . . . , ηn).

We denote the (m,n) entry of A
(ηi)
i by a

(i,ηi)
m,n . Let (l1, . . . , lr) be a

cycle of pδ. Let (j1, . . . , j1) and (η1, . . . , ηn) be as above i.e. jk = |lk|
and ηjk = lk/|lk|. Then

a
(jk)
ijk i−jk

=


a
(jk,ηjk )

ijk i−jk
if ηjk = 1

a
(jk,ηjk )

i−jk ijk
if ηjk = −1

 = a
(jk,ηjk )

ilk i−lk
.

Thus
a
(j1)
ij1 i−j1

· · · a(jr)ijr i−jr
= a

(j1,ηj1 )

il1 i−l1
· · · a(jr,ηjr )ilr i−ir
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Note that i−lk = i(δ(lk)) = i(pδ(lk)) = i(lk+1) = ilk+1
, as i = i◦p. Thus

d∑
i1,...,i−n=1

i=i◦p

a
(1)
i1i−1

a
(2)
i2i−2
· · · a(k)iki−k · · · a

(n)
ini−n

=
d∑

i1,...,i−n=1

i=i◦p

∏
c̃∈π

c̃=(j1,...,jr)

a
(j1)
ij1 i−j1

· · · a(jr)ijr i−jr

=
d∑

i1,...,i2n=1

i=i◦p

∏
c̃∈π

c̃=(j1,...,jr)

a
(j1,ηj1 )

il1 i−l1
· · · a(jr,ηjr )ilr i−ir

=
∏
c̃∈π

c̃=(j1,...,jr)

Tr(A
(ηj1 )

j1
· · ·A(ηjr )

jr
)

= Trπ(A
(η1)
1 , . . . , A(ηn)

n )

�

Remark 6. The pair (π, η) constructed in Lemma 5 is not unique; how-
ever since

Tr(A
(ηj1 )

j1
· · ·A(ηjr )

jr
) = Tr(A

(−ηjr )
jr

· · ·A(−ηj1 )
j1

)

the value of Trπ(A
(η1)
1 , . . . , A

(ηn)
n ) is independent of the choices made.

Notation 7. Let C[P2(n)] be the inner product vector space with
orthonormal basis P2(n). For an integer d ≥ n, define ϕ : C[P2(n)] −→
C[P2(n)] by

〈ϕ(p), q〉 = d#(p∨q)

In [cs, §3], Collins and Śniady showed that ϕ is an invertible linear
transformation and denoted its inverse Wg, the orthogonal Weingarten
function. From the construction, 〈Wg(p), q〉 is always a rational func-

tion of d. Collins and Śniady showed [cs, Thm. 3.13] that given
p, q ∈ P2(n) if we expand in power series in d−1 then we have

〈Wg(p), q〉 = O(d−n+#(p∨q)). (4)

Remark 8. It was shown in [cs] that the coefficient of d−n+#(p∨q) can
be written as a product of signed Catalan numbers. Indeed, write
pq = ρqρ−1q and factor ρ into a product of cycles c1 · · · ck. Let Cm be
the mth Catalan number 1

m+1

(
2m
m

)
. Then the coefficient of d−n+#(p∨q)

is
(−1)r1−1Cr1−1 · · · (−1)rk−1Crk−1
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where the ith cycle ci has ri elements.

The reason for introducing Wg is its use in computing matrix ex-
pectations. For pairings p, q ∈ P2(n), pδqδ is a pairing of [±n]. For a
pairing r of [±n] and i1, i−1, . . . , in, i−n ∈ [d] we let δir = 1 if is = it
whenever (s, t) is a pair of r and 0 otherwise.

Theorem 9 ([cs, Cor. 3.4]). When n is even

E(oi1i−1 · · · oini−n) =
∑

p,q∈P2(n)

〈Wg(p), q〉 δipδqδ.

When n is odd, E(oi1i−1 · · · oini−n) = 0.

Corollary 10. Let O be a d × d Haar distributed orthogonal matrix
and m a non-zero integer. Then

lim
d→∞

E(tr(Om)) = 0.

Proof. Let γ ∈ Sm be the permutation with the one cycle (1, 2, 3, . . . ,
m). If m is odd then E(Tr(Om)) = 0. So suppose that m is even. First
let us consider

E(Tr(Om)) =
d∑

i1,...,im=1

E(oi1iγ(1) · · · oiniγ(n))

=
∑

i1,...,im

∑
p,q∈P2(m)

〈Wg(p), q〉δipδiγq ,

where iγ is the m-tuple (iγ(1), . . . , iγ(m)). Now δiγq = δiγqγ−1 . Thus

δipδ
iγ
q = 1 only when i is constant on the blocks of p ∨ γqγ−1. Hence

E(Tr(Om)) =
∑

p,q∈P2(m)

〈Wg(p), q〉d#(p∨γqγ−1).

Thus E(Tr(Om)) = O(d−m+#(p∨q)+#(p∨γqγ−1)). But −m + #(p ∨ q) +
#(p ∨ γqγ−1) ≤ 0. Hence limd→∞ E(tr(Om)) = 0. �

Notation 11. Let γ ∈ Sn be a permutation of [n] but, as in Notation
3, considered as a permutation of [±n] by setting γ(−k) = −k for
1 ≤ k ≤ n. Given ε ∈ Zn2 and p, q ∈ P2(n) we consider the pairing of
[±n] given by p ·ε q = (γδ)−1δεpδqδδε(γδ) of [±n]. By Lemma 5 there
is a permutation πp ·εq ∈ Sn and ηp ·εq ∈ Zn2 such that

d∑
i1,i−1,...,in,i−n=1

i=i◦p ·εq

a
(1)
i1i−1

a
(2)
i2i−2
· · · a(k)iki−k · · · a

(n)
ini−n

= Tr(πp ·εq ,ηp ·εq)(A1, . . . , An).
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Note that p is a pairing of [n], δqδ is a pairing of [−n] and so pδqδ is
a pairing of [±n]. If we adopt the notation γ− = δγδ then (p ·ε q)δ =
γ−1− δεqδpδεγ. Recall from the proof of Lemma 5 that πp ·εq was obtained
by writing (p ·ε q)δ as a product of cycles and taking one cycle of each
pair {c, c′}. After this choice has been made ηp ·εq records the position
of the minus signs.

Proposition 12. Let O be a Haar distributed d×d random orthogonal
matrix and {Y1, . . . , Yn} d× d random matrices which are independent
from O and whose entries have moments of all orders. Let γ ∈ Sn,
ε ∈ Zn2 and suppose d ≥ n.

E(Trγ(O
ε1Y1, . . . , O

εnYn))

=
∑

p,q∈P2(n)

〈Wg(p), q〉E(Tr(πp ·εq ,ηp ·εq)(Y1, · · · , Yn))

Proof.

E(Trγ(O
ε1Y1 · · ·OεnYn))

=
d∑

j1,...,j−n=1

E(o
(ε1)
j1j−1
· · · o(εn)jnj−n

) E(y
(1)
j−1jγ(1)

· · · y(n)j−njγ(n)
)

Now for notational convenience let ε(k) = ε|k|k and let lk = jε(k), then

o
(εk)
jkj−k

= olkl−k . Thus

E(o
(ε1)
j1j−1
· · · o(εn)jnj−n

) = E(ol1l−1 · · · olnl−n) =
∑

p,q∈P2(n)

〈Wg(p), q〉δlpδqδ, (5)

where δlpδqδ = 1 if l = l ◦ pδqδ. Also y
(k)
j−kjk+1

= y
(k)
l−ε(k)lεγ(k)

. Hence we

have

E(Trγ(O
ε1Y1 · · ·OεnYn))

=
∑

l1,...,l−n

E(ol1l−1 · · · olnl−n) E(y
(1)
l−ε(1)lεγ(1)

· · · y(n)l−ε(n)lεγ(n)
)

=
∑

p,q∈P2(n)

〈Wg(p), q〉
∑

l1,...,l−n
l=l◦pδqδ

E(y
(1)
l−ε(1)lεγ(1)

· · · y(n)l−ε(n)lεγ(n)
).

Let i = l ◦ εγδ. Then i1 = l−ε(1), i−1 = lεγ(1), . . . , in = l−ε(n), i−n =
lεγ(n). Thus as p ·ε q = δγ−1δεpδqδδεγδ we have∑

l1,...,l−n
l=l◦pδqδ

E(y
(1)
l−ε(1)lεγ(1)

· · · y(n)l−ε(n)lεγ(n)
) =

∑
i1,...,i−n
i=i◦p ·εq

E(y
(1)
i1i−1
· · · y(n)ini−n

)
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So

E(Trγ(O
ε1Y1 · · ·OεnYn))

=
∑

p,q∈P2(n)

〈Wg(p), q〉
∑

i1,...,i−n
i=i◦p ·εq

E(y
(1)
i1i−1
· · · y(n)ini−n

)

=
∑

p,q∈P2(n)

〈Wg(p), q〉E(Tr(πp ·εq ,ηp ·εq)(Y1, . . . , Yn)).

�

We shall need a special case of this result in section 9. Let us say
that a permutation π is parity preserving if for all k, π(k) and k have
the same parity.

Lemma 13. Let n1, n2, . . . , nr be even positive integers and n = n1 +
· · · + nr. Let γ = (1, 2, . . . , n1)(n1 + 1, . . . , n1 + n2) · · · (n1 + · · · +
nr−1 + 1, . . . , n1 + · · · + nr) ∈ Sn. Suppose that ε ∈ Zn2 is such that
εk = (−1)k+1. Then for all p, q ∈ P2(n), πp ·εq is parity preserving.

Proof. We first show that p ·ε q = δγ−1δεpδqδδεγδ is parity preserving.
By direct computation we have the following.

p ·ε q(2k − 1) =

{
−γ−1(q(2k − 1)) q(2k − 1) is even,

q(2k − 1) q(2k − 1) is odd;

p ·ε q(−(2k − 1)) =

{
−γ−1(q(2k)) q(2k) is even,

q(2k) q(2k) is odd.

Note that since γ always reverses the parity of its argument, all four
possible outcomes are odd. Thus p ·ε q takes odd numbers to odd
numbers. Since p ·ε q is a permutation it must then take even numbers
to even numbers. Indeed

p ·ε q(2k) =

{
p(2k) p(2k) is even

−γ−1(p(2k)) p(2k) is odd

p ·ε q(−(2k)) =

{
p(γ(2k)) p(γ(2k)) is even

−γ−1(p(γ(2k))) p(γ(2k)) is odd

Now δ(k) = −k is parity preserving, thus so is (p ·ε q)δ. Finally πp ·εq
is obtained by choosing one representative of each pair {c, δc−1δ} of
(p ·ε q)δ, and taking the absolute value of each entry. This means that
each cycle will consist of integers of the same parity. Hence πp ·εq is
parity preserving. �

We wish to extend the conclusion of Proposition 12 to case where
some of the Y ’s are not interleaved by orthogonal matrices.
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Proposition 14. Let O be a Haar distributed d×d random orthogonal
matrix and {Y1, . . . , Yn} d× d random matrices which are independent
from O and whose entries have moments of all orders. Let 1 ≤ m ≤ n,
γ ∈ Sm, ε ∈ Zm2 and suppose d ≥ m.

E(Trγ(O
ε1Y1, . . . , O

εmYm) Tr(Ym+1) · · ·Tr(Yn))

=
∑

p,q∈P2(m)

〈Wg(p), q〉E(Tr(πp ·εq ,ηp ·εq)(Y1, · · · , Ym) Tr(Ym+1) · · ·Tr(Yn))

Proof. The proof is the same as for Proposition 12 except that we
append the random variable Tr(Ym+1) · · ·Tr(Yn) to the right hand side
of each expression. �

We now wish to extend the conclusion of Proposition 12 in another
way, namely to the case of independent Haar distributed orthogonal
matrices. Suppose {O1, . . . , Os} are independent Haar distributed d×d
orthogonal matrices, with the (i, j) entry of Ok denoted o(k)ij. We shall
need a expression for E(o(k1)i1i−1o(k2)i2i−2 · · · o(kn)ini−n) extending that
given in Theorem 9.

Notation 15. Given an n-tuple (i1, i2, . . . , in) of integers in [s] we let
ker(i) be the partition of [n] such that ir = is where r and s are in the
same block of ker(i) and ir 6= is when r and s are in different blocks of
ker(i).

Let U ∈ P(n) be a partition of [n] and p ∈ P2(n) be a pairing such
that each pair of p lies in some block of U . We shall denote this by
p ≤ U . If we write the blocks of U as {U1, . . . , Ur}, then the pairs of p
that lie in Ui form a pairing of Ui which we shall denote by p|Ui or just
pi when convenient.

If we have a partition U and pairings p, q ∈ P2(n) with p, q ≤ U then
we let

Wg(U , p, q) = 〈Wg(p1), q1〉 · · · 〈Wg(pr), qr〉.
Remark 16. Note that since Wg is not multiplicative, Wg(U , p, q) and
〈Wg(p), q〉 are different. However by Remark 8 we see that when p, q ≤
U then Wg(U , p, q)−〈Wg(p), q〉 = O(d−n+#(p∨q)−1) as the leading terms
in both expressions are the same.

Lemma 17. Suppose {O1, . . . , Os} are independent Haar distributed
d× d orthogonal matrices. Let the (i, j) entry of Ok be denoted o(k)i,j.
Given an n-tuple (k1, . . . , kn) in [s] then

E(o(k1)i1i−1o(k2)i2i−2 · · · o(kn)ini−n) =
∑

p,q∈P2(n)

p,q≤ker(k)

Wg(ker(k), p, q) δipδqδ.
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Proof. We can write E(o(k1)i1i−1o(k2)i2i−2 · · · o(kn)ini−n) as a product of
expectations, one for each block of ker(k). For each block Uj of ker(k)

we get a factor
∑

pj ,qj∈P2(Ui)
〈Wg(pj), qj〉d

ij
pjδqjδ

where ij is the restric-

tion of i to the block Uj. Taking the product of these terms we get∑
p,q∈P2(n)

p,q≤ker(k)

Wg(ker(k), p, q) δipδqδ. �

Proposition 18. Let {O1, . . . , Os} be independent Haar distributed
d×d orthogonal matrices and {Y1, . . . , Yn} d×d random matrices which
are independent from {O1, . . . , Os} and whose entries have moments of
all orders. Let γ ∈ Sn, ε ∈ Zn2 and suppose d ≥ n. For each n-tuple
(k1, . . . , kn) in [s] we have

E(Trγ(O
ε1
k1
Y1, . . . , O

εn
kn
Yn))

=
∑

p,q∈P2(n)

p,q≤ker(k)

Wg(ker(k), p, q) E(Tr(πp ·εq ,ηp ·εq)(Y1, · · · , Yn)).

Proof. The only point where the proof differs from the proof of Propo-
sition 12 is in Equation 5, which we replace by

E(o
(ε1)
(k1)j1j−1

· · · o(εn)(kn)jnj−n
)

= E(o(k1)l1l−1 · · · o(kn)lnl−n) =
∑

p,q∈P2(n)

p,q≤ker(k)

Wg(ker(k), p, q)δlpδqδ.

The remainder of the proof is unchanged. �

4. A Lemma on Spoke Diagrams

At several points later on we shall wish to know that a given permu-
tation represents a spoke diagram (see Figure 2). Lemma 20 identifies
standard spoke diagrams and Lemma 21 identifies reversed spoke dia-
grams.

Lemma 19. Suppose γ ∈ Sn is a permutation, p ∈ P2(n) a pairing,
and ε ∈ Zn2 an assignment of signs, are such that πp ·εp is a pairing. Let
(r, s) ∈ p be a pair of p.

i) If εr = −εs then (γ−1(r), γ(s)) ∈ p, (γ−1(r), s) ∈ πp ·εp, and
εγ−1(r) = −εγ(s).

ii) If εr = εs then (γ−1(r), γ−1(s)) ∈ p, (γ−1(r), γ−1(s)) ∈ πp ·εp,
and εγ(r) = εγ(s).
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Proof. (i) Let us suppose that εr = −εs. Since (r, s) ∈ p and εr = −εs
we have

(r,−s), (−r, s) ∈ δεpδpδδε.
Since πp ·εp is a pairing, (p ·ε p)δ is also a pairing — recall that p ·ε p =
(γδ)−1δεpδpδδε(γδ). Also

(p ·ε p)δ(γ−1(r)) = (γδ)−1(δεpδpδδε)(γδ)δ(γ
−1(r)) = s.

Thus (γ−1(r), s) ∈ (p ·ε p)δ, because (p ·ε p)δ is a pairing. Since both
γ−1(r), s ∈ [n] we have that (γ−1(r), s) ∈ πp ·εp. Moreover (γ−1(r),
s) ∈ πp ·εp and so (p ·ε p)δ(s) = γ−1(r). Unwinding this equation we
have

pδpδ(εγ(s)γ(s)) = −εγ−1(r)γ
−1(r).

Since pδpδ, as a permutation, doesn’t change the sign of its argu-
ment, we have εγ(s) = −εγ−1(r). Thus pδpδ(γ(s)) = γ−1(r), and we
are left with (γ−1(r), γ(s)) is a cycle of p, (γ−1(r), s) ∈ πp ·εp, and
εγ(s) = −εγ−1(r) as required.

(ii) Let us suppose that εr = εs. Since (r, s) ∈ p and εr = εs we have

(r, s), (−r,−s) ∈ δεpδpδδε.

Since πp ·εp is also a pairing, (p ·ε p)δ is a pairing. Also

(p ·ε p)δ(γ−1(r)) = (γδ)−1(δεpδpδδε)(γδ)δ(γ
−1(r)) = −γ−1(s).

Thus (γ−1(r),−γ−1(s)) is a pair of (p ·ε p)δ. Thus (γ−1(r), γ−1(s)) ∈
πp ·εp. Moreover (p ·ε p)δ(−γ−1(s)) = γ−1(r). Unwinding the equation
(p ·ε p)δ(−γ−1(s)) = γ−1(r) we have

pδpδ(−εγ(s)γ(s)) = −εγ−1(r)γ
−1(r).

Since pδpδ, as a permutation, doesn’t change the sign of its argu-
ment, we have εγ−1(r) = εγ−1(s). Thus pδpδ(γ−1(s)) = γ−1(r), and
we are left with (γ−1(r), γ−1(s)) is a cycle of p, εγ−1(r) = εγ−1(s), and
(γ−1(r), γ−1(s)) ∈ πp ·εp as claimed.

�

Lemma 20. Let γ be the permutation with the two cycles (1, . . . ,m)
(m + 1, . . . ,m + n), let ε ∈ Zm+n

2 , and let p ∈ P2(m + n) be a pairing
such that

i) p ∨ γ = 1m+n, i.e. at least one of cycle of p connects the two
cycles of γ;

ii) for some (r, s) ∈ p we have εr = −εs; and
iii) πp ·εp is a pairing.
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Then m = n, p and πp ·εp are standard spoke diagrams, and there is l,
which we make take to be γ−r(s) if we assume that 1 ≤ r ≤ m, such
that

a) every cycle of p is of the form (k, γ−k(l)) for 1 ≤ k ≤ m, and
b) every cycle of πp ·εp is of the form (k, γ−k−1(l)) for 1 ≤ k ≤ m,
c) and εr = −εs for all (r, s) ∈ p,
d) ηk = 1 for all k.

Proof. Let (r, s) ∈ p, i.e. (r, s) is a cycle of p, and suppose εr = −εs. By
using induction on Lemma 19 we know that for all k, (γ−k(r), γk(s)) ∈
p, εγ−k(r) = −εγk(s), and (γ−k(r), γk−1(s)) ∈ πp ·εp. Recall that in the
proof of Lemma 19 (i) we showed that (γ−1(r), s) ∈ (p ·ε p)δ. This
implied that (γ−1(r), s) ∈ πp ·εp and that ηγ−1(r) = ηs = 1. By our
induction argument we have that ηk = 1 for all k.

By assumption, p has at least one pair (r, s) that connects the cycles
of γ; and so by what we have just observed, all cycles of p connect the
two cycles of γ. This implies m = n, and all cycles of p are of the form
(k, γ−k(l)), where l = γr−1(s), assuming γ−r(r) = m. Moreover, both
p and πp ·εp are spoke diagrams, i.e. non-crossing annular pairings of an
(m,m)-annulus with all pairs connecting the two circles; see Figure 2.

�

Lemma 21. Let γ be the permutation with the two cycles (1, . . . ,m)
(m + 1, . . . ,m + n), let ε ∈ Zm+n

2 , and let p ∈ P2(m + n) be a pairing
such that

i) p ∨ γ = 1m+n, i.e. at least one of cycle of p connects the two
cycles of γ;

ii) for some (r, s) ∈ p we have εr = εs; and
iii) πp ·εp is a pairing.

Then m = n, p and πp ·εp are reversed spoke diagrams, and there is l,
which we make take to be γ−r(s) if we assume that 1 ≤ r ≤ m, such
that

a) every cycle of p is of the form (k, γk(l)) for 1 ≤ k ≤ m, and
b) every cycle of πp ·εp is of the form (k, γk(l)) for 1 ≤ k ≤ m,
c) and εr = εs for all (r, s) ∈ p,
d) ηk = −1 for all k ∈ [m].

Proof. Let (r, s) ∈ p, i.e. (r, s) is a cycle of p, and suppose εr = εs. By
using induction on Lemma 19 we know that for all k, (γ−k(r), γ−k(s)) ∈
p, εγ−k(r) = εγ−k(s), and (γ−k(r), γ−k(s)) ∈ πp ·εp. Recall that in the
proof of Lemma 19 (ii) we showed that (γ−1(r),−γ−1(s)) ∈ (p ·ε p)δ.
This implied that (γ−1(r), γ−1(s)) ∈ πp ·εp and that ηγ−1(r) = −1. By
our induction argument we have that ηk = −1 for all k ∈ [m].
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By assumption, p has at least one pair (r, s) that connects the cycles
of γ; and so by what we have just observed, all cycles of p connect the
two cycles of γ. This implies m = n, and all cycles of p are of the form
(k, γk(l)), where l = γ−r(s), assuming γ−r(r) = m. Moreover, both p
and πp ·εp are spoke diagrams, i.e. non-crossing annular pairings of an
(m,m)-annulus with all pairs connecting the two circles; see Figure 2.

�

Corollary 22. Let γ ∈ Sn be a permutation, p ∈ P2(n) a pairing, and
ε ∈ Zn2 an assignment of signs. Suppose that πp ·εp is a pairing then
each block of p ∨ γ contains at most two cycles of γ.

Proof. We saw in Lemma 19 that when p connects a pair of cycles of γ
these two cycles form a spoke diagram. So a block of p∨ γ can contain
at most two cycles of γ. �

5. Real Second Order Freeness

Let us recall the definition of real second order freeness from Re-
delmeier [r2, §1]. We begin with the concept of a real second order
non-commutative probability space.

Definition 23. Let A be an algebra over C and with an anti-auto-
morphism of order 2 denoted by a 7→ at. Suppose that ϕ : A → C is a
tracial state and ϕ2 : A × A → C is a bi-trace, i.e. ϕ2 is bilinear and
tracial in each entry. Moreover we assume that ϕ2(1, a) = ϕ(a, 1) = 0,
ϕ(at) = ϕ(a) and ϕ2(a

t, b) = ϕ2(a, b
t) = ϕ2(a, b) for all a, b ∈ A. Then

(A, ϕ, ϕ2, t) is a real second order non-commutative probability space.

Notation 24. Let unital subalgebras A1, . . . ,Ar ⊂ A be given.

i) We say that a tuple (a1, . . . , an) of elements from A is cyclically
alternating if, for each i, there is ji ∈ {1, . . . , r} such that
ai ∈ Aji and, if n ≥ 2, we have jk 6= jk+1 for all k = 1, . . . , n.
We count indices in a cyclic way modulo n, i.e., for k = n the
equation above means jn 6= j1.

ii) We say that a tuple (a1, . . . , an) of elements from A is centred
if we have

ϕ(ai) = 0 for all i = 1, . . . , n.

Definition 25. Let (A, ϕ, ϕ2, t) be a real second order non-commuta-
tive probability space and suppose that we have unital subalgebras
A1, . . . ,An that are invariant under a 7→ at. We say that A1, . . . ,An
are real free of second order if (see figure 4)

i) the subalgebras A1, . . . ,An are free with respect to ϕ;
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a1

a2

a3

a4

a5

a6

b1
b2

b3

b4

b5

b6

a1

a2

a3

a4

a5

a6

bt
1

bt
2

bt
3

bt
4

bt
5

bt
6

Figure 4. The terms on the right hand side of equation
(6) are sums over all spoke diagrams. In the diagram on
the left the circles have the opposite orientation; we put
the a’s on on circle and the b’s on the other. This gives
the first term on the right hand side of (6). In the circle
on the right the two circles have the same orientation and
we put ‘bt’s on the inside circle. This gives the second
term on the right hand side of (6).

ii) for every a1, . . . , am ∈ A and b1, . . . , bn ∈ A such that (a1, . . . ,
am) and (b1, . . . , bn) are centred and cyclically alternating, we
have
a) ϕ2(a1 · · · am, b1 · · · bn) = 0, if m 6= n or if m = n = 1 and

a1 and b1 are from different subalgebras;
b) for m = n > 1 we have, taking all indices modulo n

ϕ2(a1 · · · an, b1 · · · bn) =
n∑
k=1

n∏
i=1

(
ϕ(aibk−i) + ϕ(aib

t
i−k)

)
. (6)

Notation 26. Let p ∈ C[x1, . . . , xs, x
t
1, . . . , x

t
s] be a polynomial in the

non-commuting variables {x1, . . . , xs, xt1, . . . , xts} and A1, . . . , As be d×
d matrices. By p(A1, . . . , As) we mean the matrix obtained by replacing
xi by Ai and xti by Ati in p. Similarly if (A, ϕ, ϕ2, t) is a real second order
non-commutative probability space then by p(a1, . . . , as) we mean the
random variable in A obtained by replacing xi by ai and xti by ati.

Remark 27. Expanding on the notation in equation (3) we define, for
a permutation π ∈ Sn and a1, . . . , an ∈ A, ϕπ(A1, . . . , an) as below.

ϕπ(a1, . . . , an) =
∏
c∈π

c=(i1,...,ik)

ϕ(ai1 · · · aik),
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where the product is over all cycles c of π and for each cycle c =
(i1, . . . , ik) we get the factor ϕ(ai1 , . . . , aik). This makes ϕπ a n-linear
functional.

With this notation we can write equation (6) in a simpler way:

ϕ2(a1 · · · an, b1 · · · bn)

=
∑

π∈Sp+(n)

ϕπ(a1, . . . , an, b1, . . . , bn)

+
∑

π∈Sp−(n)

ϕπ(a1, . . . , an, b
t
1, . . . , b

t
n),

where, recall, Sp+(n) denotes the set of standard spoke diagrams and
Sp−(n) denotes the set of standard spoke diagrams.

We shall need to use the associativity of real second order freeness.
Let us recall how this works in the first order case [vdn]. Suppose that
we have unital subalgebras A1, . . . ,As ⊂ A which are free with respect
to ϕ. Moreover that for each 1 ≤ i ≤ s we have unital subalgebras
Bi,1, . . . ,Bi,ti ⊂ Ai which are free with respect to ϕ. Then by [vdn,
Prop. 2.5.5 (iii)] the subalgebras B1,1, . . .Bs,ts ⊂ A are free with respect
to ϕ. We shall prove the real second order version of this. In [mśs,
Remark 2.7] the second order version of [vdn] was left as an exercise for
the reader, now we shall provide a solution. We begin with a lemma.

Lemma 28. Let A1, . . . ,As ⊂ A be unital subalgebras which are free
with respect to ϕ. Suppose that a1, . . . , am, b1, . . . , bn ∈ A are such that

◦ ϕ(ai) = ϕ(bj) = 0 for all i and j;
◦ ai ∈ Aki and k1 6= k2 6= · · · 6= km;
◦ bj ∈ Alj and l1 6= l2 6= · · · 6= ln.

Then for m 6= n, ϕ(a1 · · · ambn · · · b1) = 0 and for m = n

ϕ(a1 · · · ambm · · · b1) =
m∏
i=1

ϕ(aibi).

Proof. Let us begin by showing that

ϕ(a1 · · · ambn · · · b1) = ϕ(ambn)ϕ(a1 · · · am−1bn−1 · · · b1).
First suppose that km 6= ln. Then both ϕ(a1 · · · ambn · · · b1) and
ϕ(ambn) are 0 by freeness. Thus both sides of the equation above are 0.
Next suppose that km = ln and write ambn = (ambn)◦+ϕ(ambn). Then
ϕ(a1 · · · am−1(ambn)◦bn−1 · · · b1) = 0 because km−1 6= km = ln 6= ln−1.
Thus

ϕ(a1 · · · anb1 · · · b1)
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= ϕ(a1 · · · am−1(ambn)◦bn−1 · · · b1)
+ ϕ(ambn)ϕ(a1 · · · am−1bn−1 · · · b1)

= ϕ(ambn)ϕ(a1 · · · am−1bn−1 · · · b1).

Now we conclude by induction. If m = n we get the formula we
claimed. If m < n then

ϕ(a1 · · · ambn · · · b1) = ϕ(ambn) · · ·ϕ(ambn−m+1)ϕ(bn−m · · · b1) = 0

by the freeness of the bj’s. The case when m > n is exactly the same.
�

Proposition 29. Let A1, . . . ,As ⊂ A be t-invariant unital subalgebras
of A which are real second order free with respect to (ϕ, ϕ2). For each
1 ≤ i ≤ s suppose we have t-invariant unital subalgebras Bi,1 . . . ,Bi,ti ⊂
Ai which are real free of second order with respect to (ϕ, ϕ2). Then the
subalgebras B1,1, . . . ,BS,ts ⊂ A are real free of second order with respect
to (ϕ, ϕ2).

Proof. The proof of first order freeness is as in [vdn, Prop. 2.5.5 (iii)].
So let us prove part (ii) of Definition 25. Let a1, . . . , am, b1, . . . , bn ∈ A
be such that

◦ ϕ(ai) = ϕ(bj) = 0 for all i and j; and
◦ ai ∈ Bki,ui and (k1, u1) 6= (k2, u2) 6= · · · 6= (km, um) 6= (k1, u1);

and
◦ bj ∈ Blj ,vj and (l1, v1) 6= (l2, v2) 6= · · · 6= (ln, vn) 6= (l1, v1).

We must show that for m = n ≥ 2

ϕ2(a1 · · · am, b1 · · · bm)

=
∑

π∈Sp+(m)

ϕπ(a1 · · · am, b1 · · · bm)

+
∑

π∈Sp−(m)

ϕπ(a1 · · · am, bt1 · · · btm) (7)

and is 0 for m 6= n; the case m = n = 1 is immediate.
Note that adjacent ai’s are, by assumption, from different Bk,v’s

but might be from the same Ad. So we group the ai’s according to
which Ad contains them. Let m1, . . . ,mp be positive integers such
that m1 + · · · + mp = m and am1+···+mi−1+1, . . . , am1+···+mi ∈ Adi ,
for 1 ≤ i ≤ p and d1 6= d2 6= · · · 6= dp 6= d1. Then we let Ai =
am1+···+mi−1+1 · · · am1+···+mi ∈ Adi . Then a1 · · · am = A1 · · ·Ap.

We do exactly the same for the bj’s. Namely we let n1, . . . , nq be posi-
tive integers such that n1+· · ·+nq = n and bn1+···nj−1+1, . . . , bn1+···+nj ∈
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Aej for 1 ≤ j ≤ q and e1 6= e2 6= · · · 6= eq 6= e1. We let Bj =
bn+1+···+bj−1+1 · · · bn1+···nj ∈ Aei . Then b1 · · · bn = B1 · · ·Bq.

Note that by first order freeness

ϕ(Ai) = ϕ(am1+···+mi−1+1 · · · am1+···+mi) = 0,

since the Bi,j’s are first order free by [vdn, Prop. 2.5.5 (iii)]. Likewise
ϕ(Bj) = 0.

If p = q = 1 then we have (7) by the assumed second order freeness
of B1,1, . . . ,B1,t1 . If p 6= q, then by the assumed second order freeness of
A1, . . . ,As we have ϕ2(a1 · · · am, b1 · · · bn) = 0, thus the left hand side
of (7) is 0.

Let us consider the right hand side of (7). If m 6= n then the right
hand side is 0. So let us suppose that m = n. Let us first consider the
term involving Sp+(m). For π ∈ Sp+(m) and ϕπ(a1, . . . , am, b1, . . . , bn)
6= 0 we must have (ki, ii) = (lj, vj) for all (i, j) ∈ π. This means π gives
a bijection between the Ai’s which contain the ai’s and the Aj’s which
contain the bj’s. So in particular p = q, which is impossible. Likewise if
π ∈ Sp−(m) then we have a bijection between the Ai’s containing the
ai’s and the Aj’s containing the btj’s. So again we would have p = q.

Now let us suppose that p = q ≥ 2. By the assumed real second
order freeness of A1, . . . ,As we have

ϕ(a1 · · · am, b1 · · · bn) = ϕ2(A1 · · ·Ap, B1 · · ·Bp)

=
∑

π∈Sp+(p)

ϕπ(A1, . . . , Ap, B1, . . . , Bp)

+
∑

π∈Sp−(p)

ϕπ(A1, . . . , Ap, B
t
1, . . . , B

t
p). (8)

For π ∈ Sp+(p) and (i, j) ∈ π we have by Lemma 28, when mi = nj

ϕ(AiBj) = ϕ(am1+···mi−1+1bn1+···+nj) · · ·ϕ(am1+···mibn1+···+nj−1+1)

and 0 when mi 6= nj. Thus for this π, assuming mi = nj for all
(i, j) ∈ π, we have

ϕπ(A1, . . . , Ap, B1, . . . Bp) = ϕπ̃(a1, . . . , am, b1, . . . , bm)

where π̃ ∈ Sp+(m) is the spoke diagram obtained by matching up
m1 + · · ·+mi−1 + k with n1 + · · ·nj − k + 1.

For π ∈ Sp−(p) and (i, j) ∈ π we have by Lemma 28, when mi = nj

ϕ(AiB
t
j) = ϕ(am1+···mi−1+1b

t
n1+···+nj−1+1) · · ·ϕ(am1+···mibn1+···+nj)
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and 0 when mi 6= nj. Thus for this π, assuming mi = nj for all
(i, j) ∈ π, we have

ϕπ(A1, . . . , Ap, B
t
1, . . . B

t
p) = ϕπ̃(a1, . . . , am, b

t
1, . . . , b

t
m)

where π̃ ∈ Sp+(m) is the spoke diagram obtained by matching up
m1 + · · ·+mi−1 + k with n1 + · · ·nj−1 + k.

If we let π run over Sp+(m) on the right hand side of (8), the corre-
sponding π̃’s will not exhaust all π’s on the right hand side of (7), but
the ones that are missed are such that ϕπ(a1, . . . , am, b1, . . . , bm) = 0,
by the first order freeness of the Ai’s. Similarly for the π’s in Sp−(m)
on the right hand side of (8). We thus have∑

π∈Sp+(p)

ϕπ(A1, . . . , Ap, B1, . . . , Bp)

+
∑

π∈Sp−(p)

ϕπ(A1, . . . , Ap, B
t
1, . . . , B

t
p)

=
∑

π∈Sp+(m)

ϕπ(a1 · · · am, b1 · · · bm)

+
∑

π∈Sp−(m)

ϕπ(a1 · · · am, bt1 · · · btm).

This combined with (8) proves (7). �

Definition 30. Suppose for each d we have random matrices {Ad,1, . . . ,
Ad,s}. We say that the ensemble has a real second order limit dis-
tribution if there is a real second order non-commutative probability
space (A, ϕ, ϕ2, t) and a1, . . . , as ∈ A such that for all polynomials
p1, p2, p3, . . . in the non-commuting variables {x1, . . . , xs, xt1, . . . , xts} we
have

i) limd→∞ E(tr(p1(Ad,1, . . . , Ad,s))) = ϕ(p1(a1, . . . , as));

ii)
lim
d→∞

cov(Tr(p1(Ad,1, . . . , Ad,s)),

Tr(p2(Ad,1, . . . , Ad,s)))

= ϕ2(p1(a1, . . . , as), p2(a1, . . . , as))
iii) for all r ≥ 3

lim
d→∞

kr(Tr(p1(Ad,1, . . . , Ad,s)), . . . ,Tr(pr(Ad,1, A
t
d,1, . . . , Ad,s))) = 0.

Remark 31. The third condition is only needed to ensure the conver-
gence of fluctuations of mixed moments. In fact boundedness would be
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enough. For many ensembles of matrices the rth cumulant vanishes on
the order of d2−r, for example the ensembles discussed in [r1, r2]. For
deterministic matrices the higher cumulants of traces are 0. Moreover
a close reading of our proof shows that if one starts with an ensemble
{Ai}iwith kr between o(1) and O(1) for r ≥ 3, the mixed cumulants of
A’s and O’s for r ≥ 3 would have the same order as {Ai}i.

Remark 32. Suppose we have for each d, random matrices {Ad,1, . . . ,
Ad,s}, a non-commutative probability space (A, ϕ), and a1, . . . , an ∈
A such that for every polynomial p in the non-commuting variables
x1, . . . , xs, x

t
1, . . . , x

t
s we have

lim
d→∞

tr(p(Ad,1, . . . , Ad,n)) = ϕ(p(a1, . . . , an))

then we say that the matrices {Ad,1, . . . , Ad,n} have the limit joint t-
distribution given by a1, . . . , an.

Definition 33. Let {Ad,1, . . . , Ad,r}d and {Bd,1. . . . , Bd,s}d be two en-
sembles of random matrices such that {Ad,1, . . . , Ad,r, Bd,1. . . . , Bd,s}d
has a real second order limit distribution given by {a1, . . . , as, b1, . . . ,
bs} in the real second order non-commutative probability space (A, ϕ,
ϕ2, t). If the two unital subalgebras A1 = alg(1, a1, . . . , ar, a

t
1, . . . , a

t
r)

and A2 = alg(1, b1, . . . , bs, b
t
1, . . . , b

t
s) are real free of second order then

we say that the two ensembles {Ad,1, . . . , Ad,r}d and {Bd,1. . . . , Bd,s}d
are asymptotically real free of second order.

6. First Order Freeness of Haar Orthogonal
and Independent Matrices

To show that a family of d × d random matrices {A1, . . . , As}d and
an independent family of orthogonal matrices {Od}d are asymptoti-
cally real free of second order, we must first demonstrate that they are
asymptotically free of first order, or asymptotically free in the sense of
Voiculescu [vdn, §2.5].

For this we must show that given polynomials {p1, . . . , pn} in O and
O−1 such that E(tr(pi(O,O

−1))) = 0 and random matrices {A1, . . . ,
As} with E(tr(Ai)) = 0, then

lim
d→∞

E(tr(p1(O,O
−1)A1 · · · pn(O,O−1)As)) = 0

provided that the entries of the Ad,i’s are independent from those of the
O’s and the {Ad,1, . . . , Ad,n} have a real second order limit distribution.
For this it suffices to prove that

lim
d→∞

E(tr(Om1A1 · · ·OmnAs)) = 0
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for any sequence of non-zero integers m1, . . . ,mn and {A1, . . . , As} as
above.

Notation 34. Let π ∈ Sn be a permutation and U ∈ P(n) be a
partition such that each cycle of π lies in some block of U . We denote
this relation by π ≤ U . Let A1, . . . , An be d× d random matrices and
write, as in equation (3),

Trπ(A1, . . . , An) =
d∑

i1,...,in

a
(1)
i1iπ(1)

· · · a(n)iniπ(n)

Let the blocks of U be {U1, . . . , Uk} and let πi be the product of
cycles of π that lie in Ui. If c = (i1, . . . , ir) is a cycle of π, let
Trc(A1, . . . , An) = Tr(Ai1 · · ·Air). If πi = c1 · · · ck, as a product of
cycles, let Trπi(A1, . . . , An) =

∏
i Trci(A1, . . . , An). Next let

EU(Trπ(A1, . . . , An)) =
k∏
i=1

E(Trπi(A1, . . . , An)). (9)

Finally for η = (η1, η2, . . . , ηn) ∈ Zn2 and π ∈ Sn, let

EU(Tr(π,η)(A1, . . . , An)) = EU(Trπ(A
(η1)
1 , . . . , A(ηn)

n )).

To make this clear let us give an example. Let n = 6, π = (1)(2, 4)(3)
and U = {(1, 3), (2, 4)}. Then

EU(Trπ(A1, A2, A3, A4)) = E(Tr(A1) Tr(A3)) E(Tr(A2A4)).

We shall also need to work with the normalized trace tr = d−1 Tr. We
let trπ(A1, . . . , An) = d−#(π) Trπ(A1, . . . , An).

If U ∈ P(n) and π ≤ U , in the sense above, then we let

kU(Trπ(A1, . . . , An)) =
∑
V∈P(n)
π≤V≤U

m(V ,U) EV(Trπi(A1, . . . , An)). (10)

Then by Möbius inversion we have

EU(Trπi(A1, . . . , An)) =
∑
V∈P(n)
π≤V≤U

kV(Trπ(A1, . . . , An)). (11)

Remark 35. In what follows, for an ensemble of d×d matrices {A1, . . . ,
As}d, will suppress the dependency of Ai on d and just denote it by

Ai. Moreover the (i, j)-entry of Ak will be denoted a
(k)
ij . This should

not cause any confusion as at each stage of the discussion we shall only
be multiplying matrices of the same size. Likewise for an ensemble
of random orthogonal orthogonal matrices {Od}d, we shall drop the
dependence on d from the notation.
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Theorem 36. Let for each d, {A1, . . . , An} be a ensemble of centred
d× d random matrices that have a real second order limit distribution,
O a Haar distributed random d× d orthogonal matrix, and m1, . . . ,mn

be non-zero integers. Then

lim
d→∞

E(tr(Om1A1 · · ·OmnAn)) = 0.

Proof. In order to be able to use the result of Proposition 12, with γ =
(1, 2, 3. . . . , n), we have to reduce it to the case of each mi being either 1
or −1. We can achieve this by inserting an identity matrix, I, between
any two adjacent O’s or adjacent O−1’s. For example O2A1O

−1A2

would become OIOA1O
−1A2. So with this change we must show that,

whenever we have ε1, . . . , εn ∈ {−1, 1} and random matrices A1, . . . , An
with a limit joint t-distribution such that for each i, either Ai is centred,
i.e. E(tr(Ai)) = 0, or Ai = I and εi = εγ(i), then

lim
d→∞

E(tr(Oε1A1 · · ·OεnAn)) = 0.

By Proposition 12

E(Tr(Oε1A1, . . . , O
εnAn))

=
∑

p,q∈P2(n)

〈Wg(p), q〉E(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An)).

Let us recall the construction of πp ·εq. We write the permutation
(p ·ε q)δ, which is the product of two pairings, as a product of cycles.
We showed that the cycles always occur in pairs of the form {c, c′},
where c′ = δc−1δ. From each pair we choose one, and then from this we
obtained a cycle of πp ·εq by deleting any minus signs. The minus signs
that are deleted are recorded in ηp ·εq. So let us consider the singletons
of πp ·εq. If (k) is a singleton of πp ·εq, then (p ·ε q)δ will have the two
singletons (k)(−k) and thus (k,−k) will be a cycle of (p ·ε q) and hence
(−δε(k), δε(γ(k))) will be a cycle of pδqδ. The cycles of pδqδ are either
cycles of p, consisting of pairs of positive numbers, or cycles of δqδ,
consisting of pairs of negative numbers. Thus if (k) is a singleton of
πp ·εq then we must have εk = −εγ(k), and hence Ak is a centred matrix.

Now consider the expansion

E(Tr(Oε1A1, . . . , O
εnAn))

=
∑

p,q∈P2(n)

〈Wg(p), q〉E(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An)).

We have

〈Wg(p), q〉 = O(d−n+#(p∨q)).
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We must next find a upper bound for the order of

E(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An)) =
∑
π≤U

kU(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An)).

Since {A1, . . . , An} has a real second order limit distribution we have
that

kU(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An)) = O(du)

where u is the number of blocks of U that contain a single cycle of π.
If U has a singleton (k) then π, too, will have a singleton (k) and then
Ak will be centred so kU(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An)) will have a factor
E(Tr(Ak)) = 0, hence kU(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An)) = 0.

Thus u ≤ #(U) ≤ n/2 and so −n+ #(p ∨ q) + u ≤ 0, thus

〈Wg(p), q〉E(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An)) = O(1).

Thus
E(Tr(Oε1A1, . . . , O

εnAn)) = O(1)

and hence
lim
d→∞

E(tr(Oε1A1, . . . , O
εnAn)) = 0.

�

Corollary 37. Let {A1, . . . , An+1} be d × d random matrices whose
entries have moments of all orders, O a Haar distributed random d×d
orthogonal matrix, independent from {A1, . . . , An+1}, and ε1, . . . , εn ∈
Z2. Suppose that for each 1 ≤ i ≤ n we have that either E(Tr(Ai)) = 0
or Ai = I and εi = εi+1 (using εn+1 = ε1), and E(Tr(An+1)) = 0. Then

E(Tr(Oε1A1 · · ·OεnAn)) = O(1),

in fact

E(Tr(Oε1A1 · · ·OεnAn))

= d−n/2
∑

p∈P2(n)

Eπp ·εp(Tr(πp ·εp,ηp ·εp)(A1, . . . , An)) + O(d−1) (12)

where the sum is over all p’s such that πp ·εp is a pairing and

E(Tr(Oε1A1 · · ·OεnAn) Tr(An+1)) = O(d−1).

Proof. The first claim is just the second last equation of the proof of
Theorem 36. Recall that when we expand into cumulants

E(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An)) =
∑
U∈P(n)
πp ·εq≤U

kU(A1, . . . , An)

and let u be the number of blocks of U that contain a single cycle of
πp ·εq we have −n + #(p ∨ q) + u ≤ 0 with equality only when p = q
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and n = n/2, i.e. U = πp ·εp and πp ·εp is a pairing. This establishes the
second claim.

By Proposition 14 we have

E(Tr(Oε1A1 · · ·OεnAn) Tr(An+1))

=
∑

p,q∈P2(n)

〈Wg(p), q〉E(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An) Tr(An+1)).

For the moment let us fix p, q ∈ P2(n) and let π̃ ∈ Sn+1 be the permu-
tation which fixes n+1 and whose restriction to [n] is πp ·εq. Likewise let
η̃|[n] = ηp ·εq and η̃n+1 = 1. Then E(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An) Tr(An+1))
= E(Tr(π̃,η̃)(A1, . . . , An+1)) Then we expand as above

E(Tr(π̃,η̃)(A1, . . . , An+1)) =
∑

U∈P(n+1)

π̃≤U

kU(Tr(π̃,η̃)(A1, . . . , An+1)).

Suppose U ∈ P(n + 1) is such that π̃ ≤ U and kU(Tr(π̃,η̃)(A1, . . . ,
An+1)) 6= 0. Then

kU(Tr(π̃,η̃)(A1, . . . , An+1)) = O(du)

where u is the number of blocks of U that contain only one cycle of π̃.
Since, by assumption, E(Tr(An+1)) = 0, the last cycle of π̃ cannot be
in a block of U on its own (otherwise kU = 0); thus u ≤ #(U)− 1. As
in the proof of Theorem 36, #(U|[n]) ≤ n/2 and as the cycle (n + 1)
cannot be on its own we have #(U) ≤ n/2. So u ≤ n/2 − 1. Thus
−n+ #(p ∨ q) + u ≤ −1 and so

〈Wg(p), q〉kU(Tr(π̃,η̃)(A1, . . . , An+1)) = O(d−1).

Since this holds for every U we have

〈Wg(p), q〉E(Tr(π̃,η̃)(A1, . . . , An+1)) = O(d−1).

Since this in turn holds for every p and q we have

E(Tr(Oε1A1 · · ·OεnAn) Tr(An+1)) = O(d−1).

�

7. Fluctuation Moments of Haar Orthogonal
and Independent Random Matrices

Our next step is to show that the limit distribution of Haar dis-
tributed orthogonal matrices and an independent ensemble of random
matrices with a real second order limit distribution satisfies part (ii)
(b) of Definition 25. Fix positive integers m and n and let γ be the
permutation with the two cycles (1, . . . ,m)(m+ 1, . . . ,m+ n).
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Theorem 38. Let {A1, . . . , Am} and {B1, . . . , Bn} be a ensemble of
centred d× d matrices that have a real second order limit distributions
given by (a1, . . . , am) and (b1, . . . , bn), respectively, in a real second or-
der non-commutative probability space (A, ϕ, ϕ2, t), and O a Haar dis-
tributed random d×d orthogonal matrix, and k1, . . . , km, l1, . . . , ln non-
zero integers. Suppose that the entries of {A1, . . . , Am, B1, . . . , Bn} are
independent from those of O. Then

lim
d→∞

cov(Tr(Ok1A1 · · ·OkmAm),Tr(Ol1B1 · · ·OlnBn))

exists and equals 0 when m 6= n, and when m = n ≥ 2, equals
m∑
r=1

{ m∏
i=1

ϕ(aibr−i)ϕ(oki+lr−(i−1)) +
m∏
i=1

ϕ(aib
t
r+i)ϕ(oki−lr+i)

}
. (13)

where the indices of the b’s and l’s are taken modulo m.

Proof. We begin by noting that by Theorem 9, m + n must be even,
otherwise the limit of the covariances is 0. In order to apply Proposition
12 to the expression

cov(Tr(Ok1A1 · · ·OkmAm),Tr(Ol1B1 · · ·OlnBn))

we have to reduce it to the case where all k’s and l’s are either 1 or
−1. So let us consider the term ϕ(aibr−i)ϕ(oki+lr−(i−1)) of expression
(13). In order for this to be non-zero we must have ki + lr−(i−1) =
0. So when we perform the reduction used in the proof of Theo-
rem 36 we replace oki , supposing ki > 0, with o1o · · · o1o and olr−i+1

with o−11o−1 · · · o−11o−1 the factor ϕ(oki+lr−i+1) = 1 gets replaced by
ϕ(oo−1)ϕ(11)ϕ(oo−1) · · ·ϕ(oo−1)ϕ(11)ϕ(oo−1) = 1. Likewise with the
factor ϕ(oki−lr+i). Thus without loss of generality we can assume that
k1 . . . , kml1, . . . , ln ∈ {−1, 1}. In this case we must show that

lim
d→∞

cov(Tr(Oε1A1 · · ·OεmAm),Tr(Oεm+1B1 · · ·Oεm+nBn))

exists and equals 0 when m 6= n and when m = n equals
m∑
r=1

{ m∏
i=1

ϕ(aibr−i)δεi,−εγ−i+1(m+r)
+

m∏
i=1

ϕ(aib
t
r+i)δεi,εγi(m+r)

}
, (14)

where the γ in the index of the second ε in δεi,εγ−i+1(m+r)
is the permu-

tation with cycle decomposition (1, . . . ,m)(m+ 1, . . . , 2m).
By Proposition 12

E(Tr(Oε1A1 · · ·OεmAm) Tr(Oεm+1B1 · · ·Oεm+nBn))

=
∑

p,q∈P2(m+n)

〈Wg(p), q〉E(Tr(πp ·εq ,ηp ·εq)(A1, . . . , Bn)),
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and

E(Tr(Oε1A1 · · ·OεmAm)) E(Tr(Oεm+1B1 · · ·Oεm+nBn))

=
∑

p,q∈P2(m+n)

p,q≤γ

Wg(γ, p, q) Eγ(Trπp ·εq(
~Aη, ~Bη)).

To simplify the notation we let Trπp ·εq(
~Aη, ~Bη) = Tr(πp ·εq ,ηp ·εq)(A1, . . . ,

Bn). Thus

cov(Tr(Oε1A1 · · ·OεmAm),Tr(Oεm+1B1 · · ·Oεm+nBn))

=
∑

p,q∈P2(m+n)

〈Wg(p), q〉E(Trπp ·εq(
~Aη, ~Bη))

−
∑

p,q∈P2(m+n)

p,q≤γ

Wg(γ, p, q) Eγ(Trπp ·εq(
~Aη, ~Bη))

=
∑

p,q∈P2(m+n)

p∨q∨γ=1m+n

〈Wg(p), q〉E(Trπp ·εq(
~Aη, ~Bη)) (15)

+
∑

p,q∈P2(m+n)

p,q≤γ

{
〈Wg(p), q〉 −Wg(γ, p, q)

}
E(Trπp ·εq(

~Aη, ~Bη)) (16)

+
∑

p,q∈P2(m+n)

p,q≤γ

Wg(γ, p, q)
{

E(Trπp ·εq(
~Aη, ~Bη))− Eγ(Trπp ·εq(

~Aη, ~Bη))
}
. (17)

We shall show that the first term (15) converges to

m∑
r=1

{ m∏
i=1

ϕ(aibr−i)δεi,−εγ−i+1(m+r)
+

m∏
i=1

ϕ(aib
t
r+i)δεi,εγi(m+r)

}
,

and the second (16) and third term (17) converge to 0.
We first consider expression (15), and show that this has the limit

we have claimed. Let us find the order of E(Trπp ·εq(
~Aη, ~Bη)); to do this

we have to rewrite this expectation in terms of cumulants so that we
can use our assumptions about the A’s and B’s having a real second
order limit distribution. If we consider πp ·εq a partition of [m+n] then
by equation (11) we have

E(Tr(πp ·εq ,ηp ·εq)(A1, . . . , Bn))

=
∑

U∈P(m+n)

U≥πp ·εq

kU(Tr(πp ·εq ,ηp ·εq)(A1, . . . , Bn)). (18)
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Suppose U ∈ P(m+n) and U ≥ πp ·εq. If U has a singleton (k), then (k)
is also a singleton of πp ·εq. As in the proof of Theorem 36, this implies

that Ak (or Bk−m if k > m) is centred, and thus, kU(Trπp ·εq(
~Aη, ~Bη)) =

0. Thus we only have to consider U ’s with no singletons. Hence #(U) ≤
(m+n)/2. Suppose U is a block of U which contains two or more cycles
of πp ·εq; the corresponding factor in Equation (18) is a second or higher
cumulant of traces, which converge by our assumption that the A’s and
B’s have a real second order limit distribution. Hence these factors will
be of order O(d0). Each block of U which contains only one cycle of

πp ·εq will be of order O(d). Hence kU(Trπp ·εq(
~Aη, ~Bη)) = O(du) where u

is the number of blocks of U which contain only one cycle of πp ·εq. As

u ≤ #(U) ≤ (m+ n)/2,

we have kU(Trπp ·εq(
~Aη, ~Bη)) = O(d(m+n)/2) and the order (m+n)/2 can

only be achieved when u = (m+n)/2, which implies that πp ·εq = U , as
partitions, and no cycle of πp ·εq is a singleton, because no block of U is
a singleton. If #(πp ·εq) = u = (m + n)/2 and πp ·εq has no singletons;
πp ·εq must be a pairing. Combining these conclusions we have

E(Trπp ·εq(
~Aη, ~Bη)) = O(d(m+n)/2−1)

unless p = q and πp ·εq is a pairing, in which case

E(Trπp ·εq(
~Aη, ~Bη))

= Eπp ·εq(Trπp ·εq(
~Aη, ~Bη)) + O(d(m+n)/2−1). (19)

Using our usual bound on the order of Wg, namely

〈Wg(p), q〉 = O(d−(m+n)+#(p∨q)),

we thus have

〈Wg(p), q〉E(Trπp ·εq(
~Aη, ~Bη)) = O(d−1)

unless p = q and πp ·εq is a pairing, in which case

〈Wg(p), q〉E(Trπp ·εq(
~Aη, ~Bη))

= Eπp ·εq(trπp ·εq(
~Aη, ~Bη)) + O(d−1).

Thus ∑
p,q∈P2(m+n)

p∨q∨γ=1m+n

〈Wg(p), q〉E(Trπp ·εq(
~Aη, ~Bη))

=
∑

p∈P2(m+n)

Eπp ·εp(trπp ·εp(
~Aη, ~Bη)) + O(d−1) (20)
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where the second sum runs over all p such that p∨ γ = 1m+n and πp ·εp
is a pairing. To find the limit as d→∞ we use Lemmas 20 and 21.

First suppose that there is (u, v) ∈ p such that εu = −εv. Then by
Lemma 20 we have m = n, every cycle of p connects the two cycles
of γ, and εi = −εj for all (i, j) ∈ p. Then for some r ∈ [m] we have
(m− 1,m+ r) ∈ p. Again by Lemma 20 we have for all k ∈ [m]

◦ (k, γ−k(m+ r)) ∈ πp ·εp,
◦ (k, γ−k+1(m+ r)) ∈ p,
◦ ηk = 1.

Thus εk = −εγ−k+1(m+r) and

Eπp ·εp(tr(πp ·εp,ηp ·εp)(A1, . . . , Bm)) =
m∏
k=1

E(tr(AkBr−k))δεk,−εγ−i+1(m+r)
(21)

which converges to
m∏
k=1

ϕ(akbr−k)δεk,−εγ−k+1(m+r)

as d→∞.
Next suppose that there is (u, v) ∈ p such that εu = εv. Then by

Lemma 21 we have m = n, every cycle of p connects the two cycles
of γ, and εi = εj for all (i, j) ∈ p. Then for some r ∈ [m] we have
(m− 1,m+ r) ∈ p. As in Lemma 21, let l = γ−m+1(m+ r) = γr(2m).
Then γk(l) = γr(m+ k), for k ∈ [m]. Hence by Lemma 21 we have for
all k ∈ [m]

◦ (k, γr(m+ k)) ∈ πp ·εp,
◦ (k, γr(m+ k)) ∈ p,
◦ ηk = −1.

Thus εk = εγk(m+r).

Eπp ·εp(tr(πp ·εp,ηp ·εp)(A1, . . . , Bm)) =
m∏
k=1

E(tr(AkB
t
r+k))δεk,εγk(m+r)

(22)

which converges to
m∏
k=1

ϕ(akbr+k)δεk,εγk(m+r)

as d→∞. Hence the expression (15) converges to

m∑
r=1

{ m∏
k=1

ϕ(akbr−k)δεk,−εγ−i+1(m+r)
+

m∏
k=1

ϕ(akb
t
r+k)δεk,εγi(m+r)

}
.



REAL SECOND ORDER FREENESS 33

To show that (16) and (17) vanish as d → ∞ we have to consider

the order of Eγ(Trπp ·εq(
~Aη, ~Bη)) with p, q ≤ γ. As before we write this

as a sum of cumulants

Eγ(Trπp ·εq(
~Aη, ~Bη)) =

∑
U∈P(m+n)

U≤γ

kU(Trπp ·εq(
~Aη, ~Bη)).

Let u be the number of blocks of U that contain only one cycle of
πp ·εq. If U has a singleton then the corresponding cumulant will be 0
because the A’s and B’s are centred; so we only consider U ’s which
have no singletons and thus #(U) ≤ (m + n)/2. If we let u be the
number of blocks of U that contain exactly one cycle of πp ·εq, then

kU(Trp ·εq( ~A
η, ~Bη)) = O(du) and u ≤ #(U) ≤ (m + n)/2. Recall that

〈Wg(p), q〉 −Wg(γ, p, q) = O(d−(m+n)+#(p∨q)−1)
Since #(p ∨ q) ≤ (m+ n)/2 we have{

Wg(γ, p, q)−Wg(γ, p, q)
}
kU(Trπp ·εq(

~Aη, ~Bη))

= O(d−(m+n)+#(p∨q)−1+u) = O(d−1).

Then summing over all U ’s we have{
Wg(γ, p, q)−Wg(γ, p, q)

}
Eγ(Trπp ·εq(

~Aη, ~Bη)) = O(d−1).

Thus the expression (16)∑
p,q∈P2(m+n)

p,q≤γ

{
〈Wg(p), q〉 −Wg(γ, p, q)

}
E(Trπp ·εq(

~Aη, ~Bη)).

converges to 0.
Let us finally consider the expression (17)∑
p,q∈P2(m+n)

p,q≤γ

Wg(γ, p, q)
{

E(Trπp ·εq(
~Aη, ~Bη))− Eγ(Trπp ·εq(

~Aη, ~Bη))
}
.

For each p, q ≤ γ we must show that

Wg(γ, p, q)
{

E(Trπp ·εq(
~Aη, ~Bη))− Eγ(Trπp ·εq(

~Aη, ~Bη))
}

= O(d−1).

So fix p, q ≤ γ and write Trπp ·εq(
~Aη, ~Bη) = X1 · · ·XrXr+1 · · ·Xr+s

with X1, . . . , Xr coming from the cycles of πp ·εq contained in [m] and
Xr+1, . . . , Xr+s coming from the cycles of πp ·εq contained in [m+1,m+
n]. Then

E(Trπp ·εq(
~Aη, ~Bη))−Eγ(Trπp ·εq(

~Aη, ~Bη)) = k2(X1 · · ·Xr, Xr+1 · · ·Xr+s).
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Using the formula of Leonov and Shiryaev [ls]

k2(X1 · · ·Xr, Xr+1 · · ·Xr+s) =
∑

V∈P(r+s)
V∨τ=1r+s

kV(X1, · · · , Xr+s)

where τ = {(1, . . . , r)(r+ 1, . . . , r+ s)}. Now let us use Notation 34 to
write this as

E(Trπp ·εq(
~Aη, ~Bη))−Eγ(Trπp ·εq(

~Aη, ~Bη)) =
∑

πp ·εq≤U∈P(m+n)

U∨γ=1m+n

kU(Trπp ·εq(
~Aη, ~Bη)).

If U has a singleton (k) then πp ·εq will have a singleton (k). As in the
proof of Theorem 36 this singleton must be a centred Ak (or Bk−m if

k > m). So if U has a singleton we must have kU(Trπp ·εq(
~Aη, ~Bη)) = 0.

Thus we may assume that U has no singletons, so in particular #(U) ≤
(m+n)/2. . As before let u be the number of blocks of U that contain
exactly one cycle of πp ·εq. Then

kU(Trπp ·εq(
~Aη, ~Bη)) = O(du).

Now u ≤ #(U) ≤ (m+ n)/2 and, as usual,

Wg(γ, p, q) = O(d−(m+n)+#(p∨q)).

Thus

Wg(γ, p, q)kU(Trπp ·εq(
~Aη, ~Bη)) = O(d−(m+n)+#(p∨q)+u).

Since πp ·εq ≤ γ and U ∨ γ = 1m+n we must have u < (m + n)/2, as
equality would force πp ·εq = U as partitions. Thus −(m + n) + #(p ∨
q) + u ≤ −1. Hence

Wg(γ, p, q)kU(Trπp ·εq(
~Aη, ~Bη)) = O(d−1).

Summing over all U ’s we have

Wg(γ, p, q)
{

E(Trπp ·εq(
~Aη, ~Bη))− Eγ(Trπp ·εq(

~Aη, ~Bη))
}

= O(d−1).

�

Remark 39. The proof of Theorem 38 actually proves a stronger state-
ment than was claimed. Let A1, . . . , As is an ensemble of d × d cen-
tred random matrices where for η ∈ {−1, 1} we let Aη = At for
η = −1 we let Aη = Aj for η = 1. Suppose that for any monomi-

als Wk = A
ηi1,k
i1,k
· · ·Aηnk,kink ,k

, we have

◦ E(tr(Wi)) = O(d0) and
◦ kr(Tr(Wi1), . . . ,Tr(Wir)) = O(d0) for r ≥ 2.
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Then by equation (20) we have for m 6= n

cov(Tr(Oε1Ai1 · · ·OεmAim),Tr(Oη1Aj1 · · ·OηnAjn)) = O(d−1)

and by equations (21) and (22) we have for m = n

cov(Tr(Oε1Ai1 · · ·OεmAim),Tr(Oη1Aj1 · · ·OηmAjm))

=
m∑
s=1

{
m∏
r=1

E(tr(AirAjs−r)) E(tr(Oεr+ηs−r+1))

+
m∏
r=1

E(tr(AirA
t
js+r

)) E(tr(Oεr−ηs−r))

}
+ O(d−1),

where the indices of the j’s and η’s are interpreted modulo m.

Corollary 40. Let O be a d × d Haar distributed random orthogonal
matrix. Then for integers m and n

lim
d→∞

cov(Tr(Om),Tr(On)) =

{
0 |m| 6= |n|
2|m| |m| = |n|

.

Proof. Let ε1 = · · · = εm = sgn(m) and εm+1 = · · · = εm+n =
sgn(n). Let γ be the permutation with the two cycles (1, 2, . . . ,m)(m+
1, . . . ,m+ n). Then by Proposition 12

E(Tr(Oε1 · · ·Oεm) Tr(Oεm+1 · · ·Oεm+n)) =
∑

p,q∈P2(m+n)

〈Wg(p), q〉d#(πp ·εq).

and if let U be the partition with blocks the cycles of γ

E(Tr(Oε1 · · ·Oεm)) E(Tr(Oεm+1 · · ·Oεm+n)

=
∑

p,q∈P2(m+n)

p,q≤U

Wg(U , p, q)d#(πp ·εq).

By the multiplicativity of the coefficient of the term of leading order
of 〈Wg(p), q〉 we thus have

cov(Tr(Oε1 · · ·Oεm),Tr(Oεm+1 · · ·Oεm+n))

=
∑

p,q∈P2(m+n)

p,q≤U

〈Wg(p), q〉d#(πp ·εq) + O(d−(m+n)+#(p∨q)+#(πp ·εq)−1)

As in the proof of Theorem 36, if πp ·εq has a singleton (k) then εk =
−εγ(k), which is impossible given our construction of ε. Thus πp ·εq has
no singletons. Hence #(πp ·εq) ≤ (m + n)/2. Thus −(m + n) + #(p ∨
q) + #(πp ·εq) ≤ 0, with equality only if p = q and πp ·εp is a pairing.
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Let (r, s) ∈ p. Either εr = −εs or εr = εs. As in the proof of Theorem
38 all cycles of p connect the two cycles of γ and hence |m| = |n|. Also
in the case in which εr = −εs, we have (γ−1(r), γ(s)) ∈ p. There are
exactly |m| such p’s. In the case εr = εs, we have (γ−1(r), γ−1(s)) ∈ p.
There are exactly |m| such p’s. All together there are 2|m| such p’s.
By Remark 8 the coefficient of d−n/2 in 〈Wg(p), p〉 is 1. This gives the
claimed result. �

8. Vanishing of Higher Cumulants of Traces

Let {Aj}j be a family of d × d random matrices, containing the
identity matrix, with a real second order limit distribution. By this we
mean that as d→∞

◦ tr(A
(ε1)
i1
· · ·A(εn)

in
) converges to ϕ(a

(ε1)
i1
· · · a(εn)in

) for all i1, . . . , in
and all ε1, . . . , εn;

◦ k2(Tr(A
(ε1)
i1
· · ·A(εm)

im
),Tr(A

(εm+1)
im+1

· · ·A(εm+n)
im+n

)) converges to

ϕ2(a
(ε1)
i1
· · · a(εm)

im
, a

(εm+1)
im+1

· · · a(εm+n)
im+n

) for all i1, . . . , im+n and all
ε1, . . . , εm+n;

◦ kr(Tr(A
(ε1)
i1
· · ·A(εm1 )

im1
),· · ·,Tr(A

(εm1+···+mr−1+1)

im1+···mr−1+1
· · ·A(εm1+···+mr )

im1+···+mr
))

converges to 0 for all r ≥ 3, all i1, . . . , im1+···+mr and all ε1, . . . ,
εm1+···+mr .


(23)

Let O be a Haar distributed d × d random orthogonal matrix whose
entries are independent from those of {Aj}j. In this section we shall
show that whenever X1, . . . , Xr be r random variables where each Xi

is one of the following types:

◦ Xi = Tr(Ak) for some k; or
◦ Xi = Tr(Oε1Aj1 · · ·OεnAjn) with εk ∈ {−1, 1} and such

that if Ajk = I then εk−1 = εk, where εn+1 = ε1.

 (24)

The the third and higher cumulants of the X’s will converge to 0 as
d → ∞. This, combined with Theorems 36 and 38 will show that we
have asymptotic real second order freeness of the {Aj}j and O.

For the rest of this section we shall assume that the {Aj}j satisfy
condition (23) and our goal is to prove the theorem below.

Theorem 41. Suppose that X1, . . . , Xr are of the form (24) and r ≥ 3,
then

lim
d→∞

kr(X1, . . . , Xr) = 0. (25)
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We prove this theorem by proving the following result where we
strengthen the hypothesis in (24) by assuming that the non-constant
A’s are centred.

i) Xi = Tr(Ak) for some k with E(Tr(Xk)) = 0; or
ii) Xi = Tr(Oε1Aj1 · · ·OεnAjn) with εk ∈ {−1, 1} and

such that either E(Tr(Ajk)) = 0 orAjk = I and
εk−1 = εk, where εn+1 = ε1.

 (26)

Theorem 42. Suppose that whenever X1, . . . , Xr are of form (26) and
r ≥ 3 then

lim
d→∞

kr(X1, . . . , Xr) = 0.

Proof of Theorem 41 using Theorem 42: We begin by recalling that
the cumulant kr(X, . . . , Xr) will be 0 whenever an Xi is constant and
r ≥ 2. Recall also that by our assumption of a second order limit
distribution E(tr(Ai)) is a convergent function of d and thus bounded.
Thus if kr(X1, . . . , Xr)→ 0 then so does E(tr(Aj))kr(X1, . . . , Xr).

Suppose Xi = Tr(Aj) for some j. Let Åj = Aj − E(tr(Aj))I.

Let c = E(tr(Aj)). Then E(Tr(Åj)) = 0 and Aj = Åj + cI. Then
kr(X1, . . . , Xi−1, cd,Xi+1, . . . , Xr) = 0 and so

kr(X1, . . . , Xr)

= kr(X1, . . . , Xi−1, cd,Xi+1, . . . , Xr)

+ kr(X1, . . . , Xi−1,Tr(Åj), Xi+1, . . . , Xr)

= kr(X1, . . . , Xi−1,Tr(Åj), Xi+1, . . . , Xr).

So we may suppose that any X’s of the form Tr(Aj) are centred.
Next suppose that Xi = Tr(Oη1Aj1 · · ·OηsAjs), with each ηi = ±1

and whenever Ajt = I we have ηt = ηt+1. For each i, we shall writeXi =
Tr(Oη1Aj1 · · ·OηsAjs) as a linear combination of a constant random
variable and terms of the form Tr(Ajt), or Tr(Oµ1Ak1 · · ·OµlAkl) where
for each t either E(Tr(Akt)) = 0 or Akt = I and µt = µt+1; where µl+1 =
µ1. We then replace Xi in kr(X1, . . . , Xr) by this linear combination
and get a sum of cumulants in which all the A’s are of the form (26).

To show that each Xi = Tr(Oη1Aj1 · · ·OηsAjs) can be written as such

a linear combination we replace for each t, Ajt with Åjt + E(tr(Ajt))I.
We then expand this sum. If we have a factor E(tr(Ajt))I, we will
get cancellation of cyclically adjacent O’s wherever ηt = −ηt+1. This
might bring two centred A’s next to each other. As the product will
not necessarily be such the expectation of the trace is 0, we repeat the
centring process and continue. Since the number of factors decreases
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whenever there is a cancellation, the process terminates with either:
an Xi of the form (26,i); an Xi as in (26.ii); or a constant Xi (if all
the O’s get cancelled). �

Remark 43. To illustrate the previous theorem let us consider the ex-
ample

k3(Tr(OA1O
−1A2),Tr(OA3OA4),Tr(OA5O

−1A6)).

There are six A’s and we let Ai = Åi + ciI with ci = E(Tr(Ai)). This
produces 26 terms, some of which are 0 because some of the entries of
the cumulant are constant. For example we shall get terms such as

c1c3c4c5k3(Tr(Å2),Tr(OIOI),Tr(Å6)).

If we started with the example

k3(Tr(OA1O
−1A2),Tr(OA3O

−1A4),Tr(OA5O
−1A6)).

then we would also get terms like

c1c3c5k3(Tr(Å2),Tr(Å4),Tr(Å6))

where there no O’s.

Our task now is to prove Theorem 42. We shall recall the moment
cumulant relation

E(X1 · · ·Xr) =
∑
U∈P(r)

kU(X1, . . . , Xr). (27)

So to prove something about the cumulants kr(X1, . . . , Xr) we shall
prove something first about E(X1 · · ·Xr) and use this to prove Theo-
rem 42. We let P1,2(n) be the partitions of [n] with blocks of size either
1 or 2.

Theorem 44. Whenever X1, . . . , Xr are of form (26) then

E(X1 · · ·Xr) =
∑

U∈P1,2(r)

kU(X1, . . . , Xr) + o(1). (28)

Proof of Theorem 42 using Theorem 44.

By Corollary 37 we have that k1(Xi) = O(1) is Xi is of type (26.ii) and
k1(Xi) = 0 if Xi is of type (26.i). If Xi1 and Xi2 are both of type (26.ii)
then by Theorem 38, k2(Xi1 , Xi2) = O(1). If they are both of type
(26.i), then by assumption (23) we have k2(Xi1 , Xi2) = O(1). If Xi1 is
of type (26.i) and Xi2 is of type (26.ii), then k2(Xi1 , Xi2) = E(Xi1Xi2),
as E(Xi1) = 0. Then by Corollary 37, E(Xi1Xi2) = O(d−1). So in all
cases k1(Xi1) and k2(Xi1 , Xi2) are of order at most O(1).
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Now by (28)

k3(Xi1 , Xi2 , Xi3)

= E(Xi1Xi2Xi3)−
∑

U∈P1,2(3)

kU(Xi1 , Xi2 , Xi3) = o(1).

Suppose we have shown for 3 ≤ s < l that ks(Xi1 , . . . , Xis) = o(1).
Then

E(Xi1 · · ·Xil)−
∑

U∈P1,2(l)

kU(Xi1 , . . . , Xil)

= kl(Xi1 , . . . , Xil) +
∑

U∈P̃1,2(l)

kU(Xi1 , . . . , Xil)

Where P̃1,2(l) is all the partitions in P(l) except those in P1,2(l) and

1l, the partition with only one block. If U ∈ P̃1,2(l) then U has blocks
of size 1 or 2 and at least one block of size between 3 and s. Since
the cumulants from the blocks of order O(1) and, by our induction
hypothesis, all others are of order O(d−1), the product kU(Xi1 , . . . , Xil)
is of order o(1). Hence

kl(Xi1 , . . . , Xil) +
∑

U∈P̃1,2(l)

kU(Xi1 , . . . , Xil) = o(1)

forces us to conclude that kl(Xi1 , . . . , Xil) = o(1). �

Notation 45. From now on we shall assume that we have positive
integers n1, . . . , nr. We let n = n1 + · · ·+ nr. There is 1 ≤ r0 ≤ r such
that for r0 ≤ i ≤ r we have ni = 1. We let γ ∈ Sn be the permutation
with cycles

(1, . . . , n1) · · · (n1 + · · ·+ nr0−1 + 1, . . . , n1 + · · ·+ nr0)

× (n1 + · · ·+ nr0 + nr0+1) · · · (n1 + · · ·+ nr0 + nr)

If r0 = 1 then γ = e is the identity permutation. We shall assume the
random variables Xi are such that for 1 ≤ i ≤ r0

◦ Xi = Tr(Oεn1+···+ni−1+1An1+···+ni−1+1 · · ·Oεn1+···+niAn1+···+ni)
where for each n1 + · · · + ni−1 + 1 ≤ t ≤ n1 + · · · + ni either
E(Tr(At)) = 0 or At = I and εt = εγ(t);

and for r0 < i ≤ r

◦ Xi = Tr(An1+···+ni) and E(Xi) = 0.

Let m = n1+· · ·+nr0−1. If m is odd and positive then E(X1 · · ·Xr) = 0.
So we shall assume that m is even, and possibly 0. Let P2(m,n) be
the set of partitions of [n] whose restriction to [m] is a pairing and all
of whose other blocks are singletons. In the case r0 = 1 we have m = 0
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and the only partition in P2(m,n) is the one with n blocks of size 1.
We assume that ε ∈ Zn2 with εi = 1 for i > m.

Now let p and q be in P2(m,n). Then pδqδ is a permutation of [±n]
whose restriction to [±m] is a pairing and all of whose other cycles are
singletons. Now consider γ−1− δεpδqδδεγ. Its restriction to [±n] \ [±m]
consists of singletons. Its restriction to [±m] is as in Notation 11, i.e.
the cycles occur in pairs {c, c′}. We obtained a permutation, πp ·εq, of
[m] as follows. For each pair we choose one representative, replacing
any negative entries by their absolute values. Now we wish to extend
this construction to the case where p, q ∈ P2(m,n). The cycles in
[±n] \ [±m] also occur in pairs (−k)(k) (with k > 0) and so we just
choose (k) for each of these cycles. Also for m < k ≤ n let ηp ·εq(k) = 1.

Let X1, . . . , Xr satisfy (26) and let us expand E(X1 · · ·Xr) as follows.

E(X1 · · ·Xr)

=
∑

p,q∈P2(m,n)

〈Wg(p), q〉E(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An)).

We need to find the order of E(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An)).

Proposition 46. If m ≥ 2 and πp ·εq|[m] is not a pairing then

E(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An)) = O(dm/2−1).

If πp ·εq|[m] is a pairing or if m = 0 then

E(Tr(πp ·εq ,ηp ·εq)(A1, . . . , Am))

= Eπp ·εq |[m]
(Tr(πp ·εq |[m],ηp ·εq |[m])(A1, . . . , Am)) E(Tr(Am+1) · · ·Tr(An))

+ O(dm/2−1).

Proof. Let follow the notation used in Equation (9). If U is a partition
on [n] and π any permutation of [n] we write EU(Trπ(A1, . . . , An)) to

be the product
∏k

i=1 E(Trπi(A1, . . . , An)), where the blocks of U are
{U1, . . . , Uk} and πi = π|Ui . We likewise let kU(Trπ(A1, . . . , An)) be the
product of cumulants along the blocks of U , see equation (10). Recall
that we then have the moment-cumulant relation

E(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An))

=
∑
U∈P(n)
πp ·εq≤U

kU(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An)). (29)

By our assumption (23) on the existence of a real second order limit
distribution of the A’s we have

kU(Tr(πp ·εq ,ηp ·εq)(A, . . . , An)) = O(du)
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where u is the number of blocks of U that contain only one cycle of
πp ·εq. Suppose kU(Tr(πp ·εq ,ηp ·εq)(A, . . . , An)) 6= 0. Then any block of U
that contains a single cycle of πp ·εq must contain a cycle of πp ·εq|[n], as
E(Tr(Ak)) = 0 for m < k ≤ n. Thus u ≤ #(πp ·εq|[m]). Also recall, from
the fourth paragraph of the proof of Theorem 36, that if (k) is a single-
ton of πp ·εq|[m] then E(Tr(Ak)) = 0, and hence kU(Tr(πp ·εq ,ηp ·εq)(A1, . . . ,
An)) = 0. So for any block U of U that contains only one cycle of πp ·εq,
U must contain at least two elements. Thus u ≤ m/2. We can only
have u = m/2 when every block of U|[m] contains one cycle of πp ·εq|[m]

and that cycle has two elements, i.e. πp ·εq|[m] is a pairing. This proves
the first claim.

If πp ·εq|[m] is a pairing then we have just seen that to have u = m/2
we must have U|[m] = πp ·εq|[m]. Thus if we only consider U ’s for which
U|[m] = πp ·εq|[m] we have

E(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An))

= Eπp ·εq |[m]
(Tr(πp ·εq |[m],ηp ·εq |[m])(A1, . . . , Am))

×
∑

U ′∈P([m+1,n])

kU ′(Tr(Am+1), . . . ,Tr(Am))

= Eπp ·εq |[m]
(Tr(πp ·εq |[m],ηp ·εq |[m])(A1, . . . , Am)) E(Tr(Am+1), . . . ,Tr(Am))

Finally we add back the remaining terms to obtain that

E(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An))

= Eπp ·εq |[m]
(Tr(πp ·εq |[m],ηp ·εq |[m])(A1, . . . , Am)) E(Tr(Am+1), . . . ,Tr(Am))

+ O(dm/2−1).

�

Notation 47. Suppose we have r0, r,m, n and γ and ε as in Notation
45. Let A(γ, ε,m, n) be the set of partitions p ∈ P2(m,n) such that
πp ·εp|[m] is a pairing, the condition being vacuously satisfied when m =
0. For p ∈ A(γ, ε,m, n) let

Ep(A1, . . . , An)

= d−m/2 Eπp ·εp|[m]
(Tr(πp ·εp|[m],ηp ·εp|[m])(A1, . . . , Am))

× E(Tr(Am+1) · · ·Tr(An)).

Corollary 48. Suppose X1, . . . , Xr satisfy (26). Then

E(X1 · · ·Xr) =
∑

p∈A(γ,ε,m,n)

Ep(A1, . . . , An) + O(d−1).
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Proof. When m = 0 there is nothing to prove. According to Proposi-
tion 14

E(X1 · · ·Xr)

=
∑

p,q∈P2(m,n)

〈Wg(p), q〉E(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An)).

By Proposition 46, if πp ·εq|[m] is not a pairing we have

E(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An)) = O(dm/2−1)

and 〈Wg(p), q〉 = O(d−n+#(p∨q)). So

〈Wg(p), q〉E(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An)) = O(d−1).

Also if #(p ∨ q) < n/2 (i.e. p 6= q) we get the same conclusion. When
p = q and πp ·εp|[m] is a pairing, then p ∈ A(γ, ε,m, n) and

〈Wg(p), q〉E(Tr(πp ·εq ,ηp ·εq)(A1, . . . , An)) = Ep(A1, . . . , An) + O(d−1)

because 〈Wg(p), p〉 = d−m/2 + O(d−m/2−1). �

Proof of Theorem 44: To prove the theorem we show that∑
U∈P2(r)

kU(X1, . . . , Xr) =
∑

p∈A(γ,ε,m,n)

Ep(A1, . . . , An) + o(1) (30)

and then apply Corollary 48. We saw in the proof of Theorem 42 that
if Xi1 is of type (26.i) and Xi2 is of type (26.ii) then k2(Xi1 , Xi2) =
O(d−1), so on the left hand side of (30) we only have to consider U ’s
for which each block is either contained in [m] or in [m+ 1, n]. Thus∑
U∈P2(r)

kU(X1, . . . , Xr)

=
∑

U∈P2(r0)

kU(X1, . . . , Xr0)
∑

V∈P2([r0+1,r])

kV(Xr0+1, . . . , Xr) + o(1).

By assumption (23) we have∑
V∈P1,2([r0+1,r])

kV(Xr0+1, . . . , Xr) = E(Xm+1 · · ·Xn) + o(1)

because cumulants corresponding to blocks of size three or larger are
o(1) and cumulants corresponding to blocks of size two are O(1) and
cumulants corresponding to blocks of size one are 0.

Let us next show that∑
U∈P1,2(r0)

kU(X1, . . . , Xr0)
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= d−m/2
∑

p∈P2(m)

πp ·εp a pairing

Eπp ·εp(Tr(πp ·εp,ηp ·εp)(A1, . . . , Am)) + O(d−1). (31)

If we multiply these last two equations we get equation (30) as

Ep(A1, . . . , An)

= d−m/2 Eπp ·εp(Tr(πp ·εp,ηp ·εp)(A1, . . . , Am)) E(Xm+1 · · ·Xn).

To prove (31) we use (12) and (18). They say that a first and second
cumulant of X’s if type (26.ii) can be written, up to terms of order
O(d−1), as sums over pairings p in unions of intervals of γ for which
πp ·εp is a pairing. Moreover by Corollary 22 if p ∈ P2(m) is a pairing
and πp ·εp is also a pairing then at most two cycles of γ can be contained
in any block of p ∨ γ.

Let p ∈ P2(m) be a pairing such that πp ·εp is a pairing. The partition
p∨γ determines a partition Up ∈ P(r0) of the cycles of γ. By Corollary
22, Up ∈ P1,2(r0). Thus we can write

d−m/2
∑

p∈A(γ,ε,m)

Eπp ·εp(Tr(πp ·εp,ηp ·εp)(A1, . . . , Am))

=
∑

U∈P1,2(r0)

d−m/2
∑

p∈A(γ,ε,m)

Up=U

Eπp ·εp(Tr(πp ·εp,ηp ·εp)(A1, . . . , Am)).

So to prove (31) it suffices to prove that for U ∈ P1,2(r0)

kU(X1, . . . , Xr0)

=
∑

p∈A(γ,ε,m)

Up=U

Eπp ·εp(tr(πp ·εp,ηp ·εp)(A1, . . . , Am)) + O(d−1). (32)

Now kU(X1, . . . , Xr0) is a product of first and second cumulants. For
each first cumulant, E(Xj), we apply equation (12) to write

E(Xj) = d−s/2
∑
p

Eπp ·εp(Tr(πp ·εp,ηp ·εp)(Ai1 , . . . , Ais)) + O(d−1)

with p running over pairings of the corresponding cycle (i1, . . . , is) of γ
such that πp ·εp is a pairing.

For each second cumulant k2(Xk, Xl) we apply equation (18) to write

cov(Xk, Xl) = d−t/2
∑
p

Eπp ·εp(Tr(πp ·εp,ηp ·εp)(Aj1 , . . . , Ajt)) + O(d−1)

with p running over pairings that connect the corresponding union
(j1, . . . , jt) of two cycles of γ such that πp ·εp is a pairing. Taking the
product of these equations gives us (32). �
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9. Main Results on Asymptotic
Real Second Order Freeness

In this section we will present some consequences of Theorems 36,
38 and 41.

Theorem 49. The ensemble of Haar distributed orthogonal random
matrices has a real second order limit distribution.

Proof. Corollaries 10 and 40 show that an ensemble of Haar orthog-
onal matrices has convergent moments {E(tr(Om))}d and convergent
fluctuation moments {k2(Tr(Om),Tr(On))}d. A particular example of
Theorem 41 is the case when we have kr(Tr(Om1), . . . ,Tr(Omr)) for
some non-zero integers m1, . . . ,mr. Together these results then show
that an ensemble of Haar orthogonal random matrices has a real second
order limit distribution. �

Theorem 50. Suppose {Ai}i is an ensemble of random matrices with
a real second order limit distribution and O is an ensemble of Haar
distributed orthogonal random matrices. If the entries of {Ai}i are
independent from those of O, then {Ai}i and O are asymptotically real
second order free.

Proof. This is a consequence of Theorems 36, 38 and 41. �

Theorem 51. Let O1, . . . , Os be independent Haar distributed orthog-
onal random matrices. Then O1, . . . , Os are asymptotically real second
order free.

Proof. A single O has a real second order limit distribution by Theorem
49. By Theorem 50, O1 and O2 are asymptotically real second order
free. Again by Theorem 50 {O1, O2} and O3 are asymptotically real
second order free. By Proposition 29, O1, O2, and O3 are asymptoti-
cally real second order free. Then we can proceed by induction. �

Proposition 52. Suppose {Ai}i and {Bj}j are two independent fam-
ilies of d × d random matrices, each having a real second order limit
distribution, and suppose that O is a d× d Haar orthogonal matrix in-
dependent from {Ai}i∪{Bj}j. Then {Bj}l and {OAiO−1}i are asymp-
totically real second order free.

Proof. We do not know that {Ai}i ∪ {Bj}j has a real second order
limit distribution so we cannot directly apply Theorems 36, 38 and 41.
We shall argue that because of the special nature of the words we are
considering, i.e. OAi1O

−1Bj1OAi2O
−1Bj2 · · ·OAinO−1Bjn , the proofs

can be modified so that we only need the independence of {Ai}i and
{Bj}j and the fact that the exponents of the O’s alternate in sign.
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Consider the expression

E(Tr(πp ·εq ,ηp ·εq)(Y1, . . . , Yn))

appearing in the statement of Proposition 12. If we write

Tr(πp ·εq ,ηp ·εq)(Y1, . . . , Yn) = Tr(Z1) · · ·Tr(Zk)

as a product along the cycles c1 · · · ck os πp ·εq, then the existence of a
real second order limit distribution was used to conclude that

d−1k1(Tr(Zi)) converges,

k2(Tr(Zi),Tr(Zj)) converges, and

kr(Tr(Zi1), . . . ,Tr(Zir)) = o(1) for r ≥ 3.

This was all we needed to prove Theorems 36, 38 and 41. We shall
show that we still have these three properties even though we do not
assume that {Ai}i ∪ {Bj}j has a real second order limit distribution.

So let n1, n2, . . . , nr be even positive integers and n = n1 + · · ·+ nr.
Let

γ = (1, . . . , n1)(n1+1, . . . , n1+n2) · · · (n1+· · ·+nr−1+1, . . . , n1+· · ·nr)
be the permutation in Sn with the cycle decomposition given above.
Let Y1, Y3, . . . , Yn−1 be polynomials in {Ai}i and Y2, Y4, . . . , Yn be poly-
nomials in {Bj}j. By Proposition 12 we have

E(Trγ(OY1, O
−1Y2, . . . , OYn−1, O

−1Yn))

=
∑

p,q∈P2(n)

〈Wg(p), q〉E(Tr(πp ·εq ,ηp ·εq)(Y1, . . . , Yn).

Now by Lemma 13

E(Tr(πp ·εq ,ηp ·εq)(Y1, . . . , Yn) = E(Tr(Z1) · · ·Tr(Zk))

where each Zi is a polynomial in either {Ai}i or in {Bj}j. In fact we
may suppose that Z1, . . . , Zl are polynomials in {Ai}i and Zl+1, . . . , Zk
are polynomials in {Bj}j. Then we have

E(Trγ(OY1, O
−1Y2, . . . , OYn−1, O

−1Yn))

=
∑

p,q∈P2(n)

〈Wg(p), q〉E(Tr(Z1) · · ·Tr(Zl))

× E(Tr(Zl+1) · · ·Tr(Zk)) (33)

by the independence of the {Ai}i and the {Bj}j. This means that as
far as the asymptotic behaviour of E(Tr(πp ·εq ,ηp ·εq)(Y1, . . . , Yn)) is con-
cerned we may assume that {Ai}i ∪ {Bj}j does have a real second
order limit distribution. Now having cleared this hurdle we have by
the proof of Theorem 36 that {OAiO−1}i and {Bj}j are first order
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free. Likewise, the proof of Theorem 41 can be applied to conclude
that all third and higher cumulants of traces of products of OAiO

−1’s
and Bj’s are of order o(1) as d → ∞. We shall conclude the proof by
showing that Theorem 38 and equation (33) will give us condition (ii)
of Definition 25.

So let us consider centred random matrices X1, . . . , Xm and Y1, . . . Yn
where X1, X3, . . . Xm−1 and Y1, Y3, . . . Yn−1 are polynomials in {Ai}i
and X2, X2, . . . , Xm and Y2, Y4, . . . , Yn are polynomials in {Bj}j. Let
the second order limit distribution of X1, . . . , Xm and Y1, . . . , Yn be
given by x1, . . . , xm and y1, . . . , yn respectively.

By equation (14) we have for m = n

lim
d→∞

cov(Tr(OX1O
−1X2 · · ·O−1Xm),Tr(OY1 · · ·O−1Yn))

=
m∑
r=1

{
m∏
i=1

ϕ(xiyr−i)δεi,−εγ−i+1(m+r)
+

m∏
i=1

ϕ(xiy
t
r+i)δεi,εγi(m+r)

}
Since εi = (−1)i, we have both δεi,−εγ−i+1(m+r)

= 1 and δεi,εγi(m+r)
= 1

only when r is even; see Figure 5. Thus

m∑
r=1

{
m∏
i=1

ϕ(xiyr−i)δεi,−εγ−i+1(m+r)
+

m∏
i=1

ϕ(xiy
t
r+i)δεi,εγi(m+r)

}

=

m/2∑
r=1

{
m∏
i=1

ϕ(xiy2r−i) +
m∏
i=1

ϕ(xiy
t
2r+i)

}
(34)

For i odd we write ϕ(xiy2r−i) = ϕ(oxio
−1oy2r−io

−1). Then

m/2∑
r=1

{
m∏
i=1

ϕ(xiy2r−i) +
m∏
i=1

ϕ(xiy
t
2r+i)

}

=

m/2∑
r=1


m/2∏
i=1

ϕ
(
(ox2i−1o

−1)(oy2r−(2i−1)o
−1)
)
ϕ(x2iy2r−2i)

+

m/2∏
i=1

ϕ
(
(ox2i−1o

−1)(oy2r+2i−1o)
t
)
ϕ(x2iy

t
2r+2i)


This shows that condition (ii) of Definition 25 is satisfied. �

Definition 53. A random matrix is said to be invariant under conju-
gation by an orthogonal matrix if the joint distribution of the entries
is invariant under conjugation by an orthogonal matrix. So if we let A
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Figure 5. When εi = (−1)i the only spoke diagrams
that make a contribution are those where we connect an
o to an o−1. This means we can only connect an a to a b
if the indices have the same parity. This is what we see
in equation (34).

be a random matrix, O be a orthogonal matrix and B = OAO−1 then
we mean that for every i1, . . . , in, i−1, . . . , i−n we have

E(ai1i−1 · · · aini−n) = E(bi1i−1 · · · bini−n).

Many standard examples of random matrices are invariant under
conjugation by a unitary or orthogonal matrix. In particular, real
Wishart matrices, the Gaussian orthogonal ensemble, Ginibre matri-
ces, and orthogonal matrices are all invariant under conjugation by an
orthogonal matrix. In [r1, r2], Redelmeier these were shown to have
real second order limit distributions and so satisfy the hypothesis of
our theorem below.

Theorem 54. Suppose that {Ai}i and {Bj}j are two independent fam-
ilies of random matrices, each with real second order limit distribution.
Suppose also that the family {Ai}i is invariant under conjugation by
an orthogonal matrix. Then {Ai}i and {Bj}j are asymptotically real
second order free.

Proof. Since the joint distribution of the entries of Ai and OAiO
−1

are the same we may replace {Ai}i by {OAiO−1}i and then apply
Proposition 52. �

10. Concluding Remark

Let us consider {Ai}i and {Bl}l two independent ensembles of ran-
dom matrices, each with a real second order limit distribution and
suppose that the ensemble {Ai}i is invariant under a conjugation by a
unitary matrix. In [mśs] it is shown that {Ai}i and {Bl}l are asymp-
totically complex second order free (see [mśs], Corollary 3.16). Since
orthogonal matrices are also unitary, Theorem 54 implies that {Ai}i
and {Bl}l are asymptotically both real and complex second order free.
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In particular, the second term on the right-hand side of equation (6)
must vanish. In consequence, for A1, A2 ∈ {Ai}i we have that

lim
d→∞

tr(A1A
t
2) = 0.

The connection between ensembles of random matrices which are in-
variant under a conjugation with a unitary and real second order free-
ness goes deeper than this and is investigated in the subsequent paper
[mp2] in which we show that unitarily invariant ensembles are asymp-
totically free from their transposes.
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