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ABSTRACT
Longest-queue-first (LQF) link scheduling is a greedy link

scheduling in multihop wireless networks. Its stability per-

formance in single-channel single-radio (SC-SR) wireless

networks has been well studied recently. However, its sta-

bility performance in multi-channel multi-radio (MC-MR)

wireless networks is largely under-explored. In this paper,

we present a stability subregion with closed form of the LQF

scheduling in MC-MR wireless networks, which is within a

constant factor of the network stability region. We also ob-

tain constant lower bounds on the efficiency ratio of the

LQF scheduling in MC-MR wireless networks under the

802.11 interference model or the protocol interference model.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network

Architecture and Design—wireless communication

Keywords
Stability, multi-channel multi-radio, link scheduling

1. INTRODUCTION

With the rapid technology advances, many off-the-shelf

wireless transceivers (i.e., radios) are capable of operating on

multiple channels. For example, the IEEE 802.11 b/g stan-

dard and IEEE 802.11a standard provide 3 and 12 channels
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respectively, and MICA2 sensor motes support more than

50 channels. The rapidly diminishing prices of the radios

has also made it feasible to equip a wireless node with mul-

tiple radios. Providing each node with one or more multi-

channel radios offers a promising avenue for enhancing the

network capacity by simultaneously exploiting multiple non-

overlapping channels through different radio interfaces and

mitigating interferences through proper channel assignment.

In this paper, we take a queuing-theoretic study of a well-

known greedy link scheduling, called Longest-Queue-First

(LQF) link scheduling, in multi-channel multi-radio (MC-

MR) wireless networks under the 802.11 interference model

or the protocol interference model.

We assume that time is slotted. For each 𝑡 ∈ ℕ, the 𝑡-th

time slot is the time interval (𝑡 − 1, 𝑡]. Any packet arriving
in a slot is assumed to arrive at the end of the slot, and may

only be transmitted in the subsequent slots. In addition, the

packet arrivals are assumed to be mutually independent and

temporally i.i.d. processes with arrival rate vector 𝛼. In each

time-slot, the LQF scheduling first sorts the communication

links in the decreasing order of their queue lengths (ties can

be broken arbitrarily) and then schedule their transmissions

along this order in the following greedy manner: each link

transmits as many packets as possible from its queue us-

ing the radios at its two endpoints which have not been

used by any preceding links and the channels which have

not been used by any preceding conflicting links. Let 𝑋 (𝑡)

(respectively, 𝑌 (𝑡)) denote the vector of cumulative number

of packets arriving (respectively, transmitted) in the first 𝑡

time slots, and 𝑍 (𝑡) denote the vector of number of packets

queued at the very end of time slot 𝑡. Then,

𝑍 (𝑡) = 𝑍 (0) +𝑋 (𝑡)− 𝑌 (𝑡) .

The network is said to be stable if the Markov chain (𝑍 (𝑡)) is

positive recurrent. The stability region of the LQF schedul-

ing, denoted by Λ, is the set of arrival rate vectors 𝛼 such

that the network is stable. Let 𝑃 be the maximum stability

region of the network, the set of arrival rate vectors such
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that there exists a scheduling policy stabilizing the network.

The efficiency ratio of the LQF scheduling is defined to be

sup {𝜎 ∈ ℝ+ : 𝜎𝑃 ⊆ Λ} .

The first main contribution of this paper is a stability sub-

region of the LQF scheduling with closed form. Such sta-

bility subregion is shown to be within a constant factor of

the strict capacity subregion. In addition, it can be checked

in polynomial time whether a given vector of packet arrival

rates lies in this stability subregion. This computational

tractability is particularly favorable for cross-layer optimiza-

tion, where one needs to allocate the link rates efficiently

while still ensuring the network stability under the LQF

scheduling. The second main contribution of this paper is

the discovery of constant lower bounds on the efficiency ra-

tio of the LQF scheduling. Specifically, the efficiency ratio

of the LQF scheduling is at least 1/8 under the 802.11 inter-

ference model with uniform interference radii, at least 1/20

under the 802.11 interference model with arbitrary interfer-

ence radii, and at least

1/

(
2

(⌈
𝜋/ arcsin

𝜑− 1
2𝜑

⌉
+ 1

))

under the protocol interference model in which the interfer-

ence radius of each node is at least 𝜑 times its communica-

tion radius for some 𝜑 > 1.

The efficiency ratio of the LQF scheduling in single-

channel single-radio (SC-SR) wireless networks is now well

understood. Joo et al. [5, 6] made a remarkable contribu-

tion to fully characterizing the throughput efficiency ratio

of LQF. Built upon the prior works by Dimakis and Wal-

rand [4] which presented sufficient conditions for LQF to

achieve 100% throughput, they proved that the throughput

efficiency ratio of LQF is exactly the local pooling factor

(LPF) of the conflict graph of the communication links. The

LPF is a pure graph-theoretic parameter. Thus, the works

by Joo et al. [5, 6] built an elegant bridge between a queuing-

theoretic parameter and a graph-theoretic parameter. Un-

der the 802.11 interference model with uniform interference

radii, the LPF is shown to be at least 1/6 in [6]. Sparked

by the works in [6], Leconte el al. [7] and Li el al. [8] pre-

sented some properties of LPF. Leconte el al. [7] derived

tighter lower bounds on LPF in networks of size at most 28

under the 802.11 interference model with uniform interfer-

ence radii. Li el al. [8] gave an alternative definition of LPF

and also introduced a refined notion of LPF. Recently, Wan

et al. [16] proved that the LPF is at least 1/16 under the

802.11 interference model with arbitrary interference radii,

and at least

1/

(
2

(⌈
𝜋/ arcsin

𝜑− 1
2𝜑

⌉
− 1
))

under the protocol interference model in which the interfer-

ence radius of the sender of each link is at least 𝜑 times

the link length for some 𝜑 > 1. However, it remains com-

putationally intractable to decide whether a given vector of

packet arrival rates meets the so-called local-pooling con-

dition. The efficiency ratios of other link scheduling algo-

rithms were studied in [2, 10, 13, 18, 19].

In contrast, the stability of the LQF scheduling in MC-

MR wireless networks has been under-studied. Lin and Ra-

sool [9] derived a lower bound 1/10 on the efficiency ratio of

the LQF scheduling under the 802.11 interference model

with uniform interference/communication radii, which is

weaker than the 1/8 lower bound derived in this paper un-

der the same setting. The technical approach in [9] is quite

different from the approach followed in this paper. In fact,

the lower bound 1/10 can be derived in a simpler manner

by using the fact that the LQF scheduling is actually a

10-approximation algorithm forMaximum-Weight Inde-

pendent Set under the 802.11 interference model with uni-

form interference/communication radii. Brzezinski et al. [1]

considered the variant of the LQF scheduling with (tem-

porarily) static channel assignment and the only interfer-

ence assumed was the primary interference. Even in such

restricted setting, no analytical bounds on the efficiency ra-

tio were provided in [1]. The variant of the LQF scheduling

with (temporarily) dynamic channel assignment, which is

subject of this paper, was left as a subject of future research

in [1].

The remainder of this paper is organized as follows. Sec-

tion 2 introduces some basic results from functional analysis

and probability theory. Section 3 defines the stability region

of a MC-MR wireless network. Section 4 presents a stabil-

ity subregion of the LQF scheduling. Section 5 derives the

lower bounds on the efficiency ratio of the LQF scheduling.

Finally, we conclude this paper in Section 6.

2. PRELIMINARIES

Let 𝐼 be an interval in the real line ℝ. A function 𝑓 :

𝐼 → ℝ is absolutely continuous on 𝐼 if for every 𝜀 > 0, there

is a 𝛿 > 0 such that whenever a finite sequence of pairwise

disjoint sub-intervals [𝑠𝑘, 𝑡𝑘] of 𝐼 satisfies∑
𝑘
∣𝑠𝑘 − 𝑡𝑘∣ < 𝛿,

then ∑
𝑘
∣𝑓(𝑠𝑘)− 𝑓(𝑡𝑘)∣ < 𝜀.

If 𝑓 is absolutely continuous, then 𝑓 has a derivative 𝑓 ′ al-
most everywhere; the points at which 𝑓 is differential are

called the regular points of 𝑓 . The following property of

absolutely continuous functions is implicitly used in [3].

Lemma 2.1. Let 𝑓 be an absolutely continuous non-

negative function on ℝ+ and 𝜅 be a positive constant. Sup-

pose that for every almost every regular point 𝑡, 𝑓 ′(𝑡) ≤ −𝜅
whenever 𝑓(𝑡) > 0. Then, 𝑓 is non-increasing, and once it

reaches zero it stays zero forever. Moreover, 𝑓(𝑡) = 0 for

all 𝑡 ≥ 𝑓(0)/𝜅.

A function 𝑓 on ℝ+ is said to be Lipschitz continuous with

Lipschitz constant 𝐶 (or simply 𝐶-Lipschitz continuous) for
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some constant 𝐶 > 0 if for any 𝑠, 𝑡 ∈ ℝ+,

∣𝑓(𝑠)− 𝑓(𝑡)∣ ≤ 𝐶 ∣𝑠− 𝑡∣ .
Lipschitz continuous functions are absolutely continuous.

The following lemma may be hidden in a textbook, and we

give a short proof for the sake of completeness.

Lemma 2.2. Suppose that 𝑓1, 𝑓2, ⋅ ⋅ ⋅ , 𝑓𝑘 are 𝑘 𝐶-Lipschitz
continuous functions on ℝ+. Then, max1≤𝑖≤𝑡 𝑓𝑘 (𝑡) is also

𝐶-Lipschitz continuous.

Proof. For any 𝑡 ∈ ℝ+, let

𝑔 (𝑡) = max
1≤𝑖≤𝑡

𝑓𝑖 (𝑡)

and

𝐾 (𝑡) = {1 ≤ 𝑗 ≤ 𝑘 : 𝑓𝑗 (𝑡) = 𝑔 (𝑡)} .
Consider any distinct 𝑠 > 𝑡 ≥ 0. If there is any 𝑖 ∈ 𝐾 (𝑠) ∩
𝐾 (𝑡), then

∣𝑔 (𝑠)− 𝑔 (𝑡)∣ = ∣𝑓𝑖 (𝑠)− 𝑓𝑖 (𝑡)∣ ≤ 𝐶 (𝑠− 𝑡) .
Now suppose that 𝐾 (𝑠) ∩𝐾 (𝑡) = ∅. Choose 𝑖 ∈ 𝐾 (𝑠) and
𝑗 ∈ 𝐾 (𝑡). Then,

𝑓𝑖 (𝑠) > 𝑓𝑗 (𝑠) , 𝑓𝑗 (𝑡) > 𝑓𝑖 (𝑡) .

Then, there exists 𝑟 ∈ (𝑡, 𝑠) such that 𝑓𝑖 (𝑟) = 𝑓𝑗 (𝑟). So,
∣𝑔 (𝑠)− 𝑔 (𝑡)∣
= ∣𝑓𝑖 (𝑠)− 𝑓𝑗 (𝑡)∣
≤ ∣𝑓𝑖 (𝑠)− 𝑓𝑖 (𝑟)∣+ ∣𝑓𝑗 (𝑟)− 𝑓𝑗 (𝑡)∣
≤ 𝐶 (𝑠− 𝑟) + 𝐶 (𝑟 − 𝑡)
= 𝐶 (𝑠− 𝑡) .

Therefore, 𝑔 is also 𝐶-Lipschitz continuous.

A function 𝑓 which takes values in 𝑘-dimensional Eu-

clidean space is said to be absolutely (respectively, Lips-

chitz) continuous if each of its component is absolutely (re-

spectively, Lipschitz) continuous. For any vector 𝑥 in an Eu-

clidean Space, ∥𝑥∥∞ and ∥𝑥∥1 denote the maximum norm

(also called uniform norm) and the Manhattan norm of 𝑥

respectively.

Let (𝑓𝑛) be a sequence of functions on ℝ+ and let 𝑓 be a

continuous function on ℝ+. We say that 𝑓𝑛 → 𝑓 uniformly

on compact sets, or simply 𝑓𝑛 → 𝑓 u.o.c., if for each 𝑡 > 0,

sup
0≤𝑠≤𝑡

∣𝑓𝑛 (𝑠)− 𝑓 (𝑠)∣ → 0.

The following lemma was stated in Lemma 4.1 of [3].

Lemma 2.3. Let (𝑓𝑛) be a sequence of nondecreasing real-

valued functions on ℝ+, and 𝑓 be a continuous function on

ℝ+. Assume that (𝑓𝑛) converges pointwise to 𝑓 . Then the

convergence is u.o.c.

The following theorem on the convergence of random vari-

ables is stated in Theorem 2.2.3 of [12].

Theorem 2.4. Suppose that a sequence of random vari-

ables (𝜉𝑛) converge to a random variable 𝜉 in probability.

1. If 𝜉𝑛 is uniformly integrable, then E [∣𝜉∣] < ∞ and

lim𝑛→∞E [𝜉𝑛] = E [𝜉].

2. If 𝜉𝑛 ≥ 0, E [𝜉] <∞, and lim𝑛→∞E [𝜉𝑛] = E [𝜉], then

𝜉𝑛 is uniformly integrable.

3. NETWORK STABILITY REGION

Consider an instance of MC-MR multihop wireless net-

work with a set 𝑉 of networking nodes and a set 𝐴 of node-

level communication links. Each node 𝑣 has 𝜏 (𝑣) radios, and

there are 𝜆 non-overlapping channels. In the fine-grained

network representation [15] of the MC-MR wireless network,

each communication link is encoded by an ordered quintu-

ple specifying the transmitting node, the receiver node, the

radio at the transmitting node, the radio at the receiving

node, and the channel. Specifically, for each node-level link

(𝑢, 𝑣) in 𝐴, we make 𝜆 ⋅ 𝜏𝑢 ⋅ 𝜏𝑣 replications (𝑢, 𝑣, 𝑖, 𝑗, 𝑘) for
1 ≤ 𝑖 ≤ 𝜏𝑢, 1 ≤ 𝑗 ≤ 𝜏𝑣, and 1 ≤ 𝑘 ≤ 𝜆. A replication

(𝑢, 𝑣, 𝑖, 𝑗, 𝑘) always utilizes the 𝑖-th radio at 𝑢 and the 𝑗-th

radio at 𝑣 over the 𝑘-th channel. For each subset 𝐵 of 𝐴, we

use 𝐵𝜏,𝜆 to denote the set of all replications of the links in

𝐵. In particular, 𝐴𝜏,𝜆 is the set of all replicated links of the

links in 𝐴. A subset 𝐼 of 𝐴𝜏,𝜆 can transmit at the same time

if and only if (1) all replication links in 𝐼 are radio-disjoint,

in other words, no pair share a common radio, and (2) for

each channel 𝑘, all the replication links in 𝐼 transmitting

over channel 𝑘 are conflict-free. Let ℐ𝜏,𝜆 denote the collec-

tion of the subsets of 𝐴𝜏,𝜆 which can transmit successfully

at the same time. For each 𝐼 ∈ ℐ𝜏,𝜆, its service rate is the

vector 𝑑 ∈ ℝ𝐴
+ given by

𝑑𝑎 =
∣∣∣𝐼𝑗 ∩ {𝑎}𝜏,𝜆

∣∣∣
for each 𝑎 ∈ 𝐴.
A set

Π =
{
(𝐼𝑗 , ℓ𝑗) ∈ ℐ𝜏,𝜆 × ℝ+ : 1 ≤ 𝑗 ≤ 𝑚

}
is called a (fractional) link schedule of some 𝑑 ∈ ℝ𝐴

+ if

𝑑𝑎 =
𝑚∑

𝑗=1

ℓ𝑗

∣∣∣𝐼𝑗 ∩ {𝑎}𝜏,𝜆
∣∣∣

for each 𝑎 ∈ 𝐴. The two values 𝑚 and
∑𝑚

𝑗=1 ℓ𝑗 are referred

to as the size and length (or latency) of Π respectively. For

any 𝑑 ∈ ℝ𝐴
+, the minimum latency 𝜒∗ (𝑑) of 𝑑 is defined as

the minimum length of all fractional link schedules of 𝑑. The

stability region of the MC-MR wireless network is

𝑃 =
{
𝑑 ∈ ℝ

𝐴
+ : 𝜒

∗ (𝑑) < 1
}
.

For any subset 𝑆 of 𝐴𝜏,𝜆, a subset 𝐼 of 𝑆 is said to be

a maximal independent of 𝑆 if 𝐼 ∈ ℐ𝜏,𝜆 and for any link

𝑒 ∈ 𝑆 ∖ 𝐼, 𝐼 ∪ {𝑒} /∈ ℐ𝜏,𝜆. For any 𝐵 ⊆ 𝐴, a set 𝐼 ∈ ℐ𝜏,𝜆 is

said to be 𝐵-maximal if 𝐼 ∩𝐵𝜏,𝜆 is a maximal independent

set of 𝐵𝜏,𝜆. We use ℳ𝜏,𝜆
𝐵 to denote the collection of 𝐵-

maximal independent sets of 𝐵𝜏,𝜆, 𝑀𝐵 to denote the set
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of service rates of the sets in ℳ𝜏,𝜆
𝐵 , and Φ𝐵 to denote the

convex hull of 𝑀𝐵 .

4. STABILITY SUBREGION

Consider an instance of MC-MR wireless network speci-

fied in Section 3. Two links in 𝐴 are said to have a conflict if

they cannot transmit at the same time over the same chan-

nel. Furthermore, a conflicting pair of distinct links in 𝐴

are said to have primary conflict if there share one common

end, and secondary conflict otherwise. For the sake of con-

venience, each link is said to have a self-conflict with itself.

The concise conflict graph [20] of the MC-MR wireless net-

work is the edge-weighted graph 𝐺 on 𝐴 in which there is

an edge between each conflicting pair of links (𝑎, 𝑏) whose

weight denoted by 𝑐 (𝑎, 𝑏), is defined as follows:

∙ If 𝑏 = 𝑎 (i.e., self-conflict), then

𝑐𝑎,𝑏 = 1−
(
1− 1

𝜏𝑢

)(
1− 1

𝜏𝑣

)(
1− 1

𝜆

)

where 𝑢 and 𝑣 are the two endpoints of 𝑎.

∙ If 𝑎 and 𝑏 have a common endpoint 𝑢 (i.e., 𝑎 and 𝑏
have a primary conflict), then

𝑐𝑎,𝑏 = 1−
(
1− 1

𝜏𝑢

)(
1− 1

𝜆

)
.

∙ If 𝑎 and 𝑏 have the secondary conflict, then

𝑐𝑎,𝑏 =
1

𝜆
.

Note that 𝑐 (𝑎, 𝑏) = 𝑐 (𝑏, 𝑎). Let ℐ denote the collection of the
independent sets in 𝐺. In other words, ℐ is the collection of
the subsets of 𝐴 which can transmit successfully at the same

time over the same channel. Note that 𝐺 can be regarded

as a generalization of the conventional conflict graph of the

underlying SC-SR wireless network by adding a self-loop

at each link and assigning each edge a weight specified by

the function 𝑐. Thus, ℐ is essentially the collection of the

independent sets of links in the underlying SC-SR wireless

network.

For any link 𝑎 ∈ 𝐴, 𝑁𝐺 (𝑎) denotes the set of neighbors of

𝑎 in 𝐺. Since 𝐺 has a self-loop at each vertex, 𝑎 is a neighbor

to itself, and hence 𝑎 ∈ 𝑁𝐺 (𝑎). Thus, 𝑁𝐺 (𝑎) consists of all

links in 𝐴 (including itself) having conflict with 𝑎. For any

link 𝑎, any subset 𝐵 of links, and any 𝑑 ∈ ℝ𝐴
+, define

Γ (𝐵, 𝑎; 𝑑) =
∑

𝑏∈𝑁𝐺(𝑎)∩𝐵

𝑐𝑎,𝑏𝑑𝑏.

By Lemma 2.3 in [20], for any 𝑑 ∈𝑀𝐵 and any 𝑎 ∈ 𝐵,
Γ (𝐵, 𝑎; 𝑑) ≥ 1.

Thus, for any 𝑑 ∈ Φ𝐵 and any 𝑎 ∈ 𝐵,
Γ (𝐵, 𝑎; 𝑑) ≥ 1

as well.

Consider a link ordering ≺ of 𝐴. For any link 𝑎 ∈ 𝐴,

𝑁≺
𝐺 (𝑎) denotes the set of neighbors of 𝑎 in 𝐺 preceding 𝑎 in

the ordering ≺ plus 𝑎 itself. For any 𝑑 ∈ ℝ𝐴
+, the value

max
𝑎∈𝐴

Γ
(
𝑁≺

𝐺 (𝑎) , 𝑎; 𝑑
)

is referred to as 𝑑-weighted inductivity of≺ and is denoted by
Δ≺ (𝑑). The smallest 𝑑-weighted inductivity of all possible
link orderings, denoted by Δ∗ (𝑑), is called the 𝑑-weighted
inductivity of the network. It was shown in [20] that

Δ∗ (𝑑) = max
∅∕=𝐵⊆𝐴

min
𝑏∈𝐵

Γ (𝐵, 𝑏; 𝑑) .

and Δ∗ (𝑑) is achieved by a special ordering, called smallest-
last ordering, which is produced successively as follows: Ini-

tialize 𝐵 to 𝐴. For 𝑖 = ∣𝐴∣ down to 1, let 𝑎𝑖 be a link
minimizing Γ (𝐵, 𝑏; 𝑑) among all links 𝑏 in 𝐵, and delete 𝑎𝑖
from 𝐵. Then the ordering

〈
𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎∣𝐴∣

〉
is a smallest-

last ordering.

Let

𝑄∗ =
{
𝑑 ∈ ℝ

𝐴
+ : Δ

∗ (𝑑) < 1
}
.

The following theorem shows that 𝑄∗ is a stability subregion
of LQF scheduling.

Theorem 4.1. 𝑄∗ ⊆ Λ.

We shall prove Theorem 4.1 by applying the Malyshev-

Menshikov Criterion [11] for ergodicity of discrete-time

countable-state Markov chains. For any 𝑛 ∈ ℕ, we denote by

𝑍(𝑛) (𝑡) (respectively, 𝑋(𝑛) (𝑡), 𝑌 (𝑛) (𝑡)) the vector of queue

length (cumulative number of arriving packets, cumulative

number of transmitted packets) in a system at the end of

time-slot 𝑡 with its initial total queue length
∥∥∥𝑍(𝑛) (0)

∥∥∥
1
=

𝑛. Let

𝑇 =

⎡
⎢⎢⎢⎢
1−

(
1− 1

∥𝜏∥∞

)2 (
1− 1

𝜆

)
1−Δ∗ (𝛼)

⎤
⎥⎥⎥⎥ .

By the Malyshev-Menshikov Criterion [11], Theorem

4.1 follows immediately from the theorem below.

Theorem 4.2. For any 𝛼 ∈ 𝑄∗,

lim
𝑛→∞

E

[∥∥∥∥𝑍(𝑛) (𝑛𝑇 )

𝑛

∥∥∥∥
1

]
= 0.

The proof of Theorem 4.2 utilizes Theorem 2.4. By the

strong law of large numbers,∥∥∥∥𝑋(𝑛) (𝑛𝑇 )

𝑛

∥∥∥∥
1

= 𝑇

∥∥∥∥𝑋(𝑛) (𝑛𝑇 )

𝑛𝑇

∥∥∥∥
1

→ 𝑇 ∥𝛼∥1
almost surely, and

E

[∥∥∥∥𝑋(𝑛) (𝑛𝑇 )

𝑛

∥∥∥∥
1

]
= 𝑇 ⋅E

[∥∥∥∥𝑋(𝑛) (𝑛𝑇 )

𝑛𝑇

∥∥∥∥
1

]
= 𝑇 ∥𝛼∥1 .

By Theorem 2.4, the sequence
(∥∥∥𝑋(𝑛)(𝑛𝑇 )

𝑛

∥∥∥
1

)
is uniformly

integrable. Since∥∥∥∥𝑍(𝑛) (𝑛𝑇 )

𝑛

∥∥∥∥
1

≤
∥∥∥∥𝑋(𝑛) (𝑛𝑇 )

𝑛

∥∥∥∥
1

,
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the sequence
(∥∥∥𝑍(𝑛)(𝑛𝑇 )

𝑛

∥∥∥
1

)
is also uniformly integrable.

Again, by Theorem 2.4, Theorem 4.2 would hold if∥∥∥∥𝑍(𝑛) (𝑛𝑇 )

𝑛

∥∥∥∥
1

→ 0

in probability. We will actually prove a stronger result that∥∥∥∥𝑍(𝑛) (𝑛𝑇 )

𝑛

∥∥∥∥
1

→ 0

almost surely. Consider a sample path (i.e. realization) 𝜔 of(
𝑍(𝑛) (0) : 𝑛 ∈ ℕ

)
∪
(
𝑋(𝑛) (𝑡) : 𝑛, 𝑡 ∈ ℕ

)
.

It is is said to be well-behaved if

lim
𝑡→∞

𝑋(𝑛) (𝑡, 𝜔)

𝑡
= 𝛼.

By the strong law of large numbers, every sample path is

almost surely well-behaved. We will prove that for any well-

behaved sample path 𝜔,∥∥∥∥𝑍(𝑛) (𝑛𝑇, 𝜔)

𝑛

∥∥∥∥
1

→ 0,

from which we can conclude that∥∥∥∥𝑍(𝑛) (𝑛𝑇 )

𝑛

∥∥∥∥
1

→ 0

almost surely, and hence Theorem 4.2 holds.

Fix a well-behaved sample path 𝜔. Denote 𝑋(𝑛) (𝑡, 𝜔) (re-

spectively, 𝑌 (𝑛) (𝑡, 𝜔), 𝑍(𝑛) (𝑡, 𝜔)) by 𝑥(𝑛) (𝑡) (respectively,

𝑦(𝑛) (𝑡), 𝑧(𝑛) (𝑡)). Then, all of them are deterministic. In

order to show that ∥∥∥∥𝑧(𝑛) (𝑛𝑇 )

𝑛

∥∥∥∥
1

→ 0,

it is sufficient to show that for any infinite increasing se-

quence 𝑆 of positive integers, there is an infinite subsequence

𝑆′ of 𝑆 along which ∥∥∥∥𝑧(𝑛) (𝑛𝑇 )

𝑛

∥∥∥∥
1

→ 0.

So, we further fix an infinite increasing sequence 𝑆 of positive

integers. For convenience, we define 𝑥(𝑛) (0) and 𝑦(𝑛) (0)

to be the vector of zeros. We extend 𝑥(𝑛) (𝑡) (respectively,

𝑦(𝑛) (𝑡), 𝑧(𝑛) (𝑡)) to all non-negative real numbers by linear

interpolation. Then, for any 𝑡 ≥ 0 and any 𝑛 ∈ ℕ,

𝑧(𝑛) (𝑛𝑡)

𝑛
=
𝑧(𝑛) (0)

𝑛
+
𝑥(𝑛) (𝑛𝑡)

𝑛
− 𝑦(𝑛) (𝑛𝑡)

𝑛
.

Lemma 4.3. For any 𝑡 ≥ 0, lim𝑛
𝑥(𝑛)(𝑛𝑡)

𝑛
= 𝛼𝑡.

Proof. The lemma holds trivially when 𝑡 = 0. Since 𝜔 is

well-behaved for any positive integer 𝑡,

lim
𝑛

𝑥(𝑛) (𝑛𝑡)

𝑛
= 𝑡 lim

𝑛

𝑥(𝑛) (𝑛𝑡)

𝑛𝑡
= 𝛼𝑡.

Now consider any non-integer 𝑡 > 0. Since

𝑥(𝑛) (⌊𝑛𝑡⌋)
⌊𝑛𝑡⌋

⌊𝑛𝑡⌋
𝑛𝑡

≤ 𝑥(𝑛) (𝑛𝑡)

𝑛𝑡
≤ 𝑥(𝑛) (⌈𝑛𝑡⌉)

⌈𝑛𝑡⌉
⌈𝑛𝑡⌉
𝑛𝑡

we have

lim
𝑛

𝑥(𝑛) (𝑛𝑡)

𝑛𝑡
= 𝛼.

Thus,

lim
𝑛

𝑥(𝑛) (𝑛𝑡)

𝑛
= 𝛼𝑡.

So, the lemma holds.

For each 𝑡 ∈ ℕ, let 𝐼(𝑛) (𝑡) ∈ ℐ𝜏,𝜆 be the set of repli-

cated links which are scheduled to transmit in the 𝑡-th time

slot, and 𝑑(𝑛) (𝑡) be the service rate of 𝐼(𝑛) (𝑡). The average

service rate in a time interval [𝑡1, 𝑡2] is defined to be

𝑦(𝑛) (𝑡1, 𝑡2) =
𝑦(𝑛) (𝑡2)− 𝑦(𝑛) (𝑡1)

𝑡2 − 𝑡1 .

It has the following properties.

Lemma 4.4. Consider any 0 ≤ 𝑡1 < 𝑡2.

1. For any 𝑠 = 𝜀𝑡1 + (1− 𝜀) 𝑡2 for some 𝜀 ∈ [0, 1],
𝑦(𝑛) (𝑡1, 𝑡2) = (1− 𝜀) 𝑦(𝑛) (𝑡1, 𝑠) + 𝜀𝑦

(𝑛) (𝑠, 𝑡2) ,

2. 𝑦(𝑛) (𝑡1, 𝑡2) is a convex combination of{
𝑑(𝑛) (𝑡) : ⌊𝑡1⌋+ 1 ≤ 𝑡 ≤ ⌈𝑡2⌉ , 𝑡 ∈ ℕ

}
.

3.
∥∥∥𝑦(𝑛) (𝑡1, 𝑡2)

∥∥∥
∞

≤ ∥𝜏∥∞.

Proof. (1). The first part of the lemma holds trivially if

𝜀 = 0 or 1. So we assume that 𝜀 ∈ (0, 1). Then,
𝑦(𝑛) (𝑡1, 𝑡2)

=
𝑦(𝑛)(𝑡2)− 𝑦(𝑛)(𝑡1)

𝑡2 − 𝑡1
=
𝑦(𝑛)(𝑡2)− 𝑦(𝑛)(𝑠)

𝑡2 − 𝑡1 +
𝑦(𝑛)(𝑠)− 𝑦(𝑛)(𝑡1)

𝑡2 − 𝑡1
=
𝑡2 − 𝑠
𝑡2 − 𝑡1

𝑦(𝑛)(𝑡2)− 𝑦(𝑛)(𝑠)

𝑡2 − 𝑠 +
𝑠− 𝑡1
𝑡2 − 𝑡1

𝑦(𝑛)(𝑠)− 𝑦(𝑛)(𝑡1)

𝑠− 𝑡1
= 𝜀𝑦(𝑛) (𝑠, 𝑡2) + (1− 𝜀) 𝑦(𝑛) (𝑡1, 𝑠) ,

and hence the first part of the lemma holds as well.

(2). If ⌊𝑡1⌋+ 1 = ⌈𝑡2⌉, then
𝑦(𝑛) (𝑡1, 𝑡2) = 𝑑

(𝑛) (⌈𝑡2⌉)
and hence the second part of the lemma holds trivially. So,

we assume that Note that ⌊𝑡1⌋+1 < ⌈𝑡2⌉. Note that for any
𝑡 ∈ ℝ+,

𝑦(𝑛) (⌈𝑡⌉ − 1, 𝑡) = 𝑑(𝑛) (⌈𝑡⌉) ,
𝑦(𝑛) (𝑡, ⌊𝑡⌋+ 1) = 𝑑(𝑛) (⌊𝑡⌋+ 1) .

By the first part of the lemma, 𝑦(𝑛) (𝑡1, 𝑡2) is a convex com-

bination of

𝑦(𝑛) (𝑡1, ⌊𝑡1⌋+ 1) ;
𝑦(𝑛) (𝑠, 𝑠+ 1) , 𝑠 ∈ ℕ and ⌊𝑡1⌋+ 1 ≤ 𝑠 ≤ ⌈𝑡2⌉ − 1;
𝑦(𝑛) (⌈𝑡2⌉ − 1, 𝑡2) .
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Thus, the second part of the lemma holds.

(3). The third part of the lemma follows from the second

part of the lemma and the fact that∥∥∥𝑑(𝑛) (𝑡)
∥∥∥
∞

≤ ∥𝜏∥∞
for any 𝑡 ∈ ℕ.

Note that for any 0 ≤ 𝑡1 < 𝑡2,
𝑦(𝑛)(𝑛𝑡2)

𝑛
− 𝑦(𝑛)(𝑛𝑡1)

𝑛

𝑡2 − 𝑡1
=
𝑦(𝑛) (𝑛𝑡2)− 𝑦(𝑛) (𝑛𝑡1)

𝑛𝑡2 − 𝑛𝑡1
= 𝑦(𝑛) (𝑛𝑡1, 𝑛𝑡2) .

By the third part of Lemma 4.4, 𝑦(𝑛)(𝑛𝑡)
𝑛

is ∥𝜏∥∞-Lipschitz
continuous, and hence is equicontinuous. By the Arzela-

Ascoli theorem, there is an infinite subsequence 𝑆1 of 𝑆 along

which 𝑦(𝑛)(𝑛𝑡)
𝑛

converges to some function 𝛽 (𝑡). In addition,

𝛽 (𝑡) is also ∥𝜏∥∞-Lipschitz continuous. Since∥∥∥∥𝑧(𝑛) (0)

𝑛

∥∥∥∥
1

= 1

for any 𝑛 ∈ ℕ, there is an infinite subsequence 𝑆′ of 𝑆1

along which 𝑧(𝑛)(0)
𝑛

converges. Therefore, along the sequence

𝑆′, 𝑧(𝑛)(0)
𝑛

, 𝑥(𝑛)(𝑛𝑡)
𝑛

and 𝑦(𝑛)(𝑛𝑡)
𝑛

all converge. Since both
𝑥(𝑛)(𝑛𝑡)

𝑛
and 𝑦(𝑛)(𝑛𝑡)

𝑛
are increasing function of 𝑡 for each 𝑛,

they converge u.o.c along 𝑆′ to 𝛼𝑡 and 𝛽 (𝑡) respectively by
Lemma 2.3. As

𝑧(𝑛) (𝑛𝑡)

𝑛
=
𝑧(𝑛) (0)

𝑛
+
𝑥(𝑛) (𝑛𝑡)

𝑛
− 𝑦(𝑛) (𝑛𝑡)

𝑛
,

𝑧(𝑛)(𝑛𝑡)
𝑛

also converges u.o.c. along 𝑆′ to some function 𝛾 (𝑡).
Since ∥∥∥∥𝑧(𝑛) (0)

𝑛

∥∥∥∥
1

= 1,

∥𝛾 (0)∥1 = 1. In addition,

𝛾 (𝑡) = 𝛾 (0) + 𝛼𝑡− 𝛽 (𝑡) .

Clearly, 𝛾 (𝑡) is also Lipschitz continuous with Lipschitz con-

stant ∥𝛼∥∞ + ∥𝜏∥∞, and so is ∥𝛾 (𝑡)∥∞ by Lemma 2.2.

A time 𝑡 ∈ ℝ+ is said to be a regular point if each compo-

nent of 𝛾 (𝑡) and ∥𝛾 (𝑡)∥∞ are differentiable at 𝑡. Since both

𝛾 (𝑡) and ∥𝛾 (𝑡)∥∞ are Lipschitz continuous, almost every

time 𝑡 ∈ ℝ+ is a regular point. Since

𝛽 (𝑡) = 𝛾 (𝑡)− 𝛾 (0)− 𝛼𝑡

𝛽 (𝑡) is also differentiable at any regular point 𝑡, and

𝛾′ (𝑡) = 𝛼− 𝛽′ (𝑡) .

In the next, we derive the properties of ∥𝛾 (𝑡)∥′∞ and 𝛽′ (𝑡) at
any regular point 𝑡 > 0 with ∥𝛾 (𝑡)∥∞ > 0. For any regular

point 𝑡, denote

𝐴0(𝑡) =

{
𝑎 ∈ 𝐴 : 𝛾𝑎 (𝑡) = max

𝑏∈𝐴
𝛾𝑏 (𝑡)

}
,

𝐴1(𝑡) =

{
𝑎 ∈ 𝐴0(𝑡) : 𝛾

′
𝑎 (𝑡) = max

𝑏∈𝐴0(𝑡)
𝛾′𝑏 (𝑡)

}
.

Then, we have the following lemma.

Lemma 4.5. Consider any regular point 𝑡 > 0 with

∥𝛾 (𝑡)∥∞ > 0.

1. For any 𝑎 ∈ 𝐴1(𝑡), 𝛾
′
𝑎 (𝑡) = ∥𝛾 (𝑡)∥′∞.

2. 𝛽′ (𝑡) ∈ Φ𝐴1(𝑡).

The proof of Lemma 4.5 is quite involved, and so is rele-

gated to Appendix. We apply Lemma 4.5 to show that for

any regular point 𝑡 > 0 with ∥𝛾 (𝑡)∥∞ > 0,

∥𝛾 (𝑡)∥′∞ ≤ Δ∗ (𝛼)− 1
1−

(
1− 1

∥𝜏∥∞

)2 (
1− 1

𝜆

) .
Let 𝑎 be the link in 𝐴1 (𝑡) with minimum Γ (𝐴1 (𝑡) , 𝑎;𝛼).

Then,

Γ (𝐴1 (𝑡) , 𝑎;𝛼) ≤ Δ∗ (𝛼) .

By the second part of Lemma 4.5, for each link 𝑎 ∈ 𝐴1 (𝑡),

Γ
(
𝐴1 (𝑡) , 𝑎;𝛽

′ (𝑡)
) ≥ 1

Thus,

Γ
(
𝐴1 (𝑡) , 𝑎; 𝛾

′ (𝑡)
)

= Γ
(
𝐴1 (𝑡) , 𝑎;𝛼− 𝛽′ (𝑡)

)
= Γ (𝐴1 (𝑡) , 𝑎;𝛼)− Γ

(
𝐴1 (𝑡) , 𝑎;𝛽

′ (𝑡)
)

≤ Δ∗ (𝛼)− 1.
On the other hand, by the first part of Lemma 4.5,

Γ
(
𝐴1 (𝑡) , 𝑎; 𝛾

′ (𝑡)
)

=
∑

𝑏∈𝑁𝐺(𝑎)∩𝐴1(𝑡)
𝑐𝑎,𝑏𝛾

′
𝑏 (𝑡)

=
∑

𝑏∈𝑁𝐺(𝑎)∩𝐴1(𝑡)
𝑐𝑎,𝑏 ∥𝛾 (𝑡)∥′∞

= ∥𝛾 (𝑡)∥′∞
∑

𝑏∈𝑁𝐺(𝑎)∩𝐴1(𝑡)
𝑐𝑎,𝑏

≥ ∥𝛾 (𝑡)∥′∞ 𝑐𝑎,𝑎

≥ ∥𝛾 (𝑡)∥′∞
(
1−

(
1− 1

∥𝜏∥∞

)2 (
1− 1

𝜆

))
.

Therefore,

∥𝛾 (𝑡)∥′∞ ≤ Δ∗ (𝛼)− 1
1−

(
1− 1

∥𝜏∥∞

)2 (
1− 1

𝜆

) .
The property established in the previous paragraph to-

gether with Lemma 2.1 yields that ∥𝛾 (𝑡)∥∞ = 0 for

𝑡 ≥ ∥𝛾 (0)∥∞
1−Δ∗(𝛼)

1−
(
1− 1

∥𝜏∥∞

)2
(1− 1

𝜆 )

.
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Since

𝑇 =

⎡
⎢⎢⎢⎢
1−

(
1− 1

∥𝜏∥∞

)2 (
1− 1

𝜆

)
1−Δ∗ (𝛼)

⎤
⎥⎥⎥⎥

≥
1−

(
1− 1

∥𝜏∥∞

)2 (
1− 1

𝜆

)
1−Δ∗ (𝛼)

=
1

1−Δ∗(𝛼)

1−
(
1− 1

∥𝜏∥∞

)2
(1− 1

𝜆 )

=
∥𝛾 (0)∥1
1−Δ∗(𝛼)

1−
(
1− 1

∥𝜏∥∞

)2
(1− 1

𝜆 )

≥ ∥𝛾 (0)∥∞
1−Δ∗(𝛼)

1−
(
1− 1

∥𝜏∥∞

)2
(1− 1

𝜆 )

,

we have ∥𝛾 (𝑡)∥∞ = 0 whenever 𝑡 ≥ 𝑇 . Consequently,

∥𝛾 (𝑡)∥1 = 0 whenever 𝑡 ≥ 𝑇 . Therefore,

lim
𝑛

∥∥∥∥𝑧(𝑛) (𝑛𝑇 )

𝑛

∥∥∥∥
1

= ∥𝛾 (𝑇 )∥1 = 0.

This completes the proof of Theorem 4.2.

5. THE EFFICIENCY RATIO

In this section, we derive the lower bounds on the effi-

ciency ratio of the LQF scheduling.

Given a link ordering ≺ of 𝐴, its backward local indepen-

dence number (BLIN) is defined to be

max
𝑎∈𝐴

max
{∣𝐼∣ : 𝐼 ⊆ 𝑁≺

𝐺 (𝑎) , 𝐼 ∈ ℐ} .
An orientation of 𝐺 is a digraph obtained from 𝐺 by im-

posing an orientation on each edge of 𝐺. Note that in each

orientation 𝐷 of 𝐺 also has a self-loop at each vertex, and

consequently, 𝑎 ∈ 𝑁 𝑖𝑛
𝐷 (𝑎) ∩𝑁𝑜𝑢𝑡

𝐷 (𝑎) for each 𝑎 ∈ 𝐴. Given
an orientation 𝐷 of 𝐺, its inward local independence number

(ILIN) is defined to be

max
𝑎∈𝐴

max
{
∣𝐼∣ : 𝐼 ⊆ 𝑁 𝑖𝑛

𝐷 (𝑎) , 𝐼 ∈ ℐ
}
.

Since BLIN and ILIN only depend on the topology of 𝐺

rather than the edge weight function 𝑐, the following prop-

erties which hold in the convectional conflict graph of the

underlying SC-SR wireless network also hold in the 𝐺:

∙ Under the 802.11 interference model with uniform in-

terference radii, the lexicographic ordering of 𝐴 has

BLIN at most 6 [6].

∙ Under the 802.11 interference model with arbitrary in-
terference radii, there is an orientation 𝐷 of 𝐺 with

ILIN at most 8 [17].

∙ Under the protocol interference model in which the
interference radius of the sender of each link is at least

𝜑 times the link length for some 𝜑 > 1, there is an

orientation 𝐷 of 𝐺 with ILIN
⌈
𝜋/ arcsin 𝜑−1

2𝜑

⌉
−1 [14].

Theorem 5.1. The following two statements are true:

1. If there is a link ordering of 𝐴 with BLIN 𝜇, then 𝑄∗ ⊇
1

𝜇+2
𝑃.

2. If there is an orientation of 𝐺 with ILIN 𝜇, then 𝑄∗ ⊇
1

2(𝜇+2)
𝑃.

Proof. (1). Consider any 𝑑 ∈ 𝑃 . By the first part of

Corollary 2.8 in [20],

Δ∗ (𝑑) ≤ (𝜇+ 2)𝜒∗ (𝑑) < 𝜇+ 2.

Thus, 𝑑 ∈ (𝜇+ 2)𝑄∗. Hence, 𝑃 ⊆ (𝜇+ 2)𝑄∗, which implies
that 𝑄∗ ⊇ 1

𝜇+2
𝑃.

(2). Consider any 𝑑 ∈ 𝑃 . By the second part of Corollary
2.8 in [20],

Δ∗ (𝑑) ≤ 2 (𝜇+ 2)𝜒∗ (𝑑) < 2 (𝜇+ 2) .

Thus, 𝑑 ∈ 2 (𝜇+ 2)𝑄∗. Hence, 𝑃 ⊆ 2 (𝜇+ 2)𝑄∗, which
implies that 𝑄∗ ⊇ 1

2(𝜇+2)
𝑃.

Theorem 4.1 and Theorem 5.1 immediately implies the

following lower bounds on the efficiency ratio of the LQF

scheduling.

∙ 1/8 under the 802.11 interference model with uni-

form interference radii, the efficiency ratio of the LQF

scheduling is at least .

∙ 1/20 under the 802.11 interference model with arbi-
trary interference radii, the efficiency ratio of the LQF

scheduling is at least .

∙ 1/
(
2
(⌈
𝜋/ arcsin 𝜑−1

2𝜑

⌉
+ 1
))

under the protocol in-

terference model in which the interference radius of the

sender of each link is at least 𝜑 times the link length

for some 𝜑 > 1.

6. DISCUSSIONS

Most of the recent works on the stability of LQF schedul-

ing established the stability by using Theorem 4.2 of [3],

which states that in the context of multiclass queuing net-

works the stability of fluid-limit systems imply the stability

of the original system under certain conditions. One crucial

condition is that the queuing service discipline is working-

conserving (middle of pp. 65 in [3]): a server is idle only

when there is no customer waiting for the service. Ap-

parently, the LQF scheduling in wireless networks is not

working-conserving, as a link with non-empty queue may

be idle due to the interference from other nearby links. So,

the direct applicability of Theorem 4.2 of [3] to wireless link

scheduling is questionable. Instead, we have applied the

Malyshev-Menshikov Criterion [11] to establish the sta-

bility of LQF scheduling. An attractive feature of this tech-

nical approach is that we push the deterministic (sample-

path) arguments as far as possible while trying to avoid the

heavy machinery of stochastic processes. The advantages
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of this approach are clear: the sample-path arguments are

simple and intuitive; thus they provide a clear insight into

the issues at hand. Sample-path analysis also helps pinpoint

what and when stochastic conditions are needed to guaran-

tee the stability. For example, the packet arrival process in

this paper is only required to be mutually independent and

temporally i.i.d., while the packet arrival processes in [4, 5,

6] have to meet additional conditions.

The local pooling factor (LPF) of a MC-MR wireless net-

work can be defined as follows. For any non-empty subset

𝐵 of 𝐴, let

𝜎𝐵 = min
{
𝑐 ∈ ℝ

+ : ∃𝑥, 𝑦 ∈ Φ𝐵 s.t. 𝑥 ≤ 𝑐𝑦} .
Then, the LPF is the parameter

𝜎∗ = min
∅∕=𝐵⊆𝐴

𝜎𝐵 .

Using the same (and easier) argument as in Section 4, we

can show that Λ ⊇ 𝜎∗𝑃 . Thus, the LPF 𝜎∗ is also a lower
bound on the efficiency ratio. We can also derive the same

lower bounds on 𝜎∗. Specifically, 𝜎∗ is at least 1/8 un-
der the 802.11 interference model with uniform interference

radii, at least 1/20 under the 802.11 interference model with

arbitrary interference radii, and at least

1/

(
2

(⌈
𝜋/ arcsin

𝜑− 1
2𝜑

⌉
+ 1

))

under the protocol interference model in which the interfer-

ence radius of the sender of each link is at least 𝜑 times the

link length for some 𝜑 > 1.
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Appendix

In this appendix, we prove Lemma 4.5. Fix a regular point

𝑡 > 0 with ∥𝛾 (𝑡)∥∞ > 0. We make the convention that the

maximum of an empty set is zero. Define 𝜂 (𝑡) as follows: if

𝐴1(𝑡) = 𝐴0(𝑡),

𝜂 (𝑡) = ∥𝛾 (𝑡)∥∞ − max
𝑎∈𝐴╲𝐴0(𝑡)

𝛾𝑎 (𝑡) ;

otherwise,

𝜂 (𝑡) = max
𝑎∈𝐴0(𝑡)

𝛾′𝑎 (𝑡)− max
𝑎∈𝐴0(𝑡)╲𝐴1(𝑡)

𝛾′𝑎 (𝑡) .

Then, 𝜂 (𝑡) > 0.

Lemma 8.1. There exists 𝛿 > 0 such that for any 𝑠 ∈
[𝑡, 𝑡+ 𝛿],

min
𝑎∈𝐴1(𝑡)

𝛾𝑎 (𝑠) > max
𝑎∈𝐴╲𝐴1(𝑡)

𝛾𝑎 (𝑠) +
𝑠− 𝑡
2
𝜂 (𝑡) .

Proof. We consider two cases.

Case 1: 𝐴1(𝑡) = 𝐴0(𝑡). By the continuity of 𝛾, there exists

𝛿 ∈ (0, 1) such that for any 𝑠 ∈ [𝑡, 𝑡+ 𝛿],

min
𝑎∈𝐴1(𝑡)

𝛾𝑎 (𝑠)

= min
𝑎∈𝐴0(𝑡)

𝛾𝑎 (𝑠)

> max
𝑎∈𝐴╲𝐴0(𝑡)

𝛾𝑎 (𝑠) +
1

2
𝜂 (𝑡)

= max
𝑎∈𝐴╲𝐴1(𝑡)

𝛾𝑎 (𝑠) +
1

2
𝜂 (𝑡)

≥ max
𝑎∈𝐴╲𝐴1(𝑡)

𝛾𝑎 (𝑠) +
𝑠− 𝑡
2
𝜂 (𝑡) .

Case 2: 𝐴1(𝑡) ∕= 𝐴0(𝑡). There exists 𝛿 > 0 such that for

any 𝑠 ∈ (𝑡, 𝑡+ 𝛿],

min
𝑎∈𝐴0(𝑡)

𝛾𝑎 (𝑠) > max
𝑎∈𝐴╲𝐴0(𝑡)

𝛾𝑎 (𝑠) ,

max
𝑎∈𝐴

∣∣∣∣𝛾𝑎 (𝑠)− 𝛾𝑎 (𝑡)𝑠− 𝑡 − 𝛾′𝑎(𝑡)
∣∣∣∣ < 𝜂 (𝑡)

4
.

Fix an 𝑠 ∈ (𝑡, 𝑡+ 𝛿]. Then,

max
𝑎∈𝐴╲𝐴1(𝑡)

𝛾𝑎 (𝑠) = max
𝑎∈𝐴0(𝑡)╲𝐴1(𝑡)

𝛾𝑎 (𝑠) .

For any 𝑎 ∈ 𝐴1(𝑡) and any 𝑏 ∈ 𝐴0 (𝑡)╲𝐴1(𝑡), we have

𝛾𝑎 (𝑠)− 𝛾𝑏 (𝑠)
𝑠− 𝑡

=
𝛾𝑎 (𝑠)− 𝛾𝑎 (𝑡)

𝑠− 𝑡 − 𝛾𝑏 (𝑠)− 𝛾𝑏 (𝑡)
𝑠− 𝑡

≥𝛾′𝑎(𝑡)− 𝛾′𝑏(𝑡)−
∣∣∣∣𝛾𝑎 (𝑠)− 𝛾𝑎 (𝑡)𝑠− 𝑡 − 𝛾′𝑎(𝑡)

∣∣∣∣
−
∣∣∣∣𝛾𝑏 (𝑠)− 𝛾𝑏 (𝑡)𝑠− 𝑡 − 𝛾′𝑏(𝑡)

∣∣∣∣
>𝜂 (𝑡)− 𝜂 (𝑡)

4
− 𝜂 (𝑡)

4

=
𝜂 (𝑡)

2
,

which implies

𝛾𝑎(𝑠) > 𝛾𝑏(𝑠) +
𝑠− 𝑡
2
𝜂 (𝑡) .

Hence, for any 𝑠 ∈ (𝑡, 𝑡+ 𝛿],
min

𝑘∈𝐴1(𝑡)
𝛾𝑎 (𝑠)

> max
𝑎∈𝐴0(𝑡)╲𝐴1(𝑡)

𝛾𝑎 (𝑠) +
𝑠− 𝑡
2
𝜂 (𝑡)

= max
𝑎∈𝐴╲𝐴1(𝑡)

𝛾𝑎 (𝑠) +
𝑠− 𝑡
2
𝜂 (𝑡) .

Note the above inequality holds trivially when 𝑠 = 𝑡. There-

fore, the lemma holds.

Now, we give the proof of the first part of Lemma 4.5

using Lemma 8.1. Consider any 𝑎 ∈ 𝐴1(𝑡) and any 𝜀 > 0. By

Lemma 8.1, there exists 𝛿 > 0 such that for any 𝑠 ∈ (𝑡, 𝑡+𝛿],
min

𝑎∈𝐴1(𝑡)
𝛾𝑎 (𝑠) > max

𝑎∈𝐴╲𝐴1(𝑡)
𝛾𝑎 (𝑠) ,∥∥∥∥𝛾 (𝑠)− 𝛾 (𝑡)𝑠− 𝑡 − 𝛾′(𝑡)

∥∥∥∥
∞
< 𝜀.

Thus, for any 𝑠 ∈ (𝑡, 𝑡+ 𝛿],
∥𝛾 (𝑠)∥∞ − ∥𝛾 (𝑡)∥∞

𝑠− 𝑡 − 𝛾′𝑎(𝑡)

=
max𝑏∈𝐴1(𝑡) 𝛾𝑏 (𝑠)− ∥𝛾 (𝑡)∥∞

𝑠− 𝑡 − 𝛾′𝑎(𝑡)

= max
𝑏∈𝐴1(𝑡)

𝛾𝑏 (𝑠)− ∥𝛾 (𝑡)∥∞
𝑠− 𝑡 − 𝛾′𝑎(𝑡)

= max
𝑏∈𝐴1(𝑡)

(
𝛾𝑏 (𝑠)− ∥𝛾 (𝑡)∥∞

𝑠− 𝑡 − 𝛾′𝑎(𝑡)
)

= max
𝑏∈𝐴1(𝑡)

(
𝛾𝑏 (𝑠)− 𝛾𝑏 (𝑡)

𝑠− 𝑡 − 𝛾′𝑏(𝑡)
)
,

which implies∣∣∣∣∥𝛾 (𝑠)∥∞ − ∥𝛾 (𝑡)∥∞
𝑠− 𝑡 − 𝛾′𝑎(𝑡)

∣∣∣∣
≤ max

𝑏∈𝐴1(𝑡)

∣∣∣∣𝛾𝑏 (𝑠)− 𝛾𝑏 (𝑡)𝑠− 𝑡 − 𝛾′𝑏(𝑡)
∣∣∣∣

< 𝜀.

Therefore,

∥𝛾 (𝑡)∥′∞ = 𝛾′𝑎 (𝑡) ,
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and the first part of Lemma 4.5 holds.

We move on to prove the second part of Lemma 4.5. Con-

sider any 𝜀 ∈ (0, 1). By Lemma 8.1, there exists 𝛿 > 0 such
that for any 𝑠 ∈ (𝑡, 𝑡+ 𝛿],

min
𝑎∈𝐴1(𝑡)

𝛾𝑎 (𝑠) > max
𝑏∈𝐴╲𝐴1(𝑡)

𝛾𝑏 (𝑠) +
𝑠− 𝑡
2
𝜂 (𝑡) ,

and ∥∥∥∥𝛽 (𝑠)− 𝛽 (𝑡)𝑠− 𝑡 − 𝛽′ (𝑡)

∥∥∥∥
∞

≤ 𝜀.

Let 𝜀1 = 𝜀/ ∥𝜏∥∞. By the u.o.c. convergence, there exists a
sufficiently large 𝑛 ∈ 𝑆′ such that

𝑛 ≥ max

{
2

𝜀1𝛿
,

8

𝜀1𝛿 ⋅ 𝜂 (𝑡) ∥𝜏∥∞
}

and for any 𝑠 ∈ [𝑡, 𝑡+ 𝛿],∥∥∥∥𝑦(𝑛) (𝑛𝑠)

𝑛
− 𝛽 (𝑠)

∥∥∥∥
∞
<
𝜀

2
𝛿

∥∥∥∥𝑧(𝑛) (𝑛𝑠)

𝑛
− 𝛾 (𝑠)

∥∥∥∥
∞
<
𝜀1
16
𝛿𝜂 (𝑡) .

We make the following two claims.

Claim 8.2.
∥∥∥𝑦(𝑛) (𝑛 (𝑡+ 𝜀1𝛿) , 𝑛 (𝑡+ 𝛿))− 𝛽′ (𝑡)

∥∥∥
∞

≤ 3𝜀.

Proof. By the third part of Lemma 4.4,∥∥∥𝑦(𝑛) (𝑛 (𝑡+ 𝜀1𝛿) , 𝑛 (𝑡+ 𝛿))− 𝑦(𝑛) (𝑛𝑡, 𝑛 (𝑡+ 𝛿))
∥∥∥
∞

≤ 𝜀1 ∥𝜏∥∞
= 𝜀.

Thus, it is sufficient to show that∥∥∥𝑦(𝑛) (𝑛𝑡, 𝑛 (𝑡+ 𝛿))− 𝛽′ (𝑡)
∥∥∥
∞

≤ 2𝜀,

which will be proved subsequently. Since∥∥∥∥𝑦(𝑛) (𝑛𝑡, 𝑛 (𝑡+ 𝛿))− 𝛽 (𝑡+ 𝛿)− 𝛽 (𝑡)
𝛿

∥∥∥∥
∞

=

∥∥∥∥𝑦(𝑛) (𝑛 (𝑡+ 𝛿))− 𝑦(𝑛) (𝑛𝑡)

𝑛𝛿
− 𝛽 (𝑡+ 𝛿)− 𝛽 (𝑡)

𝛿

∥∥∥∥
∞

≤1
𝛿

∥∥∥∥𝑦(𝑛) (𝑛 (𝑡+ 𝛿))

𝑛
− 𝛽 (𝑡+ 𝛿)

∥∥∥∥
∞
+

1

𝛿

∥∥∥∥𝑦(𝑛) (𝑛𝑡)

𝑛
− 𝛽 (𝑡)

∥∥∥∥
∞

<
1

𝛿
⋅ 𝜀
2
𝛿 +

1

𝛿
⋅ 𝜀
2
𝛿

=𝜀.

we have ∥∥∥𝑦(𝑛) (𝑛𝑡, 𝑛 (𝑡+ 𝛿))− 𝛽′ (𝑡)
∥∥∥
∞

≤
∥∥∥∥𝑦(𝑛) (𝑛𝑡, 𝑛 (𝑡+ 𝛿))− 𝛽 (𝑡+ 𝛿)− 𝛽 (𝑡)

𝛿

∥∥∥∥
∞

+

∥∥∥∥𝛽 (𝑡+ 𝛿)− 𝛽 (𝑡)𝛿
− 𝛽′ (𝑡)

∥∥∥∥
∞

<2𝜀.

Therefore, our claim holds.

Claim 8.3. 𝑦(𝑛) (𝑛 (𝑡+ 𝜀1𝛿) , 𝑛 (𝑡+ 𝛿)) ∈ Φ𝐴1(𝑡).

Proof. By the second part of Lemma 4.4,

𝑦(𝑛) (𝑛 (𝑡+ 𝜀1𝛿) , 𝑛 (𝑡+ 𝛿)) is a convex combination of{
𝑑(𝑛) (𝑗) : ⌊𝑛 (𝑡+ 𝜀1𝛿)⌋+ 1 ≤ 𝑗 ≤ ⌈𝑛 (𝑡+ 𝛿)⌉

}
.

Thus, it is sufficient to show that 𝑑(𝑛) (𝑗) ∈𝑀𝐴1(𝑡) for any

integer 𝑗 between ⌊𝑛 (𝑡+ 𝜀1𝛿)⌋+ 1 and ⌈𝑛 (𝑡+ 𝛿)⌉.
We first show that for any 𝑠 ∈ [𝑡+ 𝜀1𝛿/2, 𝑛𝑡+ 𝛿],

min
𝑎∈𝐴1(𝑡)

𝑧(𝑛)
𝑎 (𝑛𝑠) > max

𝑏∈𝐴╲𝐴1(𝑡)
𝑧
(𝑛)
𝑏 (𝑛𝑠) + ∥𝜏∥∞ .

Consider any link 𝑎 ∈ 𝐴1(𝑡), and any link 𝑏 ∈ 𝐴╲𝐴1(𝑡).

Then,

𝛾𝑎 (𝑠)− 𝛾𝑏 (𝑠) > 𝑠− 𝑡
2
𝜂 (𝑡) ≥ 𝜀1𝛿

4
𝜂 (𝑡) ,

and ∣∣∣∣∣𝑧
(𝑛)
𝑎 (𝑛𝑠)− 𝑧(𝑛)

𝑏 (𝑛𝑠)

𝑛
− (𝛾𝑎 (𝑠)− 𝛾𝑏 (𝑠))

∣∣∣∣∣
≤
∣∣∣∣∣𝑧

(𝑛)
𝑎 (𝑛𝑠)

𝑛
− 𝛾𝑎 (𝑠)

∣∣∣∣∣+
∣∣∣∣𝑧𝑛𝑏 (𝑛𝑠)𝑛

− 𝛾𝑏 (𝑠)
∣∣∣∣

<
𝜀1𝛿

8
𝜂 (𝑡) .

Therefore,

𝑧
(𝑛)
𝑎 (𝑛𝑠)− 𝑧(𝑛)

𝑏 (𝑛𝑠)

𝑛

> 𝛾𝑎 (𝑠)− 𝛾𝑏 (𝑠)− 𝜀1𝛿

8
𝜂 (𝑡)

>
𝜀1𝛿

8
𝜂 (𝑡) ,

which implies

𝑧(𝑛)
𝑎 (𝑛𝑠) > 𝑧

(𝑛)
𝑏 (𝑛𝑠) + 𝑛

𝜀1𝛿

8
𝜂 (𝑡)

≥ 𝑧(𝑛)
𝑏 (𝑛𝑠) + ∥𝜏∥∞ .

So, the desired inequality holds.

Consider any integer 𝑗 such that 𝑗 − 1 ∈
[𝑛 (𝑡+ 𝜀1𝛿/2) , 𝑛 (𝑡+ 𝛿)]. Then, at the end of the (𝑗 − 1)-th
times-slot, the queue length of each link in 𝐴1 (𝑡) is at least

∥𝜏∥∞ and is larger than any link not in 𝐴1 (𝑡). Thus, 𝐼
(𝑛) (𝑗)

is 𝐴1 (𝑡)-maximal, which implies that 𝑑
(𝑛) (𝑗) ∈ Φ𝐴1(𝑡).

Since

⌊𝑛 (𝑡+ 𝜀1𝛿)⌋ − 𝑛 (𝑡+ 𝜀1𝛿/2)
> 𝑛 (𝑡+ 𝜀1𝛿)− 1− 𝑛 (𝑡+ 𝜀1𝛿/2)
= 𝑛𝜀1𝛿/2− 1 ≥ 0

and

⌈𝑛 (𝑡+ 𝛿)⌉ − 1 < 𝑛 (𝑡+ 𝛿) ,
for each integer 𝑗 between ⌊𝑛 (𝑡+ 𝜀1𝛿)⌋+ 1 and ⌈𝑛 (𝑡+ 𝛿)⌉,
we have 𝑑(𝑛) (𝑗) ∈ Φ𝐴1(𝑡).

Since Φ𝐴1(𝑡) is compact, the above two claims together

with the fact that 𝜀 can be chosen arbitrarily small imply

the correctness of the second part of Lemma 4.5.
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