
1 Introduction
There is a growing literature on the applications of cellular automata (CA) to simulate
the growth of urban settlement (for example Batty, 1998; Batty et al, 1997; 1999; Clarke
and Gaydos, 1998; Clarke et al, 1997; Li and Yeh, 2000; White and Engelen, 1993;
White et al, 1997; Wu and Webster, 1998). However, the tension between the theoretical
abstraction of CA models and empirical policy constraints remains. CA allow
researchers to view the city as a self-organising system in which the basic land parcels
are developed into various land-use types. A model of the urban system is thus
constructed by the aggregation of uncoordinated local decisionmaking processes.
One of the most important potential uses for such simulations is their ability to model
the impact of alternative policies on the development process. CA applications based
on hypothetical urban forms can provide valuable insights, but the interpretation of
such modelling is hampered by difficulties in relating the modelled form to empirical
combinations of settlement and constraints. The use of CA methods to model the
future development of real urban systems is made particularly complex by the tension
between self-organisation and the application of empirical constraints. The advantages
of using a GIS (geographic information system) environment have been widely docu-
mented because a variety of data formats and data-processing functions can be easily
accessed (Wagner, 1997; Wu and Webster, 1998). Most realistic large-scale applications
need to consider the use of various data sources such as historical land-use records
(Batty and Xie, 1994), urban land-use maps (White and Engelen, 1993), historical maps
(Clarke and Gaydos, 1998; Clarke et al, 1997), and remotely sensed images (Li and
Yeh, 2000; Wu and Webster, 1998) to construct a geography of urban development.
In this context, integrating data sources from different scales and dates becomes
important. Surface modelling techniques can be applied to cross-reference data layers

Urban expansion simulation of Southeast England using
population surface modelling and cellular automata

Fulong Wu, David Martin
Department of Geography, University of Southampton, Southampton SO17 1BJ, England;
e-mail: F.Wu@soton.ac.uk, D.J.Martin@soton.ac.uk
Received 15 January 2002, in revised form 21st June 2002

Environment and Planning A 2002, volume 34, pages 1855 ^ 1876

Abstract. The question of where to accommodate future urban expansion has become a politically
sensitive issue in many regions. Against the backdrop of `urban compaction' policy, this study uses
population surface modelling and cellular automata (CA) to conduct an empirical urban growth
simulation for Southeast England. This implementation leads to a consideration of the proper balance
between the theoretical abstraction of self-organised growth and empirical constraints to land devel-
opment. Specifically, we use 1991 and 1997 postcode directories to construct population surfaces.
From these, the distributions of developed and vacant (rural) land are derived. Development potential
is assessed through accessibility surfaces, which are constructed from the travel/commuting time to
major London rail termini, to motorway junctions, and to principal settlements. Through investigating
the frequencies of land development in relation to the accessibility surfaces, we can begin to under-
stand the distribution of land development in this region. Based on this empirical relationship,
the transition rules of a CA simulation of future urban expansion are constructed. In addition,
government population projections at the county level are used to constrain simulation to the year
2020. The study demonstrates the utility of empirical CA in urban growth modelling; in particular the
importance of empirically informed CA simulation rules in characterising the distribution of land
development.

DOI:10.1068/a3520

mailto:F.Wu@soton.ac.uk
mailto:D.J.Martin@soton.ac.uk


and construct an empirically informed CA simulation. More importantly, surface
modelling can be used to identify the trend of development and thus inform the design
of simulation models.

This paper describes the application of CA to the simulation of urban expansion
in a 3006300 km area of Southeast England (figure 1), an area subject to consider-
able development pressure. The recent housing boom in the region has put further
stress on greenfield sites. The population projection for the twenty-five years follow-
ing 1991 is 4.4 million households. In 1996 the government raised its target to require
that 60% of new developments should take place on `brownfield' sites or `previously
developed land' (Breheny, 1997). This policy is often referred to as `urban compaction'
policy, which typically includes the objectives of promoting urban regeneration, the
revitalisation of town centres, restraint on development in rural areas, higher densities,
mixed-use development, promotion of public transport, and the concentration of urban
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Figure 1. Southeast England study area, showing projected population growth rates to 2016,
by 1991 county boundaries.
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development at public transport nodes (Breheny, 1997). Despite great efforts being made
to develop a national land-use database (Harrison, 1999), the long-term trend of land
development is unclear, simply because of the lack of empirical information on the trend
of urban expansion. It has been estimated that the projected population growth would
be likely to be translated into a total land transfer from `rural' to `urban' use of not less
than 400 square miles between 1991 and 2016 (Bibby and Shepherd, 1997; Green, 1999,
page 293). The Urban Task Force reportöTowards an Urban Renaissance (1999)ö
highlights that the form of urban land development continues to be a politically
sensitive issue. Against this backdrop, this work attempts to analyse the distribution
of development and construct an empirical model of land conversion in relation to
major accessibility measurements.

The main objective of this paper is to explore the use of CA in an applied context.
The transition rules in CA are constructed according to empirical constraints. County-
level population projections are used to constrain the growth rate in each county, and
development sites (characterised as cells) are selected through combined consideration
of the growth rate in the county and the intensity of development in the local neigh-
bourhood. This is a process of self-organised growth because the neighbourhood effect
tends to reinforce itself, but it is not a simple recursive model. With recursive local
rules, the state of a complex system, involving nonlinear dependence, never reaches an
equilibrium state. Although land development does not necessarily follow a strictly
local rule, local interaction ensures that our settlements grow into a spatially connected
system. In this model, land parcels are not scattered across all vacant land, but rather
they are clustered together. The underlying mechanism for this is the feedback of
previous development into the consideration of later development; even in the
most sprawling urban development, residential plots rarely appear in totally isolated
locations. The effect is not to smooth initial probabilities, but rather to reinforce the
probability of development where development activity has previously occurred.

The initial pattern of development is derived through the use of surface model-
ling, using a technique developed for application to census centroid data (Martin,
1989) but here applied to unit-postcode locations. This offers greater spatial and
temporal resolution than is available from the population census or conventional
land-use mapping. Accessibility surfaces are constructed to represent the commuting
time by rush-hour train to major London rail termini, travel distance to motorway
junctions, and to the edge of the nearest settlement with a population of over 10 000,
assembled using Arc/Info Grid data-processing functions. Microscopic location is
assessed through development intensity. In this case we measure development intensity
as the percentage of developed land within a neighbourhood, taking the presence of
unit postcodes as the indicator of development. This location is measured dynamically
during simulation to reflect the self-organised nature of urban growth. Although
the development scenario is just one possible realisation of future urban growth, the
empirically informed CA simulation provides valuable information on the distribution
of urban development at the county and district levels. The main feature of this
simulation is the consideration given to the empirical context of land development
through the use of surface modelling techniques.

The remainder of this paper is arranged as follows. In section 2 we briefly discuss
the position of this CA model in a typology of urban simulation. This is followed in
section 3 by a review of the surface modelling technique used to reconstruct the
geography of urban development. In section 4 we discuss in detail the context and
methodology used in our simulation, and in section 5 the use of surface modelling in
preparing data sources is introduced. In section 6 we analyse the empirical relationship
between the accessibility surface and land development in Southeast England, and we
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discuss the implementation of the simulation in section 7. In section 8 the results
of simulation are validated by the comparison of the actual development in 1997 with
two simulated patterns. In section 9 the results of long-term simulation (to year 2020)
are reported. In the final section we reflect on some lessons in the development of this
empirical simulation.

2 Positioning CA in a typology of urban simulation
There has been a long tradition of urban modelling, but conventional urban models are
built upon the neoclassical concept of equilibrium and hence are essentially static.
Only recently have there emerged microscopic simulation approaches to understand
urban dynamics (Batty et al, 1997). Dating back to the spatial diffusion phenomena
modelled by Ha« gerstrand (1967), cellular models are drawing increasing research
attention because the approach is essentially dynamic and thus appropriate to charac-
terise urban change. As a modelling framework, CA have wide appeal because of
their simplicity, intuitiveness, flexibility, and transparency (Webster and Wu, 1999).
CA models adopt a computational approach, in the sense that they are only `solvable'
through computation, in particular through the medium of the computer. The recent
emergence of computational power has contributed to the popularity of CA. In
particular, graphically based systems like GIS provide a huge potential for implement-
ing CA models to simulate changes in the urban built environment (Batty et al, 1999).

CA simulations have been widely applied. However, early attempts were typically
more in the nature of metaphors of urban growth with little explicit relationship to
underlying behaviour theory (Batty and Xie, 1994; Couclelis, 1985). It is now becoming
clear that the CA approach is essentially heuristic and therefore attention should be
drawn to the plausibility rather than the c̀orrectness' of models. With a better under-
standing of the technique, CA simulation is at the stage of exploring more complex
behaviours. In the literature, a variety of ways of defining the transition rules of
CA models have been reported (Batty and Xie, 1994; Clarke and Gaydos, 1998;
Li and Yeh, 2000; White and Engelen, 1993; Wu and Webster, 1998). These exercises
highlight the need for an integrated approach that combines the relatively simple
abstraction of CA with the behaviourally richer models of urban processes found in
the social sciences. The main obstacle to incorporating the richness of urban models is
not one of technical difficulty but rather the theoretical justification for a complex
model. The notion that CA reveals complex global patterns as they èmerge' from a set
of simple local transition rules is absolutely right, but urban development (for example,
land-use conversions) is unlikely to be governed by such simple rules. This becomes
increasingly apparent in studies of the political economy of urban land uses. With all
these CA approaches a critical question remains about the way the transition rules
should be interpreted in economic or other behavioural terms. The behavioural aspect
of most CA simulation is still weak.

A two-dimensional matrix provides a simple modelling framework within
which specific approaches may be located (figure 2). The two dimensions represent
spectra in the trade-offs between global versus local and theoretical versus empirical
characterisation. At each extreme, there are some well-known examples.

The strictly local rule associated with a pure theoretical configuration is often
used in simple metaphoric models. These models follow some well-defined physical
processes such as diffusion-limited aggregation (DLA) to simulate generic urban forms.
Fractal properties are often presented as they can be seen in real-world cities (Batty
and Longley, 1994). Classical CA models occupy a similar position in the matrix of
figure 2. The insights generated from these models are not directly applied in the
control of urban growth because of the abstraction of the model but they are useful

1858 F Wu, D Martin



in the sense of analogyöthe fundamental similarity between the morphology of
theoretical and real cities suggests a similar process might in fact provide a plausible
characterisation of urban growth. Lying at the other extreme are empirical and global
models, which are often `operational' models, developed in a GIS environment. These
typically c̀artographic' models use such methods as map overlay and buffering. Factors
affecting urban development such as access to roads, distance from the city centre,
topography, and land uses stored as many layers are superimposed and manipulated to
generate a final `suitability' map. Often such a process is applied to the whole map
area. The method is essentially static. More sophisticated cartographic models can be
developed to include temporal dynamics, which may be formalised through geo-algebra
(Takeyama and Couclelis, 1997). At this extreme are also empirical population-density
models. These models are built up from disaggregated spatial units and calibrated
through statistical methods. Although they may provide insights into how the popula-
tion density is related, in a regression sense, to a bundle of locational factors, they do
not describe the processes of population-density change because a simple extrapolation
of existing relationships is problematic. As shown in recent studies on the dynamics of
urban spatial structure, the population-density surface is an emergent phenomenon, in
the sense that a monocentric structure can evolve into a polycentric one if the same
relationship is applied repeatedly (Wu, 1998). The theoretical foundation of conven-
tional urban models, however, is neoclassical urban economics that assumes that
urban systems are always at equilibrium. The well-known theoretical model based on
this assumption is the Alonso (1964) urban land-use model. Most models in this
category are theoretical ones with limited connections to the practice of urban and
regional planning. Just like the strict CA simulation, their intention is not to define the
empirical pattern of growth but rather to reveal a metaphorical urban form. But
the city is a self-organising system, as shown by the pioneering work of Peter Allen
in the 1970s (Allen, 1997; Allen and Sanglier, 1981). Between these extremes are a vast
number of hybrid models that mix the global and local rules and use different spatial
resolutions and hence offer different degrees of realism.

We believe that the design of an appropriate simulation strategy should consider the
purpose of modelling. Urban growth can be best articulated at a certain level of
abstraction and balance of the empirical versus theoretical, global versus local consid-
erations. In this research we propose a framework which allows such an appropriate
simulation strategy to be implemented. We give explicit consideration to global and
local factors affecting urban growth. The right positioning strategy for an empirical CA
model is perhaps near to the hybrid one. In this work, we assess development potential
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Figure 2. A matrix typology of urban simulation modelling approaches.
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according to a number of key factors, which will be discussed in detail below. Based
on this assessment we use the Monte Carlo method to find suitable locations for
development. This process reflects randomness, however, under the influence of global
(and regional) constraints. To reflect the self-organised aspect or urban growth, the
development situation is evaluated in a 363 local kernel, at each simulation time t. This
is a standard CA rule definition. The strength of local growth is calculated as the ratio
of developed land to undeveloped sites. It is worth noting that the development factors
in this simulation are updated according to the changed land uses at time t. In
particular, development factors such as local attractiveness are measured according
to a gravity type of equation. In order to incorporate empirical data into the model,
we will discuss the use of surface modelling in deriving fine-resolution data for the
simulation in the following section.

3 Surface modelling
In this work we have chosen to use a population-surface model as the basis for our
simulations. Conventional choropleth (shaded area) representations of population dis-
tribution suffer from the significant disadvantage that they imply a population density
is present at every location on the map, whereas the actual settlement pattern com-
prises relatively dense clusters of populated land separated by extensive unpopulated
regions. Various approaches to population-surface construction have been proposed
since Tobler (1979), but the variable kernel-redistribution algorithm used here was first
presented in Martin (1989), and developed with the particular characteristics of UK
census data in mind. This approach has been used to create a series of national surface
models, described by Bracken and Martin (1995), and accessible to registered users at
http://census.ac.uk/cdu/surpop/, which also provides more detailed background to the
modelling technique than is appropriate here.The surface-construction technique is most
recently reviewed in Martin (1996a) and Martin et al (2000), which also examine the
conceptual and technical differences between surface and zonal models of population
distribution.

This method requires centroid points for each small area for which population
counts are available, and which may be considered to be `population weighted'. In the
UK census context, population-weighted centroids are provided by the census offices
for each enumeration district (ED), the smallest zone used for the publication of
census data in recent censuses. The surface-construction algorithm visits each centroid
in turn and examines its distance from other local centroids. This distance can be used
as an indication of ED size in that region, and a distance-decay function is calibrated
and used to redistribute the population total at the centroid into the surrounding cells
of a raster output matrix. Thus in areas of high population density, with centroids
located close together, population may be spread very short distances from the centroid,
reflecting small ED sizes. In remote rural areas, population may be spread over larger
distances up to a predetermined maximum, which is a parameter of the model. Thus
cells in urban areas may receive population from several different centroids, while
others which are remote from any centroid remain unpopulated. The resulting model
embodies a representation of the settlement geography which is one of its most
important advantages over zone-based representations, and it is for this reason that
we have chosen to use this approach to construct the initial model from which to run
our urban development simulations. Although total population has been used in this
example, the model may be applied to any count data present at the zone-centroid
locations. Other applications of census-based surface models produced using this
approach, and again taking advantage of the reconstruction of the settlement pattern,
may be found in Brainard et al (1997), Lovett et al (1997) and Mesev et al (1995).
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4 Methodology of empirical CA
This simulation model uses the output of surface modelling as the input for the initial
state and development evaluation. The measured accessibility surfaces are used to
evaluate the potential for development. However, rather than directly using the evalua-
tion score we actually use the frequency of land development observed through surface
modelling to measure the probability of development (see section 6). This probability is
therefore measured rather than arbitrarily defined. The frequency of development was
incorporated into a grid of initial probability through a look-up table. Let this initial
probability surface be defined as P0 . This initial surface, however, is constantly modified
by new development, which reflects the changing development situation and self-
organised nature of urban development. The vacant land that has just been developed
is unlikely to be subject to immediate redevelopment; new development will increase the
attractiveness in the buffer or neighbourhood by strengthening the agglomeration effect.
This is measured at each iteration. The new probability surface is therefore a result of
modified development change.

Rt
ij � P0V

t
ij L

t
ij ,

where Rt
ij is a modified probability surface, and Vt and Lt are two factors that redefine

the initial probability surface P0 . V
t measures the land availability,

Vt
ij � 1; if if the site ij is vacant,

0; otherwise .

�
Lt measures the local growth strength, in a typical CA 363 neighbourhood,

Lt
ij �

1

9

X
363

St
ij ,

where St
ij is a flag, which equals 1 if the cell had been developed by time t.

Strictly speaking, through this modification, the probability surface no longer
follows the original probability distribution. It is a potential surface or measured
attractiveness surface. It is equivalent to the output from a multicriteria evaluation
process, but it bears the empirical relationship between the factor score and potential.

The probability of development decreases with distance from the ideal site (which
has the maximum potential Rmax ). The ideal site changes with each iteration. Therefore
the maximum potential value should be recalculated at each iteration, which is
denominated as Rt

max . The relationship between the potential score and probability
should be nonlinear, and similar in form to a logistic or Poisson distribution. This is
because better sites are limited in quantity and would receive disproportional chances
of being developed. The equation given below means that the site generating the
highest score at the time of development is treated as a benchmark. The probability
of development decreases with decreasing scores. A nonlinear transformation (here
negative exponential) is used to depress the probability away from the maximum score
in order to achieve greater discrimination between cells in any one simulation:

Pt
ij � Rt

ij exp a
Rt

ij

Rt
max
ÿ 1

� �� �
,

where Pt
ij is the probability of development at the site ij at time t; Rt

ij is the potentiality
score at the time t at the site ij, and a is a dispersion parameter that governs the
stringency of site selection, with a higher value reflecting a more stringent selection
process, that is, only the sites with higher value will be selected. This value therefore
controls randomness. The dispersion parameter is usually chosen as 5.0.
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Most classical CA simulations consider only the local neighbourhood without
taking the regional neighbourhood into account. Batty and Xie (1994) suggest that a
nested neighbourhood could be used to reflect regional effects. In this study, however,
we need to incorporate the regional population projection into one simulation
scenario. This is achieved through regrouping the Pt

ij into regions. For each region,
Pt
ij is `standardised' into Pt

ijr according to the sum of the regional total:

Pt
ijr �

Pt
ijX

ij2 r
P t
ij

.

The equation is applied to every region. This probability will ensure that in a Monte
Carlo simulation the expected amount of development in a region is always equivalent
to one site. In order to generate the expected number of development sites, this
probability is then multiplied by the required amount of development, and the max-
imum probability value should be limited to 1.0. Finally, the stochastic simulation uses
a random number grid to generate development sites and then the simulation moves to
time t� 1.

As mentioned earlier, three challenges confront the development of an empirical
CA simulation: first, to incorporate the empirical pattern of observed development into
the simulation, second to incorporate regional features into the simulation, and third
to incorporate a truly stochastic process which permits unforeseeable changes. The
model developed in this research is refined to meet these three requirements.

5 Data source and application of postcode geography
The surface modelling technique described in section 3 has been applied to UK census
data in a number of contexts, but the representation of the detailed settlement pattern
is limited by the geographical resolution of census data. Further, the decennial nature
of the census makes it difficult to capture the continually evolving pattern of urban
development. Although the census provides a rich range of socioeconomic variables,
it is considered that spatial detail and timelines are of more importance to the current
study, and this has led us to consider alternative data sources that might be used with
the same modelling procedure. In the United Kingdom, postal geography is the most
widely used georeferencing system for socioeconomic data outside the census, and
we have therefore opted to apply the technique described above to the postcode system.
In order to provide the initial model of population distribution, data have been taken
from the directory of enumeration districts and postcodes (OPCS and GROS, 1992).
Unit postcodes are the smallest component of the UK postcode system. EDs typically
contain 200 households and 400 residents, and unit postcodes each refer to around
15 postal addresses. The directory of enumeration districts and postcodes was origi-
nally created in association with the 1991 Census. The file contains a record for each
unique ED/postcode intersection, containing a 100m grid reference for the postcode, a
household count, and some additional information. Although these grid references are
not population weighted, they represent the location of at least one of the properties
known to fall within the smallest unit of the postal system, and the far greater number
of data points permits a far more detailed representation of residential geography than
is possible with the ED centroid data.

As the postcode geography has evolved over time, the directory has been kept up to
date and periodic revisions published which relate 1991 Census EDs to contemporary
postcode geography. No postcodes are removed from the file, but terminated and
reused codes are flagged. New codes are assigned grid references and may hence be
associated with an ED. The 1995 and 1997 versions of the file also contain a large-user
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or small-user indicator for each postcode. Large-user postcodes typically receive over
twenty-five items of mail per day and are usually commercial addresses. Only the
current postcodes have been used from each directory, allowing the resulting models
to approximate to postal geography in 1995 and 1997. A household count of 15 has been
assigned to any new small-user postcodes for which household counts are unavailable,
representing the typical number of addresses per postcode. There are thus around
850 000 data points available for surface modelling. These locations have been used
to provide centroids for the construction of surface models for the study area in
figure 1 with a cell size of 200m and kernel width of 250m, resulting in models with
150061500 cells. The use of unit-postcode locations as an input to surface modelling
and selection of the relevant parameters are discussed in Martin et al (2000). More
precise geographical locations for surface modelling could now be obtained from
Ordnance Survey's Code-Point product (which is based on the spatial averaging of
the addresses within each postcode) rather than the directory of EDs and postcodes
used here, but Code-Point is not available for the time period required by this study.

Household counts have been used as the variable for redistribution, so that each
output model is effectively a household-density surface, in which we treat all cells with
population estimates of 0 as undeveloped, and all those with estimates greater than
0 or containing large-user postcodes as already developed.We thus infer a simple two-
category land-use classification from the postcode-based surface modelling. Ideally,
we would seek to use a multicategory classification of land use that was able separately
to identify land uses such as residential, commercial, and industrial, and to detect
development at different densities within these categories. In the absence of a geo-
graphically detailed land-use database however, as discussed above, it is necessary to
use proxy data that combine some measure of development with a reasonable level of
geographical and temporal resolution. A potential extension to the current study would
be to treat large-user and small-user postcodes as two different land-use classes in
order to produce a classification into undeveloped/residential/commercial types, but
this would require careful validation of the large-user postcodes against some other
geographically referenced indicators of economic activity.

In order to constrain the amount of population growth occurring in the simulation
models, a series of official population estimates based on 1993 mid-year population
estimates at county level have been used (OPCS, 1995). This set of official estimates
falls closest in time to the 1991-based census and postcode products on which the rest
of this study is based. The study area covers all or part of thirty counties, for which
population projections to 2016 are available. A county map has therefore been created
with associated growth rates to constrain the simulation within the officially projected
population-growth levels. A map of projected population change by county is shown in
figure 1.

Major factors affecting the attractiveness of residential areas throughout the region
include commuter travel times to London, accessibility to the national motorway
network, and accessibility to a medium or large centre of population, which may be
expected to provide a good range of services and facilities. Commuters travel to
London from everywhere within the study region, and the dominant mode of
transport for this long-distance commuting is train. A London travel-time surface
has therefore been devised by taking fastest travel times to the appropriate London
terminus arriving between 0800 and 0900 on a weekday, as this represents the timing
most likely to be used by commuters. Times have been obtained from 130 major
stations. Commuter-route information was extracted from McGhie (1992) and times
were obtained from the Railtrack travel enquiry site at http://www.railtrack.co.uk/. Travel
times for each individual cell have been calculated by estimating travel time to the
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nearest station by crow-fly distance assuming a mean travel speed of 60 km hÿ1, and
these times have been added to the fastest available train time. Special treatment has
been given to the Isle of Wight, in the centre of the south coast, which is the only
genuine island in the study area containing a significant population, and for which
travel times have been increased by an amount equivalent to the necessary passenger-
ferry crossings. In deriving the full travel-time surface, the assumption has been
adopted that, if a major station is located within 10 minutes' drive time of a given
cell, the commuter journey will be routed via that station. At greater distances, the
shortest travel time to London is applied, regardless of the distance to the station that
must be used. Although simple, these general assumptions better reflect commuter
behaviour than a simple Euclidean allocation of cells to their nearest stations.

A further aspect affecting development potential in this region is accessibility to the
national motorway network, and a complete set of motorway-access points has been
digitised, and distances calculated to each cell. Only sections of motorway which are
connected to the principal motorway network are included (thus no account is taken of
short isolated lengths of urban motorway). Further analysis of the postcode-based
surface model allows the identification of settlements with populations in excess of
10 000. These are represented in the surface model by contiguous clusters of populated
cells whose combined population is greater than 10 000, each cluster being surrounded
by undeveloped land. A sequence of conventional GIS grid-modelling functions may
be used to identify these settlements, as described in Martin (1996b). In Arc/Info,
region grouping of contiguous populated cells allows the extraction of distinct clusters,
whose populations are then obtained by summing the individual cell population
estimates. Clusters with populations below the required size are then filtered out.

6 Profiling development distribution
In order to understand the 1991 ^ 97 distribution of development, we use our grid
models of development between 1991 and 1997 to examine the relationship between
development and accessibility.We measure the rail commuting times in 5-minute bands,
and distances from motorway intersections and large settlements in kilometre
bands. The number of cells that have seen development within the period 1991 ^ 97 is
summed within each band. The scatter plots (figures 3 ^ 5) characterise the distribution
of development in terms of accessibility.

The amount of development declines with increasing distance from existing settle-
ments. Figure 3 represents a classical distance-decay relationship. It can be seen that a
majority of growth takes place fairly close to existing settlements (within 10 km).
However, the geographical area of successive bands increases with distance from the
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Figure 3. Development profile measured in 1 km distance bands to edge of nearest settlements
with population in excess of 10 000.
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centre. In order to assess the intensity of development, we use a `location quotient' to
recalculate the development distribution. The location quotient is a ratio of the band's
share of total development to the same band's share of total area. Figure 4 shows the
distribution of the location quotient; values over 1.0 indicate that the band accommo-
dates development above the overall quantity expected in terms of its area. From figure 4,
it can be seen that the first 3 km receive above or near the expected level of development,
and the value decreases until around 10 km; then the location quotient varies and slightly
increases. In summary, the distribution profile shows a concentration of development
close to existing settlements.

Similarly, the distribution of development in terms of the accessibility to London is
represented in figure 5. The figure clearly shows that within 1 hour commuting distance
(1265-minute bands), the amount of development increased; then beyond 1 hour the
quantity of development began to decrease. Over 1.5 hours, the amount of development
significantly decreased. The pattern suggests that within the central area (because most
land is already developed) the amount of new development in 1991 ^ 97 is lower than in
the fringe area (around 1 hour by train). Another important factor influencing the
amount of development is the small size of the central area. The intensity of land
development is better seen in the profile measured by location quotient as shown in
figure 6 (see over). It can be seen that there are several distinct regions of location
quotient values. Up to a commute time of 1 hour the value is over 1.0, suggesting a
concentration of development in central London; from 1 to 2 hours the location
quotient is near 1.0, indicating that development intensity is as expected; beyond
2 hours development significantly declined. The figure clearly reveals the London
factor in the regional development of Southeast England. Empirical evidence strongly
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Figure 4. Location quotient measured in 1 km distance to edge of nearest settlements with
population in excess of 10 000.
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suggests that the creation of new postcodes is related to accessibility to London; this
finding is consistent not only with experience but also with the distribution of property
values in the region.

The profile of development in terms of access to major motorway junctions is
represented in figure 7 by 1 km distance bands. In the closest bands (1 ^ 3 km) devel-
opment does not reach the highest intensity; however, measured in terms of location
quotient accessibility to a motorway is a distinct advantage (figure 8). A significant
decrease in development is seen within the first 25 km, after which the relationship
becomes irregular, perhaps reflecting diminishing influence of motorway access and an
increase in the importance of the nonmotorway road network. Up to 13 km from
motorway junctions, the development quotient is over or close to 1.0, suggesting this
to be an attractive area for development. This is in keeping with the observation
that retail and business parks are very often located close to the motorway network.
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Figure 6. Profile of location quotient measured in 5-minute bands to London rail termini.
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Figure 7. Profile of development measured in 1 km distance bands to motorway junctions.
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Figure 8. Profile of location quotient measured in 1 km distance bands to motorway junctions.
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A comparison of figures 6 and 8 suggests that the location quotient for motorway
access decreases more rapidly than that for rail travel time. This is consistent with
the understanding that rail travel remains important for long-distance commuting
whereas private cars are primarily used for short distances in extended metropolitan
areas.

Profile development in this way is useful in the sense that it provides empirical
relationships for configuring the simulation rules. The frequencies in each time/distance
band can be used to calculate the probability of development. The composite probability
surface is shown in figure 9. The composition process uses the multicriteria evaluation
approach, that is, summation of all standardised scores. The method used here is to
link frequency of land-use change with distance. We then standardise the frequency
scores. Equal weights are used for the three resulting frequency surfaces to calculate a
single probability surface. This probability surface is compared with a random number
surface and sites with probability greater than the random number are selected for
development. The development as simulated, however, immediately modifies the value
of the probability. The area that has just been developed is not considered for redevel-
opment. We use a conditional function to identify recently developed areas and a
neighbourhood function to measure the intensity of development within a kernel. The
intensity of local development reflects its self-organised nature, and is thus used to

Probability
1.0

0.0

Figure 9. Development probability surface derived from initial accessibility surfaces.
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compose a dynamic probability surface, which changes along with the simulation. This
approach differs importantly from conventional overlay of potential scores that are
neither locally refined nor updated at each iteration.

7 Simulation implementation
The initial state of the land use is derived from the processed 1991 postcode coverage
as described in section 5. We assume that the expansion of the urban built-up
area is at the same rate as projected population growth. This does not take into
account `densification' or decreasing urban densities within each already developed
200 m6 200 m cell. The population in the Southeast region was 30.617 million in
1993; it is estimated that in 2016 it will reach 33.241 million, that is, an overall increase
of 8.57% from 1993 to 2016. Moreover, we use the county-based projected growth rates
for simulation. The target growth rates are then translated into the increase of the
number of developed cells per iteration. The number of cells for new development
is then used as the constraint. The simulations are run over 29 years from 1991,
which gives a final scenario for the year 2020. Areas that are not suitable for urban
development such as sea and coastal water are excluded from the site-selection process.

We use the Arc/Info GIS as a data-management tool, together with Arc Macro
Language (AML) to permit automatic iteration of grid calculations. The grid-modelling
functions available in this environment facilitate the manipulation both of input
surface models and of the iterative computation. For example, we consider the
open space within the existing built-up area (cemeteries, parks, and other protected
urban spaces) to be a special type of use. These areas surrounded by existing develop-
ment within the urban area are frequently subject to planning controls and are
therefore unlikely to be developed. We use a conventional grid-modelling function
to identify and mask undeveloped cells that are fully surrounded by developed land.
(This is the same function used to fill sinks in an elevation model during hydrological
modelling.) Thus, although these areas are very attractive according to the multicriteria
evaluation function discussed above, they are excluded from the consideration of
further development. The local growth strength has been evaluated in a 363 cells
neighbourhood. The value is detected and updated in each iteration, and then used to
modify the start probability surface.

After loading the initial probability surface, including the protected land (figure 9),
the iteration procedure begins, which involves the following steps:
(1) Constrain the initial probability grid by excluding any newly developed land in
previous iterations.
(2) Construct new probability distribution.
(3) Standardise modified probability surface.
(4) Compute local development intensity.
(5) Update dynamic probability grid.
(6) Transform dynamic probability surface using a negative exponential function.
(7) Constrain probabilities to zonal growth rates to ensure that overall growth in each
zone matches the target growth rates.
(8) Simulate development by Monte Carlo testing of probability grid against a random
number grid.
(9) Update the state grid with newly developed sites.
(10) Return to step 1.

The above procedure has been refined several times during code development. The
aim of refinement has been to reduce `add-ons' to a minimum. For example, we have used
two different approaches to computing local growth strength. The first model simply
counts the number of developed sites in a neighbourhood.The secondmodel incorporates

1868 F Wu, D Martin



a spatial interaction equation to calculate the local attractiveness. This considers the
size of each continuously extended settlement and the shortest distance to the edge of
that settlement. To reflect a nonlinear relationship we use the logarithm of the size
of the settlements. However, the distribution of the score, in the second method, is not
controllable at each iteration because the attribute is calculated on the basis of a local
kernel and it further depends on the distribution of developed sites or the shape of
settlements, which differ from iteration to iteration. Through experimentation we found
that the second method, despite its apparent sophistication, does not enhance the
performance of the model. Therefore in the final simulation we adopt the simpler
method. We believe that, unless there is sufficient justification and evidence to support
the use of a more complex method, the simpler version is probably more appropriate.
This is in fact in keeping with the principle of CA, that is, the use of simple rules to
drive complex patterns of development. A further advantage of using a simpler version
is that the structure can be fully tested, with a better understanding of the impact of
model configuration on the results.

8 Initial validation
In order to validate CA performance we simulated urban expansion from 1991 to
1997 and then compared the simulated development with the actual development.
Because the overall development accounts for only a very small proportion of the
total land area, direct comparison based on each cell is not appropriate. Further,
stochastic simulation is bound to generate different site locations from those actually
chosen. The measurement therefore should be based on some `structural' comparison.
Because the simulation also takes account of the regional population projections,
we use the development profile measured in terms of the accessibility surface to
compare the simulated and observed development.

Figures 10 ^ 12 are comparisons with the three development profiles presented in
section 7. The simulation captures the basic features of the development distribution,
for example, the decrease of development with increasing distance from the edge of
major existing settlements and motorway junctions and the inverse-U curve of travel-
time bands to London rail termini. Note that this comparison considers only new
development and excludes the major settlement pattern represented by the area that
was already developed in 1991. The overall simulated land-development profile seems to
be below the actual development profile. This is because the simulation is constrained
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Figure 10. Profile of 1991 ^ 97 development by distance from nearest settlement with population
in excess of 10 000.
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by the regional population projection (which is intended for the simulation from the
second part from 1997 to 2020). The number of cells simulated is 11708, whereas
the observed number of developed cells is 18 688. This is not a problem, however,
as what we intend to examine is the shape of the development profile. The overall
rate is controlled in this model and can be easily adjusted to produce different scenarios
(as shown in the simulation from 1997 to 2020).

We began by identifying empirical relationships between development and three
accessibility measures in the Southeast region. These were combined into a single
standardised probability surface that provided the starting point for our simulation.
The purpose of this initial validation has been to investigate the extent to which the
relationships are preserved through the subsequent iterative simulation process,
involving both local functions and zonal constraints. Although the absolute numbers
differ, the individual relationships between development and each of the original
accessibility measures are maintained to a high degree. This suggests that we should
be able to use this technique based on the combined probability surface to project
future development patterns while respecting known relationships. The probability
surface thus provides a mechanism for building our existing understanding into the
simulation process without the need for multiple complex constraints, and allowing
the process to remain fundamentally one of local self-organised growth.

Validation is an important issue that has not really been satisfactorily addressed
in CA research. For microscopic models such as CA, a cell-by-cell comparison is
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Figure 11. Profile of 1991 ^ 97 development by rail travel time from London termini.
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Figure 12. Profile of 1991 ^ 97 development by distance from motorway junctions.
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not appropriate, but neither is the use of a spatial confusion matrix. This is because
these models involve a very large number of spatial units. A perfect simulation result,
but with the entire distribution shifted by one cell, would result in low values of
conventional goodness-of-fit statistics (Wu and Webster, 1998). Instead, some measure
of the `signature' or profile is more appropriate, but selection of the best signature
depends on the problem domain (Wu, 2000; Wu and Webster, 2000). For example,
Wu and Webster (2000) propose some economic indicators in a simulation related to
economic efficiency and social cost. In this analysis we use profiles of various
accessibility measures because our concern is with the question of whether the model
can produce a profile of land development similar to that observed in reality rather
than with the exact location of particular developments.

9 Simulation scenarios
The procedure introduced above has been applied to the simulation of two scenarios
from 1991 to 2020. The first of these adopts the county-level population-growth
rates (from 1993 to 2016 projections). In this simulation new greenfield development
in each county is proportional to the total projected population growth. The second
scenario respects the overall population projection for Southeast England, without
constraining development at the county level.

The results of these two simulations are given as figures 13 and 14 (see over), which
show the simulated growth to 2020 expressed as a percentage of developed land in
1991. The extent to which these maps diverge from actual development will in large
part be attributable to the success of the government's current objective that 60% of
development should take place on brownfield sites (Urban Task Force, 1999). In order
to illustrate more clearly the pattern of development that results in each case, we have
chosen to present the development totals aggregated at the level of the local authority
district or London borough. These are administrative divisions at a level below the
counties, but serve to show more clearly the urban ^ rural differences in development,
as each major outlying town tends to be represented by a single district. In both cases,
it is apparent that the existing urban areas generally display low growth rates, being
already fully developed, whereas the rural districts display moderate to high growth
rates, with those adjacent to established urban centres (and thus highly accessible)
experiencing the most development. The differences between the two scenarios primar-
ily relate to the ways in which the officially projected population growth interacts with
attractiveness for development as measured by our empirical accessibility factors. The
official projections take into account both natural change and migration averaged
across the years immediately preceding the base year, and were reached through
consultation with local authorities (Armitage, 1986). They may therefore be considered
to include metropolitan-to-nonmetropolitan migration patterns already established in
the early 1990s, but not subsequent policy changes which may have resulted in new
locational trends in development.

The constrained model (figure 13) strongly reflects the projected pattern at the
county level with most growth occurring in an arc from the southwest to the northeast
of London. Even within this arc it is apparent that development is concentrated in the
more rural districts. The unconstrained model (figure 14) is more strongly influenced by
the accessibility relationships that were observed in our initial analysis. This scenario is
indicative of the pattern of development that would result directly from following the
access-based development-attractiveness measures. The model experiences much greater
development close to London and an even greater contrast between urban and rural
areas. However, this analysis takes no account of policy devices such as the greenbelt,
which effectively shifts development outwards from the most accessible sites.
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10 Conclusions
Urban compaction policy as advocated in the Urban Task Force report will certainly
have an impact on the form of urban development if the target is implemented in day-
to-day development control. Similarly, in the USA, `Smart Growth' aims to achieve
higher densities, more mixed land uses and redevelopment, and constrained suburban
sprawl (Katz, 2000). However, development scenarios over ten to twenty years are not
well understood. The value of urban expansion simulation is to provide reference
scenarios. The attractiveness of empirical CA combined with surface modelling lies
in its relatively transparent structureöthe modelling is dependent upon relatively
simple information (land use and population derived from surface modelling) and
heuristically plausible rules (for example, that development is related to accessibility).

Percentage growth

0.00 ^ 0.06

0.06 ^ 0.09

0.09 ^ 0.13

0.13 ^ 0.17

0.17 ^ 0.30

Figure 13. 1991 ^ 2020 district-level development rates under scenario 1 (constrained to county-level
projections).
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Although the computation is intensive, involving iterative processing of large grids, the
model itself is straightforward. More importantly, this approach may be driven by
empirical relationships such as that between development and accessibility. This
study demonstrates the enhancement of CA by the explicit inclusion of an empirical
relationship between urban form and development factors. The model itself is flexible,
potentially allowing the role of alternative relationships to be explored in the dynamics
of regional growth. In a sense, the value of any empirical CA model lies in how well
it captures these dynamics. The simulation technique, that is, the self-organisation
approach embedded in the iterative computation, does not guarantee realistic prediction.

Various improvements could be made to the model presented here. The study
would benefit from more detailed information on greenbelt land and other planning
restrictions. However, we suggest that, because the development of a national land-use
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Figure 14. 1991 ^ 2020 district-level development rates under scenario 2 (unconstrained at county
level).
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database is complex and currently incomplete, surface modelling, in particular when
available from successive censuses, can provide a useful source of data on urban form.
Only the simplest characteristics of the available datasets have been exploited here.
In particular and as noted above, the distinction between large-user and small-user
postcodes has not been used in any attempt to separate out residential and commercial
land uses. The postcode dataset is not ideal for this purpose, but it may be possible to
generate an acceptable geographical model for commercial properties if a differenti-
ated land-use map were required. Significant improvements in the postcode datasets
are anticipated as part of 2001 Census outputs. Separate treatment of commercial land
in this way would require the acquisition of plausible county-level growth scenarios for
commercial activity, as this is not directly governed by population change, and further
work would be required in order to accommodate mixed occupancy within cells.
Assumptions have also been made in the present models about population density,
with all new development taking place at uniform density and on greenfield sites.
A more sophisticated model could involve varying the development density according
to the location and size of development taking place, in order to capture a more realistic
range of values, and would allow for redevelopment within the existing urban areas.
Clearly, a more sophisticated use of these types of simulation tool would require more
careful formulation of the empirical constraints on development. Empirical research on
the determinants of land prices for development and the attractiveness of competing
sites would allow a more direct quantification of the effects of commuting distance and
local property markets, although the currently available data are incomplete.

The objective of the simulations described in this paper has not primarily been to
provide a single predictive model of urban development to the year 2020. Rather, our
interest has been in the incorporation of a range of both theoretical and empirical
development constraints in the simulation process. We suggest that CA simulation is
useful in exploring future urban growth by understanding the impact of different
development conditions. This extends classical CA built upon abstract rule definition
to hybrid CA based on detailed real-world data and constraints. In the terms of
figure 2, such hybrid CA models occupy the reign of the matrix that falls at the
intersection of empirical data and local rules. Considering computational efficiency,
a system that combines GIS functionality and dynamic process modelling seems to be
an appropriate environment for the development of such work. Future research should
incorporate more realistic constraints as discussed above, and focus on the impacts of
changing development behaviour such as increasing brownfield development, mixed
land use, and higher development density. Through such research, hybrid CA models
have the potential to make a valuable contribution to the evaluation of urban policy
responses, such as those suggested by the Urban Task Force report.
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