
False Sharing and Spatial Locality in Multiprocessor CachesJosep Torrellas, Monica S. Lam, and John L. HennessyComputer Systems LaboratoryStanford University, CA 94305AbstractThe performance of the data cache in shared-memory multiprocessors has been shown to bedi�erent from that in uniprocessors. In particular, cache miss rates in multiprocessors do notshow the sharp drop typical of uniprocessors when the size of the cache block increases. Theresulting high cache miss rate is a cause of concern, since it can signi�cantly limit the performanceof multiprocessors. Some researchers have speculated that this e�ect is due to false sharing, thecoherence transactions that result when di�erent processors update di�erent words of the samecache block in an interleaved fashion. While the analysis of six applications in this paper con�rmsthat false sharing has a signi�cant impact on the miss rate, the measurements also show thatpoor spatial locality among accesses to shared data has an even larger impact. To mitigate falsesharing and to enhance spatial locality, we optimize the layout of shared data in cache blocks in aprogrammer-transparent manner. We show that this approach can reduce the number of misses onshared data by about 10% on average.

i

1 IntroductionScalable machines that support a shared-memory paradigm are a promising way of attaining thebene�ts of large-scale multiprocessing without surrendering programmability [1, 2, 3, 4, 5, 6]. Aninteresting subclass of these machines is the class that provides hardware cache coherence, whichmakes programming easier, while reducing storage access latencies by caching shared data. Whilethese machines can do well on problems with low levels of data sharing, it is unclear how well cacheswill perform when accesses to shared data occur frequently.The cache performance of shared data is the subject of intense ongoing research. Agarwal andGupta [7] study locality issues in traces of memory references from a four-processor machine andreport a high degree of processor interleaving in the accesses to a given shared-memory location.This suggests that shared data can be the source of frequent misses. Indeed, Eggers and Katz [8], in asimulation of 5 to 12 processors in a bus, show that shared data is responsible for the majority of cachemisses and bus cycles. In addition, they show that the miss rate of the data cache in multiprocessorschanges less predictably than in uniprocessors with increasing cache block size. While the miss ratein uniprocessors tends to go down with increasing cache block size, the miss rate in multiprocessorscan go down or up with larger block sizes. A further understanding of the patterns of data sharing isprovided by Weber and Gupta [9], who show that write-shared variables are usually invalidated fromcaches before being replicated in more than a few di�erent caches. Finally, in another example ofunusual behavior, Lee et al. [10] �nd that the optimal cache block size for data is one or two wordslong, in contrast to the larger sizes used in uniprocessors [11]. Clearly, given the performance impactof the cache behavior of shared data, a deeper understanding of it is necessary.In this paper, we focus on one parameter that has a major e�ect on the cache performance ofshared data, namely the size of the cache blocks. A second issue that motivates the interest in thistopic is that the measurements obtained so far on the impact of the block size on the miss rate ofshared data show such wide variation [8] that they are di�cult to generalize. In this paper, we explainthe e�ect of the cache block size on the miss rate as a combination of two well-behaved components:false sharing and spatial locality. False sharing, in its simplest form, occurs when two processorsrepeatedly write to two di�erent words of the same cache block in an interleaved fashion. This causesthe cache block to bounce back and forth between the two caches as if the contents of the block weretruly being shared. False sharing usually increases with the block size and tends to drive miss ratesup with increasing block size. The second component, spatial locality in the data [12], is the propertythat indicates that the probability of an access to a given memory word is high if neighboring wordshave been recently accessed. This well-known property produces the opposite e�ect from false sharing| a reduction in the miss rate as the block size increases.We assess the contribution of each component by using a model of sharing where individual misses1

are classi�ed as false sharing misses or as true sharing misses. The latter are due to the interpro-cessor communication intrinsic to the application. False sharing misses measure false sharing. Thee�ectiveness of increasing the cache block size in eliminating true sharing misses measures the degreeof spatial locality present. Experimental measurements show that poor spatial locality in shared datahas a larger e�ect than false sharing in determining the overall miss rate.To reduce the number of cache misses due to poor spatial locality and false sharing, we proposeoptimizations that require no programmer help and can therefore be implemented by the compiler.Further, we do not consider techniques that require changes to the assignment of computation toprocessors, as in loop interchange or loop tiling [13, 14], since they are only feasible in highly regularcodes. Instead, we propose simple, local techniques that optimize the layout of shared data at thecache block level. These techniques are e�ective enough to eliminate, on average, about 10% of themisses on shared data in the applications.This paper is organized as follows. Section 2 discusses the methodology and characteristics of theapplication set used throughout the study. Section 3 presents a model of data sharing. This modelis used in Section 4 to analyze experimental data on cache miss rates and processor-memory tra�c.Based on this analysis, we propose and evaluate optimizations to improve data caching in Section 5.Finally, in Section 6, detailed simulations of an existing architecture examine the performance impactof the issues raised in the previous sections.2 Methodology and Application Set CharacteristicsThe results reported in this paper are based on simulations driven by traces of parallel applications.The applications are compiled with a conventional optimizing compiler. This section describes thecharacteristics of the applications used, presents the simulator models, and evaluates the e�ect ofconventional code optimizations on the frequency of data sharing.2.1 Application Set and Trace CharacteristicsThe parallel applications studied represent a variety of engineering algorithms [15, 16, 17, 18, 19, 20](Table 1). Csim, Mp3d, and LocusRoute are research tools with between 1000 and 6000 lines of code.The other three applications, namely DWF, Max
ow, and Mincut implement several commonly usedparallel algorithms and are less than 1000 lines of code each. Each application uses the synchroniza-tion and sharing primitives provided by the Argonne National Laboratory macro package [21]. Thesynchronization primitives are locks, barriers, and distributed loop control variables. The applicationsare in C and written so that they can run on any number of processors. We use code compiled withstandard code optimizations. 2

Table 1: Application set characteristics. The third column lists the size ofthe data structures declared shared.Application Description Shared DataSpace (Mbytes)Csim Chandy-Misra logic gate simulator. 2.83DWF Performs string pattern matching. 2.10Mp3d 3-D particle simulator used in aeronautics. 1.85LocusRoute Global router for VLSI standard cells. 1.84Max
ow Determines the maximum
ow in a directed graph. 0.26Mincut Partitions a graph using simulated annealing. 0.01We trace the applications using Tango [22], a tracing program that simulates a multiprocessor.The traces correspond to 16 and 32 processor runs of the applications. They contain only applicationvirtual address references and range in size from 8 to over 32 million data references. Synchronizationvariables do not use spin-locking and, to minimize the possibility of hot spots, each synchronizationvariable is allocated to its own cache block.2.2 Simulated ArchitecturesTwo simulated architectures are used in this paper, the ideal and the detailed architecture. In theideal architecture, caches are in�nite; all memory references, reads or writes, hits or misses, take asingle cycle; and every instruction executes in one cycle. We use the ideal architecture to removedependencies on speci�c architecture characteristics from our study of shared data.The detailed architecture, used to determine the practical implications of the ideal study, resemblesthe Silicon Graphics POWER Station 4D/240 [23] in memory system bandwidth and latency. Unlikethe 4D/240 system, however, the detailed architecture has 16 processors, each of which has one 256Kbyte direct-mapped data cache. In addition, synchronization accesses use the same bus as regulartransactions. The memory access times without contention for 4- and 16-word blocks are 22 and 31cycles respectively, during which the bus is locked for 6 and 15 cycles respectively. To simulate a steadystate, the applications are executed twice; the �rst run warms up the cache, and the measurements aretaken in the second run. Because bus contention would be too high with 32 processors, the detailedarchitecture is used for 16 processor runs only.Both architectures use the invalidation-based Illinois cache coherence protocol [24]. Because in the4D/240 a request for ownership on a shared block has the same timing and tra�c requirements as acache miss, we do not distinguish between the two in this paper.3

2.3 E�ect of an Optimizing Compiler on the Frequency of SharingWhile code optimizations are known to speed up uniprocessor applications [25], they have an importantsecond e�ect in multiprocessor code: they increase the frequency of shared data references. Thisresults from the di�erent ways in which optimizations a�ect data. While some private references areeliminated by register allocation and other optimizations, shared data consistency prevents existingcompilers from optimizing data declared shared, even if not used as such. Consequently, since somecycles are saved while the number of shared references remains the same, data sharing has a largerimpact on the speed of the application.To study the e�ect of an optimizing compiler, we measure, before and after compiler optimiza-tion, the fraction of references to data declared shared. The target architecture is the MIPS R2000processor [26], which has 32 integer registers and 16 double-precision
oating point registers. Theoptimizations applied include global register allocation and other conventional global optimizations.All data in the shared space is declared volatile, and therefore are not register-allocated or optimized.Because optimizations a�ect the di�erent types of private data di�erently, we consider local and globalprivate data separately. Local data are the variables declared within procedures. Global data is mostlystatic data set up by the master process for the slave processes.Figure 1 shows the decomposition of the data reference streams for the optimized and unoptimizedapplications running with 16 and 32 processes. Due to limited disk space, the unoptimized versions ofsome traces were not run to completion (bars with a star). In those cases, the total number of referencesis calculated assuming the same relative ratios of private local, global, and shared references thatexisted when the trace was interrupted and the same number of shared references as the optimizedtrace. From the �gure, we see that, for all applications, a large number of private references areeliminated, particularly among those directed to local variables. References to private global variablesshow a smaller change, almost solely due to the register allocation of the global pointer to the shareddata space. We also see that the number of processes has little e�ect on the results. Appendix Ashows tables with the actual numbers obtained in the experiments. The large di�erence in the ratio ofshared to total references between optimized and unoptimized code suggests that performance studiesof multiprocessor programs must be based on optimized code.3 Analyzing SharingData miss rates in large uniprocessor caches tend to vary predictably as cache blocks increase insize [11, 27, 28]. Initially, the miss rate drops quickly as the block size increases; for large blocks,around 32 words, the curve
attens out; eventually, there is a slight reversal of the curve because ofmisses resulting from con
icts. In contrast, how miss rates on shared data change with block size4

Private Local

Private Global
Shared

Csim

DWF
Mp3d

LocusR

Maxflow
Mincut

*

*

*

*

32 processes16 processes

Millions of Data Refs.Millions of Data Refs.

Opt.
Unopt.

Opt.
Unopt.

Opt.

Unopt.

Opt.
Unopt.

Opt.
Unopt.

Opt.
Unopt.

*
*

*

*
*

*

0 60 804020 0 60 804020 Figure 1: Decomposition of the optimized and unoptimized data referencestreams for 16 and 32 processes.is much less predictable; experimental data shows a signi�cant variation across programs (Figure 2).In this section, we �rst present a model of sharing that decomposes the widely varying miss rateson shared data in an invalidation-based cache coherence protocol into two well-behaved and intuitivecomponents. Then, we describe an experiment to quantify each of these components. For simplicity,all the analysis in Section 3 assumes an in�nite cache.3.1 A Model of SharingFigure 3 shows the factors that determine the number of data misses in an in�nite cache. For privatedata in single-word cache blocks, misses are solely caused by �rst-time references to the data. Thise�ect we call cold start in Figure 3. If the cache has multi-word blocks, the prefetching providedby the multiple words of the block reduces the number of misses, as one miss is enough to bringall the words of a block into the cache. There are several more factors involved with the misses onshared data. If single-word blocks are used, true sharing as well as cold start dictate the misses. Truesharing is the sharing of the same memory word by di�erent processors. True sharing is intrinsicto a particular memory reference stream of a program and is not dependent on the block size. Thepresence of multi-word blocks further adds false sharing to true sharing, cold start, and prefetchinge�ects. False sharing occurs when di�erent processors access di�erent words of the same block and the5

Figure 2: Cache miss rates on shared data as a function of the block sizefor the ideal architecture. For a given application, the same problem size isused in the 16- and 32-processor executions.
6

coherence protocol forces the block to bounce among caches as if its words were truly being shared. Aresult of the collocation of di�erent data in the same cache block, false sharing depends on the blocksize and the particular placement of data in memory. In the following paragraphs, we show how eachindividual cache miss can be traced back to these factors.
Private Data Shared Data

Single-WordCache Blocks Single-WordCache Blocks Multi-WordCache BlocksMulti-WordCache Blocks

Cold Start

False Sharing

Prefetching
Cold Start

True Sharing
Cold Start Cold Start

Prefetching
True SharingFigure 3: Factors that determine the data misses in an in�nite cache.True and false sharing are illustrated in Figure 4-(a), where words a and b are in the same memoryblock and an asterisk marks a cache miss. In Examples I, II, and III, processor P owns the block atthe beginning of the reference stream, since P previously wrote words a and b | as denoted by Paand Pb under `Initial State'. In Example I, processor Q writes to word b and processor P writes toword a. In this classical case of false sharing, this pattern of access produces a miss for every access.Except for the �rst Qb reference however, no true data sharing is involved. In Examples II and III,processors P and Q need, and therefore truly share, word a. Word b is used only by P in both cases.However, because of the prefetch provided by the cache block, this common sharing pattern producesmisses on di�erent words in the two examples. A more complex sharing pattern can interact with thecache block in a variety of ways, resulting in di�erent numbers of misses. The model we present nowanalyzes how data sharing and prefetching interact to result in the observed number of misses.We assume a multiprocessor with in�nite caches and an invalidation-based cache coherence protocolwhere a cached memory word may be owned by one cache or read shared among several. We de�ne thestate of the word as the pair (mode, processors), where mode may be owned or shared, and processorsis the set of processors that cache the word. An uncached word is a degenerate case where processorsis ;. A read miss loads the word in a shared mode. If the word is in a shared mode, a processor thatcaches it must issue a request for ownership before it can write the word. We count this request asa miss. A change in the state of the word is called a state transition. In the following, we focus onconditions after the cold start for the word, when no processor will access the word for the processor's�rst time.To quantify the degree of intrinsic sharing of a memory word, we de�ne the concept of true sharingtransition. 7

EXAMPLE I

EXAMPLE II

EXAMPLE III

Pa Pb Qb QbPa* *

Initial State References

PbPa Qa PaPb* *

Pa Pb Qa PbPa**

(a)

Initial State References

Block owned by PP Q PPa : Reference stream P Q P

b : Reference stream P P

Block owned by PP Q P Pa : Reference stream P Q P

b : Reference stream P P

Sharing transitions T T 2+

X 1-

Sharing transitions F 1+
Successful Prefetches 0-

Sharing transitions T T 2+
0-

Sharing transitions F 1+

XSuccessful Prefetches 1-

2

2

misses =

misses =

Block owned by P P Q QPa : Reference stream P P

b : Reference stream P Q Q

Sharing transitions F 1+Successful Prefetches 0-

Successful Prefetches 0-
Sharing transitions T F 2+

3misses =

EXAMPLE I Pa Pb Qb QbPa* * *

EXAMPLE II PbPa Qa PaPb* *

EXAMPLE III Pa Pb Qa PbPa**

(b)

*

Words a and b share the same cache block. Pa means processor P writes word a.

Successful Prefetches

Successful Prefetches Figure 4: Example of memory reference streams. For simplicity, the streamscontain only writes. An asterisk marks a cache miss. The streams in part (a)are expanded in part (b) showing true (T) and false (F) sharing transitions,and misses saved by successful prefetches (X).8

De�nition 1: True Sharing TransitionConsider the stream S of references to a given memory word only and ignore any e�ectscaused by references (not in S) to the other words in the same cache block, as if theblock were single-worded. We call true sharing transition any state transition that occursbetween two references that are contiguous in S, after cold start. Further, we say that thesecond reference causes a true sharing transition.Example II in Figure 4-(a) shows two true sharing transitions for word a. One occurs between theinitial state and reference Qa; the second between Qa and the last reference.True sharing transitions and cache misses are strongly related: in caches with single-word blocks,every true sharing transition causes a cache miss, and every miss after cold start is due to a true sharingtransition. In caches with multi-word blocks, however, a true sharing transition does not necessarilylead to a miss. This is shown in the second true sharing transition for word a in the same example.Between the two references involved in the transition, namely Qa and Pa, a third reference Pb toanother word of the same block prefetches the original word to the desired state, owned by processorP. As a result, the second reference Pa hits. On the other hand, the �rst true sharing transition forword a in the same example, which occurs between the initial state and Qa, produces a miss. We cannow de�ne the concept of true sharing miss.De�nition 2: True Sharing MissA miss that occurs in a true sharing transition.The previous discussion shows that prefetching can eliminate a miss in the second reference of atrue sharing transition. Prefetching can also generate a miss in a reference that does not cause a truesharing transition. To formalize this situation, we �rst de�ne the concept of false sharing transition.De�nition 3: False Sharing TransitionConsider two consecutive references to the same word where the second reference doesnot cause a true sharing transition. If, between the two references, there is at least oneintervening reference to a di�erent word of the same block that induces a transition on thesecond reference, we say that the second reference causes a false sharing transition.As an example, the second Pb reference in Example II causes the only false sharing transition forword b in the stream: between the two Pb references, the intervening Qa reference changes the stateof word b to be owned by Q, thereby inducing a transition on the second Pb reference.9

Like a true sharing transition, a false sharing transition may or may not incur a miss. An examplewhere a miss occurs is the false sharing transition for word b in Example II: between the two Pbreferences, reference Qa leaves the block in state owned by Q, causing the second Pb reference to miss.An example where the miss is avoided is shown in Example III, which is equal to Example II with thelast two references
ipped. In Example III, the second Pb reference causes a false sharing transitionbecause reference Qa between the two Pb references induces a transition on the second Pb. BetweenQa and Pb, however, reference Pa brings the block back to P's ownership, thus successfully eliminatinga cache miss in the Pb reference. We can now de�ne the concept of false sharing miss.De�nition 4: False Sharing MissA miss that occurs in a false sharing transition.Finally, based on the above de�nitions, the total number of cache misses, not counting the coldstart e�ect, is the total number of true and false sharing transitions minus the number of successfulprefetches. This equality is illustrated in Figure 4-(b), which expands the streams in Figure 4-(a).We analyze Example II carefully here; the reader is encouraged to go over the other examples. Weconsider the �rst reference after the initial state Qa and ask whether it causes a false sharing transition(FST), a true sharing transition (TST), or no transition at all. To answer this question, we look atthe previous reference to the same word, namely Pa. We note that the two references are involvedin a TST. We then check whether the accesses between the two references leave word a in the statethat Qa requires, namely owned by Q. If that were the case, a successful prefetch would be recorded.Otherwise, the actual situation in the example, a true sharing miss (TSM) occurs. We now considerthe next reference Pb. As before, we look for the previous reference to the same word, namely the Pbunder Initial State. This pair of references are not involved in a TST. To check whether a FST occurs,we search the intervening references for at least one that induces a transition on the second Pb. SinceQa induces such a transition, Pb causes a FST. To determine whether a false sharing miss (FSM) ora successful prefetch occurs, we check whether the stream between Qa and Pb leaves b in the staterequired by Pb. Since this is not the case, a FSM occurs. The �nal reference causes a TST but asuccessful prefetch eliminates the miss: reference Pb sets the block to the desired state, namely ownedby P. To summarize, the net result of three transitions and one successful prefetch is two misses, aspostulated by our equality that relates misses, transitions, and successful prefetches.3.2 E�ect of Data Prefetching through Increased Block SizeThe previous analysis showed that the prefetching provided by multi-word blocks can eliminate orcreate misses. Unlike in uniprocessors, where prefetching always has a positive e�ect in in�nite caches,10

prefetching in multiprocessors can have both a positive and a negative e�ect. Prefetching exploitsspatial locality in data as in uniprocessors. It also, however, creates false sharing transitions, whichmay change what used to be cache hits without prefetching into false sharing misses.We expect the positive e�ect, namely exploitation of spatial locality, to be lower in multiprocessorsthan in uniprocessors for three reasons. First, a processor may never reference the prefetched data:since computation is partitioned in a multiprocessor, this is more likely than in a uniprocessor. Second,even if the processor will eventually access the prefetched data, another processor may access it �rst andremove the data from the �rst processor's cache. Third, prefetched data may be removed by anotherprocessor accessing a di�erent word in the same block. Because of the last reason, the bene�ts ofspatial locality do not necessarily increase monotonically with the cache block size. Larger blocks mayintroduce transitions that reduce the spatial locality bene�ts present in a smaller block size.False sharing transitions, the second e�ect of prefetching, increase monotonically with block size.As false sharing transitions increase, false sharing misses are likely to increase. However, since notevery false sharing transition will cause a false sharing miss, the number of false sharing misses maynot increase monotonically with increasing block size either.Unfortunately, both the positive and negative e�ects of prefetching are determined by the particularplacement of data in memory and cannot, in general, be changed independently. Figure 5 illustratesthe interdependence of the two e�ects. In the �gure, words a and b share the same block. In thebeginning of the program, a potential instance of false sharing occurs because processor Q may writeb while processor P writes a. During the rest of the program, the two processors access words a and bin sequence within a critical section. If we eliminated the false sharing by, for example, placing a in adi�erent block, the bene�ts of prefetching within the loop would also disappear. We could be savingone false sharing miss at the cost of doubling the number of misses within the loop. This examplesuggests that it may not be desirable to eliminate false sharing misses at any cost.
a bstore a

store b
store a

loop

store a store b

store b
store a

loop

Processor P Processor Q

lock

unlock

lock

unlockFigure 5: The data prefetching provided by multi-word cache blocks can bebene�cial, as in the loop shown, or may create false sharing misses, as in thestatements before the loop. 11

3.3 MeasurementsAlthough the positive and the negative e�ects of prefetching on the miss rate are closely related,we have been able to devise an experiment that allows us to measure each of the two e�ects. Theexperiment is based on our model of sharing. In the experiment, we use the ideal architecture, whichassumes in�nite caches and no cache miss penalties. We compare two simulations driven by the sameinterleaving of references and running in lockstep. One simulation uses caches with single-word blocks,while the other uses caches with multi-word blocks. In the simulations, we include the cold start periodof the programs. Hence, in addition to false and true sharing misses, we capture misses on memorywords referenced by a processor for the processor's �rst time. These misses we call cold misses. Therelationships among cold, true sharing, and false sharing misses in the single-word and the multi-wordsimulations are as follows.If a cold miss is incurred for a reference in the multi-word block simulation, the samereference causes a cold miss in the single-word block simulation.True sharing transitions are intrinsic to a reference stream of a program and thus identicalfor both simulations. Since all true sharing transitions result in misses (true sharing misses)in the single-word case, if a true sharing transition in the multi-word block simulationcauses a miss, it also causes a miss in the single-word block simulation.Therefore, the remaining misses, those that occur in the multi-word block simulation butnot in the single-word case, must be all false sharing misses.In summary, comparing the two simulations, a miss in the multi-word simulation is a false sharingmiss if there is no equivalent miss in the single-word case; otherwise it is a cold or true sharing miss.Figure 6 (not drawn to scale) depicts the relationships described. The number of cold referencesand true sharing transitions are the same in both simulations. Prefetching multiple words in a cacheblock has two e�ects: �rst, some of the cold references and true sharing transitions now result in hits;second, false sharing transitions appear, some of which result in hits and some in misses.4 Analyzing the Cache Miss Rate and Tra�c Behavior of SharedDataIn this section, we use the experiment just described to analyze the cache miss rates and tra�cgenerated by shared data in real applications. To eliminate dependencies on speci�c architecturecharacteristics, we use the ideal architecture throughout the section. We start with an analysis of themiss rates; then we consider the tra�c behavior. 12

Cold Misses

False Sharing Misses

Multi-word blocks:

Cold References

True Sharing Transitions

False Sharing Transitions

HITS MISSES

True SharingMisses

Single-word blocks:

Cold References

True Sharing Transitions

Cold Misses

True SharingMisses

False Sharing TransitionsFigure 6: Relation between the simulation of the ideal architecture usingsingle and multi-word cache blocks. The �gure is not drawn to scale. Inthe �gure, the number of cold references and true sharing transitions are thesame in both simulations.4.1 Analysis of the Cache Miss Rates on Shared DataFigure 2 shows the miss rates on shared data as a function of the block size for the applicationsstudied. We observe a wide variation among applications, both in absolute values and in the way theblock size a�ects them. For example, whereas miss rates for Csim, DWF, and LocusRoute start fromrelatively low values and decrease with increasing block size, Max
ow's miss rate starts with a highervalue, decreases at �rst, and then increases. Mp3d's miss rate is high and not very sensitive to changesin the block size. Finally, Mincut shows an upward trend.To understand the variation observed with changes in the block size, we plot the miss curves inrelative values (Figure 7) and then decompose them into the miss components as described by ourmodel. Figure 8 shows the misses for 16 processors decomposed into two groups: cold and true sharingmisses, and false sharing misses. In addition, to show the degree of true sharing in each program,we mark with an arrow the number of true sharing misses on single-word blocks | which is also thenumber of true sharing transitions. The rest of the misses on single-word blocks are cold misses. Inthe following sections, we �rst analyze each component of the misses separately, relating the shape ofthe curves to the data structures in the source code that cause them. Then, we summarize the generalobservations.4.1.1 Analyzing False Sharing MissesRecall that, while false sharing transitions always increase monotonically with the block size, this isnot necessarily so for false sharing misses. From Figure 8, however, we observe that false sharing13

Figure 7: Cache misses on shared data as a function of the block size. Missesare shown as a fraction of the misses on single-word blocks for the sameapplication and 16 processors.
14

Figure 8: Decomposition of the cache misses on shared data as a functionof the block size for 16 processors. Misses are shown as a fraction of themisses on single-word blocks for the same application. The arrow shows thenumber of true sharing transitions in the program.15

misses always increase with block size and that, except in two cases, this increase is slow. This slowincrease is produced by several program characteristics. Distributing the computation such that eachiteration of a loop is executed on a di�erent processor produces false sharing misses when data fromdi�erent iterations falls in the same cache block. Graph problems with irregular node interconnectionwhere cache blocks frequently contain pieces of nodes belonging to di�erent processors also exhibitfalse sharing misses (Max
ow and Mincut).The two cases where false sharing misses increase quickly are when the blocks are small in Mincutand when the blocks are large in Max
ow. The sharp rise in these two cases is due to the presenceof blocks containing multiple frequently-accessed scalar variables, where at least one of the scalars iswritten frequently. This e�ect can also happen with small arrays where each array entry is repeatedlyupdated by one processor.As opposed to the previous applications, programs with little reuse of data by the same process(Mp3d), or where each processor is assigned a geographic domain where processor interaction isinfrequent (LocusRoute, DWF, and Csim) are unlikely to exhibit a large amount of false sharingmisses.4.1.2 Analyzing Cold and True Sharing MissesThe slow decrease in cold and true sharing misses with increasing block size seen in Figure 8 showsthat shared data has low spatial locality. A second observation is that, except for Max
ow, whichshows a slight trend reversal for large blocks, the decrease in misses is monotonic.Poor locality particularly a�ects programs with unstructured accesses, as is the case in �ne-grainedglobal task queues where processors continually process new tasks (Mp3d) or algorithms like simulatedannealing that involve calls to random number generators to decide what memory area to access(Mincut). On the other side, programs with large data structures that are accessed sequentially andat di�erent times by di�erent processors (LocusRoute and Max
ow) show larger decreases in cold andtrue sharing misses.4.1.3 Increasing the Number of ProcessorsThe curves with the misses for 32 processors shown in Figure 7 are decomposed in Figure 9. Themisses are shown as a fraction of the 16-processor, single-word block misses for the same application.From the �gure, we see that the two components, false sharing and cold/true sharing misses, maintainthe same trends for the larger number of processors.16

Figure 9: Decomposition of the cache misses on shared data as a function ofthe block size for 32 processors. Misses are shown as a fraction of the misseson single-word blocks for the same application and 16 processors. The arrowshows the number of true sharing transitions in the program.17

4.1.4 Overall ObservationsDespite the widely varying shape of the overall curve, the two component curves behave consistentlyacross all applications. First, cold and true sharing misses tend to decrease with increasing block sizebut, unlike in uniprocessors, the rate of decrease in misses is much less than the rate of increase inblock size. Second, false sharing misses increase with block size and eventually neutralize or evenovercome the small decreases in the cold and true sharing misses. The net e�ect is that the totalnumber of misses either decreases slowly or does not decrease at all. As we will see, the result is adramatic increase in processor-memory tra�c with any increase in block size.The plots show that cold and true sharing misses usually outnumber false sharing misses. Further,for the two applications with a signi�cant number of false sharing misses, we show in Section 5 thatsimple data placement optimizations can eliminate an important fraction of these false sharing misses.The two component curves in each plot may not be independent of each other. Figure 5 showedthat a reduction in the number of false sharing misses may cause an increase in the number of coldand true sharing misses. The opposite case, namely a reduction in the number of false sharing missescausing a decrease in the amount of cold and true sharing misses, is also possible. Such scenario occursif false sharing misses induce more misses by interfering with the successful prefetches for true sharingor cold accesses. In the worst case, a false sharing miss on a word by one processor could eliminate asuccessful prefetch in all the other processors that cache the word, thereby forcing cold or true sharingmisses. Fortunately, the experiments performed while studying the optimizations of Section 5 showthat such interaction is rare. The curves of false sharing misses, therefore, are a good approximationof the worst e�ects of false sharing.The magnitude of the two component curves and the previous discussion suggest that the poor spa-tial locality of multiprocessor data | responsible for the slow decrease in cold and true sharing misses| contributes to the cache miss rates even more than false sharing does. For this reason, we believethat, to improve the performance of caches, trying to enhance the spatial locality of multiprocessordata is an approach at least as, or even more promising, than trying to remove false sharing.4.2 Analysis of the Tra�c Generated by Shared DataNot only do misses increase the latency of memory accesses, they also generate tra�c between proces-sors and memory. As the block size increases, a miss produces a higher volume of tra�c. If we estimatethe tra�c caused by shared data as SharedMisses*BlockSize, we produce the plots in Figure 10. The�gure includes a curve for uniprocessor data with a �nite cache (32 Kbytes) from [11] for comparisonpurposes. From the �gure, we see that the block size that minimizes the tra�c of shared data in thisclass of applications is one word, both for 16 and 32 processors. To determine the highest performanceblock size for a data cache, however, we need to take into account the start up overhead associated18

with a cache miss for the particular machine and know what fraction of the data misses are on shareddata. Section 6 shows that this fraction is over 95% for a large cache.
Figure 10: Processor-memory tra�c caused by shared data. The plot showsthe ratio between the tra�c at a given block size and the tra�c for single-word blocks and 16 processors. We include a curve for uniprocessor datawith a �nite cache (32 Kbytes) for comparison purposes.The tra�c increase with larger blocks occurs because many of the words transferred are not used.Between two consecutive misses on a given block, a processor usually references a very small numberof distinct words in that block, as shown in Table 2. Recall that misses include requests for ownershipon a block. The low values in Table 2 show that, on average, the prefetching e�ect of cache blocks isnot very e�ective. These numbers correlate with the trends in the miss rates shown in Figure 2. Mp3dhas the lowest numbers in Table 2 because it has a high miss rate, which does not decrease with largerblock sizes. LocusRoute shows the highest numbers because it has a low miss rate that decreasessigni�cantly with increases in block size. We also see that increasing the number of processors alwaysdecreases the number of words used in a block. The poor use of the cache blocks revealed by thisdata motivates the next section, where we try to optimize the use of the blocks based on our modelof sharing. 19

Table 2: Average number of distinct words in a cache block referenced byone processor between two consecutive misses on that block by the sameprocessor.Application 16 Processors 32 ProcessorsBlock Size (Words) Block Size (Words)2 4 8 16 32 2 4 8 16 32Csim 1.4 1.9 2.4 3.0 3.5 1.4 1.8 2.3 2.7 3.2DWF 1.5 1.9 2.4 2.3 2.5 1.4 1.7 1.9 2.0 2.1Mp3d 1.1 1.1 1.1 1.1 1.1 1.0 1.1 1.1 1.1 1.1LocusRoute 1.3 2.1 3.5 5.2 6.0 1.2 2.0 3.0 4.1 4.3Max
ow 1.3 1.9 2.5 3.1 3.3 1.2 1.7 2.0 2.3 2.5Mincut 1.2 1.2 1.4 1.7 2.0 1.1 1.2 1.3 1.4 1.75 Optimizing the Placement of Shared Data in Cache BlocksThis section addresses the problem of reducing the cache misses on shared data by enhancing the spatiallocality of shared data and mitigating false sharing. We optimize the placement of data structuresin cache blocks using local changes that are programmer-transparent and have general applicability.Our approach is partly motivated by the fact that cache misses on shared data are often concentratedin small sections of the shared data address space. Therefore, local actions involving relatively fewbytes may yield most of the desired e�ects. An example of this skewed miss distribution is shown inFigure 11, which plots the average number of misses per byte in each shared data structure of Csim.

A
vg

. M
iss

es
pe

r B
yte

89.6

1e+6 2e+6

5

10

Shared Memory Space (Bytes)0

0Figure 11: Distribution of the cache misses along the shared address space forthe Csim application. For each data structure, we plot the average numberof misses per byte. This plot corresponds to 16 processors, 4-word cacheblocks, and the ideal architecture. 20

To guide the study of possible optimizations, we use address traces to generate the followingpro�ling information for each shared-memory word: (1) degree of true sharing, measured as thenumber of misses beyond the cold start in the single-word block simulation, (2) false sharing misses,(3) cold and true sharing misses eliminated by prefetching, and (4) number of writes. The latter isneeded since, in addition to words that have a high degree of true sharing, non-shared words that arefrequently written can also be the cause of false sharing in a block. For example, false sharing mayoccur in a block with one word that is heavily read by only one processor and one word that is heavilywritten by only one other processor. We call a word active if its degree of true sharing or number ofwrites exceeds 0.1% of the program misses.In the following, we �rst present the optimizations, then evaluate them using the ideal architecture.In the evaluation, we consider both the aggregate e�ect of all optimizations and the individual e�ectof each. Since it is rare to have this tracing information in practice, the �nal subsection examines thecase where we have no dynamic information on the application at all.5.1 Placement OptimizationsWe propose �ve optimizations of the data layout. Because synchronization variables are a well-knownsource of contention in some programs, we use as a baseline a data layout where each of them isallocated to an empty cache block.� SplitScalar: Place scalar variables that cause false sharing in di�erent blocks. Given a cacheblock with scalar variables where the increase in misses due to prefetching exceeds 0.5% of theprogram misses, we remove the active variables and allocate each of them to an empty cacheblock.� HeapAllocate: Allocate shared space from di�erent heap regions according to which processorrequests the space. It is common for a slave process to access the shared space that it requestsitself. If no action is taken, the space allocated by di�erent processes may share the same cacheblock and lead to false sharing. The policy we propose is more space-e�cient than allocatingonly block-aligned space, particularly when very small chunks of space are repeatedly requested.� ExpandRecord: Expand records in an array (padding with dummy words) to reduce the sharingof a cache block by di�erent records. While successful prefetching may occur within a recordor across records, false sharing usually occurs across records, when more than one of themshare the same cache block. If the multi-word simulation indicates that there is much falsesharing and little gain in prefetching, then consider expansion. If the reverse is true, do notapply the optimization. When both false sharing misses and prefetching savings are of the same21

order of magnitude, we assume that the prefetching succeeds within a record and we apply theoptimization.� AlignRecord: Choose a layout for arrays of records that minimizes the number of blocks theaverage record spans. This optimization maximizes prefetching of the rest of the record whenone word of a record is accessed, and may also reduce false sharing. This optimization is possiblewhen the number of words in the record and in the cache block have a greatest common divisor(GCD) larger than 1. The array is laid out at a distance from a block boundary equal to 0 or amultiple of the GCD, whichever wastes less space.� LockScalar: Place active scalars that are protected by a lock in the same block as the lock variable.As a result, the scalar is prefetched when the lock is accessed.All optimizations except LockScalar try to minimize false sharing. LockScalar and AlignRecord tryto increase the spatial locality of the data. In our optimizations, we must avoid other e�ects thatcould o�set the intended ones. First, false sharing and e�ective exploitation of spatial locality arenot independent; changing one usually a�ects the other. In particular, strategies that increase thesize of the data like SplitScalar and ExpandRecord may also reduce the e�ectiveness of prefetching ineliminating cold and true sharing misses. Second, large data expansions may increase the working setof a program and increase capacity misses in a �nite cache. To guard against these e�ects, we restrictthe optimizations to those that cause little data size increase.5.2 Evaluation of the Optimizations: Aggregate E�ectTo evaluate the e�ectiveness of these optimizations, we use as a metric the fraction of shared datamisses that they eliminate. Table 3 shows this fraction together with the resulting increase in the sizeof the data structures for 16 and 32 processors with 4- and 16-word blocks. The table shows a largevariation in the fraction of misses eliminated in the di�erent applications: the results for individualprograms range from 0% to over 40%, with an average close to 10%.On average, our techniques tend to eliminate a higher percentage of misses for the larger blocksizes. This e�ect is, however, the result of two opposing trends. On one hand, a larger cache blocksize increases the possibility of false sharing among scalars and small data structures, thus possiblyincreasing the e�ectiveness of the optimizations. On the other hand, a larger block also increases thecost of expanding records, making some data expansion optimizations infeasible. Further, a largerblock may already bene�t more from prefetching, rendering optimizations to increase spatial localityless e�ective.The e�ect of the number of processors is also clear. When the number of processors increases,there are more cache misses. The data placement optimizations, however, also eliminate more misses.22

Table 3: E�ectiveness of the optimizations in the placement of shared datafor 16 (top half of the table) and 32 (bottom half of the table) processors.Application Number Reduction in Shared Increase in Sharedof Data Misses Data SpaceProcessors 4-Word Blocks 16-Word Blocks 4-Word Blocks 16-Word BlocksRelat. Absol. Relat. Absol. Relat. Absol. Relat. Absol.(%) (Thous.) (%) (Thous.) (%) (Kbytes) (%) (Kbytes)Csim 16 7.9 60.6 6.6 39.3 0.0 0.4 0.1 1.9DWF 16 0.6 3.1 1.0 4.6 0.0 0.0 0.0 0.2Mp3d 16 0.4 20.6 0.1 5.5 0.3 4.8 0.0 0.5LocusRoute 16 10.2 45.3 28.7 57.5 0.0 0.5 0.1 1.6Max
ow 16 8.9 198.9 14.2 235.3 0.6 1.6 0.6 1.6Mincut 16 19.7 229.6 8.9 153.1 72.3 4.0 0.0 0.0AVERAGE 16 8.0 9.9 1.9 0.1 1.0Csim 32 15.6 196.2 11.5 110.3 0.0 0.9 0.1 3.9DWF 32 0.6 5.5 1.1 9.0 0.0 0.0 0.0 0.2Mp3d 32 0.4 24.3 0.2 13.3 0.3 4.8 0.0 0.5LocusRoute 32 15.5 92.5 41.6 138.5 0.0 0.5 0.2 3.1Max
ow 32 10.7 397.0 14.7 455.6 0.6 1.6 0.6 1.6Mincut 32 22.0 394.1 8.8 190.9 72.3 4.0 0.0 0.0AVERAGE 32 10.8 13.0 2.0 0.2 1.5
23

The result, for nearly all the applications studied, is that the relative miss reductions are higher for32 processors than for 16 processors.Finally, we see that the space requirements of the optimizations are small, usually in the 2 Kbyteneighborhood. This causes an insigni�cant relative increase in shared data space unless the size of theshared data space is very small originally. While it is possible to reduce the miss rate further by largerdata expansions, their possibly detrimental e�ect on cache performance makes them undesirable.Figure 12 shows how the optimizations a�ect the two types of misses: cold and true sharing,and false sharing misses. For each application, the �gure considers the four processor and block sizesettings used in the previous table. For each setting, we show three bars. The leftmost bar showsthe miss rate of shared data in the original program, where the compiler did not necessarily allocateeach synchronization variable to a di�erent cache block. The central bar shows the miss rate aftereach synchronization variable is allocated to a di�erent cache block. This is the miss rate taken as abaseline. From the di�erence between the two bars, we can see the importance of the synchronizationvariable layout, especially considering that spin-locking is not used in the synchronization variables.Finally, the rightmost bar shows the miss rate after further applying the �ve placement optimizations.We observe that the optimizations are more successful in eliminating false sharing misses than ineliminating cold and true sharing misses. For all applications, the maximum reduction in cold and truesharing misses is approximately 10%. In contrast, almost all false sharing is removed in LocusRouteand in Mincut for 4-word cache blocks, and 20 to 40% in Csim and Max
ow. The reduction of falsesharing in Mincut is accompanied by an increase in cold and true sharing misses. This observationillustrates that, in general, the positive and negative e�ects of prefetching discussed in Section 3.2cannot be totally separated.5.3 Evaluation of the Optimizations: Individual E�ectTable 4 shows the contribution of each optimization to the reduction in shared data misses shownin Table 3. From Table 4, we see that SplitScalar is e�ective for all applications amenable to theseoptimizations. Most of the misses it eliminates can be attributed to two or three actively writtenscalars. As the block size increases, this optimization becomes more important. We also see thatExpandRecord is useful for the same set of applications. This optimization is applied either to small,active arrays used mainly for process communication or to the main data structures in the smallerprograms. Finally, the other optimizations are relevant to only one or two of the applications.A large fraction of the cache misses still remains after optimization. While some of the false sharingmisses can be removed if the data caches are large enough to support more instances of the expansionoptimization, the remaining misses are primarily cold and true sharing misses. This suggests thatfurther optimizations should concentrate on increasing the spatial locality of the data.24

DWF

LocusRoute

Mincut

0.2

0.0

0.1

0.3

0.2

0.0

0.1

0.3

0.2

0.0

0.1

0.3

16p4w 16p16w 32p4w 32p16w

Csim

Mp3d

Maxflow

0.2

0.0

0.4

0.6

0.2

0.0

0.1

0.3

0.2

0.0

0.1

0.3

16p4w 16p16w 32p4w 32p16w

16p4w 16p16w 32p4w 32p16w

16p4w 16p16w 32p4w 32p16w16p4w 16p16w 32p4w 32p16w

16p4w 16p16w 32p4w 32p16w

p=Number of Processors
w=Words per Cache Block

16p4w means 16 processors and
4 words per block

False Sharing Miss Rate

Cold+True Sharing Miss Rate

Original Miss RateFigure 12: Miss rates on shared data. For each set of three bars, the leftmostone shows the miss rate of the original program; the central one the missrate after allocating synchronization variables to di�erent cache blocks; andthe rightmost one the miss rate after further applying the �ve placementoptimizations. 25

Table 4: Fraction of shared data misses eliminated by each optimization.The notation 16p-4w means 16 processor execution and 4 words per cacheblock.Application SplitScalar HeapAllocate ExpandRecord AlignRecord LockScalar TotalCsim 16p-4w 1.7 2.3 3.4 0.5 7.9Csim 16p-16w 2.2 2.8 1.0 0.6 6.6Csim 32p-4w 3.8 2.3 9.0 0.5 15.6Csim 32p-16w 5.0 2.8 3.0 0.7 11.5DWF 16p-4w 0.4 0.2 0.6DWF 16p-16w 1.0 1.0DWF 32p-4w 0.5 0.1 0.6DWF 32p-16w 1.0 0.1 1.1Mp3d 16p-4w 0.1 0.3 0.4Mp3d 16p-16w 0.1 0.1Mp3d 32p-4w 0.1 0.3 0.4Mp3d 32p-16w 0.1 0.1 0.2LocusRoute 16p-4w 1.5 6.7 0.7 0.5 0.8 10.2LocusRoute 16p-16w 8.0 16.1 2.5 0.4 1.7 28.7LocusRoute 32p-4w 1.4 11.3 1.4 0.8 0.6 15.5LocusRoute 32p-16w 8.4 27.5 4.7 0.4 0.6 41.6Max
ow 16p-4w 1.5 5.3 2.1 8.9Max
ow 16p-16w 2.0 9.3 2.9 14.2Max
ow 32p-4w 1.7 4.8 4.2 10.7Max
ow 32p-16w 2.0 7.7 5.0 14.7Mincut 16p-4w 4.7 9.6 5.4 19.7Mincut 16p-16w 4.1 4.8 8.9Mincut 32p-4w 6.7 11.3 4.0 22.0Mincut 32p-16w 5.5 3.3 8.8
26

5.4 E�ectiveness of the Optimizations without Program Pro�lingThe optimizations evaluated above were developed by using detailed information obtained by tracingthe program. While some kind of pro�ling may be available in practice, it will probably not be ascomplete as the one used so far. In this section, we investigate the possibility of general and e�ectiveoptimizations that do not rely on any pro�ling information. We consider how to apply each of theprevious optimizations in the absence of this information:� SplitScalar: If no information is provided, we place each shared scalar variable in a di�erentcache block. This approach has almost the same e�ect as moving only active scalar variablessince, in relatively large caches, the advantage of prefetching scalars is minor. Although mostprograms have a small number of shared scalars (the number in those studied ranged from 5 to50), programs with many scalars and large cache blocks may waste much space. However, weexpect little negative e�ect, since only a fraction of the scalars is accessed frequently.� ExpandRecord: To expand all short arrays by placing, for example, one entry per cache blockis impractical, since it wastes space and can have a positive or a negative net e�ect on cachemisses. We leave it up to the programmer to pad the data structure if so desired.� HeapAllocate and AlignRecord: The optimizations of allocating shared data from a process' ownheap space and aligning arrays can be applied at all times, since the cost is low.� LockScalar: If the machine allows lock variables and general data to reside in the same cacheblock, this optimization is feasible at a very low cost.From the previous discussion, we conclude that the compiler and run time system can incorporateHeapAllocate, AlignRecord, LockScalar, and the modi�ed SplitScalar without any pro�le information.The cumulative e�ect of these optimizations is shown in Table 5, together with a comparison to thefully optimized case. These numbers indicate that a signi�cant part of the e�ect of the more costlyoptimizations can be obtained without any pro�le information. Moreover, the increase in data space,both absolute and relative, remains small.6 Performance of a Real ArchitectureAfter having studied data sharing in an ideal setting, we now use the detailed architecture to illustratethe performance impact of data sharing in practice. This section examines three issues. We �rst studythe e�ect of the conventional code optimizations described in Section 2.3. Using optimized code, wethen measure the overall cache performance of the applications. Finally, also using optimized code,we assess the e�ectiveness of the placement optimizations for shared data.27

Table 5: E�ectiveness of the optimizations without using a program pro�le.The numbers in parenthesis show the misses eliminated as a percentage ofthe misses eliminated with a full program trace.Application Shared Data Misses Eliminated (%) Shared Data Space Increase (Kbytes)16 Proc. 16 Proc. 32 Proc. 32 Proc. 16 Proc. 16 Proc. 32 Proc. 32 Proc.4-Word 16-Word 4-Word 16-Word 4-Word 16-Word 4-Word 16-WordBlock Block Block Block Block Block Block BlockCsim 5.6 (71) 3.8 (58) 13.3 (85) 8.7 (76) 0.6 2.9 0.6 2.9DWF 0.6 (100) 1.0 (100) 0.6 (100) 1.1 (100) 0.1 0.6 0.1 0.6Mp3d 0.0 0.1 0.0 0.1 0.4 1.9 0.4 1.9LocusRoute 8.9 (87) 25.9 (90) 14.0 (90) 36.9 (89) 0.6 2.6 0.6 2.6Max
ow 3.6 (40) 4.9 (35) 5.9 (55) 7.0 (48) 0.1 0.4 0.1 0.4Mincut 10.1 (51) 8.9 (100) 10.7 (49) 8.8 (100) 0.0 0.3 0.0 0.3AVERAGE 4.8 (60) 7.4 (75) 7.4 (69) 10.4 (80) 0.3 1.4 0.3 1.46.1 Impact of the Conventional Code OptimizationsTo study the e�ect of the conventional code optimizations on overall performance, we compare theexecution times of two applications, LocusRoute and Max
ow, using optimized and unoptimized code.LocusRoute is about twice as fast after optimization for both 4- and 16-word blocks. However, Max
owyields an improvement of only about 5% for both 4- and 16-word blocks. This small improvement inMax
ow is due to increased bus contention, which o�sets the advantages gained by the elimination ofunnecessary private data fetches from the program. Thus, while there is a slight improvement in thespeed of Max
ow, the utilization of the processors actually decreases by 25%. In conclusion, whilesome programs run substantially faster with compiler optimizations, those where shared data tra�csaturates the interconnection cannot. In either case, since uniprocessor programs run faster whilethe amount of sharing remains unchanged, optimized code will give lower speedup �gures. Since weare ultimately interested in overall performance, measurements on multiprocessor programs must beperformed on optimized code.6.2 Overall Cache PerformanceIn previous sections we studied the cache miss rates resulting from data sharing in isolation. In thissection we examine the data cache performance of the detailed architecture, which has a �nite cacheand issues private data references too. As indicated in Section 2.2, the measurements are taken duringthe steady state execution of the programs. In this environment, the contribution of private and28

shared data to the misses of the �nite caches is shown in Table 6. Because the caches are reasonablylarge and the programs are measured in their steady state, the miss rate on private data (columns 2and 3) is minuscule compared to that on shared data (columns 4 and 5). In fact, most of the missescorrespond to shared data (columns 6 and 7). Consequently, as shown in the last two columns ofTable 6, the total miss rate is basically the shared data miss rate weighted by the frequency of shareddata accesses.Table 6: Data cache miss measurements for the detailed architecture with16 processors and compiler-optimized code.Application Private Misses / Shared Misses / Shared Misses / Total Misses /Private References Shared References Total Misses Total References(%) (%) (%) (%)4-Word 16-Word 4-Word 16-Word 4-Word 16-Word 4-Word 16-WordBlock Block Block Block Block Block Block BlockCsim 0.1 0.2 9.5 7.7 99 98 5.9 4.8DWF 0.0 0.1 2.9 2.1 99 99 2.6 1.9Mp3d 0.2 0.2 59.5 59.2 99 99 46.5 46.3LocusRoute 0.5 0.3 10.6 5.9 95 94 5.5 3.0Max
ow 0.3 0.3 13.4 10.0 98 97 8.3 6.2Mincut 0.0 0.0 19.6 19.1 99 99 6.6 6.46.3 Impact of the Placement OptimizationsWe have proposed two sets of data placement optimizations: one when full tracing information isavailable; the other when no pro�ling data is available. In practice, some information will probablybe available. We therefore choose to evaluate the case that assumes full information and consider theresults optimistic.Table 7 shows the reduction in data miss rate achieved by the placement optimizations for 16processors. The data in the table includes misses on both shared and private data. From the table, wesee that the optimizations reduce the overall data miss rate of the applications by up to an absolute1.5% (or a relative 40%). These miss rate reductions speed up the applications by about 10% onaverage. These speedups are partially the result of the bus contention generated by sixteen processors.However, while replacing the bus with another interconnection network may reduce contention, it mayalso increase overall memory access latencies. 29

Table 7: E�ect of the shared data placement optimizations on the data missrates of the detailed architecture. The numbers correspond to 16 processorsand compiler-optimized code, and include both shared and private data.Application Overall Data Miss Rate4-Word Block 16-Word BlockUnopt. Opt. Unopt. - Opt. Unopt. Opt. Unopt. - Opt.(%) (%) (%) (%) (%) (%)Csim 5.9 5.1 0.8 4.8 4.4 0.4DWF 2.6 2.6 0.0 1.9 2.0 -0.1Mp3d 46.5 46.4 0.1 46.3 46.2 0.1LocusRoute 5.5 4.0 1.5 3.0 1.8 1.2Max
ow 8.3 7.2 1.1 6.2 5.1 1.1Mincut 6.6 5.4 1.2 6.4 5.5 0.97 Conclusions and Future DirectionsThere are two main contributions in this paper. First, we show how poor spatial locality in the dataand false sharing explain the variation in the miss rate of shared data as the cache block changesin size. Second, we show that data layout optimizations that are programmer-transparent and notrestricted to regular codes can be used to reduce the miss rate.Based on the analysis of six applications, we �nd that, although false sharing sometimes plays asigni�cant role, poor spatial locality has a larger e�ect in determining the high miss rates for moderate-sized cache blocks. In addition, data layout optimizations are more e�ective in eliminating false sharingthan in improving spatial locality. Overall, these optimizations eliminate about 10% of the misses onshared data.Our observations on where and how false sharing occurs lead us to hypothesize that false sharingis not the major source of the cache misses in compiler-parallelized code either. For such code, thecompiler can easily avoid the obvious false sharing pitfalls. For example, in a DOALL loop, it is wellknown that interleaving individual iterations across di�erent processors can cause false sharing. Thise�ect can be avoided by increasing the granularity of the slices assigned to processors.Optimizations that improve the performance of cache memories are likely to grow in importanceas the latencies of cache misses increase. Of these optimizations, those that speci�cally optimize theperformance of large cache blocks, like the ones presented here, are particularly interesting, since largeblocks can be useful in amortizing the cost of a long-latency memory access. More e�ort should bedevoted to optimizing the performance of large cache blocks. In this paper, we have shown data that30

suggests that researchers should focus on increasing the spatial locality of the data more than onreducing false sharing.AcknowledgementsWe thank the referees for their helpful comments. We also thank Steve Goldschmidt, Brian Bray,Helen Davis, Steve Tjiang, and the authors of the applications for their contributions. This researchis funded in part by DARPA contract N00014-87-K-0828 and by �nancial support from La Caixad'Estalvis per a la Vellesa i de Pensions and the Ministerio de Educacion y Ciencia, both of Spain.A Decomposition of the Data Reference StreamTables 8 and 9 classify the data references for 16- and 32-process streams respectively.Table 8: Decomposition of the data reference stream for 16 processes.Application Shared Refs. / Private Global Refs. / Private Local Refs. /Total Data Refs. Total Data Refs. Total Data Refs.(%) (%) (%)Unopt. Optim. Unopt. Optim. Unopt. Optim.Csim 34.1 61.4 22.6 22.6 43.4 16.0DWF 29.9 91.4 11.7 1.2 58.4 7.5Mp3d 43.6 78.1 17.2 0.0 39.2 21.9LocusRoute 13.7 50.2 15.3 22.5 71.0 27.3Max
ow 36.1 61.1 6.2 6.9 57.7 32.0Mincut 11.9 33.7 21.5 37.3 66.7 29.1AVERAGE 28.2 62.6 15.7 15.1 56.1 22.3
31

Table 9: Decomposition of the data reference stream for 32 processes.Application Shared Refs. / Private Global Refs. / Private Local Refs. /Total Data Refs. Total Data Refs. Total Data Refs.(%) (%) (%)Unopt. Optim. Unopt. Optim. Unopt. Optim.Csim 35.2 61.3 23.1 23.2 41.7 15.4DWF 28.2 85.1 11.5 2.1 60.3 12.8Mp3d 43.5 77.8 17.2 0.0 39.3 22.3LocusRoute 13.9 50.4 15.4 23.5 70.7 26.1Max
ow 37.0 61.7 6.5 6.6 56.6 31.7Mincut 11.8 33.7 21.5 37.3 66.6 29.1AVERAGE 28.3 61.7 15.9 15.4 55.8 22.9References[1] D. R. Cheriton, H. A. Goosen, and P. D. Boyle, \Multi-Level Shared Caching Techniques forScalability in VMP-MC," in Proceedings of the 16th Annual International Symposium onComputer Architecture, pp. 16{24, June 1989.[2] J. Elder, A. Gottlieb, C. K. Kruskal, K. P. McAuli�e, L. Rudolph, M. Snir, P. Teller, andJ. Wilson, \Issues Related to MIMD, Shared-Memory Computers: The NYU UltracomputerApproach," in Proceedings of the 12th Annual International Symposium on Computer Archi-tecture, pp. 126{135, June 1985.[3] J. R. Goodman and P. J. Woest, \The Wisconsin Multicube: A New Large-Scale Cache-CoherentMultiprocessor," in Proceedings of the 15th Annual International Symposium on ComputerArchitecture, pp. 422{431, June 1988.[4] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy, \The Directory-BasedCache Coherence Protocol for the DASH Multiprocessor," in Proceedings of the 17th AnnualInternational Symposium on Computer Architecture, pp. 148{159, May 1990.[5] G. P�ster, W. Brantley, D. George, S. Harvey, W. Kleinfelder, K. McAuli�e, E.Melton, A. Norton,and J. Weiss, \The IBM Research Parallel Processor Prototype (RP3): Introduction andArchitecture," in Proceedings of the 1985 International Conference on Parallel Processing,pp. 764{771, 1985.[6] A. W. Wilson, \Hierarchical Cache/Bus Architecture for Shared Memory Multiprocessors," inProceedings of the 14th Annual International Symposium on Computer Architecture, pp. 244{32

252, June 1987.[7] A. Agarwal and A. Gupta, \Memory-Reference Characteristics of Multiprocessor Applications un-der MACH," in ACM SIGMETRICS Conference on Measurement and Modeling of ComputerSystems, pp. 215{225, May 1988.[8] S. J. Eggers and R. H. Katz, \The E�ect of Sharing on the Cache and Bus Performance of ParallelPrograms," in Proceedings of the 3rd International Conference on Architectural Support forProgramming Languages and Operating Systems, pp. 257{270, April 1989.[9] W. D. Weber and A. Gupta, \Analysis of Cache Invalidation Patterns in Multiprocessors," inProceedings of the 3rd International Conference on Architectural Support for ProgrammingLanguages and Operating Systems, pp. 243{256, April 1989.[10] R. L. Lee, P. C. Yew, and D. H. Lawrie, \Multiprocessor Cache Design Considerations," inProceedings of the 14th Annual International Symposium on Computer Architecture, pp. 253{262, June 1987.[11] A. J. Smith, \Line (Block) Size Choice for CPU Caches," in IEEE Trans. on Computers, pp. 1063{1075, September 1987.[12] A. J. Smith, \Cache Memories," in Computing Surveys, pp. 473{530, September 1982.[13] F. Irigoin and R. Triolet, \Supernode Partitioning," in Proceedings of the 15th Annual ACMSymposium on Principles of Programming Languages, pp. 319{329, January 1988.[14] M. E. Wolf and M. S. Lam, \A Data Locality Optimizing Algorithm," in Proceedings ACMSIGPLAN 91 Conference on Programming Language Design and Implementation, pp. 30{44,June 1991.[15] F. J. Carrasco, \A Parallel Max
ow Implementation." CS411 Project Report, Stanford University,March 1988.[16] J. A. Dykstal and T. C. Mowry, \MINCUT: Graph Partitioning Using Parallel Simulated An-nealing." CS411 Project Report, Stanford University, March 1989.[17] A. Galper, \DWF." CS411 Project Report, Stanford University, March 1989.[18] J. D. McDonald and D. Bagano�, \Vectorization of a Particle Simulation Method for HypersonicRari�ed Flow," in AIAA Thermodynamics, Plasmadynamics and Lasers Conference, June1988.[19] J. Rose, \LocusRoute: A Parallel Global Router for Standard Cells," in Proceedings of the 25thACM/IEEE Design Automation Conference, pp. 189{195, June 1988.[20] L. Soule and A. Gupta, \Characterization of Parallelism and Deadlocks in Distributed DigitalLogic Simulation," in Proceedings of the 26th ACM/IEEE Design Automation Conference,33

pp. 81{86, June 1989.[21] E. Lusk, R. Overbeek, et al., Portable Programs for Parallel Processors.Holt, Rinehart, and Winston, Inc., New York, NY, 1987.[22] H. Davis, S. Goldschmidt, and J. Hennessy, \Multiprocessing Simulation and Tracing UsingTango," in Proceedings of the 1991 International Conference on Parallel Processing, vol. II,pp. 99{107, August 1991.[23] F. Baskett, T. Jermoluk, and D. Solomon, \The 4D-MP Graphics Superworkstation: Comput-ing + Graphics = 40 MIPS + 40 MFLOPS and 100,000 Lighted Polygons per Second," inProceedings of the 33rd IEEE Computer Society International Conference - COMPCON 88,pp. 468{471, February 1988.[24] M. S. Papamarcos and J. H. Patel, \A Low Overhead Coherence Solution for Multiprocessorswith Private Cache Memories," in Proceedings of the 11th Annual International Symposiumon Computer Architecture, pp. 348{354, June 1984.[25] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach.Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1990.[26] G. Kane, MIPS RISC Architecture.Prentice-Hall, Inc., Englewood Cli�s, NJ, 1989.[27] M. D. Hill, \Aspects of Cache Memory and Instruction Bu�er Performance," Tech. Rep.UCB/CSD 87/381, University of California, Berkeley, November 1987.[28] S. Przybylski, M. Horowitz, and J. Hennessy, \Performance Tradeo�s in Cache Design," in Pro-ceedings of the 15th Annual International Symposium on Computer Architecture, pp. 290{298,May 1988.
34

