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BRIEF REVIEWS

IMMUNOLOGY

THE O
FJOURNAL

Cellular Interactions in Lymph Node Development
Tom Cupedo* and Reina E. Mebius1†

The organized accumulation of lymphocytes is a biological
phenomenon used to optimize both homeostatic immune
surveillance, as well as chronic responses to pathogenic
stimuli. During embryonic development, circulating he-
mopoietic cells gather at predestined sites throughout the
body, where they are subsequently arranged in T and B
cell-specific areas characteristic of secondary lymphoid or-
gans. In contrast, the body seems to harbor a limited sec-
ond set of selected sites that support formation of orga-
nized lymphoid aggregates. However, these are only
revealed at times of local, chronic inflammation, when so-
called tertiary lymphoid structures appear. Once thought
of as two distinct phenomena, recent insights suggest that
highly similar networks of paracrine interactions regulate
the formation of both secondary and tertiary lymphoid
structures. This review will focus on these cellular inter-
actions between organizing and inducing cell populations
leading to the formation of lymph nodes or organized in-
flammatory infiltrates. The Journal of Immunology,
2005, 174: 21–25.

T he successful formation of lymph nodes depends on in-
teractions between lymphotoxin (LT)�R2-expressing
organizing cells and LT�1�2-expressing inducer cells

(1–4). The inducer cells are believed to be hemopoietic cells
that express the IL-7R� chain and CD4, but lack CD3. These
CD45�CD4�CD3� lymphoid tissue inducer (LTi) cells are
among the earliest cells to be found within the embryonic
lymph node anlagen (1, 2, 5), and were shown to be the inducer
cells for Peyer’s patches (PPs) and the nasal-associated lym-
phoid tissue (Fig. 1) (6, 7). Ligation of the LT�R on stromal
organizers by LTi cells leads to the initiation of two sequential
NF-�B signaling pathways, initiating the expression of adhe-
sion molecules like ICAM-1, VCAM-1, and mucosal addressin
cell adhesion molecule (MAdCAM)-1, and the production of
homeostatic chemokines such CXCL13, CCL19, and CCL21
(8–10). As a result, circulating hemopoietic cells will subse-
quently be attracted to, and retained within, these lymph node
anlagen (Fig. 1).

Many of the gene products involved in lymph node genesis
were identified through serendipitous observations made in

gene-targeted mice that were generated for different reasons,
and most genes are involved in processes like cellular differen-
tiation and inflammation. This growing list of genes involved in
lymph node formation can be divided into genes that influence
formation or function of LTi cells, or those that affect the
VCAM-1�ICAM-1� stromal organizers.

Generation of functional LTi cells

Among the genes influencing formation of LTi cells, defective
functioning of the nuclear retinoid orphan receptor (ROR)�
(11, 12), the negative regulator of basic helix-loop-helix
(bHLH) protein signaling Id2 (13), and the TNF family mem-
ber TNF-related activation-induced cytokine (TRANCE; also
known as receptor activator of NF-�B ligand, osteoclast differ-
entiation factor, or osteoprotegerin ligand) (14–18) all lead to
either the absence (ROR� and Id2) or severe reduction
(TRANCE) of LTi cells, resulting in aborted lymph node for-
mation (Fig. 2). Whereas the instrumental role of these mole-
cules in formation or accumulation of the LTi cells in lymph
node anlagen is eminent, the exact mechanism by which they
influence LTi cells remains largely unknown. The importance
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FIGURE 1. Representative examples of developing peripheral lymph nodes
at E16.5. A and B, CD45�CD4� LTi cells colocalize with MAdCAM-
1�ICAM-1� organizer cells. C and D, Organizer cells also coexpress ICAM-1
and VCAM-1.
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of Id2 implies the involvement of bHLH proteins, yet to date,
no bHLH protein has been linked to negatively regulate devel-
opment of LTi cells or lymph node formation. The role of
ROR� is even more elusive, mainly as a result of the fact that
signaling routes for this orphan receptor are largely unknown.
However, the recent identification of the chromatin remodeler
Mi-2� as a natural ROR� signaling repressor is likely to fuel
research into the signaling events evoked by this nuclear recep-
tor (19). In contrast to the phenotype of Id2 or ROR� mutant
mice, deficient TRANCE-R signaling does not lead to an ab-
sence, but to a severe reduction of LTi cells in lymph node an-
lagen (16). The fact that these mice fail to develop most lymph
nodes shows that a critical number of LTi cells is required to
initiate lymph node formation. This is supported by the fact
that, upon transgenic overexpression of TRANCE in hemopoi-
etic cells of the TRANCE�/� mice, numbers of LTi cells in-
crease, resulting in the formation of several lymph nodes (16).
During embryonic development, TRANCE expression is
found on LTi cells, but most notably on stromal cells within the
developing lymph nodes (2, 16). Local production of
TRANCE, together with the findings that PPs develop nor-
mally in the absence of TRANCE, implies that TRANCE acts
locally by either attracting or differentiating LTi cells. Further-

more, it has been shown that TRANCE-R triggering leads to
enhanced expression of LT�1�2 on LTi cells (20).

In the absence of the chemokine receptor CXCR5, LTi cells
in mesenteric lymph nodes were shown to lack the activated
form of �1 integrin (6). According to the model presented by
the authors, the function of CXCL13 in lymph node develop-
ment is not restricted to the induction of chemotactic activity
and additionally involves the generation of the activated form of
�1 integrin, allowing intimate interaction with stromal cells.

Several genes are involved in functioning of LTi cells, rather
than development of these cells. Most of these genes encode
proteins that are involved in ligation of the LT�R on stromal
cells. Signaling via the IL-7R or via the TRANCE-R are two
ways by which LTi cells can initiate surface LT expression (20).
Defects in either one of these pathways, as well as absence of
surface LT (21), results in severely defective lymph node devel-
opment (Fig. 2). Despite the fact that TRANCE-R and IL-7R
signaling seem to have a redundant function, their in vivo roles
might, however, be very distinct. Mice lacking TRANCE-R sig-
naling develop all PPs, while lacking most lymph nodes (14,
16). In contrast, IL-7R signaling-deficient mice lack all PPs,
and develop only mesenteric and brachial nodes consistently
(22–25), whereas other peripheral lymph nodes develop with
variable incidence (25). This suggests that, although TRANCE
can substitute for IL-7 in the development of several lymph
nodes, the signals delivered by TRANCE cannot be replaced by
IL-7R ligation, again suggesting an important role for TRANCE
in the generation of LTi cells for lymph node formation.

Generation of functional organizer cells

Disturbed lymph node development by mutations influencing
the stromal organizers is almost exclusively affecting LT�R sig-
naling (Fig. 2). Upon LT�R ligation, two sequential signaling
paths are initiated (10). The first signals via RelA, p50, and
I�B�, and initiates expression of adhesion molecules such as
VCAM-1 (10). Expression of these adhesion molecules facili-
tates the interaction of stromal organizers with LT� LTi cells,
assuring sustained triggering of the LT�R by these cells. As a
consequence of this prolonged signaling, the p100 precursor
will be formed, leading to a second NF-�B pathway via NF-�B-
inducing kinase, I�B kinase �, and RelB (8, 10). This signaling
will lead to induction of homeostatic chemokines such as
CXCL13, CCL21, and CCL19, which in turn will mediate the
clustering of LTi cells (8, 9). In this way, a positive-feedback
loop is instigated, which ensures the correct generation of
lymph nodes. Defects in any component of these two pathways
leads to the disruption of lymph node formation (reviewed in
Refs. 26 and 27), most likely due to the inability of the lymph
node anlage to attract and retain LTi cells and subsequently ad-
ditional hemopoietic cells (Fig. 2).

The earliest events

At this point, not much is known about the earliest events of
lymph node organogenesis. Lymph nodes are described to de-
velop at locations where lymph sacs form. Lymph sacs are the
earliest developments of the lymphatic vasculature that appear
around embryonic day (E)10.5 by budding of endothelial cells
that originated from the large vasculature in mice (28–31). For
endothelial cell budding, as well as for the differentiation of
these cells toward lymphatic endothelial cells, expression of the

FIGURE 2. Requirements for the generation of functional lymphoid tissue
inducers and organizers. For the generation of LTi cells, which are derived from
IL-7R-expressing fetal liver precursors, expression of ROR� and Id2 by LTi
cells is mandatory. Also, in the absence of TRANCE-R signaling, the number of
LTi cells in the lymph node anlagen is severely reduced. Within the lymph node
anlage, LTi cells mediate triggering of the LT�R on stromal cells through ex-
pression of LT�1�2, which is induced by ligation of either the TRANCE-R
and/or IL-7R. Functional LTi cells need to express CXCR5 as well as CCR7, to
respond to CXCL13, CCL19, and CCL21, chemokines involved in lymph
node formation. To generate functional lymphoid tissue organizers, LT�R sig-
naling leads to expression of MAdCAM-1, ICAM-1, and VCAM-1 on these
cells, as well as the production of the chemokines CXCL13, CCL19, and
CCL21. Other molecules expressed by LTi and stromal organizers are listed.

22 BRIEF REVIEWS: CELLULAR INTERACTIONS IN LYMPH NODE DEVELOPMENT

 at Pennsylvania State U
niv on A

pril 29, 2014
http://w

w
w

.jim
m

unol.org/
D

ow
nloaded from

 

http://www.jimmunol.org/


homeobox gene Prox-1 is required (28, 32). From the lymph
sacs, the lymphatic vessels grow out, and by E15.5, the lym-
phatic vasculature is complete (28). At the location of the
lymph sacs, connective tissue protrudes into these lymph sacs,
forming the very first anlagen of the lymph nodes. At this mo-
ment, differentiation of mesenchymal cells into specialized cells
that can initiate the formation of lymph nodes is expected, and
one can assume that components involved in the specification
of mesenchymal cells during the organogenesis or morphogen-
esis of other organs are involved here as well. As such, the plate-
let-derived growth factor (PDGF), fibroblast growth factor, as
well as TGF� (super)family of growth factors, which are crucial
for the differentiation of mesenchymal cells important for or-
ganogenesis during embryonic development (33–37), are likely
to be involved in the earliest phases of lymphoid organ forma-
tion. Regarding the PDGF family of growth factors, it is note-
worthy that stromal organizer cells present early in PP anlagen
have been described to express both PDGFR� as well as
PDGFR� (38). However, no molecules have been identified
that direct the early specification of mesenchymal cells into spe-
cific lymph node organizer cells. Nevertheless, by drawing par-
allels to the formation of other organs, one can envision that
signaling of these growth factors through their specific receptors
may be involved in determining the locations of future lymph
node development by inducing essential molecules on mesen-
chymal cells.

The mesenchymal specification of lymph node organizer
cells is expected to occur independent from LT�R signaling,
because LT�R-expressing stromal cells are present in normal
numbers in rudimentary mesenteric lymph nodes from
LT��/� mice at day of birth, although they lack expression
of VCAM-1 (39). Therefore, the stromal cell differentiation
toward lymph node organizer cells would at least consist of
two separate lineage determination steps (Fig. 3). First, the
mesenchymal cells differentiate toward stromal cells that
produce TRANCE (2), and perhaps at this point are also
induced to express LT�R and TNFR. Second, triggering of
LT�R leads to the up-regulation of adhesion molecules,

such as VCAM-1, and the production of chemokines. Upon
production of these molecules, stromal organizer cells medi-
ate attraction and retention of hemopoietic cells, resulting in
accumulation and clustering of cells. Other factors might be
expressed or produced by these stromal cells, such as factors
that mediate cell cycle arrest of LTi cells, described to lack
expression of Ki67 during embryogenesis (5).

Differences between lymph nodes

Development of the various lymph nodes seems to depend on
different requirements. In the absence of TRANCE, cervical
lymph nodes can occasionally develop while no other lymph
nodes are present (16). Also, when LT� is missing, cervical and
mesenteric lymph nodes can form (40, 41). Finally, in the ab-
sence of either CXCL13 or IL-7R�, certain peripheral lymph
nodes are present (22–25, 42), whereas these fail to form when
mice are deficient for both CXCL13 and IL-7R� (25, 43). This
indicates that each set of lymph nodes develops in accordance
with its own subtle interplay of various molecules, with a vary-
ing dependence on each individual component.

It can be envisioned that these variations can be traced back to
differences in the stromal compartment of each lymph node set, as
we recently showed for peripheral vs mesenteric neonatal lymph
nodes (2). In line with this, stromal cells within cervical
lymph nodes could differ slightly from stromal cells in other lymph
nodes, which were shown to produce TRANCE (2). The stromal
cells within cervical lymph nodes might therefore produce factors
that mimic TRANCE, facilitating the generation of the cervical
lymph nodes in the absence of this TNF family member.

The formation of mesenteric and cervical lymph nodes in
LT�-deficient mice could also be explained by differential rep-
resentation of stromal subsets (40, 41). Because these subsets
express different levels of LT�R (2), variations in other TNFRs,
like TNFR1, are not unlikely. Signaling through these receptors
can potentially lead to the induction of chemokines and adhe-
sion molecules required for the accumulation of hemopoietic
cells. The ligands that can form in the absence of LT� such as
LT�, TNF-�, or LIGHT homotrimers, or perhaps heterotri-
mers formed with these molecules, might induce stromal cells
in mesenteric and cervical lymph nodes to participate in lymph
node formation. This threshold will not be surpassed in other
lymph node anlagen. Because only mesenteric lymph nodes are
occasionally present in LT��/� mice, the ligands that can form
in the absence of LT� are very inefficient in inducing the re-
quired components for lymph node formation. Also, blockade
of both LT�R and TNFR signaling in utero resulted in a lack of
all lymph nodes, whereas mesenteric nodes were still formed
when only LT�R was blocked (3, 4). All these data indicate that
these receptors are differentially represented on stromal cells of
the various lymph nodes.

In the absence of CXCL13, some peripheral lymph nodes fail
to develop (42). Again, the stromal subsets, differentially rep-
resented in each pair of lymph nodes, might produce other che-
mokines that can compensate for the lack of CXCL13. De-
pending on the relative contribution of the stromal subsets, this
compensation may not always occur. Indeed, in the additional
absence of the chemokines CCL19 and CCL21, CXCL13-de-
ficient mice fail to form any peripheral lymph nodes, whereas
mesenteric lymph nodes develop (25). Similarly, in the absence
of both CXCR5 as well as CCR7, receptors for the chemokines

FIGURE 3. Hypothetical model for differentiation of organizer cells. Early
in the specifications of mesenchymal cells, morphogens could play an impor-
tant role in organogenesis by initiating the earliest differentiation toward orga-
nizer cells. It is unknown which molecules are involved here and how many
separate developmental steps can be distinguished. In the final differentiation
step, LT�R triggering by LT�1�2 leads to up-regulation of adhesion molecules
and chemokines. Additional involvement of LIGHT, TNF-�, and LT�3 can be
expected.
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CXCL13 and for the chemokines CCL19 and CCL21, respec-
tively, a cooperative function of CXCR5 and CCR7 during
lymph node formation was shown (43).

That the stromal cellular component exhibits subtle differ-
ences among the different lymph nodes could also result in a
functional difference in adult life. For instance, this is indicated
by the differential expression of peripheral lymph node ad-
dressin and MAdCAM-1 on high endothelial venules in periph-
eral vs mucosal lymph nodes (44, 45). This differential expres-
sion might be directed by the stromal cells within the lymph
nodes (46). Furthermore, it has been shown that cervical lymph
nodes that drain the nose mucosa have a specialized microenvi-
ronment that mediates immune tolerance when harmless Ags
encounter the nose mucosa (47). Perhaps the differential re-
quirements for development result in functional differences
within the microenvironment of lymph nodes at distinct ana-
tomical locations in adult life.

Stromal compartments in inflammatory lesions

The organizer cells identified in lymphoid organ formation
have many of the characteristics of myofibroblasts that are as-
sociated with inflammation. Myofibroblasts are characterized
by expression of �-smooth muscle cell actin, vimentin, and
desmin, among other markers (48). They produce both cyto-
kines and chemokines, while they also secrete extracellular ma-
trix components. When activated, myofibroblasts express the
adhesion molecules VCAM-1 and ICAM-1 (49–51). As such,
the organizer cells identified in developing lymph nodes could
be viewed as myofibroblasts: they produce chemokines and ex-
press ICAM-1 and VCAM-1 upon LT�R triggering. Further-
more, in adult lymph nodes, the expression of vimentin has
been observed in reticular fibroblasts that colocalize with many
extracellular matrix components (52, 53). Therefore, it is highly
likely that the capacity of organizer cells to attract hemopoietic
cells and orchestrate their spatial positioning during lymphoid
organogenesis is a role that myofibroblasts fulfill in inflamma-
tory lesions. In view of that, inflammatory lesions could be
abridged to inducer and organizer cells, similar to the basic
mechanisms of lymphoid organ development (54). In this sce-
nario, the inducer cells would be hyperactivated lymphocytes
that induce and subsequently continuously trigger myofibro-
blasts. In fact, rheumatoid fibroblast-like synoviocytes have
been shown to overexpress the chemokine CXCL12, mediating
the migration and accumulation of CXCR4-expressing T cells
(49, 50, 55, 56). Moreover, the production of homeostatic che-
mokines has been reported in several autoimmune disorders
(57–64). Also during inflammatory bowel disease, a central role
for intestinal fibroblasts in attracting and retaining immune
cells during inflammation was postulated (49, 50, 56).

Concluding remarks

It can be envisioned that various subsets of organizing stromal
cells are also present within inflammatory lesions, similar to de-
veloping lymph nodes, and that this diversity accounts for the
heterogeneity of tertiary lymphoid structure formation during
autoimmune diseases. Comprehension of the basic concepts of
lymph node genesis will shed new light on the organ-specific
requirement for formation of organized inflammatory infil-
trates, and might contribute to the understanding of these
structures. Questions remain to be answered as to why tertiary

lymphoid structures only form in a limited set of organs, and
most important of all, whether they are an active part of pathol-
ogy or whether formation of these structures is beneficial for
disease outcome. Finally, revealing these basic components of
disease might clarify why only a certain fraction of patients re-
spond to therapies aimed at blocking signaling via TNFRs.
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