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ABSTRACT 

The reliability of infrastructure software, such as operating sys- 
tems and web servers, is often hampered by the mismanagement 
of resources, such as memory and network connections. The Vault 
programming language allows a programmer to describe resource 
management protocols that the compiler can statically enforce. 
Such a protocol can specify that operations must be performed in a 
certain order and that certain operations must be performed before 
accessing a given data object. Furthermore, Vault enforces stati- 
cally that resources cannot be leaked. We validate the utility of our 
approach by enforcing protocols present in the interface between 
the Windows 2000 kernel and its device drivers. 

1. INTRODUCTION 

The past several years have witnessed the wide-spread acceptance 
of safe programming languages, due mostly to the popularity of 
Java. A safe language uses a combination of exhaustive static anal- 
ysis and run-time checks and management to ensure that a pro- 
gram is free from entire classes of errors, like type errors and 
memory management errors. Ironically, one class of software in 
which the safe language movement has not made many inroads is 
low-level "infrastructure" software that needs to be highly reliable, 
like operating systems, database management systems, and Inter- 
net servers. The exhaustive analysis that a safe language provides 
seems a promising way to increase the reliability of this class of 
software, for which inexhaustive methods, like testing, have previ- 
ously proved useful but incapable by themselves of achieving the 
goal of high reliability. 

Such infrastructure software manipulates many resources, like 
memory blocks, files, network connections, database transactions 
and graphics contexts. The correctness of such software depends 
both on correctly managing references to these resources (no dan- 
gling references, no leaks, no race conditions) and on obeying re- 
source specific usage rules (for example, the order in which opera- 
tions on the resource must be applied). Together, we refer to these 
as resource management protocols. Today, such protocols are typi- 
cally recorded in documentation and enforced through testing. The 
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Vault programming language provides a new feature called type 
guards, with which a programmer can specify domain-specific re- 
source management protocols. Such a protocol can specify that 
operations must be performed in a certain order, that certain op- 
erations must be performed before accessing a given data object, 
and that an operation must be in a thread's computational future ~ . 
Vault's type checker exhaustively seeks and reports any violation 
of such a protocol. In short, we move the description of resource 
management protocols from a software project's documentation to 
its source code, where it can be automatically enforced at compile 
time. To validate the utility of type guards, we have used them 
to describe and enforce resource management protocols in the ex- 
isting interface between the Windows 2000 kernel and its device 
drivers. 

This paper describes the resource management features of Vault, 
keys and type guards, and their application to Windows 2000 de- 
vice drivers. In Section 2, we discuss the general framework of type 
guards and its instantiation in Vault's current design. We informally 
introduce keys through two widely known examples: memory re- 
gions and Unix sockets. Section 3 explains how Vault's type system 
enforces resource management protocols. Section 4 describes some 
of the protocols in the interface between the Window 2000 kernel 
and its drivers and how we enforce them. Section 5 discusses re- 
lated work, and Section 6 concludes. 

2. DESCRIBING RESOURCE PROTOCOLS 

To check resource management protocols, Vault uses an extended 
notion of type checking. A typical type checker uses types to dis- 
criminate the values that the program manipulates to ensure that 
each operation is applied only to appropriate values. Vault's type 
system extends a type with a predicate called a type guard, which 
is an auxiliary condition on the use of a value of a given type. The 
Vault type checker tracks an abstraction of the computation's global 
state at each program point. For a program to access 2 a value at a 
gwen program point, the value's type guard must be true in the 
computation's global state at that point. In this light, we say that 
a type describes which operations are valid and a type guard de- 
scribes when operations are valid. 

2.1 Using Keys to Track Resources 
In the current design of Vault, the abstract global state of the com- 
putation and the predicate language of  type guards are intentionally 

1Statically checking whether a thread actually reaches a given op- 
eration is clearly undecidable. 
2Accessing a value means applying a primitive operation such as 
reading or writing through a pointer, or using an arithmetic opera- 
tion on a numerical value. 
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kept simple to enable an efficient decision procedure. The global 
state, called the held-key set, consists of a set of keys, which are 
simply compile-time tokens representing run-time resources. Each 
distinct key represents a unique run-time resource in each context, 
ie., two distinct keys represent two distinct resources. Keys can 
be neither duplicated nor lost, thereby providing the fundamen- 
tal mechanism for tracking resource management at compile-time. 
Keys are purely compile-time entities that have no impact on run- 
time representations or execution time. 

The atomic predicate of type guards is whether a given key is 
in the held-key set. A type guard is either true or a conjunction 
of one or more of these atomic predicates. Thus, a data object is 
guarded by zero or more keys; at a given program point, all the 
object's keys must be in the held-key set in order for the program 
to access the data object at that point. The type checker evaluates 
these predicates at compile-time. Type guards have no impact on 
run-time representation or execution time. 

Vault's statement and expression syntax is based on the C pro- 
gramming language [11], hence the declaration 

FILE input ; 

declares the variable input to be of type FILE. The declaration 

K :FILE input ; 

declares the variable input to be of the guarded type K:FILE, 
which means that the variable has type FILE and that the key K 
must be in the held-key set at any point in the program at which the 
variable i npu t  is accessed. 

For further expressiveness, the held-key set actually tracks a lo- 
cal state called a key state for each key. Key states are simply 
names. For instance, the programmer may choose to describe files 
as having two local states, "open" and "closed". A variation on the 
previous declaration 

K~open: FILE input ; 

declares that a key K in local state open guards the variable input .  
In order to access this variable, the key K must be in the held-key 
set and K's local state must be open. In examples where local key 
states are of no importance we simply omit them. Depending on 
syntactic context, omitted key states default to a fixed unique state 
or represent any possible state. 

In summary, keys model two properties of resources: (1) whether 
a resource is accessible (whether the key is in the held-key set), and 
(2) what conceptual state a resource is in (the key's local state). 

There are four features in Vault that are used to manipulate keys: 
tracked types associate keys with resources; functions filter keys 
in the held-key set; types with key parameters specialize types to 
particular keys; and keyed variants turn keys into values and static 
checks into dynamic checks. • 

Tracked t ypes ,  Since Vault keeps track of the availability and 
state of individual run-time objects, the Vault type checker needs 
a way to distinguish the identities of run-time objects (that is, not 
to confuse one for another). The challenge is that the program text 
may contain many names for the same ran-time object (aliases). 
In Vault, a key provides a symbolic name for an object's iden- 
tity, and a tracked type provides a one-to-one correspondence be- 
tween a compile-time key and a run-time object. The declaration 
t r acked(R)  T x states, as usual, that the variable x names some 
run-time object of type T (call it 0). Further, the declaration pro- 
vides alias information that the type-checker checks: within the 
scope of the key R, all program names of type t r acked(R)  T refer 
to the same object 0, and no other program names refer to the ob- 
ject 0. Vault's type rules guarantee that calls to other functions that 

manipulate the object 0 reflect state changes through key R as well. 
In short, the benefit of giving an object a tracked type is that the 
Vault type checker can trace the availability and state of that object 
throughout the program's text; the cost is that there axe limitations 
on how program names may alias that object. 

Tracked allocation acts as the primitive key granting mechanism: 

tracked(K) point p = new tracked point {x=3; y=4;}; 
K:int x = 4; 

At run time, the new operation allocates a fresh point object on the 
heap. At compile time, the compiler generates a fresh key (named 
K here 3) associated with the fresh data object, and adds this key to 
the held-key set. The key K represents the availability of a mem- 
ory resource, namely a heap-allocated p o i n t  data structure. The 
example above also uses key K to guard the integer x; that is, the 
programmer has chosen to tie the availability of the variable x to 
the availability of p. At those program points at which key K is in 
the held-key set, the program may access both p and x; at those 
points at which the key is not in the set, the program may access 
neither. 

Sometimes, the local name of a key is not important. In those 
cases, the programmer may let the compiler manage the key names. 

tracked point p = new tracked point {x=3; y=4;}; 

This code is similar to the one above except that we can't refer to 
the key name in this scope directly. However, since we can pass 
the value of p to other functions, the key may be named in other 
scopes. 

The primitive key revoking mechanism in Vault is the f r e e  op- 
eration. 

tracked(K) point p = new tracked point {x=3;y=4;}; 
free (p) ; 

In this example, the free operation takes an argument of type 
t racked(K)  T 4 and requires that key K be in the held-key set. At 
compile-time, after the operation, key K is no longer in the held- 
key set. At run-time, the operation deletes the given heap-allocated 
data structure. 

Func t i ons .  In Vault, a function's type has a pre- andpostcon- 
dition, which respectively state which keys must be in the held-key 
set to call the function and which keys are in the held-key set when 
the function returns. For brevity's sake, the pre- and postconditions 
are written together as an effect clause, which states how the func- 
tion changes the key set. An effect clause is written within square 
brackets. For a given key K, the effect clause [K~a->b] states that 
the key must be held before (in state a) and is held when the func- 
tion returns (in state b). The effect clause [-Kea] states that the 
key must be held before in state a but won't be held when the func- 
tion returns. The effect clause [+K@b] states that the key is not held 
before but is held after the function call. Finally, the effect clause 
[new K~b] states that on return, a fresh key (unknown to the con- 
text) is held in state b. As a shorthand, we write [K%a] for the 
common case [K~a->a], and we omit key states altogether when 
they are of no importance. For example, the following function 
signature (akin to a function prototype in C) 

void felose(tracked(F) FILE f) t-F]; 

describes a function that takes a tracked file parameter whose key 

3Key names such as K are bound when first referenced and have the 
same scope as a program variable bound at that point. 
4There are some restrictions on the type T, such as T must not be 
abstract in the context of the operation. Other restrictions have to 
do with keys embedded within T. 
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is consumed by calling the function. 
Types with key parameters. Vault supports parameterized 

types. The familiar case is to parameterize types by other types. For 
instance, a two-dimensional array that can be used at many types 
of data is declared as followsS: 

type array2d<type T> = T[] []; 

Given this type definition, a r r ay2d<f loa t>  is the type of a two- 
dimension array of floating-point numbers. Less familiarly, a Vault 
type may be parameterized by a key set. (Currently, we restrict key 
set parameters to singleton sets.) For instance, the type declaration 

type guarded_int<key K> = K:int; 

declares a type abbreviation for a single integer that is guarded with 
the key on which the type is instantiated. For example, the signature 

void foo(tracked(F) FILE f, guarded_int<F> gi) [F]; 

describes a function that takes two parameters: a tracked file f,  
whose key is called F; and a record g i  whose field x is guarded 
by the same key F. Since guards and keys are purely compile-time 
entities, the function foe  will be compiled into a function taking an 
ordinary FILE parameter and an ordinary int parameter. 

Keyed variants. Vault supports algebraic data types, called 
variants, as found in most functional languages. For example, an 
optional integer is described with the following type declaration 

variant opt_Jar [ 'Nolnt I 'Somelnt(int) ]; 

This variant has two constructors, the constant constructor 'Nolnt 
(called "constant" because it takes no parameters) and the construc- 
tor ' SomeInt which takes an integer parameter. The values of type 
opt_int are 'Nolnt and <Int(n)  for any value n of type in t .  
Vault's sw i t ch  statement supports pattern matching over variants. 

Variants are important for key management in Vault because con- 
structors may have key parameters (written in braces). For exam- 
ple, given the variant declaration 

variant opt_key<key K> [ 'NoKey [ 'SomeKey {E} ]; 

constructing a value of type opt_key<K> with the  constructor 
' SomeKey both requires that the key K be in the held-key set and re- 
moves the key from the set. Pattern matching against a value of type 
opt.key<K> restores the key to the held-key set in the ' SomeKey 
case. For example, given the following code template 

void foo(tracked(F) FILE f) I-F] { 
tracked opt_key<F> flag; // F he~d on ent~jjj 
if (close_early) { 

fclose(f); // F n o t  he ld  
flag = 'NoKey; // don't need F here 

} else { 
,flag = 'SomeKey{F}; // need F, consume F 

} 
/ /  whate~Jev branch was tahen ,  F i s  9one here 
/ /  code .4 
switch (flag) { 

case <NoKey: / /  we don ' t  get F in th is  c a s e  

// code B 
case 'SomeKey: // we 9et F 4n thgs ease 

I /  code  C 
fclose(f) ; / /  consume F 

} 
} 

5The default bit-width of  a type parameter is 32bits. Other widths 
must be explicitly declared in Vault. 

interface REGION { 
type region; 
tracked(R) region create() [new R]; 
void delete(tracked(R) region) [-R]; 

} 

Figure 1: A Vault interface describing a region abstraction. 

the key F would appear in the held-key set as follows. The key is 
held on entry to foe. The code then determines using c l o s e _ e a r l y  
whether or not to close the file early. After the f c l o s e  in the tree 
branch, key F is no longer held, and we record this fact in the f l a g  
variable. In the false branch, we record the fact that we still hold 
the key. Note that creating the value ' SomeKey{F} removes key F 
from the held-key set by conceptually attaching it to the flag value 
(there is no run-time representation for keys). Thus in code section 
A, key F is not in the held-key set. But we can recover it by testing 
the value of f l ag .  In the CNoKey case, code section B still does 
not hold key F. In the 'SomeKey case however, the type checker 
knows that during code section C, key F is held again. Assuming 
code section C does not consume key F, the call to f c l o s e  after 
section C is valid, and all code paths of f o e  end in the state where 
key F is not held, which corresponds to foe ' s  declared effect. 

A detail we glossed over in the code above is that the opt. key 
type of the f l a g  variable is itself tracked. This is necessary, since 
the variant type may hold a key. If we allowed the f l a g  variable to 
be copied without tracking aliases, then key F might be extracted 
multiple times from f l ag ,  or worse, it might never be extracted and 
thus lost. The code above does not show the key associated with the 
f l a g  variable, but forgetting to test the flag would manifest itself 
by an extra key at the end of the function. 

Using keyed variants, the programmer can turn static knowledge 
(whether a particular key is held) into a dynamic value (the vari- 
ant). Pattern matching on keyed variants enables the programmer 
to help the compiler recover static knowledge (whether a particular 
key is held) from dynamic values. The variant type acts as an in- 
variant that enables the type checker to safely move between static 

• and dynamic knowledge regarding the held-key set. Variant types 
are also useful for expressing correlations between different state 
changes and return values of functions. This aspect of variants is 
illustrated in Section 2.3 to encode failure conditions. 

Together, these four features allow the programmer to describe a 
useful variety of resource management protocols. To provide fur- 
ther introduction to these features, the remainder of this section 
applies them to two simple examples. Section 4 later shows how 
we used these features to check some of the resource protocols in 
the interface between a Windows 2000 device driver and the kernel. 

2.2 Checking Memory Regions With Keys 
A typical C program uses the functions mal loc  and f r e e  to allo- 
cate and deallocate individual heap objects. An alternative is to use 
regions [18, 8], also called arenas or heaps. A region is a named 
subset of the heap. A program individually allocates objects from 
a region, but it deallocates the region as a whole rather than deallo- 
eating individual objects. Based on the Work of Crary, Walker, and 
Morrisett [3], we can create a safe region abstraction in Vault, as 
shown in Figure 1. 

This interface declares an abstract type 6, called region.  The 

6An abstract type is one whose representation is private to the mod- 
ule that implements the interface. 
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extern module Region : REGION; 

void okay() { 
tracked(R) region rgn = Region.create(); 
R:point pt = new(rgn) point {x=l; y=2;}; 
pt.x++; 
Region.delete(rgn); 

} 

void dangling() { 
tracked(R) region rgn = Region.create(); 
R:point pt = new(rgn) point {x=l; y=2;}; 
Region.delete(rgn); 
p t .x++ ;  / /  error: ~ey R not in held-hey set  

} 

void leaky() { 
tracked(R) region rgn = Region.create(); 
R:point pt = new(rgn) point {x=l; y=2;}; 
p t . x++ ;  
/ /  ew,ro~: e~t~a ~ey a in held-key set  

} 

Figure 2: A Vault program that uses the region abstraction. 
The function okay correctly uses it; the function dangle ac- 
cesses a dangling reference; and the function leaky contains a 
region memory leak. 

function c r e a t e  creates a new region, which is individually 
tracked. The function d e l e t e  deletes the region and removes its 
key from the key set. To allocate an object in a region, Vault pro- 
vides a primitive new operation taking the following form: 

new(rgn) T [init] 

Given a tracked region rgn with key R, the new construct returns 
an object of type R:T, that is, an object guarded by key R. 7 Thus, 
this object is accessible as long as the region is accessible. After a 
call to delete, all objects allocated within a region are inaccessible. 

Figure 2 shows three functions that use this region abstraction, 
two of which have errors. The function okay correctly uses the 
region abstraction. Calling Region.  c r e a t e  creates a new region 
whose key we label R. The point object p t  is allocated from this 
region and is guarded with the key R. The increment to p t ' s  field x 
requires p t ' s  guarding key R to be in the held-key set, which it is. 
Finally, the call to Region.  d e l e t e  deletes the region and removes 
its key from the held-key set, thereby invalidating access to the 
variables rgn and pt.  The function dangling reverses the region 
delete operation and the increment of p t ' s  field x. Because the 
effect of calling Region.  d e l e t e  removes the key R from the held- 
key set, the increment expression is incorrect since it requires the 
key R. The function l e a k y  contains a more subtle error. Because 
this function has no explicit effect clause, it promises that the pre 
and post key set will be the same (no keys added, no keys removed). 
Because there is no call to R e g i o n . d e l e t e ,  the function has one 
extra key (R) in the held-key set at the end of the function than it 
did at the beginning. Hence the function's implementation violates 
its (implicit) effect clause, which is an error. This region interface 
thus catches both dangling references and memory leaks. 

7We ignore the possibility of allocation failure here. In practice, 
new returns a variant indicating success or failure. 

interface SOCKET { 
type sock; 

variant domain [ 'UNIX l 'INET ]; 
variant comm_style [ 'STREAM I 'DGRAM ]; 
tracked(@raw) sock socket(domain, comm style, int); 

struct sockaddr { ... }; 
void bind(tracked(S) sock, sockaddr) 

[S@raw->named]; 
void listen(tracked(S) sock, int) 

[S@named->listening]; 
tracked(N) sock accept(tracked(S) sock, sockaddr) 

[S@listening, new N©ready]; 
void receive(tracked(S) sock, byte[]) [S@ready]; 

void close(tracked(S) sock) I-S]; 
} 

Figure 3: A Vault interface that describes a socket abstraction. 

2.3 Checking Sockets  With Keys 

Connection-oriented sockets are a popular software abstraction for 
inter-process and inter-machine communication in client/server ar- 
chitectures. Developing a server for such an architecture can be 
error-prone because setting up the socket to accept connections and 
communicate through them involves several steps---omitting one 
or more of these steps is a common beginner's mistake. To prevent 
such mistakes, we can create a Vault interface to a socket library 
like that in Figure 3. This interface uses the ability for keys to have 
states to enforce the necessary steps to create a connection-oriented 
socket that is ready to receive messages. The function socke t  cre- 
ates a new socket whose key is in the "raw" state. We can see 
that in order to receive a message on a socket, its key must be in 
the "ready" state. The effect clauses for the functions b ind  and 
l i s t e n  show how these functions change the state of the key from 
"raw', to "named" and from "named" to "listening;' respectively. 
Finally, the function accep t  takes a tracked socket whose key S is 
in the "listening" state and returns a new tracked socket whose key 
N is in the "ready" state, the state needed to receive a message. 

This interface to sockets is somewhat naive, in that it ignores the 
possibility of failure. To describe, for example, the fact that the 
b ind  operation can fail, we can change its function signature to the 
following: 

variant status<key K> [ 'Ok {K~named} I 
'Error(error_code){K©raw} ] ; 

tracked status<S> bind(tracked(S) sock, sockaddr) 
[-S~raw] ; 

The bind function now consumes the tracked socket's key in the 
"raw" state and returns a variant. This variant has two constructors: 
the ' E r r o r  constructor describes the failure case and its parameter 
provides an error code that explains the error; the ' Ok constructor 
describes the success case. Both constructors have attached the key 
K, but in different states. In the ' Ok case, the socket has correctly 
changed to the "named" state, whereas in the ' E r r o r  case, the 
socket remains in the "raw" state. 

The use of this variant type forces the programmer to check the 
status result of calling bind.  Consider a program that forgets to 
check the status result: 

tracked(©raw) sock mysocket = socket('UNIX, 'INET,O) ; 
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bind(mysockez ,mysockaddr) ; 
listen(mysocket,O) ; // error,! 

Here, the call to bind removes the socket's key from the held-key 
set, hence the precondition for l i s t e n  is violated. In order to call 
l i s t e n ,  the programmer must first check the status result from 
bind: 

tracked(@raw) sock mysocket = socket('UNIX,'INET,O) ; 
switch (bind(mysocket,mysockaddr)) { 

case 'Ok: 
listen(mysocket,O) ; // Ok%/ now. 

case 'Error(code) : 
// Report an error. 

} 

By checking the return status, the 'Ok case puts the socket's key 
back in the held-key set in state "named", which makes the call to 
l i s t e n  legal. In the ' E r r o r  case, we have the key in the "raw" 
state and can for example try another bind operation• 

2.4 Limitations of the Approach 
Extending a type system to track compile-time names for resources 
has two limitations to consider: resources kept in collections be- 
come "anonymous;" and the types of values must agree at program 
join points. 

Tracking arbitrary numbers of resources. Given that 
Vault uses compile-time names to track resources, how can Vault 
statically track an unbounded number of resources? In previous ex- 
amples, the programs dealt with fixed numbers of resources whose 
keys were given names statically bound in the program's text• A 
programmer obviously cannot write down static names for an un- 
known number of resources. Using anonymous tracked types gets 
around this problem. For instance, we can declare the type of a list 
that contains an unbounded number of tracked regions: 

variant reglist ['Nill COons(tracked region, 
tracked reglist)] ; 

The type reglist allows the program to store an unbounded num- 
ber of regions. However, placing a region on such a list makes it 
"anonymous"-that is, we lose track of exactly which key guards 
which region. 

For example, the program in Figure 4 creates a region and allo- 
cates a point data structure out of the region. To access this point, 
its guarding key R must be in the held-key set. Once we put the 
region in the list, we lose the key K. (Since keys cannot be dupli- 
cated, we cannot both put the region with its key on the list and 
retain the key.) We then take the same region back out of the list 
by pattern matching. However, by placing the region on the list, its 
key becomes "anonymous" - the type checker knows that some key 
is associated with the tracked region but does not know that this key 
is the same as the key K. Hence, incrementing pt 's  x field is illegal 
since this requires the key K and instead the held-key set contains 
some fresh key. (To fix the error in this program, we could use a 
list of pairs of regions and points, that is a list of type 

type regptpair = (tracked(R) region, g:point); 
variant regptlist ['Nill 'Cons(tracked regptpair, 

tracked regptlist)] ; 

which maintains the correlation between the region's key and the 
point's key guard•) In short, the Vault type checker can track both a 
fixed number of resources whose keys have statically bound names 
and an arbitrary number of resources whose keys are anonymous. 

void main() { 
tracked(R) region rgn = Region.create(); 
R:point pt = new(rgn) point {x=4;y=2;}; 
tracked reglist list = 'Cons(rgn,'Nil); 
I I  ~e ~ost ~ey R. 

switch(list) { 
case 'Cons ( rgn2 ,_ ) :  / /  We got some ~e~ bae~, 

pt .x++;  // Buy! We need ~e~ R. 

} 

Figure 4: An illegal Vault program that illustrates the 
"anonymizing" aspect of tracked collections. 

void main() { 
tracked(R) region rgn = Region.create(); 
It:point pt = new(rgn) point {x=4;y=2;}; 
if (pt.x > O) { 

pt.y = O; 
Region. delete (rgn) ; 

} else 
p~.y = p t . x ;  

/ /  Bug! jo'~n point  ~ncons~stent 
if (p'e.x < =  0) 

Region. delete (rgn) ; 

Figure 5: An illegal Vault program that uses data correlation 
to encode a region's availability. 

The type theory behind this "anonymity" is discussed in the next 
section. 

Type agreement at loin points. Consider the program in 
Figure 5, which correlates the value of  the variable p t .  z and the 
region rgn's deletion status. Although this program is, in fact, 
memory-safe, the Vault type checker will reject it. At the com- 
mented join point, the held-key set either does or does not contain 
the key R, depending on which branch is taken. As a result, the 
type checker cannot know whether the precondition for the subse- 
quent call to Region.  d e l e t e  is satisfied. The limitation that types 
must agree at program join points is a common limitation of the 
type checking approach to program verification• In order to make 
the example acceptable to Vault. the corelation between the sign of 
p t .  x and whether or not we hold key 1~ needs to be made explieit 
using a keyed variant, similarly to the example in Section 2.1. In- 
stead of correlating the two tests with the condition on p t .  x, the 
second branch would switch on a variant initialized in the branches 
of the first test. 

3. VAULT'S TYPE SYSTEM 

Vault's type system is based on the Capability Calculus [3] and alias 
types [15, 20]. The language's complete typing rules are lengthy. 
Here we only sketch how tracked types and type guards are repre- 
sented in the underlying type language and the overall structure of 
the type checker• Because Vault's typing rules are very similar to 
the Capability Calculus, we rely on their soundness proof to ensure 
the soundness of Vault's type checking. 

The type checker's job is to translate the Vault surface syntax 
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kinds 

variables 
contexts 

key set 

key 

state 

existentials 

types 

12 

N 

C 

T 

st 

: := T y p e  [ K e y  
] K e y S e t  I S t a t e  

::= " I N ,  v : ~ I N  

: := e key set variable 
[ 0 empty key set 
[ {r@st ~ or} key mapping 
I C1 @ C2 key set union 

::= p key token 

::= 5 state variable 
I 6 < shame bounded variable 
[ shame state token 
] T default state 

::= 3[NIC].a existential type 

V[N].v universal type 
C t> r guarded type 
p named type 
s(r) singleton type 
(7-1 . . . .  , ~r~) tuple type 
a type variable 
(C, a)  ~ (C' ,  o ' )  function type 
[ V l ( a l ) l . . .  IV~(a~) ] variant type 

Figure 6: Underlying type language 

types to the internal type language in Figure 6 and to assign internal 
types to the program's terms (statements and expressions). We dis- 
cuss the roles that these various types play below. Part of the type 
checking is standard: for each lexical scope, the type checker keeps 
an environment that maps program names to types, keys, etc., and 
checks inductively that each program term is applied to subterms 
of the correct type. 

In addition, the type checker ensures that no type guards are vi- 
olated. To do this, the type checker forms a control flow graph for 
each function and computes the held-key set before and after each 
node in the graph. The held-key set before the function's entry 
node is the precondition key set from the function's effect clause. 
The type checker ensures that the held-key set at each of the func- 
tion's exit nodes is the postcondition key set from the function's 
effect clause. 

On control-flow join points, we abstract over the actual names of 
local keys in incoming key sets so as to analyze the remainder of 
the control-flow graph only for distinct alias relationships of local 
variables. Imperative loops may require declared loop invafiants, 
unless the invariant can be inferred in a fixed number of iterations. 
Loop invariants take the form of a function type with multiple out- 
comes, one for each possible loop exit. Inputs to the function are 
the variables that are used within the loop. For all of the loops in 
our device driver case study, the type checker automatically infers 
the loop invariants, since they are trivial. 

3.1 Tracking aliases 
The key to ensuring that a program does not reference a resource 
after that resource has been released is to keep track of the various 

names by which the program refers to the resource. Without track- 
ing aliases, a program could delete a resource through one name 
and then reference it through another. In Vault, a key s serves as a 
unique name for a resource; the type checker uses the same key to 
refer to the resource, no matter how many aliases for this resource 
the program's text contains. 

A type tracked T in the surface syntax, which gives rise to a 
key, is translated to a singleton type s(r) in the internal type lan- 
guage. Such a singleton type represents the run-time value (handle) 
used to manipulate the unique resource whose key is r. Every alias 
for the resource in the program text is given the same singleton type 
s(r). Hence, given the pair of assignments 

tracked region rgnl = Region.create(); 
tracked region rgn2 = rgnl; 

Both the variables rgnl and rgn2 are assigned the same singleton 
type s(r) for some fresh r. Calling Region.  d e l e t e  on either r g n l  
or rgn2 deletes the key r from the held-key set, which prevents the 
region from being referenced under either name after the deletion. 

Another important aspect of tracking aliases is ensuring that keys 
are never duplicated. For instance, if the type system were to allow 
a region's key to end up twice in the held-key set, then a program 
that deletes the region twice would type check correctly, but would 
cause an error at run time. 

3.2 Functions 
Whereas Vault's surface syntax for functions combines a function's 
pre- and postcondition into a single effect clause, the internal func- 
tion type (C, a) ~ (C ' ,  a ' )  separates them into the key set C that 
must be held to call the function and the key set 6"  that is held 
after the function returns. Functions in Vault are always polymor- 
phic. First a function is polymorphic in the keys of its arguments. 
For example, the function signature 

void fclose(tracked(F) FILE) [-F] ; 

can be called on any tracked file, regardless of its particular key. 
Second, since the state of key F is omitted here, the function is 
polymorphic in the state 6 of F. Third, a function affects only those 
keys mentioned in its signature; other keys in the held-key set are 
irrelevant. To make a Vault function callable from many different 
contexts, we make its type polymorphic over the "rest" of the held- 
key set not mentioned in the function's signature. Given these three 
forms of polymorphism, the function fcloee above is assigned the 
type 
VpF.Vt.Ve.(e ~ {pF~t~ ~ FILE}, S(pF)) ~ (e, void) .  
The variable e refers to the "rest" of the held-key set that the func- 
tion does not affect, the variable pF refers to key F, and the variable 
6 refers to the state of that key. This function can be called on any 
value of type s(p) at any program point whose held-key set includes 
some key p associated with type FILE. 

3.3 Existential types 
Existential types are useful for encoding that certain values carry 
capabilities with them. The existential type 3[NIC] . r  represents 
a value of type v, holding on to capabilities C. The existentially 
bound variables N provide a way to abstract the actual names used 
for keys, states, and types in C and r .  For instance, consider a 
function whose signature is 

tracked region create() ; 

Calling this function returns a tracked region, that is, it returns both 

Sin the Capability Calculus, a key is called a resource and a key set 
is called a capability. 
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a new resource and the key needed to access that resource. This 
function is assigned the type 
Ve.(e, void)  --> (e, S i r :  K e y l { r Q T  ~ region}],  s(r)). 
The returned existential type binds together both the new region 
(the singleton type) and the key needed to access that region. 

To access a value of an existential type, the type must first be un- 
packed. Unpacking means creating fresh names for the existentially 
bound variables and acquiring the capability carried by the value. 
Clearly, since unpacking yields a capability, values of existential 
types cannot be freely copied by a program, for otherwise capabil- 
ities could be duplicated. To control the duplication of existential 
types which carry capabilities, we maintain the invariant that envi- 
ronments map program variables to unpacked types v only. Thus, 
existential types must be unpacked before they are bound in the 
environment. For example, function parameters are unpacked on 
entry to a function. 

Existential types are the basis for keeping "anonymous" tracked 
resources in collections. For instance, the type r e g l i s t  in the pre- 
vious section has the following type in the internal type language: 

[ 'Nill 'Cons(3[pl : K e y ,  p2 : K e y  I 

{pi@T ~ region} • {p~T ~ reglist}]. 
<s(p~), s(p2))) ] 

Each element in this list is of existential type. To use an element 
from this list, it must first be unpacked, which generates a fresh 
name for the existentially bound key. This is the technical sense in 
which these keys are "anonymous." 

Our use of existential types is related to the unique types of the 
programming language Concu~ent Clean. In Clean, a unique type 
is written ~-'. Its equivalent Vault type is 3[p : K e y  I {p@T 
~-}]. s(p), i.e., an anonymous tracked type. However, Clean does 
not support named tracked types and is thus unable to express alias 
relationships. 

4. CASE STUDY: WINDOWS 2000 DRIVERS 

Device drivers pose an important reliability risk to operating sys- 
tems, since drivers generally execute in the kernel's protected 
mode. Because a device driver is used in many different machine 
configurations and sits within a multithreaded kernel, reproducing 
erroneous behavior in a driver is very difficult. Hence, testing has 
not proven to be a good way to achieve high reliability in drivers. In 
this section, we describe how Vault's type checker catches at com- 
pile time many of the errors that are difficult to reproduce at mn 
time. 

What is the difficulty in writing a correct device driver? Typi- 
cally, the company that manufactures a device also provides the de- 
vice driver for it. Because the developer creating the device driver 
is very familiar with the device itself, the interface between the 
driver and the hardware, though complex, is not often the source of 
e~ors. Instead, faults often lie in the interface between the device 
driver and the kernel. This interface is quite complex, in part due 
to the variety of devices that interact with the kernel and in part due 
to the need for good performance. 

One source of complexity in the interface between the kernel and 
a driver is its asynchronous nature. A driver provides a collection 
of services to the kernel, like starting the device, reading from the 
device, writing to the device, and shutting down the device. The 
driver is implemented as a module with one function per service. 
However, the lifetime of a request to the driver is not the same as the 
lifetime of a call to the corresponding service function. To keep the 

• " ' " ' n kernel from blocking on a driver request, a driver s serwce functm 
is expected to return quickly, regardless of whether the driver has 

completed the request. 
To achieve the desired asynchronous interface in Windows 2000, 

each request is encapsulated in a data structure, called an I/O Re- 
quest Packet (IRP). The kernel passes this data structure to the 
driver when it calls one of its service functions, and the driver 
handles the request by updating this data structure over time. 
Whenever the driver completes a request, it calls the function 
IoCompleteRequest on the IRP to signal the completion to the 
kernel and to return the IRP. 

As a further complication, a driver does not work in isolation, but 
instead sits within a driver stack• For example, in between the ker- 
nel and a floppy disk drive would typically sit the following drivers, 
in order: a file system driver; a driver for a generic storage device; 
a floppy disk driver; and a bus driver. Each driver in the stack may 
choose to handle a request itself, to pass the request down to the 
next driver in the stack, or to pass a new request (or set of requests) 
down to the next driver in the stack. 

Finally, as part of the kernel, a device driver must deal with the 
contingencies of kernel-level programming. For instance, at any 
given moment, the processor can be at one of several interrupt lev- 
els. The processor's current interrupt level governs both which ker- 
nel functions can be called and what memory is available. The 
kernel's memory space is divided into those pages that the virtual 
memory system manages and those that are locked down and there- 
fore always accessible. A pointer to a block of paged memory can 
only be accessed if the particular page is known to be resident or 
if the current interrupt level is such that the virtual memory sys- 
tem can handle a page fault to make the page resident• If a driver 
dereferences a pointer to a non-resident paged block when the in- 
terrupt level prevents the the virtual memory system from running, 
the entire operating system deadlocks. 

This section shows how each of these aspects of device drivers 
can be described in Vault. To test our ideas, we wrote a Vault de- 
scription of the interface between the Windows 2000 kernel and a 
device driver. We then translated an existing driver for a floppy 
disk device from C (4900 lines) into Vault (5200 lines). 9 This Vault 
driver uses the Vault interface to interact with the kernel and is 
therefore subject to the checking we describe in this section. We 
then used the Vault compiler to compile the driver's source code 
into C. In some cases we chose to deviate from the original kernel 
interface, for example, by choosing to represent a status code with 
a variant rather than an integer in order to allow static checking. 
As such. our driver could not be directly linked against the origi- 
nal kernel. Instead, we wrote a thin wrapper in C to make up for 
these differences in data representation• The driver linked with the 
wrapper runs successfully under Windows 2000, although it is not 
of production quality due to incomplete modeling of memory allo- 
cations and deallocations. We also have not run any performance 
measurements on the resulting code. 

4.1 I/O Requests Packets 
The Windows 2000 documentation describes an "ownership" 
model for the I/O Request Packets (IRPs). Initially, the IRP "be- 
longs" to the kernel. When the kernel calls a driver's service func- 
tion, it gives ownership of the IRP to the driver. The driver can 
then take one of three actions: it can complete the request by 
calling IoCompleteRequese, which gives ownership of the IRP 
back to the kernel; it can call I o C a l l V r i v e r  to pass ownership 
of the IRP down to the next driver in the stack; or it can call 

9So far, we have not concentrated on keeping Vault as syntacti- 
cally close as possible to C. Hence these numbers do not reflect 
an inherent blow-up in using Vault's type system. Evaluating the 
programming burden of Vault's annotations is future work. 
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IoMarkIrpPending to retain ownership of the IRP after the call 
to the service function. A driver may only legally access an IRP 
when it has ownership of it. 

This IRP ownership model corresponds naturally to tracked 
types. In Vault, a typical driver service routine is given the fol- 
lowing signature: 

DSTATUS<I> Read(DEVICE_0BJECT, tracked(I) IRP) [-I]; 

The signature states that a service routine obtains the ownership 
of the parameter IRP and does not pass the ownership back to the 
caller. Furthermore, the service routine must return a value of type 
DSTATUS<I>, which we use to enforce that one of the three possible 
functions mentioned above are called: 

DSTATUS<I> 
IoCompleteReqnest(traeked(I) IRP, NTSTATUS) I-I] ; 

DSTATUS<I> 
IoCaliDriver(DEVICE_0BJECT, tracked(I) IRP) [-I]; 

DSTItTUS<I> 
IoMarkIrpPending(traeked(I) IRP) [I]; 

Since we keep the type DSTATUS<I> abstract from the service rou- 
tine, and since the type of the return status is parameterized by the 
key I of the IRP request, the only way a service routine can gen- 
erate a DSTATUS<I> value is by calling one of the above functions 
in the context of that particular invocation. This avoids the com- 
mon error that some drivers exhibit code paths on which IRPs are 
neither completed, passed on, nor pended. 

We leave it up to the driver to manage queues of pending IRP 
requests, thus IoMarkIrpPending does not consume the IRP key. 
A driver consumes the key by storing the IRP on a pending list, 
thus anonymizing and packaging the key with the IRP. 

4.2 Thread Coordination 
The Windows 2000 kernel provides several thread coordination 
mechanisms, one of which is events. An event allows one thread 
to block until another thread takes some action. Our Vault descrip- 
tion of events can be used to pass a key from one thread to another, 
thereby coordinating access to whatever data that key protects: 

type KEVENT<key K>; 
KEVENT<K> KeIntializeEvent<type T>(tracked(K) T) [K]; 
void KeSignalEvent(KEVENT<K>) [-K] ; 
void KeWaitEvent (KEVENT<K>) [+K] ; 

The initialization function takes a tracked object whose key is to be 
transferred from one thread to another. In a multithreaded program, 
there is one key set per thread. To pass the key between threads, the 
first thread calls KeWaitEven~ and blocks until the second thread 
calls KeSignalEvent. After the call to KeSignalEvent, the sec- 
ond thread no longer has the key in its held-key set, while the first 
thread unbloeks and gains the key in its held-key set. As is typical 
of Windows 2000 drivers, the floppy driver uses this event mecha- 
nism to pass IRP ownership from one driver to another, as described 
in the next section. 

We can similarly describe kernel spin locks in Vault: 

type KSPIN_LOCK<key K>; 
KSPIN_LOCK<K> 

KeInitializeSpinLock<type T>(tracked(K) T) [-K] ; 
void KeAcquireSpinLoek(KSPIN_L0CK<K>) [+K] ; 
void KeReleaseSpinLock(KSPIN_LOCK<K>) I-K] ; 

This interface protects against common locking errors. First, once 
a lock has been created on a tracked data object, the only way to ac- 
cess the object is first to acquire the lock. Second, in the same way 

that Vault can detect memory leaks (by finding keys in a function's 
final held-key set that were not promised in its signature's post key 
set), Vault can similarly detect missing lock releases. Third, since 
a key cannot appear in the held-key set multiple times, Vault will 
detect when a program acquires a lock that it already holds, since 
the second acquire will introduce a key into the held-key set that 
is already present. This approach however is inadequate to model 
reentrant locks. 

4.3 I/0 Request Completion Routines 
As mentioned earlier, when a driver passes an IRP down to the next 
driver in the stack (by calling I o C a l l D r i v e r ) ,  it loses ownership 
of the IRP. However, a driver often needs first to pass an IRP to 
the next lower driver and then to regain ownership of the IRP after 
the lower driver has completed it. To do this, a driver attaches a 
completion routine to the IRP, which is a function that is called on 
the IRP when the lower driver completes it. If  a driver's comple- 
tion routine returns a status of "more processing required" then the 
driver once again gains ownership of the IRP. 

We describe completion routines in Vault with the following def- 
initions: 

variant C0MPLETION_RESULT<key I> [ 
' MoreProees singRequired I 
'Finished(NTSTATUS) {I} ] ; 

type COMPLETION_ROUTINE<key K> = 
tracked COMPLETION_RESULT<K> Routine( 

DEVICE_0BJECT, tracked(K) IRP) [-K]; 

void I oSetComplet ionKout ine ( 
tracked(I) IRP, COMPLETION_ROUTINE<I>) ; 

The function IoSetCompletionRoutine sets an IRP's comple- 
tion routine, which is a function that takes a device object and a 
tracked IRP and consumes the IRP's key. 

The code in Figure 7 shows shows a common idiom for regain- 
ing ownership of an IRP after it is passed to a lower driver. The 
code uses a completion routine to learn when the lower driver has 
finished and an event to resume processing where it left off before 
calling the lower driver. 

The figure shows a service function for a "plug and play" re- 
quest, like a request to shut down the device. The function first de- 
clares an event, I rp IsBaek ,  which is parameterized by the IRP's 
key, and declares the local function Rega inI rp .  The function 
PnpRequest then sets the IRP's completion routine to the func- 
tion Rega in I rp  and passes the IRP down to the next driver with 
a call to I o C a l l D r i v e r .  After this call, ownership of the IRP 
has been passed to the next driver, which is reflected in the fact 
that the key I is no longer in the held-key set. The function 
then waits for the event I rp I sBack .  When the lower driver com- 
pletes the IRP, the kernel owns the IRP until it calls the com- 
pletion routine Rega in I rp .  The completion routine in turn sig- 
nals the event I rp IsBaek ,  thereby passing ownership back to the 
PnpRequest function. The completion routine returns the sta- 
tus 'MoreProcessingRequired to tell the kernel that this driver 
has once again accepted ownership of the IRP.~° When the call to 

l°A careful reader might be concerned that the completion rou- 
tine could signal that the driver owns the IRP, but then for- 
get to return 'MoreProces s ingRequ i r ed -a  situation that would 
lead to a dangling reference. This in fact cannot happen since 
the only other constructor for this variant ( ' F i n i s h e d )  takes 
the IRP's key as a parameter, a key which is no longer in the 
held-key set after the call to KeSignalEvent .  Given the deft- 
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NTSTATUS PnpRequest(DEVICE_0BJECT Dev, 
tracked(I) IRP Irp) [-I] { 

KEVENT<I> IrpIsBack = KeInitializeEvent(Irp); 

COMPLETION_RESULT<I> 
Regainlrp(DEVICE_0BJECT Dev, 

tracked(I) IRP Irp) [-I] { 

KeSignalEvent(IrpIsBack); 
return ~MoreProcessing~equired; 

} 

IoSetCompletionRoutine(Irp, RegainIrp); 
status = IoCallDriver(nextDriver, Irp); 
/ /  key I no longer in heZd-key s e t  
KeWaitForEvent(IrplsBack); 
/ /  ~e~ I ~s bach ~n he~d-~e~ set  

} 

Figure 7: A driver uses an event and a completion routine to 
regain ownership of an IRP after passing it to a lower driver. 

KeWaitForEvent returns, key I again appears in the held key set. 
The code after the call to KeWaitForEvent is therefore free to ac- 
cess the variable Irp.  

4.4 Interrupt Levels and Paging 
To represent the processor interrupt level (or IRQL, in Windows 
2000 tenninology), we use two details of Vault that were previously 
unmentioned. First, although keys typically arise from tracked 
types, a programmer can also statically declare a key. Second, we 
can optionally define a partial order over the states of a key and 
constrain state variables by states. Using both these features, we 
represent the current processor interrupt level as a global key IKQL: 

s%ateset IRq_LEVEL = [ PASSIVE_LEVEL < 
APe_LEVEL < DISPATCH_LEVEL < DIRQL ]; 

key IRQL @ IRQ.LEVEL; 

Given these definitions, we can describe the preconditions of var- 
ious kernel functions. The function KeSe tPr io r i tyThread  re- 
quires the interrupt level to be at PASSIVE_LEVEL: 

KPRIORITY KeSetPriorityThread (KTHREAD, KPRIORITY) 
[ IRQL ~ PASSIVE_LEVEL ]; 

The kernel function KeReleaseSemaphore is more flexible. 
It requires the interrupt level to be less than or equal to 
DISPATCH_LEVEL: 

long KeReleaseSemaphore (KSEMAPHORE, KPKIORITY ,long) 
[ IRQL @ (level <= DISPATCH_LEVEL) ]; 

This function is polymorphic in the local state of the key IRQL 
as captured by the explicit state variable l e v e l ,  which is upper- 
bounded by state DISPATCH_LEVEL. Finally, the function Ke- 
AequireSpinLock is more complicated. It requires that the in- 
terrupt level be less than or equal to DISPATCH.LEVEL on entry 

nition of the variant COMPLETION..KESULT, if a completion rou- 
tine consumes its IRP parameter, it has no choice but to re- 
turn 'MoreProcess ingRequi red ,  since no other option will type 
check. 

and raises the interrupt level to DISPATCH_LEVEL on exit. It also 
returns as its result a value that represents whatever the interrupt 
level was on entry. Given the definitions above and a type KIRQL 
that is parameterized by a state (which is similar to having a type 
parameterized by a key), we can describe this complex behavior: 

type KIRQL<state S>; 

KIRQL<IeveI> KeAcquireSpinLock (KSPIN_LOCK) 
[ IRQL @ (level <= DISPATCH_LEVEL) -> 

DISPATCH_LEVEL ] ; 

Like the previous kernel function, this function uses bounded poly- 
morphism over the local state of the key IRQL. Further, it uses the 
state variable l e v e l  to refer to the state of key IRQL at the call site 
in order to reflect this level in the result type. Finally it uses the ar- 
row notation to state that the function changes the key IRQL's state 
from the state represented by level to the state DISPATCH_LEVEL. 

The examples above thus make use of constrained state variables 
of the form sv <= s t .  The type checker uses the partial order 
specified in s t a t e s e t  declarations to determine when such con- 
straints are satisfied. 

Using constrained states, we can describe types TT in paged mem- 
ory by introducing a type guard on the interrupt level. 

type paged<type T> = (IR~L ~ (ieveI<=APC_LEVEL)):T; 

A value of a paged type may thus only be accessed at program 
points where the interrupt request level is at or below APO_LEVEL, 
ensuring that the page handler can service possible page faults. In- 
ternally, a paged type paged<T> is represented as 

V[5 : State].{IRQL~(6 < APC_LEVEL) ~-> void} t> T 

If a driver accesses data in paged kernel memory at an interrupt 
level that prevents the virtual memory system from running, the 
result is unpredictable behavior: if the data's page happens to be 
resident, then :the access is fine; otherwise, the kernel deadlocks 
when it tries to run the virtual memory system. Such a subtle error 
is very difficult is reproduce and correct. By using the interrupt 
level to guard data in paged memory, the Vault type checker finds 
such errors at compile time. 

5, RELATED WORK 

Our work is inspired in part by the typestate approach provided in 
the programming language NIL [ 17, 16]. In NIL, states are attached 
to objects along with their types. NIL does not allow any aliasing 
of objects, thus severely restricting the class of programs that can 
be expressed in NIL. 
• The work involving the calculus of capabilities by Crary, Walker, 
Smith, and Morrisett [3, 19, 15, 20] shows how to track states of 
objects in the presence of aliasing. The essential improvement over 
the typestate approach is to add a level of indirection between ob- 
jeets and their state through keys. Now the non-aliasing require- 
ment is confined to keys whereas the aliasing relationships among 
objects are made explicit. This work provides the theoretical basis 
for Vault's type system. Our system differs in minor details such 
as using direct pre/post conditions of functions instead of continu- 
ation-passing style, which leads us to infer join-point abstractions 
or reanalyzing path fragments under different key sets. A more 
fundamental difference introducing a number of complications is 
exposing this rich type language to the programmer in an intuitive 
way. 

In order to allow general graph structures, objects cannot always 
be tracked individually, but must be tracked as groups. The canon- 
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ical example of such group tracking are memory regions for safe 
explicit deallocation [3, 19]. Region annotations on types are one 
particular kind of predicate, stating that the named region must not 
be freed in order to access the data. 

A related approach to tracking individual objects is present in the 
programming language Concurrent Clean [2]. Concurrent Clean 
uses unique types to represent unaliased objects. Operations such 
as array updates may be performed destructively on objects of 
unique type even in a purely functional language, since the mod- 
ification cannot be distinguished from a copy. Clean's unique types 
correspond to Vault's anonymous tracked types, where the key re- 
mains unnamed. More technically, unique types correspond to sin- 
gleton types where the key is existentially bound [20]. 

Sagiv, Reps, and Wilhelm provide a framework for intraproce- 
dural shape analysis via 3-valued logic [14]. Their t2amework can 
express more detailed alias relations not currently expressible in 
Vault, as for example a function returning a pointer to the last ele- 
ment of a list, while leaving the list intact. H 

At first glance, type guards are similar to type qualifiers [7]. 
However, type qualifiers refine the type (how the object can be 
manipulated) rather than guarding the access (when the object can 
be accessed). Furthermore, type qualifiers are constant and cannot 
change state. 

Guarded types can be viewed as a form of qualified types [9, 
10] VS.P ~ r, where the qualification quantifies over the abstract 
store S. At each use, the type must be instantiable to the current 
store Si and the predicate P must be satisfied Si b P.  However, 
the framework of qualified types lacks a notion of state. 

Vault shares much of the motivation with the work on Extended 
Static Checking (ESC) [12]. ESC however starts with a memory 
safe language (Module-3/Java) and thus precludes its use in low- 
level system code such as device drivers. Furthermore, ESC takes 
a pragmatic approach to aliasing, tracking aliasing correctly within 
a procedure, but it does not consider all possible aliasing relation- 
ships created by procedure calls [4]. ESC is based on first-order 
logic with arithmetic pre and post-conditions. The presence of 
specification or ghost variables allows for tracking the state of an 
object, similarly to our local key states. However, this is not enough 
to describe the creation and disappearance of resources as is pos- 
sible with keys and key sets, since there is no object available to 
attach presence information to. On the other hand, Vault's formal- 
ism is much less ambitious in terms of expressible pre and post 
conditions, since it cannot for example express arithmetic relation- 
ships. Thus, the techniques described here complement those of 
ESC. 

Flanagan et. al. propose a type system for Java to statically detect 
data races [6]. In their approach, the compiler tracks held lock sets 
and checks lock guards on class fields. Although similar to keys 
and type guards, their system differs from ours in that lock acquire 
and releases have to be syntactically scoped using a synchronize 
expression. Thus, a method call cannot change the lock set. Fur- 
thermore, locks are not first class values, but a restricted form of 
syntactic expressions. Thus it is not possible in their system to pass 
an object and a separate lock protecting that object to a method. 

Like the Vault project, the SLAM project at Microsoft Research 
is also focussed on using exhaustive static analysis to enforce pro- 
tocols of tow-level software [1]. Unlike Vault however, SLAM fo- 
cusses on existing software written in C: The SLAM tools use an 
iterative approach: the SLAM tools create an ever more precise ab- 

11Walker [20] shows how to express lists with pointers to the last 
element explicitly, but the point here is that such alias relationships 
would need to be anticipated, whereas they don't in Sagiv et. al.'s 
work. 

straction of the C program and use a model checker to search this 
abstraction for protocol violations. This interative refinement stops 
when either a violation is found, or no violation is present in the 
abstration, or a limitation of the tools has been reached. 

In the context of the Metal project, Engler et. al. use programmer 
written compiler extensions to check properties of code at compile 
time [5]. The properties their system is able to check are similar to 
the ones described here, e.g., proper matching of lock acquire and 
release. In contrast to Vault, the Metal approach relies on syntacti- 
cally recognizing state transitions, such as lock acquire and release, 
by matching against the names of specific functions. While suffi- 
cient for checking stylized properties such as acquiring and releas- 
ing a lock within the same function, the approach would require 
annotations similar to the ones proposed here to check invariants 
that are established inter-procedurally. 

6. CONCLUSIONS AND FUTURE WORK 

Our case study on Windows 2000 drivers gives us an initial confi- 
dence that the resource management features of Vault are sufficient 
to model "real world" interfaces. Nevertheless, we need to continue 
validating these features in other domains, like graphic interfaces 
and other parts of the kernel interface. 

Providing resource management features in a new language 
rather than an existing one allows us to design the language to make 
type checking tractable. The downside of a new language is the in- 
vestment in existing languages, both in terms of legacy code and in 
terms of training. We hope that by basing our syntax on the popular 
language C, we can leverage some of the training cost. Wrapping 
Vault interfaces around existing C code allows that legacy code to 
be reused. However, the wrapper code can be a new source of er- 
rors, and we are looking into tool support in this area as well. We 
are also considering adding keys to the new language CII currently 
being deployed within Microsoft. 

Finally, the device driver, while complex, is only a single compi- 
lation unit. To ensure that Vault's typing rules are not so restrictive 
as to prevent useful programs, we are writing a front-end for Vault 
in Vault. This system is a multi-stage pipeline where each stage's 
results are stored in its own region. This experience will allow us to 
evaluate the burden of Vault's annotations and typing restrictions. 
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