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Abstract

Let A be a Banach algebra, with second dual space A′′. We propose
to study the space A′′ as a Banach algebra. There are two Banach
algebra products on A′′, denoted by 2 and 3 . The Banach algebra A
is Arens regular if the two products 2 and 3 coincide on A′′. In fact,

A′′ has two topological centres denoted by Z
(1)
t (A′′) and Z

(2)
t (A′′) with

A ⊂ Z
(j)
t (A′′) ⊂ A′′ (j = 1, 2), and A is Arens regular if and only if

Z
(1)
t (A′′) = Z

(2)
t (A′′) = A′′. At the other extreme, A is strongly Arens

irregular if Z
(1)
t (A′′) = Z

(2)
t (A′′) = A. We shall give many examples to

show that these two topological centres can be different, and can lie
strictly between A and A′′.

We shall discuss the algebraic structure of the Banach algebra
(A′′, 2 ); in particular, we shall seek to determine its radical and when
this algebra has a strong Wedderburn decomposition. We are also par-
ticularly concerned to discuss the algebraic relationship between the
two algebras (A′′, 2 ) and (A′′, 3 ).

Most of our theory and examples will be based on a study of the
weighted Beurling algebras L1(G,ω), where ω is a weight function on
the locally compact group G. The case where G is discrete and the
algebra is ` 1(G,ω) is particularly important. We shall also discuss a
large variety of other examples. These include a weight ω on Z such
that ` 1(Z, ω) is neither Arens regular nor strongly Arens irregular, and
such that the radical of (` 1(Z, ω)′′, 2 ) is a nilpotent ideal of index
exactly 3, and a weight ω on F2 such that two topological centres of
the second dual of ` 1(F2, ω) may be different, and that the radicals of
the two second duals may have different indices of nilpotence.
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CHAPTER 1

Introduction

The purpose of this memoir is to study the second duals of a Banach
algebra A. There are two such duals, each itself a Banach algebra, for
which we use the notations (A′′, 2 ) and (A′′, 3 ). The Banach algebra
A is said to be Arens regular if the two products 2 and 3 coincide on

A′′. In fact, A′′ has two topological centres denoted by Z
(1)
t (A′′) and

Z
(2)
t (A′′) with

A ⊂ Z
(j)
t (A′′) ⊂ A′′ (j = 1, 2)

(where we regard A as a subspace of A′′), and A is Arens regular if

and only if Z
(1)
t (A′′) = Z

(2)
t (A′′) = A′′. At the other extreme, A is

strongly Arens irregular if Z
(1)
t (A′′) = Z

(2)
t (A′′) = A. In the case where

A is commutative, Z
(1)
t (A′′) = Z

(2)
t (A′′) = Z(A′′), the centre of both

of the algebras (A′′,2) and (A′′,3). We shall give examples of many
non-commutative Banach algebras to show that these two topological
centres can be different, and that they can be equal to A, to A′′, and
to certain strictly intermediate closed subalgebras of A′′.

We shall discuss the algebraic structure of the Banach algebra
(A′′, 2 ); in particular, we shall seek to determine its radical and when
this algebra has a strong Wedderburn decomposition.

We are particularly concerned to discuss the relationship between
the two algebras (A′′, 2 ) and (A′′, 3 ): for example, we shall note in
Example 6.2 that the (Jacobson) radicals of the two algebras are not
necessarily the same set, and in Theorem 10.12 that the two radicals
can be the same set, but have different orders of nilpotence.

Finally, we shall also study the class of continuous derivations from
A to A′′, when A′′ is regarded as a Banach A-bimodule.

We shall throughout exemplify our general theory by studying the
two Banach algebras (A′′, 2 ) and (A′′, 3 ) in the case where A is a
weighted convolution algebra L1(G,ω): here G is a locally compact
group, not necessarily abelian, and ω is a weight function on G. The
case where G is discrete and we are considering the Banach algebra
` 1(G,ω) is particularly important. However we shall also consider a
considerable number of other examples.

1



2 1. INTRODUCTION

The pioneering work on what are now called the Arens products on
the second dual A′′ of a Banach algebra A is that of Richard Arens,
more than half a century ago (see [Ar1], [Ar2]). Later, in a seminal
paper of 1961, Civin and Yood [CiY] concentrated on the special case
where A is the group algebra L 1(G) of a locally compact group G,
proving that, in the case where G is abelian, L 1(G) is Arens regular
only if G is finite; this was established for general groups G by Young
in [Y2]. It was finally proved in 1988 that L 1(G) is strongly Arens
irregular for each locally compact group G [LLos1]. (This was proved
earlier for compact groups G in [IPyU]; see also [BaLPy].) We are in-
debted to Craw and Young [CrY] for the determination when weighted
group algebras are Arens regular.

The theory of Arens products on the second duals of Banach al-
gebras is described in the texts [Pa2] and [D]. Our memoir builds on
these foundations.

Although most of our results are new, we have sought to survey the
known theory, and in a few cases we have repeated proofs that already
exist in the literature.

In Chapter 2, we shall recall the background in Banach algebra
theory that we shall require, and introduce the key concepts of the two
Arens products 2 and 3 on the second dual A′′ of a Banach algebra

A; we shall also define the two topological centres Z
(1)
t (A′′) and Z

(2)
t (A′′)

in A′′. This leads to our definitions of Arens regularity and of (left and
right) strong Arens irregularity.

Grothendieck’s ‘repeated limit condition’ plays an important role
in the study of Arens regularity. In Chapter 3, we shall describe this
condition and establish some results in the form that we shall use them;
we shall also recall the definition of almost periodic and weakly almost
periodic elements in the dual space A′ of a Banach algebra A.

In Chapter 4, we shall give a variety of examples of Banach algebras
A and of their two second dual algebras. In particular, we shall recall

the properties of C∗-algebras A, for which Z
(1)
t (A′′) = Z

(2)
t (A′′) = A′′,

and of group algebras A, for which Z
(1)
t (A′′) = Z

(2)
t (A′′) = A. We shall

also collect a substantial number of specific examples, most already
known.

In Chapter 5, we shall introduce the class of (left-) introverted sub-
spaces X of A′, and we shall define the topological centre Zt(X

′) of the
Banach algebra (X ′, 2 ) which, as a Banach space, is the dual of such
a space X.

The next chapter, Chapter 6, is a preliminary to our main work; we
shall study the second duals of certain Banach algebras of operators
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contained in B(E), the Banach algebra of all bounded linear operators
on a Banach space E. A Banach operator algebra contained in B(E)
can only be Arens regular in the case where E is reflexive; we shall
sketch a new proof of M. Daws that the Banach algebra B(E) is indeed
Arens regular whenever E is super-reflexive. We shall then discuss the
Banach algebras A = K(E) in the case where E is non-reflexive and
E ′ has the approximation property and the Radon–Nikodým property.

We shall identify the two topological centres Z
(1)
t (A) and Z

(2)
t (A) in

this case, showing that neither is contained in the other and that each
lies strictly between A and A′′, and we shall identify their intersection,
which may be equal to A and which may be strictly larger than A. We
shall also prove that (A′′, 2 ) is semisimple, but that (A′′, 3 ) has a
‘large’ radical. We do not know whether or not (B(E)′′, 2 ) is semi-
simple for all sufficiently ‘nice’ Banach spaces E; this is true when E
is a Hilbert space.

In Chapter 7, we shall introduce the Banach algebras that we shall
study. The main characters in our story will be the Beurling alge-
bras L 1(G,ω) and ` 1(G,ω), where ω is a weight function on G, but
we shall also introduce some of the relatives of these algebras, such
as the C*-algebra LUC(G, 1/ω); the latter is a left-introverted sub-
space of L 1(G,ω)′. At the heart of the narrative is the interplay
between the structures of the group G and of the Banach algebras
that are constructed on G. For example, we shall recognize the mea-
sure algebra M(G,ω) as the multiplier algebra of the Banach algebra
L 1(G,ω), and show how it can be embedded in (L 1(G,ω)′′, 2 ) and
in (LUC(G, 1/ω)′, 2 ). We shall discuss various ‘topologically left-
invariant’ elements in L 1(G,ω)′′, and show how they can be used to
prove that the radical of (L 1(G,ω)′′, 2 ) is usually non–zero. How-
ever, we have been forced to leave open one basic question, namely,
whether or not the algebras L 1(G,ω) (or even the algebras ` 1(G,ω))
are themselves always semisimple.

There is a considerable difference in behaviour between the algebras
L 1(G,ω) (in the case where G is not discrete) and ` 1(G,ω). In Chapter
8, we shall study the algebras ` 1(G,ω), and in Chapter 9 and Chapter
10 we shall give a variety of examples that exhibit several phenomena
that can occur. A basic example is given by the weight ωα on Z, where

ωα(n) = (1 + |n|)α (n ∈ Z)

for α ≥ 0. It was shown by Craw and Young [CrY] that the Beurling
algebra ` 1(Z, ωα) is Arens regular if and only if α > 0. We shall
also exhibit in Chapter 9 various examples in which the topological
centre of ` 1(Z, ω)′′ lies strictly between ` 1(Z, ω) and ` 1(Z, ω)′′. The
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most important example seems to be Example 9.15: this exhibits a
symmetric weight ω on Z such that ω is increasing on Z+, such that
` 1(Z, ω) is neither Arens regular nor strongly Arens irregular, and such
that the radical of (` 1(Z, ω)′′, 2 ) is a nilpotent ideal of index exactly 3.
We do not know whether or not there is a weight ω on Z such that the
algebra (` 1(Z, ω)′′, 2 ) is semisimple. In Example 9.17, we shall exhibit
a symmetric, unbounded weight ω on Z such that ` 1(Z, ω) is strongly
Arens irregular; it is conceivable that for this example (` 1(Z, ω)′′, 2 )
is indeed semisimple.

In Chapter 10, we shall turn to Beurling algebras on F2, the free
group on two generators. In Theorem 10.12, we shall show by a rather
complicated example that the two topological centres of the second
dual of a Beurling algebra ` 1(F2, ω) may be different, and, remarkably,
that the radicals of the two second duals may have different indices of
nilpotence.

In Chapter 11, we shall study the topological centre Zt(X ′
ω), where

we define Xω to be the space LUC(G, 1/ω), a left-introverted subspace
of L∞(G, 1/ω). We shall show that Zt(X ′

ω) can be identified with an
algebra M(G,ω) of measures on G under the condition that ω be diag-
onally bounded (see Definition 7.41) on a dispersed subset of G. This
chapter extends earlier work of Lau and Ülger in [L3] and [LU]; see also
[LLo1].

Next, in Chapter 12, we shall turn to a study of the second duals
of the algebras L 1(G,ω) in the case where G is not discrete. We shall
show in Theorem 12.2 that L 1(G,ω) is left strongly Arens irregular
whenever Zt(X ′

ω) = M(G,ω) (subject to a very mild condition), and
hence deduce that the algebra L 1(G,ω) is strongly Arens irregular
whenever ω is diagonally bounded on a dispersed subset of G. Now let

ωα(t) = (1 + |t|)α (t ∈ R)

for α ≥ 0, so that ωα is a weight function on R, but ωα is not diagonally
bounded on any dispersed subset of R whenever α > 0. In an important
new result, we shall show in Theorem 12.6 that the Beurling algebra
L 1(R, ωα) is neither Arens regular nor strongly Arens irregular in the
case where α > 0, and we shall obtain in Theorem 12.9 and later
results rather a large amount of information concerning the radical of
the second duals of these algebras.

Finally in Chapter 13, we shall discuss continuous derivations from
L 1(G,ω) into the module L 1(G,ω)′′ which is its second dual. We re-
strict ourselves to the case where the group G is abelian. In particular,
we shall determine when many of these algebras are 2-weakly amenable;
in our case, this means that each such derivation is 0.
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The work concludes with a list of open problems.

We conclude these preliminary remarks by giving some notation
that we shall use frequently.

Throughout, we write N for the set {1, 2, . . . } of natural num-
bers, Z+ for N ∪ {0}, Nk for the set {1, 2, . . . , k}, and Z+

k for the set
{0, 1, 2, . . . , k}. The unit interval [0, 1] is denoted by I, and the unit
circle by T. For z ∈ C and r ≥ 0, we set

D(z; r) = {w ∈ C : |w − z| < r} ,
the open disc with centre z and radius r, and we set D = D(0; 1).

The algebra of n× n matrices over C is denoted by Mn(C) or Mn.
For a function f on a set S, the support of f is

supp f = {s ∈ S : f(s) 6= 0} .
The characteristic function of a subset T of S is denoted by χT , so that
χT (s) = 1 whenever s ∈ T and χT (s) = 0 whenever s ∈ S \ T .

For subsets S and T of a group G, we set

S · T = {st : s ∈ S, t ∈ T} ,
and S + T = {s + t : s ∈ S, t ∈ T} in the case where G is abelian
and is written additively; we write S + t for S + {t}, etc. Also, in the
general case, we set S−1 = {s−1 : s ∈ S}. An identity of a semigroup
S is usually denoted by eS, and S• = S \ {eS}.

Let X be a locally compact space. (By our convention, each locally
compact space is taken to be Hausdorff.) Let (sα) be a net in X. Then

Lim
α

sα = ∞

means that, for each compact subset K of X, there exists αK such that
sα ∈ X \ K (α � αK). Let (Kα) be a net of compact subsets of X.
Then

Lim
α

Kα = ∞

means that, for each compact subset K of X, there exists αK such that
Kα ∩K = ∅ (α � αK). Let f : X → C be a function on X. Then

Lim
x→∞

f(x) = α (respectively, Lim sup
x→∞

f(x) = α)

means that, for each ε > 0, there is a compact subset K of X such that
|f(x)− α| < ε (respectively, f(x) < α + ε) whenever x ∈ X \ K. In
particular, we shall use this notation in the case where X is a discrete
space.

An index of terms used is given on pages 185–187, and an index of
symbols is on pages 189–191.
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A few of our results, which we indicate, are based on earlier theo-
rems contained in the PhD thesis [La] at Leeds of David Lamb; we are
grateful for his permission to include them here. We are also grateful to
Colin Graham and to Matthias Neufang for some valuable comments
on and interest in our work and for making their preprints available to
us.

This manuscript was completed in May, 2003; a few comments
about more recent results, and some extra references, have been added
in August, 2004, after the memoir was accepted for publication. Fur-
ther results in this area will be contained in a memoir of H. G. Dales,
A. T.-M. Lau, and D. Strauss, Banach algebras on compactifications of
semigroups , which is in preparation.



CHAPTER 2

Definitions and Preliminary Results

We begin by recalling some basic concepts and notations. Further
details of everything mentioned here are contained in the monograph
[D].

Let S be a subset of a linear space. Then linS denotes the linear
span of S, exS denotes the set of extreme points of S, 〈S〉 is the convex
hull of S, and acS is the absolutely convex hull of S.

The space of linear maps from a linear space E to a linear space F
is denoted by L(E,F ); we write L(E) for the unital algebra L(E,E).

Let E be a linear space. Then the image of x ∈ E under a linear
functional λ on E is denoted by λ(x) or, more usually, by 〈x, λ〉. The
space of linear functionals on a linear space E is denoted by E×.

Let A be a (linear, associative, complex) algebra. The product in
A is the bilinear map

mA : (a, b) 7→ ab, A× A→ A .

For each a ∈ A, we define

La(b) = ab, Ra(b) = ba (b ∈ A) ;

these are the operations of left and right multiplication by a.
We denote by A# the algebra formed by adjoining an identity to

A (so that A# = A in the case where A is unital), and by Aop the
opposite algebra to A, so that Aop is the same linear space as A, but
the product is · , where a · b = ba (a, b ∈ A).

An element a ∈ A is nilpotent if there exists n ∈ N with an = 0.
For each n ∈ N and S ⊂ A, we set

S[n] = {a1 · · · an : a1, . . . , an ∈ A} and Sn = linS[n] .

For S, T ⊂ A, we set

S · T = {ab : a ∈ S, b ∈ T} and ST = lin S · T ;

we write aS for {a}S when a ∈ A, etc.
The centre of the algebra A is denoted by Z(A), so that

Z(A) = {a ∈ A : ab = ba (b ∈ A)} .
7



8 2. DEFINITIONS AND PRELIMINARY RESULTS

The (Jacobson) radical of A is denoted by radA; the algebra A
is semisimple if radA = {0} and radical if radA = A. Let A be a
unital algebra with identity eA: we denote by InvA the set of invertible
elements in A, and recall that

rad A = {a ∈ A : eA − ba ∈ InvA (b ∈ A)}
= {a ∈ A : eA − ab ∈ InvA (b ∈ A)} .

Note that rad A = rad Aop as subsets of A.
Let I be a left (respectively, right) ideal in an algebra A. Then I is

left-annihilator (respectively, right-annihilator) if ax = 0 (respectively,
xa = 0) whenever a ∈ A and x ∈ I; each such ideal is contained in
rad A. Let S ⊂ A. For n ≥ 2, the set S is nilpotent of index n if
Sn = {0}, but Sn−1 6= {0}. The radical rad A contains each left or
right ideal which is nilpotent.

Proposition 2.1. Let I be an ideal in an algebra A, and let a ∈ I.
Suppose that aI = 0. Then a ∈ rad A.

Proof. Set J = aA#, a right ideal in A. Then

J2 = aA#aA# ⊂ aI = 0 ,

and so J is nilpotent. Thus a ∈ J ⊂ rad A. �

An algebra A is a semidirect product of a subalgebra B and an ideal
I if A is the direct sum of B and I as linear spaces; in this case, the
product in A is determined by the formula

(2.1) (b1, x1)(b2, x2) = (b1b2, x1b2 + b1x2 + x1x2)

for b1, b2 ∈ B and x1, x2 ∈ I, and we write A = BnI. The algebra A is
decomposable if there is a subalgebra B of A such that A = B n radA.

Let e be a right identity of an algebra A, so that ae = a (a ∈ A).
Then Le is a linear projection on A, and Le is a homomorphism. Define
eA = {ea : a ∈ A} and (1 − e)A = {a− ea : a ∈ A}, so that we have
eA = Le(A) and (1 − e)A = ker Le. Then A = eA n (1 − e)A is a
semidirect product.

Let A be an algebra. Then: an element L ∈ L(A) such that

L(ab) = L(a)b (a, b ∈ A)

is a left multiplier on A; an element R ∈ L(A) such that

R(ab) = aR(b) (a, b ∈ A)

is a right multiplier on A; a pair (L,R) such that L is a left multiplier,
R is a right multiplier, and

aL(b) = R(a)b (a, b ∈ A)
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is a multiplier on A. For example, for each a ∈ A, La is a left multiplier
of A, Ra is a right multiplier of A, and (La, Ra) is a multiplier of A.
The subalgebra of L(A) × L(A)op consisting of the multipliers (L,R)
of A is the multiplier algebra of A, denoted by M(A); the map

a 7→ (La, Ra), A→M(A) ,

is a homomorphism. In the case where

(2.2) {a ∈ A : aA = {0}} = {a ∈ A : Aa = {0}} = {0} ,

this map is an embedding, and we regard A as a subalgebra ofM(A) in
this way. Suppose that A is commutative. Then the multiplier algebra
M(A) is a commutative, unital subalgebra of L(A) [D, p. 60].

A linear involution on a linear space E is a map x 7→ x∗ on E such
that

(x∗)∗ = x (x ∈ E) ,
(αx+ βy)∗ = αx∗ + βy∗ (x, y ∈ E, α, β ∈ C) .

An involution on an algebra A is a linear involution on A such that

(ab)∗ = b∗a∗ (a, b ∈ A) .

An algebra with an involution is a ∗-algebra.
A linear functional λ on a ∗-algebra A is positive if

〈aa∗, λ〉 ≥ 0 (a ∈ A) ;

the set ∗-radA is defined to be the intersection of the kernels of the
positive linear functionals on A#, and the algbera A is ∗-semisimple
if ∗-radA = {0}. Thus ∗-radA is an ideal in A. Let A be a unital
algebra with an involution. Then a positive functional λ on A is a
state if 〈eA, λ〉 = 1; the set of states is the state space SA of A.

Let A and B be algebras. Then the linear space A⊗B is an algebra
for a unique product such that

(a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2 (a1, a2 ∈ A, b1, b2 ∈ B) ;

see [D, Proposition 1.3.11] for details.
Let A be an algebra, and let E be an A-bimodule with respect to

the maps

(a, x) 7→ a · x, (a, x) 7→ x · a, A× E → E.

Then E is symmetric if a · x = x · a (a ∈ A, x ∈ E); a symmetric
A-bimodule over a commutative algebra A is termed an A-module.
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Let A be an algebra, and let E be an A-bimodule. Then E× is also
an A-bimodule for the maps (a, λ) 7→ a · λ and (a, λ) 7→ λ · a, where
a · λ and λ · a are defined by the formulae:

(2.3) 〈x, a · λ〉 = 〈x · a, λ〉, 〈x, λ · a〉 = 〈a · x, λ〉

for a ∈ A, x ∈ E, and λ ∈ E×.
Let E be a left A-module. Then we set

A · E = {a · x : a ∈ A, x ∈ E}, AE = linA · E ,

with similar definitions for right A-modules.

Definition 2.2. Let A be an algebra, and let E be an A-bimodule.

(i) The bimodule E is neo-unital if A · E = E · A = E ;

(ii) A derivation from A into E is an element D ∈ L(A,E) such
that

D(ab) = a · Db+Da · b (a, b ∈ A) .

For example, let x ∈ E, and define δx : A→ E by

δx(a) = a · x− x · a (a ∈ A) .

Then δx is a derivation; such derivations are termed inner derivations.
In the case where E = A, we refer to derivations on A.

Now suppose that A is a Banach algebra. The spectrum of an
element a ∈ A is denoted by σ(a), and the spectral radius of a is
denoted by ν(a); an element a is quasi-nilpotent if ν(a) = 0, and the set
of quasi-nilpotent elements of A is denoted by Q(A). Certainly radA
is a closed ideal in A, and A/radA is a semisimple Banach algebra; we
have rad A ⊂ Q(A), and rad A = Q(A) when A is commutative. For
example, let a ∈ A. Then, by the spectral radius formula, a ∈ Q(A) if

and only if limn→∞ ‖an‖1/n = 0.
The Banach algebra A is strongly decomposable if there is a closed

subalgebra B of A such that A has the strong decomposition

A = B n radA

as a semi-direct product. Clearly, the Banach algebra A is strongly
decomposable if and only if there is a splitting homomorphism for the
quotient map π : A → A/radA; this is a continuous homomorphism
θ : A/radA→ A such that π ◦ θ is the identity on A/radA. See [BDL]
for the theory of decomposable and strongly decomposable Banach
algebras.

A character on an algebra A is a homomorphism from A onto C;
the set of these characters forms the character space ΦA of A. Clearly,
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ΦA ⊂ A×, and we have

(2.4) ϕ · a = a · ϕ = ϕ(a)ϕ (a ∈ A, ϕ ∈ ΦA) .

Every character on a Banach algebra A is continuous, and the space
ΦA is locally compact in the usual Gel’fand topology.

A net (eα) in a Banach algebra A is a bounded left approximate
identity for A if sup α ‖eα‖ < ∞ and if limα ‖a− eαa‖ = 0 for each
a ∈ A; bounded right approximate identities are defined similarly. A
bounded approximate identity for A is a net which is both a bounded
left and right approximate identity; a bounded approximate identity is
sequential if the net is indexed by N. Certainly every Banach algebra
with a bounded approximate identity satisfies (2.2).

Let E be a Banach space. The closed ball in E with centre 0 and
radius m > 0 is denoted by E[m], and the dual space of E, the space of
continuous linear functionals on E, is denoted by E ′; we represent the
duality by the pairing

(x, λ) 7→ 〈x, λ〉, E × E ′ → C .

The weak topology on E is denoted by σ(E,E ′) and the weak-∗ topol-
ogy on E ′ is σ(E ′, E). The second dual space of E is denoted by E ′′,
with the pairing

(Λ, λ) 7→ 〈Λ, λ〉, E ′′ × E ′ → C ,

and we denote the canonical embedding of E into E ′′ by κE or κ, so
that

〈κE(x), λ〉 = 〈x, λ〉 (x ∈ E, λ ∈ E ′) .

Usually we shall regard E as a closed subspace of E ′′ by identifying
E with κ(E). The space E is reflexive if κ(E) = E ′′. We continue to
define E ′′′, E ′′′′, . . . .

We write σ(E ′′, E ′) for the weak-∗ topology on E ′′, so that (E ′′)[1]

is σ(E ′′, E ′)-compact and κ(E[1]) is σ(E ′′, E ′)-dense in (E ′′)[1]. Let F
be a closed subspace of a Banach space E. Then we identify the space
F ′′ with the σ(E ′′, E ′)-closure of κE(F ) in E ′′; the relative σ(E ′′, E ′)-
topology on F ′′ coincides with σ(F ′′, F ′). Note that E ∩ F ′′ = F with
these identifications.

Let E be a Banach space. The map P : E ′′′ → E ′ which is the
dual of the embedding κ of E into E ′′ (so that P (Λ) = Λ | κ(E) for
Λ ∈ E ′′′) is a continuous linear projection onto E ′, called the canonical
projection.
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Let E be a Banach space, and let F andG be closed linear subspaces
of E and E ′, respectively. Then we define the annihilators :

F ◦ = {λ ∈ E ′ : 〈x, λ〉 = 0 (x ∈ F )} ;
◦G = {x ∈ E : 〈x, λ〉 = 0 (λ ∈ G)} .

Clearly F ◦ and ◦G are closed linear subspaces of E ′ and E, respectively,
and ◦(F ◦) = F .

Let E and F be Banach spaces. Then the Banach space of all
bounded linear operators from E to F is denoted by B(E,F ); here

‖T‖ = sup {‖Tx‖ : x ∈ E[1]}

defines the operator norm ‖ · ‖ on B(E,F ). We write B(E) for B(E,F ),
so that B(E) is a unital Banach algebra. An operator T ∈ B(E,F )
is compact if T (E[1]) is relatively compact in F and weakly compact
if T (E[1]) is relatively weakly compact in F . The spaces of compact
and weakly compact operators are denoted by K(E,F ) and W(E,F ),
respectively; each is a closed subspace of B(E,F ). We write K(E) and
W(E) for K(E,E) and W(E,E), respectively. Then K(E) and W(E)
are closed ideals in B(E). See Chapter 6 for further details.

Again let E and F be Banach spaces. Then the projective tensor
product of E and F is denoted by (E ⊗̂F, ‖ · ‖π). Thus each z ∈ E ⊗̂F
has a representation

z =
∞∑

j=1

xj ⊗ yj ,

where xj ∈ E and yj ∈ F for each j ∈ N and

∞∑
j=1

‖xj‖ ‖yj‖ <∞ ;

further, ‖z‖π is equal to the infimum of
∑∞

j=1 ‖xj‖ ‖yj‖ over all such

representations. The dual of (E ⊗̂F, ‖ · ‖π) is identified with B(E,F ′)
[D, Proposition A.3.70]. Let A and B be Banach algebras. Then A ⊗̂B
is also a Banach algebra [D, Theorem 2.1.22].

In the case where A is a Banach algebra satisfying (2.2), each left
multiplier and each right multiplier onA is a continuous linear operator,
M(A) is a closed subalgebra of the Banach algebra B(A) × B(A)op,
and the embedding of A in M(A) is continuous. However, A is not
necessarily a closed subalgebra of M(A). For a more general theory of
multiplier algebras, see [D, Theorem 2.5.12] and [Pa2, Chapter 1.2]; in
the latter text, multipliers are termed ‘centralisers’ of the algebra.
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Let A be a Banach algebra satisfying (2.2), and let L and R be left
and right multipliers on A. Then we note that

(2.5) L′(a · λ) = a · L′(λ), R′(λ · a) = Rλ · a (a ∈ A, λ ∈ A′) .
A Banach ∗-algebra which is a ∗-algebra is a Banach algebra with

an isometric involution, as in [D, Chapter 3.1]. In this case, ∗-radA is
a closed ideal in A, and ∗-radA ⊃ radA.

A C∗-algebra is a Banach ∗-algebra A such that

‖aa∗‖ = ‖a‖2 (a ∈ A) .

Thus a C∗-algebra is a Banach ∗-algebra. A C∗-algebra which, as
a Banach space, is the dual of another Banach space is a von Neu-
mann algebra. We shall use some standard facts about C∗-algebras
and von Neumann algebras; this background material is contained in
many texts, including that of Kadison and Ringrose [KR]. Let A be a
unital C∗-algebra. Then the state space SA of A is now equal to

{λ ∈ A′ : ‖λ‖ = 〈eA, λ〉 = 1}

and linSA = A′. By the Krein–Milman theorem, SA = 〈exSA〉, and
also (A′)[1] = ac {exSA}, where the closures are taken in the space
(A′, σ(A′, A)). The elements of exSA are the pure states.

Let Ω be a non-empty locally compact space. Then C0(Ω) is the
space of all complex-valued, continuous functions on Ω such that the
functions vanish at infinity; C0(Ω) is a commutative C∗-algebra for
the pointwise product and the uniform norm, | · |Ω. We write C(Ω) in
the case where Ω is compact. Further, C00(Ω) is the dense subalgebra
of C0(Ω) consisting of all functions whose support is contained in a
compact subset of Ω. Each commutative C∗-algebra A is isometrically
∗-isomorphic to C0(ΦA), and exSA is identified with the character space
ΦA; see [KR, 3.4.7] for details. The dual Banach space of C0(Ω) is
identified with M(Ω), the space of all complex-valued, regular Borel
measures on Ω, with the duality

(f, µ ) 7→ 〈f, µ〉 =

∫
Ω

f(s) dµ(s) , C0(Ω) × M(Ω) → C .

Here ‖µ‖ = |µ| (Ω) for µ ∈M(Ω), where |µ| denotes the total variation
of the measure µ.

We denote by CB(Ω) the space of all bounded, continuous functions
on a non-empty, locally compact space Ω, so that (CB(Ω), | · |Ω) is also
a commutative C∗-algebra for the pointwise product and the uniform
norm. The character space of CB(Ω) is identified with βΩ, the Stone-
Čech compactification of Ω, and CB(Ω) is identified with C(βΩ). For
details, see [D, Chapter 4.2].
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Let A be a Banach algebra. A Banach A-bimodule is a Banach
space E such that E is an A-bimodule and

‖a · x‖ ≤ ‖a‖ ‖x‖ , ‖x · a‖ ≤ ‖a‖ ‖x‖ (a ∈ A, x ∈ E) .

Similarly, we define Banach left A-modules and Banach right A-modules.
For example, A itself is a Banach A-bimodule with respect to the prod-
uct in A. For each Banach A-bimodule E, the spaces AE and EA are
also Banach A-bimodules; the bimodule E is essential if

AE = EA = E .

Let A be a Banach algebra with a bounded approximate identity,
and let E be an essential Banach A-bimodule. Then E becomes a unital
Banach M(A)-bimodule in a natural way. The module operations
satisfy the following equations:

(L,R) · (a · x) = La · x ,
(x · a) · (L,R) = x · Ra ,

}
(a ∈ A, (L,R) ∈M(A), x ∈ E) .

We shall require the following version of Cohen’s factorization the-
orem ([BoDu, Chapter 11], [D, Chapter 2.9], [Pa2, Chapter 5.2]).

Theorem 2.3. (i) Let A be a Banach algebra with a bounded right
approximate identity. Then A[2] = A; if E is a Banach right A-module,
then EA = E · A, and, in particular, A′A = A′ · A.

(ii) Let A be a Banach algebra with a bounded approximate identity,
and let E be an essential Banach A-bimodule. Then E is neo-unital.2

In particular, A is neo-unital as a Banach A-bimodule, and so A
is a unital Banach M(A)-bimodule. Hence A′, A′′, . . . are all M(A)-
bimodules; in the case where A is commutative (so that M(A) is com-
mutative), they are symmetric. For details, see [D, Theorem 2.9.51];
the result is due to B. E. Johnson.

The following result is [LU, Theorem 2.6].

Proposition 2.4. Let A be a Banach algebra with a sequential
bounded approximate identity. Suppose that A is weakly sequentially
complete as a Banach space. Then (A′A)◦ = {0} if and only if A is
unital. 2

Let A be a Banach algebra, and let E be a Banach A-bimodule.
Then E ′ is also a Banach A-bimodule for the maps specified in (2.3).
Continuing, we see that E ′′, E ′′′, . . . are also Banach A-bimodules;
clearly κ(E) is a submodule of E ′′. In particular, A′ is the dual mod-
ule of A, and A′′ is the second dual module: the canonical embedding
κ : A → A′′ is a module monomorphism and we regard A as a closed



2. DEFINITIONS AND PRELIMINARY RESULTS 15

submodule of A′′. The canonical projection P : E ′′′ → E ′ is an A-
bimodule homomorphism, and so

(2.6) E ′′′ = E ′ ⊕ kerP = E ′ ⊕ (κE(E))◦

as a direct sum of Banach A-bimodules.
The space of continuous derivations from a Banach algebra A into

a Banach A-bimodule E is denoted by Z 1(A,E), and the subspace of
inner derivations is N 1(A,E); we set

H 1(A,E) = Z 1(A,E)/N 1(A,E) ,

the first Banach cohomology group of A with coefficients in E.

Definition 2.5. Let A be a Banach algebra. Then A is amenable
if H 1(A,E ′) = {0} for each Banach A-bimodule E, weakly amenable
if H 1(A,A′) = {0}, and 2-weakly amenable if H 1(A,A′′) = {0}.

For background information on these concepts (and the more gen-
eral definition of n-weakly amenable), see [BCD], [D], [DGhGr], [He1],
and [J1], for example. One of our aims in the present memoir is to
determine when certain Beurling algebras are 2-weakly amenable; this
will be achieved in Chapter 13.

The following definition is taken from [Ru1, Definition 1.1]; see also
[Ru2, Chapter 4.4].

Definition 2.6. Let A be a Banach algebra. Then A is a dual
Banach algebra if there is a closed submodule E of the dual module A′

such that E ′ = A; the space E is the predual of A.

Let A be a Banach algebra such that A = E ′ as a Banach space
for some Banach space E. Then it is easy to check that A is a dual
Banach algebra (with predual E) if and only if the map mA on A×A is
separately σ(A,E)-continuous. The predual of a dual Banach algebra
is not necessarily unique. (Our notion of a ‘dual Banach algebra’ is not
related to that specified in [BoDu, Definition 32.27].)

For example, a C*-algebra is a dual Banach algebra if and only if
it is a von Neumann algebra [Ru2, Example 4.4.2(c)].

Let A be a Banach algebra. There are two naturally defined prod-
ucts, which we denote by 2 and 3, on the Banach space A′′. See [D,
Chapter 2.7], [DuH], and [Pa2, Chapter 1.4] for a full discussion of
these products. We recall the definitions.

For λ ∈ A′ and Φ ∈ A′′, define λ · Φ and Φ · λ in A′ by the formulae:

(2.7) 〈a, λ · Φ〉 = 〈Φ, a · λ〉, 〈a, Φ · λ〉 = 〈Φ, λ · a〉 (a ∈ A) .
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Clearly the maps (Φ, λ) 7→ λ · Φ and (Φ, λ) 7→ Φ · λ from A′′ × A′

to A′ are both bilinear and bounded, with norms equal to 1. We see
immediately that (λ ·Φ) · a = λ · (Φ · a) and (a · λ) ·Φ = a · (λ ·Φ), etc.,
for each a ∈ A, λ ∈ A′, and Φ ∈ A′′. Suppose that A is commutative.
Then λ · Φ = Φ · λ (λ ∈ A′, Φ ∈ A′′).

Definition 2.7. Let A be a Banach algebra, and let Φ,Ψ ∈ A′′.
Then

(2.8) 〈Φ2Ψ, λ〉 = 〈Φ, Ψ · λ〉, 〈Φ3Ψ, λ〉 = 〈Ψ, λ · Φ〉 (λ ∈ A′) .
These products 2 and 3 are the first and second Arens products, re-
spectively, on A′′.

Clearly Φ2Ψ,Φ3Ψ ∈ A′′ whenever Φ,Ψ ∈ A′′, and both of the
maps (Φ,Ψ) 7→ Φ2Ψ and (Φ,Ψ) 7→ Φ3Ψ are bilinear and bounded,
with norms equal to 1. Notice also that

(2.9) (Φ2Ψ) · λ = Φ · (Ψ · λ) (Φ,Ψ ∈ A′′, λ ∈ A′) .
The Arens products are determined by the following formulae, where

all limits are taken in the σ(A′′, A′)-topology on A′′. Let Φ,Ψ ∈ A′′,
and take (aα) and (bβ) to be nets in A such that aα → Φ and bβ → Ψ.
Then

(2.10) Φ2Ψ = lim
α

lim
β
aαbβ, Φ3Ψ = lim

β
lim

α
aαbβ .

It follows from these formulae that both 2 and 3 are associative
products on A′′.

Theorem 2.8. The algebras (A′′, 2 ) and (A′′, 3 ) are Banach al-
gebras.

Proof. This is proved in [D, Chapter 2.6] and [Pa2, Chapter 1.4],
for example. �

It follows easily that the Banach space A′ is a Banach left (A′′, 2)-
module for the map (Φ, λ) 7→ Φ · λ and a Banach right (A′′, 3)-module
for the map (Φ, λ) 7→ λ · Φ.

Definition 2.9. The Banach algebra A is Arens regular if 2 and
3 coincide on A′′.

We regard A as a closed subalgebra of both (A′′, 2) and (A′′, 3)
by identifying A with κ(A). Note that

a2Φ = a3Φ = a · Φ and Φ2 a = Φ3 a = Φ · a
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for a ∈ A and Φ ∈ A′′. Let I be a closed ideal in a Banach algebra A.
Then (I ′′, 2 ) is a closed ideal in the Banach algebra (A′′, 2 ).

It is clear that (A′′, 3 ) = ((Aop)′′, 2 )op, and so we have

rad (A′′, 2 ) = rad ((Aop)′′, 3)

as subsets of A′′. In the case where A is commutative, it is imme-
diate that (A′′, 3 ) = (A′′, 2 )op, and so A is Arens regular if and
only if (A′′, 2) is commutative. Further, for A commutative, we have
rad (A′′, 2 ) = rad (A′′, 3 ) as subsets of A′′; each of these radicals is
nilpotent of index n if and only if the other has the same property.

Proposition 2.10. Let A be a Banach algebra with a radical R.
Then:

(i) (rad (A′′, 2 )) ∩ A ⊂ R; in the case where A is commutative,

(rad (A′′, 2 )) ∩ A = R ;

(ii) A is an ideal in (A′′, 2 ) if and only if the operators La and Ra

are both weakly compact for each a ∈ A.

Proof. These standard results are given in [D, Proposition 2.6.25]
and [Pa2, Proposition 1.4.13], respectively. �

It seems that no example is known for which (rad (A′′, 2 ))∩A 6= R,
in the above notation.

For a recent survey of results about Arens regularity, see [FiSi].

Let A be a Banach algebra, and let E be a Banach A-bimodule.
Then E ′′ is a Banach (A′′, 2)-bimodule in a natural way (see [DGhGr],
[D, Theorem 2.6.15(iii)], [Gou], and [G1]). Briefly, suppose that Φ ∈ A′′
and Λ ∈ E ′′, and take nets (aα) and (xβ) in A and E, respectively, such
that aα → Φ in (A′′, σ(A′′, A′)) and xβ → Λ in (E ′′, σ(E ′′, E ′)). Then

Φ · Λ = lim
α

lim
β
aα · xβ and Λ · Φ = lim

β
lim

α
xβ · aα

in (E ′′, σ(E ′′, E ′)).
Suppose that θ : A → B is a continuous homomorphism from A

into a Banach algebra B. Then B is a Banach A-bimodule for the maps

(a, b) 7→ θ(a)b and (a, b) 7→ b θ(a) ,

and the map θ′′ : (A′′, 2) → (B′′, 2) is a continuous homomorphism;
the module action on B′′ described above is given by

Φ · Λ = θ′′(Φ)2Λ, Λ · Φ = Λ2 θ′′(Φ) (Φ ∈ A′′, Λ ∈ B′′) ,

in this special case. In particular, suppose that A is a closed subalge-
bra of a Banach algebra B. Then we may regard (A′′,2) as a closed
subalgebra of (B′′,2).
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Lemma 2.11. Let A be a Banach algebra, and let E be a Banach
A-bimodule. Suppose that D : A→ E is a continuous derivation. Then

D′′ : (A′′, 2) → E ′′

is a continuous derivation.

Proof. This is [DGhGr, Proposition 1.7]. �

We shall use the following proposition in Chapter 13.

Proposition 2.12. Let A be a commutative Banach algebra with
a bounded approximate identity.

(i) The projection P : A′′′′ → A′′ is a M(A)-module homomor-
phism.

(ii) Let D : A → A′′ be a continuous derivation. Then there is a

continuous derivation D̃ : M(A) → A′′ such that D̃ | A = D.

Proof. (i) Take T ∈M(A), λ ∈ A′, and Φ ∈ A′′′′. Then

〈P (T · Φ), λ〉 = 〈T · Φ, κA′(λ)〉 = 〈Φ, κA′(λ) · T 〉
= 〈Φ, κA′(λ · T )〉 = 〈P (Φ), λ · T 〉 = 〈T · P (Φ), λ〉 ,

and so P (T · Φ) = T · P (Φ), as required.

(ii) By Lemma 2.11, D′′ : (A′′, 2) → A′′′′ is a continuous derivation.

Set D̃ = (P ◦ D′′) | M(A), so that D̃ : M(A) → A′′ is a continuous

linear operator. By (i), D̃ is a derivation, and clearly D̃ | A = D. �

Let A be a Banach ∗-algebra. Then the involution ∗ on A extends
to a linear involution ∗ on A′′, and

(2.11) (Φ 2Ψ)∗ = Ψ∗
3Φ∗ (Φ,Ψ ∈ A′′) .

Indeed, for λ ∈ A′, define λ� ∈ A′ by

〈a, λ�〉 = 〈a∗, λ〉 (a ∈ A) ,

and then, for Φ ∈ A′′, define Φ∗ ∈ A′′ by

(2.12) 〈Φ∗, λ〉 = 〈Φ, λ�〉 (λ ∈ A′) .
It is now easy to see that (2.11) holds. We note also that

(2.13) (Φ · λ)� = λ� · Φ (λ ∈ A′, Φ ∈ A′′) .
It follows from equation (2.11) that the map ∗ is an involution

on (A′′, 2 ) if and only if A is Arens regular. Let Φ ∈ A′′. Then
Φ ∈ rad (A′′, 2 ) if and only if Φ∗ ∈ rad (A′′, 3 ); again, each of these
radicals is nilpotent of index n if and only if the other has the same
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property. In the case where A is Arens regular, rad (A′′, 2 ) is a ∗-ideal
in (A′′, 2 ).

Let A be a Banach algebra, and let ϕ ∈ ΦA. Set ϕ̃ = κA′(ϕ) ∈ A′′′.
Then it is easily checked that ϕ̃ is a character on both (A′′, 2 ) and
(A′′, 3 ), and that the map ϕ 7→ ϕ̃ is an injection. However this map is
usually not continuous. In the case where lin ΦA is weak-∗ dense in A′

(which holds when A is a commutative C∗-algebra, for example), the
image κA′(ΦA) is dense in Φ(A′′,2 ).

Definition 2.13. Let A be a Banach algebra. An element Φ0 ∈ A′′
is a mixed identity for A′′ if it is a right identity for (A′′, 2) and a left
identity for (A′′, 3), so that

(2.14) Φ2Φ0 = Φ03Φ = Φ (Φ ∈ A′′) .

An element Φ0 ∈ A′′ is a mixed identity if and only if

(2.15) Φ0 · λ = λ · Φ0 = λ (λ ∈ A′) .
A mixed identity is not necessarily unique for a general Banach

algebra, but, in the case where A is Arens regular, a mixed identity
is the unique identity of (A′′, 2). Now suppose that A has a bounded
approximate identity (eα). Then (eα) has a σ(A′′, A′)-accumulation
point, say Φ0, in A′′, and Φ0 is a mixed identity for A′′. Conversely,
if A′′ has a mixed identity Φ0, then A has a bounded approximate
identity which converges to Φ0 in A′′. (See [BoDu, p. 146], [CiY],
[D, Proposition 2.9.16], or [Pa2, Proposition 5.1.8(a)] for more precise
results.)

The following result is given as [D, Theorem 2.9.49].

Theorem 2.14. Let A be a Banach algebra such that A′′ has a
mixed identity Φ0 with ‖Φ0‖ = 1. Then M(A) is a closed, unital
subalgebra of the Banach algebra B(A) × B(A)op, A is isometrically
isomorphic to a closed ideal in M(A), and the map

(2.16) κ : (L, R) 7→ Φ0 · (L, R) = R′′(Φ0), M(A) → (A′′, 2) ,

is an isometric embedding such that κ | A = κA. Further,

M(A) ⊂ Φ02A
′′ .

2

Let A be a dual Banach algebra, with predual space E, so that

E◦ = {Φ ∈ A′′ : Φ | E = 0} .
Then the canonical projection P : E ′′′ → E ′ gives a continuous linear
map P : A′′ → A, and now equation (2.6) can be written as

A′′ = A⊕ E◦
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as a direct sum of Banach A-bimodules. For each Φ ∈ A′′, there exists
a = P (Φ) ∈ A such that 〈Φ, λ〉 = 〈a, λ〉 (λ ∈ E), and clearly we have
Φ · λ = a · λ (λ ∈ E). It follows from (2.8) that

P (Φ2Ψ) = P (Φ) · P (Ψ) (Φ,Ψ ∈ A′′) ,
and so P : (A′′, 2 ) → (A, · ) is a homomorphism and E◦ is a closed
ideal in (A′′, 2 ). (See also [GhLaa, Theorem 2.2].) Consider the short
exact sequence

(2.17)
∑

: 0 −→ E◦ = kerP −→ (A′′, 2 )
P−→ (A, · ) −→ 0

of Banach algebras and continuous homomorphisms. Clearly P ◦ κA

is the identity map on A, and so κA is a splitting homomorphism for∑
. Thus

(2.18) (A′′, 2 ) = A n E◦

as a semidirect product. Similarly, the map P : (A′′, 3 ) → (A, · ) is a
homomorphism, E◦ is a closed ideal in (A′′, 3 ), and there is a strong
decomposition (A′′, 3 ) = A n E◦. Thus we have the following basic
theorem.

Theorem 2.15. Let A be a dual Banach algebra with predual space
E. Then we have (A′′, 2 ) = A n E◦ as a semidirect product. In the
case where A is semisimple,

(2.19) rad (A′′, 2 ) ⊂ E◦.
2

In general, rad (A′′, 2 ) 6= E◦. For example, in the case where A is a
C∗-algebra, as in Example 4.2, below, A is Arens regular and (A′′, 2 )
is semisimple, and indeed (A′′, 2 ) is a C*-algebra. In particular, for
a von Neumann algebra A with predual E, we have rad(A′′, 2 ) 6= E◦,
and it is certainly not true that Φ2Ψ = 0 (Φ,Ψ ∈ E◦). However, we
do have the following results.

Proposition 2.16. Let A be a dual Banach algebra, with predual
space E.

(i) Suppose that Φ2Ψ = Φ3Ψ = 0 (Φ,Ψ ∈ E◦). Then

(2.20) (a,Φ)2 (b,Ψ) = (a,Φ)3 (b,Ψ) = (ab, a · Ψ + Φ · b)
for a, b ∈ A and Φ,Ψ ∈ E◦, and A is Arens regular.

(ii) Suppose, further, that A is semisimple. Then

rad (A′′, 2 ) = rad (A′′, 3 ) = E◦ ,

and (A′′, 2 ) = An E◦ is a strong decomposition of (A′′, 2 ).



2. DEFINITIONS AND PRELIMINARY RESULTS 21

Proof. (i) This is immediate.

(ii) By hypothesis, the closed ideal E◦ is nilpotent in (A′′, 2 ) and
(A′′, 3 ), and so E◦ ⊂ rad(A′′, 2 ) and E◦ ⊂ rad (A′′, 3 ). Since A is
semisimple, rad(A′′, 2 ) ⊂ E◦ and rad(A′′, 3 ) ⊂ E◦. �

Suppose that A satisfies the following condition:

(2.21) Φ · λ, λ · Φ ∈ E whenever Φ ∈ E◦ and λ ∈ A′.
Take Φ,Ψ ∈ E◦. Then, by the definitions in equations (2.8), we have
Φ2Ψ = Φ3Ψ = 0, and so the further condition specified in the above
proposition is satisfied.

Suppose that A is a commutative Banach algebra and that we have
Φ2Ψ = 0 (Φ,Ψ ∈ E◦). Then we also have Φ3Ψ = 0 (Φ,Ψ ∈ E◦).
However this implication does not hold for general, non-commutative
Banach algebras A; see Theorem 10.12, below.

We now come to a key concept of this memoir.

Definition 2.17. Let A be a Banach algebra. Then the topological

centres Z
(1)
t (A′′) and Z

(2)
t (A′′) of A′′ are:

Z
(1)
t (A′′) = {Φ ∈ A′′ : Φ2Ψ = Φ3Ψ (Ψ ∈ A′′)} ;

Z
(2)
t (A′′) = {Φ ∈ A′′ : Ψ2Φ = Ψ3Φ (Ψ ∈ A′′)} .

Let Φ ∈ Z(A′′, 2 ). Then λ · Φ = Φ · λ (λ ∈ A′), and so, for each
Ψ ∈ A′′ and λ ∈ A′, we have

〈Φ2Ψ, λ〉 = 〈Ψ2Φ, λ〉 = 〈Ψ, Φ · λ〉 = 〈Ψ, λ · Φ〉 = 〈Φ3Ψ, λ〉 ,

whence Φ2Ψ = Φ3Ψ. Thus Z(A′′, 2 ) ⊂ Z
(1)
t (A′′). Similarly, we have

Z(A′′, 2 ) ⊂ Z
(2)
t (A′′).

It is easy to see that Z
(1)
t (A′′) and Z

(2)
t (A′′) are both ‖ · ‖-closed sub-

algebras of both (A′′,2) and (A′′,3), and that, for example, Z
(1)
t (A′′)

is the set of elements Φ ∈ A′′ such that the map

LΦ : Ψ 7→ Φ2Ψ, A′′ → A′′,

is continuous when A has the σ(A′′, A′)-topology. Clearly

(2.22) A ⊂ Z
(1)
t (A′′) ⊂ A′′ and A ⊂ Z

(2)
t (A′′) ⊂ A′′

in each case, and the algebra A is Arens regular if and only if either

Z
(1)
t (A′′) = A′′ or Z

(2)
t (A′′) = A′′, in which case the two topological cen-

tres are both equal to A′′. We shall see in Example 6.2 and Theorem
10.12, below, that these two topological centres may be different. How-

ever, in the case where A is commutative, Z
(1)
t (A′′) = Z

(2)
t (A′′) = Z(A′′),

the centre of both of the algebras (A′′,2) and (A′′,3).
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Let A be a Banach algebra. Then we have

Z
(1)
t (A′′) = Z

(2)
t ((Aop)′′) and Z

(2)
t (A′′) = Z

(1)
t ((Aop)′′) ;

in the case where A is a Banach ∗-algebra, it follows immediately from

(2.11) that, for each Φ ∈ A′′, we have Φ ∈ Z
(1)
t (A′′) if and only if

Φ∗ ∈ Z
(2)
t (A′′).

The two separate spaces Z
(1)
t (A′′) and Z

(2)
t (A′′) were first considered

in the paper [LU], where they are denoted by Z1 and Z2, respectively.
Some questions raised in [LU] are answered in [GhMMe]; see also [Gh-
Laa].

Let B be a closed subalgebra of A, so that (B′′, 2 ) and (B′′, 3 )
are ‖ · ‖-closed subalgebras of (A′′, 2 ) and (A′′, 3 ), respectively. Then
clearly we have

(2.23)
(
B′′ ∩ Z

(i)
t (A′′)

)
⊂ Z

(i)
t (B′′) (i = 1, 2) .

We shall see in Example 9.3 that the above inclusion can be strict.
Let I be a closed ideal in a Banach algebra A, set B = A/I, and

take q : A → B to be the quotient map, so that q′′ : A′′ → B′′ is a
continuous surjection with kernel I◦◦, identified with the weak-∗ closure
of I in A′′. Clearly I◦◦ is a closed ideal in (A′′, 2 ) and (A′′, 3 ), and
(B′′, 2 ) = (A′′, 2 )/I◦◦ and (B′′, 3 ) = (A′′, 3 )/I◦◦. Further,

(2.24) q′′
(
Z

(i)
t (A′′)

)
⊂ Z

(i)
t (B′′) (i = 1, 2) .

We shall see in Examples 4.3 and 4.6 that this inclusion can be strict.
The following terminology (but not the concept) is new.

Definition 2.18. Let A be a Banach algebra. Then A is left (res-

pectively, right) strongly Arens irregular if Z
(1)
t (A′′) = A (respectively,

Z
(2)
t (A′′) = A), and A is strongly Arens irregular if

Z
(1)
t (A′′) = Z

(2)
t (A′′) = A .

An easy example of a Banach algebra which is left strongly Arens
irregular, but not right strongly Arens irregular, will be given in Ex-
ample 4.5, below.

Let A be a dual Banach algebra, with predual E. Then A is strongly
Arens irregular if and only if, for each Φ ∈ E◦\{0}, there exist Ψ1 ∈ E◦

with Φ2Ψ1 6= Φ3Ψ1 and Ψ2 ∈ E◦ with Ψ22Φ 6= Ψ23Φ. Clearly A
is left strongly Arens irregular if and only if Aop is right strongly Arens
irregular.

Let A be a commutative Banach algebra. Then A is strongly Arens
irregular if and only if Z(A′′) = A.
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Proposition 2.19. Let A be a commutative Banach algebra. Sup-
pose that A′′ = A n I, where I is a nilpotent ideal of index n ≥ 2 in
(A′′, 2 ). Then In−1 ⊂ Z(A′′), and A is not strongly Arens irregular.

Proof. Let Φ ∈ In−1, and take Ψ ∈ I and a ∈ A. Then

Φ2 (a+ Ψ) = Φ · a = a · Φ = (a+ Ψ)2Φ ,

and so Φ ∈ Z(A′′). Since In−1 6⊂ A, the algebra A is not strongly Arens
irregular. �

The following is a typical short calculation involving a centre.

Proposition 2.20. Let A be a Banach algebra. Then

A′ · Z
(1)
t (A′′) ⊂ A′A .

Proof. Take λ ∈ A′ and Φ ∈ Z
(1)
t (A′′).

Let (aα) be a net in A with limα aα = Φ in the weak-∗ topology.
For each Ψ in A′′, we have

〈Ψ, λ · Φ〉 = 〈Φ3Ψ, λ〉 = 〈Φ2Ψ, λ〉 = 〈Φ, Ψ · λ〉
= limα〈aα, Ψ · λ〉 = limα〈Ψ, λ · aα〉 .

Thus λ · Φ belongs to the closure of A′A in the weak topology; by
Mazur’s theorem (see [D, Theorem A.3.29(ii)]), the latter set is A′A,
the ‖ · ‖-closure of A′A in (A′, ‖ · ‖). �

Theorem 2.21. Let A be a Banach algebra such that A′′ has a

mixed identity Φ0. Then Z
(2)
t (A′′) ⊂ Φ02A

′′. Suppose, further, that

A′A 6= A′. Then Φ0 6∈ Z
(1)
t (A′′) and A is not Arens regular.

Proof. Let Φ ∈ Z
(2)
t (A′′). Then Φ = Φ03Φ = Φ02Φ. This

shows that Z
(2)
t (A′′) ⊂ Φ02A

′′.

Set X = A′A. Assume towards a contradiction that Φ0 ∈ Z
(1)
t (A′′),

and take Ψ ∈ X◦. Then Φ03Ψ = Φ02Ψ. But Φ02Ψ = 0 and
Φ03Ψ = Ψ, and so Ψ = 0. This is a contradiction in the case where
X◦ 6= {0}. �

The following result was proved by Ülger by an elegant argument
in [U4, Theorem 3.3]. The result follows from Proposition 2.4 and
Theorem 2.21 in the case where A has a sequential bounded approx-
imate identity, and a short further argument gives the general result;
for details, see [D, Theorem 2.9.39].
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Theorem 2.22. Let A be a non-unital Banach algebra with a bound-
ed approximate identity. Suppose that A is weakly sequentially complete
as a Banach space. Then A is not Arens regular. 2



CHAPTER 3

Repeated Limit Conditions

There is a large variety of conditions that determine when a Banach
algebra is Arens regular. One of these involves a standard ‘repeated
limit’ condition that descends from a condition of Grothendieck [Gth],
and was first utilized in our context by Pym [Py1]. We describe this
condition. The results of this chapter are basically known, and can
be found in the reference [BJM] and [Y1]; however our notation and
formulations are different, and so we give the details.

Let S and T be non-empty sets, let f : S × T → C be a function,
and let (sm) and (tn) be two sequences in S and T , respectively. We
shall usually write

lim
m

lim
n
f(sm, tn) for lim

m→∞

(
lim

n→∞
f(sm, tn)

)
,

etc. We say that limm limn f(sm, tn) and limn limm f(sm, tn) are re-
peated limits of the double sequence (f(sm, tn) : m,n ∈ N). Similarly,
we write

Lim
x→∞

Lim
y→∞

f(x, y) for Lim
x→∞

(
Lim
y→∞

f(x, y)

)
for a function f : X × Y → C, where X and Y are locally compact
spaces.

We record the following well-known triviality, which will be used
several times.

Proposition 3.1. Let S and T be non-empty sets, and let

f : S × T → C

be a function. Suppose that (sα) and (tβ) are nets in S and T , res-
pectively, such that a = limα limβ f(sα, tβ) and b = limβ limα f(sα, tβ)
both exist. Then there are subsequences (sαm) and (tβn) of the nets
(sα) and (tβ), respectively, such that a = limm limn f(sαm , tβn) and
b = limn limm f(sαm , tβn).

Proof. Set aα = limβ f(sα, tβ) and bβ = limα f(sα, tβ) for each α
and β.

25
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We claim that there exist subsequences (sαm) of (sα) and (tβn) of
(tβ) such that:

|a− aαm| < 1/m ; |b− bβn| < 1/n ;
|bβn − f(sαm , tβn)| < 1/m (n ∈ Nm−1) ;
|aαm − f(sαm , tβn)| < 1/n (m ∈ Nn−1) .

First choose α1 and β1 so that |a− aα1| < 1 and |b− bβ1| < 1.
Now assume that α1, . . . , αk and β1, . . . , βk have been chosen appro-

priately. Choose αk+1 so that∣∣a− aαk+1

∣∣ < 1

k + 1
,
∣∣bβi

− f(sαk+1
, tβi

)
∣∣ < 1

k + 1
(i ∈ Nk) ,

and then choose βk+1 so that∣∣b− bβk+1

∣∣ < 1

k + 1
,
∣∣aαi

− f(sαi
, tβk+1

)
∣∣ < 1

k + 1
(i ∈ Nk+1) .

This continues the inductive construction of the sequences.
Clearly limn f(sαm , tβn) = aαm for each m ∈ N and limm aαm = a

and so a = limm limn f(sαm , tβn). Similarly, b = limn limm f(sαm , tβn).
�

The following terminology is a modification of that given in [BaR].

Definition 3.2. Let X and Y be non-empty sets, and let

f : X × Y → C
be a function. Then:

(i) f clusters on X × Y if

lim
m

lim
n
f(xm, yn) = lim

n
lim
m
f(xm, yn)

whenever (xm) and (yn) are sequences in X and Y , respectively, each
consisting of distinct points, and both repeated limits exist;

(ii) f 0-clusters on X × Y if

lim
m

lim
n
f(xm, yn) = lim

n
lim
m
f(xm, yn) = 0

whenever (xm) and (yn) are sequences in X and Y , respectively, each
consisting of distinct points, and both repeated limits exist.

Suppose that h : X × Y → C is bounded and that (xm) and (yn)
are sequences of distinct points in X and Y , respectively. Then we
can find subsequences (xmj

) and (ynk
) of (xm) and (yn), respectively,

such that the two repeated limits of (h(xmj
, ynk

) : j, k ∈ N) both exist.
This shows that h fails to 0-cluster on X × Y if and only if there exist
sequences (xm) and (yn) of distinct points in X and Y , respectively,
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such that one of the two repeated limits of (h(xm, yn) : m,n ∈ N) exists
and is non-zero. It also implies that f+g and fg both cluster on X×Y
whenever f, g : X × Y → C are both bounded functions that cluster
on X × Y .

There is a slight generalization of the above definition. Let k ∈ N
with k ≥ 2, let X1, . . . , Xk be non-empty sets, and let

f : X1 × · · · ×Xk → C

be a function. Then f clusters on X1 × · · · ×Xk if all k-fold repeated
limits of the sequence

(f(xn1 , . . . , xnk
) : (n1, . . . , nk) ∈ Nk)

are equal whenever all k! such limits exist, and f 0-clusters on the set
X1×· · ·×Xk if, further, all these limits are equal to 0. For a definition
that is more generally applicable, see [Y1].

The following result of Grothendieck [Gth] is contained in [BJM,
Chapter 4, Theorem 2.3], for example. We give a proof (essentially
from [Y1, Theorem 1]) for completeness and because we shall require
the exact form of the result at some key points.

Let X and Y be non-empty, locally compact sets, and let

f : X × Y → C

be a bounded, separately continuous function. For y ∈ Y , we set

fy : x 7→ f(x, y), X → C ,

and we regard fy as an element of CB(X) = C(βX); we then set

f(x, y) = fy(x) (x ∈ βX, y ∈ Y ) .

In the next two results, we set F = {fy : y ∈ Y }.

Theorem 3.3. Let X and Y be non-empty, locally compact spaces,
and let f : X × Y → C be a bounded, separately continuous function.
Then the following conditions are equivalent:

(a) F is relatively weakly compact in C(βX);

(b) F is relatively weakly sequentially compact in C(βX);

(c) 〈F〉 is relatively weakly sequentially compact in C(βX);

(d) f clusters on X × Y ;

(e) f has an extension to a unique separately continuous function
f : βX × βY → C.
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Proof. (a) ⇔ (b) This is the Eberlein–Smulian theorem.

(a) ⇔ (c) This is the Krein–Smulian theorem.

(a) ⇒ (d) Assume that F is relatively weakly compact in C(βX),
and take (xm) and (yn) to be sequences in X and Y , respectively, such
that the two repeated limits of (f(xm, yn) : m,n ∈ N) both exist. Let
h ∈ C(βX) be a weak accumulation point of {fyn : n ∈ N}, and let x
be an accumulation point of {xm : m ∈ N} in βX. Then

lim
n

lim
m
f(xm, yn) = lim

n
fyn(x) = h(x)

and

lim
m

lim
n
f(xm, yn) = lim

m
h(xm) = h(x) ,

where we are using the fact that various limits exist, and so f clusters
on X × Y .

(d) ⇒ (b) We shall first show that F is relatively compact in the
pointwise topology of C(βX). Choose k > 0 such that

|f(x, y)| ≤ k (x ∈ X, y ∈ Y ) ,

and regard F as a subset of the compact space
∏
{Dx : x ∈ βX},

where Dx = D(0; k) for each x ∈ βX. Take h to be an element of the
closure of F in this space.

We claim that h is continuous on βX. For assume towards a contra-
diction that this is not the case. Then there exists x0 ∈ βX and δ > 0
such that each neighbourhood of x0 in βX contains a point x ∈ X such
that |h(x0)− h(x)| ≥ δ. Construct sequences (xm) in X and (yn) in Y
as follows. First choose any y1 ∈ Y , and then choose x1 ∈ X so that

|f(x0, y1)− f(x1, y1)| < 1 and |h(x1)− h(x0)| ≥ δ ;

this is possible because the function fy1 is continuous on the space X.
Having specified x1, . . . , xn in X and y1, . . . , yn in Y , choose yn+1 ∈ Y
such that

|f(xi, yn+1)− h(xi)| < 1/n (i ∈ Z+
n ) ,

and then choose xn+1 ∈ X \ {x1, . . . , xn} such that

|f(x0, yi)− f(xn+1, yi)| < 1/n (i ∈ Nn+1)

and

|h(x0)− h(xn+1)| ≥ δ ;

again, this is possible because the functions fy1 , . . . , fyn+1 are each
continuous on the space X. We obtain sequences (xm) in X and (yn) in
Y . The sequence (xm) consists of distinct points. Assume that yn = y
for infinitely many n ∈ N. Then f(xm, y) = h(xm) (m ∈ N) and
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limm f(xm, y) = h(x0), a contradiction. Hence we may suppose that
the sequence (yn) consists of distinct points.

Clearly

lim
n

lim
m
f(xm, yn) = lim

n
f(x0, yn) = h(x0)

and limn f(xm, yn) = h(xm) (m ∈ N). By passing to a subsequence
of the sequence (xm), we may suppose that limm h(xm) = α for some

α ∈ D(0; k); we have |h(x0)− α| ≥ δ. It is now the case that the two
repeated limits of the double sequence (f(xm, yn) : m,n ∈ N) both
exist (being h(x) and α, respectively), but that these two limits are
unequal. Since f clusters on X × Y , this is a contradiction, and so
h ∈ C(βX), as claimed.

Now let (fn) be a sequence in F . Then, by passing to a subsequence,
we may suppose that there exists h ∈ C(βX) such that fn → h point-
wise on βX. By the dominated convergence theorem,∫

βX

fn dµ→
∫

βX

h dµ

for each measure µ on βX, and so fn → h weakly. Thus F is relatively
weakly sequentially compact.

(d) ⇔ (e) This is now clear. �

The following famous condition of Grothendieck is an easy corollary
of the above result.

Proposition 3.4. Let E and F be Banach spaces, and suppose that
T ∈ B(E,F ). Then T is weakly compact if and only if the function

(x, λ) 7→ 〈Tx, λ〉, E × F ′ → C ,

clusters on E[1] × F ′
[1]. 2

Proposition 3.5. Let X and Y be non-empty, locally compact
spaces, and let f : X × Y → C be a bounded, separately continuous
function that 0-clusters on X × Y . Let x ∈ βX \X and ε > 0. Then
there is a finite subset F of Y such that |f(x, y)| < ε (y ∈ Y \ F ).

Proof. Assume towards a contradiction that there is no such set
F . Then there is a sequence (yn) of distinct points of Y such that

|f(x, yn)| ≥ ε (n ∈ N) .

Since f clusters on X × Y , it follows from Theorem 3.3 that F is
relatively weakly sequentially compact in C(βX), and so, passing to a
subsequence of (yn), there exists h ∈ C(βX) such that fyn → h weakly
in C(βX). Inductively choose a sequence (xm) of distinct points in X
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so that |f(xm, yn)| > ε/2 (n ∈ Nm) for each m ∈ N. We may suppose
that the two repeated limits of (f(xm, yn) : m,n ∈ N) both exist, say
α = limn limm f(xm, yn). Then |α| ≥ ε/2, a contradiction of the fact
that f 0-clusters on X × Y .

This establishes the result. �

The following result is similar to Theorem 3.3; see [Y1, Corollary 1
to Theorem 2].

Proposition 3.6. Let k ∈ N with k ≥ 2, let X1, . . . , Xk be non-
empty, locally compact spaces, and let f : X1 × · · · × Xk → C be a
bounded, separately continuous function. Then the function f has an
extension to a separately continuous function f : βX1×· · ·×βXk → C
if and only if f clusters on X1 × · · · ×Xk. Further, in this case,

f | (βX1 \X1) × · · · × (βXk \Xk) = 0

if and only if f 0-clusters on X1 × · · · ×Xk. 2

The concepts defined in the next definition will be required in Chap-
ter 12; although more general definitions could be given, we restrict
ourselves to bounded, continuous functions f .

Definition 3.7. Let X and Y be non-empty, locally compact spaces,
and let f : X × Y → C be a bounded, continuous function. Then:

(i) f 0-clusters strongly on X×Y if

Lim
x→∞

Lim sup
y→∞

f(x, y) = Lim
y→∞

Lim sup
x→∞

f(x, y) = 0 ;

(ii) f 0-clusters locally uniformly on X × Y if

lim
α

lim sup
β

sup
Kα×Lβ

f = lim
β

lim sup
α

sup
Kα×Lβ

f = 0

whenever (Kα) and (Lβ) are nets of compact subsets of X and Y ,
respectively, such that Lim αKα = Lim β Lβ = ∞.

Let f : N× N → C be a function. We note that

Lim
x→∞

Lim sup
y→∞

f(x, y) = 0

if and only if, for each ε > 0, there exists m0 ∈ N such that, for each
m ≥ m0, there exists n(ε,m) ∈ N such that

|f(m,n)| < ε (n ≥ n(ε,m)) .

Let f : X × Y → C be bounded and continuous. Then there
is a reformulation of the definition of ‘f 0-clusters strongly’ which is
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convenient. Let f,X, and Y be as in the definition. For each ε > 0
and x ∈ X, define

Yε,x = {y ∈ Y : |f(x, y)| ≥ ε} ,
so that Yε,x is a closed subset of Y . Next, for each ε > 0, define

Xε = {x ∈ X : Yε,x is not compact } .
Then it is easily checked that Lim x→∞ Lim y→∞ f(x, y) = 0 if and only
if Xε is compact for each ε > 0.

Suppose that f 0-clusters locally uniformly on X × Y . Then cer-
tainly f 0-clusters strongly on X×Y . The following trivial remark will
be useful.

Proposition 3.8. Let X and Y be non-empty sets, and let

f : X × Y → C
be a bounded function. Suppose that f 0-clusters strongly on X × Y .
Then f 0-clusters on X × Y . 2

We note that the converse to the above proposition fails. To see
this, take X = Y = N, and let {Sn : n ∈ N} be a partition of N,
with each Sn infinite. Define f : N × N → C by setting f(m,n) = 1
whenever m ∈ Sn and f(m,n) = 0 otherwise. Then, for each m ∈ N,
we have lim supn f(m,n) = 1, and so f does not 0-cluster strongly on
N × N. Now let (mj) and (nk) be sequences in N, each consisting of
distinct points. For each k ∈ N, we have f(mj, nk) = 1 for at most one
value of j ∈ N, and so limj f(mj, nk) = 0. Suppose that

α := lim
j

lim
k
f(mj, nk)

exists. Either there exist j0, k0 ∈ N such that yk ∈ Sj0 (k ≥ k0),
in which case f(mj, nk) = 0 (j > j0, k ≥ k0) and α = 0, or, for
each j ∈ N, only finitely many points nk belong to Sj, in which case
limk f(mj, nk) = 0 (j ∈ N), and again α = 0. Hence f 0-clusters on
N× N.

We again give a small generalization of the above notations. Let
k ∈ N with k ≥ 2, let X1, . . . , Xk be non-empty sets, and let

f : X1 × · · · ×Xk → C
be a function. Then f 0-clusters strongly on X1× · · · ×Xk if all k-fold
limits of the form

Lim
xσ(1)

· · ·Lim
xσ(k)

f(xn1 , . . . , xnk
)

are 0; here σ is one of the k! permutations of Nk.
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Definition 3.9. Let A be a Banach algebra. A linear functional
λ ∈ A′ is almost periodic (respectively, weakly almost periodic) if the
map

a 7→ a · λ, A→ A′ ,

is compact (respectively, weakly compact).

Specifically, an element λ of A′ is weakly almost periodic if and only
if the σ(A′, A′′)-closure S in A′ of the set A[1] · λ is σ(A′, A′′)-compact.
Since S is Hausdorff in the σ(A′, A)-topology, the weak and weak-∗
topologies of A′ agree on A[1] · λ. Also note that, by Mazur’s theorem,
S is the ‖ · ‖-closure of A[1] · λ in this case.

Definition 3.10. The spaces of almost periodic and weakly almost
periodic functionals on the Banach algebra A are denoted by AP (A)
and WAP (A), respectively.

Both AP (A) and WAP (A) are ‖ · ‖-closed A-submodules of A′;
clearly, AP (A) ⊂ WAP (A). Let ϕ ∈ ΦA. By (2.4), A · ϕ = Cϕ, and
so

(3.1) ΦA ⊂ AP (A) .

Let λ ∈ A′. It follows from Proposition 3.4, as pointed out in [Py1],
that λ is weakly almost periodic if and only if

(3.2) lim
m

lim
n
〈ambn, λ〉 = lim

n
lim
m
〈ambn, λ〉

whenever (am) and (bn) are sequences in A[1] and both repeated limits
exist, and hence λ is weakly almost periodic if and only if λ ◦ mA

clusters on A[1] × A[1]. In particular, λ ∈ WAP (A) if and only if
the map a 7→ λ · a, A→ A′, is weakly compact. We easily obtain the
following characterization of WAP (A), first given in [Py1].

Proposition 3.11. Let A be a Banach algebra, and let λ ∈ A′.
Then we have λ ∈ WAP (A) if and only if

〈Φ2Ψ, λ〉 = 〈Φ3Ψ, λ〉 (Φ,Ψ ∈ A′′) .
2

The following result is essentially [L4, Proposition 3.3].

Proposition 3.12. Let A be a Banach algebra with a bounded
approximate identity. Then WAP (A) and AP (A) are neo-unital Ba-
nach A-bimodules, and

AP (A) ⊂ WAP (A) ⊂ (A′ · A) ∩ (A · A′).



3. REPEATED LIMIT CONDITIONS 33

Proof. Take E to be WAP (A) or AP (A), so that E is a Banach
A-bimodule.

Let (eα) be a bounded approximate identity in A, say the bound is
m = sup α ‖eα‖.

Let λ ∈ E, and take S to be the σ(A′, A′′)-closure of A[m] · λ, so
that S is compact in the σ = σ(A′, A′′)-topology. The net (eα · λ)
is contained in S, and so we may suppose that (eα · λ) converges in

(S, σ), say eα · λ
σ→ µ ∈ S. For each a ∈ A, we have

〈a, µ〉 = lim
α
〈a, eα · λ〉 = lim

α
〈aeα, λ〉 = 〈a, λ〉

because (eα) is a right approximate identity, and so µ = λ. It follows
that λ belongs to the σ-closure of S, and hence to AE. Similarly,
λ ∈ EA. This show that E is an essential A-bimodule.

By Cohen’s factorization Theorem 2.3(ii), the A-bimodule E is a
neo-unital. The result follows. �

We shall see in Example 4.9 and in Chapter 5 various results that
show the limits of the above theorem. For a further discussion of the
spaces AP (A) and WAP (A), see [DuU].

Proposition 3.13. Let A be a Banach algebra, and let λ ∈ A′.
Suppose that there are a reflexive space E and bounded linear operators
U : A→ E ′ and V : A→ E such that

〈ab, λ〉 = 〈V b, Ua〉 (a, b ∈ A) .

Then λ is weakly almost periodic.

Proof. Let (am) and (bn) be two sequences in A[1] such that

α := lim
m

lim
n
〈ambn, λ〉 and β := lim

m
lim

n
〈ambn, λ〉

both exist. Then limm limn〈V bn, Uam〉 and limm limn〈V bn, Uam〉 both
exist, and are equal to α and β, respectively. Since E is reflexive, the
closed unit ball E[1] is weakly compact, and so α = β by Proposition
3.4. It follows that the equality (3.2) holds, and so λ ∈ WAP (A). �

The unit ball S := A[1] is a semigroup, and each λ ∈ A′ defines
an element of `∞(S). Suppose that λ is almost periodic. Then S · λ
is relatively compact in (`∞(S), | · |S), and so λ · S is also relatively
compact in {`∞(S), | · |S); see [BJM, p. 130]. In particular, we see that
λ ∈ AP (A) if and only if the map a 7→ λ · a, A→ A′, is compact.

The following characterization of Arens regularity is taken from [D,
Theorem 2.6.17], [DuH], and [Pa2, 1.4.11], where more general versions
are given; original sources include [Py1] and [Y1, Theorem 10].
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Theorem 3.14. Let A be a Banach algebra. Then the following
conditions on A are equivalent:

(a) A is Arens regular;

(b) for each Φ ∈ A′′, the map LΦ : Ψ 7→ Φ2Ψ is continuous on the
space (A′′, σ(A′′, A′));

(c) for each λ ∈ A′, the function λ ◦ mA clusters on A[1] × A[1];

(d) WAP (A) = A′. 2

We note the following standard corollary.

Corollary 3.15. Let A be an Arens regular Banach algebra. Then
closed subalgebras of A and quotients of A by a closed ideal are all also
Arens regular. 2

Corollary 3.16. Let A be a Banach algebra. Then (A′′, 2 ) is a
dual Banach algebra if and only if A is Arens regular. 2



CHAPTER 4

Examples

In this chapter, we shall describe a considerable number of specific
examples; we shall give information about the products 2 and 3 on
A′′ for a Banach algebra A, and we shall also give a little information on
continuous derivations from A. Most examples summarize and extend
work that already exists in the literature.

There are various known results on the topological centres of related
Banach algebras.

First, let A and B be Banach algebras, and let C = A ⊕ B as a
Banach space, taking

‖(a, b)‖ = ‖a‖+ ‖b‖ (a ∈ A, b ∈ B),

for example. Then C is a Banach algebra for the product

(a1, b1)(a2, b2) = (a1a2, b1b2) (a1, a2 ∈ A, b1, b2 ∈ B).

We have C ′′ = A′′ ⊕B′′. It is straightforward to check that

(Φ1,Ψ1)2 (Φ2,Ψ2) = (Φ12Φ2,Ψ12Ψ2) ,

(Φ1,Ψ1)3 (Φ2,Ψ2) = (Φ13Φ2,Ψ13Ψ2) ,

for Φ1,Φ2 ∈ A′′ and Ψ1,Ψ2 ∈ B′′, and so

(4.1) Z
(j)
t (C ′′) = Z

(j)
t (A′′)⊕ Z

(j)
t (B′′) (j = 1, 2) .

Now let (An) be a sequence of Banach algebras, and set A = c0(An),
so that A is a Banach algebra for the coordinatewise operations (see
[D, Example 2.1.18(iii)]). Then we identify A′ with ` 1(A′n) and A′′ with
`∞(A′′n). It is easy to check that

(Φn)2 (Ψn) = (Φn2Ψn) and (Φn)3 (Ψn) = (Φn3Ψn)

for (Φn), (Ψn) ∈ A′′), and so

Z
(j)
t (A′′) = `∞

(
Z

(j)
t (A′′n)

)
(j = 1, 2) .

In particular, A is Arens regular whenever each An is Arens regular.
Here is a related result, due to Ülger [U2]. Let A be a Banach

algebra, and let Ω be a compact space. Then A := C(Ω, A) is also a

35
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Banach algebra, as in [D, Example 2.1.18(iv)]. Suppose that A is Arens
regular. Then A is also Arens regular.

Again let (An) be a sequence of Banach algebras, and now consider
the space A = `∞(An), so that A is a Banach algebra for the coordi-
natewise operations. Suppose that each algebra An is Arens regular.
In general, it is not true that A is also Arens regular; examples of a
sequence (An) of finite-dimensional algebras such that `∞(An) is not
Arens regular are given in [Py2] and [PyU]. In Example 9.2, we shall
give another example using the Beurling algebras that we are consid-
ering.

Finally in this area, we again let (An) be a sequence of Banach
algebras, and now consider the space A = ` 1(An), so that A is a Banach
algebra for the coordinatewise operations. Then it is shown by Arikan
in [Ark] that A is Arens regular if and only if each Banach algebra An

is Arens regular.
Let A and B be Banach algebras, and let A ⊗̂B be their projective

tensor product, as in [D, Theorem 2.1.22]. The question of the Arens
regularity of A ⊗̂B is studied in [U1]. Unfortunately, however, some
of the results of [U1] are incorrect; we are indebted to Colin Graham
for this information. Indeed, assertions 4.12 and 4.20–4.23 of [U1] are
all false. To see this, take Ω to be a compact, totally disconnected set.
Then C(Ω) ⊗̂C(Ω) contains an isomorphic copy of the group algebra
L1(D), where D = ZN

2 is the Cantor group (see below and [GrmMc] for
notation), as a closed subalgebra. Since L1(D) is not Arens regular,
C(Ω) ⊗̂C(Ω) cannot be Arens regular. It is proved in [U1, Corollary
4.17] that the Banach algebra c 0 ⊗̂A is Arens regular for each C∗-
algebra A.

Let Ω be an arbitrary infinite, compact space, and set

A = C(Ω) ⊗̂C(Ω) .

Then it has been proved by Colin Graham that the centre Z(A′′) con-
tains a closed subalgebra isometrically isomorphic to C(Ω)′′ ⊗̂C(Ω)′′,
and so A is not strongly Arens irregular.

We now give some more specific examples.

Example 4.1. Let A = ` 1 = ` 1(N), with pointwise product. Then
A is a commutative, semisimple Banach algebra which is a dual Banach
algebra with predual c0. We have ((` 1)′′, 2 ) = ` 1 n c◦0.

Take a ∈ A and λ ∈ A′ = `∞. Then, by calculation, λ · a, a · λ ∈ c0.
Now take Φ ∈ (` 1)′′, a ∈ A, and Ψ ∈ c◦0. Then 〈a ·Ψ, λ〉 = 〈Ψ, λ · a〉 = 0
for each λ ∈ `∞, and so a ·Ψ = 0. Thus Φ2Ψ = 0. Similarly Ψ · a = 0.
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It follows that the product 2 in ` 1 n c◦0 is specified by

(a, Φ)2 (b, Ψ) = (ab, 0) (a, b ∈ A, Φ,Ψ ∈ c◦0) .
This shows that (A′′, 2 ) is a commutative Banach algebra and that A
is Arens regular; by Proposition 2.16, we have rad(A′′, 2 ) = c◦0.

In fact, we can identify `∞ with C(βN) and A′′ with M(βN), as in
Chapter 1, so that c◦0 = M(βN \ N). In particular, A is a closed ideal
in (A′′, 2 ).

This examples originates with Civin and Yood [CiY]; for details,
see [D, Example 2.6.22(iii)]. 2

Example 4.2. Let A be a C∗-algebra. Then the algebra A has a
∗-representation as a closed and ∗-closed subalgebra of B(H), where H
is a Hilbert space. Suppose that every state on A# has the form

T 7→ [Tx, x], A# → C ,

for some x ∈ H. Then the ∗-representation of A is said to be universal .
Every C∗-algebra has a universal ∗-representation. In this case, A′′ is
identified with the von Neumann algebra which is the second commu-
tant of A in B(H); this latter algebra is also equal to the closure of A
in both the weak operator and strong operator topologies, and is called
the enveloping von Neumann algebra of A. See [D, Chapter 3.2], and
[Ta, III.2] for details.

It is standard (e.g., [D, Theorem 3.2.36]) that both of the products
2 and 3 on A′′ coincide with the given product in B(H) for elements
of A′′, and that the linear involution that we have specified on A′′

coincides with the restriction of the involution on B(H). In particular,
every C∗-algebra A is Arens regular, and (A′′,2) is also a C∗-algebra.

The first proofs of the fact that each C∗-algebra is Arens regular
were given by Sherman [Sh] and by Takeda [Td]; see also [CiY].

A different method of showing that a C∗-algebra is Arens regu-
lar and that the second dual is a C∗-algebra uses the Vidav–Palmer
theorem; see [BoDu, Theorem 38.19].

It is even true that a Banach algebra A which is a C∗-algebra with
respect to a different product is still Arens regular: this follows from
a theorem of Akemann [Ak] that every continuous linear map from a
C∗-algebra A into A′ is weakly compact, and so WAP (A) = A′. Thus
A is Arens regular by Theorem 3.14.

Let H be a Hilbert space. Then it follows from Corollary 3.15 that
every closed subalgebra of B(H) is also Arens regular. See also [ER]
for this remark.

Let A = C0(Ω) be the commutative C∗-algebra of all continuous
functions that vanish at infinity on a non-empty locally compact space
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Ω. Then A′′ is the algebra C(Ω̃) for some extremely disconnected,

compact space Ω̃ [D, Theorem 4.2.29]. In particular,

c′′0 = `∞ = C(βN) .

There is a massive theory which explains when a C*-algebra is
amenable; for a summary with references, see [D, Chapter 5.7], and,
for a clear, stream-lined account, see [Ru2, Chapter 6]. A C*-algebra
is always weakly amenable (see [D, Theorem 5.6.77], where the proof
is taken from [HaLaus]) and 2-weakly amenable [DGhGr]. 2

Example 4.3. LetG be a locally compact group, and let (L1(G), ? )
be the group algebra of G (see below). Then L1(G) is a Banach algebra
which is Arens regular if and only if G is finite. This was proved for
abelian groups G by Civin and Yood [CiY] and in the general case by
Young [Y2]. Indeed L1(G) is always strongly Arens irregular. This was
first proved in the case where G is abelian by M. Grosser and Losert
[GLos] (see also Parsons [Par]). It was then proved in the case where G
is compact in [IPyU], and in the general case in [LLos1]; see also [LU,
Corollary 5.5 and p. 1210], where we note that Lemma 5.3 of [LU] is
not quite precise, and that Theorem 5.4 may not be true. A new and
shorter proof of a slightly stronger result has been given recently by
Neufang [N1]. We shall prove a generalization of the result in Theorem
12.3.

In [Si], the group algebra (L1(G), ? ) is considered with different
topologies with respect to which it is a locally convex algebra, and
related results are obtained.

It follows from Corollary 3.15 that, in the case where G is infinite,
the group algebra L1(G) is never a closed subalgebra or the quotient
of a C∗-algebra.

Let A = ` 1(Z), identified with A(T) ⊂ C(T) in the standard way.
Let E be a Helson subset of T, so that B, defined to be

{f | E : f ∈ A(T)} ,

is equal to C(E). Then A is strongly Arens irregular, but its quotient
B is Arens regular, and so the inclusion in (2.24) is strict in this case.

It is a famous theorem of Johnson [J1] that the Banach algebra
L 1(G) is amenable if and only if the locally compact group G is amen-
able (see Definition 7.36, below). It is a further theorem of Johnson [J2]
that the Banach algebra L 1(G) is always weakly amenable; for a shorter
proof, due to Despic and Ghahramani [DesGh], see [D, Theorem 5.6.48].
It is not known whether or not L 1(G) is always 2-weakly amenable; this
is certainly true if G is an amenable group, and it is true when G is the
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(non-amenable, discrete) group F2, the free group on two generators
[J3].

An algebra closely related to the group algebra L1(G) is the measure
algebra M(G) of G (see Chapter 7, below).

The question whether or not M(G) is strongly Arens irregular was
raised in [GhL2]. This was partially solved by Neufang in [N4]: this
is the case whenever G is a locally compact, non-compact group with
κ(G) (see Definition 6.39) a non-measurable cardinal (see Chapter 11).

It has recently been determined when M(G) is amenable and when
it is weakly amenable [DGhH]: M(G) is amenable if and only if the
locally compact group G is discrete and amenable, and M(G) is weakly
amenable if and only if G is discrete. 2

The above two examples exhibit the ‘extreme’ cases in the inclusions
of (2.22). It is easy to find intermediate cases; more natural examples
of the intermediate situation will be given in Examples 6.2 and 9.7,
below.

Example 4.4. Let A and B be Banach algebras, and set C = A⊕B,

as above, so that Z
(j)
t (C ′′) = Z

(j)
t (A′′)⊕ Z

(j)
t (B′′) (j = 1, 2). By taking

A to be Arens regular and B to be strongly Arens irregular, we obtain
algebras C which are neither Arens regular nor strongly Arens irregular.

Let A be a Banach ∗-algebra. We have noted that the involution

extends to a linear involution on A′′ that maps Z
(1)
t (A′′) onto Z

(2)
t (A′′).

The following is the basis of an example that will show in due course

that we can have Z
(1)
t (A′′) 6= Z

(2)
t (A′′); see Examples 6.3 and 10.13.

Let A be a Banach algebra, and suppose that there is a linear
involution a 7→ a on A such that

ab = a b (a, b ∈ A) .

It is easily checked that this linear involution extends to a linear in-
volution Φ 7→ Φ on A′′ such that Φ2Ψ = Φ2Ψ (Φ,Ψ ∈ A′′). Thus
Φ ∈ rad (A′′, 2 ) if and only if Φ ∈ rad (A′′, 2 ).

Set C = A⊕ Aop, and, for a, b ∈ A, define

(a, b)∗ = (b, a) .

We claim that ∗ is an involution on C. Certainly ∗ is a linear involution.
Further, for a1, a2, b1, b2 ∈ A, we have

((a1, b1)(a2, b2))
∗ = (a1a2, b2b1)

∗ = (b2 b1, a1 a2)

and

(a2, b2)
∗(a1, b1)

∗ = (b2, a2)(b1, a1) = (b2 b1, a1 a2) ,
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and so ∗ is indeed an involution. The algebra (C, ∗) is a Banach ∗-
algebra. As before, the involution extends to a linear involution on C ′′;
indeed, we have (Φ,Ψ)∗ = (Ψ,Φ) (Φ,Ψ ∈ A′′).

It is clear that

Z
(1)
t (C ′′) = Z

(1)
t (A′′)⊕ Z

(2)
t (A′′) and Z

(2)
t (C ′′) = Z

(2)
t (A′′)⊕ Z

(1)
t (A′′) .

Thus, in the case where Z
(1)
t (A′′) 6= Z

(2)
t (A′′), we shall obtain a Banach

∗-algebra C such that Z
(1)
t (C ′′) 6= Z

(2)
t (C ′′).

Temporarily, we define B = Aop, R = rad (A′′, 2 ) = rad (B′′, 3 ),
and S = rad (B′′, 2 ) = rad (A′′, 3 ). Then we see that

rad (C ′′, 2 ) = R⊕ S, rad (C ′′, 3) ) = S ⊕R .

It follows that rad (C ′′, 2 ) 6= rad (C ′′, 3) whenever S 6= R; we shall
give examples of this situation in Example 6.3. It is reassuring that
our calculations show that (Φ,Ψ) ∈ rad (C ′′, 2 ) if and only if we have
(Φ,Ψ)∗ ∈ rad (C ′′, 3 ), as predicted earlier. 2

The following example is based on one given in [GhMMe].

Example 4.5. Let A be a Banach algebra, and let E be a Banach
A-bimodule. Then the Banach space

A = A⊕ E

is a Banach algebra for the product specified by

(a, x)(b, y) = (ab, a · y + x · b) (a, b ∈ A, x, y ∈ E) .

For details of this standard construction, see [D, p. 39]. The topo-

logical centre Z
(1)
t (A′′) is identified in [GhMMe]. Indeed, it consists of

the elements of the form (Φ,Λ) ∈ A′′ = A′′ ⊕ E ′′ such that:

(i) Φ ∈ Z
(1)
t (A′′);

(ii) the map M 7→ Φ · M is continuous on (E ′′, σ(E ′′, E ′));

(iii) the map Ψ 7→ Λ ·Ψ is continuous from the space (A′′, σ(A′′, A′))
to (E ′′, σ(E ′′, E ′)).

Now suppose that A is left strongly Arens irregular, so that we have

Z
(1)
t (A′′) = A. Then Z

(1)
t (A′′) consists of the elements (a,Λ) ∈ A⊕ E ′′

such that the map Ψ 7→ Λ · Ψ is continuous from (A′′, σ(A′′, A′)) to
(E ′, σ(E ′′, E ′)). In particular, in the case where EA = {0}, so that

Λ · Ψ = 0 for each Λ ∈ E ′′ and Ψ ∈ A′′, we have Z
(1)
t (A′′) = A ⊕ E ′′.

However, in the case where E = A and the left module operation on E
is the product in A, the map Ψ 7→ Λ · Ψ = Λ2Ψ is continuous if and

only if Φ ∈ A, and so Z
(1)
t (A′′) = A⊕ E ′′ = A.
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We now suppose that A is strongly Arens irregular, and take E = A
as a Banach space, setting

a · x = ax, x · a = 0 (a ∈ A, x ∈ E) .

Then we have seen that Z
(1)
t (A′′) = A, and so A is left strongly Arens

irregular.
The product in the opposite algebra Aop is given by

(a, x) · (b, y) = (ba, bx) (a, b, x, y ∈ A) ,

and so Z
(1)
t (A′′) = Z

(1)
t ((Aop)′′) = A⊕A′′. In this case A is not strongly

Arens regular whenever A is not reflexive as a Banach space.
Thus we can take A = (L1(G), ? ) for an infinite locally compact

group G, and set A = A ⊕ A, with the above product, to obtain a
Banach algebra that is left strongly Arens irregular, but that is not
right strongly Arens irregular. 2

An earlier example of a Banach algebra A which is left strongly
Arens irregular, but that is not right strongly Arens irregular, was
given by Neufang [N3]. The algebra A is, as a Banach space, the set
N (Lp(G)) of nuclear operators on the Banach space Lp(G) for a locally
compact group G and an index p with 1 < p < ∞. However Neufang
introduces a product on A which is a form of convolution and which
is different from the usual composition of operators. The algebra A
is a Banach algebra for this new product, and A has a bounded right
approximate identity of norm 1. There is a canonical quotient map from
A onto the group algebra (L1(G), ? ), say this map has kernel the closed
ideal I. We have AI = 0. It is shown by Neufang that, in the case
where G is a non-compact, second countable locally compact group,
the algebra A is left strongly Arens irregular, but not right strongly
Arens irregular. The work of Neufang develops interesting properties
of the algebra A as a non-commutative convolution algebra; a detailed
study of the homological properties of this algebra has recently been
given by Pirkovskii in [Pir].

Example 4.6. Let B be a unital C*-algebra. Take U to be the
unitary group of B, and set A = ` 1(U), the group algebra of U . The
map

q :
∑

αuδu 7→
∑

αuu, A→ B ,

is a continuous linear map. Since every element of B is a linear com-
bination of 4 unitary elements, q is a surjection. For i = 1, 2, we have

Z
(i)
t (A′′) = A and Z

(i)
t (B′′) = B′′, and so the inclusion in (2.24) is strict

in this case. 2
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Example 4.7. Let A be the Volterra algebra (L 1(I), ? ) or a weight-
ed convolution algebra (L 1(R+, ω), ? ), where ω is a regulated weight
on R+. (For definitions, see [D, Chapter 4.7].) Then A is strongly
Arens irregular. This was first proved by Ghahramani and McClure in
[GhM]; see also [LU, Corollary 3.5].

One can see easily that, with A equal to the Volterra algebra, which
has a sequential bounded approximate identity, we have

A′ · A = A′A = C0[0, 1)

and that A is a closed ideal in A′′.
On the other hand, let A be the algebra C?; this is the Banach space

C(I) with convolution multiplication of functions, as in [D, Definition
4.7.39]. Then A is a radical Banach algebra, and, by a remark in
Example 4.2, A is Arens regular. 2

Example 4.8. Let A be a Banach algebra which is reflexive as a
Banach space. (For example, let A be the Banach space ` p, where
1 < p < ∞, taken with coordinatewise multiplication: for details of
this example, see [D, Example 4.1.42 ].) Then A is both Arens regular
and strongly Arens irregular. 2

Example 4.9. (i) Let A be a non-zero Banach algebra with zero
product, so that A2 = 0. Then both 2 and 3 are the zero product on
A′′, and so A is Arens regular. Clearly AP (A) = WAP (A) = A′ and
A′ · A = A · A′ = 0, and so neither AP (A) nor WAP (A) is essential
(cf. Proposition 3.12).

(ii) Let A = C2, with the product given by

(z1, z2)(w1, w2) = (z1w1, z1w2) (z1, z2, w1, w2 ∈ C) .

Then A is a Banach algebra. Set p = (1, 0) and q = (0, 1). Then we
have pa = a (a ∈ A), and so p is a left identity for A. Clearly

AP (A) = WAP (A) = A′ = C2 .

For each λ ∈ A′, we have λ · p = λ, and so A = A′ · A.
Let µ = (0, 1) ∈ A′. Then 〈q, µ〉 = 1, but

〈q, a · λ〉 = 〈qa, λ〉 = 0 (a ∈ A, λ ∈ A′) ,
and so µ 6∈ A · A′. Hence A · A′ ( A′ = WAP (A). This shows
that we cannot replace ‘bounded approximate identity’ by ‘bounded
left approximate identity’ in Proposition 3.12. 2

Example 4.10. Let J be the James space, so that J is a certain
Banach space of sequences on N. In fact, J is a non-unital Banach alge-
bra with respect to coordinatewise multiplication, and J has a bounded
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approximate identity; the algebra J# is identified with J ⊕ C1, where
1 = (1, 1, . . . ). In this case, J ′′ is isometrically isomorphic to J# (when
J has a suitable norm), and the two products 2 and 3 coincide with
the natural product on J#. Thus J is Arens regular.

For further details of this example, see [D, Example 4.1.45]. 2

Example 4.11. Let G be a locally compact group, and take p such
that 1 < p < ∞. Then Ap(G) denotes the Herz algebra, described in
[D, Theorem 4.5.30]; Ap(G) is a Banach function algebra on G. In the
case where p = 2, A(G) = A2(G) is the Fourier algebra of G.

The Arens regularity of these algebras was first considered in [LW],
where it was shown that A2(G) is not Arens regular for each infinite,
amenable group G. In fact, it is probable that the algebras Ap(G) are
Arens regular only if G is finite. Towards this, Forrest [Fo1], [Fo2]
has shown that, if Ap(G) is Arens regular, then G must be discrete,
and that, if A(G) is Arens regular, then G cannot contain an infinite,
amenable subgroup; the latter remark is also proved in a diferent way
in [U5, Corollary 3.7]. (However, there exist infinite, non-amenable
groups for which all proper subgroups are finite; for this, see [Ol1] and
[Ol2].) In the case where G is not discrete, various quotients of Ap(G)
are not Arens regular [Gra4, Corollary 8].

In fact, it is proved in [LLos2, Theorem 6.5] that, for discrete,
amenable groups G, the Fourier algebra A(G) is strongly Arens irreg-
ular.

Let E be a closed subset of G, and denote by Ap(E) the restriction
algebra, Ap(G) | E, so that Ap(E) is a Banach function algebra on E.
It is shown by Granirer [Gra4] and Graham [Grm1], [Grm3] that in
various cases Ap(E) is not Arens regular.

The Arens regularity of some related algebras is considered by
Granirer in [Gra6]. 2

Example 4.12. Let A be an Arens regular Banach algebra. In gen-
eral, the second dual (A′′, 2 ) is not necessarily itself Arens regular. For
example, Pym gives in [Py2] an example of an Arens regular Banach
function algebra A such that (A′′, 2 ) is not Arens regular. In [Grm2],
Graham constructs various quotient algebras A(E) of the Fourier al-
gebras A(G) such that A(E) is Arens regular, but A(E)′′ is not Arens
regular (and such that A(E) has various additional properties). See
also [Grm4]. 2

Example 4.13. We have noted in Example 4.3 that the Banach

algebra (L1(T), ?)̇ is strongly Arens irregular. Recall that

H1(T) = {f ∈ L1(T) : f̂(−n) = 0 (n ∈ N)} ,
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where f̂ denotes the Fourier transform of f . Thus H1(T) is a closed
ideal in L1(T). It has been proved by Colin Graham that H1(T) is
Arens regular, as are H1(T) ⊗̂H1(T) and all the even duals of H1(T).
Thus an infinite-dimensional closed ideal in a strongly Arens irregular
Banach function algebra might itself be Arens regular. 2

Example 4.14. In [U5], Ülger studies Banach function algebras A
which are weakly sequentially complete as Banach spaces and which
are such that Lf is a weakly compact operator on A for each f ∈ A,
so that A is a closed ideal in (A′′, 2 ). For example, A(G) has all these
properties whenever G is a discrete group [L2, Theorem 3.7].

Let A be such an algebra. Then it is shown by Ülger that

Z(A′′) = {Φ ∈ A′′ : Φ2A′′, A′′2Φ ⊂ A} .
Suppose, further, that A has a bounded approximate identity. Then A
is strongly Arens irregular. 2



CHAPTER 5

Introverted Subspaces

Let A be a Banach algebra. We shall now consider certain subspaces
of A′ which give rise to quotient algebras of (A′′, 2 ).

Definition 5.1. Let A be a Banach algebra, and let X be a ‖ · ‖-
closed, A-submodule of A′. Then X is:

(i) faithful if a = 0 whenever a ∈ A and 〈a, λ〉 = 0 (λ ∈ X);

(ii) left-introverted if Φ · λ ∈ X (λ ∈ X, Φ ∈ A′′).

Our definition of ‘faithful’ is slightly weaker than the classical defin-
ition, which is that a = 0 whenever a · λ = 0 for each λ ∈ X; it is
equivalent to the classical definition for algebras A such that a = 0
whenever Aa = {0}.

Proposition 5.2. Let A be a Banach algebra, and let X be a ‖ · ‖-
closed, A-submodule of A′. Then X is left-introverted if and only if
Φ · λ ∈ X whenever λ ∈ X and Φ ∈ X ′.

Proof. This follows easily from the Hahn–Banach theorem. �

For example, the subspaces A′ and A′A are both left-introverted
subspaces of A′; the space A′ is always faithful, and A′A is faithful
wheneverAa 6= {0} for each a ∈ A•. For further examples, see Theorem
7.19.

The notion of left-introversion was introduced in a special case by
Day in [Day]; see also [Wo] and [LLo2]. We note that our definition of
‘left-introverted’ generalizes that of [BJM, Definition 2.4] and is differ-
ent from that in [Pat, (2.6)].

The following characterization of left-introverted spaces is given in
[LLo2, Lemma 1.2].

Proposition 5.3. Let A be a Banach algebra, and let X be a ‖ · ‖-
closed, A-submodule of A′. Then X is left-introverted if and only if the
σ(A′, A)-closure in A′ of A[1] · λ is contained in X for each λ ∈ X. 2

As above, X◦ = {Φ ∈ A′′ : 〈Φ, λ〉 = 0 (λ ∈ X)} for a closed linear
subspace X of A′. Clearly X◦ is a closed linear subspace of A′′.
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Theorem 5.4. Let A be a Banach algebra, and let X be a ‖ · ‖-
closed A-submodule of A′.

(i) The space X◦ is a closed left ideal in (A′′, 2 ).

(ii) Suppose, further, that X is left-introverted. Then X◦ is a closed
ideal in (A′′, 2 ).

(iii) Suppose, further, that A′ ·A ⊂ X. Then X◦ is a left-annihilator
ideal in (A′′, 2 ) and X◦ ⊂ rad(A′′, 2 ).

(iv) Suppose that A′A 6= A′. Then rad(A′′, 2 ) 6= {0}.

Proof. Let Φ ∈ X◦ and Ψ ∈ A′′.
(i) For each a ∈ A and λ ∈ X, we have 〈a, Φ · λ〉 = 〈Φ, λ · a〉 = 0

because λ · a ∈ X, and so Φ · λ = 0. Thus 〈Ψ2Φ, λ〉 = 0, and so
Ψ2 Φ ∈ X◦. Hence X◦ is a left ideal in (A′′, 2 ).

(ii) For each λ ∈ X, we have

〈Φ2Ψ, λ〉 = 〈Φ, Ψ · λ〉 = 0

because Ψ · λ ∈ X, and so Φ2Ψ ∈ X◦. Hence X◦ is a right ideal in
(A′′, 2 ).

(iii) Let λ ∈ A′. For each a ∈ A, we have 〈a,Φ · λ〉 = 〈Φ, λ · a〉 = 0
because λ · a ∈ X by hypothesis, and so Φ · λ = 0. Thus 〈Ψ2Φ, λ〉 = 0,
and hence Ψ2Φ = 0 in A′′. This shows that X◦ is a left-annihilator
ideal, and hence that X◦ ⊂ rad(A′′, 2 ).

(iv) Set E = A′A (where we take the closure in (A′, ‖ · ‖)). Then
we have E◦ 6= {0}, and so this is immediate from (iii). �

Let X be a left-introverted submodule of A′. As a Banach space,
we have X ′ = A′′/X◦, and so we can regard X ′ as a quotient Banach
algebra of (A′′, 2 ). The product in X ′ is again denoted by 2 , so that
Φ2Ψ is defined in X ′ (for Φ,Ψ ∈ X ′) by the formula:

(5.1) 〈Φ2Ψ, λ〉 = 〈Φ, Ψ · λ〉 (λ ∈ X) .

There is a natural map of A into X ′; in the case where X is faithful,
the map is an embedding, and we regard A as a subalgebra of (X ′, 2 ).
Again, a · Φ = a2Φ and Φ · a = Φ2 a for each a ∈ A and Φ ∈ X ′.
As usual, we define operators LΦ and RΦ in B(X ′) for Φ ∈ X ′ by the
formulae:

LΦ(Ψ) = Φ2Ψ, RΦ(Ψ) = Ψ2Φ (Ψ ∈ X ′) .

The topology on X ′ is taken to be the weak-∗ topology, σ(X ′, X),
unless we state otherwise. It is easy to see that each operator RΦ is
continuous on X ′.
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Definition 5.5. Let A be a Banach algebra, and let X be a left-
introverted subspace of A′. Then the topological centre of X ′ is

Zt(X
′) = {Φ ∈ X ′ : LΦ is continuous on (X ′, σ(X ′, X))} .

Let Φ ∈ X ′. Then, by (5.1), Φ ∈ Zt(X
′) if and only if the linear

functional

Ψ 7→ 〈Φ, Ψ · λ〉, X ′ → C ,

is continuous on X ′ for each λ ∈ X. Clearly the set Zt(X
′) is a ‖ · ‖-

closed subalgebra of (X ′, 2 ), and, when X is faithful,

(5.2) A ⊂ Zt(X
′) ⊂ X ′ .

The space Zt(X
′) coincides with Z

(1)
t (A′′), as previously defined in

Definition 2.17, in the case where X = A′. If A is a commutative Ba-
nach algebra, then Zt(X

′) = Z(X ′), the centre of the algebra (X ′, 2 ).
Suppose that A is Arens regular. Then Zt(X

′) = X ′ for each left-
introverted subspace of A′.

The notion of the topological centre Zt(X
′) in the above sense was

introduced in [IPyU]. (In the case where X = A′A, the space Zt(X
′)

was denoted by Z̃1 in [LU].)

Again let X be ‖ · ‖-closed, A-submodule of A′. Then we say that
X is right-introverted if

λ · Φ ∈ X (λ ∈ X, Φ ∈ A′′) .

Let X be such a space. Then X◦ is a closed ideal in the Banach
algebra (A′′, 3 ), and we can identify X ′ with the quotient Banach
algebra (A′′, 3 )/X ′; the product in X ′ is denoted by 3 , so that

(5.3) 〈Φ3Ψ, λ〉 = 〈Ψ, λ · Φ〉 (λ ∈ X) .

Suppose, further, that A · A′ ⊂ X. Then X◦ is a right-annihilator
ideal, and X◦ ⊂ rad (A′′, 3 ).

Definition 5.6. Let A be a Banach algebra, and let X be a ‖ · ‖-
closed, A-submodule of A′. Then X is introverted if it is both left-intro-
verted and right-introverted.

In this case, the topological centre of X ′ is

Zt(X
′) = {Φ ∈ X ′ : Φ2Ψ = Φ3Ψ (Ψ ∈ X ′)} .

Suppose that A is commutative. Then a ‖ · ‖-closed, A-submodule
X of A′ is introverted whenever it is left-introverted.
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For example, consider the Banach algebra A = (` 1, · ), so that the
dual modules are A′ = C(βN) and A′′ = M(βN), as in Example 4.1.
For a closed subset S of βN, set

X = {λ ∈ C(βN) : λ | S = 0} ,

a closed ideal in C(βN). Then X is an introverted subspace of A′ and
X ′ = M(βN \ S). Clearly Zt(X

′) = X ′.
For further examples of introverted subspaces, see Chapter 11.

Proposition 5.7. Let A be a Banach algebra, and let X be a ‖ · ‖-
closed, A-submodule of A′ with X ⊂ WAP (A). Then X is introverted.

Proof. Let λ ∈ X, and take S to be the σ(A′, A′′)-closure of
A[1] · λ. Then, as we remarked, S is the ‖ · ‖-closure of A[1] · λ because
λ is weakly almost periodic, and so S ⊂ X. Also, S is the σ(A′, A)-
closure of A[1] · λ, and so, by Proposition 5.3, X is left-introverted.

Similarly, X is right introverted. �

Corollary 5.8. Let A be a Banach algebra. Then WAP (A) is an
introverted subspace of A′. 2

We now make some remarks that are essentially contained in [LU,
Chapter 3] and [BaLPy]. The results were originally due to M. Grosser
[G1]; in particular, see Satz 4.14 and pages 181–182 of [G1].

Let A be a Banach algebra with a bounded approximate identity
(eα), and let Φ0 be a corresponding mixed identity. Then LΦ0 is a con-
tinuous projection on (A′′, ‖ · ‖); by an earlier remark, LΦ0 is a homo-
morphism on (A′′, 2 ), and so

A′′ = Φ02A
′′ n (1− Φ0)2A

′′

as a semidirect product and also as a direct sum of closed subspaces.
The set

X := A′ · A = {λ · a : a ∈ A, λ ∈ A′} = A′A

is a left-introverted subspace of A′. Let Φ ∈ A′′. Then Φ ∈ X◦ if and
only if 〈Φ, λ · a〉 = 0 (a ∈ A, λ ∈ A′), and so Φ ∈ X◦ if and only if
Φ · λ = 0 (λ ∈ A′). On the other hand, Φ ∈ (1−Φ0)2A

′′ if and only
if Φ02Φ = 0, and hence if and only if limα〈eα, Φ · λ〉 = 0 (λ ∈ A′);
this occurs if and only if Φ · λ = 0 (λ ∈ A′). Thus we conclude that
X◦ = (1− Φ0)2A

′′.
We state the above result as a proposition; a special case of the

result is contained in [GhL1].



5. INTROVERTED SUBSPACES 49

Proposition 5.9. Let A be a Banach algebra such that A′′ has a
mixed identity Φ0. Then X := A′ · A is a left-introverted subspace of
A′, (A′′, 2 ) is the semidirect product

A′′ = X ′ nX◦ ,

and the Banach space X ′ is linearly homeomorphic to Φ02A
′′. Further,

Z
(1)
t (A′′) ∩X ′ ⊂ Zt(X

′).

Proof. Let Φ ∈ Z
(1)
t (A′′) ∩X ′. Then the map LΦ : Ψ 7→ Φ2Ψ is

continuous on A′′, and hence on X ′, so that Φ ∈ Zt(X
′). The remainder

has been established above. �

We shall see in a remark below Corollary 11.10 that, in the above

circumstances, we can have Z
(1)
t (A′′) ∩X ′ ( Zt(X

′).

Corollary 5.10. Let A be a commutative Banach algebra such
that A′′ has a mixed identity. Then Z(A′′) ⊂ Z((A′ · A)′).

Proof. Since A is commutative, we have

Z(A′′) = Z
(1)
t (A′′) = Z

(2)
t (A′′) .

Set X = A′ · A. By Theorem 2.21, Z(A′′) ⊂ X ′, and so Z(A′′) ⊂ Zt(X
′)

by Proposition 5.9. �

The proof of the following result is similar to one first given in [L1,
Theorem 1].

Proposition 5.11. Let A be a Banach algebra with a bounded left
approximate identity, and let X be a left-introverted subspace of A′ with
AX = X. Let T ∈ B(X). Then T is a left A-module homomorphism
if and only if there exists Φ ∈ X ′ such that

(5.4) Tλ = λ · Φ (λ ∈ X) .

Proof. Suppose that T has the form specified in equation (5.4).
Then

T (a · λ) = a · λ · Φ = a · Tλ (a ∈ A, λ ∈ X) ,

and so T is an A-module homomorphism.
Conversely, suppose that T is an A-module homomorphism. Let

(eα) be a bounded left approximate identity in A, and, as before, regard
each eα as an element of X ′. The net (T ′eα) is bounded in X ′, and
so has an accumulation point, say Φ, in (X ′, σ(X ′, X)); by passing to
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a subnet, we may suppose that T ′eα → Φ. Now, for each a ∈ A and
λ ∈ X, we have

〈a, Tλ〉 = lim
α
〈eαa, Tλ〉 = lim

α
〈eα, a · Tλ〉

= lim
α
〈eα, T (a · λ)〉 = lim

α
〈T ′eα, a · λ〉

= 〈Φ, a · λ〉 = 〈a, λ · Φ〉 ,
and so Tλ = λ · Φ, as required. �

There are two results from [LU] that we state for interest, but shall
not use.

Theorem 5.12. Let A be a Banach algebra with a bounded approx-

imate identity. Then A · Z
(1)
t (A′′) = A · Zt((A

′ · A)′).

Proof. This is [LU, Corollary 3.2]. �

Theorem 5.13. Let A be a Banach algebra with a sequential bounded
approximate identity. Suppose that A is weakly sequentially complete

and that A · Z
(1)
t (A′′) ⊂ A. Then A is left strongly Arens irregular.

Proof. This is [LU, Theorem 3.4a]. �

Applications of the following theorem will appear within Example
6.2 and Theorem 7.25.

Theorem 5.14. Let A be a Banach algebra with an approximate
identity of bound 1, and let X be a faithful, left-introverted submodule
of A′. Then there is a continuous embedding

θ : (M(A), ◦ ) → (X ′, 2 )

such that

(5.5) 〈θ((L,R)), λ · a〉 = 〈Ra, λ〉 (a ∈ A, λ ∈ X, (L,R) ∈M(A)) .

In the case where X = XA, the range of θ is contained in Zt(X
′).

Proof. The space A′′ has a mixed identity, say Φ0, with ‖Φ0‖ = 1,
and so (2.16) describes an isometric embedding κ : M(A) → (A′′, 2 ).
Let q : (A′′, 2 ) → (X ′, 2 ) be the quotient map. Then

θ = q ◦ κ : M(A) → (X ′, 2 )

is a continuous embedding. Let a ∈ A, λ ∈ X, and (L,R) ∈ M(A).
Then λ · a ∈ X and

〈R′′(Φ0), λ · a〉 = lim
α
〈a · Reα, λ〉 = lim

α
〈R(aeα), λ〉 = 〈Ra, λ〉 ,
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where (eα) ⊂ A[1] is an approximate identity which converges to Φ0.
Hence (5.5) follows. Since X is faithful, θ is an injection.

Now suppose that X = XA, so that we have X = X · A. Let
(L,R) ∈ M(A), and set Φ = θ((L,R)) ∈ X ′. Let Ψν → Ψ in X ′.
Then, for each a ∈ A and λ ∈ X, we have

〈Φ2Ψν , λ · a〉 = 〈Φ,Ψν · λ · a〉 = 〈Ra,Ψν · λ〉
= 〈Ψν , λ · Ra〉 → 〈Ψ, λ · Ra〉
= 〈Ra, Ψ · λ〉 = 〈Φ2Ψ, λ · a〉 ,

and so LΦ(Ψν) → LΦ(Ψ). Thus LΦ is continuous, and hence we have
shown that Φ ∈ Zt(X

′). �

In special cases that we shall consider later, a fixed space X may
be a left-introverted subspace of two related dual spaces A′ and B′.
We investigate when the corresponding products 2 A and 2 B on X ′

coincide.
In the following result, we regard M(A) as a subalgebra of (X ′, 2 )

by using the embedding prescribed in the above theorem.

Theorem 5.15. Let A be a Banach algebra with an approximate
identity of bound 1, and let X be a faithful, left-introverted submodule
of A′. Let B be a ‖ · ‖-closed, unital subalgebra of M(A) such that B is
σ(X ′, X)-dense in X ′. Then X is a subspace of B′ which is a faithful,
left-introverted submodule. Further,

(5.6) Φ2AΨ = Φ2BΨ (Φ,Ψ ∈ X ′) .

Proof. Fix λ ∈ X, and take S to be the σ(A′, A)-closure of A[1] · λ.
By Proposition 5.3, we have S ⊂ X.

For each b ∈ B[1] ⊂ X ′, there exists Φ ∈ A′′[1] such that Φ | X = b.
For each a ∈ A, we have

〈a, Φ · λ〉 = 〈Φ, λ · a〉 = 〈b, λ · a〉 = 〈ab, λ〉 = 〈a, b · λ〉 ,
and so Φ · λ = b · λ. Take a net (aα) in A[1] such that aα → Φ in
the topology σ(A′′, A′). Then aα · λ→ Φ · λ = b · λ in (A′, σ(A′, A)).
Thus b · λ ∈ S.

Now take Γ ∈ B′′ with ‖Γ‖ = 1. There is a net (bβ) in B[1] such
that bβ → Γ in (B′′, σ(B′′, B′)), and then bβ · λ · a → Γ · λ · a in
(X, σ(B′, B)) for each a ∈ A. The identity multiplier belongs to B,
and so it follows from (5.5) that

〈a, bβ · λ〉 → 〈a, Γ · λ〉 (a ∈ A) .

Thus bβ · λ → Γ · λ in (A′, σ(A′, A)). Since (bβ · λ) ⊂ S and S is
σ(A′, A)-closed, it follows that Γ · λ ∈ S, and so Γ · λ ∈ X. This shows
that X is left-introverted as a subspace of B′. Clearly X is faithful.
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Take λ ∈ X and Ψ ∈ X ′. Then we can calculate Ψ · λ in both A′

and B′, say these elements are Ψ ·A λ and Ψ ·B λ, respectively. We
claim that they are equal as elements of X.

First, suppose that Ψ = b ∈ B. For each a ∈ A, we have

〈a, b ·A λ〉 = 〈a, b ·B λ〉 = 〈a2 b, λ〉 ,
where we are regarding a and b as elements of M(A) and hence of
(X ′, 2 ). It follows that b ·A λ = b ·B λ.

Second, let Ψ be an arbitrary element of X ′. By hypothesis, there
is a net (bβ) in B such that bβ → Ψ in the topology σ(X ′, X). Take
b ∈ B. Then

〈b, Ψ ·B λ〉 = 〈Ψ, λ · b〉 = lim
β
〈bβ, λ · b〉

= lim
β
〈b, bβ ·B λ〉 = lim

β
〈b, bβ ·A λ〉

by the earlier result. Now

〈b, bβ ·A λ〉 = 〈b2Abβ, λ〉 and lim
β
〈b2Abβ, λ〉 = 〈b2AΨ, λ〉

because b ∈ Zt(X
′). Hence 〈b,Ψ ·B λ〉 = 〈b,Ψ ·A λ〉. Since B is

σ(X ′, X)-dense in X ′, it follows that Ψ ·B λ = Ψ ·A λ.
Finally, take Φ,Ψ ∈ X ′. For each λ ∈ X, we have

〈Φ2AΨ, λ〉 = 〈Φ,Ψ ·A λ〉 = 〈Φ,Ψ ·B λ〉 = 〈Φ2BΨ, λ〉 ,
and this gives (5.6). �



CHAPTER 6

Banach Algebras of Operators

Before we begin our main study of Beurling algebras, we give some
further examples. These examples are Banach algebras of operators on
a Banach space E; for background on this topic, see [D, Chapter 2.5].

Let E and F be Banach spaces, and let T ∈ B(E,F ). Then the
dual T ′ of T is defined by

〈x, T ′λ〉 = 〈Tx, λ〉 (x ∈ E, λ ∈ F ′) ,

so that T ′ ∈ B(F ′, E ′). We have ‖T ′‖ = ‖T‖ (T ∈ B(E,F )), and also
(S ◦ T )′ = T ′ ◦ S ′ (S, T ∈ B(E)). We define

B(E)a = {T ′ : T ∈ B(E)} ⊂ B(E ′) ,

so that B(E)a is a closed, unital subalgebra of B(E ′) and B(E)a consists
of the operators U ∈ B(E ′) such that U is a continuous linear mapping
from (E ′, σ(E ′, E)) into itself. Notice that B(E)a = B(E ′) if and only
if E is reflexive.

The second dual of an operator T ∈ B(E,F ) is T ′′ : E ′′ → F ′′, and
T ′′ ◦ κE = κF ◦ T .

Let E and F be Banach spaces. We identify F ⊗E ′ with the space
F(E,F ) of continuous, finite-rank operators from E to F ; indeed, for
y0 ∈ F and λ0 ∈ E ′, the element y0 ⊗ λ0 ∈ F ⊗ E ′ corresponds to the
rank-one operator

y0 ⊗ λ0 : x 7→ 〈x, λ0〉y0, E → F .

In particular E ⊗E ′ = F(E). Let T = x0⊗ λ0 ∈ E ⊗E ′. Then clearly
T ′ = λ0 ⊗ κE(x0) ∈ E ′ ⊗ E ′′. The product in E ⊗ E ′ from F(E) is
specified by

(x1 ⊗ λ1) ◦ (x2 ⊗ λ2) = 〈x2, λ1〉x1 ⊗ λ2 (x1, x2 ∈ E, λ1, λ2 ∈ E ′) .

Let x0 ⊗ λ0 ∈ E ⊗ E ′ and T ∈ B(E). Then

(6.1) T ◦ (x0 ⊗ λ0) = Tx0 ⊗ λ0, (x0 ⊗ λ0) ◦ T = x0 ⊗ T ′λ0 .

Let E be a Banach space. We write E⊗̌E ′ for the injective tensor
product of E with E ′; this space is identified with A(E) = F(E), the
closed ideal of approximable operators in B(E). We also write E⊗̂E ′

for the projective tensor product of E with E ′, with projective norm
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‖ · ‖π . In this way (E⊗̂E ′, ‖ · ‖π) is a Banach algebra, which is called
the nuclear algebra of E in [D, Definition 2.5.4]. We write N (E) for
the ideal of nuclear operators on E, as in [D, Chapter 2.5]; however,
we now write ‖ · ‖N for the nuclear norm on N (E).

Let E be a Banach space, and set A = K(E). Then A has a
bounded left approximate identity if and only if E has the bounded
compact approximation property ([Dix], [D, Theorem 2.9.37]). Now
suppose that E ′ has the bounded approximation property (BAP). Then
E itself has the BAP, A := A(E) = K(E), and A has a bounded
approximate identity (see [D, Theorem 2.9.37]), so that A′′ has a mixed
identity.

Let E be a Banach space, and suppose that A is a subalgebra of
B(E) such that A contains the finite-rank operators and A is a Banach
algebra with respect to some norm, so that A is a Banach operator
algebra in the sense of [D, Definition 2.5.1]. In fact the embedding of
A into B(E) is necessarily continuous.

First, suppose that A is Arens regular. Then E is necessarily
reflexive. Indeed, assume towards a contradiction that E is a non-
reflexive Banach space. Then there are sequences (xm) in E[1] and
(λn) in E ′

[1] such that (〈xm, λn〉) has unequal repeated limits. Take

Λ ∈ A′ such that Λ | A(E) 6= 0. Then there exist elements x ∈ E
and λ ∈ E ′ such that 〈x ⊗ λ,Λ〉 = 1. Set Sm = xm ⊗ λ (m ∈ N)
and Tn = λn ⊗ x (n ∈ N), so that (Sm) and (Tn) are sequences in
A. Then TnSm = 〈xm, λn〉x ⊗ λ (m,n ∈ N), and so (〈TnSm,Λ〉) has
unequal repeated limits. Thus Λ is not weakly almost periodic, and
so WAP (A) 6= A′. (This argument, from [Y3, Theorem 3], shows that
WAP (A(E)) = {0}.) In fact, let E be a non-reflexive Banach space
such that E ′ has BAP . Then A = A(E) has a bounded approximate
identity, but

{0} = WAP (A) ( A′ · A ,

and so we do not always have equality in the inclusion of Proposition
3.12. (A related result is given as Proposition 3.3 of [DuU]: for each
infinite-dimensional Banach space E with the approximation property,
we have AP (K(E)) = {0}.)

In the other direction, in the case where E is reflexive, the Banach
algebras E ⊗̂E ′, N (E), A(E), and K(E) are all Arens regular. For
these and other related results, see [D, Theorem 2.6.23]. The results
are due to Young [Y3] and Ülger [U3]; see also [PyU].

It was left open in [D] and elsewhere whether or not B(E) is Arens
regular in various cases where E is reflexive; however, specific reflex-
ive spaces E for which B(E) is not Arens regular have been given in
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[Y3] and [PyU]. In fact, it is shown in [Y3, Theorem 4] that, for each
locally compact group G, there is a reflexive Banach space E and an
isometric isomorphism from L 1(G) onto a closed subalgebra of B(E).
Since L 1(G) is not Arens regular (for each infinite group G), it cannot
be that B(E) is Arens regular. Let E be a reflexive Banach space such
that B(E) is not Arens regular, and set A = K(E). Then A is Arens
regular, but A′′ is not.

We now sketch an important advance on this question due to Daws;
for a different, more abstract, presentation, see [Da1] and [Da2].

Let E be a Banach space, and set X = E ⊗̂E ′. For µ ∈ X ′, define
Tµ : E → E ′′ by

〈Tµx, λ〉 = 〈x⊗ λ, µ〉 (x ∈ E, λ ∈ E ′) .

Then µ 7→ Tµ, X
′ → B(E,E ′′), is an isometric linear bijection.

Now suppose that E is reflexive. Then we have X ′ = B(E), and X
is a B(E)-submodule of B(E)′, and so B(E) is a dual Banach algebra
in the sense of Definition 2.6. Let Λ ∈ B(E)′ = X ′′ : we seek to prove
that Λ is weakly almost periodic. By Theorem 3.14, this is sufficient
to establish that B(E) is Arens regular.

First we introduce some more Banach spaces. Let E be a Banach
space, and set

` 2(E) =

x = (xk) ∈ EN : ‖x‖ =

(
∞∑

k=1

‖xk‖2

)1/2

<∞

 ,

so that ` 2(E) is a Banach space. The dual space of ` 2(E) is ` 2(E ′),
with the duality

〈x, λ〉 =
∞∑

k=1

〈xk, λk〉 (x = (xk) ∈ ` 2(E), λ = (λk) ∈ ` 2(E ′)) .

In the case where E is reflexive, ` 2(E) is also reflexive.
For S ∈ B(E), define

S̃x = (Sxk) (x = (xk) ∈ ` 2(E)) .

Then S̃ ∈ B(` 2(E)), and the dual S̃ ′ of S̃ is specified by S̃ ′λ = (S ′λk)

for λ = (λk) ∈ ` 2(E ′). The map S 7→ S̃, B(E) → B(` 2(E)), is a
bounded linear operator.

Next we recall the definition of the ultrapower of a Banach space;
see [Hei] for a clear account of the basic results in this area. Let F be
a Banach space, and let I be a directed index set, and consider

`∞(F, I) = {y = (yα : α ∈ I) : ‖y‖ = sup
α∈I

‖yα‖ <∞} ,
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again a Banach space. Finally, let U be an ultrafilter on I dominating
the order filter, and set y ∼ 0 in `∞(F, I) if, for each ε > 0, the set

{α ∈ I : ‖yα‖ < ε}

belongs to U . Then {y ∈ `∞(F, I) : y ∼ 0} is a closed subspace of
`∞(F, I), and the quotient space `∞(F, I)/∼ is a Banach space denoted
by FU ; indeed, FU is the ultrapower of F in the category of Banach
spaces. The coset of y ∈ `∞(F, I) is also denoted by y in FU . For each
T ∈ B(F ), the map

TU : (yα) 7→ (Tyα), FU → FU ,

is a bounded linear operator with ‖TU‖ = ‖T‖, called the ultrapower
of T (see [Hei, Chapter 2]). The map T 7→ TU , B(F ) → B(FU), is an
isometric embedding. By the first paragraph of [Hei, Proposition 7.1],
there is an isometric embedding of (F ′)U into (FU)′: for (yα) ∈ FU and
(λα) ∈ (F ′)U , the duality is given by

〈(yα), (λα)〉 = lim
α∈U

〈yα, λα〉 ,

where this limit always exists.
Let E be a Banach space. The Banach space E is super-reflexive if

there is an equivalent norm ||| · ||| on E such that (E, ||| · |||) is uniformly
convex (and we suppose in this case that the original norm ‖ · ‖ is
uniformly convex). Let U be an ultrafilter on an index set I. Then EU
is a reflexive Banach space whenever E is super-reflexive; in fact, by
[Hei, Proposition 6.4], a Banach space E is super-reflexive if and only if
each ultrapower EU is reflexive. For example, all Banach spaces of the
form L p(µ) for a positive measure µ, where 1 < p <∞, are uniformly
convex, and hence super-reflexive.

Finally, start with a uniformly convex space E, set F = ` 2(E), and
let U be an ultrafilter on an index set. Then F is also uniformly convex,
and so FU is reflexive.

We now return to Λ ∈ B(E)′ = X ′′. There is a directed set I and
a net (zα : α ∈ I) in X such that ‖zα‖ ≤ ‖Λ‖ (α ∈ I) and zα → Λ in

lim
α∈I

〈zα, T 〉 = 〈T, Λ〉 (T ∈ B(E)) .

Fix α ∈ I. We can represent zα as

zα =
∞∑

k=1

xk,α⊗µk,α ,
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where xα := (xk,α : k ∈ N) ∈ EN and µα := (µk,α : k ∈ N) ∈ (E ′)N, and
we have

∞∑
k=1

‖xk,α‖ ‖µk,α‖ ≤ m,

where m = ‖Λ‖ + 1. Set F = ` 2(E). Then, in fact, we can suppose
that ‖xk,α‖ = ‖µk,α‖ (k ∈ N), and so xα ∈ F and µα ∈ ` 2(E ′) = F ′,

with ‖xα‖2 ≤ m and ‖µα‖2 ≤ m.
Let U be an ultrafilter on the index set I such that U dominates

the order filter. Define the maps

U : S 7→ (S̃ ′µα : α ∈ I), B(E) → (FU)′ ,

V : S 7→ (S̃xαα ∈ I), B(E) → FU .

Then it is easy to check that each of U and V is a bounded linear
operator.

Let S, T ∈ B(E). For each k ∈ N and α ∈ I, we have

〈xk,α ⊗ µk,α, ST 〉 = 〈STxk,α, µk,α〉 = 〈Txk,α, S
′µk,α〉 ,

and so, for each α ∈ I, we have

〈zα, ST 〉 =
∞∑

k=1

〈xk,α ⊗ µk,α, ST 〉 =
∞∑

k=1

〈Txk,α, S
′µk,α〉 = 〈T̃ xα, S̃

′µα〉 .

Thus we see that

〈ST, Λ〉 = lim
α∈I

〈zα, ST 〉 = lim
α∈I

〈
T̃ xα, S̃

′µα

〉
.

But

〈V (T ), U(S)〉 = lim
α∈U

〈
T̃ xα, S̃

′µα

〉
,

and the ultrafilter U dominates the order filter on I, and so we finally
see that 〈ST, Λ〉 = 〈V (T ), U(S)〉.

It follows from Proposition 3.13 that the continuous linear funct-
ional Λ is weakly almost periodic whenever the space FU is reflexive;
we have explained that this is always the case when the original space
E is super-reflexive. Thus the following theorem of Daws answers a
question specifically raised in [Y3, p. 109] and [DuH].

Theorem 6.1. Let E be a super-reflexive Banach space. Then B(E)
is Arens regular. 2

In the case where H is a Hilbert space, (B(H)′′, 2 ) is a C∗-algebra,
and hence is semisimple. There are examples of Banach spaces E for
which (B(E)′′, 2 ) is not semisimple. We suspect, but cannot prove,
that (B(` p(N))′′, 2 ) is semisimple whenever 1 < p <∞.
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[Added in August, 2004: In fact it has been proved by Daws and Read
[DaRe] that, for 1 < p < ∞, the Banach algebra (B(` p(N))′′, 2 ) is
semisimple if and only if p = 2; it is now conceivable that (B(E)′′, 2 )
is semisimple (for a reflexive Banach space E) if and only if E is linearly
homeomorphic to a Hilbert space. For further details, see [Da2].]

Before giving the next example, we make some remarks.
First, let (A, · ) be an algebra, and let P : A → A be a projection

on A, so that P is a linear map such that P 2 = P . Set B = P (A) and
J = ker P ; clearly, A = B ⊕ J as linear spaces. Now suppose, further,
that:

(1) B is a subalgebra of A;

(2) J is a left ideal in A.

We define a bilinear map

(a, b) 7→ a × b := P (a)b, A × A→ A .

Since (1) and (2) hold, the product in B ⊕ J satisfies the equation

(b1, 0) · (b2, x) = (b1b2, b1x) (b1, b2 ∈ B, x ∈ J) ,

and so P (Pa · b) = Pa · Pb (a, b ∈ A). It follows that

(a × b) × c = a × (b × c) (a, b, c ∈ A) ,

and thus × is an (associative) product on A. Further,

P (a × b) = Pa · Pb = Pa × Pb (a, b ∈ A) ,

and so P is a epimorphism from (A, × ) onto the subalgebra (B, × ),
and hence (A, × ) = B n J .

Let R denote the radical of (A, × ). Since

a × b = 0 (a ∈ J, b ∈ A) ,

we have J ⊂ R.
We make the following further assumption:

(3) B is a semisimple algebra.

Then J = R, and hence (A, × ) is decomposable.
For our further discussion in this chpater, let E be a Banach space,

with second dual E ′′. For each U ∈ B(E ′′), set

η(U) = κ′E ◦ U ′ ◦ κE′ , E ′ → E ′ ,

so that η(U) ∈ B(E ′), and then set

Q(U) = η(U)′ ,

so that Q(U) ∈ B(E ′′) and Q is a bounded linear operator on B(E ′′).
Alternatively, we see that Q(U) is defined from U by first restricting



6. BANACH ALGEBRAS OF OPERATORS 59

U to E, and then extending this latter operator by weak-∗ continuity
in both its domain and range spaces. From both descriptions of Q, it
is clear that Q is a projection on B(E ′′) with ‖Q‖ = 1 and that the
range of Q is exactly B(E ′)a. In particular, Q(IE′′) = IE′′ . Let J be
the kernel of Q, so that J is the set of elements U ∈ B(E ′′) such that
U | E = 0.

Let E be a Banach space, and again consider the space X = E⊗̂E ′.
For each µ ∈ X ′, define Tµ : E ′ → E ′ by

(6.2) 〈x, Tµλ〉 = 〈x⊗ λ, µ〉 (x ∈ E, λ ∈ E ′) .

Then Tµ ∈ B(E ′), and the map µ 7→ Tµ, X
′ → B(E ′), is an isometric

isomorphism. Thus we have the identification (E⊗̂E ′)′ = B(E ′).
Let E be a Banach space with the approximation property (AP),

so that A(E) = K(E), and set A = K(E). It is of interest to calculate
the two Arens products on A′′.

Let E be a Banach space. Each T ∈ B(E) defines a linear functional
on E ⊗ E ′ by the action

S =
n∑

j=1

xj ⊗ λj 7→
n∑

j=1

〈xj, T
′λj〉 = tr (ST ) ,

where ‘tr’ denotes the trace. In the case where this linear functional is
continuous on (F(E), ‖ · ‖), the operator T is an integral operator, and
its continuous extensions to A(E) is denoted by Ť , with norm

∥∥Ť∥∥I .
The set of all integral operators on E is denoted by I(E); it is clear that
(I(E), ‖ · ‖I) is a Banach operator ideal in the sense of [D, Definition
2.5.1]. Each nuclear operator on E is an integral operator, and we have
‖T‖I ≤ ‖T‖N (T ∈ N (E)). It is shown in [DiU, Theorem VIII.3.8]
that, in the case where E has the metric approximation property, we
have

‖T‖I = ‖T‖N (T ∈ N (E)) ,

and so N (E) is a closed ideal in I(E). See also [DeF, p. 193].

Let µ : E ⊗ E ′ → C be a linear functional, and define Tµ on E ′

as in (6.2). Then µ gives a continuous linear functional on E⊗̌E ′ if
and only if Tµ ∈ I(E ′) [DiU, Corollary VIII.2.12], and so the map
µ 7→ Tµ is an isometric linear isomorphism from (E⊗̌E ′)′ = A(E)′ into
(I(E ′), ‖ · ‖I). For details, see [Pa1, Chapter 1.7.12] and [Da2].

Now suppose that E is a Banach space such that E ′ has AP and the
Radon–Nikodým property (RNP). (For example, in the case where we
set E = c0, the dual space E ′ = ` 1 has AP and RNP. For a discussion
of RNP, see [DiU].) Then it is a theorem of Grothendieck that

I(E ′) = N (E ′) = E ′⊗̂E ′′ .
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(For a closely related result, see the references [DeF, 16.5] and [DiU,
Theorem VIII.4.6].) Again set A = K(E). Then we have:

A = E⊗̌E ′; A′ = E ′⊗̂E ′′ = N (E ′) ;

A′′ = (E ′⊗̂E ′′)′ = B(E ′′) .

The embedding κA of A into A′′ is the map κA : A 7→ A′′. The duality
between A and A′ is specified by

(6.3) 〈A, µ⊗ Λ〉 = 〈Λ, A′µ〉 = 〈A′′(Λ), µ〉

for A ∈ A and µ ∈ E ′, Λ ∈ E ′′, and the duality between A′ and A′′ is
specified by

(6.4) 〈U, µ⊗ Λ〉 = 〈U(Λ), µ〉

for U ∈ A′′ and µ ∈ E ′, Λ ∈ E ′′. For a full description of these dualities,
see [DeF, Chapter 16.7], for example.

We now describe the canonical module actions of A on A′ and on
A′′. Thus, take A ∈ A, T ∈ A′ = N (E ′), and U ∈ A′′ = B(E ′′). Then:

(6.5)
A · T = T ◦ A′ ; T · A = A′ ◦ T ;
A · U = A′′ ◦ U ; U · A = U ◦ A′′ .

}
It is of interest to note that

(6.6) A′ = A′ · A, but that A′ 6= A · A′ ;

this is proved in [LU, Example 2.5]. It follows as in [LU, Proposition

2.10] that Z
(1)
t (A′′) 6= Z

(2)
t (A′′), but we shall show more than this.

We shall now calculate the two Arens products on A′′ = B(E ′′),
still in the case where E ′ has AP and RNP. This calculation was first
made by Palmer in [Pa1] and, for more general Banach spaces and in
full detail, by M. Grosser in [G2]. For variety, we make the calculations
in a slightly different way.

Let U, V ∈ A′′, and take (Aα) and (Bβ) to be nets in A such that
limαAα = U and limβ Bβ = V (in the topology σ(A′′,A′)). Take µ ∈ E ′

and Λ ∈ E ′′. Then

〈(AαBβ)′′(Λ), µ〉 = 〈B′′
β(Λ), A′α(µ)〉 .

For each α, we have limβ〈B′′
β, A

′
αµ⊗ Λ〉 = 〈V, A′αµ⊗ Λ〉, and so

lim
β
〈B′′

β(Λ), A′α(µ)〉 = 〈V (Λ), A′α(µ)〉 = 〈A′′α(V (Λ)), µ〉 .

Hence

lim
α

lim
β
〈(AαBβ)′′(Λ), µ〉 = 〈U(V (Λ)), µ〉 .
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This shows that

(6.7) U 2V = lim
α

lim
β
AαBβ = U ◦ V (U, V ∈ B(E ′′)) .

As a preliminary to the calculation of U 3V , we make the following
remark. Take A = x⊗ λ ∈ E ⊗E ′ ⊂ A, T ∈ A′, and U ∈ A′′ = B(E ′′).
Then

〈A, T · U〉 = 〈U, A · T 〉 by (2.7)
= 〈U, T ◦ A′〉 by (6.5)
= 〈U, Tλ⊗ κE(x)〉 by (6.1)
= 〈(U ◦ κE)(x), Tλ〉 by (6.4)
= 〈x, (η(U) ◦ T )(λ)〉
= 〈A, η(U) ◦ T 〉 by (6.2) ,

and so T · U = η(U) ◦ T in A′. (Similarly, U · T = η(U ◦ T ′).)
We can now calculate U 3V for U, V ∈ A′′. First, we take an

element T = µ⊗ Λ ∈ E ′ ⊗ E ′′. Then

〈U 3V, T 〉 = 〈V, T · U〉 by (2.8)
= 〈V, η(U) ◦ (µ⊗ Λ)〉
= 〈V, η(U)(µ)⊗ Λ〉 by (6.1)
= 〈V (Λ), η(U)(µ)〉 by (6.4)
= 〈Q(U)(V (Λ)), µ〉
= 〈Q(U) ◦ V, µ⊗ Λ〉 by (6.4)
= 〈Q(U) ◦ V, T 〉 .

This shows that

(6.8) U 3V = Q(U) ◦ V (U, V ∈ B(E ′′)) .

In particular, the algebra (B(E)′′, 3 ) is not unital.

The following example is an elaboration of Example 2.5 of [LU].

Example 6.2. Let E be a Banach space such that E ′ has AP and
RNP and E is not reflexive. For example, we can take E = c0. Set
A = K(E). It is clear from (6.7) and (6.8) that

Z
(1)
t (A′′) = {U ∈ B(E ′′) : U ◦ V = Q(U) ◦ V (V ∈ B(E ′′))} ,

and so
Z

(1)
t (A′′) = {U ∈ B(E ′′) : U = Q(U)} = B(E ′)a .

Similarly, we see that

Z
(2)
t (A′′) = {U ∈ B(E ′′) : V ◦ U = Q(V ) ◦ U (V ∈ B(E ′′))} .

For each Λ ∈ E ′′ \E, there exists V ∈ B(E ′′) such that V | E = 0 and
V (Λ) = Λ. It follows that

Z
(2)
t (A) = {U ∈ B(E ′′) : U(E ′′) ⊂ E} .
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(The identification of Z
(2)
t (K(c 0)) in [LU, Chapter 6, j)] is not correct.)

Let IE′′ be the identity operator on E ′′. Then

IE′′ ∈ Z
(1)
t (A) \ Z

(2)
t (A) .

On the other hand, take x0 ∈ E \ {0} and Γ ∈ E ′′′ with Γ | E = 0 and
Γ 6= 0, and then define

U(Λ) = 〈Λ, Γ〉x0 (Λ ∈ E ′′) .

Then U ∈ B(E ′′) and U(E ′′) ⊂ C x0 ⊂ E, but U | E = 0, and so we

have Q(U) = 0, whence Q(U) 6= U . Thus U ∈ Z
(2)
t (A′′) \ Z

(1)
t (A′′). We

conclude that

Z
(1)
t (A′′) 6⊂ Z

(2)
t (A′′) and Z

(2)
t (A′′) 6⊂ Z

(1)
t (A′′) ,

and so the two topological centres of A are different. In particular,

A ( Z
(1)
t (A′′) ( A′′ and A ( Z

(2)
t (A′′) ( A′′ ,

and so A is neither Arens regular nor either left or right strongly Arens
irregular.

Let us consider how the above remarks relate to Theorem 5.14. Now
M(A) = B(E). We set X = A′. The algebra (A′′, 2 ) = (B(E ′′), ◦ ) is
unital, and so it follows from [LU, Proposition 2.2a] that A′ = A′ · A.
Thus Theorem 5.14 applies to show that

B(E)aa ⊂ Z
(1)
t (A′′) ;

in fact, we have established the stronger result that B(E ′)a = Z
(1)
t (A′′).

Temporarily set Z = Z
(1)
t (A′′) ∩ Z

(2)
t (A′′). We seek to identify Z.

First take A ∈ W(E). Then A′′(E ′′) ⊂ E and so A′′ ∈ Z
(2)
t (A′′).

Clearly A′′ ∈ Z
(1)
t (A′′), and so we have shown that A ∈ Z. Hence

W(E)aa ⊂ Z.
Now take U ∈ Z. Since U ∈ B(E ′)a, the operator U is continuous

on the space (E ′′, σ(E ′′, E ′)). Set S := (E ′′)[1], so that S is σ(E ′′, E ′)-
compact. Then U(S) is σ(E ′′, E ′)-compact. However U(S) ⊂ E be-

cause U ∈ Z
(2)
t (A), and so U(S) is σ(E,E ′)-compact in E, and hence

σ(E ′′, E ′′′)-compact in E ′′. This shows that U ∈ W(E ′′). Set U = T ′,
where T ∈ B(E ′). By Gantmacher’s theorem [DfS, Theorem VI.4.8],
we have T ∈ W (E ′).

We now claim that T ∈ B(E)a. By [DfS, Exercise VI.9.13], we
require T to be σ(E ′, E)-continuous on E ′. To show that this is the
case, it suffices, by [DfS, Theorem V.5.6], to show that Tλα → Tλ
in (E ′, σ(E ′, E)) whenever λα → λ in ((E ′)[1], σ(E ′, E)). Since T is
weakly compact, we may suppose, by passing to a subnet, that (Tλα)
is convergent in (E ′, σ(E ′, E)), say Tλα → µ ∈ E ′. Let x ∈ E, so
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that 〈x, Tλα〉 → 〈x, µ〉. Set y = T ′x ∈ E ′′: in fact, y ∈ E because
T ′(E ′′) ⊂ E. Thus

〈x, Tλα〉 = 〈y, λα〉 → 〈y, λ〉 = 〈x, Tλ〉 ,

and so Tλ = µ. Thus the claim is established.
Again by Gantmacher’s theorem, we see that T ∈ W (E)a, and this

proves that U ∈ W (E)aa.
We conclude that

(6.9) W(E)aa =
(
Z

(1)
t (A′′) ∩ Z

(2)
t (A′′)

)
.

We now take special cases for the space E.
First take E = c0. It is standard that K(c0) = W(c0). To see this,

take T ∈ W(c0). Then T ′ ∈ W(` 1). Let (λn) be a bounded sequence
in ` 1, so that (T ′λn) is also a bounded sequence in ` 1, and hence
has a weakly convergent subsequence. But ` 1 has ‘Schur’s property’:
each weakly convergent sequence in ` 1 is norm-convergent [Co, V.5.2].
Thus T ′ is compact, and so T is compact. This gives us an example
A = K(c0) such that

(6.10) κA(A) =
(
Z

(1)
t (A′′) ∩ Z

(2)
t (A′′)

)
.

Second, take E = J , the James space, so that J ′′/J has dimension
1. In particular, J ′′/J is a separable space, and so J ′ has RNP [DiU,
p. 219]. Also J has AP, and so J fits into our present scenario. It
also follows easily that W(J) is a closed ideal of codimension 1 in B(J)
(and W(J) is the kernel of a character on B(J)). However K(J) has
infinite codimension in B(J), and so K(J) 6= W(J). (For a discussion
of the closed ideal structure of B(J), see [Laus]; Laustsen shows that
K(J) is equal to various other naturally defined ideals.) This gives us
an example B = K(J) such that

(6.11) κB(B) (
(
Z

(1)
t (B′′) ∩ Z

(2)
t (B′′)

)
.

We now determine the radicals of (A′′, 2 ) and (A′′, 3 ).
Certainly the Banach algebra (A′′, 2 ) = (B(E ′′), ◦ ) is semisimple.
To calculate the radical of (A′′, 3 ), we apply the earlier algebraic

calculation, with (A′′, ◦ ), B(E ′)a, Q, and J playing the roles of A,
B, P , and J , respectively. The product 3 in A′′ corresponds to the
previously defined product × in A. Further, B(E ′)a is a semisimple
subalgebra of (A′′, ◦ ), and

J = {U ∈ B(E ′′) : U | E = 0}
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is a left ideal in (A′′, ◦ ), and so conditions (1), (2), and (3) of those
algebraic conditions are satisfied. We conclude that

rad (A′′, 3 ) = kerQ and (A′′, 3 ) = B(E ′)a n rad (A′′, 3 ) ,

so that (A′′, 3 ) is strongly decomposable. In particular, the radicals
of (A′′, 2 ) and (A′′, 3 ) are not the same. 2

Example 6.3. Let A = K(c0), as above. Then we have

Z
(1)
t (A′′) 6= Z

(2)
t (A′′) and rad (A′′, 2 ) 6= rad (A′′, 3 ) .

For x = (xn) ∈ c0, set x = (xn), and then, for T ∈ A, set

Tx = T x (x ∈ A) .

Then T ∈ A, and the map T 7→ T is a linear involution on A such that
ST = S T (S, T ∈ A).

As in Example 4.4, we can construct a Banach ∗-algebra C = A⊕Aop

such that Z
(1)
t (C′′) 6= Z

(2)
t (C′′) and rad (C′′, 2 ) 6= rad (C′′, 3 ). 2

[Added in August, 2004: In his thesis at Leeds [Da2], Daws has now
substantially extended the above results; he deals with more general
Banach spaces and obtains more definitive results and further exam-
ples.]



CHAPTER 7

Beurling Algebras

In this chapter, we shall describe the Banach algebras that we shall
consider. First, we recall some standard notation; see [D] for further
information.

Let S be a set, and let s ∈ S. We write both δs and λs for the
characteristic function of the singleton {s}. Let ω : S → R+• be a
function. Then:

` 1(S, ω) =

{
f =

∑
s∈S

f(s)δs : ‖f‖ω =
∑
s∈S

|f(s)|ω(s) <∞

}
;

`∞(S, 1/ω) =

{
λ =

∑
s∈S

λ(s)λs : ‖λ‖∞,ω = sup
s∈S

|λ(s)|
ω(s)

<∞

}
.

Clearly (` 1(S, ω), ‖ · ‖ω) and
(
`∞(S, 1/ω), ‖ · ‖∞,ω

)
are Banach spaces,

and the latter is the dual of the former for the pairing

(f, λ) 7→ 〈f, λ〉 =
∑
s∈S

f(s)λ(s) .

Note that ω ∈ `∞(S, 1/ω). We also define

c0(S, 1/ω) = {λ ∈ `∞(S, 1/ω) : |λ| /ω ∈ c0(S)} .

Then c0(S, 1/ω) is a closed subspace of `∞(S, 1/ω) containing λs for
each s ∈ G and

c0(S, 1/ω) = lin {λs : s ∈ S};
the dual space of c0(S, 1/ω) is ` 1(S, ω), and the second dual space is
identified with `∞(S, 1/ω). In the case where ω = 1, we write ` 1(S),
etc. Note that ‖δs‖ω = ω(s) and ‖λs‖∞,ω = 1/ω(s) for s ∈ G.

Let G be a locally compact group. We denote by m a fixed left
Haar measure on G, and by ∆G the modular function of G. The group
G with the discrete topology is denoted by Gd. Let G and H be locally
compact groups. Then the product group G × H is also a locally
compact group. For details on locally compact groups, see [HR1] and
[RS].

65
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Let X be a Banach space of measures or of equivalence classes of
functions on a locally compact group G, and then let ω : G→ R+• be
a continuous function. We define

X(ω) = {f : ωf ∈ X} .
The norm of X(ω) is defined so that the map f 7→ ωf from X(ω) onto
X is a linear isometry. In particular, we define

L1(G,ω) =

{
f Borel measurable : ‖f‖ω =

∫
G

|f(s)|ω(s) dm(s) <∞
}

and

L∞(G, 1/ω) =

{
λ Borel measurable : ‖λ‖∞,ω = ess sup

s∈G

|λ(s)|
ω(s)

<∞
}
.

We identify two functions f and g in L1(G,ω) if they are equal almost
everywhere with respect to m, and we identify λ and µ in L∞(G, 1/w)
if they are equal locally almost everywhere with respect to m. Then
(L1(G,ω), ‖ · ‖ω) and (L∞(G, 1/ω), ‖ · ‖∞,ω) are Banach spaces, and
the latter is the dual of the former for the pairing

(f, λ) 7→ 〈f, λ〉 =

∫
G

f(s)λ(s) dm(s) ;

this duality specifies the weak-∗ topology on L∞(G, 1/ω). We also
define:

C0(G, 1/ω) = {λ ∈ L∞(G, 1/ω) : λ/ω ∈ C0(G)} ,
so that C0(G, 1/ω) is a closed subspace of L∞(G, 1/ω). We write
L1(G) and L∞(G) in the case where ω = 1; we also write L1

R(G,ω)
and L∞R (G, 1/ω), etc., for the real-linear subspaces of L1(G,ω) and
L∞(G, 1/ω), respectively, consisting of elements which are identified
with functions that are real-valued. Finally, we denote by L∞00(G, 1/ω)
the subspace of L∞(G, 1/ω) consisting of elements λ such that there is
a compact set K ⊂ G with suppλ ⊂ K.

We shall also utilize the following specific subset of L1(G,ω). Define

Pω(G) = {f ∈ L1(G,ω) : f ≥ 0, ‖f‖ω = 1} ;

in the case where ω = 1, we write P (G), as in the standard sources
(for example, see [Pat, (0.1)]).

We shall use the following classical theorem of Steinhaus.

Theorem 7.1. Let ω : G → R+• be a continuous function on
a locally compact group G. Then L1(G,ω) is a weakly sequentially
complete Banach space. 2
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Let G be a locally compact group, and let ω : G → R+• be a con-
tinuous function. Then the space L∞(G, 1/ω) is a commutative, unital
C∗-algebra for the product · ω which is defined for λ, µ ∈ L∞(G, 1/ω)
by

(λ ·ω µ)(s) = λ(s)µ(s)/ω(s) (s ∈ G) ;

the identity of this algebra is the function ω and the involution is the
map f 7→ f . Indeed, L∞(G, 1/ω) is a commutative von Neumann
algebra. Clearly L∞(G, 1/ω) is ∗-isomorphic to the C∗-algebra L∞(G),
and C0(G, 1/ω) is a C∗-subalgebra of L∞(G, 1/ω).

An element λ ∈ L∞(G, 1/ω) is self-adjoint (respectively, positive)
as an element of the C∗-algebra if and only if λ is identified with a
function that takes its values in R (respectively, in R+).

In the case where ω(s) ≥ 1 (s ∈ G), we denote by M(G,ω) the
Banach space of all complex-valued, regular Borel measures µ on G
such that

‖µ‖ω =

∫
G

ω(s) d |µ| (s) <∞ ,

and we write M(G) in the case where ω = 1, so that M(G,ω) is
a subspace of M(G) and M(G,ω) is the dual of C0(G, 1/ω) for the
pairing

(λ, µ) 7→ 〈λ, µ〉 =

∫
G

λ(s) dµ(s) ;

this latter duality defines the weak-∗ topology on M(G,ω).
There is a decomposition of M(G,ω). Let Ma(G,ω) and Ms(G,ω)

denote the closed linear subspaces of M(G,ω) consisting of those mea-
sures which are absolutely continuous and singular, respectively, with
respect to the Haar measure. Then M(G,ω) = Ma(G,ω) ⊕Ms(G,ω)
as an ` 1-sum of Banach spaces. We identify Ma(G,ω) with the closed
subspace L 1(G,ω) of M(G,ω); the space Ms(G,ω) contains the closed
subspace ` 1(G,ω) of discrete measures in M(G,ω). (Here we regard
each element δs as a measure on G by setting δs(E) = 1 whenever
s ∈ E and δs(E) = 0 whenever s 6∈ E for a Borel set E in G.) This
theory is essentially that given in [HR1] in the case where ω = 1. We
shall just use the Banach space decomposition

(7.1) M(G,ω) = L 1(G,ω)⊕Ms(G,ω) .

The following result is standard.

Proposition 7.2. The closed subspaces L 1(G,ω) and ` 1(G,ω) are
weak-∗ dense in M(G,ω).
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Proof. Set A = L 1(G,ω) and M = M(G,ω), so that

A′′ = L∞(G, 1/ω)′ .

Take µ ∈M with ‖µ‖ ≤ 1. By the Hahn–Banach theorem, there exists
µ ∈ A′′ with ‖µ‖ ≤ 1 and µ | C0(G, 1/ω) = µ. There is a net (fα) in
A[1] such that fα → µ in the topology σ(A′′, A′). Clearly fα → µ in
(M,σ(M,C0)). This gives the result for the subspace L 1(G,ω).

A similar argument gives the result for the subspace ` 1(G,ω). �

Let G be a locally compact group. We shall now recall the defin-
itions of some standard closed subspaces of the space (L∞(G), ‖ · ‖∞);
in the case where we are dealing with continuous functions on G, we
denote the norm ‖ · ‖∞ by | · |G, so that | · |G is the uniform norm. In
particular, each algebra (`∞(G), · ) is a commutative, unital von Neu-
mann algebra, identified with C(βGd), and the Banach space ` 1(G)′′

is identified with M(βGd).

We shall utilize the left and right translations `t and rt, defined for
functions f on G and t ∈ G by the formulae:

(7.2) (`tf)(s) = f(ts) , (rtf)(s) = f(st) (s ∈ G) .

(The functions `tf and rtf are denoted by tf and ft in [HR1, Chapter
15]; the left shift Stf is defined by (Stf)(s) = f(t−1s) (s ∈ G) in [D].)

For f ∈ CG, we set

LO(λ) = {`tλ : t ∈ G} , RO(f) = {rtλ : t ∈ G} .

Thus:

CB(G) denotes the closed subspace of L∞(G) consisting of the
(equivalence classes of) bounded, continuous functions on G (as in
Chapter 2);

LUC(G) and RUC(G) denote the closed subspaces of CB(G) con-
sisting of the (equivalence classes of) bounded, left (respectively, right)
uniformly continuous functions on G, so that

LUC(G) = {λ ∈ CB(G) : t 7→ `tλ , G→ CB(G), is continuous}
RUC(G) = {λ ∈ CB(G) : t 7→ rtλ , G→ CB(G), is continuous} ;

WAP (G) denotes the closed subspace of CB(G) consisting of the
weakly almost periodic functions, so that

WAP (G) = {λ ∈ CB(G) : LO(λ) is relatively compact

in the weak topology of CB(G)} ;
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AP (G) denotes the closed subspace of CB(G) consisting of the
almost periodic functions, so that

AP (G) = {λ ∈ CB(G) : LO(λ) is relatively compact

in the norm topology of CB(G)} .
Note that elements of LUC(G) are called ‘right uniformly continu-

ous’ in [HR1]. In fact,

LUC(G) = {λ ∈ L∞(G) : t 7→ `tλ , G→ L∞(G), is continuous}
RUC(G) = {λ ∈ L∞(G) : t 7→ rtλ , G→ L∞(G), is continuous} .

This follows from Proposition 7.15, below.
It is well-known (see [BJM, pp. 130, 139] and [HR1, Theorem (18.1)])

that λ ∈ WAP (G) (respectively, λ ∈ AP (G)) if and only if RO(λ) is
relatively compact in the weak (respectively, norm) topology of CB(G).
Further, it is known (see [BJM, pp. 128, 138]) that

(7.3) AP (G) = AP (Gd) ∩ C(G) , WAP (G) = WAP (Gd) ∩ C(G) .

Let λ ∈ L∞(G). Then

(7.4) 〈{`tλ : t ∈ G}〉 = {λ · f : f ∈ P (G)} ,
where the closures are taken in the weak-∗ topology (see [Wo, Lemma
6.3]). In particular, in the case where λ ∈ WAP (G), the weak and
weak-∗ topologies coincide on the ‖ · ‖-closure of 〈{`tλ : t ∈ G}〉, and
hence the sets in (7.4) are ‖ · ‖-closed, and so must be contained in
LUC(G). It follows easily from (7.4) that

WAP (G) = {λ ∈ CB(G) : λ · P (G) is relatively weakly compact} ,
and so

(7.5) AP (G) = AP (L1(G)) , WAP (G) = WAP (L1(G)) .

Further, it follows that

WAP (G) = {λ ∈ L∞(G) : LO(λ) is relatively compact

in the weak topology of L∞(G)} ,
AP (G) = {λ ∈ L∞(G) : LO(λ) is relatively compact

in the norm topology of L∞(G)} ,
and that

L∞(G) ⊃ CB(G) ⊃ LUC(G) ⊃ WAP (G) ⊃ AP (G) .

We also have WAP (G) ⊃ C0(G); however, in the case where G is lo-
cally compact and non-compact, AP (G)∩C0(G) = {0} [BJM, Chapter
4, Corollary 1.15].
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The following result is immediate from Theorem 3.3; see also [BJM,
Chapter 4, Theorem 2.3].

Theorem 7.3. Let G be a locally compact group, and take an el-
ement λ ∈ CB(G). Then λ ∈ WAP (G) if and only if the function
(s, t) 7→ λ(st), G×G→ C, clusters on G×G. 2

It was proved by Granirer [Gra2, p. 62] that LUC(G) = WAP (G)
if and only if the group G is compact; see also [L3, Corollary 4].

Definition 7.4. Let ω : G→ R+• be a continuous function. Then:

CB(G, 1/ω) = {λ ∈ L∞(G, 1/ω) : λ/ω ∈ CB(G)} ;

LUC(G, 1/ω) = {λ ∈ L∞(G, 1/ω) : λ/ω ∈ LUC(G)} ;

RUC(G, 1/ω) = {λ ∈ L∞(G, 1/ω) : λ/ω ∈ RUC(G)} ;

WAP (G, 1/ω) = {λ ∈ L∞(G, 1/ω) : λ/ω ∈ WAP (G)} ;

AP (G, 1/ω) = {λ ∈ L∞(G, 1/ω) : λ/ω ∈ AP (G)} .

We clearly have

L∞(G, 1/ω) ⊃ CB(G, 1/ω) ⊃ LUC(G, 1/ω)

⊃ WAP (G, 1/ω) ⊃ AP (G, 1/ω) .

Also CB(G, 1/ω) ⊂ `∞(G, 1/ω) and C0(G, 1/ω) ⊂ WAP (G, 1/ω). In
the case where G is discrete, we have

CB(G, 1/ω) = LUC(G, 1/ω) = `∞(G, 1/ω) ,

and, in the case where G is compact, we have

CB(G, 1/ω) = AP (G, 1/ω) ;

further, AP (G, 1/ω) = WAP (G, 1/ω) only if G is compact.
The spaces

CB(G, 1/ω), WAP (G, 1/ω), AP (G, 1/ω), LUC(G, 1/ω)

are each a C∗-subalgebra of L∞(G, 1/ω) and each space contains the
function ω.

We now introduce a central concept of this memoir, that of a weight
on a group.

Definition 7.5. Let G be a group, with identity eG. A weight on
G is a function ω : G→ R+• such that

ω(st) ≤ ω(s)ω(t) (s, t ∈ G), ω(eG) = 1 .

A function ω on G is symmetric if

ω(s−1) = ω(s) (s ∈ G) .
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Let ω : G→ R+• be a function such that

ω(st) ≤ ω(s)ω(t) (s, t ∈ G) .

Then ω(eG) ≥ 1. By changing the value of ω at eG to be 1, we obtain
a weight on G. Notice that

(7.6) ω(s−1)−1 ≤ ω(st)/ω(t) ≤ ω(s) (s, t ∈ G) .

Let G be a group, and let ω : G → R+• be a function. It is often
convenient to set

ω = exp η ,

so that η : G → R is a function, and ω is a weight if and only if η is
subadditive and η(eG) = 0. Of course, ω(s) ≥ 1 (s ∈ G) if and only if
η(s) ≥ 0 (s ∈ G). Further, for a function η : G→ R, we shall set

(7.7) (δ1η)(s, t) = η(s)− η(st) + η(t) (s, t ∈ G) .

We also adopt throughout the following notation. Following [CrY], we
write

(7.8) Ω(s, t) =
w(st)

w(s)w(t)
(s, t ∈ G) ,

so that 0 < Ω(s, t) ≤ 1 (s, t ∈ G) and Ω = exp(−δ1η) as functions on
G×G.

For example, let G be a group, and let S and T be disjoint subsets
of G such that S ∪ T = G \ {eG}. Define

(7.9) η(eG) = 0 , η(s) = 2 (s ∈ S) , η(t) = 1 (t ∈ T ) .

Then η satisfies the above conditions, and ω = exp η is a weight on G.

Theorem 7.6. Let ω be a weight on a group G. Then the Banach
space ` 1(G,ω) is a unital Banach algebra with respect to the convolution
product ? , defined by the requirement that

δs ? δt = δst (s, t ∈ G) . 2

Definition 7.7. Let ω be a weight on a group G. The algebras
` 1(G,ω) are the (discrete) Beurling algebras on G.

The dual module of ` 1(G,ω) is identified with `∞(G, 1/ω). Note
that, in this case, we have

(7.10) λs · δt = λt−1s, δt · λs = λst−1 (s, t ∈ G) ,

where we are regarding λs as an element of `∞(G, 1/ω). Let t ∈ G.
Then

`tλ = λ · δt, rtλ = δt · λ (λ ∈ `∞(G, 1/ω)) .
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For example, take G = (Z,+), and write ` 1(ω) for ` 1(Z, ω). For
each α ≥ 0, define

(7.11) ωα(n) = (1 + |n|)α (n ∈ Z) .

Then each ωα is a weight on Z, and ` 1(ωα) is a Beurling algebra on Z.
It is easy to see that the corresponding function Ωα 0-clusters strongly
on G×G whenever α > 0 .

Let G be an abelian group with (compact) dual group Γ, and let
ω be a weight on G with ω(s) ≥ 1 (s ∈ G). The Fourier transform
identifies ` 1(G,ω) as a Banach function algebra on Γ, and so ` 1(G,ω)
is a semisimple Banach algebra. In particular, ` 1(ωα) is identified with
a subalgebra of C(T); this latter algebra is contained in the Banach
function algebra lipαT. In the case where α ≥ 1, each such Fourier
transform is continuously differentiable on T. For details of these re-
marks, see [D, Example 4.6.13].

For a compact subset X of C, denote by A(X) the uniform algebra
of all continuous functions on X that are analytic on the interior of X.
Let ω be a weight on the group (Z,+) with ω(n) ≥ 1 (n ∈ Z), and set

ρ1 = inf{ω1/n
n : n ∈ N}, ρ2 = sup {ω−1/n

−n : n ∈ N} ,

so that 0 < ρ2 ≤ 1 ≤ ρ1 < ∞. Then the character space of ` 1(ω) is
homeomorphic to the annulus

X := {z ∈ C : ρ2 ≤ |z| ≤ ρ1} ,

and f̂ ∈ A(X) for each f ∈ ` 1(ω) [D, p. 504].

Definition 7.8. Let G be a locally compact group. A weight func-
tion on G is a continuous function ω : G→ R+• such that ω is a weight
on G.

For example, let η be a continous, subadditive function on G such
that η(eG) = 0. Then ω = exp η is a weight function on G.

Let ω1 and ω2 be weight functions on a locally compact group G.
Then the pointwise product ω1ω2 is also a weight function on G. Let
ω1 and ω2 be weight functions on locally compact groups G1 and G2,
respectively. Define ω1 ⊗ ω2 on G1 ×G2 by

(ω1 ⊗ ω2)(s, t) = ω1(s)ω2(t) (s ∈ G1, t ∈ G2) .

Then ω1 ⊗ ω2 is a weight function on G1 ×G2.
Let ω be a weight function on G. Then it follows from (7.6) that

(7.12) lim
s→eG

sup
t∈G

ω(st)/ω(t) = 1 .
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Let ω : G→ R+ be a weight function on G. Then the corresponding
functions δ1η and Ω are continuous functions on G × G, and Ω is
bounded by 1.

Let ω be a weight function on G with ω(s) ≥ 1 (s ∈ G). Then
convolution product ? on M(G,ω) is defined by the formula

〈λ, µ?ν〉 =

∫
G

∫
G

λ(st) dµ(s) dν(t) (µ, ν ∈M(G,ω), λ ∈ C0(G, 1/ω)) .

Theorem 7.9. Let ω be a weight function on a locally compact
group G. Then the Banach space M(G,ω) is a unital Banach algebra
with respect to the convolution product ? ; L1(G,ω) is a closed ideal in
M(G,ω), and ` 1(G,ω) is a closed subalgebra of M(G,ω). 2

The product of f and g in L 1(G,ω) is given by

(f ? g)(t) =

∫
G

f(s)g(s−1t) dm(s) =

∫
G

f(ts−1)g(s)∆G(s−1) dm(s)

for t ∈ G. We also note the following formulae for the product of
f ∈ L 1(G) and µ ∈M(G):

(f ? µ)(t) =

∫
G

f(ts−1)∆G(s−1) dµ(s) ,

(µ ? f)(t) =

∫
G

f(s−1t) dµ(s) ,

 (t ∈ G) ,

In particular f ? δs = ∆G(s−1)rs−1f and δs ? f = `s−1f for s ∈ G and
f ∈ L 1(G).

Definition 7.10. Let ω be a weight function on a locally compact
group G. The algebras L 1(G,ω) are the (continuous) Beurling algebras
on G.

For a general background and history on Beurling algebras, see the
texts of Reiter and Stegeman [RS] and Palmer [Pa2, 1.9.15].

For example, take G = (R,+), and define

ωα(t) = (1 + |t|)α (t ∈ R)

for α ≥ 0. Then each ωα is a weight function on R, and L1(R, ωα) is
a Beurling algebra. Let Ωα be the corresponding function on R × R.
Then, in the case where α > 0, the function s 7→ Ωα(s, t) is decreasing
on R+ for each t ∈ R.

We remark in passing that it follows from Theorem 7.1 that ‘an
infinite-dimensional C∗-algebra cannot be a closed linear subspace of
any Beurling algebra’. Indeed, let A be a C∗-algebra, and let B be
a Banach algebra which is weakly sequentially complete as a Banach
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space (for example, let B be a Beurling algebra). Suppose that A
is linearly homeomorphic to a closed subspace of B. Then A is also
weakly sequentially complete. However the only C∗-algebras which are
weakly sequentially complete are those which are finite-dimensional.

Let G be a locally compact group, and let H be the group G with
the opposite product, so that H is a locally compact group. For a
function f on G, set

f̌(s) = f(s−1) (s ∈ G) .

Now let m be a left Haar measure on G, and define m̌ by∫
f(s) dm̌(s) =

∫
f̌(s)∆G(s−1) dm(s) (f ∈ L 1(G)) .

Then m̌ is a left Haar measure on H. Let ω be a weight function on
G. Then ω̌/∆G is a weight function on H, and the opposite algebra
to L 1(G,ω) is isometrically isomorphic with L 1(H, ω̌/∆G). Thus the
opposite algebra to a Beurling algebra is also a Beurling algebra.

Definition 7.11. Let G be a locally compact group. Two weight
functions ω1 and ω2 on G are equivalent if there exists a continuous
algebra isomorphism from L1(G,ω1) onto L1(G,ω2).

For example, ω1 and ω2 are equivalent if there exist constants c1 > 0
and c2 > 0 such that

ω1(s) ≤ c2ω2(s), ω2(s) ≤ c1ω1(s) (s ∈ G) .

Now let ω1 be a weight and set ω2(n) = ecnω1(n) (n ∈ Z) for some
constant c. Then ω1 and ω2 are equivalent. All properties involving
topological centres and radicals of second duals are unchanged if we
move to an equivalent weight on G.

The Banach algebra L1(G,ω) is commutative if and only if G is an
abelian group; it has an identity if and only if G is discrete. Suppose
that ω(s) ≥ 1 (s ∈ G). Then the algebra L1(G,ω) is a dense subalgebra
of the group algebra L1(G).

Let ω be a weight function on a locally compact group G. Then
the operators `t and rt (for t ∈ G) act on L∞(G, 1/ω), and

‖`t‖ = ‖rt‖ = ω(t) (t ∈ G) .

The following remark is clear; we write 1 for the function on G which
is constantly equal to 1.
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Proposition 7.12. Let G be locally compact group, and let ω be a
weight function on G with ω(s) ≥ 1 (s ∈ G). Then 1 ∈ L∞(G, 1/ω),
and the map

ϕG : Φ 7→ 〈Φ, 1〉, L1(G,ω)′′ → C ,

is a character on both (L1(G,ω)′′,2) and (L1(G,ω)′′,3). 2

The above character ϕG on (L 1(G,ω)′′, 2 ), (L 1(G,ω)′′, 3 ), and
their subalgebras is the augmentation character ; its kernel is the aug-
mentation ideal.

Again let G be a locally compact group. Then there is an isometric
involution ∗ on M(G), defined by the formula

µ∗(E) = µ(E−1) (µ ∈M(G))

for each Borel subset E of G. Thus we have δ∗s = δs−1 (s ∈ G) and

f ∗(s) = f(s−1)∆G(s−1) (f ∈ L1(G), s ∈ G) .

The algebra (M(G), ∗ ) is a Banach ∗-algebra. For µ ∈M(G), define

Tµ : f 7→ µ ? f, H → H ,

where H is the Hilbert space L2(G) and

(µ ? f)(t) =

∫
G

f(s−1t) dµ(s) (f ∈ H, µ ∈M(G)) .

Then Tµ ∈ B(H), and the map

µ 7→ Tµ, M(G) → B(H) ,

is a continuous ∗-isomorphism. It follows that M(G) is ∗-semisimple,
and hence semisimple. For this standard theory, see [HR1] and [D,
Theorem 3.3.34], etc.

Let G be a locally compact group, and let ω be a weight function
on G. We are embarrassed to say that we do not know whether or not
the Banach algebra L1(G,ω) is always semisimple; in particular, we
do not know whether or not ` 1(G,ω) is always semisimple. We make
some remarks on this question.

It is proved in [BhDe] that L1(G,ω) is semisimple in the case where
G is abelian (and ω is only required to be measurable).

Let us suppose that G is an arbitrary locally compact group and
that ω is a weight function on G such that ω(s) ≥ 1 (s ∈ G), so that
L1(G,ω) is a subalgebra of L1(G). (By Theorem 7.44, below, the latter
hypothesis is no constraint in the case where G is amenable.)

First, suppose that ω is symmetric. Then M(G,ω) and L1(G,ω)
are ∗-subalgebras of M(G) and L1(G), respectively, (and the involution
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is an isometry on M(G,ω)), and so both M(G,ω) and L1(G,ω) are ∗-
semisimple, and hence semisimple. For a recent study of the Banach
∗-algebras L1(G,ω) in the case where ω is symmetric, see [FG].

Second, consider the case where ω is not necessarily symmetric. A
groupG is said to be maximally almost periodic if the continuous, finite-
dimensional, irreducible, unitary representations separate the points of
G; we also say that ‘G ∈ [MAP]’. It is shown in [Pa2, 3.2.17] and [Pa3,
12.4.15] that G ∈ [MAP] if and only if the algebra AP (G) separates the
points of G. The class [MAP] is discussed in [HR1, (22.22)] and [Pa3,
Chapter 12.5]; the class includes all discrete free groups, but it does
not include the discrete group SL(n,R) in the case where n ≥ 2. Let
G ∈ [MAP]. Then a short proof given in [Bar] shows that the algebra
M(G) has the property that, for each µ ∈ M(G) \ {0}, there exists
n ∈ N and a continuous epimorphism θ : M(G) → Mn(C) such that
θ(µ) 6= 0. (The specific result that we use was also proved earlier in
[GM]; see also [Pa2, 12.5.20(b)].) Since each matrix algebra Mn(C) is
simple, we have θ(radM(G,ω)) = {0}, and so µ /∈ radM(G,ω). Hence
radL1(G,ω) = radM(G,ω) = {0}.

Thus we obtain the following result.

Theorem 7.13. Let G be a locally compact group, and let ω be a
weight function on G such that ω(s) ≥ 1 (s ∈ G). Suppose either that
G is a maximally almost periodic group or that G is arbitrary and ω is
a symmetric function. Then M(G,ω) and L1(G,ω) are semisimple.2

However we cannot prove that the Banach algebra L1(G,ω) is semi-
simple in the case where G 6∈ [MAP] and ω is not symmetric.

It is standard that L1(G) always has a bounded approximate iden-
tity which is a net consisting of continuous functions of compact sup-
port, and this net is clearly also a bounded approximate identity for
each of the Beurling algebras L1(G,ω). Thus L 1(G,ω) satisfies (2.2)
and L1(G,ω)′′ has a mixed identity, say it is Φ0; we may suppose that
‖Φ0‖ = 1, so that the natural embedding of L1(G,ω) intoM(L1(G,ω))
is an isometry. In the case where G is metrizable, L 1(G,ω) has a se-
quential bounded approximate identity.

The next result is a minor extension of a standard theorem of Wen-
del [We].

Theorem 7.14. Let G be a locally compact group, and let ω be a
weight function on G with ω(s) ≥ 1 (s ∈ G). Then M(L1(G,ω)) is
isometrically isomorphic to M(G,ω). Each multiplier on L 1(G,ω) has
the form (Lµ, Rµ) for some µ ∈M(G,ω). 2

Here, Lµ(f) = µ ? f and Rµ(f) = f ? µ for f ∈ L1(G,ω).
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It follows that L1(G,ω) is a Banach M(G,ω)-bimodule, and so the
dual space L∞(G, 1/ω) and the second dual space L1(G,ω)′′ are both
also Banach M(G,ω)-bimodules. For example, we see that, for each
λ ∈ L∞(G, 1/ω), we have

λ · δt = `tλ, δt · λ = rtλ (t ∈ G) .

We next recall the explicit formulae for some module products. Let
f ∈ L 1(G,ω), λ ∈ L∞(G, 1/ω), µ ∈ M(G,ω), and Φ ∈ L 1(G,ω)′′.
Then

(7.13) 〈f, µ · λ〉 = 〈f ? µ, λ〉, 〈Φ · µ, λ〉 = 〈Φ, µ · λ〉 .
Further, µ · λ and λ · µ can be identified with functions on G by the
formulae:

(7.14)


(µ · λ)(t) =

∫
G

λ(ts) dµ(s) ,

(λ · µ)(t) =

∫
G

λ(st) dµ(s) ,

which hold for locally almost all t ∈ G, as in [D, Chapter 3.3] and
[HR1, Theorem (20.12)].

The space C0(G, 1/ω) is regarded as a subspace ofM(G,ω)′ through
the canonical embedding of C0(G, 1/ω) in C0(G, 1/ω)′′. It is clear
that C0(G, 1/ω) is a closed M(G,ω)-submodule of M(G,ω)′, and so
M(G,ω) is also a dual Banach algebra in the sense of Definition 2.6.
However, L1(G,ω) is not a dual Banach algebra–indeed, it is not a dual
Banach space–unless G is discrete.

Let λ ∈ L∞(G, 1/ω). It is clear from (7.6) that λ ∈ LUC(G, 1/ω)
if and only if

lim
s→eG

sup
t∈G

|λ(st)− λ(t)|
ω(t)

= 0 .

We shall require the following result of Grønbæk [Gr3, Proposition
1.3]. In fact, there seems to be a gap in the proof given in [Gr3], and
so we indicate an argument for this result.

Proposition 7.15. Let ω be a weight function on a locally compact
group G, and let λ ∈ L∞(G, 1/ω). Then λ ∈ LUC(G, 1/ω) if and only
if the map

(7.15) s 7→ λ · δs, G→ L∞(G, 1/ω) ,

is continuous.

Proof. The point to be clarified is that λ ∈ CB(G, 1/ω) whenever
λ satisfies (7.15).
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To see this, let (eα : α ∈ A) be an approximate identity in L1(G,ω)
with ‖eα‖ = 1 for each α ∈ A. Then {λ ? ěα : α ∈ A} is a family of
bounded functions on G; we claim that it is an equicontinuous family.
Indeed, take s, t ∈ G. Then

|(λ ? ěα)(st)− (λ ? ěα)(t)| ≤
∫

G

|λ(stu)− λ(tu)| |eα(u)| dm(u)

≤ ‖λ · δst − λ · δt‖∞,ω ,

and so the claim follows. It is a consequence of Ascoli’s theorem that
there exists µ ∈ CB(G, 1/ω) with the property that we may suppose
that λ ? ěα → µ uniformly on compact subsets of G. This implies that
λ ? ěα → µ in the weak-∗ topology on L∞(G, 1/ω). But

〈f, λ ? ěα〉 = 〈f ? eα, λ〉 → 〈f, λ〉 (f ∈ L1(G,ω)) ,

and so λ ? ěα → λ in the weak-∗ topology on L∞(G, 1/ω). Hence
λ = µ locally almost everywhere (with respect to m) on G. Thus we
may indeed suppose that λ ∈ CB(G, 1/ω).

The remainder of the proof is as in [Gr3, Proposition 1.3]. �

It is important to note that L∞(G, 1/ω) is not an essential L 1(G,ω)-
bimodule (unless G be discrete).

We shall now use the following abbreviated notation, which leaves
the locally compact group G to be defined implicitly.

Let ω be a weight function on a locally compact group G; from now
on, we suppose that ω(s) ≥ 1 (s ∈ G). Then we set

(7.16)


Aω = L 1(G,ω), A′

ω = L∞(G, 1/ω), Bω = A′′
ω ,

Mω = M(G,ω), Xω = LUC(G, 1/ω), Eω = C0(G, 1/ω) ,

Wω = WAP (G, 1/ω), AP ω = AP (G, 1/ω) ,

so that E ′ω = Mω as a Banach space. We shall also write Sω for the
state space of the C∗-algebra A′

ω. Of course, we always take Mω and
Aω to be Banach algebras for the product ? ; Bω is a Banach algebra
for the two products 2 and 3 .

Proposition 7.16. Let ω be a weight function on a locally compact
group G. Then the spaces CB(G, 1/ω), Xω, Eω, Wω, and AP ω are
C∗-subalgebras of A′

ω, and each space is translation-invariant and an
Aω-bimodule. The modules CB(G, 1/ω), Xω, Eω, and Wω are faithful.

Proof. This result is immediate. In fact, each A-bimodule X of
A′

ω such that Eω ⊂ X is faithful. �
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Note that it is not the case that Wω = WAP (L1(G,ω)) for an
arbitrary weight function ω on a locally compact group G, as we shall
see below in equation (9.1).

Proposition 7.17. Let ω be a weight function on a locally compact
group G. Then:

(i) A′
ω · Aω = Xω · Aω = Xω;

(ii) Aω · A′
ω = RUC(G, 1/ω);

(iii) Aω · Eω = Eω · Aω = Eω;

(iv) L∞00(G, 1/ω) · Aω ⊂ Eω.

Proof. (i), (ii), and (iii) These are standard because Aω has a
bounded approximate identity (cf. [HR1, (20.19)], [HR2, Chapter 32],
and [Gr3, Proposition 1.3]).

(iv) Let f ∈ Aω, and let λ ∈ A′
ω be such that suppλ ⊂ K for a

compact subset K of G. Fix ε > 0, and choose a compact subset L of
G such that

∫
G\L |f(u)| dm(u) < ε. Then

|(f · λ)(t)| < ε ‖λ‖ω(t) (t ∈ G \ (L−1 · K)) ,

and so f · λ ∈ Eω. �

Clause (iii) of the above result says that Eω is a neo-unital Banach
Aω-bimodule.

Let A be a Banach algebra with a bounded approximate identity.
We noted in Proposition 3.12 that WAP (A) ⊂ A′ · A. Consider the
special case where A is L 1(G) for a locally compact group G. Then
A′ · A is equal to LUC(G) and WAP (A) = WAP (G), and we have
remarked that it is a theorem of Granirer that WAP (G) = LUC(G)
only ifG is compact. Thus, again, we have examples of Banach algebras
A with WAP (A) 6= A′ · A.

Proposition 7.18. Let ω be a weight function on a locally compact
group G. Then Wω and AP ω are neo-unital Banach Aω-bimodules.

Proof. Let W and AP denote Wω and AP ω, respectively, in the
special case where ω = 1. It follows from (7.5) and Proposition 3.12
that W and AP are neo-unital Banach Aω-bimodules.

Let (eα) ⊂ P (G) be an approximate identity for L1(G); we may
suppose that supp eα is eventually contained in each compact neigh-
bourhood of eG, and so (eα) is a bounded appproximate identity for
Aω.

Let λ ∈ Wω with ‖λ‖∞,ω ≤ 1, say. Then λ/ω ∈ W , and so we have

(λ/ω) · eα → λ/ω uniformly on G. We claim that λ · eα → λ in Wω;



80 7. BEURLING ALGEBRAS

for this, we must show that (λ · eα)/ω → λ/ω uniformly on G. and so
it suffices to show that

(7.17) lim
α
|(λ/ω) · eα − (λ · eα)/ω|G = 0 .

Fix ε > 0. By (7.12), there is a compact neighbourhood K of eG

such that |1− ω(st)/ω(t)| < ε for each t ∈ G and s ∈ K. For each α
such that supp eα ⊂ K, we have

|(λ/ω) · eα − (λ · eα)/ω|G

= sup
t∈G

∣∣∣∣∫
K

(
λ(st)

ω(st)
− λ(st)

ω(t)

)
eα(s) dm(s)

∣∣∣∣
≤ sup

t∈G

∫
K

|1− ω(st)/ω(t)| eα(s) dm(s) < ε ,

and so the result follows.
This calculation shows that Wω = Wω · Aω; similarly, we have

Wω = Aω · Wω, and so Wω is an essential Banach Aω-bimodule. By
Theorem 2.3(ii), Wω is neo-unital.

Similarly, AP ω is neo-unital. �

Theorem 7.19. Let ω be a weight function on a locally compact
group G. Then:

(i) Xω is left-introverted as a subspace of both A′
ω and `∞(G, 1/ω);

(ii) Eω is introverted as a subspace of both A′
ω and `∞(G, 1/ω).

Proof. (i) First, Xω is left-introverted inA′
ω because Xω = A′

ω · Aω

by Proposition 7.17(i).
We show directly that Xω is a left-introverted subspace of A′ω, where

A′ω = `∞(G, 1/ω). Take λ ∈ Xω ⊂ A′ω, and Φ ∈ A′′ω, so that Φ · λ ∈ A′ω.
Let sα → s in G. Then

‖(Φ · λ) · δsα − (Φ · λ) · δs‖ ≤ ‖Φ‖ ‖λ · δsα − λ · δs‖ → 0 ,

and so Φ · λ ∈ Xω by Proposition 7.15.

(ii) We regard Eω as a subspace of either A′
ω or `∞(G, 1/ω). Fix

λ ∈ Eω and µ ∈ E ′ω = Mω. Then the formulae for µ · λ and λ · µ are
given in (7.14); it is clear that µ · λ and λ · µ have compact support
whenever both µ and λ have compact support, and so µ · λ, λ · µ ∈ Eω

in this special case. The general case follows. Thus, by Proposition
5.2, Eω is introverted in both A′

ω and `∞(G, 1/ω). �

Part of the above proposition follows from our general result, Theo-
rem 5.15, applied with A = Aω, with B = ` 1(G,ω), and with X = Xω.
By Theorem 7.14, the multiplier algebra M(A) is Mω = M(G,ω);
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clearly, B is an ‖ · ‖-closed, unital subalgebra of M(A) and also B is
σ(X ′, X)-dense in X ′. In this case, X is a faithful, left-introverted sub-
module of B′. Theorem 5.15 gives us one further piece of information
that we isolated as a proposition; the result follows from equation (5.6).

Proposition 7.20. Let ω be a weight function on a locally compact
group G. Then the product 2 in X ′

ω is the same whether Xω be regarded
as a subspace of A′

ω or of `∞(G, 1/ω). 2

The above result (in the case where ω = 1) was proved by direct
calculation in [L1, Lemma 3]. For further information on the Banach
algebras (Xω, 2 ) in this case, see [GhLaa], [GhL1], [L3], and [LLos1].
The finite-dimensional ideals in this algebra are considered in [Fi1] and
[Fi2]; it is interesting that there is a marked difference between finite-
dimensional left ideals and finite-dimensional right ideals.

Note also that there is a partial converse to Theorem 7.19 in the case
where ω = 1. Let X be a translation-invariant subspace of CB(G) such
that X is left-introverted as a subspace of `∞(G). Then X ⊂ LUC(G)
[Mi2]. This implies that CB(G) is not left-introverted as a subspace of
`∞(G) in the case where G is not discrete. We can see this easily for
G = R, for example. Indeed, for each n ∈ N, choose fn ∈ C(R) with
fn(n) = 1 and supp fn ⊂ [n − 1/n, n + 1/n], and set f =

∑∞
n=1 fn, so

that f ∈ CB(G). Let Φ be an accummulation point of {δn : n ∈ N}
in `∞(G)′. Then we have (Φ · f)(0) = 1, but (Φ · f)(t) = 0 for each
t ∈ (0, 1), and so Φ · f /∈ CB(G).

Let G be a locally compact group. In the case where ω = 1, it is also
the case that AP (G) andWAP (G) are introverted subspaces of L∞(G);
this follows from (7.5) and Proposition 3.12. It does not seem to be
obvious that AP (G, 1/ω) and WAP (G, 1/ω) are introverted subspaces
of A′

ω in the general case; for a partial result on this, see Proposition
11.3.

We make a remark on the C∗-algebras X of the form AP (G),
WAP (G), LUC(G), CB(G), and L∞(G). Each has a compact charac-
ter space, say ΦX , and there are continuous surjections

ΦL∞(G) → ΦCB(G) → ΦLUC(G) → ΦWAP (G) → ΦAP (G) .

Of course, ΦCB(G) has been identified with βG, the Stone-Čech compact-
ification of G. For a study of the character space of the Banach algebra
L∞(G), see [LMPy].

Let X be a C∗-subalgebra of LUC(G). Then δs ∈ ΦX (s ∈ G) and
the function s 7→ δs · λ belongs to LUC(G) for each λ ∈ X, and so we
can make the following calculation. Let Ψ ∈ X ′, λ, µ ∈ X, and s ∈ G.
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Then we have Ψ · λ ∈ LUC(G) and

〈δs, Ψ · (λµ)〉 = 〈Ψ, δs · (λµ)〉 = 〈Ψ, (δs · λ)(δs · µ)〉
= 〈Ψ, δs · λ〉〈Ψ, δs · µ〉 = 〈δs, Ψ · λ〉〈δs, Ψ · µ〉 ,

and so Ψ · (λµ) = (Ψ · λ)(Ψ · µ). Now suppose that Φ,Ψ ∈ ΦX ,
λ, µ ∈ X, and s ∈ G. Then

〈Φ2Ψ, λµ〉 = 〈Φ, Ψ · (λµ)〉 = 〈Φ, (Ψ · λ)(Ψ · µ)〉
= 〈Φ, Ψ · λ〉〈Φ, Ψ · µ〉 = 〈Φ2Ψ, λ〉〈Φ2Ψ, µ〉 ,

and so Φ2Ψ ∈ ΦX . Thus the compact space ΦX is a semigroup for
the product (Φ,Ψ) 7→ Φ2Ψ. In the case where X contains C0(G),
the map s 7→ δs is an embedding of G into ΦX and the range of
this map is dense in ΦX , and so ΦX is a compactification of G. In
the case where X = WAP (G), the product (Φ,Ψ) 7→ Φ2Ψ is sepa-
rately continuous [BJM, Chapter 4, Theorem 2.11]. Next, in the case
where X = LUC(G), the product (Φ,Ψ) 7→ Φ2Ψ is not necessarily
separately continuous. In the case where X = AP (G), the product
(Φ,Ψ) 7→ Φ2Ψ is jointly continuous and ΦAP (G) is a compact group
[BJM, Chapter 4, Corollary 1.12]; however, it may be that ΦAP (G) is
a singleton. Since WAP (G) ⊃ C0(G), it is easy to see that ΦWAP (G)

contains the one-point compactification of G as a homeomorphic im-
age; in the case where G is a non-compact, simple, connected Lie group
with a finite centre, ΦWAP (G) is just this one-point compactification (see
[Rup, Theorem 3.6.3]). For a general theory of the compactification of
semigroups, see [BJM].

In fact, the spaces ΦLUC(G), ΦWAP (G), and ΦAP (G) are called the
LUC-compactification, the WAP-compactification, and the AP-com-
pactification or Bohr compactification of G, respectively, and they are
the semigroup compactifications of G that are universal with respect to
being ‘right topological semigroups’, ‘semitopological semigroups’, and
‘topological semigroups’, respectively. One can define them in this way
and prove their existence without using any terminology of C∗-algebras.
For this approach, see Chapter 21 of the book [HiSt].

There is a natural definition of the topological centre of these semi-
groups (see [HiSt, Definition 2.4]; the topological centre of ΦLUC(G) is G
itself [LMiPy]. Again let (S, + ) be a semigroup. Then βS is a subset
of `1(S)′′ and the two products 2 and 3 on `1(S)′′ give products such
that (βS, 2 ) and (βS, 3 ) are semigroups with operations extending
that of G. The centre of βS is defined to be

Λ(S) = {s ∈ βS : s2 t = t2 s (t ∈ βS)} .
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It is proved in [HiSt, Theorem 6.54] that Λ(S) is equal to the centre
of S whenever S is ‘weakly left cancellative’; in particular, in the case
where G is an abelian group, Λ(G) = G.

We introduce two further sets at this time.

Definition 7.21. Let ω be a weight function on a locally compact
group G. Then

R2

ω = rad (Bω, 2 ), R3

ω = rad (Bω, 3 ) .

In the case where G is abelian, we see that R2
ω and R3

ω are anti-
isomorphic as algebras and equal as subsets of Bω, and this set is de-
noted just by Rω. In the case where ω is symmetric on G, R2

ω and
R3

ω are anti-isomorphic as algebras because the extension of the invo-
lution ∗ on Aω to Bω maps R2

ω onto R3
ω . However, we do not know

whether or not they are necessarily the same subset of Bω. In par-
ticular, we do not know whether or not the radicals of the two basic
algebras (`1(G)′′, 2 ) and (`1(G)′′, 3 ) are the same set for each group
G; we guess that this is not the case. Finally, suppose that G is not
abelian and that ω is not symmetric: we shall see in Theorem 10.12
that R2

ω and R3
ω may be neither isomorphic nor anti-isomorphic as

algebras, but we do not know if they are ever distinct subsets of Bω.
Thes radicals will be discussed further; for the case where G is

discrete, see Chapter 8, and for the case where G is not discrete, see
Chapter 12.

Theorem 7.22. Let ω be a weight function on a locally compact
group G. Then X ◦

ω and E◦ω are closed ideals in (Bω, 2 ), and X ◦
ω is a

left-annihilator ideal with X ◦
ω ⊂ R2

ω .

Proof. This follows from Theorem 5.4 because Xω and Eω are left-
intoverted in A′

ω and Xω = A′
ω · Aω. �

The Banach algebra X ′
ω is a quotient of Bω. Indeed, X ′

ω = Bω/X ◦
ω ;

we denote the quotient map by qω. Clearly qω(E◦ω) = E◦ω/X ◦
ω is a closed

ideal in (X ′
ω, 2 ).

Corollary 7.23. Let ω be a weight function on a non-discrete,
locally compact group G, and let Φ0 be a mixed identity for Bω. Then:

(i) Bω = X ′
ω n X ◦

ω ;

(ii) X ′
ω = Φ02Bω;

(iii) qω

(
Z

(1)
t (Bω)

)
⊂ Zt(X ′

ω);

(iv) Z
(2)
t (Bω) ⊂ Φ02Bω;
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(v) Φ0 /∈ Z
(1)
t (Bω), and Aω is not Arens regular.

Proof. This follows from Proposition 5.9 and Theorem 2.21 once
we know that A′

ω · Aω = Xω. �

Corollary 7.24. Let ω be a weight function on a locally compact
abelian group G, and let Φ0 be a mixed identity for Bω. Then

Bω = X ′
ω n X ◦

ω

and

(7.18) qω(Z(Bω)) ⊂ Z(X ′
ω), Z(Bω) ⊂ Φ02Bω, Φ0 /∈ Z(Bω) .

2

Let ω be a weight function on a locally compact group G. We now
show that there is an isometric embedding of the multiplier algebra

Mω = (M(G,ω), ? )

into the Banach algebra (X ′
ω, 2 ); the result is well-known in the case

where ω = 1.
For µ ∈Mω, define θµ ∈ X ′

ω by

(7.19) 〈θµ, λ〉 =

∫
G

λ(s) dµ(s) (λ ∈ Xω) .

Clearly θµ ∈ X ′
ω and θµ | Eω = µ for each µ ∈ Mω. In particular,

we have 〈θδs, λ〉 = λ(s) for each s ∈ G and each λ ∈ Xω. The map
θ : Mω → X ′

ω is a linear isometry.
In equation (5.5), a map θ : M(A) → X ′ was defined for a Banach

algebra A with an approximate identity of bound 1 and a faithful, left-
introverted submodule X of A′. Let us apply this formula in the special
case where A = Aω, so that M(A) = Mω, and where X = Xω, so that
X = X · A by Proposition 7.17(i). For each f ∈ Aω, λ ∈ Xω, and
µ ∈ Mω, formula (5.5) gives 〈θµ, λ · f〉 = 〈f ? µ, λ〉, whereas the
above formula (7.19) gives

〈θµ, λ · f〉 =

∫
G

(λ · f)(s) dµ(s)

=

∫
G

(∫
G

f(t)λ(ts) dm(t)

)
dµ(s)

=

∫
G

(∫
G

f(ts−1)∆(s−1) dµ(s)

)
λ(t) dm(t)

= 〈f ? µ, λ〉 .
We have shown that the two formulae are consistent. Thus we obtain
the following result from Theorem 5.14.
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Theorem 7.25. The map θ : (Mω, ?) → (X ′
ω, 2 ) is a continuous

embedding, and θ(Mω) ⊂ Zt(X ′
ω). 2

Let Φ0 be any mixed identity for Bω. Then we see that

(7.20) 〈Φ0 · µ, λ〉 =

∫
G

λ(t) dµ(t) = 〈θµ, λ〉 (µ ∈Mω, λ ∈ Xω) .

Thus Φ0 · µ = θµ (µ ∈Mω). We note in particular that this equation
holds for each weak-∗ accumulation point Φ0 of the net (eα).

We now regard Mω as a ‖ · ‖-closed subalgebra of X ′
ω, setting

(7.21) 〈µ, λ〉 =

∫
G

λ(s) dµ(s) (µ ∈Mω, λ ∈ Xω) ;

we have Mω ⊂ Zt(X ′
ω) and

(7.22) X ′
ω = Mω n (E◦ω/X ◦

ω)

in a canonical way.

Proposition 7.26. Let ω be a weight function on a locally compact
group, and suppose that the algebra Mω is semisimple. Then

rad X ′
ω ⊂ E◦ω/X ◦

ω .
2

We have a similar embedding of Mω in (Bω, 2 ). Since (Aω, ? )
is a closed ideal in (Mω, ? ) (by an embedding which we call ιω), we
see that ι′′ω is an embedding of (Bω, ? ) as a closed ideal in (M′′

ω, ? ).
Indeed it follows from (7.1) that

M′′
ω = Bω ⊕Ms(G,ω)′′

as a Banach space.
The general theory of Chapter 2 gives a projection

Pω : (M′′
ω, 2 ) → (Mω, ? )

which is a continuous epimorphism.

Definition 7.27. The map Πω : Bω →Mω is the restriction map
Pω | Bω.

Thus Πω : (Bω, 2 ) → (Mω, ? ) is a continuous homomorphism.
As in Chapter 4, we have an isometric embedding

(7.23) κω : µ 7→ Φ0 · µ = Φ02µ, (Mω, ? ) → (Bω, 2 ) ,

such that κω(δ0) = Φ0 and κω(Mω) ⊂ Φ0 · Bω. It is clear that we
have Φ02 f = f (f ∈ L 1(G,ω)), and so κω | L 1(G,ω) is the canonical
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embedding of L 1(G,ω) into the second dual space L 1(G,ω)′′. Thus,
using (7.1), we can write

(7.24) κω(M(G,ω)) = L 1(G,ω)⊕ κω(Ms(G,ω)) .

It is clear that ι′′ω ◦ κω is the canonical embedding of Mω into M′′
ω. We

also have qω ◦ κω = θ, where θ was defined above. (We note that now
κω is not canonically defined because there are many mixed identities
in Bω.)

A form of the following proposition was given by Lamb in [La,
Chapter 2.2].

Proposition 7.28. The map Πω ◦ κω is the identity map on Mω.

Proof. Let µ ∈Mω and λ ∈ Eω ⊂ Xω. Then

〈(Πω ◦ κω)(µ), λ〉 = 〈Φ0 · µ, λ〉 = 〈µ, λ · Φ0〉 = 〈µ, λ〉
by (6.8), and so (Πω ◦ κω)(µ) = µ. The result follows. �

In particular, the map Πω : Bω → Mω is a surjection such that
E◦ω = ker Πω. We thus have the following analogue of (2.17): there is a
short exact sequence∑

: 0 −→ E◦ω −→ (Bω, 2 )
Πω−→ (Mω, ? ) −→ 0

of Banach algebras and continuous homomorphisms. The map κω is
a splitting homomorphism for

∑
. Thus we can also write (Bω, 2 ) as

the semidirect product.

(7.25) (Bω, 2 ) = κω(Mω) n E◦ω .
Similarly, we have

(7.26) (M′′
ω, 2 ) = κω(Mω) n ker Pω ,

where ker Pω is the annihilator of Eω in M′′
ω.

We now consider some important, special elements of Bω.

Definition 7.29. Let ω be a weight function on a locally compact
group G, and let M ∈ Bω. Then:

(i) M is left-s-invariant (for s ∈ G) if 〈M, `sλ〉 = 〈M, λ〉 (λ ∈ A′
ω);

(ii) M is left-S-invariant (for a subsemigroup S of G) if M is left-
s-invariant for each s ∈ S;

(iii) M is left-invariant if it is left-G-invariant;

(iv) M is topologically left-invariant if

f · M = 〈f, 1〉M (f ∈ Aω) .
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For convenience, we now write s · Φ and Φ · s for δs · Φ and Φ · δs,
respectively, whenever s ∈ G and Φ ∈ Bω. Since `sλ = λ · δs for each
s ∈ G and λ ∈ A′

ω, we see that M ∈ Bω is left s-invariant if and only if
s · M = M, and that M is left-invariant if and only if

s · M = M (s ∈ G) .

Similarly, we define analogous ‘right-invariant’ versions of the above
concepts.

Definition 7.30. Let ω be a weight function on a locally compact
group G, and let M ∈ Bω. Then M is invariant if it is both left-invariant
and right-invariant on G.

Thus M is invariant on G if and only if

s · M = M · s = M (s ∈ G) .

In the case where ω = 1, an element M ∈ Bω is topologically left-
invariant if and only if

〈M, λ · f〉 = 〈M, λ〉 (f ∈ P (G), λ ∈ L∞(G)) ,

and so the notion coincides with the standard one, given in [Pat, Defin-
ition (0.9)], for example.

Of course, in the case where G is a discrete group, an element of
Bω is left-invariant if and only if it is topologically left-invariant.

Proposition 7.31. Let ω be a weight function on a locally compact
group G, and let M ∈ Bω be topologically left-invariant. Then

Φ2M = 〈Φ, 1〉M (Φ ∈ Bω) .

Proof. Take Φ ∈ Bω. Then there is a net (fα) in Aω such that
limα fα = Φ. Since limα fα2M = Φ2M and limα〈fα, 1〉 = 〈Φ, 1〉, the
result follows. �

Proposition 7.32. Let ω be a weight function on a non-compact,
locally compact group G, and let M ∈ Bω be topologically left-invariant.
Then M ∈ E◦ω.

Proof. Take λ ∈ C00(G, 1/ω) with ‖λ‖ = 1, and set α = 〈M, λ〉;
we shall show that α = 0, which is sufficient for the result. We write
L = supp λ.

Choose f ∈ C00(G) with 〈f, λ〉 = 1, say K = supp f and m = |f |G.
Let n ∈ N. Since G is not compact, there exist s1, . . . , sn ∈ G

such that the family {K−1sjL : j ∈ Nn} is pairwise disjoint. For each
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j ∈ Nn, set fj = f ? δsj
, so that fj ∈ C00(G) with |fj|G = m and

supp λ · fj ⊂ K−1sjL. Also, 〈fj, 1〉 = 〈f, λ〉 = 1, and so

〈M, λ · fj〉 = 〈fj, 1〉〈M, λ〉 = α .

Set g =
∑n

j=1 fj, so that λ · g =
∑n

j=1 λ · fj ∈ C00(G). Since the
supports of the functions λ · f1, . . . , λ · fn are pairwise disjoint, we
have |g|G = m, and so ‖λ · g‖ ≤ m. Hence

n |α| =

∣∣∣∣∣
n∑

j=1

〈M, λ · fj〉

∣∣∣∣∣ = |〈M, λ · g〉| ≤ m ‖M‖ .

This holds for each n ∈ N, and so α = 0, as required. �

Theorem 7.33. Let ω be a weight function on a locally compact
group G, and let M1,M2 ∈ Bω be topologically left-invariant, with
{M1,M2} linearly independent. Then there exist α, β ∈ C such that
αM1 + βM2 ∈ R2

ω \ X ◦
ω .

Proof. There exist α, β ∈ C such that 〈Λ, 1〉 = 0, but Λ 6= 0,
where we set Λ = αM1 + βM2 ∈ Bω. It follows from Proposition 7.31
that

Φ2Λ = 〈Φ, 1〉Λ (Φ ∈ Bω) ;

in particular, Λ2Λ = 0.
Let Φ ∈ Bω. Then

(Φ2Λ)2 2 = 〈Φ2Λ2Φ, 1〉Λ = 〈Φ, 1〉2〈Λ, 1〉Λ = 0 ,

where we are using Proposition 7.12. Thus {Φ2Λ : Φ ∈ B#
ω } is a

nilpotent left ideal in (Bω, 2 ), and so is contained inR2
ω . In particular,

Λ ∈ R2
ω .

It remains to show that Λ /∈ X ◦
ω . Indeed, assume towards a contra-

diction that Λ ∈ X ◦
ω . Since Xω = A′

ω · Aω by Proposition 7.17(i), we
have

〈Λ, λ · f〉 = 0 (f ∈ Aω, λ ∈ A′
ω) ,

and so f · Λ = 0 (f ∈ Aω), whence Λ = 0, a contradiction. �

Definition 7.34. Let ω be a weight function on a locally compact
group. An element M ∈ Bω is a mean on A′

ω if M ≥ 0 and 〈M, ω〉 = 1.

The following result is a trivial variant of standard theorems (see
[KR, Theorem 4.3.2], for example).
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Proposition 7.35. Let ω be a weight function on a locally compact
group G, and let M ∈ Bω. Then the following conditions on M are
equivalent:

(a) M is a mean on A′
ω;

(b) M ∈ Sω;

(c) for each λ ∈ L∞R (G, 1/ω), we have

ess inf
s∈G

λ(s)

ω(s)
≤ 〈M, λ〉 ≤ ess sup

s∈G

λ(s)

ω(s)
.

2

We write Lt,ω(G) for the space of topologically left-invariant means
on A′

ω; in the special case where ω = 1, we write Lt(G) for this set, as
in [Pat2], for example.

Definition 7.36. A locally compact group G is amenable if there
is left-invariant mean on L∞(G).

We note that every abelian group and every compact group is
amenable. For a discussion of amenable groups, see [D, Chapter 3.3],
[Pa2, Chapter 12.5], [Pat2], [Ru2, Chapter 1], and many other sources.

It is not true that there is a left-invariant mean on A′
ω for every

weight ω on G, even when G is abelian. For let ω be the weight on Z
defined by

(7.27) ω(n) = exp(|n|) (n ∈ Z) ,

and assume towards a contradiction that M is a left-invariant mean on
`∞(ω). Set ω+ = ω | Z+ and ω− = ω | Z−. Then, each for k ∈ N, we
have

|〈M, ω+〉| = |〈M, `−kω+〉| ≤ e−k ,

and so 〈M, ω+〉 = 0. Similarly, 〈M, ω−〉 = 0, and so 〈M, ω〉 = 0, the
required contradiction.

Suppose that there is a left-invariant mean on A′
ω, and that the

weight ω is symmetric. Then there is an invariant mean on A′
ω. This

is shown by a standard argument given in [D, Proposition 3.3.49], for
example. However this result may fail in the case where ω is not sym-
metric. Even in the case where G is amenable and ω = 1, it is not
necesssarily the case that every left-invariant mean is right-invariant.
Indeed, let G be a discrete group. Then this holds if and only if G is
[FC], i.e., each conjugacy class {sts−1 : s ∈ G} is finite for each t ∈ G.
For this and more general results, see [Pat1].

In the case where ω = 1, each topologically left-invariant mean is
left-invariant; however, as proved in [Pat, Chapter 7], for groups G
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which are non-discrete and are such that Gd is amenable, there are
left-invariant means that are not topologically left-invariant. For each
amenable group G, we have Lt(G) 6= ∅; as we shall see, in the case
where G is also not compact, Lt(G) is ‘large’. The fact that Lt(G) 6= ∅
can also be proved by combining Theorems 8.5.4 and 8.6.9 of [RS].

Definition 7.37. Let ω be a weight function on a locally compact
group G. Then ω is almost left-invariant if

Lim
t→∞

sup
s∈K

∣∣∣∣ω(st)

ω(t)
− 1

∣∣∣∣ = 0

for each compact subset K of G, and almost invariant if

Lim
t→∞

sup
s∈K

∣∣∣∣ω(st)

ω(t)
− 1

∣∣∣∣ = Lim
t→∞

sup
s∈K

∣∣∣∣ω(ts)

ω(t)
− 1

∣∣∣∣ = 0

for each compact subset K of G,

In Example 10.2, we shall show that there are almost left-invariant
weights which are not almost invariant.

Let ω = exp η be a weight on Z. Then ω is almost invariant if and
only if limj→∞ s(j) = 0 and limj→∞ s(−j) = 0, where

s(j) = η(j + 1)− η(j) (j ∈ Z)

defines the slope s of η. For example, the weight ωα on Z is almost
invariant for each α ≥ 0. However, many of the examples of weights ω
on Z to be given in Chapter 9 are not almost invariant.

Theorem 7.38. Let G be a locally compact group, and let ω be an
almost left-invariant weight function on G. For M ∈ Lt(G), define
Mω ∈ Bω by

(7.28) 〈Mω, λ〉 = 〈M, λ/ω〉 (λ ∈ A′
ω) .

Then the map M 7→ Mω is a bijection from Lt(G) onto Lt,ω(G).

Proof. Define Mω as in (7.28). It is immediate from Proposition
7.35 that Mω is a mean on A′

ω.
We now show that Mω is topologically left-invariant. Let f ∈ Aω

and λ ∈ A′
ω, and set

µ = (λ · f)/ω − (λ/ω) · f .
Suppose that f has compact support K. For each t ∈ G, we have

µ(t) =

∫
K

f(s) · λ(st)

ω(st)

(
1− ω(st)

ω(t)

)
dm(s) ,
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and so

|µ(t)| ≤ ‖f‖ ‖λ‖ sup
s∈K

∣∣∣∣ω(st)

ω(t)
− 1

∣∣∣∣ .
Since ω is almost left-invariant, we see that µ ∈ C0(G). By Proposition
7.32 (applied in the case where ω = 1), we have 〈M, µ〉 = 0. Hence

〈Mω, λ · f〉 = 〈f, 1〉〈Mω, λ〉 .
Since each function f ∈ Aω is the limit of functions of compact support,
it follows that 〈Mω, λ · f〉 = 〈f, 1〉〈Mω, λ〉 (f ∈ Aω, λ ∈ A′

ω), and so
Mω ∈ Lt,ω(G).

For Mω ∈ Lt,ω(G), define M by

〈M, λ〉 = 〈Mω, λω〉 (λ ∈ L∞(G)) .

It follows in a similar way to the above that M ∈ Lt(G): now we
must show that (λ · f)ω − (λω) · f ∈ Eω whenever f ∈ L 1(G) and
λ ∈ L∞(G), and this also follows from Proposition 7.32.

The theorem is proved. �

Definition 7.39. Let Ω be a locally compact space. Then κ(Ω) is
the minimal cardinality κ such that there is a family {Ki : i ∈ I} of
compact sets with |I| = κ such that Ω =

⋃
{Ki : i ∈ I}.

Clearly κ(Ω) = 1 for a compact space Ω, κ(Ω) = |Ω| for an infinite
discrete space Ω, and κ(Ω) = ℵ0 for a σ-compact, non-compact space
Ω.

Theorem 7.40. Let G be a non-compact, amenable locally compact
group, and let ω be an almost left-invariant weight function on G. Then

dimR2

ω ≥ 22κ(G)

, dim rad X ′
ω ≥ 22κ(G)

.

Proof. Set m= 22κ(G)
. By a theorem of Lau and Paterson [LPat]

(see also [Pat, Theorem (7.6)] and [LMiPy]) we have |Lt(G)| = m. By
Theorem 7.38,

|Lt(G)| = |Lt,ω(G)| ,
and so |Lt,ω(G)| = m. The required conclusion now follows from The-
orem 7.33. �

The above theorem was first proved by Granirer in the special case
where G is discrete and ω = 1 [Gra1]. See also [L3, Corollary 6]. It
seems to be an open question whether or not R2

ω 6= {0} in the case
where the group G is not amenable, even when ω = 1. For a discussion
of this point, see [Gra2].
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In fact, by using a recent result of Filali and Pym [FiPy, Theorem
5], it can be shown in the same way that

dim I ≥ 22κ(G)

for each non-zero right ideal I in X ′
ω or Bω in the case where G is a

non-compact, locally compact group and ω is an almost left-invariant
weight on G. See also [FiSa] for further results. In a similar vein, an

earlier result in [LMiPy] showed that there are 22κ(G)
left ideals in the

semigroup ΦLUC(G) for each non-compact, locally compact group G.

Definition 7.41. Let ω : G → R+ be a function on a group G,
and let S be a subset on G. Then ω is diagonally bounded on S if

(7.29) sup
{
ω(s)ω(s−1) : s ∈ S

}
<∞ .

A symmetric weight is diagonally bounded on S if and only if it is
bounded on S.

Let ω be a weight on a locally compact group G. Recall that the
opposite algebra to L 1(G,ω) is L 1(H, ω̌/∆), where H is the opposite
group to G. Notice that ω̌/∆ is diagonally bounded on a subset S of
G whenever ω is diagonally bounded on S.

The question of the amenability of the algebras L 1(G,ω) has been
studied by Grønbaek [Gr3]. His result is the following.

Theorem 7.42. Let ω be a weight function on a locally compact
group G. Then L 1(G,ω) is amenable as a Banach algebra if and only
if G is amenable as a locally compact group and ω is diagonally bounded
on G. 2

The weak amenability of L 1(G,ω) is discussed in [Gr1]. One result
on this is the following.

Theorem 7.43. Let ω be a weight on Z. Then ` 1(ω) is weakly
amenable if and only if inf{ωnω−n/n : n ∈ N} <∞. 2

For example, let ωα(n) = (1+ |n|)α (n ∈ Z). Then ` 1(ωα) is weakly
amenable if and only if α ≤ 1/2, a result proved earlier in [BCD].

It is often convenient to consider weight functions ω on G such
that ω(s) ≥ 1 (s ∈ G) (and we only defined M(G,ω) in this setting).
We now show that, in the case where G is an amenable group, we
may suppose that this extra condition always holds. The proof of the
following theorem is due to Michael White, and is essentially contained
in [Wh].
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Theorem 7.44. Let G be an amenable locally compact group, and
let ω be a weight function on G. Then:

(i) there is a continuous function χ : G→ R+• such that

χ(st) = χ(s)χ(t) (s, t ∈ G) and χ(s) ≤ ω(s) (s ∈ G);

(ii) there is a weight function ω̃ on G such that ω̃(s) ≥ 1 (s ∈ G)
and L1(G, ω̃) is isometrically isomorphic to L1(G,ω).

Proof. (i) Let ω = exp η, as before.
For each s ∈ G, define

µs(t) = η(st)− η(t) (t ∈ G) .

Then µs is a real-valued, continuous function on G, and

(7.30) −η(s−1) ≤ µs(t) ≤ η(s) (t ∈ G) ,

so that µs ∈ CB(G) ⊂ L∞(G) and µeG
= 0. For s1, s2 ∈ G, we have

η(s1s2t)− η(t) = (η(s1s2t)− η(s2t)) + (η(s2t)− η(t)) (t ∈ G) ,

and so µs1s2(t) = µs1(s2t) + µs2(t) (t ∈ G). Hence

(7.31) µs1s2 = `s2µs1 + µs2 ∈ CB(G) .

Let M be a left-invariant mean on G. Then, from (7.31), we have

〈M, µs1s2〉 = 〈M, µs1〉+ 〈M, µs2〉 (s1, s2 ∈ G) ,

and also, by (7.30), we have

−η(s−1) ≤ 〈M, µs〉 ≤ η(s) (s ∈ G) .

Now define

χ(s) = exp 〈M, µs〉 (s ∈ G) .

Then χ(st) = χ(s)χ(t) (s, t ∈ G) and

ω(s−1)−1 ≤ χ(s) ≤ ω(s) (s ∈ G) .

Let sα → eG in G. Then ω(sα) → ω(eG) = 1 because ω is continuous,
and so χ(sα) → 1 = χ(eG). It follows that χ is continuous on G.

Thus χ : G→ R+• has all the required properties.

(ii) Define ω̃(s) = ω(s)/χ(s) (s ∈ G). It is immediate that ω̃ is a
weight function on G and that ω̃(s) ≥ 1 (s ∈ G). For f ∈ L1(G,ω),
define

θ(f)(s) = f(s)χ(s) (s ∈ G) .

Then θ : L1(G,ω) → L1(G, ω̃) is an isometric isomorphism.
This concludes the proof of the theorem. �
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In particular, the weights ω and ω̃ are equivalent. A modification
of Example 10.1, below, shows that there is a weight ω on F2 such that
there is no equivalent weight ω̃ on F2 with ω̃(s) ≥ 1 (s ∈ F2).

The condition that ω be diagonally bounded on the whole of G was
considered further by White in [Wh]; the following remarks will be used
later. First suppose that G is an amenable group. Then, in this case,
the weight function ω̃ of Theorem 7.44(ii) is bounded, and so L1(G,ω)
is already isomorphic to L1(G).

The following result will be used in Example 10.1 to show that there
is an unbounded weight function ω on the free group F2 such that ω is
diagonally bounded on all of F2.

Let G be a group, and let η : G→ R be a function such that∣∣(δ1η)(s, t)
∣∣ ≤M (s, t ∈ G)

for a constant M ≥ 0. Define

ω(s) =

{
exp(η(s) +M) (s ∈ G \ {eG}) ,
1 (s = eG) .

Then ω : G → R+• is a weight, and ω is diagonally bounded on the
whole of G.

Suppose that there exists an isomorphism θ : ` 1(G,ω) → ` 1(G),
and define

χ : s 7→ (ϕG ◦ θ)(δs), G→ C ,

where ϕG :
∑

s∈G αsδs 7→
∑

s∈G αs is the augmentation character on
` 1(G). Then

χ(st) = χ(s)χ(t) (s, t ∈ G)

and

|χ(s)| ≤ emω(s) = exp(η(s) +m+M) (s ∈ G \ {eG}) ,
where m = log ‖θ‖ ≥ 0. For each s ∈ G, we have

|χ(s)| =
∣∣χ(s−1)

∣∣−1

≥ exp(−η(−m)−M) ≥ exp(−m− 2M + η(s)) > 0 ,

and so we can define ρ(s) = log |χ(s)| (s ∈ G); further, we have

−m− 2M ≤ ρ(s)− η(s) ≤ m+M (s ∈ G),

and so

(7.32)

{
ρ(st) = ρ(s) + ρ(t) (s, t ∈ G) ,

|(ρ− η)(s)| ≤ m+ 2M (s ∈ G) .

This equation will be used later.



CHAPTER 8

The Second Dual of ` 1(G,ω)

In this chapter, we shall take ω to be a weight on a group G, and we
shall study the second dual algebras (` 1(G,ω)′′, 2) and (` 1(G,ω)′′, 3)
of the Beurling algebra ` 1(G,ω). Our aim is to give conditions on the
weight ω that determine when ` 1(G,ω) is Arens regular and when it
is strongly Arens irregular. We shall also consider the radicals of these
second dual algebras.

Throughout we fix the following notation; it is a small variation of
that given in equations (7.16). We set

(8.1)

{
Aω = ` 1(G,ω) , A′ω = `∞(G, 1/ω) ,

Eω = c0(G, 1/ω) , Bω = A′′ω .

Thus Eω is a closed submodule of A′ω, and Aω = E ′
ω. The natural

embedding is denoted by κω : Aω → Bω. As in (2.18), we have

(Bω, 2 ) = Aω n E◦
ω

as a Banach algebra; the canonical projection from E ′′′
ω to E ′

ω is

(8.2) πω : Bω → Aω ,

and kerπω = E◦
ω. We also usually write ‖ · ‖ for both ‖ · ‖ω and

‖ · ‖∞,ω; we regard δs as an element of Aω and λs as an element of
A′ω. Throughout, convergence in Bω is with respect to the weak-∗
topology, σ(Bω, A

′
ω), unless we say otherwise.

We shall use the following notation, which is analogous to that in
Definition 7.21.

Definition 8.1. Let ω be a weight on a group G. Then

R2

ω = rad (Bω, 2 ) , R3

ω = rad (Bω, 3 ) .

We formally restate the following result because of its importance
to us.

Proposition 8.2. Let ω be a weight on a group G. Then the
algebra Aω = ` 1(G,ω) is a dual Banach algebra, the map

πω : (Bω, 2 ) → (Aω, ? )

95
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is a continuous epimorphism, and

(Bω, 2 ) = Aω n E◦
ω

as a semidirect product. In the case where Aω is semisimple, we have
R2

ω ⊂ E◦
ω and R3

ω ⊂ E◦
ω.

Proof. The predual space of Aω is Eω. �

We have πω(Φ)(s) = 〈Φ, λs〉 (s ∈ G, Φ ∈ Bω). It follows that

(8.3) Φ · λs =
∑
u∈G

πω(Φ)(u−1s)λu (s ∈ G) ,

the series being convergent in A′ω. Indeed, for each s, t ∈ G, we have

(Φ · λs)(t) = 〈δt,Φ · λs〉 = 〈Φ, λs · δt〉 = 〈Φ, λt−1s〉 = πω(Φ)(t−1s) ,

and so (8.3) follows.
The normalized point mass at s ∈ G is defined to be δs/ω(s); it is

denoted by δ̃s. Now let S be a subset of the group G. We denote by
ES the set which is the closure in Bω of the set{

δ̃s : s ∈ S
}
.

Clearly, ES ∩ Aω =
{
δ̃s : s ∈ S

}
, and ES 6⊂ Aω in the case where S is

infinite.

Definition 8.3. Let ω be a weight on a group G, and let S be
a subset of G. Then Aω(S) = ` 1(S, ω), regarded as a closed linear
subspace of Aω, and Bω(S) is the weak-∗ closure of Aω(S) in Bω.

Thus Aω(S) is weak-∗ dense in Bω, and Bω(S) is the weak-∗ closed
linear span of ES. In the case where S is a subsemigroup of G, Aω(S)
and Bω(S) are subalgebras of Aω and Bω, respectively.

As before, the space A′ω is a commutative, unital C∗-algebra for the
product ·ω; A′ω is ∗-isomorphic to the C∗-algebra `∞(G). The state
space of A′ω is denoted by Sω, so that

Sω = {Φ ∈ Bω : ‖Φ‖ = 〈Φ, ω〉 = 1} .
For each s ∈ G, define ϕs(λ) = λ(s)/ω(s) (λ ∈ A′ω). The function

ϕs is a character on A′ω, and ϕs can be identified with δ̃s. Let ∆ω be
the character space of A′ω (with the Gel’fand topology), so that ∆ω is a
compact subspace of Bω. The map s 7→ ϕs, G→ ∆ω, is an embedding,
and clearly ∆ω = exSω is homeomorphic to βG; the algebra A′ω can be
identified as a C∗-algebra with C(∆ω), and Bω is M(∆ω) as a Banach

space. For each subset S of G, ES is a subset of ∆ω. Since 〈G〉 = Sω, it
follows from the converse to the Krein–Milman theorem that EG = ∆ω.
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In the case where ω = 1, the set
{
δ̃s : s ∈ G

}
is a subsemigroup of

(Bω,2), and so ∆ω is also a subsemigroup (Bω,2). However, this is
not necessarily the case for an arbitrary weight ω.

Let ω be a weight on a group G, and let f ∈ Aω. Then we say that
f ≥ 0 if f(s) ≥ 0 (s ∈ G), and then

A+
ω = {f ∈ Aω : f ≥ 0} ,

so that A+
ω is a cone in (Aω,+). Note that f ? g ∈ A+

ω whenever
f, g ∈ A+

ω .
Now take λ ∈ A′ω. Then we say that λ ≥ 0 if 〈f, λ〉 ≥ 0 (f ∈ A+

ω ),
and then

(A′ω)+ = {λ ∈ A′ω : λ ≥ 0} ,
so that (A′ω)+ is a cone in (A′ω,+). Further, we have λ ≥ 0 if and
only if λ(s) ≥ 0 (s ∈ G). Clearly (A′ω)+ is exactly the cone of positive
elements in the C∗-algebra A′ω.

Finally, take Φ ∈ Bω. Then Φ ≥ 0 if 〈Φ, λ〉 ≥ 0 (λ ∈ (A′ω)+), and
then

B+
ω = {Φ ∈ Bω : Φ ≥ 0} ,

so that B+
ω is a cone in (Bω,+).

Suppose that f ∈ Aω. Then κω(f) ∈ B+
ω if and only if f ∈ A+

ω . The
cone B+

ω is identified with the cone of positive measures in M(∆ω).

For Φ ∈ Bω, define Φ/ ∈ Bω by setting

〈Φ/, λ〉 =
〈
Φ, λ

〉
(λ ∈ A′ω) ;

the element Φ is hermitian if Φ = Φ/ (cf. [KR, p. 255]). Let Φ ∈ Bω

be hermitian. Then Φ = Φ+ − Φ−, where Φ+,Φ− ∈ B+
ω and

‖Φ‖ =
∥∥Φ+

∥∥+
∥∥Φ−∥∥ .

The elements Φ+ and Φ− are uniquely specified by these conditions.
For arbitrary Φ ∈ Bω, define Φ+ = ((Φ + Φ/)/2)+. Clearly

B+
ω = {Φ+ : Φ ∈ Bω} .

We note that f / = f for f ∈ Aω.
The following results are standard (and follow easily from the above

remarks).

Lemma 8.4. Let Φ ∈ Bω. Then there exist Φ1, . . . ,Φ4 ∈ B+
ω such

that Φ = Φ1 − Φ2 + i(Φ3 − Φ4), such that Φ1 = Φ+, and such that
‖Φj‖ ≤ ‖Φ‖ (j = 1, . . . , 4). 2

The above decomposition is just the Hahn decomposition of mea-
sures in M(∆ω).
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Lemma 8.5. The subspace B+
ω is closed in Bω, and A+

ω is dense in
B+

ω . 2

For example, δs ∈ A+
ω (s ∈ G), and so ∆ω ⊂ B+

ω .

Lemma 8.6. Let Φ ∈ Bω and Ψ ∈ B+
ω . Then (Φ2Ψ)+ = Φ+

2Ψ
and (Φ3Ψ)+ = Φ+

3Ψ.

Proof. Let Φ = limα fα, where (fα) is a net in Aω. Then clearly
Φ+ = limα f

+
α . Also, let (gβ) be a net in A+

ω such that Ψ = limβ gβ.
We have

(fα ? gβ)+ = f+
α ? gβ

for each α and β. Since Φ2Ψ = limα limβ fα ? gβ, we have

(Φ2Ψ)+ = lim
α

lim
β

(fα ? gβ)+ = lim
α

lim
β
f+

α ? gβ = Φ+
2Ψ .

The justification for the formula (Φ3Ψ)+ = Φ+
3Ψ is similar. �

We remark that it is certainly not true that (Φ2Ψ)+ = Φ+
2Ψ+

for arbitrary Φ,Ψ ∈ Bω.
We can now give a useful proposition.

Proposition 8.7. Let ω be a weight on a group G. Assume that,
for each Φ ∈ B+

ω \ Aω, there exists Ψ ∈ ∆ω such that Φ2Ψ 6= Φ3Ψ.
Then Aω is left strongly Arens irregular.

Proof. Take Φ ∈ Bω \ Aω, and let Φ have the decomposition

Φ = Φ1 − Φ2 + i(Φ3 − Φ4)

of Lemma 8.4, so that Φ1 = Φ+. By replacing Φ by cΦ for a suitable
c ∈ C, we may suppose that Φ+ /∈ Aω. By hypothesis, there exists
Ψ ∈ ∆ω with Φ+

2Ψ 6= Φ+
3Ψ. But now (Φ2Ψ)+ 6= (Φ3Ψ)+ by

Lemma 8.6, and so Φ2Ψ 6= Φ3Ψ. Thus Aω is left strongly Arens
irregular. �

The seminal study of the Banach algebra (` 1(Z)′′,2) was given by
Civin and Yood in [CiY], and their results are a guide to us. However,
there is a clear distinction; as proved by Craw and Young [CrY], the
Beurling algebra ` 1(ωα) is Arens regular if and only if α > 0. We
shall prove that ` 1(ωα) is Arens regular in the case where α > 0 by a
somewhat different method. In fact, the theorem proved by Craw and
Young [CrY, Theorem 1] gives necessary and sufficient condition for
the Arens regularity of a weighted group algebra; the proof in [CrY]
uses some rather general compactness results from [Y1], and we wish to
give an elementary proof of a slightly stronger result that is applicable
in our specific situation.
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Theorem 8.8. Let ω be a weight function on a group G, and let
S and T be infinite subsets of G. Suppose that Ω 0-clusters on S × T .
Then Φ2Ψ = 0 whenever Φ ∈ Bω(S) ∩ E◦

ω and Ψ ∈ Bω(T ) ∩ E◦
ω.

Proof. Take Φ ∈ Bω(S)∩E◦
ω and Ψ ∈ Bω(T )∩E◦

ω; we may suppose
that ‖Φ‖ = ‖Ψ‖ = 1. Let λ ∈ `∞(G). Then, by Proposition 3.1, we
may choose sequences (fm) and (gn) in ` 1(S) and ` 1(T ), respectively,
such that ‖fm‖ = ‖gn‖ = 1 in each case and such that

(8.4) lim
m

lim
n

∑
s∈S, t∈T

fm(s)gn(t)λ(st)Ω(s, t) = 〈Φ2Ψ, λω〉 .

Set Km = supp fm (m ∈ N) and Ln = supp gn (n ∈ N). Then we may
suppose that each set Km and Ln is finite. Also, we have

lim
m
fm(s) = lim

n
gn(s) = 0 (s ∈ G) ,

and so we may suppose that

Kn+1 ∩ (K1 ∪ · · · ∪Kn) = Ln+1 ∩ (L1 ∪ · · · ∪ Ln) = ∅ (n ∈ N) .

Set H =
⋃

mKm ∪
⋃

n Ln, a countable set. By replacing S and T
by S ∩H and T ∩H, respectively, we may suppose that S and T are
countable.

Set Ωt(s) = Ω(s, t) (s ∈ S, t ∈ T ), and regard F := {Ωt : t ∈ T} as
a subset of C(βS). For n ∈ N, define

ϕn =
∑

{|gn(t)|Ωt : t ∈ Ln} ,

so that ϕn ∈ 〈F〉. Since Ω clusters on S × T , it follows from Theorem
3.3 that 〈F〉 is relatively weakly sequentially compact, and so we may
suppose, on passing to a subsequence of (ϕn), that ϕn → h ∈ C(βS).

Fix x ∈ βS \S. It follows from Proposition 3.5 that, for each ε > 0,
we have |ϕn(x)| < ε for all but finitely many n ∈ N, and so |h(x)| ≤ ε.
This proves that h(x) = 0, and so h | (βS \ S) = 0.

Again fix ε > 0. Then there exists m0 ∈ N with

|h|Km
< ε (m ≥ m0) ,

and so

lim
m

lim
n

∑
{|fm(s)gn(t)λ(st)|Ω(s, t) : s ∈ Km, t ∈ Ln}

= lim
m

∑
s∈Km

|fm(s)h(t)| ‖λ‖∞ ≤ ε ‖λ‖∞ .

This holds for each ε > 0, and so 〈Φ2Ψ, λω〉 = 0. But this holds for
each λ ∈ `∞(G), and so Φ2Ψ = 0. �
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We note that the proof of the above theorem would be significantly
easier if we knew that Ω 0-clustered strongly on S×T , for the conclusion
would follow easily from equation (8.4) without any need for Theorem
3.3. Indeed, Φ2Ψ = 0 (Φ ∈ Bω(S) ∩ E◦

ω,Ψ ∈ Bω(T ) ∩ E◦
ω) whenever

Lim
s→∞

Lim sup
t→∞

{Ω(s, t) : s ∈ S, t ∈ T} = 0 .

However, we shall prove in Example 9.14 that there are weight functions
ω on Z such that Ω 0-clusters on N × N, but such that Ω does not 0-
cluster strongly on N× N.

Corollary 8.9. Let ω be a weight on a group G, and let S be an
infinite subset of G. Suppose that Ω 0-clusters on S×G and on G×S.
Then:

(i) Φ2Ψ = 0 whenever Φ ∈ Bω(S) ∩ E◦
ω and Ψ ∈ E◦

ω;

(ii) Φ3Ψ = 0 whenever Φ ∈ E◦
ω and Ψ ∈ Bω(S) ∩ E◦

ω;

(iii) Bω(S) ⊂ Z
(1)
t (Bω), and Aω is not left strongly Arens irregular;

(iv) Bω(S) ∩ E◦
ω ⊂ R2

ω .

Proof. (i) Let Φ ∈ Bω(S) ∩ E◦
ω and Ψ ∈ E◦

ω. By the theorem
(with T = G), Φ2Ψ = 0.

(ii) This is similar.

(iii) This follows immediately from (i) and (ii).

(iv) This follows from Proposition 2.1 (with I = E◦
ω) and the earlier

results. �

Corollary 8.10. Let ω be a weight on an abelian group G, and
let S be an infinite subset of G. Suppose that Ω 0-clusters on S × G.
Then Aω is not strongly Arens regular, and Rω 6= {0}. 2

Theorem 8.11. Let ω be a weight on a group G. Then the following
conditions on ω are equivalent:

(a) the algebra Aω = ` 1(G,ω) is Arens regular;

(b) the function Ω 0-clusters on G×G;

(c) Φ2Ψ = Φ3Ψ = 0 for each Φ and Ψ in E◦
ω.

Proof. (c) ⇒ (a) This is Proposition 2.16(i).

(a)⇒ (b) Assume towards a contradiction that (b) fails. Then there
exist sequences (sm) and (tn) in G, each consisting of distinct points,
such that limm limn Ω(sm, tn) = 2δ for some δ > 0, say. By passing
to a subsequence of (sm), we may suppose that limn Ω(sm, tn) > δ for
all m ∈ N. As in [CrY, Theorem 1], we choose subsequences of (sm)
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and (tn) inductively. Indeed, set u1 = s1, and let v1 be the first ele-
ment tn with Ω(u1, tn) > δ. Having chosen u1, . . . , un and v1, . . . , vn,
choose un+1 to be the first element in the sequence (sm) not in the set
{uivjv

−1
k : i, j, k ∈ Nk}, and then choose vn+1 to be the first element in

the sequence (tn) which is not in the set {u−1
i ujvk : i, j ∈ Nk+1, k ∈ N}

and is such that Ω(ui, vn+1) > δ (i ∈ Nk+1). The sequences (um) and
(vn) are such that the elements umvn are all distinct for m,n ∈ N and
Ω(um, vn) > δ whenever m ≤ n. Let fm and gn be the normalized point
masses at um and vn, respectively, and let λ be the characteristic func-
tion of the set {umvn : m ≤ n}. By again passing to subsequences, if
necessary, we may suppose that both repeated limits of (〈fm ? gn, λω〉)
exist; one is at least δ and the other is 0. Thus λω ◦mA does not cluster
on (Aω)[1] × (Aω)[1], and so Aω is not Arens regular by Theorem 3.14,
a contradiction of (a).

(b) ⇒ (c) This follows from Corollary 8.9. �

Thus the algebra ` 1(G,ω) is not Arens regular if and only if there
exist sequences (sm) and (tn), each consisting of distinct elements of
G, such that at least one of the two repeated limits

(8.5) lim
m

lim
n

Ω(sm, tn) and lim
n

lim
m

Ω(sm, tn)

exists and is non-zero.
The equivalence of (a) and (b) in the above result is explicitly stated

in [CrY, Theorem 1] and in [BaR, Corollary 3.8(i)]; in this latter paper,
more general results, which apply when the group G is replaced by a
semigroup, are given. However, the important equivalence with (c)
seems to be new.

Note that the equivalence of (a) and (c) is a specific result applicable
to Beurling algebras. For example, let A be a von Neumann algebra
with predual E. Then A is Arens regular and E◦ is a closed ∗-ideal
in the von Neumann algebra A′′. For each Φ in E◦ \ {0}, the element
Φ∗ ∈ E◦, and Φ∗

2Φ 6= 0.

The two repeated limits in (8.5) are zero if and only if the two
repeated limits of the double sequence

(8.6) ((δ1η)(sm, tn) : m,n ∈ N )

are equal to +∞, where δ1η was defined in (7.7).
Let ω be a weight on a countable group G such that ω is almost

invariant and 1/ω ∈ c0. Then clearly Ω 0-clusters on G. For example,
we have the following specific result on Z.
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Corollary 8.12. Let η be a subaddditive function on Z such that

Lim
j→∞

η(j) = ∞ and Lim
j→∞

s(j) = 0 ,

where s is the slope of η. Then ` 1(exp η) is Arens regular.

Proof. Since Lim j→∞ s(j) = 0, the corresponding function Ω 0-
clusters on Z× Z, and so this follows from Theorem 8.11. �

We also state the following corollary, specifically given as Corollary
1 in [CrY].

Corollary 8.13. (i) Let G be a countable group. Then there is a
weight ω on G such that ` 1(G,ω) is Arens regular.

(ii) Let G be an uncountable group. Then there is no weight ω on
G such that ` 1(G,ω) is Arens regular. 2

At some points, we shall need an extension of the Theorem 8.11 to
functions of more than two variables. We sketch the argument without
giving full details.

Let ω be a weight on a group G, and let k ∈ N with k ≥ 2. We set:

(8.7) Ωk(s1, . . . , sk) =
ω(s1 · · · sk)

ω(s1) · · ·ω(sk)
(s1, . . . , sk ∈ G) .

In the first part of the next result, we restrict ourselves to abelian
groups so that we can avoid some complicated expressions. In this
case, the function Ωk 0-clusters on G× · · · ×G if and only if one fixed
repeated limit is 0 whenever it exists.

Theorem 8.14. Let ω be a weight on a group G, and let k ∈ N
with k ≥ 2.

(i) Suppose that G is abelian. Then the following are equivalent:

(a) the function Ωk 0-clusters on G× · · · ×G;

(b) Φ12 · · · 2Φk = 0 whenever Φ1, . . . ,Φk ∈ E◦
ω.

(ii) Suppose that the function Ωk 0-clusters strongly on G×· · ·×G.
Then Φ12 · · · 2Φk = Φ13 · · · 3Φk = 0 whenever Φ1, . . . ,Φk ∈ E◦

ω.

Proof. (i) (a) ⇒ (b) By Proposition 3.6, the function Ωk has an
extension to a separately continuous function Ωk : βG×· · ·×βG→ C,
and further Ωk(s

0
1, . . . , s

0
k) = 0 whenever s0

1, . . . , s
0
k ∈ βG \ G. Take

Φ1, . . . ,Φk ∈ E◦
ω and λ ∈ `∞(G), and consider the expression

(8.8)

{
limm1 limm2 · · · limmk∑

{fm1(s1)fm2(s2) · · · fmk
(sk)λ(s1 · · · sk)Ωk(s1, . . . , sk)} ,
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the sum being taken over all elements s1, . . . , sk ∈ G; here the functions
fm1 , . . . , fmk

∈ ` 1(G)[1]. This repeated limit is equal to

〈Φ12 · · · 2Φk, λω〉 .
The expression is analogous to that appearing in (8.4).

Fix ε > 0. Then there exist (m1(n), . . . ,mk(n)) in Nk for each
n ∈ N such that each sequence (mj(n) : n ∈ N) consists of distinct
points, and the appropriate sums in (8.8) are bounded by ε ‖λ‖∞ for
relevant combinations of the indices m1(n), . . . ,mk(n). In this way, we
see that the repeated limit in (8.8) is bounded by ε ‖λ‖∞. This implies
that (b) holds.

(b) ⇒ (a) This is immediate.

(ii) This follows easily from equation (8.8). �

We now state a theorem that gives a condition for Aω to be strongly
Arens irregular. We do not prove the theorem at this stage because
it is a special case of a more general theorem which will be proved in
Theorem 11.9; see Corollary 11.10.

Theorem 8.15. Let G be a group, and let ω be a weight on G
such that ω is diagonally bounded on S for some subset S of G with
|S| = |G|. Then ` 1(G,ω) is strongly Arens irregular. 2

Corollary 8.16. Let ω be a weight on Z. Suppose that there is
strictly increasing sequence (nk) in N such that

sup {ω(nk)ω(−nk) : k ∈ N} <∞ .

Then ` 1(Z, ω) is strongly Arens irregular. �

The condition on ω in the above theorem is certainly satisfied if
the weight ω is bounded on G. Example 9.3, below, will exhibit an
easy weight ω on Z2 that is bounded on the subset {0} × Z, and so
` 1(Z2, ω) is strongly Arens irregular, but such that ω is not diagonally
bounded on the subset Z×{0}. Example 9.17 will exhibit a symmetric
weight ω on Z that is diagonally bounded on an infinite subset S of N,
but which is unbounded. Further, Example 10.1 will show that, in the
case where G is equal to F2, the free group on 2 generators, there is
an unbounded weight ω which is diagonally bounded on the whole of
G. These examples show that the above theorem is more general than
those previously known.

Example 9.8 will show that the condition on ω in Theorem 8.15
cannot be replaced, in the case where G = Z, by the weaker condition
that {ω(n) : n ∈ S} be bounded for some infinite subset S of Z, and
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Example 9.16 will show that there is a weight ω on Z, increasing on
Z+, such that ω(−n) = 1 (n ∈ N), but nevertheless Aω is not strongly
Arens irregular.

A version of following ideas could be given for some more general
groups G, but we restrict ourselves to the case where G = Z.

Definition 8.17. Let ω be a weight on Z. Then

E◦+
ω = E◦

ω ∩Bω(Z+), E◦−
ω = E◦

ω ∩Bω(Z−) .

Thus E◦−
ω and E◦−

ω are the ‘parts of E◦
ω at +∞ and −∞, respec-

tively’. Clearly E◦−
ω and E◦−

ω are weak-∗ closed subalgebras of Bω,
and

(8.9) Bω = Aω ⊕ E◦−
ω ⊕ E◦−

ω .

Theorem 8.18. Let ω be a weight on Z such that

(8.10) lim
m→∞

lim
n→∞

ω(m− n)

ω(m)ω(−n)
= lim

m→∞
lim

n→∞

ω(n−m)

ω(−m)ω(n)
= 0 .

(i) Suppose that Φ ∈ E◦−
ω and Ψ ∈ E◦+

ω . Then Φ2Ψ = Ψ2Φ = 0.

(ii) The spaces E◦−
ω and E◦+

ω are both closed ideals in (Bω, 2 ).

(iii) Suppose that, for each Φ ∈ E◦−
ω \ {0} (respectively, E◦+

ω \ {0}),
there exists Ψ ∈ E◦−

ω (respectively, E◦+
ω ) such that Φ2Ψ 6= Ψ2Φ.

Then Aω is strongly Arens irregular.

(iv) Suppose that there exist weights ω− and ω+ on Z such that

ω− | Z− = ω | Z− and ω+ | Z+ = ω | Z+

and such that both ω− and ω+ are diagonally bounded on an infinite
subset of Z. Then Aω is strongly Arens irregular.

Proof. (i) It follows from condition (8.10) that Ω 0-clusters on
Z+ × Z+, and so this clause follows from Theorem 8.8.

(ii) Let Φ ∈ E◦−
ω . Clearly f 2Φ,Φ2 f ∈ E◦−

ω for each f ∈ Aω.
We have remarked that E◦−

ω is a closed subalgebra of Bω. Now let
Ψ ∈ E◦+

ω . Then Φ2Ψ = Ψ2Φ = 0 by (i). This shows that E◦−
ω is a

closed ideal in Bω. Similarly, E◦+
ω is a closed ideal in Bω.

(iii) Take Φ ∈ Bω \ Aω. Then Φ can be uniquely expressed in the
form Φ = Φ− + Φ+, where Φ− ∈ E◦−

ω and Φ+ ∈ E◦+
ω ; further, at least

one of Φ− and Φ+ is not equal to 0, say Φ+ 6= 0. By hypothesis, there
exists Ψ ∈ E◦+

ω with Φ+2Ψ 6= Ψ2Φ+. By (i), Φ−2Ψ = Ψ2Φ− = 0,
and so Φ2Ψ 6= Ψ2Φ. Hence Φ 6∈ Z(Bω). This shows that we have
Z(Bω) = Aω, and so Aω is strongly Arens irregular.
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(iv) Take Φ ∈ E◦+
ω \ {0}. Then Φ ∈ E◦+

ω+
\ {0}. By Theorem 8.15,

the algebra ` 1(Z, ω+) is strongly Arens irregular, and so there exists
Ψ ∈ E◦

ω+
with

Φ2Ψ 6= Ψ2Φ .

By (i), Ψ ∈ E◦+
ω+

, and so Ψ ∈ E◦+
ω ⊂ Bω. Thus Φ 6∈ Z(Bω). Similarily,

Φ 6∈ Z(Bω) for each Φ ∈ E◦−
ω \{0}. This again shows that Z(Bω) = Aω,

and so Aω is strongly Arens irregular. �

Let ω be a weight on Z such that ω is symmetric and ω | Z+ is
increasing and unbounded. Then ω satisfies condition (8.10).

Let ω be a weight on a group G. We have given necessary conditions
and sufficient conditions for the strong Arens irregularity of the algebra
Aω. (The sufficient conditions were also obtained by Neufang [N5] using
a different approach.) However we do not have the exact condition on
ω equivalent to the strong Arens irregularity of Aω, even in the special
case where G = Z. There are specific points that we cannot resolve.
For example, let ω be a weight on Z such that

lim inf
n→∞

ω(n) <∞ and lim inf
n→∞

ω(−n) <∞ .

Does it follow that ` 1(ω) is strongly Arens irregular?

We now seek information on the radicals R2
ω and R3

ω of Bω. Our
first result is an immediate corollary of Theorem 8.11.

Theorem 8.19. Let G be a group, and let ω be a weight on G such
that Aω is semisimple and Ω 0-clusters on G×G. Then

R2

ω = R3

ω = E◦
ω and R22

ω = R3 2
ω = {0} .

�

The results that we have so far established suggest the following
question.

Question Is it always true that Z
(1)
t (Bω) ∩ E◦

ω ⊂ R2
ω ?

We now give a condition to ensure that R2
ω 6= E◦

ω.

Theorem 8.20. Let G be a group, and let ω be a weight on G such
that Aω is semisimple. Suppose that there is a subsemigroup S of G
and a sequence (tn) consisting of distinct points of S such that

(8.11) lim
n→∞

Ω(s, tn) = 1 (s ∈ S) .

Then R2
ω ( E◦

ω.
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Proof. Since Aω is semisimple, R2
ω ⊂ E◦

ω.

Consider the sequence (δ̃tn) in Aω. We may suppose that there is

a subnet (τβ) of (tn) such that limβ δ̃τβ
= Φ ∈ Bω. Necessarily Φ ∈ E◦

ω

and ‖Φ‖ = 1. Set λ0 = χSω, so that λ0 ∈ A′ω with ‖λ0‖ = 1. Then

〈Φ, λ0〉 = lim
β
〈δ̃tβ , λ0〉 = 1 .

We note that Φ · λ0 ∈ A′ω and that, for each s ∈ S, we have

〈δs, Φ · λ0〉 = 〈Φ, λ0 · δs〉 = lim
β
〈δ̃τβ

, λ0 · δs〉 = lim
β
〈δs ? δ̃τβ

, λ0〉

= lim
β
ω(sτβ)/ω(τβ) = lim

n
ω(stn)/ω(tn)

= ω(s) = λ0(s)

by (8.11). It follows that (Φ · λ0) | S = λ0 | S.
We now claim that

(8.12) 〈Φ2n, λ0〉 = 〈Φ, λ0〉 (n ∈ N) .

To see this, first note that, for each k ∈ N, we have 〈Φ2 k, µ〉 = 0
whenever µ ∈ A′ω and µ | S = 0 because tn1 · · · tnk

∈ S for each
n1, . . . , nk ∈ N. Equation (8.12) is trivial for n = 1. Now assume that
(8.12) holds for n = k. Then

〈Φ2 (k+1), λ0〉 = 〈Φ2 k, Φ · λ0〉 = 〈Φ2 k, (Φ · λ0) | S〉
= 〈Φ2 k, λ0 | S〉 = 〈Φ2 k, λ0〉 = 〈Φ, λ0〉 ,

and so (8.12) holds for n = k. Thus the claim holds by induction.
It follows that

‖Φ2n‖ ≥ |〈Φ, λ0〉| = 1 (n ∈ N) ,

and so the spectral radius of Φ in (Bω, 2 ) is 1. Thus Φ is not quasi-
nilpotent, and so, in particular, Φ 6∈ R2

ω . �

Most of our earlier examples satisfy condition (8.11), above. For
example, suppose that G = Z, and let ω be any weight with

ω(n) = ean (n ∈ N)

for a > 0. Then ω satisfies (8.11) (with S = N and tn = n (n ∈ N)).

The following result was proved by Civin and Yood [CiY, Theorem
3.5] in the case where α = 0, and a proof of the general case can be
obtained by a modification of the earlier method. For details, see [La,
pp. 41–47]. Let ω be a weight on Z, and take m ∈ N. An element
Φ ∈ Bω is m-invariant if

〈Φ, δm · λ〉 = 〈Φ, λ〉 (λ ∈ A′ω) .
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Let m ∈ N. The element λr
m ∈ Aω is defined for r ∈ Z+

m−1 to have the
value 1 at n ∈ N when n ≡ r mod m and to be 0 otherwise. We set

Im =
{
Φ ∈ Bω : Φ is m−invariant, 〈Φ, λr

m〉 = 0 (r ∈ Z+
m−1)

}
.

Theorem 8.21. Let α ∈ R+, and set Bωα = (`1(Z, ωα)′′, 2 ). Then:

(i) for each m ∈ N, there is an element of Bωα which is 2m+1-
invariant, but which is not 2m-invariant;

(ii) for each m ∈ N, Im is a closed ideal in Bωα with Im ⊂ R2ωα
;

(iii) the family {I2m : m ∈ N} is an ascending chain of distinct closed
ideals in Bωα.
In particular, R2ωα

is infinite-dimensional.

Let G be a locally compact group. We have been seeking, inter alia,
to show that the radicals R2

ω and R3
ω of the algebras (Bω, 2 ) and

(Bω, 3 ) are non-zero. So far, we have three results in this direction.
First, suppose that Xω 6= A′

ω. Then it follows from Theorem 5.4(iv)
(with X = Xω = A′

ω · Aω) that X ◦
ω is a non-zero, closed ideal contained

in R2
ω , and so the required result certainly holds in the case where G is

not discrete. (For this remark in the case where ω = 1, see [Gra3].) In
fact, it is shown in [Gra3] that the radical of (L1(G)′′, 2 ) is not norm-
separable for each non-discrete locally compact group G; the abelian
case was proved earlier in [Gu].

Now suppose that the group G is infinite and discrete and that we
are considering the radicals R2

ω and R3
ω . Set I = E◦

ω. In the case where
Ω 0-clusters on G×G, we see that R2

ω = R3
ω = I by Theorem 8.19, and

so R2
ω and R3

ω are non-zero. Again, suppose that A is commutative
and that I is nilpotent of index n ≥ 2 in (A′′, 2 ). Then In−1 ⊂ Rω,
and so Rω 6= {0}. Finally, in the case where G is amenable and ω is an
almost left-invariant weight on G, the closed ideal R2

ω is non-zero by
Theorem 7.40. Nevertheless, there are many natural weights on groups
G that do not satisfy any of the above conditions; for example, this is
the case for the weight ω on Z specified by ω(n) = exp(|n|) (n ∈ Z),
as in (7.27). We now seek a ‘hybrid’ result that covers a wider class of
weights, including the above one.

The ideas for finding elements in the radical of a second dual algebra
go back at least to Civin and Yood [CiY], who in turn utilize formulae
of Day from 1957 [Day].

Definition 8.22. Let ω be a weight on a group G, let S be a subset
of G, and let λ ∈ Aω(S)′. Then

Iλ(S) = {Λ ∈ Bω(S) : s · Λ = λ(s)Λ (s ∈ S), 〈Λ, λ〉 = 0} .



108 8. THE SECOND DUAL OF ` 1(G, ω)

Clearly Iλ(S) is always a weak-∗ closed linear subspace of Bω(S).

Proposition 8.23. Let ω be a weight on a group G, let S be a
subsemigroup of G, and let λ ∈ Aω(S)′. Then Iλ(S) is a closed left
ideal in (Bω(S), 2 ), and Iλ(S) is nilpotent of index 2.

Proof. Set I = Iλ(S), and let Λ ∈ I and Φ ∈ Bω(S). For each
s, t ∈ S, we have

s · (t · Λ) = λ(t)λ(s)Λ = λ(s)t · Λ .

It follows that s · (Φ2Λ) = λ(s)Φ2Λ. Further, for each f ∈ Aω(S),
we have

f · Λ =

(∑
s∈S

f(s)δs

)
· Λ =

∑
s∈S

f(s)λ(s)Λ = 〈f, λ〉Λ ,

and so Φ2Λ = 〈Φ, λ〉Λ. Hence

〈Φ2Λ, λ〉 = 〈Φ, λ〉〈Λ, λ〉 = 0 .

This shows that I is a left ideal in Bω(S).
Clearly Λ12Λ2 = 〈Λ1, λ〉Λ2 = 0 (Λ1,Λ2 ∈ I), and so I is nilpotent

of index 2. �

We now seek a condition that ensures that Iλ(S) is an ideal in Bω,
rather than just in Bω(S).

Definition 8.24. Let S be a subsemigroup of a group G. Then S
is left thick if, for each t ∈ G, there exists s ∈ G such that ts ∈ S.

Suppose that S is left thick and that {t1, . . . , tk} is a finite subset of
G. Successively choose s1, . . . , sk ∈ S such that tis1 · · · si ∈ S (i ∈ Nk),
and set s = s1 · · · sk ∈ S. Then tis ∈ G (i ∈ Nk), and so S is left thick
in the sense of [Pat, (1.20)]. Conversely, suppose that S is left thick
in the latter sense, and take t ∈ G. Then there exists s ∈ G with
{ts, tts} ⊂ S, and then ts ∈ S with t(ts) ∈ S, and so S is left thick in
our sense. Thus our notion coincides with the classical one.

For example, for each n ∈ N, S = (Z+)n is a left thick semigroup
in G = Zn.

Proposition 8.25. Let ω be a weight on a group G, and let S
be a subsemigroup of G. Suppose that S is left thick. Then, for each
λ ∈ Aω(S)′, the set Iλ(S) is a left ideal in (Bω, 2 ), and Iλ(S) ⊂ R2ω .
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Proof. Set I = Iλ(S), and take Λ ∈ I. We know that

s · Λ = λ(s)Λ (s ∈ S) .

Now take t ∈ G. Since S is left thick, there exists u ∈ S such that
tu ∈ S and t−1u ∈ S. For each s ∈ S, we have stu · Λ = λ(s)tu · Λ
because tu · Λ ∈ I, and so

λ(u)st · Λ = λ(u)λ(s)t · Λ

because u · Λ = λ(u)Λ. Thus s · (t · Λ) = λ(s)t · Λ. Also

λ(t−1u)〈t · Λ, λ〉 = 〈u · Λ, λ〉 = λ(u)〈Λ, λ〉 = 0 ,

and so 〈t · Λ, λ〉 = 0. This shows that t · Λ ∈ I.
It follows that f · Λ ∈ I for each f ∈ Aω. Since I is a weak-? closed,

we have Φ2Λ ∈ I for each Φ ∈ Bω, and so I is a left ideal in (Bω, 2 ).
We have noted in Proposition 8.23 that I is nilpotent, and so we

have I ⊂ R2ω . �

The next step is to exhibit cases where Iλ(S) 6= 0. Of course, this
can only happen if the functional λ is multiplicative on S, in the sense
that λ(s1s2) = λ(s1)λ(s2) (s1, s2 ∈ S).

Definition 8.26. Let ω be a weight on a semigroup S. Then ω is
almost multiplicative on S if

Lim
s→∞

Lim
t→∞

ω(st)

ω(s)ω(t)
= 1 ,

where the limits are taken with s, t ∈ S.

Theorem 8.27. Let ω be a weight on an infinite, amenable group
G, and let S be a subsemigroup of G. Suppose that S is left thick and
that ω is almost multiplicative on S. Then

dimR2ω ≥ 22ℵ0 .

Proof. Set Aω = ` 1(G,ω), and set m = 22ℵ0 . For each s ∈ S, set

λ0(s) = Lim
t→∞

ω(st)

ω(t)
,

where the limit is taken for t ∈ S, and the limit exists because ω is
almost multiplicative on S. Then λ0 ∈ Aω(S)′, λ0 is mutiplicative on
S, and

Lim
s→∞

λ0(s)/ω(s) = 1;

we may suppose that λ0(s)/ω(s) ≥ 1/2 (s ∈ S).
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Set I = Iλ0(S). By Proposition 8.25, I ⊂ R2ω , and so it suffices to
show that dim I ≥ m.

Let M be an element of ` 1(S)′′ ⊂ ` 1(G)′′ such that

s · M = M (s ∈ S) and 〈M, χS〉 = 1 .

Then t · M = M (t ∈ G), and so M | c0(S) = 0.
Define N ∈ Bω by

〈N, λ〉 = 〈M, λ/λ0〉 (λ ∈ A′ω) ;

we note that in fact ‖N‖ = ‖M‖. Also 〈N, λ0〉 = 1.
Take λ ∈ Aω(S)′ and s ∈ S, and set

µ = λ0(s)(λ/λ0) · δs − (λ · δs)/λ0 .

For each t ∈ S, we have

|µ(t)| =
∣∣∣∣λ0(s)λ(st)

λ0(st)
− λ(st)

λ0(t)

∣∣∣∣ ≤ 2 ‖λ‖
∣∣∣∣λ0(s)−

λ0(st)

λ0(t)

∣∣∣∣ ,
and so µ | S ∈ c0(S). Thus 〈M, µ〉 = 0. It follows that s · N = λ0(s)N.

By [Mi1, Theorem 9], the semigroup S is left amenable (see also
[Pat, Proposition (1.21)]), and so, by [Pat, Theorem (7.8)], the set of
elements M in ` 1(S)′′ such that s · M = M (s ∈ S) and 〈M, χS〉 = 1
has cardinality at least m. The corresponding set of elements N in
Bω(S) has the same cardinality, and the difference of any two distinct
elements in this latter set belongs to I.

The result follows. �

We shall give in the next chapter examples of weights on Z that
satisfy the conditions of the above theorem.

Unfortunately, several obvious questions about the radicals of the
second duals of group and Beurling algebras remain open. Set

Bωα = (` 1(ωα)′′, 2 ) ,

and take {Im : m ∈ N} to be the family of closed ideals of Bωα that
was discussed in Theorem 8.21. Now set

I =
⋃
{Im : m ∈ N} .

Then I is ‘large’ closed left ideal contained in R2ωα
, and I22 = 0. We

do not know whether or not I = R2ωα
, and whether or not R2ωα

is
itself nilpotent of index 2. Let G be a group, and let R2 and R3 be
the radicals of the two second duals of `1(G). Then we do not know
whether or not R2 and R3 are nilpotent, and whether or not they are
always equal; we guess that the latter is not the case.



CHAPTER 9

Algebras on Discrete, Abelian Groups

In the next two chapters, we shall present a variety of examples which
show the limits of our earlier theorems. In the present chapter all
our examples will be commutative, and almost all will be of the form
` 1(ω) = ` 1(Z, ω) for a suitably chosen weight ω on Z. Again set
Aω = ` 1(ω) and Bω = A′′ω, etc. Thus, for all the examples in this
chapter, there is just one topological centre, equal to the centre Z(Bω)
of (Bω, 2 ).

The first example was essentially already given by Craw and Young
in [CrY]. In the example, ‖ · ‖ denotes the Euclidean norm on Zk.

Example 9.1. Fix k ∈ N, and consider the group (Zk,+). Let

ωα(n) = (1 + ‖n‖)α (n ∈ Zk) ,

where α > 0. Then ` 1(Zk, ωα) is Arens regular, and the radical Rωα of
(` 1(Zk, ωα)′′, 2 ) is equal to E◦

ωα
.

Proof. The corresponding function Ωα 0-clusters on Zk×Zk, and
so this follows from Theorem 8.11 and Theorem 8.19. �

Take α > 0. Since the Banach algebra ` 1(Z, ωα) is Arens regular,
we have WAP (` 1(Z, ωα)) = `∞(Z, 1/ωα). However, it is not the case
that

WAP (Z, 1/ωα) = `∞(Z, 1/ωα) .

Indeed, take λ ∈ `∞(Z) \WAP (Z) : we have λωα ∈ `∞(Z, 1/ωα), but
λωα /∈ WAP (Z, 1/ωα). Thus

(9.1) WAP (` 1(Z, ωα)) ( WAP (Z, 1/ωα) .

Example 9.2. There is a sequence (Ak) of Arens regular Banach
algebras such that c0(Ak) is Arens regular, but `∞(Ak) is not Arens
regular.

Proof. For each k ∈ N, set Ak = ` 1(ω1/k), so that, by Example
9.1, Ak is an Arens regular Banach algebra.

Set

A = `∞(Ak) =
{
a = (ak) ∈

∏
Ak : ‖a‖ = sup ‖ak‖ <∞

}
,

111
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so that A is a commutative Banach algebra.
For each k ∈ N, we define λk ∈ (A′k)[1] to be the map

λk :
∞∑

j=−∞

αjδj 7→
∞∑

j=0

αjω1/k(j) .

Let U be an ultrafilter on N, and define λ on A by

〈a, λ〉 = lim
U
〈ak, λk〉 ;

the limit always exists, and λ ∈ A′ with ‖λ‖ = 1.
For each m,n ∈ N, define am = (am,k) and bn = (bn,k) by setting

am,k = δm/ω1/k(m), bn,k = δ−n/ω1/k(n), (k ∈ N) .

For each m,n, k ∈ N, we have am,k, bn,k ∈ Ak with ‖am,k‖ = ‖bn,k‖ = 1,
and so am, bn ∈ A. For n > m, we have 〈am,k ? bn,k, λk〉 = 0 because
m− n 6∈ Z+, and so

lim
m

lim
n
〈ambn, λ〉 = 0 .

For m > n, we have

〈am,k ? bn,k, λk〉 =
ω1/k(m− n)

ω1/k(m)ω1/k(n)
=

(
1 + |m− n|

(1 + |m|)(1 + |n|)

)1/k

→ 1

as k →∞, and so

lim
n

lim
m
〈ambn, λ〉 = 1 .

It follows from (3.2) that λ is not weakly almost periodic, and so A is
not Arens regular.

Set B = c0(Ak). Then B is a Banach algebra which is Arens regular
by a remark in Chapter 2 on page 35. However `∞(B) contains the
algebra A = `∞(Ak) as a closed subalgebra, and so `∞(B) is not Arens
regular. �

Example 9.3. There is a Beurling algebra which is strongly Arens
irregular and which has as a closed subalgebra an infinite-dimensional
Beurling algebra which is Arens regular.

Proof. Let

ω(m,n) = (1 + |m|)α (m,n ∈ Z) ,

where α > 0. Then ω is a weight on (Z2,+). Set Aω = ` 1(Z2, ω).
Clearly ω is bounded, and hence diagonally bounded, on the set

S = {0} × Z, and so it follows from Theorem 8.15 that the algebra Aω

is strongly Arens irregular.
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Let B = {f ∈ Aω : supp f ⊂ Z × {0}}, so that B is a closed sub-
algebra of Aω. Then B is identified with the Banach algebra ` 1(Z, ωα),
which was specified in Example 9.1, and so B is Arens regular.

Thus B′′ ∩ Z(A′′) = B, whereas Z(B′′) = B′′, and this shows that
the inclusion in (2.23) can be strict. �

Example 9.4. Let ω = ωα ⊗ ωβ on Z2, so that

ω(m,n) = (1 + |m|)α(1 + |n|)β (m,n ∈ Z) ,

where α, β > 0. Then ω is a weight on (Z2,+). The algebra ` 1(Z2, ω)
is neither Arens regular nor strongly Arens irregular.

Proof. Certainly ω is a weight on Z2. Set Aω = ` 1(Z2, ω).
Let sm = (m, 0) (m ∈ N) and tn = (0, n) (n ∈ N). Then (sm) and

(tn) are sequences in Z2, each consisting of distinct points. Clearly we
have Ω(sm, tn) = 1 (m,n ∈ N), and so Ω does not 0-cluster on Z2×Z2.
By Theorem 8.11, Aω is not Arens regular.

Let S = {(m,m) : m ∈ N}, so that S is an infinite subsemigroup of
Z2.

Let xm = (m,m) ∈ S, and let (yn) be a sequence of distinct points
in Z2 such that the two repeated limits of (Ω(xm, yn) : m,n ∈ Z) both
exist. We have

lim
m

Ω(xm, (r, s)) = 1/(1 + |r|)α(1 + |s|)β (r, s ∈ Z) ,

and so limn limm Ω(xm, yn) = 0. Also

lim
n

Ω(xm, yn) ≤ 1/(1 +m)2α (m ∈ N) ,

and so limm limn Ω(xm, yn) = 0. Thus Ω 0-clusters on S×Z2. It follows
from Corollary 8.9(iii) that Bω(S) ⊂ Z(Bω), and so Aω is not strongly
Arens irregular. �

Example 9.5. (i) Let ω be a weight on Q such that ω is bounded
on the set {r ∈ Q : |r| ≤ 1}. Then ` 1(Q, ω) is strongly Arens irregular.

(ii) There is a weight on ω on Q such that ` 1(Q, ω) is Arens regular.

Proof. (i) The weight ω is diagonally bounded on the set

{r ∈ Q : |r| ≤ 1} ,
and so the result follows from Theorem 8.15.

(ii) Such a weight ω is constructed in [CrY, Corollary 1]. �
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Example 9.6. Take ω be a weight on Z such that

ω(n) = ean, ω(−n) = ebn (n sufficiently large in Z+),

where a, b ≥ 0 and max{a, b} > 0. Then ω is unbounded, but ` 1(Z, ω)
is strongly Arens irregular. Further,

{0} 6= Rω ( E◦
ω ,

and so Rω 6⊂ Z(Bω).

Proof. The weight ω satisfies equation (8.10): for example,

ω(m− n)/ω(m)ω(−n) = exp(b(n−m)− am− bn) = exp(−(a+ b)m)

for m,n ∈ Z+ with m < n, and so

lim
m→∞

lim
n→∞

ω(m− n)

ω(m)ω(−n)
= 0 .

Also, there are obvious weights ω− and ω+ on Z with ω− | Z− = ω | Z−

and ω+ | Z+ = ω | Z+ and such that ω− and ω+ are diagonally bounded
on Z, and so ` 1(Z, ω) is strongly Arens irregular by Theorem 8.18(iv).

By Theorem 8.20 (with S = Z+ and tn = n for each n ∈ N), we
have Rω ( E◦

ω. The weight ω is almost multiplicative on Z+, and so it
follows from Theorem 8.27 that Rω 6= {0}. �

Examples of the above form show that, given any weight ω on Z,
there is a weight ω on Z such that ` 1(ω) ⊂ ` 1(ω) and ` 1(ω) is strongly
Arens irregular.

Example 9.7. There is a weight ω on Z such that the Banach
algebra ` 1(Z, ω) is neither Arens regular nor strongly Arens irregular.
Further, we have

{0} 6= Rω ( E◦
ω .

Proof. We define η : Z → R+ by setting

η(−j) = j, η(j) = log(1 + j) (j ∈ Z+) .

It is easily checked that η is subadditive on Z; also η(0) = 0. A graph
of the function η, regarded as a function on R, is indicated in Figure 1
on page 115.

Set ω = exp η and Aω = ` 1(Z, ω).
We first claim that Aω is not Arens regular. Indeed,

(δ1η)(−j,−k) = 0 (j, k ∈ N) ,

and so both repeated limits of (Ω(−j,−k) : j, k ∈ N) are 1. Thus Ω
does not 0-cluster on Z×Z, and so, by Theorem 8.11, Aω is not Arens
regular.
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Figure 1

Set

αj,k = (δ1η)(j, k), βj,k = (δ1η)(j,−k) (j, k ∈ N) ,

so that βj,k = αj,−k (j, k ∈ N). We shall show that

(9.2)

{
lim

j
lim inf

k
αj,k = ∞ , lim

k
lim inf

j
αj,k = ∞ ,

lim
j

lim inf
k

βj,k = ∞ , lim
k

lim inf
j

βj,k = ∞ ;

it will then follow that Ω 0-clusters on N× Z. By Corollary 8.10, this
is sufficient to imply that Aω is not strongly Arens irregular and that
Rω 6= {0}.

Throughout, j, k ∈ N.
First, we have

αj,k = log(1 + j) + log(1 + k)− log(1 + j + k) ≥ log(1 + j)− j/(1 + k),

and so lim infk αj,k ≥ log(1 + j) for each j, whence

lim
j

lim inf
k

αj,k = ∞ .

By symmetry, limk lim infj αj,k = ∞.
Second, for each j and each k > j, we have

βj,k = η(j) + k − (k − j) ≥ j ,

and so lim infk βj,k ≥ j for each j, whence

lim
j

lim inf
k

βj,k = ∞ .

Also, for each k and each j > k, we have η(j − k) ≤ η(j), and so it
follows that βj,k ≥ η(−k) = k. Thus lim infj βj,k ≥ k for each k, whence

lim
k

lim
j
βj,k = ∞ .

Thus conditions (9.2) hold, as required.
By Theorem 8.20 (with S = Z− and tn = −n for each n ∈ N), we

also have Rω ( E◦
ω. �

The next example is similar, but a little more complicated. It shows
that an obvious conjecture on the strong Arens irregularity of the al-
gebras Aω is false.
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Example 9.8. There is a weight ω on Z such that Ω does not cluster
on Z × Z, such that

lim sup
n→∞

ω(n) = ∞ and lim inf
n→∞

ω(n) <∞ ,

and such that the Banach algebra ` 1(Z, ω) is neither Arens regular nor
strongly Arens irregular. Further, {0} 6= Rω ( E◦

ω.

Proof. We again define a function η on Z (and then set ω = exp η
and Aω = ` 1(Z, ω)).

As before, we set

η(−j) = j (j ∈ Z+) ,

and this is sufficient to show that Aω is not Arens regular and that
Rω 6= {0}.

It remains to define η on Z+. We shall specify two strictly increasing
sequences (mk) and (nk) in N such that

2 = m1 < n1 < m2 < n2 < · · · < mk < nk < · · · .

For convenience, we shall then set γk = 1/nk (k ∈ N), so that (γk) is a
strictly decreasing sequence in the interval (0, 1)∩Q such that γk → 0
as k →∞.

First, η(j) = j (j = 0, 1, 2). Now suppose that η(j) has been
defined on Nmk

such that η(mk) ∈ N, η(mk) ≥ k, and

η(j) ≤ η(mk) (j ∈ Nmk
) .

We choose

nk = mk + η(mk)− 1 ,

and then define

η(mk + j) = η(mk)− j (j ∈ Nnk−mk
).

Note that η(nk) = 1 and that nk − mk → ∞ as k → ∞. Once we
have fixed mk and nk, we choose mk+1 ∈ N so that mk+1 > nk, so that
γkmk+1 ∈ N, and so that γkmk+1 > max {k + 1, η(mk)}; this choice is
clearly possible. We now define

η(j) = γkj (j = nk, . . . ,mk+1) .

This provides an inductive construction of the sequences (mk) and (nk)
and of η on N.

A graph of the function η, regarded as a function on R+, is indicated
in Figure 2, below.
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Figure 2

We notice that the function η on N has the following properties.
First, for each k ∈ N, we have

η(j) ≥ γkj (j ∈ Nmk+1
) and η(j) ≤ γkj (j ≥ nk) .

Second, η(mk) > k (k ∈ N) and (η(mk)) is a strictly increasing se-
quence with limk η(mk) = ∞, so that lim supn ω(n) = ∞. Third, we
have arranged that η(nk) = 1 (k ∈ N), and so lim infn ω(n) = e < ∞,
one of the requirements of the example. Finally, for each k ∈ N, we
have

η(mk) = max {η(j) : j ∈ Nmk
} .

As before, the slope of the function η is defined to be s, where

s(j) = η(j + 1)− η(j) (j ∈ N) .

Clearly s(j) ≥ −1 (j ∈ N) and s(j) ≤ γk for j ≥ nk, and so we have
lim supj s(j) = 0.

We claim that the function η is subadditive on Z: we require that

(9.3) η(m+ n) ≤ η(m) + η(n) (m,n ∈ Z) .

The proof is by induction. The result is trivially true when m,n ∈ N
and m + n ∈ Z+

m1
. Now assume that (9.3) holds whenever m,n ∈ N

and m + n ∈ Z+
mk

, where k ∈ N. Take m,n ∈ N with m + n ∈ Z+
mk+1

.
First, suppose that mk ≤ m+ n ≤ nk. If m,n ≤ mk, then

η(m+ n) ≤ η(mk) = γk−1mk ≤ γk−1m+ γk−1n ≤ η(m) + η(n) .

If m ≥ mk, then

η(m+ n)− η(m) = −n ≤ η(n) ,

and similarly if n ≥ mk. Second, suppose that nk ≤ m + n ≤ mk+1.
Then

η(m+ n) = γkm+ γkn ≤ η(m) + η(n) .

Thus (9.3) holds whenever m,n ∈ N and m + n ∈ Z+
mk+1

. It follows

that inequality (9.3) holds whenever m,n ∈ N.
Certainly, (9.3) holds whenever −m,−n ∈ N, and so it remains to

show that

(9.4) η(m− n) ≤ η(m) + η(−n) = η(m)− n (m,n ∈ N) .

But now η(m) ≥ −n+ η(m− n) for m,n ∈ N because the slope of η is
bounded below by −1, and so (9.4) follows.

We have established the claim that η is subadditive.
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We now show that Ω does not cluster on Z × Z. Indeed, first fix
n ∈ N. For each sufficiently large k, we have nk − n > mk, and so

η(nk − n)− η(nk)− η(−n) = 0 .

Thus limk Ω(nk,−n) = 1, and so limn limk Ω(nk,−n) = 1. Second, fix
k ∈ N. For each sufficiently large n, we have nk − n < 0, and so

η(nk − n)− η(nk)− η(−n) = n− nk − 1− n = −nk − 1 .

Hence limk limn Ω(nk,−n) = 0. Thus Ω does not cluster on Z× Z.
We take S = {mk : k ∈ N}, an infinite subset of Z. We now define

αj,k = (δ1η)(mk, j), βj,k = (δ1η)(mk,−j) (j, k ∈ N) ;

we shall again show that

(9.5)

{
lim

j
lim inf

k
αj,k = ∞ , lim

k
lim inf

j
αj,k = ∞ ,

lim
j

lim inf
k

βj,k = ∞ , lim
k

lim inf
j

βj,k = ∞ .

This implies that Ω 0-clusters on S ×Z, and hence, by Corollary 8.10,
Aω is not strongly Arens irregular and Rω 6= {0}.

First, fix j ∈ N. For k sufficiently large in N, the interval [mk, nk, ]
has length nk −mk ≥ j, and so η(mk + j) = η(mk)− j. Thus

αj,k = η(j) + j ,

and so lim infk αj,k = η(j) + j ≥ j. Hence limj limk αj,k = ∞.
Second, fix k ∈ N, and set ε = η(mk)/2mk, so that ε > 0. Since

lim supj s(j) = 0, there exists j0 ∈ N such that s(j) < ε (j ≥ j0), and
this implies that

η(mk + j)− η(j) ≤ mks(j) < εmk (j ≥ j0) .

Thus

αj,k ≥ η(mk)− εmk ≥ η(mk)/2 (j ≥ j0) ,

and so lim infj αj,k ≥ η(mk)/2. Since limk η(mk) = ∞, this shows that
limk lim infj αj,k = ∞.

Third, fix j ∈ N. For k sufficiently large in N, we have mk > j, and
so 0 ≤ mk − j ≤ mk and η(mk − j) ≤ η(mk). Thus βj,k ≥ η(−j) = j,
and so lim infk βj,k ≥ j. Hence limj lim infk βj,k = ∞.

Finally, again fix k ∈ N. For j sufficiently large in N, we have
j > mk, and so η(−j) − η(mk − j) = mk. Thus βj,k ≥ mk, and so
lim infj βj,k ≥ mk. Hence limk lim infj βj,k = ∞.

We have shown that conditions (9.5) hold, as required.
Again by Theorem 8.20 (with S = Z− and tn = −n for each n ∈ N),

we have Rω ( E◦
ω. �
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We shall now give two general methods of constructing weights on
Z by inductive processes. This will enable us to give several specific
examples that illustrate certain possibilities. Throughout, we shall
define a subadditive function η on Z, with the understanding that the
final weight is ω = exp η, as before. We shall define each η to be
increasing and subadditive on Z+ (with η(0) = 0 throughout), and
then extend η to all of the group Z by setting η(−n) = η(n) (n ∈ N),
so that the final η is subadditive on Z and symmetric. We say that a
function η : Z+

k → R+ is subadditive to k if η(m + n) ≤ η(m) + η(n)
whenever m,n,m + n ∈ Zk. In fact it is more convenient to regard
a function η : Z+

k → R+ as being defined on the interval [0, k] of R+

so that we can use geometric language; of course we achieve this by
joining the points (j, η(j)) to (j + 1, η(j + 1)) by a straight line.

The first remark is obvious.

Proposition 9.9. Let η : [0, k] → R+ be convex, with η(0) = 0.
Then η is subadditive to k. 2

For the first general construction, we again inductively define two
strictly increasing sequences (mk) and (nk) in N such that

1 = m1 < n1 < · · · < mk < nk < · · · .
We shall impose the constraint that

(9.6) nk ≥ 2mk, mk+1 = nk + pk (k ∈ N) ,

where mk ≤ pk ≤ nk. We shall also arrange that η is increasing on R+

and constantly equal to 2k−1 on the interval [mk, nk], so that η(t) →∞
as t→∞.

We set η(0) = 0 and η(1) = 1. Now assume inductively that mk has
been defined and that η is subadditive to mk. Let η̃k be a subadditive,
increasing function on [0, pk], where mk ≤ pk ≤ nk, such that

0 ≤ η̃k(t) ≤ η(t) (0 ≤ t ≤ pk) and η̃k(pk) = η(pk) = 2k−1 .

Define η on [nk,mk+1] by setting

η(nk + t) = η(nk) + η̃k(t) = 2k−1 + η̃k(t) (0 ≤ t ≤ pk) .

A graph of the function η, regarded as a function on R+, is indicated
in Figure 3, on page 121.

Figure 3

Proposition 9.10. The new function η is subadditive to mk+1.
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Proof. We must show that

(9.7) η(m+ n) ≤ η(m) + η(n) whenever m,n,m+ n ≤ mk+1 ;

we may suppose that m ≤ n. First suppose that mk ≤ m+ n ≤ nk. If
m,n ≤ mk, then there exists r ∈ Z+

m with r + n = mk, and then

η(m+ n) = η(mk) ≤ η(r) + η(n) ≤ η(m) + η(n) ,

and so (9.7) is clear. If m ≤ mk ≤ n, then η(m + n) = η(n), and so
(9.7) follows. Second, suppose that nk ≤ m + n ≤ mk+1. We have
n ≥ mk because nk ≥ 2mk. Set m + n = nk + r, so that r ≤ mk. If
n ≤ nk, then m ≥ r, and so

η(m+ n)− η(n) = 2k−1 + η̃k(r)− 2k−1 = η̃k(r) ≤ η(m) ,

giving (9.7). If n ≥ nk, then r = m+ (n− nk) and

η̃(r) ≤ η̃k(m) + η̃k(n− nk) ,

and so

η(m+ n) = 2k−1 + η̃k(r) ≤ 2k−1 + η̃k(m) + η̃k(n− nk)
= η̃k(m) + η(n) ≤ η(m) + η(n) ,

and again we have (9.7). This completes the proof of (9.7). �

As above, we extend η to [0, nk+1] by taking η to be constantly
equal to 2k on [mk+1, nk+1]. The next remark is clear.

Proposition 9.11. The new function η is subadditive to nk+1. 2

We also note that we have the following inequality:

(9.8) Ω(m,n) ≤ exp(η̃k(n)− η(n)) (mk ≤ m ≤ nk, n ≤ mk) .

Example 9.12. Let ϕ : Z+ → R+ be an increasing function such
that ϕ(n) →∞ as n→∞. Then there is a symmetric weight ω on Z,
increasing on Z+, such that ω(n) →∞ and ω(n)/ϕ(n) → 0 as n→∞,
such that the corresponding function Ω does not cluster on Z×Z, such
that ω is not almost invariant, and such that the algebra ` 1(Z, ω) is not
Arens regular.

Proof. Let ψ : Z+ → R+ be such that expψ = ϕ; we have

ψ(n) →∞ as n→∞ .

We apply the above algorithm, taking pk = mk and η̃ = η; we choose
nk for k ∈ N to be such that ψ(nk) > k ·2k (k ∈ N) (as well as requiring
that nk ≥ 2mk (k ∈ N)). For each n ∈ N with mk ≤ n ≤ mk+1, we
have

η(n)/ψ(n) ≤ 2k/ψ(nk) < 1/k ,
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and so ω(n)/ϕ(n) → 0 as n→∞.
Certainly

η(nk + 1) = η(nk) + 1 (k ∈ N) ,

and so ω is not almost invariant.
Consider Ω(mj, nk). First, fix k ∈ N. For each sufficiently large j,

we have η(mj + nk) = η(mj), and so Ω(mj, nk) = 1/ω(nk). Second, fix
j ∈ N. For each sufficiently large k, we have

η(mj + nk) = η(mj) + η(nk) ,

and so Ω(mj, nk) = 1. Thus

lim
k

lim
j

Ω(mj, nk) = 0, lim
j

lim
k

Ω(mj, nk) = 1 ,

and so Ω does not cluster on Z × Z. By Theorem 8.11, Aω is not Arens
regular. �

Thus we can have symmetric weights ω on Z such that ω(n) →∞
arbitrarily slowly and ` 1(Z, ω) is not Arens regular.

We wonder if the above example is strongly Arens irregular? If so,
it would be the first such example that does not satisfy the conditions
in either Corollary 8.16 or Theorem 8.18.

Example 9.13. Let ϕ : Z+ → R+ be an increasing function such
that ϕ(n) →∞ as n→∞. Then there is a symmetric weight ω on Z,
increasing on Z+, such that ω(n)/ϕ(n) → 0 as n → ∞ and such that
the algebra ` 1(Z, ω) is Arens regular.

Proof. We apply the above algorithm, taking pk = nk and η̃k(n)
to be n/2k−1 (n ∈ Z+

nk
) for each k ∈ N; further, we choose nk to be so

large that η̃k(n) ≤ η(n) on [0, nk], so that nk > k · 2k−1, and so that
ω(n)/ϕ(n) < 1/k on [0, nk]. Since limj η(j) = ∞ and limj s(j) = 0, it
follows from Corollary 8.12 that ` 1(Z, ω) is Arens regular. �

Thus, given a weight ω on Z with Lim ω(n) = ∞, there is a sym-
metric weight ω on Z such that ` 1(Z, ω) ⊂ ` 1(Z, ω) and ` 1(Z, ω) is
Arens regular.

Example 9.14. There is a symmetric weight ω on Z, increasing on
Z+, such that Ω 0-clusters on N×N, but such that Ω does not 0-cluster
strongly on N× N. The Beurling algebra ` 1(Z, ω) is Arens regular.

Proof. We apply the above algorithm, taking pk = nk (k ∈ N).
For each k ∈ N, we choose β(k) ∈ Nk such that β(k) < k (k ≥ 2),
and we now take η̃k to be the function whose graph is formed from
the two straight lines through the three points (0, 0), (nβ(k), 2

β(k)−1),
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and (nk, 2
k−1) . We see that η̃k is convex above [0, nk], so that η̃k is

subadditive to nk, and that

η̃k(t) ≤ η(t) (0 ≤ t ≤ nk) .

We always obtain a function η on Z+ such that η is increasing, such
that η(mk) = η(nk) = 2k−1 (k ∈ N), and such that η is subadditive on
Z+.

We still have to make the choice of the numbers β(k) for each k ≥ 2.
We make the choice to achieve the following. For each r ∈ N, set

Sr = {k ∈ N : β(k) = r} ,

so that {Sr : r ∈ N} is a family of pairwise disjoint subsets of N. Our
extra constraint is that each Sr is infinite and that

⋃
{Sr : r ∈ N} = N,

so that {Sr : r ∈ N} is a partition of N.
As usual, ω = exp η. We consider the function Ω on N× N.
First, we see that Ω does not 0-cluster strongly on N × N. To

see this, note that Ω(nk, nβ(k)) = 1 for each k ∈ N. Fix r ∈ N.
There are infinitely many values of k ∈ N with β(k) = r, and so
lim supm Ω(m,nr) = 1. Thus

lim sup
n

lim sup
m

Ω(m,n) = 1 ,

and so Ω does not 0-cluster strongly on N× N.
Next we show that Ω 0-clusters on N × N. Let us take sequences

(ui) and (vj) in N such that

α := lim
j

lim
i

Ω(ui, vj)

exists; our aim is to show that α = 0. We fix n ∈ N, and look at the
possible values of limm Ω(m,n).

By passing to a subsequence of the sequence (ui), we may suppose
that (ui) runs through values in the interval [mk,mk+1], taking at most
one value in each of these intervals; indeed, we may suppose that each
ui has the form mk + qk for some qk ∈ N with mk + qk ≤ mk+1 (the
other cases are a trivial variation of this case). By (9.8), we see that

lim
k

Ω(nk + qk, n) ≤ lim sup
k

exp(η̃k(n)− η(n)) .

In the first subcase, suppose that infinitely many terms of the sequence
(ui) belong to the set {mk + qk : k ∈ Sr} for some r ∈ N; in fact, we
may suppose that ui ∈ {mk + qk : k ∈ Sr} for each i ∈ N; we may
also suppose that n > r because we shall eventually set n = vj and
let j → ∞, so that vj → ∞. We see by inspection of the graphs that
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limk η̃k(n) = η(r), and so

lim
i

Ω(ri, n) ≤ ω(r)/ω(n) .

In the second subcase, suppose that only finitely many points of the
sequence (ui) belong to the set {mk + qk : k ∈ Sr} for each r ∈ N. Now
we have η̃k(n) = sβ(k) · n for all k ∈ N and all sufficiently large i ∈ N,

where s` denotes the slope of the line from (0, 0) to (nβ(`), 2
β(`)−1),

and hence s` takes the value 2β(`)−1/nβ(`). In this subcase, we have
η̃k(n) = 0, and so limi Ω(ri, n) ≤ 1/ω(n). In both subcases, we have
limj limi Ω(ui, vj) = 0, and so α = 0, as required.

This completes the proof of the example. �

Example 9.15. There is a symmetric weight ω on Z, increasing
on Z+, such that the Beurling algebra ` 1(Z, ω) is neither Arens regular
nor strongly Arens irregular, such that Rω = E◦

ω, such that

{0} 6= R2 2
ω ⊂ Z(Bω) ,

but such that R2 3
ω = {0}.

Proof. We apply the above algorithm, with the aditional con-
straints that

pk = nk, nk ≥ 2mk + k · 2k (k ∈ N) .

Note that, for each k ∈ N, we have 2k/nk+1 < 2k−1/nk because we
required that nk+1 > 2nk, and so the curve formed by joining each
of the points (nj−1, η(nj−1)) to (nj, η(nj)) by a straight line for each
j ∈ Nk is a convex curve, which we say defines the function η̃k on
[0, nk]. By Proposition 9.9, the function η̃k is subadditive to nk. Thus
η̃k satisfies the conditions required in the above construction.

We note that, for each fixed t ∈ N and each sufficiently large j ∈ N,
we have

η̃k(nj + t) = η(nj) + 2j−1t/(nj+1 − nj) ≤ η(nj) + t/j .

As usual we set Aω = ` 1(Z, ω) and Bω = A′′ω.
The values of the double sequence (Ω(mj, nk) : j, k ∈ N) have not

changed from those that arose in Example 9.12 (where we took η̃k = η),
and so it remains true that Ω does not cluster on Z × Z. Thus, by
Theorem 8.11, ` 1(Z, ω) is not Arens regular and R2 2

ω 6= {0}.
We now consider the claim that

(9.9) lim
t→∞

lim inf
s→∞

lim inf
r→∞

αr,s,t = ∞ ,

where

αr,s,t = η(r) + η(s) + η(t)− η(r + s+ t) (r, s, t ∈ N) .
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First hold s and t fixed, and let r → ∞. We consider i ∈ N such
that s + t ≤ mi ≤ r. First suppose that r, r + s + t ∈ [mi, ni]. Then
αr,s,t = η(s) + η(t), and so the claim is immediate. Second suppose
that r ∈ [mi, ni] and r+ s+ t ∈ [ni,mi+1], say r+ s+ t = ni + r′, where
r′ ≤ s+ t. Then

αr,s,t = η(s) + η(t)− η̃k(r
′) ≥ η(s) + η(t)− η̃k(s+ t) .

Third suppose that r, r + s+ t ∈ [ni,mi+1], say r = ni + r′. Then

αr,s,t = η̃k(r
′) + η(s) + η(t)− η̃k(r

′ + s+ t) ≥ η(s) + η(t)− η̃k(s+ t) .

Finally suppose that r ∈ [ni,mi+1] and r + s + t ≥ mi+1. Then there
exist s′ ∈ Ns and t′ ∈ Nt with r+s′+t′ = mi+1 and such that s′, t′ →∞
as s, t→∞ and αr,s,t = αr,s′,t′ . Thus this case reduces to the previous
one. Thus, we see that, to establish our claim, it suffices to show that

(9.10) lim
t→∞

lim inf
s→∞

βs,t = ∞, where βs,t = η(s) + η(t)− η̃k(s+ t) .

We hold t fixed, and calculate lims βs,t. We consider j ∈ N such
that t ≤ mj ≤ s. Suppose that s, s+ t ∈ [mj, nj]. Then

η(s) = η(s+ t) ≥ η̃k(s+ t) ,

and so βs,t ≥ η(t), whence (9.10) is immediate. Suppose that we have
s ∈ [mj, nj] and s+ t ∈ [nj,mj+1]. Then

βs,t = η(nj) + η(t)− η̃k(s+ t) ≥ η(nj) + η(t))− η̃k(nj + t) .

Suppose that s, s+ t ∈ [nj,mj], say s = nj + s′. Then

βs,t = η̃k(s
′) + η(t)− η̃k(s

′ + t) ≥ η(nj) + η(t)− η̃k(nj + t)

because η̃k is convex, s′ ≤ nj, and η̃k(nj) = η(nj). In the above two
cases, we have

βs,t ≥ η(t)− t/j

for s ≥ mj, and so lim infs βs,t ≥ η(t). The final case is that in which
s ∈ [nj,mj+1 − 1] and s+ t ≥ mj+1. Now we have

βs,t = η(mj+1)− (mj+1− s)2j−1/nj + η(t)− η(mj+1) ≥ η(t)−2j−1t/nj ,

and so again lim infs βs,t ≥ η(t). Finally we see that (9.10) holds, and
so we have established the claim (9.9).

Set I = E◦
ω. In the terminology of Theorem 8.14, we have shown

that the function Ω3 0-clusters strongly on Z×Z×Z, and so, by clause
(ii) of that theorem, I2 3 = {0}. Thus I is a nilpotent ideal of index 3,
and hence Rω = E◦

ω. It follows from Proposition 2.19 that I2 2 ⊂ Z(Bω)
and hence that Aω is not strongly Arens irregular.

This completes the proof of the example. �
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We wonder if R2 2
ω is closed in the above example? It is possible

that the centre Z(Bω) is equal to Aω ⊕R2 2
ω .

Our next example is based on a second general construction that
we now explain.

Let (sj) be a strictly decreasing sequence in R+ \ {0}, and let Lj

be the half-line y = sjx (x ∈ R+), so that Lj has the slope sj. We
shall choose a strictly increasing sequence (mj) in N by an inductive
process. Once mj is fixed, we shall specify (nj) in R by requiring that

njsj+1 = mjsj (j ∈ N) ;

for convenience, we set m0 = n0 = 0. Note that

(9.11) nj −mj =

(
sj

sj+1

− 1

)
mj (j ∈ N).

We then choose mj+1 ∈ N with mj+1 > nj.
We now define η : R+ → R+ by setting

η(t) =

{
sjt (nj−1 ≤ t ≤ mj) ,

sjmj (mj ≤ t ≤ nj) ,

for each j ∈ Z+. (The definitions of η(mk) are consistent.) Thus the
graph of η lies on Lj over [nj−1,mj] and is horizontal over [mj, nj].

Clearly η is an increasing function on R+ with η(0) = 0. By
choosing each mj to be sufficiently large, we can ensure that we have
η(mj) > η(mj−1) + 1, and so η(t) →∞ as t→∞.

A graph of the function η, regarded as a function on R+, is indicated
in Figure 4 on page 126.

We claim that

(9.12) η(s+ t) ≤ η(s) + η(t) (s, t ∈ R+)

in each such case. To prove this, we may suppose that s ≤ t. First,
suppose that nj−1 ≤ t ≤ mj for some j ∈ Z+. Then η(s) ≥ sjs,
η(t) = sjt, and η(s + t) ≤ sj(s + t), and so (9.12) holds. Second,
suppose that mj ≤ t ≤ nj for some j ∈ N. Then η(s) ≥ sj+1s and
η(t) ≥ sj+1t ; if also s + t ≥ nj, then η(s + t) ≥ sj+1(s + t), and so
(9.12) holds in this case, and, if s + t ≤ nj, then η(s + t) = η(t), and
so (9.12) also holds in this case. Thus (9.12) holds in each case.

We now define η(−t) = 0 (t ∈ R+), so that η is defined on R. We
claim that

(9.13) η(s+ t) ≤ η(s) + η(t) (s, t ∈ R) .
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Indeed (9.13) is clear if both s, t ∈ R+ and if both s, t ∈ R−. Now
suppose that s, t ∈ R+. Then η(−t) = 0 and η(s− t) ≤ η(s) because η
is increasing on R. Thus (9.13) holds.

Figure 4

Consider the restriction of η to Z: we obtain a subadditive function,
and so Aω = ` 1(Z, ω) is a Beurling algebra on Z (where ω = exp η).

We note the following additional remark. Let η be as specified on
R+, but now extend η to R by defining η(−t) = η(t) (t ∈ R+). It is
immediate that η is also subadditive on R, and ω = (exp η) | Z is a
symmetric weight on Z such that there are sequences (sj) and (tj) in
N with the properties that, for each k0 ∈ N, there exists j0 ∈ N such
that

(9.14) ω(sj + k) = ω(sj), ω(tj + k) = ω(tj)ω(k) ,

whenever j ∈ N with j ≥ j0 and k ∈ Z with |k| ≤ k0.

Example 9.16. There is a weight ω on Z, increasing on Z+, such
that ω(−n) = 1 (n ∈ N), but such that the Banach algebra ` 1(ω) is
neither Arens regular nor strongly Arens irregular. Further,

{0} 6= Rω ( E◦
ω .

Proof. We choose a sequence (sj) as above to satisfy the addi-
tional conditions that sj > 1/2 (j ∈ N) and sj → 1/2 as j →∞, and,
further, such that

(9.15) (sj − 1/2)mj →∞, (sj − sj+1)mj/sj+1 →∞ as j →∞ ;

this is clearly possible. It follows from (9.11) and (9.15) that

nj −mj →∞ as j →∞ .

The weight ω is defined as above. Since η(−j) = 0 (j ∈ N),
certainly both repeated limits of (Ω(−j,−k) : j, k ∈ N) are 1, and so
Aω is not Arens regular.

It remains to prove that Aω is not strongly Arens irregular; for this,
we again apply Corollary 8.10. As before, we define

αj,k = (δ1η)(mk, j), βj,k = (δ1η)(mk,−j) (j, k ∈ N) ,

so that, in fact, βj,k = η(mk)− η(mk − j) (j, k ∈ N).
First, fix j ∈ N. For k sufficiently large, we have η(mk+j) = η(mk),

and so limk αj,k = η(j). Hence limj limk αj,k = ∞.
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Second, fix k ∈ N. For each j ∈ N, there exists ` ∈ Z+ such that
m` ≤ j ≤ m`+1. Now

η(j +mk)− η(j) ≤ s`mk ,

and so αj,k ≥ η(mk)− s`mk. Thus lim infj αj,k ≥ (sk− 1/2)mk because
s` → 1/2 as `→∞. Hence limk lim infj αj,k = ∞ by (9.15).

Third, fix j ∈ N. For k sufficiently large, we have mk − j ≥ nk−1,
and so βj,k = skmk − (sk − j)mj = jmk, whence limk βj,k = ∞. Hence
limj limk βj,k = ∞.

Finally, again fix k ∈ N. Then mk − j < 0 for j sufficiently large,
and limj βj,k = η(mk). Hence limk limj βj,k = ∞.

We have shown that all the required limits are ∞, and so Aω is not
strongly Arens irregular. By Corollary 8.10, Rω 6= {0}.

Again by Theorem 8.20 (with S = Z− and tn = −n for each n ∈ N),
we have Rω ( E◦

ω. We can also apply Theorem 8.27 with S = Z− to
see that Rω 6= {0}. �

The final example of this chapter is based on one suggested to us
by Joel Feinstein, to whom we are grateful.

Example 9.17. There is a symmetric weight ω on Z such that
ω(0) = 1 and ω(n) > 1 (n ∈ Z \ {0}), such that ω(n) = O(log n) as
n→∞, and such that

lim inf
n→∞

ω(n) <∞ ,

but such that ω is unbounded and not almost invariant. The algebra
` 1(ω) is strongly Arens irregular and Rω ( E◦

ω.

Proof. We again define an appropriate function η on Z, and set
ω = exp η.

Each n ∈ Z can be written (in many ways) in the form

(9.16) n =
r∑

j=1

εj2
aj ,

where εj ∈ {−1, 1} and aj ∈ Z+ for j ∈ Nr, and where

a1 ≥ a2 ≥ · · · ≥ ar .

For each n ∈ Z\{0}, we define η(n) to be the minimum value of r ∈ N
that can arise in equation (9.16); we also set η(0) = 0. We note that,
when n has such a representation of minimum length, then necessarily

a1 > a2 > · · · > ar .

It is clear that η(n) ∈ Z+ (n ∈ Z), that η(n) = 0 if and only if
n = 0 (so that ω(n) > 1 (n ∈ Z\{0})), and that η(−n) = η(n) (n ∈ Z)
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(so that ω is symmetric). It is also immediate that η is subadditive on
Z.

Clearly, η(2k) = 1 and η(2k + 1) = 2 for each k ∈ N, and so

lim inf
n→∞

ω(n) = e .

Thus ω is not almost invariant. Also it is immediate by induction on
k ∈ N that η(n) ≤ k (n ∈ Nk), and so ω(n) = O(log n) as n→∞.

Finally, we claim that η, and hence ω, is unbounded in Z. To see
this, consider numbers of the form

nk = 22k + 22k−2 + · · · + 24 + 22 + 1 = (22k+2 − 1)/3,

where k ∈ N. We shall prove by induction on k that η(nk) = k + 1.
Certainly η(nk) ≤ k + 1. The result is immediate for k = 1; assume
that the result holds for k. Suppose that

(9.17) nk+1 =
r∑

j=1

εj2
aj ,

where εj ∈ {−1, 1} , aj ∈ Z+, and a1 > a2 > · · · > ar ≥ 0. Since
nk+1 is an odd number and ar−1 ≥ 1, we have ar = 0. Suppose that
εr = 1. Then we subtract 1 from each side of (9.17), and note that
necessarily ar−1 ≥ 2 because the new right-hand side is divisible by 4.
Then nk =

∑r−1
j=1 εj2

aj−2 with ar−1 − 2 ≥ 0. Suppose that εr = −1.
Then necessarily ar−1 = 1 and εr−1 = −1. Further, we have

nk+1 = 1 + 4nk = 4

(
r−2∑
j=1

εj2
aj−2

)
− 2− 1 ,

and so nk =
∑r−2

j=1 εj2
aj−2 − 1. In both these two cases, the inductive

hypothesis shows that r− 1 ≥ k+1. Thus η(nk+1) = k+2, continuing
the induction.

That Aω is strongly Arens irregular follows from Corollary 8.16.
We claim that (8.11) of Theorem 8.20 is satisfied with S = N and

with tn = 2n (n ∈ N). Indeed, for each fixed s ∈ S, we have

η(2n + s) = 1 + η(s) = η(2n) + η(s)

for n sufficiently large in N, and so limn Ω(s, tn) = 1, as required. Thus
Rω ( E◦

ω.
We have shown that our example has the required properties. �

Unfortunately, we cannot see how to show that Rω 6= {0} in the
above example; the weight does not satisfy any of the sets of conditions
for this that we have so far established.
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It would be interesting to know if there is a weight ω on Z such that
(` 1(ω)′′, 2 ) is a semisimple algebra; conceivably, the above example
has this property.





CHAPTER 10

Beurling Algebras on F2

We now give some examples in the case where the underlying group is
F2, the free group on two generators, and we first recall some standard
facts about this group.

We denote the generators F2 by a and b. The letters of the group
are a, a−1, b, and b−1, and a word is a finite formal product

sε1
1 · · · sεm

m ,

where m ∈ N, s1, . . . , sm ∈ {a, b}, and ε1, . . . , εm ∈ {1,−1}; the formal
product with no factors is also a word, denoted by e. A word is reduced
if it is e or if εk+1 = εk whenever sk+1 = sk. Each word is equivalent to
a reduced word in an obvious, unique way; the length of a word w ∈ F2

is the number of letters in the reduced word equivalent to w, and it
is denoted by |w| (with |e| = 0). The group F2 consists of all words;
the product of two words is the reduced word equivalent to the word
formed by juxtaposition of the two given words. Note that there are
4 · 3m−1 words of length m ∈ N in F2.

Let (wn) be a sequence in F2. Then clearly

Lim
n

wn = ∞ if and only if lim
n→∞

|wn| = ∞ .

Now consider a general word w in F2, and suppose that w is reduced.
Then w can be uniquely expressed in the form

(10.1) w = (aj1bk1)(aj2bk2) · · · (ajmbkm) ,

where m ∈ N, where j1, . . . jm, k1, . . . , km ∈ Z, and each of the integers
j2, . . . , , jm, k1, . . . , km−1 is non-zero. (The first and last terms could
be just bk1 and ajm , respectively.) We shall call this the canonical
representation of w, and say that its components are wr = ajrbkr for
r ∈ Nm, so that w = w1 · · ·wm. We have

|w| = |w1|+ · · ·+ |wm| and |wr| = |jr|+ |kr| (r ∈ Nm) .

The words that have at most m components in their canonical repre-
sentation are said to belong to the subset Cm of F2. Thus C0 = {e}
and

C1 = {ajbk : j, k ∈ Z} .
131
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Suppose that u ∈ Cm and v ∈ Cn, where m,n ∈ N. Then uv ∈ Cm+n.

Example 10.1. There is an unbounded weight ω on F2 such that ω
is diagonally bounded on all of F2. Further, ` 1(F2, ω) is strongly Arens
irregular, but ` 1(F2, ω) is not isomorphic to ` 1(F2).

Proof. In [J1, Proposition 2.8], Johnson constructs a function

η : F2 → R

such that η(eG) = 0, such that∣∣(δ1η)(s, t)
∣∣ ≤ 6 (s, t ∈ G) ,

such that

η(am) = η(bn) = 0 (m,n ∈ Z) ,

and such that η is unbounded on G (indeed, η((a2b)k) = 2k for each
k ∈ N). (Our function η is called α by Johnson.) Set

ω(s) =

{
exp(η(s) + 6) (s ∈ G \ {eG}) ,
1 (s = eG) .

Then, as in the remarks on page 94 after Theorem 7.44, ω is an un-
bounded weight which is diagonally bounded on all of F2.

By Theorem 8.15, ` 1(F2, ω) is strongly Arens irregular.
Assume toward a contradiction that there is an isomorphism

θ : ` 1(F2, ω) → ` 1(F2) .

Then there is a function ρ : F2 → C satisfying conditions (7.32), above,
(with G = F2). By (7.32), we have ρ(an) = nρ(a) and ρ(bn) = nρ(b)
for n ∈ Z, and so it follows from (7.32) that ρ(a) = ρ(b) = 0, and hence
that ρ = 0. But now we conclude from (7.32) that η is bounded on F2,
a contradiction. Thus ` 1(F2, ω) is not isomorphic to ` 1(F2). �

The above example was known to at least B. E. Johnson and M.
C. White. More general examples than the above can be constructed
by using results from the theory of bounded group cohomology, as
expounded by Grigorchuk in [Gri].

Example 10.2. There is a weight on F2 which is almost left-invar-
iant, but not almost invariant.

Proof. Let S be the set of (reduced) words in F2 which end in a,
and define η in terms of S as in (7.9), so that exp η is a weight on F2.

Let s ∈ F2. For each t ∈ F2 with |t| > |s| + 1, the last letter
of the reduced form of st is the same as the last letter of t, and so
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η(st) = η(t). Thus Lim t→∞(η(st) − η(t)) = 0, and so ω is almost
left-invariant. However,

η(bna)− η(bn) = 2− 1 = 1 (n ∈ N) ,

and so it is not true that Lim t→∞(η(ta) − η(t)) = 0. This shows that
ω is not almost invariant. �

The above weight is obviously equivalent to an invariant weight; we
cannot see an almost left-invariant weight which is not equivalent to
an almost invariant weight.

We now approach our main example on the group F2. We shall first
present some preliminary lemmas.

We start with a function ϕ which is continuous on R+, twice-
differentiable on R+ \ {0}, unbounded, and such that ϕ(0) = 0 and
ϕ′(t) > 0 and ϕ′′(t) < 0 for each t > 0. Set ψ = ϕ/Z, so that
ψ(t) = φ(t)/t for t > 0. It is clear that ϕ is increasing and convex on
R+ and that ϕ(t) →∞, and ϕ(t+ 1)− ϕ(t) → 0 as t→∞. Also ψ is
decreasing on R+ \ {0} and ψ(t) → 0 as t→∞. For example, set

ϕα(t) = tα (t ≥ 0) ,

where 0 < α < 1. Then ϕ satisfies all the required conditions. We shall
also require that

(10.2) t 7→
(

1 +
j

t

)
ϕ(t) is increasing on [j,∞)

for each j ∈ N. For example, the above function ϕα satisfies this extra
condition if and only if α ≥ 1/2.

We define
αj = ϕ(|j|) (j ∈ Z) .

We see immediately that α0 = 0, that

αj+k ≤ αj + αk (j, k ∈ Z) ,

and that α−j = αj (j ∈ Z). Set α = (αj : j ∈ Z). Then expα is a
weight on Z.

We note that

(10.3) lim
m

lim
n

(αm + αn − αm+n) = ∞ .

Indeed, for n ≥ m, we have αn ≥ (n−m)αm+n/n because ϕ is convex,
and so αn − αm+n ≥ −mαm+n/n → 0 as n → ∞. Now (10.3) follows
because limm αm = ∞.

We shall now define a function

(j, k) 7→ α(j, k), Z× Z → R+ .
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To do this, we divide the space Z × Z into two parts by drawing the
lines k = ±j, and using different formulae on the two parts.

First, suppose that |j| ≥ |k|. Then

(10.4) α(j, k) = αj + αk (|j| ≥ |k|) .

Second, suppose that |j| ≤ |k|, and first set α(0, k) = αk (k ∈ Z). Then
extend α(j, k) to be linear in j on the intervals [0, |k|] and [− |k| , 0] for
each k ∈ Z. Thus

(10.5) α(j, k) =

(
1 +

|j|
|k|

)
αk (0 < |j| ≤ |k|) .

Suppose that |jn| + |kn| → ∞ as n → ∞. Then clearly we have
α(jn, kn) →∞ as n→∞.

Lemma 10.3. (i) For each k ∈ Z, the function j 7→ α(j, k) is in-
creasing on Z+.

(ii) For each j ∈ Z, the function k 7→ α(j, k) is increasing on Z+.

Proof. (i) This is immediate.

(ii) It suffices to show that α(j, k1) ≤ α(j, k2) whenever we have
k2 ≥ k2 ≥ j > 0. We require that(

1 +
j

k1

)
αk1 ≤

(
1 +

j

k2

)
αk2 .

But this follows immediately from (10.2). �

Lemma 10.4. (i) α(j, k) ≤ αj + αk (j, k ∈ Z).

(ii) α(j1 + j2, k) ≤ α(j1, 0) + α(j2, k) (j1, j2, k ∈ Z).

(iii) α(j, k1 + k2) ≤ α(j, k1) + α(0, k2) (j, k1, k2 ∈ Z).

Proof. (i) This is the immediate from (10.4) in the case where
|j| ≥ |k|. Now suppose that |j| ≤ |k|. Then we require that

(1 + |j| / |k|)αk ≤ αj + αk ,

and hence that (|j| / |k|)αk ≤ αj. This holds because (αn/n) is a
decreasing sequence.

(ii) Suppose that j2 ≥ k ≥ 0 and j1 ≥ 0. Then we require that

αj1+j2 + αk ≤ αj1 + αj2 + αk ,

which is true.
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Now suppose that 0 ≤ j2 ≤ k and j1 ≥ 0. If j1 + j2 ≤ k, then we
require that (

1 +
j1 + j2
k

)
αk ≤ αj1 +

(
1 +

j2
k

)
αk2 ,

and this is true because (j1/k)αk ≤ αj1 . If j1 + j2 ≥ k, then we require
that

αj1+j2 + αk ≤ αj1 +

(
1 +

j2
k

)
αk ,

and hence that

αj1 +

(
j2
k

)
αk − αj1+j2 ≥ 0 .

The left-hand side of the above inequality is a decreasing function of
j1, and so we may suppose that j1 + j2 = k. Again we see that we
require that αj1 ≥ (j1/k)αk, which is true.

Finally we require that α(|j1 − j2| , k) ≤ α(j1, 0)+α(j2, k) whenever
j1, j2, k ≥ 0. This follows from Lemma 10.3(i).

(iii) Suppose that k1 ≥ j ≥ 0 and k2 ≥ 0. Then we require that(
1 +

j

k1 + k2

)
αk1+k2 ≤

(
1 +

j

k1

)
αk1 + αk2 ,

and this is true because

αk1+k2 ≤ αk1 + αk2 and αk1+k2/(k1 + k2) ≤ αk1/k1 .

Now suppose that 0 ≤ k1 ≤ j and k2 ≥ 0. If k1 + k2 ≥ j, then we
require that (

1 +
j

k1 + k2

)
αk1+k2 ≤ αj + αk1 + αk2 ,

which is true. If k1 + k2 ≤ j, then we require that

αk1+k2 + αj ≤ αj + αk1 + αk2 ,

which is also true.
Finally, we require that α(j, |k1 − k2|) ≤ α(j, k1)+α(0, k2) whenever

j, k1, k2 ≥ 0. This follows from Lemma 10.3(ii). �

We now define η on the subset C1 of F2 by the formula

(10.6) η(ajbk) = α(j, k) (j, k ∈ Z) .

Note that η(e) = α(0, 0) = 0.

Lemma 10.5. Suppose that u, v, and uv belong to C1. Then

η(uv) ≤ η(u) + η(v) .
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Proof. The only cases which arise are: (i) u = aj and v = bk;
(ii) u = aj1 and v = aj2bk; (iii) u = ajbk1 and v = bk2 for some
j, k, j1, j2, k1, k2 ∈ Z. The result in each of these three cases is imme-
diate from Lemma 10.4. �

We now define η(w) for an arbitrary element w of F2. Let w have
the canonical representation w = w1 · · ·wm, as described above. Then
η(wr) has already been defined for each r ∈ Nm.

Definition 10.6. Let w = w1 · · ·wm be the canonical represent-
ation of an element w ∈ F2. Then

η(w) =
(
η(w1)

2 + · · ·+ η(wm)2
)1/2

.

Let (sm) be a sequence in F2 such that |sm| → ∞ as m→∞. Then
η(sm) →∞ as m→∞.

Lemma 10.7. The function η is subadditive on F2.

Proof. Let u, v ∈ F2, with canonical representations u = u1 · · ·um

and v = v1 · · · vn, say.
First suppose that the canonical representation of uv is

u1 · · ·umv1 · · · vn ,

with no cancellation, so that uv has m + n components. Then we
require that

(10.7)

{
(x2

1 + · · · + x2
m + y2

1 + · · ·+ y2
n)1/2

≤ (x2
1 + · · ·+ x2

m)1/2 + (y2
1 + · · ·+ y2

n)1/2 ,

where xr = η(ur) and ys = η(vs). But (10.7) is certainly true.
Second, suppose that there is some cancellation in the canonical

representation of uv. For example, suppose that

u = u′aj1 and v = aj2bkv′

for some j1, j2, k ∈ Z and some u′, v′ ∈ F2. Suppose further that
j1 + j2 6= 0, so that the canonical representation of uv is u′(aj1+j2bk)v′.
Then we require that

(10.8) (x+α(j1 +j2, k)
2 +y)1/2 ≤ (x+α(j1, 0)2)1/2 +(α(j2, k)

2 +y)1/2

for certain x, y ≥ 0. But this follows from Lemma 10.4(ii). In the case
where j1 + j2 = 0, there is further cancellation, but a similar argument
applies. An extreme case where the number of components in uv is
strictly less than m+ n is covered in Lemma 10.5.

There may be cancellation because the juxtaposition of u and v
does not give a reduced word. For example, suppose that we have
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u = aj+rbs and v = b−sa−rbk for some j, k, r, s ∈ N. Now uv = ajbk,
and so the inequality requires that

α(j, k) ≤ α(j + r, s) + (α(0, s)2 + α(r, k)2)1/2 .

The right-hand side of this inequality attains its minimum (as a funct-
ion of r and s) at r = s = 0, and so it suffices to note that we have
α(j, k) ≤ αj + αk. �

At this stage, we have established that ω = exp η is a weight on
the group F2. We note that ω is not symmetric on F2. For example,
suppose that j ≥ k > 0. Then η(ajbk) = αj + αk, but

η((ajbk)−1) = η(b−ka−j) = (α2
j + α2

k)
1/2 6= αj + αk .

We now set Aω = ` 1(F2, ω), etc., as before, so that Aω = E ′
ω.

Lemma 10.8. Let Φ,Ψ ∈ E◦
ω. Then Φ2Ψ = 0.

Proof. By a remark after Theorem 7.8, it suffices to show that

(10.9) lim
m

lim inf
n

(η(sm) + η(tn)− η(smtn)) = ∞

whenever (sm) and (tn) are sequences in F2 such that |sm| → ∞ and
|tn| → ∞. Take such sequences (sm) and (tn).

First, as in the proof of Lemma 10.7, suppose that the canonical
representation of each product smtn is formed by the juxtaposition of
the canonical representations of sm and tn. Then we must consider

(10.10) lim
m

lim inf
n

(
f(m)1/2 + g(n)1/2 − (f(m) + g(n))1/2

)
,

where f, g : N → R+ are functions with the properties that f(m) →∞
as m→∞ and g(n) →∞ as n→∞. Fix m ∈ N. Then

f(m)1/2 + g(n)1/2 − (f(m) + g(n))1/2 = g(n)1/2
(
1 + t− (1 + t)1/2

)
,

where t = f(m)1/2/g(n)1/2. Since

1 + t− (1 + t)1/2 ≥ t/2 (t ≥ 0) ,

the right-hand side of the above inequality is at least f(m)1/2/2, and
so the limit in (10.10) is ∞, as required.

Again, we must allow for some cancellation when the canonical
representation of sm, tn is formed.

For example, suppose that sm = am and tn = bn. Let m,n ∈ N
with m ≥ n. Then η(ambn) = (1 + m/n)αn, and so, for each m ∈ N,
we have

lim
n

(η(am) + η(bn)− η(ambn)) = lim
n

(αm + αn − (1 +m/n)αn)

= lim
n

(αm − αn/n) = αm .
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Thus the limit in (10.9) is limm αm, which is ∞, as required. Again,
suppose that sm = am and tn = an (or sm = bm and tn = bn). Then
the limit in (10.9) is ∞ by (10.3).

Now suppose that there is some intermediate level of cancellation
when the canonical representation of smtn is formed; we must consider
analogues of equation (10.8). We then see that the result follows by
combinations of the two arguments already given. �

It follows that

Z
(1)
t (Bω) = Aω ⊕ {Φ ∈ E◦

ω : Φ3Ψ = 0 (Ψ ∈ E◦
ω)}

and

Z
(2)
t (Bω) = Aω ⊕ {Φ ∈ E◦

ω : Ψ3Φ = 0 (Ψ ∈ E◦
ω)} .

Lemma 10.9. Let Φ1,Φ2,Φ3 ∈ E◦
ω. Then Φ13Φ23Φ3 = 0.

Proof. By Theorem 8.14(ii), it suffices to show that

(10.11) Lim
k

Lim inf
j

Lim inf
i

(η(ri) + η(sj) + η(tk)− η(risjtk)) = ∞

whenever (ri), (sj), and (tk) are sequences in F2 such that |ri| → ∞,
|sj| → ∞, and |tk| → ∞.

In the case where there is no cancellation when the canonical rep-
resentation of risjtk is formed from the juxtaposition of the canonical
representations of ri, sj, and tk, the argument for (10.11) is the same
as that for (10.10).

An extreme case in the opposite direction is that in which we have
risjtk ∈ C1. For example, we could have ri = ai, sj = aj, and tk = bk.
We then require the limit

Lim
k

Lim inf
j

Lim inf
i

(αi + αj + αk − α(i+ j, k)) .

By Lemma 10.4(i), α(i+ j, k) ≤ αi+j + αk, and so this limit is at least

lim
j

lim
i

(αi + αj − αi+j) ;

by (10.3), this limit is ∞.
All other cases follow by a combination of the above arguments. �

Lemma 10.10. There exist Φ0,Ψ0 ∈ E◦
ω such that 〈Φ03Ψ0, ω〉 = 1.

Proof. Consider

lim
n

lim
m

(η(am) + η(bn)− η(ambn)) .
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For each m ≥ n, we have η(ambn) = αm + αn = η(am) + η(bn), and so
this repeated limit is 0. Let Φ0 and Ψ0 be weak-∗ accumulation points

of (δ̃am) and (δ̃bn), respectively. Then

〈Φ03Ψ0, ω〉 = lim
n

lim
m

Ω(am, bn) = exp 0 = 1 ,

as required. �

We now regard Φ0 and Ψ0 as fixed elements of Bω.

Lemma 10.11. (i) Ψ3Φ0 = 0 (Ψ ∈ E◦
ω), and so Φ0 ∈ Z

(2)
t (Bω).

(ii) Ψ03Ψ = 0 (Ψ ∈ E◦
ω), and so Ψ0 ∈ Z

(1)
t (Bω).

(iii) Φ0 /∈ Z
(1)
t (Bω) and Ψ0 /∈ Z

(2)
t (Bω).

Proof. (i) Let (sm) be a sequence in F2 with |sm| → ∞. By a
small variation of earlier arguments, we see that

lim
n

lim
m

(η(sm) + η(an)− η(sma
n)) = ∞ ,

and this is sufficient to establish that Ψ3Φ0 = 0 (Ψ ∈ E◦
ω). We

certainly have Ψ2Φ0 = 0 (Ψ ∈ E◦
ω), and so Φ0 ∈ Z

(2)
t (Bω).

(ii) This is similar.

(iii) We have Φ02Ψ0 = 0, but Φ03Ψ0 6= 0. �

It follows that Φ3 2
0 = Ψ3 2

0 = 0, and so (Φ0+Ψ0)
3 2 = Φ03Ψ0 6= 0.

We can now summarize the properties of this example that we have
established.

Theorem 10.12. There is a weight on ω on the group F2 such that
the following properties hold:

(i) (E◦
ω)2 2 = {0};

(ii) (E◦
ω)3 3 = {0};

(iii) there exist Φ0,Ψ0 ∈ E◦
ω such that Φ03Ψ0 6= 0;

(iv) Φ0 ∈ Z
(2)
t (Bω) \ Z

(1)
t (Bω) and Ψ0 ∈ Z

(1)
t (Bω) \ Z

(2)
t (Bω), and so

Z
(1)
t (Bω) 6= Z

(2)
t (Bω) ;

(v) rad (Bω, 2 ) = rad (Bω, 3 ) = E◦
ω. 2

Set R3ω = rad(Bω, 3 ), as before. We have shown that (R3
ω )2 6= {0};

it is not clear whether or not (R3
ω )2 is closed in Bω.

We see that, in the present example, the two radicals of (Bω, 2 ) and
(Bω, 3 ) are the same subset of Bω (but they have different algebraic
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properties). We have not been able to construct an example in which
they are distinct sets.

Example 10.13. Let A = ` 1(F2, ω), with ω as above. Then we

certainly have Z
( 1)
t (A′′) 6= Z

(2)
t (A′′). For f ∈ A, set

f(s) = f(s) (s ∈ F2) .

Then the map f 7→ f is a linear involution on A such that

f ? g = f ? g (f, g ∈ A)

As in Example 4.4, we can construct a Banach ∗-algebra C = A⊕Aop

such that Z
(1)
t (C ′′) 6= Z

(2)
t (C ′′). In this case, we do have

rad (C ′′, 2 ) = rad (C ′′, 3 ) .
2



CHAPTER 11

Topological Centres of Duals of Introverted
Subspaces

In this chapter, we shall establish two results on the topological centre
of left-introverted subspaces.

First, let G be a group, and let X be a left-introverted subspace of
A′ω = `∞(G, 1/ω). Then, in the case where Ω clusters on G × G, we
have Zt(X

′) = X ′ whenever we have X ⊂ WAP (G, 1/ω). Second, let
G be a locally compact group, and let Xω = LUC(G, 1/ω), as before.
Then, in Theorem 11.9, we shall identify Zt(X ′

ω) as M(G,ω) under
certain conditions on the weight function ω.

Let ω be a weight on a group G. We continue to use the notations
Aω, A′ω, Bω, and Eω that were introduced in (8.1). Recall also that
`tλ = λ · δt and rtλ = δt · λ for each t ∈ G and λ ∈ A′ω. We also define

Φ`(λ)(t) = 〈Φ, `tλ〉 = (Φ · λ)(t) ,
Φr(λ)(t) = 〈Φ, rtλ〉 = (λ · Φ)(t) ,

}
(t ∈ G, λ ∈ A′ω, Φ ∈ Bω).

A left-introverted subspace X of A′ω was defined in Definition 5.1.
A ‖ · ‖-closed subspace X is an Aω-submodule of A′ω if and only if it
is translation-invariant , in the sense that `tλ, rtλ ∈ X whenever t ∈ G
and λ ∈ X. In this case, X is left-introverted if and only if Φ`(λ) ∈ X
whenever λ ∈ X and Φ ∈ X ′. To show that a translation-invariant
subspace X of A′ω is left-introverted, it suffices to show that

(11.1) Φ · λ ∈ X (λ ∈ X, Φ ∈ Sω)

because Bω = linSω. Suppose that X is a left-introverted subspace of
A′ω. Then it follows from Theorem 5.4 that X ′ is a Banach algebra for
the product 2 , defined for Φ,Ψ ∈ X ′ by the equation

〈Φ2Ψ, λ〉 = 〈Φ,Ψ · λ〉 (λ ∈ X) ,

given as (5.1).
The topologies ofX andX ′ are again taken to be the weak-∗ topolo-

gies σ(X,Aω) and σ(X ′, X), respectively, unless stated otherwise.

141
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Let λ ∈ A′ω. We denote by 〈Kλ〉 the weak-∗ closed, convex hull in
A′ω of the set

(11.2) Kλ =
{
δ̃s · λ : s ∈ G

}
.

The first lemma was proved in [GrL, Lemma 2] in the case where
ω = 1; the result is similar to Proposition 5.3. We use the follow-

ing notation. Let γ =
∑n

i=1 ciδ̃si
· λ be an element of 〈Kλ〉, so that

c1, . . . , cn ≥ 0 and
∑n

i=1 ci = 1. Then the corresponding element γ̃ of
Aω is

γ̃ =
n∑

i=1

ci δ̃si
.

Notice that, for each t ∈ G, we have

〈γ̃, λ · δt〉 =
n∑

i=1

ci〈δ̃si
, λ · δt〉 = γ(t) .

Lemma 11.1. Let G be a group, and let ω be a weight on G. A ‖ · ‖-
closed, left-translation invariant subspace X of A′ω is left-introverted if

and only if 〈Kλ〉 ⊂ X for each λ ∈ X.

Proof. Suppose that X is left-introverted, and take λ ∈ X and
γ ∈ 〈Kλ〉. Then there is a net (γα) in 〈Kλ〉 such that γα → γ in
(A′ω, σ(A′ω, Aω)). Clearly limα γα(t) = γ(t) for each t ∈ G. We obtain
a corresponding net (γ̃α) in Aω ⊂ Bω. By passing to a subnet, if
necessary, we may suppose that γ̃α → Φ for some Φ ∈ Bω. Let t ∈ G.
Then

(11.3) (Φ · λ)(t) = 〈Φ, λ · δt〉 = lim
α
〈γ̃α, λ · δt〉 = lim

α
γα(t) = γ(t) ,

and so Φ · λ = γ. Since X is left-introverted, we conclude that γ ∈ X.
Thus 〈Kλ〉 ⊂ X.

Conversely, suppose that 〈Kλ〉 ⊂ X for each λ ∈ X. Then X is

translation-invariant. Take Φ ∈ Sω and λ ∈ X. Since Sω = 〈∆ω〉,
there is a net (fα) contained in 〈∆ω〉 such that fα → Φ. We may
suppose that fα = γ̃α for each α, where (γα) is a net in 〈Kλ〉. By
passing to a subnet, we may suppose that γα → γ for some γ ∈ A′ω,

and γ ∈ 〈Kλ〉 ⊂ X. The calculation in (11.3) shows that Φ · λ = γ,
and so Φ · λ ∈ X. Thus X is left-introverted. �

In particular, each weak-∗ closed, left-translation invariant subspace
of A′ω is left-introverted.
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In Definition 5.5, we defined the topological centre Zt(X
′) of the

dual X ′ of a left-introverted subset X of A′ω. We now characterize
Zt(X

′). Recall that Φ ∈ Zt(X
′) if and only if the map Ψ 7→ 〈Φ,Ψ · λ〉

is continuous on X ′ for each λ ∈ X.

Proposition 11.2. Let ω be a weight on a group G, let X be a
left-introverted subspace of A′ω, and let Φ ∈ X ′. Then Φ ∈ Zt(X

′) if
and only if

(11.4) 〈Φ,Ψα · λ〉 → 〈Φ,Ψ · λ〉 (λ ∈ X)

whenever (Ψα) is a net in Sω such that Ψα → Ψ in (X ′, σ(X ′, X)).

Proof. Let Φ ∈ Zt(X
′). Then it is immediate that the specified

condition is satisfied.
For the converse, take λ ∈ X. Then 〈a, λ · Φ〉 = 〈Φ, a · λ〉 (a ∈ A),

and so, in particular,

(11.5) 〈Ψ, λ · Φ〉 = 〈Φ,Ψ · λ〉
for each Ψ ∈ ∆ω, and hence for each Ψ ∈ 〈∆ω〉 ⊂ Sω.

Now suppose that the specified condition holds, and take Ψ ∈ Sω.
Then Ψ = limα Ψα for some net (Ψα) contained in 〈∆ω〉. Certainly
we have immediately that 〈Ψ, λ · Φ〉 = limα〈Ψα, λ · Φ〉, and, by the
hypothesis, 〈Φ,Ψ · λ〉 = limα〈Φ,Ψα · λ〉. Thus equation (11.5) holds
for all Ψ ∈ Sω. Since linSω = Bω, (11.5) holds for all Ψ ∈ Bω.

Let (Ψα) be any net in X ′ such that Ψα → Ψ in X ′, and take λ ∈ X.
Then

〈Φ,Ψα · λ〉 = 〈Ψα, λ · Φ〉 → 〈Ψ, λ · Φ〉 = 〈Φ,Ψ · λ〉 ,
and so Φ ∈ Zt(X

′), as required. �

Proposition 11.3. Let ω be a weight on a group G, and suppose
that Ω clusters on G×G. Then each ‖ · ‖–closed, translation-invariant
subspace of A′ω which is contained in WAP(G, 1/ω) is introverted.

Proof. Let X be ‖ · ‖-closed, translation-invariant subspace of A′ω
such that X ⊂ WAP (G, 1/ω), and take λ ∈ X. As in (11.2), set

Kλ =
{
δ̃s · λ : s ∈ G

}
.

The map

T : λ 7→ λ/ω, A′ω → `∞(G) ,

is a linear isometry. Since λ ∈ WAP (G, 1/ω), we have Tλ ∈ WAP (G)
by definition. Also, for each s, t ∈ G, we have

T (δ̃t · λ)(s) = (δt · λ)(s)/ω(s)ω(t) = Ω(s, t)(Tλ)(st) .
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By hypothesis, Ω clusters on G×G. Also, by Theorem 6.3, the map

f : (s, t) 7→ (Tλ)(st), G×G→ C ,

clusters on G×G. Since both Ω and f are bounded on G×G, it follows
from a remark after Definition 3.2 that the function

(s, t) 7→ T (δ̃t · λ)(s), G×G→ C ,

also clusters on G×G. By Theorem 3.3, the set{
T (δ̃t · λ) : t ∈ G

}
is relatively weakly compact in CB(G), and so Kλ is weakly compact in
A′ω. By the Krein–Šmulian theorem, 〈Kλ〉 is relatively weakly compact
in A′ω. LetHλ be the weak closure of 〈Kλ〉. ThenHλ is weakly compact,

and so Hλ = 〈Kλ〉. By Mazur’s theorem, Hλ is also the ‖ · ‖-closure of

〈Kλ〉. Since the set X is ‖ · ‖-closed in A′ω, it follows that 〈Kλ〉 ⊂ X.

By Lemma 11.1, X is left-introverted.
Similarly, X is right-introverted, and so X is an introverted sub-

space of A′ω. �

Theorem 11.4. Let ω be a weight on a group G such that Ω clusters
on G×G, and let X be a left-introverted subspace of A′ω with

X ⊂ WAP (G, 1/ω) .

Then Zt(X
′) = X ′.

Proof. Let Φ ∈ X ′, and let (Ψα) be a net in Sω such that Ψα → Ψ
in (X ′, σ(X ′, X)). By Proposition 11.2, Φ ∈ Zt(X

′) provided that

(11.4) holds.

Take λ ∈ X. As in the proof of Proposition 11.3, the set 〈Kλ〉
is weakly compact in A′ω, and so the weak and pointwise topologies

coincide on 〈Kλ〉. Since (Ψα · λ)(t) → (Ψ · λ)(t) for each t ∈ G,

Ψα · λ→ Ψ · λ weakly in 〈Kλ〉, so giving (11.4). �

We do not know whether or not the above theorem holds in the
case where Ω does not cluster on G × G; an example where Ω does
not cluster was given in Example 9.12.

Let G be a group, and let X be a left-introverted subspace of `∞.
Then X ⊂ WAP (G) whenever Zt(X

′) = X ′, and so there is a converse
to the above theorem in the special case where ω = 1. To see this, take
λ ∈ X. Since Zt(X

′) = X ′, the map

Φ 7→ Φ · λ, (X ′, σ(X ′, X)) → (X, σ(X,X ′)) ,
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is continuous. Hence {Φ · λ : Φ ∈ (X ′)[1]} is relatively weakly compact
in X. But this latter set contains Kλ, so that the set {rtλ : t ∈ G}
is relatively weakly compact, and hence λ ∈ WAP (G). Thus we have
X ⊂ WAP (G).

However this converse is not necessarily true for a non-trivial weight
ω on G. For set X = ` 1(ωα)′, where α > 0. Then X is left-introverted
and Zt(X

′) = X ′ because ` 1(ωα)′ is Arens regular by Example 9.1. On
the other hand, X 6⊂ WAP (Z, 1/ωα) because `∞ 6⊂ WAP (Z).

Now let ω be a weight function on a locally compact group, and
again suppose throughout that ω(s) ≥ 1 (s ∈ G). Our next aim is to
prove that, under certain conditions on ω, we have M(G,ω) = Zt(X ′

ω),
where we are again setting Xω = LUC(G, 1/ω). In the case where
ω = 1, this result was proved for G a locally compact abelian group
by M. Grosser and Losert in [GLos] and for arbitrary G in [L3], and
the present proof develops the earlier arguments. Again, we are setting
Mω = M(G,ω) and Eω = C0(G, 1/ω). Recall from Theorem 7.19
that Xω is left-introverted as a subspace of both A′

ω and A′ω, from
Proposition 7.20 that the product 2 is independent of the ambient
space, and from the remark above Theorem 7.25 thatMω is canonically
a closed subalgebra of X ′

ω.
We make some preliminary remarks. We regard each element

δ̃s : λ 7→ λ(s)/ω(s), Xω → C ,

as a character on Xω. The space Xω is a C∗-subalgebra of the comm-
utative C∗-algebra A′

ω; we denote the character space of Xω by ∆ω, as
in Chapter 8, so that ∆ω is a compact subspace of (X ′

ω)[1]. The map

s 7→ δ̃s, G→ ∆ω ,

is an embedding, and G is dense in ∆ω, and so ∆ω is a compactification
of the locally compact space G. In the case where ω = 1, the space ∆ω

is a semigroup; it is discussed in [LPy2], for example.

As in (7.21), we regard Mω as a closed subalgebra of Zt(X ′
ω).

Lemma 11.5. Let ω be a weight function on a locally compact group
G, and let λ ∈ Xω and Φ ∈ Zt(X ′

ω). Then λ · Φ ∈ Xω.

Proof. Let sα → s in G. Then δ̃sα → δ̃s in (X ′
ω, σ(X ′

ω,Xω)), and
so

(λ · Φ)(sα)/ω(sα) = 〈Φ, δ̃sα · λ〉 = 〈Φ2 δ̃sα , λ〉
→ 〈Φ2 δ̃s, λ〉 = (λ · Φ)(s)/ω(s)

because LΦ is continuous on X ′
ω, and hence the function (λ · Φ)/ω is

bounded and continuous on G.
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Let Ψ ∈ Bω and s ∈ G, and consider the equation

(11.6) 〈Ψ, λ · Φ · δs〉 = 〈Φ2 δs2Ψ, λ〉 .

This clearly holds in the case where Ψ = δt for t ∈ G because both
sides are equal to 〈Φ, δst · λ〉, and so it holds whenever Ψ ∈ 〈∆ω〉. Now
take Ψ ∈ Sω, say Ψ = limα Ψα for a net (Ψα) in 〈∆ω〉. Then

lim
α
〈Φ2 δs2Ψα, λ〉 = 〈Φ2 δs2Ψ, λ〉

again because LΦ and δs are continuous on X ′
ω. Thus (11.6) holds for

each Ψ ∈ Sω, and hence for each Ψ ∈ Bω.
Assume towards a contradiction that λ · Φ /∈ Xω. By Proposition

7.15, the map s 7→ (λ · Φ) · δs is not continuous, and so there exists
s ∈ G, ε > 0, and a net (sα) in G with sα → s in G such that

‖(λ · Φ) · δsα − (λ · Φ) · δs‖ > ε for each α .

Take (Ψα) ⊂ (X ′
ω)[1] with

|〈Ψα, (λ · Φ) · (δsα − δs)〉| > ε for each α .

By (11.6), we have

|〈Φ2 (δsα − δs)2Ψα, λ〉| > ε for each α .

Let Ψ ∈ (X ′
ω)[1] be a weak-? accumulation point of the net (Ψα). Then

(11.7) |〈Φ, (δsα 2Ψα − δs2Ψ) · λ〉|+ |〈Φ2 δs, (Ψ−Ψα) · λ〉| > ε

for each α. However limα〈Φ2 δs, (Ψ−Ψα) · λ〉 = 0. Also the map

ρ : (s,Ψ) 7→ δs2Ψ, G × (X ′
ω)[1] → X ′

ω ,

is separately continuous, and so, by Ellis’s theorem [El] (see also [Pa3,
12.1.5(a)] and [HiSt, Chapter 2.5]), ρ is continuous. Hence

lim
α
〈Φ, (δsα 2Ψα − δs2Ψ) · λ〉 = 0 .

This is a contradiction of (11.7), and so λ · Φ ∈ Xω, as required. �

Proposition 11.6. Let ω be a weight function on a locally compact
group G, and let Φ ∈ X ′

ω. Then

Φ ∈ Zt(X ′
ω) if and only if λ · Φ ∈ Xω (λ ∈ Xω)

and

(11.8) 〈Φ2Ψ, λ〉 = 〈Ψ, λ · Φ〉 (λ ∈ Xω, Ψ ∈ X ′
ω) .
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Proof. Let Φ ∈ Zt(X ′
ω). Then λ · Φ ∈ Xω (λ ∈ Xω) by Lemma

11.5.
Let λ ∈ Xω. Equation (11.8) certainly holds in the special case

where Ψ = δt for some t ∈ G, and so it holds whenever Ψ ∈ 〈∆ω〉.
Now take Ψ ∈ Sω, say Ψ = limα Ψα for a net (Ψα) in 〈∆ω〉. Then
limα〈Φ2Ψα, λ〉 = 〈Φ2Ψ, λ〉 because LΦ is continuous on X ′

ω, and
certainly limα〈Ψα, λ · Φ〉 = 〈Ψ, λ · Φ〉, and so (11.8) holds for each
Ψ ∈ Sω, and hence for each Ψ ∈ Bω.

The converse is trivial. �

The following is a key lemma; it is the point where we use the fact
that Φ is in the topological centre of X ′

ω.

Lemma 11.7. Let Φ ∈ Zt(X ′
ω) with ‖Φ‖ ≤ 1. Then the operator Φr

belongs to the strong-operator closure of ac {`s/ω(s) : s ∈ G}.

Proof. Let Φ ∈ (X ′
ω)[1]. There is a net (fα) in the set

ac
{
δ̃s : s ∈ G

}
with fα → Φ in (X ′

ω, σ(X ′
ω,Xω)). Suppose, further, that Φ ∈ Zt(X ′

ω).
Then

lim
α
〈Ψ, λ · fα〉 = lim

α
〈fα2Ψ, λ〉 = 〈Φ2Ψ, λ〉

= 〈Φ3Ψ, λ〉 = 〈Ψ, λ · Φ〉 (λ ∈ Xω, Ψ ∈ X ′
ω)

because RΨ is continuous on Xω. This says that the operator Φr of
B(Xω) is in the weak-operator closure of the set ac{`s/ω(s) : s ∈ G}.
By a theorem of Bade [DfS, Corollary VI.1.5], the weak-operator and
strong-operator closures of this set are equal. �

Recall that κ(G) was defined in Definition 7.39.

Definition 11.8. Let Ω be a locally compact space, and let S be a
subset of Ω. Then S is dispersed if S 6⊂

⋃
{Lj : j ∈ J} for any family

{Lj : j ∈ J} of compact sets with |J | < κ(G).

A subset S of a discrete space Ω is dispersed if and only if |S| = |Ω|;
a subset S of R dispersed if and only if S is unbounded.

The proof of the following theorem is similar to that of [L3, Theorem
1], but some details are different, and so we give essentially the full
argument.

Theorem 11.9. Let ω be a weight function on a locally compact
group G. Suppose that ω is diagonally bounded on a dispersed subset
of G. Then Zt(X ′

ω) = M(G,ω).
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Proof. By (7.22), it suffices to show that Zt(X ′
ω) ∩ E◦ω = {0}.

First suppose that the group G is compact. Then Xω = C(G) and
Mω = M(G) = X ′

ω, and so the result is immediate. Henceforth we
suppose that G is not compact.

Take Φ ∈ Zt(X ′
ω)∩E◦ω with ‖Φ‖ ≤ 1, and assume towards a contra-

diction that Φ 6= 0. Thus we may suppose that ‖Φ‖ = 1.
Let {Ki : i ∈ I} be a family of compact subsets of G such that

|I| = κ(G) and
⋃
{Ki : i ∈ I} = G; we may also suppose that this

family is closed under finite unions.
Let V be a compact neighbourhood of eG, and set ϕ = χV /m(V )

(where m denotes the left Haar measure on G). Define a pseudometric
dϕ on G by the formula

dϕ(s, t) = ‖ϕ ? δs − ϕ ? δt‖ (s, t ∈ G) .

Now choose ε > 0 such that ε < 1/6. Then there exists λ ∈ (Xω)[1]

with |〈Φ, λ〉| > 1 − ε. Set f = λ/ω, so that f ∈ LUC(G). For each
i ∈ I, we define

fi(s) = (1−min {1, dϕ(s,Ki)})f(s) (s ∈ G) ,

so that fi ∈ LUC(G) and fi(s) = f(s) (s ∈ Ki), and we also define

Bi = {s ∈ G : dϕ(s,Ki) ≤ 1} ,
Ai = {s ∈ G : dϕ(s, Bi) ≤ 1} ,

so that Ki ⊂ Bi ⊂ Ai ⊂ V −1 · (V · Bi), the closed set Ai is compact,
and supp fi ⊂ Bi.

Let S be a dispersed subset of G such that ω is diagonally bounded
on S. For each i ∈ I, choose elements ui and vi in S such that each
of the two families {Ai · ui : i ∈ I} and {Ai · vi : i ∈ I} is pairwise
disjoint and such that

(11.9)
(
Ai · uiu

−1
j

)
∩
(
Ak · vkv

−1
`

)
= ∅

whenever i, j, k, ` ∈ I with i 6= j and k 6= `. (For details of the choice
of these elements, see [L2, Lemma 1]; it is at this point that we use the
fact that the set S is dispersed.)

We now define two functions λ′ and λ′′ on G.
For each s ∈ Ai, we set

(11.10)

{
λ′(sui) = ω(s)fi(s)/ω(u−1

i ) ,

λ′′(svi) = ω(s)fi(s)/ω(v−1
i ) ,

and we take λ′(t) = λ′′(t) = 0 at points t ∈ G at which these functions
are not otherwise defined. It follows that λ′ and λ′′ are both well-
defined.
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We claim that λ′ ∈ Xω.
To see this claim, first take t ∈ Ai · ui. Then

|λ′(t)| ≤ ω(tu−1
i )
∣∣fi(tu

−1
i

∣∣ /ω(u−1
i ) ≤ ω(t) |fi|G ≤ ω(t) |f |G ,

and this implies that λ′ ∈ `∞(G, 1/ω).
Next, let (sα) be a net such that sα → s in G, and fix δ with

0 < δ < 1. Then there exists α0 such that

|ω(sα)− ω(s)| < δ/(|f |Ω + 1), dϕ(sα, s) < δ,

|f(sαt)− f(st)| < δ (t ∈ G)

for each α � α0.
We must consider three cases.

1) Suppose that st ∈ Bi · ui for some (necessarily unique) i ∈ I.
Then stu−1

i ∈ Bi, and so sαtu
−1
i ∈ Ai (α � α0). Hence, for each

α � α0, we have

|λ′(sαt)− λ′(st)| /ω(t) =∣∣∣∣ ω(sαtu
−1
i )

ω(sα)ω(u−1
i )

ω(sα)fi(sαtu
−1
i ) − ω(stu−1

i )

ω(s)ω(u−1
i )

ω(s)fi(stu
−1
i )

∣∣∣∣/ω(t) ,

where we note that

|fi(s)− fi(t)| ≤ |f(s)− f(t)|+ dϕ(s, t) (s, t ∈ G) .

2) Suppose that st ∈ (Ai · ui) \ (Bi · ui) for some i ∈ I. For each
j ∈ I with j 6= i, necessarily sαt /∈ Bj · uj (α � α0). If α � α0 and
sαt /∈ Bi · ui, then

|(λ′/ω)(sαt)− (λ′/ω)(st)| = 0 .

If α � α0 and sαt ∈ Bi · ui, then |(λ′/ω)(sαt)− (λ′/ω)(st)| < 3δ, as in
1).

3) Suppose that st /∈ Ai · ui for any i ∈ I. Then, for each α � α0,
necessarily sαt /∈ Bi · ui for any i ∈ I, and so

|(λ′/ω)(sαt)− (λ′/ω)(st)| = 0 .

In each of the three cases, we have shown that

|(λ′/ω)(sαt)− (λ′/ω)(st)| < 3δ

for each t ∈ G and each α � α0. Hence ‖λ′ · δsα − λ′ · δs‖ → 0. It
follows from Proposition 7.15 that λ′ ∈ Xω, as claimed.

Similarly λ′′ ∈ Xω.
Since ω is diagonally bounded on S, there exists m > 0 such that

ω(s)ω(s−1) ≤ m (s ∈ S) .
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By Lemma 11.7, which applies because Φ ∈ Zt(X ′
ω), Φr belongs

to the strong-operator closure of the set ac {`s/ω(s) : s ∈ G}. Thus
there exist n ∈ N, numbers c1, . . . , cn ∈ C with

∑n
j=1 |cj| ≤ 1, and

s1, . . . , sn ∈ G, such that

(11.11)

{
‖T (λ′)− λ′ · Φ‖ < ε/m ,

‖T (λ′′)− λ′′ · Φ‖ < ε/m ,

where T =
∑n

j=1 cj`sj
/ω(sj) ∈ B(Xω). We may also suppose that

|〈µ, λ〉 − 〈Φ, λ〉| < ε,

where µ =
∑n

j=1 cj δ̃sj
.

There exists i ∈ I such that s1, . . . , sn ∈ Ki. Define

γ′(s) = ω(u−1
i )λ′(sui), γ′′(s) = ω(v−1

i )λ′′(svi) (s ∈ G).

Thus |γ′(s)| ∨ |γ′′(s)| ≤ ω(s) |f(s)| (s ∈ G) and

γ′(s) = γ′′(s) = ω(s)fi(s) (s ∈ Ki).

We make the following calculation:

|(Tλ′)(ui)− (λ′ · Φ)(ui)| =

∣∣∣∣∣
n∑

j=1

cjλ
′(sjui)/ω(sj)− 〈Φ, δui

· λ′〉

∣∣∣∣∣
=

∣∣∣∣∣
n∑

j=1

cjf(sj)/ω(u−1
i )− 〈Φ, γ′/ω(u−1

i )〉

∣∣∣∣∣
= |〈µ, λ〉 − 〈Φ, γ′〉| /ω(u−1

i ) .

But |(Tλ′)(ui)− (λ′ · Φ)(ui)| < εω(ui)/m by (11.11), and so

|〈µ, λ〉 − 〈Φ, γ′′〉| ≤ εω(u−1
i )ω(ui)/m ≤ ε .

However |〈Φ, λ〉| > 1 − ε and |〈µ, λ〉 − 〈Φ, λ〉| < ε, and hence we have
|〈Φ, γ′〉| > 1− 3ε. Similarly, we have |〈Φ, γ′′〉| > 1− 3ε. Since

supp γ′ ⊂
⋃
j∈I

{Aj · uju
−1
i } and supp γ′′ ⊂

⋃
k∈I

{Ak · uku
−1
i } ,

it follows from (11.9) that

(supp γ′) ∩ (supp γ′′) = supp (γ′ ·ω γ′′i ) ⊂ Ki .

Take h ∈ C00(G) to be such that h(t) = 1 (t ∈ V ∪Ki). Then

γ′ ·ω γ′′ ·ω (wh) = γ′ ·ω γ′′ .

Since Φ ∈ E◦ω, it follows that

(11.12)

{
|〈γ′ ·ω (ω − ωh),Φ〉| > 1− 3ε ,

|〈γ′′ ·ω (ω − ωh),Φ〉| > 1− 3ε .
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Let |Φ| be the absolute value of the functional Φ in X ′
ω, so that we have

‖ |Φ| ‖ ≤ 1. Then it follows from (11.12) that

(11.13)

{
|γ′ ·ω (ω − ωh)| , |Φ|〉 > 1− 3ε ,

〈|γ′′ ·ω (ω − ωh)| , |Φ|〉 > 1− 3ε .

(See [Ta, p. 140].) Since ε < 1/6, it follows that

(11.14) 〈|γ′ + γ′′| |ω − ωh| , |Φ|〉 > 2− 6ε > 1 .

Since (supp γ′)∩(supp γ′′) ⊂ Ki, since ω(s)−(ωh)(s) = 0 (s ∈ Ki),
and since |γ′(s)| ∨ |γ′′(s)| ≤ ω(s) |f(s)| (s ∈ G), we have

|γ′(s) + γ′′(s)| |ω(s)− (ωh)(s)| ≤ ω(s) (s ∈ G) .

Thus ‖ |γ′ + γ′′| |ω − ωh| ‖ ≤ 1, and so 〈|γ′ + γ′′| |ω − ωh| , |Φ|〉 ≤ 1, a
contradiction of (11.14).

Thus we have shown that Φ = 0 whenever Φ ∈ Zt(X ′
ω) ∩ E◦ω. The

result follows. �

The first corollary recovers Theorem 8.15.

Corollary 11.10. Let G be a group, and let ω be a weight on G
such that ω is diagonally bounded on S for some subset S of G with
|S| = |G|. Then ` 1(G,ω) is strongly Arens irregular.

Proof. It can be checked that, in the special case of the present
corollary, we do not need the condition that ω(s) ≥ 1 (s ∈ G). The
theorem shows that ` 1(G,ω) is left strongly Arens irregular.

The opposite algebra to ` 1(G,ω) is ` 1(H, ω̌), where H is the oppo-
site group to G, and this algebra is also strongly left Arens irregular
because ω̌ is diagonally bounded on S. Hence ` 1(G,ω) is right strongly
Arens irregular.

Thus ` 1(G,ω) is strongly Arens irregular. �

Let G be a locally compact group, and set A = L1(G). Then we
haveX = A′ ·A = LUC(G) and Zt(X

′) = M(G) by Theorem 11.9, and

also Z
(1)
t (A′′) = A. This shows that we can have Z

(1)
t (A′′)∩X ′ ( Zt(X

′)
in the circumstances of Proposition 5.9.

Example 11.11. There is an unbounded, symmetric weight ω on
R such that ω(0) = 1 and ω(t) > 1 (t ∈ R \ {0}), such that

lim inf
n→∞

ω(n) <∞ ,

but such that Zt(X ′
ω) = M(G,ω).
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Proof. Define η on Z as in Example 9.17, and extend η to R by
requiring it to be linear on each interval [n, n + 1] for n ∈ Z. Set
ω = exp η on R. Then ω satisfies the conditions of Theorem 11.9 (with
S =

{
2k : k ∈ N

}
), and so the result follows. �



CHAPTER 12

The Second Dual of L1(G,ω)

We now move our considerations from the discrete Beurling algebras
` 1(G,ω) to the algebras L1(G,ω), where the locally compact group G
is not discrete.

Throughout this chapter, G will be a locally compact group, and ω
will be a weight function on G; we shall concentrate on the case where
G is not discrete, and so L1(G,ω) is not unital. We shall always suppose
that ω(s) ≥ 1 (s ∈ G). The basic case that we have in mind is that
in which G = (R,+) and ω = ωα, where ωα(t) = (1 + |t|)α (t ∈ R) for
α > 0. We shall seek analogues of earlier results which were established
for the algebras ` 1(Z, ω); for comparison, we recall that the Beurling
algebras ` 1(Z, ωα) are Arens regular whenever α > 0.

First, we shall prove that L1(G,ω) is strongly Arens irregular when-
ever Zt(X ′

ω) = M(G,ω) (with a very minor condition on G). It follows
that L1(G,ω) is strongly Arens irregular whenever G contains a dis-
persed subset S such that ω is diagonally bounded on S.

Secondly, we shall consider weights that do not satisfy this latter
condition, and in particular we shall consider the weights ωα on R for
α > 0. There are many elements of Bωα which are not in the topological
centre Zt(Bωα), and one might guess that Aωα is indeed strongly Arens
irregular. However, we shall prove in Theorem 12.6 that this is not the
case by exhibiting some specific elements of Zt(Bωα) \ Aωα .

Finally, we shall identify the radical R2
ω of Bω = (L1(G,ω)′′, 2 ) in

certain cases. The main result is Theorem 12.9, which is an analogue of
Theorem 8.19. Subsequent results will elucidate the structure of R2

ω .
We shall use notation introduced in (7.16). Thus Eω is a closed

subspace of A′
ω, and Aω ⊂ E ′ω, but it is no longer true in general that

Aω = E ′ω; indeed, E ′ω = Mω as Banach spaces, and Aω = Mω only if
G is discrete. Thus, as we stated in Chapter 4, Mω is a dual Banach
algebra.

There are two general results that apply to the algebras Aω. First,
each has a bounded approximate identity, and so Bω = A′′

ω has a (non-
unique) mixed identity Φ0. By Proposition 7.17(i), A′

ω · Aω = Xω,
and thus, by Proposition 5.9, we can write (Bω, 2 ) as the semidirect

153
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product

(12.1) Bω = Φ02Bω n (A′
ω · Aω)◦ = X ′

ω n X ◦
ω .

Let Yω = (Φ0 · Bω) ∩ E◦ω. Then Yω is a closed subalgebra of (Bω, 2 ),
with Yω ⊕X ◦

ω = E◦ω, and it follows from (12.1), (7.24), and (7.25) that

(12.2) Bω = Aω ⊕ κω(Ms(G,ω))⊕ Yω ⊕X ◦
ω

as an ` 1-sum of Banach subspaces of Bω. Here

Aω and Aω ⊕ κω(Ms(G,ω))

are closed subalgebras and X ◦
ω and Yω ⊕X ◦

ω are closed ideals in Bω.

We next determine what can be said about Z
(1)
t (Bω) and Z

(2)
t (Bω)

for an arbitrary weight function ω.
Let ω be a weight function on a non-discrete, locally compact group

G. We consider the result that Aω is not Arens regular. This was first
proved (in a stronger form) by Craw and Young [CrY, Theorem 2]:
there is no weight function ω on G such that Aω is Arens regular. An
alternative approach is to use Theorem 2.22. Indeed, Aω always has
a bounded approximate identity and, by Theorem 7.1, Aω is weakly
sequentially complete as a Banach space; also Aω does not have an
identity, and so, by Theorem 2.22, Aω is not Arens regular. We seek
to go further than these results by determining conditions under which
Aω is strongly Arens irregular. Let Φ0 be a mixed identity in Bω. We
can conclude from Theorem 2.21 that:

• Z
(2)
t (Bω) ⊂ Φ02Bω = X ′

ω;

• Φ0 /∈ Z
(1)
t (Bω);

• Aω is not Arens regular.

For the proof of our main theorem, we require some preliminary
remarks.

Let E be a Banach space, and let (xk) be a sequence in E. The
series

∑∞
k=1 xk is weakly unconditionally Cauchy if

∑∞
k=1 |〈xk, λ〉| <∞

for each λ ∈ E ′. In this case, the set {
∑n

k=1 xk : n ∈ N} is weakly
bounded in E, and so, by the uniform boundedness theorem, it is ‖ · ‖-
bounded in E. Define

〈Λ, λ〉 =
∞∑

k=1

〈x, λ〉 (λ ∈ E ′) .

Then Λ ∈ E ′′ and Λ = limn→∞
∑n

k=1 xk in (E ′′, σ(E ′′, E ′)) ; we write
this as Λ =

∑∞
k=1 xk. Now suppose that the series

∑∞
k=1 λk is weakly
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unconditionally Cauchy in E ′, and set

Λ =
∞∑

k=1

λk ∈ E ′′′ and λ = Λ | E .

Then λ ∈ E ′ and λ = limn→∞
∑n

k=1 λk in (E ′, σ(E ′, E)) ; again we
write λ =

∑∞
k=1 λk.

A Banach space E has Property (X) if the following ‘normality’
condition holds: for each Λ ∈ E ′′ such that〈

Λ,
∞∑

k=1

λk

〉
=

∞∑
k=1

〈Λ, λk〉

whenever
∑∞

k=1 λk is weakly unconditionally Cauchy in E ′, it follows
that Λ ∈ E. The space E has Mazur’s Property if the following cond-
ition holds: for each Λ ∈ E ′′ such that limn→∞〈Λ, λn〉 = 〈Λ, λ〉 when-
ever limn→∞ λn = λ in (E ′

[1], σ(E ′, E)), it follows that Λ ∈ E.

The following results are taken from a clear and full account by
Neufang in [N2]. Let ω be a weight function on a locally compact
group G. Then Aω is the predual of the von Neumann algebra A′

ω, and
so Aω has Mazur’s property if and only if Aω has Property (X) [N2,
Theorem 3.16]; further, Aω has these two equivalent properties if and
only if κ(G) is a non-measurable cardinal. (We recall that it cannot
be proved in ZFC that measurable cardinals exist.) In particular, Aω

has these properties whenever the group G is σ-compact. Indeed, it is
remarked by Neufang in [N2] that the Banach space ` 1(Γ) has these
properties if and only if κ(Γ) = |Γ| is non-measurable, as proved by
Edgar [Ed].

Recall from Proposition 7.17(ii) that, in the above notation, we
have Aω · A′

ω = RUC(G, 1/ω).

Lemma 12.1. Let ω be a weight function on a locally compact group
G for which κ(G) is a non-measurable cardinal. Suppose that Φ ∈ Bω

has the following properties:

(i) f · Φ ∈ Aω (f ∈ Aω);

(ii) Φ · λ ∈ Aω · A′
ω (λ ∈ A′

ω).

Then Φ ∈ Aω.

Proof. Let
∑∞

k=1 λk be a weakly unconditionally Cauchy series in
A′

ω, and set µn =
∑n

k=1 λk (n ∈ N) and λ = limn µn, taking the limit
in (A′

ω, σ(A′
ω,Aω)).

By clause (ii), the sequence (Φ · µn : n ∈ N) is contained in the
space Aω · A′

ω. Indeed, (Φ · µn : n ∈ N) is a bounded, weakly Cauchy



156 12. THE SECOND DUAL OF L1(G, ω)

sequence in RUC(G, 1/ω), and so

((Φ · µn)(s) : n ∈ N) = (〈δs, Φ · µn〉 : n ∈ N)

is a Cauchy sequence in C for each s ∈ G; we set

µ(s) = lim
n

(Φ · µn)(s) (s ∈ G) .

Then µ/ω is a bounded, measurable function on G, and so µ ∈ A′
ω.

Let f ∈ Aω. Then

〈f,Φ · µn〉 = 〈f · Φ, µn〉 (n ∈ N) .

By clause (i), f · Φ ∈ Aω, and so

lim
n
〈f · Φ, µn〉 = 〈f · Φ, λ〉 = 〈f, Φ · λ〉 .

Thus Φ · µn → Φ · λ in (A′
ω, σ(A′

ω,Aω)). Further, for each f ∈ Aω,
we have

〈f, Φ · µn〉 =

∫
G

f(s)(Φ · µn)(s) dm(s) .

Since |(Φ · µn)(s)| ≤ Cω(s) (n ∈ N, s ∈ G) for some constant C, we
can apply the dominated convergence theorem to see that

〈f, Φ · λ〉 =

∫
G

f(s)µ(s) dm(s) = 〈f, µ〉 .

Thus Φ · λ = µ locally almost everywhere on G.
By clause (ii), µ = Φ · λ ∈ Aω · A′

ω, and so there exist f ∈ Aω

and ν ∈ A′
ω such that µ = f · ν. Let (eα) be a bounded approximate

identity for Aω. Then

lim
α
〈eα · Φ, λ〉 = lim

α
〈eα, f · ν〉 = lim

α
〈eα ? f, ν〉 = 〈f, ν〉 .

This fact is exactly that which is required to deduce that µ is continuous
locally almost everywhere at eG, in the sense that, for each ε > 0 and
each compact subset K of G, there is a neighbourhood V of eG and a
set N of measure 0 such that |µ(s)− µ(eG)| < ε for each s ∈ V ∩K \N .
This deduction is essentially that given in [IPyU, Lemma 2.3]; see also
[LPy1, Lemma 2.14]. It follows easily that µ(eG) = (Φ · λ)(eG). We
also have

(Φ · λ)(eG) = 〈f, ν〉 = 〈Φ0 · f, ν〉 = 〈Φ0, Φ · λ〉 = 〈Φ, λ〉 ,
where Φ0 is a mixed unit. We conclude that µ(eG) = 〈Φ, λ〉. In a
similar way, we have µn(eG) = (Φ · λn)(eG) (n ∈ N), and so we also
have the equation µn(eG) = 〈Φ, λn〉 (n ∈ N). Thus

〈Φ, λ〉 = lim
n
〈Φ, µn〉 =

∞∑
k=1

〈Φ, λk〉 .
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Since κ(G) is non-measurable, the Banach space Aω has Property
(X), and so it follows that Φ ∈ Aω, as required. �

Theorem 12.2. Let ω be a weight function on a locally compact
group G. Suppose that κ(G) is a non-measurable cardinal and that
Zt(X ′

ω) = Mω. Then L 1(G,ω) is left strongly Arens irregular.

Proof. Let Φ ∈ Z
(1)
t (Bω), and denote by Φ̃ the restriction of Φ to

Xω, so that Φ̃ ∈ Zt(X ′
ω).

Let f ∈ Aω. Then f · Φ̃ = f · Φ because Xω = A′
ω · Aω. Since

Zt(X ′
ω) = Mω by our hypothesis, we have f · Φ̃ ∈ Aω. Hence f · Φ ∈

Aω.
Now fix g ∈ Aω, and set Ψ = Φ · g. Then f · Ψ ∈ Aω (f ∈ Aω)

and Ψ · λ ∈ Aω · A′
ω (λ ∈ A′

ω). We have shown that Ψ satisfies the
two conditions on Φ in Lemma 12.1, and so Ψ ∈ Aω.

The analogue of Lemma 12.1 holds ‘on the other side’. We know
that Φ · g ∈ Aω (g ∈ Aω), and λ · Φ ∈ A′

ω · Aω (λ ∈ A′
ω) by

Proposition 2.20. Thus, by this analogue, Φ ∈ Aω.

We have shown that Z
(1)
t (Bω) ⊂ Aω, and soAω is left strongly Arens

regular. �

Theorem 12.3. Let ω be a weight function on a locally compact
group G. Suppose that ω is diagonally bounded on a dispersed subset of
G, and suppose that κ(G) is non-measurable. Then L1(G,ω) is strongly
Arens irregular.

Proof. It follows from Theorems 11.9 and 12.2 that Aω is left
strongly Arens irregular. By applying this result to the opposite al-
gebra, we see that Aω is right strongly Arens irregular. Thus Aω is
strongly Arens irregular. �

We remark that Neufang has now proved the above theorem for
each locally compact group in [N5] by a different method. In fact, a
direct modification of the proof of Theorem 11.9 also proves the above
theorem for each locally compact group G.

We now investigate the Beurling algebras L 1(G,ω) in the case where
G is not discrete and ω does not satisfy the ‘diagonal boundedness’
condition of Theorem 12.3. Our aim is to show that L 1(G,ω) need not
be strongly Arens irregular, and so some condition on ω is required in
Theorem 12.3. In fact, we shall take G to be (R,+), and work with
weights ω on R such that Ω 0-clusters locally uniformly on R×R (see
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Definition 3.7(ii)); for example, as we remarked, the weights ωα on R
have this property whenever α > 0.

We first construct a special sequence of functions on R.
Let (an) and (bn) be sequences in R+ such that

a1 < b1 < a2 < b2 < · · · ,

such that rn := bn − an → ∞ and an+1 − bn → ∞ as n → ∞. Set
Ln = [an, bn] (n ∈ N). Then (gn) is defined by

rngn = χLn (n ∈ N) .

We see that gn ∈ L1(R) and∫
R
gn(s) ds = ‖gn‖1 = 1 (n ∈ N) .

Let ω be a weight function on R, and set g̃n = gn/ω (n ∈ N). Then
(g̃n) is a sequence in Aω = L1(R, ω); by passing to a subnet, we obtain
a net (g̃β) which converges in Bω, say

lim
β
g̃β = Ψ0 ∈ Bω .

Note that Ψ0 ∈ E◦ω, but that Ψ0 /∈ X ◦
ω because 〈Ψ0, ω〉 = 1. For

each β, there exists nβ ∈ N such that g̃β = g̃nβ
; we set aβ = anβ

,
bβ = bnβ

, rβ = rnβ
, and Lβ = Lnβ

, so that limβ aβ = limβ rβ = ∞ and
Lim β Lβ = ∞.

Lemma 12.4. Let ω be a weight function on R, and let Φ ∈ Bω be
such that Φ = limα fα for a net (fα) of continuous functions on R with
‖fα‖ω ≤ 1 and supp fα ⊂ K for each α, where K is a fixed compact

subset of R. Then there is a constant z ∈ D such that

Φ2Ψ0 = Ψ02Φ = zΨ0 .

Proof. We may suppose that K = [−1, 1]. For each α, set

zα =

∫ 1

−1

fα(s) ds ,

so that zα ∈ D; clearly the net (zα) converges, say limα zα = z ∈ D.
Take λ ∈ L∞(R) with ‖λ‖∞ ≤ 1; we shall consider the number

xα,β := 〈fα ? g̃β, λω〉 ,

and compare it with the number

yβ := z〈g̃β, λω〉 .
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We see that, for each α and β, the functions fα ? g̃β and zαg̃β agree on
the interval [aβ +1, bβ−1] and that the support of fα ? g̃β is contained
in the interval [aβ − 1, bβ + 1]. Thus we have the estimate

|xα,β − yβ| ≤ |zα − z|+ 4C/rβ ,

where C = sup {ω(u) : |u| ≤ 1}. It follows that

lim
α

lim
β
|xα,β − yβ| = lim

β
lim

α
|xα,β − yβ| = 0 .

Thus

〈Φ2Ψ0 , λω〉 = lim
α

lim
β
xα,β = lim

β
yβ = z〈Ψ0, λω〉

and
〈Ψ02Φ, λω〉 = lim

β
lim

α
xα,β = lim

β
yβ = z〈Ψ0, λω〉 .

These equalities hold for each λ ∈ L∞(R), and so the result follows. �

Lemma 12.5. Let ω be a weight function on R such that Ω 0-clusters
locally uniformly on R×R, and let Φ ∈ Bω be such that Φ = limα fα/ω
for a net (fα) of continuous functions with compact support on R such
that ‖fα‖1 ≤ 1 for each α and such that Lim α supp fα = ∞. Then

Φ2Ψ0 = Ψ02Φ = 0 .

Proof. Set f̃α = fα/ω and Kα = supp fα for each α.
Take λ ∈ L∞(R) with ‖λ‖∞ ≤ 1. Then we have the estimate∣∣∣〈f̃α ? g̃β, λω〉

∣∣∣ ≤
∫

Kα

∫
Lβ

|fα(s)| |gβ(s)| |λ(s+ t)|Ω(s, t) ds dt

≤ sup
Kα×Lβ

Ω ,

and so

lim
α

lim
β

∣∣∣〈f̃α ? g̃β, λω〉
∣∣∣ = lim

β
lim

α

∣∣∣〈f̃α ? g̃β, λω〉
∣∣∣ = 0

because Lim αKα = Lim β Lβ = ∞ and Ω 0-clusters locally uniformly
on R× R. Thus

〈Φ2Ψ0, λω〉 = 〈Ψ02Φ, λω〉 = 0 .

These equalities hold for each λ ∈ L∞(R), and so Φ2Ψ0 = Ψ02Φ = 0,
as required. �

Theorem 12.6. Let ω be a weight function on R such that Ω 0-
clusters locally uniformly on R × R. Then the above element Ψ0 of
Bω belongs to the centre Z(Bω), and so Aω = L1(R, ω) is not strongly
Arens irregular. Further, Ψ0 ∈ E◦ω \ X ◦

ω .
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Proof. Let Φ ∈ Bω with ‖Φ‖ = 1. Then there is a net (fα) of
continuous functions with compact support such that ‖fα‖ω = 1 and
limα fα = Φ. For convenience, we suppose that supp fα ⊂ R+ for each
α, and work on R+.

Fix ε > 0. We shall show that ‖X‖ < 4ε, where

X = Φ2Ψ0 −Ψ02Φ .

This is sufficient to show that Ψ0 ∈ Z(Bω), from which the result
follows.

Let θ ∈ [0, 1). For each α, consider the set{
s ∈ R+ :

∫ s

0

|fα(t)|ω(t) dt = θ

}
.

This set is clearly closed in R+ and non-empty; we specify s(α, θ) to be
its minimum. Note that, for each α, s(α, θ) is an increasing function
of θ. Define

c(θ) = sup
α
s(α, θ) ∈ R+ ∪ {∞} .

Then c(θ) is an increasing function of θ, and so

{θ ∈ [0, 1) : c(θ) <∞}
is a subinterval of [0, 1); it is non-empty because c(0) = 0. Let θ0 be
the supremum of this set, so that θ0 ∈ [0, 1].

We first suppose that θ0 ∈ (0, 1) and that [θ0 − ε, θ0 + ε] ⊂ (0, 1).
Set c = c(θ0 − ε), and choose λ ∈ C(R+) such that

λ(R+) ⊂ I, λ(s) = 1 (0 ≤ s ≤ c), and supp λ ⊂ [0, c+ 1] .

Then set `α = fαλ for each α, so that

(12.3) θ0 − ε ≤ ‖`α‖ω ≤ 1 for each α .

The set {s(α, θ0 + ε)} is unbounded, and so, by passing to a subnet
of the original net (fα), we may suppose that limα tα = ∞, where
tα = s(α, θ0 + ε). For each α, choose ρα ∈ C(R+) such that

ρα(R+) ⊂ I, ρα(s) = 1 (s ≥ tα), and supp ρα ⊂ (tα − 1,∞) .

Then set kα = fαρα for each α, so that

(12.4) θ0 + ε ≤ ‖kα‖ω ≤ 1 for each α .

By passing to a subnet of the original net (fα), we may suppose
that (`α) and (kα) both converge in Bω, say to Γ and ∆, respectively.
By Lemma 12.4 (with K = [0, c + 1]), we have Γ2Ψ0 = Ψ02Γ,
and, by Lemma 12.5, we have ∆2Ψ0 = Ψ02∆ = 0, noting that
Lim α supp kα = ∞ because supp ρα ⊂ [tα − 1,∞).
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Take α such that tα > c+2. Then it follows from (12.3) and (12.4)
that

‖fα − `α − kα‖ω ≤
∫ tα

c

|fα(s)|ω(s) ds ≤ 2ε ,

and so ‖Φ− Γ−∆‖ ≤ 2ε.
It now follows that X = (Φ−Γ−∆)2Ψ0−Ψ02 (Φ−Γ−∆), and

so ‖X‖ ≤ 4ε, as required.
It remains to consider the cases where θ0 = 0 or θ0 = 1. Suppose

that θ0 = 0. Then the above argument applies without the need to
introduce the function λ. Suppose that θ0 = 1. If there exists c ∈ R+

such that ∫ c

0

|fα(t)|ω(t) dt = 1

for each sufficiently large α, then Lemma 12.4 applies directly; if there
is no such constant c, the above argument applies without the need to
introduce the functions ρα.

This concludes the proof in all cases. �

We have shown that the algebras Aω of the above theorem are
neither Arens regular nor strongly Arens irregular, but we have no
characterization of Z(Bω).

We now investigate the radicals of our second dual algebras.

Proposition 12.7. Let ω be a weight function on a locally compact
group G, and suppose that Mω is semisimple. Then:

(i) R2
ω ⊂ E◦ω;

(ii) X ◦
ω is a closed, left-annihilator ideal of (Bω, 2 ), and X ◦

ω ⊂ R2
ω ;

(iii) for each mixed identity Φ0 of Bω, Φ0 + X ◦
ω is the identity of

(X ′
ω, 2 ).

Proof. (i) This is immediate.

(ii) The result was discussed in Chapter 5.

(iii) There is a bounded approximate identity (eα) in Aω such that
limα eα = Φ0. Take Φ ∈ Bω and λ ∈ Xω. Then

〈Φ02Φ, λ〉 = lim
α
〈Φ, λ · eα〉 = 〈Φ, λ〉 ,

and so Φ02Φ− Φ ∈ X ◦
ω . Certainly Φ2Φ0 − Φ = 0. Since (X ′

ω, 2 ) is
the quotient of (Bω, 2 ) by the closed ideal X ◦

ω , the result follows. �

We now seek to analyze the structure of Bω in the case where Ω
0-clusters strongly on G×G.
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Lemma 12.8. Suppose that Ω 0-clusters strongly on G×G, and take
Φ ∈ E◦ω and λ ∈ Xω. Then Φ · λ ∈ Eω and λ · Φ ∈ Eω.

Proof. We may suppose that ‖Φ‖ = ‖λ‖ = 1.
Fix ε > 0, and set K = Gε in the notation which follows Definition

3.7; by hypothesis K is a compact subset of G. Now take s ∈ G \K.
Then Gε,s is compact, and so there is a function fs ∈ C00(G) such that
fs(Gε,s) = {1} and fs(G) ⊂ I. Define

gs = (1− fs)(λ · δs) .
Then gs ∈ Xω because Xω is translation-invariant and fs ∈ C00(G).
Also,

‖gs‖ = sup

{
|gs(t)|
ω(t)

: t ∈ G
}

≤ sup

{
|λ(st)|
ω(st)

· ω(st)

ω(t)
: t ∈ G \Gε,s

}
≤ εω(s)

because Ω(s, t) < ε whenever t ∈ G \ Gε,s. Clearly we have

gs − λ · δs ∈ C00(G) ⊂ Eω ,

and so 〈Φ, gs〉 = 〈Φ, λ · δs〉. Hence

|(Φ · λ)(s)| = |〈Φ, λ · δs〉| = |〈Φ, gs〉| ≤ εω(s) .

It follows that

{s ∈ G : |(Φ · λ)(s)| /ω(s) ≥ ε} ⊂ K ,

and so Φ · λ ∈ Eω. Similarly, λ · Φ ∈ Eω. �

We can now give our analogue of Theorem 8.19. There is an im-
portant difference: the previous condition ‘R22

ω = {0}’ now becomes
‘R23

ω = {0}’. We shall see in Theorem 12.12 that usually it is no longer
the case that R22

ω = {0}.

Theorem 12.9. Let ω be a weight function on a locally compact
group G, and suppose that ω(s) ≥ 1 (s ∈ G) and that Mω is semisim-
ple. Suppose that Ω 0-clusters strongly on G×G. Then:

(i) R2
ω = ker Πω = E◦ω;

(ii) R22
ω ⊂ R22

ω ⊂ X ◦
ω ⊂ E◦ω;

(iii) R23
ω = {0};

(iv) (Bω, 2 ) has the strong Wedderburn decomposition

(Bω, 2 ) = κω(Mω) nR2

ω .



12. THE SECOND DUAL OF L1(G, ω) 163

Proof. By Proposition 12.7, we have R2
ω ⊂ ker Πω = E◦ω.

Let Φ,Ψ ∈ E◦ω, and take λ ∈ Xω. By Lemma 12.8, Ψ · λ ∈ Eω, and

so 〈Φ2Ψ, λ〉 = 0. Thus Φ2Ψ ∈ X ◦
ω . This shows that (E◦ω)22 ⊂ X ◦

ω .
By Proposition 12.7, X ◦

ω is a left-annihilator ideal of (Bω, 2 ), and so
Bω 2 (E◦ω)22 = {0}. In particular (E◦ω)23 = {0}, and so E◦ω is a nilpotent
ideal in (Bω, 2 ). Thus E◦ω ⊂ R2

ω , and this gives (i), and hence (ii) and
(iii). Clause (iv) now follows from (7.25). �

We now investigate when equality can occur in each of the inclusions
of clause (ii) of the above theorem.

Theorem 12.10. Let ω be a weight function on a locally compact
group G, and suppose that ω(s) ≥ 1 (s ∈ G) and that Mω is semi-
simple. Suppose that Ω 0-clusters strongly on G×G, and suppose that
G is not discrete. Then R22

ω has infinite codimension in X ◦
ω .

Proof. It is sufficient to find a sequence (λn) in A′
ω such that

〈Φ2Ψ, λn〉 = 0 whenever Φ,Ψ ∈ E◦ω and n ∈ N and such that the set
{λn + Xω : n ∈ N} is linearly independent in A′

ω/Xω.
The group G contains a pairwise disjoint sequence (Kn) of compact

subsets of G such that each set Kn is not open. Set λn = χKn (n ∈ N).
Then {λn + Xω : n ∈ N} is linearly independent in A′

ω/Xω.
Let n ∈ N, and take Φ,Ψ ∈ E◦ω. We have

〈f,Ψ · λn〉 = 〈Ψ, λn · f〉 = 0 (f ∈ Aω)

by Proposition 7.17(iv), and so Ψ · λn = 0. Hence 〈Φ2Ψ, λn〉 = 0.
Thus (λn) has the required properties. �

We now wish to show that usually R22
ω is infinite-dimensional; we

shall require some mild extra conditions on G and ω for our proof. A
function λ on G has period t (where t ∈ G) if λ(st) = λ(s) (s ∈ G).

Lemma 12.11. Let ω be a weight function on a locally compact group
G such that ω is almost left-invariant, and let λ ∈ L∞(G) have period
t for some t ∈ G such that Lim n→∞ tn = ∞. Then

lim
n→∞

(λω · f)(tn)/ω(tn) = 〈f, λ〉 (f ∈ Aω) .

Proof. For each n ∈ N, define

Fn(s) = λ(stn)ω(stn)/ω(tn) (s ∈ G) .

We note that

lim
n→∞

|Fn(s)− λ(s)| = lim
n→∞

|λ(s)|
∣∣∣∣ω(stn)

ω(tn)
− 1

∣∣∣∣ = 0 (s ∈ G)
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because ω is almost left-invariant and Lim n→∞ tn = ∞. Let f ∈ Aω.
Then we have |f(s)Fn(s)| ≤ ‖λ‖∞ |f(s)|ω(s) (s ∈ G, n ∈ N) and∫

G

|f(s)|ω(s) dm(s) = ‖f‖ω <∞ ,

and so, by the dominated convergence theorem,

(λω · f)(tn)

ω(tn)
=

∫
G

f(s)Fn(s) dm(s) →
∫

G

f(s)λ(s) dm(s) = 〈f, λ〉 .

This is the required result. �

We now come to the ‘mild extra condition’ on the locally compact
group G. We require that G contains a compact set K and an element
t such that:

(i) K is a symmetric neighbourhood of eG, and K is not open;

(ii) Lim n→∞ tn = ∞ and tmK ∩ tnK = ∅ whenever m,n ∈ Z with
m 6= n.

Set U = intK, and take s0 ∈ K ∩ (G \K), the frontier of K in G.

We claim that there is now a sequence (sm) in U such that:

(iii) s1 = eG and sm+1s0 ∈ s1U ∩ · · · ∩ smU for each m ∈ N.

Indeed take a sequence (rj) in U such that r1 = eG and rj → s−1
0 . We

have eG ∈ rjU for each j ∈ N. Set s1 = r1. Since rjs0 → eG, we can
inductively choose a subsequence (sm) of (rj) such that

sm+1s0 ∈ s1U ∩ · · · ∩ smU

for each m ∈ N. This sequence (sm) satisfies (iii).
Let G satisfy the above conditions. For n ∈ Z, we take χn to be

the characteristic function of tnK, and then, for each m ∈ N, we define

γm(s) =
∑
n∈Z

χn(s−1
m s) (s ∈ G) .

Clearly each function γm belongs to L∞(G) with ‖γm‖∞ = 1, and γm

has period t. Further, we have γm(sms0) = 1, whilst γm takes the value
0 in each neighbourhood of sms0; on the other hand, for each m ≥ 2,
there is a neighbourhood U of sms0 such that each of the functions
γ1, . . . , γm−1 is continuous on U .

Let ω be a weight function on G, and define

H =
{
λ ∈ Xω : lim

n→∞
λ(tn)/ω(tn) exists

}
.

Clearly H is a closed linear subspace of Xω ⊂ A′
ω and Eω ⊂ H. Set

〈Λ, λ〉 = lim
n→∞

λ(tn)/ω(tn) (λ ∈ H) .
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Then Λ ∈ H ′ with ‖Λ‖ = 1; clearly Λ | Eω = 0.
Next, for each m ∈ N, define

Hm = H + lin {γ1, . . . , γm} .
Then Hm is also a closed linear subspace of A′

ω, and there is a constant
c > 0 such that ‖γm+1 − λ‖ ≥ c for each λ ∈ Hm. It follows that, for
each m ∈ N, there exists Φm ∈ Bω such that

〈Φm, λ〉 = 〈Λ, λ〉 (λ ∈ H), 〈Φm, γj〉 = 0 (j ∈ Nm−1) ,

and 〈Φm, γm〉 = 1. We have Φm ∈ E◦ω.
A version of the following theorem (in the case where G = R) is

given in [La, Proposition 2.2.22].

Theorem 12.12. Let G be a locally compact group satisfying the
above conditions, and let ω be an almost left-invariant weight on G.
Then R22

ω is infinite-dimensional.

Proof. We use the notations given above.
Fix m ∈ N. For each j ∈ Nm, the function γjω belongs to A′

ω. Let
f ∈ Aω. Then γjω · f belongs to Xω by Proposition 7.17(i), and

lim
n→∞

(γjω · f)(tn)/ω(tn) = 〈f, γj〉

by Lemma 12.11. Thus γjω · f ∈ H, and

〈f, Φm · γjω〉 = 〈Φm, γjω · f〉 = 〈Λ, γjω · f〉 = 〈f, γj〉 .
It follows that Φm · γjω = γj (j ∈ N), and hence that

〈Φm2Φm, γjω〉 = 〈Φm, γj〉 = δj,m (j ∈ Nm) .

This implies that the set {Φ12Φ1, . . . ,Φm2Φm} is linearly indepen-
dent in R22

ω .
The result follows. �

For example, set G = R, and consider ωα, where α > 0. Then G
and ωα satisfy all the conditions in both Theorem 12.9 and Theorem
12.12, and so Rωα = E◦ωα

and R22
ωα

are each infinite-dimensional.

Theorem 12.13. Let G be a σ-compact, locally compact group
which is neither discrete nor compact, and let ω be a weight function
on G. Then X ◦

ω has infinite codimension in E◦ω.

Proof. Let K be a compact neighbourhood of eG. Then there is
a sequence (sm) of distinct points contained in intK such that the set
{sm : m ∈ N} is discrete in the relative topology. For each j ∈ N, take
fj ∈ C(G) such that supp fj ⊂ intK and fj(sn) = δj,n (n ∈ N).
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Since the spaceG is σ-compact and not compact, there is a sequence
(tn) in G such that Lim n→∞ tn = ∞; we may suppose that t1 = eG and
that tmK ∩ tnK = ∅ whenever m,n ∈ N with m 6= n. For each j ∈ N,
define

λj(s) = fj(st
−1
n ) (s ∈ G) .

Then λj ∈ LUC(G) and λjω ∈ Xω. Note that

λj(smtn) = δj,m (j,m, n ∈ N) .

Now fix m ∈ N, and define

Hm = {λ ∈ CB(G, 1/ω) : lim
n→∞

λ(smtn)/ω(smtn) exists } .

Clearly Hm is a closed linear subspace of A′
ω and Eω ⊂ Hm. Set

〈Λm, λ〉 = lim
n→∞

λ(smtn)/ω(smtn) (λ ∈ Hm) .

Then Λm ∈ H ′
m with ‖Λm‖ = 1; clearly Λm | Eω = 0. There exists

Φm ∈ Bω such that Φm | Hm = Λm, and certainly Φm ∈ E◦ω.
For each j,m ∈ N, we have 〈Φm, λjω〉 = δj,m, and so it follows that

the set {Φm +X ◦
ω : m ∈ N} is linearly independent in the space E◦ω/X ◦

ω .
The result follows. �

We summarize our recent results in the following theorem, which
applies in the special case where the group G is the real line R. The
result is essentially [La, Theorem 2.2.29].

Theorem 12.14. Let ω be an almost invariant weight function on
R such that 1/ω ∈ C0(R). Then (Bω, 2 ) = Mω n E◦ω and

{0} = R23
ω ( R22

ω ⊂ R22
ω ( X ◦

ω ( E◦ω = Rω .

Further:

(i) R22
ω is infinite-dimensional;

(ii) R22
ω has infinite codimension in X ◦

ω ;

(iii) X ◦
ω has infinite codimension in E◦ω.

Proof. This follows from equation (7.25) and Theorems 12.9, 12.10,
12.12, and 12.13. �

We do not know whether or not the spaceR22
ω in the above theorem

is necessarily closed.



CHAPTER 13

Derivations into Second Duals

Our aim in the present chapter is to investigate when the Beurling alge-
bras ` 1(G,ω) and L 1(G,ω) are 2-weakly amenable (see Definition 1.5).
Our techniques apply only to commutative algebras, and so throughout
this section we shall consider abelian groups G (and we shall write the
group operation additively). The theorems proved here are develop-
ments of those in [La, Chapter 3].

We shall prove, for example, that the commutative Banach algebras
` 1(ωα) = ` 1(Z, ωα) and L 1(R, ωα) are 2-weakly amenable if and only
if α < 1.

We shall use the following basic formula. Let A be a commutative,
unital algebra, let E be a unital A-module, let D : A → E be a
derivation, and let a ∈ InvA. Then

(13.1) D(an) = nan−1 · Da (n ∈ Z) ,

and so

(13.2) Da =
1

n
a1−n · D(an) (n ∈ Z) .

We begin with the case where ω is a weight on a group G. We
continue to use the notations Aω = ` 1(G,ω), A′ω, Eω, and Bω specified
in (8.1).

Theorem 13.1. Let G be an abelian group, and let ω be a weight
on G such that ω is almost invariant and infn∈N ω(nt)/n = 0 for each
t ∈ G. Then Aω is 2-weakly amenable.

Proof. Let D : Aω → Bω be a continuous derivation; we may
suppose that ‖D‖ ≤ 1.

Let πω : Bω → Aω be the canonical projection, as in (8.2). Then
the map πω ◦ D : Aω → Aω is a continuous derivation; also Aω is a
semisimple Banach algebra, and so, by the Singer–Wermer theorem [D,
Theorem 2.7.20], πω ◦ D = 0. Thus D(Aω) ⊂ kerπω = E◦

ω.
To prove that D = 0, it suffices to show that 〈D(δt), λ〉 = 0 for

each t ∈ G and λ ∈ A′ω. Fix t ∈ G and λ ∈ A′ω.

167
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Let n ∈ N. We define

Hn = {s ∈ G : ω(s+ (1− n)t) ≥ 2ω(s)} .
Since ω is almost invariant, the set Hn is finite. Define

σn(s) =

{
0 (s ∈ Hn) ,

(δ(1−n)t · λ)(s) (s ∈ G \Hn) .

We have

sup
s∈G

|σn(s)|
ω(s)

= sup
s∈G\Hn

{
|λ(s+ (1− n)t)|
ω(s+ (1− n)t)

· ω(s+ (1− n)t)

ω(s)

}
≤ 2 ‖λ‖ ,

and so σn ∈ A′ω with ‖σn‖ ≤ 2 ‖λ‖. Since σn − δ(1−n)t · λ ∈ Eω and
D(δnt) ∈ E◦

ω, we have

〈δ(1−n)t · D(δnt), λ〉 = 〈D(δnt), δ(1−n)t · λ〉 = 〈D(δnt), σn〉,
and so it follows from (13.2) that

|〈D(δt), λ〉| ≤
1

n
|〈D(δnt), σn〉| ≤ 2 ‖λ‖ω(nt)/n .

Since infn∈N ω(nt)/n = 0, we see that 〈D(δt), λ〉 = 0. Thus D = 0, as
required. �

Let ω be a weight on Z. Then the method of the above proof shows
that ` 1(ω) is 2-weakly amenable whenever the following condition on
ω is satisfied: there is an infinite subset S of Z+ and a function

n 7→ αn, S → R+ \ {0} ,
such that infn∈S αnω(n)/n = 0 and the set

{k ∈ Z : ω(k + n− 1) ≥ αnω(k)}
is finite for each n ∈ S.

For example, let ω̃α = ωαω, where ω is the weight specified in
Example 9.17. Then ω̃α satisfies the above conditions whenever α < 1
(taking

S = {2j + 1 : j ∈ N}) ,
and so ` 1(ω̃α) is 2-weakly amenable whenever α < 1, even though ω̃α

is not almost invariant. Again, let ω be a weight specified in Example
9.12, with ϕ(n) = log(1 + n) (n ∈ Z+). Then ` 1(ωαω) is 2-weakly
amenable whenever α < 1.

In fact, we conjecture that ` 1(G,ω) is 2-weakly amenable whenever
ω is a weight on a group G such that infn∈N ω(nt)/n = 0 (t ∈ G).
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The following result shows that the condition on the rate of growth
of ω(nt) is necessary.

Theorem 13.2. Let α ∈ R+. Then the Beurling algebra ` 1(ωα) is
2-weakly amenable if and only if α < 1.

Proof. First suppose that α < 1. Then the weight ωα on Z satis-
fies the conditions on ω which were specified in Theorem 13.1, and so
` 1(ωα) is 2-weakly amenable.

Now suppose that α ≥ 1, so that the Fourier transform f̂ of a
function f ∈ ` 1(ωα) is a continuously differentiable function on T. The
weight ωα is almost invariant, and so, by Theorem 7.38, there is an
invariant mean, say M, on ` 1(ωα)′, where we note that Lt(R) 6= ∅. Let
f =

∑
n∈Z αnδn ∈ ` 1(ωα). Then

f · M =
∑
n∈Z

αnδn · M =

(∑
n∈Z

αn

)
M = f̂(1)M

because δn · M = M for each n ∈ Z. Define

D : f 7→ f̂ ′(1)M, ` 1(ωα) → ` 1(ωα)′′ .

Clearly D is a non-zero, continuous linear map. Let f, g ∈ ` 1(ωα).
Then we have

D(f ? g) = (f̂ ? g)′(1)M = f̂ ′(1)ĝ(1)M + f̂(1)ĝ ′(1)M

= f̂ ′(1)g · M + ĝ ′(1)f · M = D(f) · g + f · Dg ,
and so D is a derivation.

Thus ` 1(ωα) is not 2-weakly amenable. �

It might be thought, on consideration of the above theorem, that
there will be a non-zero, continuous derivation from ` 1(ω) into ` 1(ω)′′

whenever {f̂ : f ∈ ` 1(ω)} consists of continuously differentiable func-
tions on T. However, the next result shows that this is not the case.

Theorem 13.3. Let ω(n) = exp(|n|) (n ∈ Z). Then f̂ is analytic
on the annulus {z ∈ C : 1/e < |z| < e} for each f ∈ ` 1(ω). However
` 1(ω) is 2-weakly amenable.

Proof. As we remarked in Chapter 7, f̂ ∈ A(X) for each function

f ∈ ` 1(ω), where we set X = {z ∈ C : 1/e ≤ |z| ≤ e}, and so f̂ is
analytic on the specified annulus.

Set Aω = ` 1(ω), so that

Bω = A′′ω = Aω ⊕ E◦+
ω ⊕ E◦−

ω ,
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as in (8.9).
Let D : Aω → Bω be a continuous derivation, and set D(δ1) = Λ.

Then Λ ∈ E◦
ω and Λ = Λ+ + Λ−, where Λ+ ∈ E◦+

ω and Λ− ∈ E◦−
ω .

For each k ∈ Z+, the map f 7→ δk ? f is a linear isomorphism on
Aω(Z+) and

‖δk ? f‖ = ω(k) ‖f‖ (f ∈ Aω(Z+)) .

Thus the map Φ 7→ δk · Φ is a linear isomorphism on Bω(Z+) with

‖δk · Φ‖ = ω(k) ‖Φ‖ (Φ ∈ Bω(Z+)) .

Now let n ∈ N. Then it follows from (13.1) that

‖D‖ω(n) ≥ ‖δn−1 · Λ‖ ≥
∥∥δn−1 · Λ+

∥∥ = nω(n− 1)
∥∥Λ+

∥∥ .
Thus ‖Λ+‖ ≤ e ‖D‖ /n. This is true for each n ∈ N, and so Λ+ = 0.
Similarly, Λ− = 0, and so D(δ1) = Λ = 0. By the same argument, we
have D(δ−1) = 0, and so D = 0.

Thus Aω is 2-weakly amenable. �

We now turn to the case of a general locally compact abelian group
G. Let ω be a weight function on G. We again use the notations
Aω = L 1(G,ω), A′

ω, Bω, Mω, and Xω from (7.16).

Proposition 13.4. Let ω be a weight function on a locally compact
abelian group G. Let D : Aω → Bω be a continuous derivation. Then

there is a continuous derivation D̃ : Mω → Bω such that D̃ | Aω = D.

Proof. By Theorem 7.14, we can identify the multiplier algebra of
Aω with Mω. The result is now a special case of Proposition 1.12(ii).

�

We next define a locally complex topology on the space Mω. For
each f ∈ Aω and λ ∈ Xω, define seminorms ‖ · ‖f and ‖ · ‖λ, respec-
tively, by the formulae:

‖µ‖f = ‖µ ? f‖ , ‖µ‖λ = ‖µ · λ‖ (µ ∈Mω) .

The τ -topology on Mω is the topology determined by the family{
‖ · ‖f , ‖ · ‖λ : f ∈ Aω, λ ∈ Xω

}
of seminorms. Clearly (Mω, τ) is a locally convex space, and τ is
stronger than the topology ‖ · ‖.
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Lemma 13.5. Let ω be a weight function on a locally compact abelian
group G, and let µ ∈Mω. Then:

(i) there is a net (µα) in the subspace lin {δs : s ∈ G} such that

µα
τ→ µ and ‖µα‖ ≤ ‖µ‖ for each α;

(ii) there is a net (µα) in Aω such that µα
τ→ µ and ‖µα‖ ≤ ‖µ‖

for each α.

Proof. This is similar to a standard proof given in [D, Proposition
3.3.41], and we just sketch the method. Set L = lin {δs : s ∈ G}.

First take χK to be the characteristic function of a compact, sym-
metric neighbourhood K of eG in G. A routine calculation shows that
there is an element ν of L with ‖ν‖ ≤ ‖χK‖ in each prescribed τ -

neighbourhood of χK , and so χK ∈ L(τ)
.

The space L
(τ) ∩ Aω is a translation-invariant, ‖ · ‖-closed linear

subspace of Aω, and so it is a closed ideal in Aω. Since Aω has a

bounded approximate identity, say (eα), the space L
(τ)∩Aω is a closed

ideal in Mω, and this ideal contains (eα), and hence the net (µ ? eα).
For each f ∈ Aω and each α, we have

‖(µ ? eα) ? f − µ ? f‖ ≤ ‖µ‖ ‖eα ? f − f‖ ,

and, for each λ ∈ Xω and each α, we have

‖(µ ? eα) · λ− µ · λ‖ ≤ ‖µ‖ ‖eα · λ− λ‖ .

Since (eα) is also a bounded approximate identity for the essential
module Xω, it follows that τ − limα µ ? eα = µ.

The result follows. �

Lemma 13.6. Let ω be a weight function on a locally compact abelian
group G. Let D : Mω → Bω be a continuous derivation. Suppose that
µ ∈ Mω and that (µα) is a bounded net in Mω with τ − limα µα = µ.
Then

lim
α
〈D(µα), λ〉 = 〈Dµ, λ〉 (λ ∈ Xω) .

Proof. We may suppose that ‖µ‖ ≤ 1 and that there is a constant
C > 0 such that ‖µα‖ ≤ C for each α. We may also suppose that
‖D‖ ≤ 1.

Take λ ∈ Xω with ‖λ‖ ≤ 1, and take ε > 0. Since Aω has an
approximate identity in (Aω)[1] and Xω is an essential module, there
exists f ∈ Aω with

‖f · λ− λ‖ < ε and ‖f‖ ≤ 1 .
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Since τ − limα µα = µ, there exists α0 such that

‖f ? µα − f ? µ‖ < ε and ‖µα · λ− µ · λ‖ < ε

whenever α � α0. Set να = µα − µ, so that ‖να‖ ≤ C + 1 for each α.
For each α � α0, we have

|〈D(να), λ〉| ≤ |D(να), λ− f · λ〉|+ |〈D(να) ? f, λ〉|
≤ (C + 1)ε+ |〈D(να ? f), λ〉|+ |〈Df, να · λ〉|
≤ (C + 1)ε+ ε+ ε = (C + 3)ε .

Thus limα〈Dνα, λ〉 = 0, as required. �

Theorem 13.7. Let G be a locally compact abelian group, let ω be
an almost invariant weight function on G such that ω(s) ≥ 1 (s ∈ G)
and ω(nt) = o(n) as n→∞ for each t ∈ G, and let D : Mω → Bω be
a continuous derivation. Then:

(i) D(δt) = 0 (t ∈ G) ;

(ii) D(µ) ∈ X ◦
ω (µ ∈Mω).

Proof. As in (7.25), we have the decomposition Bω = Mω n E◦ω,
and the canonical projection Πω : Bω → Mω is a continuous epimor-
phism. Since the commutative Banach algebra Mω is semisimple, it
again follows from the Singer–Wermer theorem that D(Aω) ⊂ E◦ω. We
may suppose that ‖D‖ ≤ 1.

To prove that D(δt) = 0 (t ∈ G), we follow the argument given in
the proof of Theorem 13.1 with λ ∈ A′

ω; now, for each n ∈ N, Hn is
a compact subset of G and σn ∈ A′

ω with ‖σn‖ ≤ 2 ‖λ‖ because ω is
almost invariant. As before, 〈D(δt), λ〉 = 0 for each λ ∈ A′

ω, and so
D(δt) = 0. This gives (i).

Let µ ∈Mω. By Lemma 13.5(i), there is a net (µα) in the subspace

lin{δs : s ∈ G} such that µα
τ→ µ and ‖µα‖ ≤ ‖µ‖ for each α. We have

shown that D(µα) = 0 for each α. By Lemma 13.6,

〈Dµ, λ〉 = 0 (λ ∈ Xω) ,

and so Dµ ∈ X ◦
ω . This gives (ii). �

Theorem 13.8. Let G be a locally compact abelian group, and let ω
be an almost invariant weight function on G such that ω(s) ≥ 1 (s ∈ G)
and ω(nt) = o(n) as n→∞ for each t ∈ G. Then L 1(G,ω) is 2-weakly
amenable.
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Proof. The weight function ω on G satisfies the conditions in
Theorem 13.7.

Let D : Aω → Bω be a continuous derivation. By Proposition 13.4,

there is a continuous derivation D̃ : Mω → Bω such that D̃ | Aω = D.

By Theorem 13.7(ii), D̃(µ) ∈ X ◦
ω (µ ∈Mω); in particular, we have

D(f) ∈ X ◦
ω (f ∈ Aω) .

Now take f ∈ Aω. Since Aω has a bounded approximate identity,
there exist g, h ∈ Aω such that f = g ? h, and then

Df = g · Dh+Dg · h ∈ Aω · X ◦
ω .

However, by Proposition 12.7, X ◦
ω is a left-annihilator ideal of Bω, and

so Aω · X ◦
ω = {0}. Thus D = 0, and so Aω is 2-weakly amenable. �

Theorem 13.9. Let α ∈ R+. Then the Beurling algebra L 1(R, ωα)
is 2-weakly amenable if and only if α < 1.

Proof. First suppose that α < 1. Then ωα satisfies the conditions
on ω in Theorem 13.8, and so L 1(R, ωα) is 2-weakly amenable.

Now suppose that α ≥ 1. Again by Theorem 7.38, there is an
invariant mean, say M, on A′

ω. For each f ∈ Aω, the Fourier transform

f̂ of f is a continuously differentiable function on R: define

D : f 7→ f̂ ′(0)M, Aωα → Bωα .

Then it is clear that D is a non-zero, continuous derivation, and so Aωα

is not 2-weakly amenable. �





CHAPTER 14

Open Questions

1. Let E be a Banach space. Is (B(E)′′, 2 ) semisimple for sufficiently
‘nice’ Banach spaces E? (This is true when E is a Hilbert space.) In
particular, is (B(` p(N))′′, 2 ) semisimple whenever 1 < p <∞?

[Added in August 2004: This question has now been essentially resolved
by Daws and Read [DaRe].]

2. Let ω be a weight function on a locally compact groupG. Is L 1(G,ω)
always semisimple? In particular, is this true whenever G is a discrete
group?

3. Let G be a locally compact group, and let ω be a weight function on
G. Set Aω = L 1(G,ω). Can the radicals of (A′′ω, 2 ) and (A′′ω, 3 ) be
distinct sets? In particular, can this happen in the special case where
ω = 1? Are there reasonable conditions on G and ω that imply that
R2 2

ω = 0, where R2
ω is the radical of (A′′ω, 2 )? Is this always true in

the special case where ω = 1?

4. Give necessary and sufficient conditions on ω for ` 1(Z, ω) to be
strongly Arens irregular. In particular, let ω be a weight on Z such
that

lim inf
n→∞

ω(n) <∞ and lim inf
n→∞

ω(−n) <∞ .

Does it follow that ` 1(Z, ω) is strongly Arens irregular? Are the al-
gebras of Example 8.12 strongly Arens irregular? Is there a weight
function ω such that the Beurling algebra L 1(G,ω) is left, but not
right, strongly Arens irregular?

5. Let ω be the weight in Example 8.15. Is it true that R2 2
ω closed in

Bω ? Is Z(Bω) = Aω ⊕R2 2
ω ?

6. Is there a weight ω on Z such that (` 1(Z, ω)′′, 2 ) is semisimple? Is
this the case for Feinstein’s example, Example 9.17?

7. Let ω be weight on Z. Suppose that Φ,Ψ ∈ E◦
ω and that Φ2Ψ 6= 0.

Does it follow that Φ 6∈ Z(` 1(Z, ω)′′)? Is it always true that

Z
(1)
t (` 1(G,ω)′′) ∩ E◦

ω ⊂ R2

ω ?

175
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8. Set ωα(t) = (1 + |t|)α (t ∈ R), and take α > 0. What is a charac-
terization of the centre Z(L1(R, ωα)′′)?

9. Let ω be an almost invariant weight function on R with 1/ω ∈ C0(R).
Is R2 2

ω necessarily closed in Bω?

10. Let G be an abelian group, and let ω be a weight on G such that

inf
n∈N

ω(nt)/n = 0

for each t ∈ G. Is Aω necessarily 2-weakly amenable? The weight
ω given in Feinstein’s example, Example 9.17, satisfies the specified
condition: is this algebra Aω 2-weakly amenable?
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moduln, Lecture Notes in Mathematics, Volume 717 (1979), Springer–
Verlag, Berlin.

[G2] M. Grosser, Arens semi-regularity of the algebra of compact operators,
Illinois J. Math., 31 (1987), 544–573.

[GLos] M. Grosser and V. Losert, The norm-strict bidual of a Banach algebra
and the dual of Cu(G), Manuscripta Math., 45 (1984), 127–146.

[GMo] S. Grosser and M. Moskowitz, Harmonic analysis on central topological
groups, Trans. American Math. Soc., 156 (1971), 419–454.

[Gth] A. Grothendieck, Critères de compacité dans les éspaces fonctionnels
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[U5] A. Ülger, Central elements of A∗∗ for certain Banach algebras A with-
out bounded approximate identities, Glasgow Math. Journal, 41 (1999),
369–377.

[We] J. G. Wendel, Left centralizers and isomorphisms of group algebras,
Pacific J. Math., 2 (1952), 251–261.

[Wh] M. C. White, Characters on weighted amenable groups, Bull. London
Math. Soc., 23 (1991), 375–380.

[Wo] J. C. S. Wong, Topologically stationary locally compact groups and
amenability, Trans. American Math. Soc., 144 (1969), 351–363.

[Y1] N. J. Young, Separate continuity and multilinear operations, Proc. Lon-
don Math. Soc. (3), 26 (1973), 289–319.

[Y2] N. J. Young, The irregularity of multiplication in group algebras, Quar-
terly J. Math. Oxford (2), 24 (1973), 59–62.

[Y3] N. J. Young, Periodicity of functionals and representations of normed
algebras on reflexive spaces, Proc. Edinburgh Math. Soc. (2), 20 (1976),
99–120.

[Z] A. Zappa, The centre of the convolution algebra Cu(G)∗, Rend. Sem.
Mat. Univ. Padova, 52 (1974), 71–83.



Index

algebra,
Banach ∗-, 13
Banach operator, 54
C∗-, 13, 39
Fourier, 43
Hertz, 43
multiplier, 9
nuclear, 54
radical, 8
semisimple, 8, 175
Volterra, 42
von Neumann, 13

enveloping, 37
∗-semisimple, 9

almost periodic function, 69
almost periodic functional, 32
amenable Banach algebra, 15
amenable locally compact group, 89
annihilator, 12
approximation property, 59
Arens products, first and second, 16
Arens regular, 1, 16
Arens, Richard, 1
augmentation

character, 75
ideal, 75

Banach A-bimodule, 14
essential, 14

Banach algebra,
2-weakly amenable, 15, 167
amenable, 15
dual, 15
operator algebra, 54
weakly amenable, 15

Banach left, right A-module, 14
Banach space,

reflexive, 11
super-reflexive, 56
uniformly convex, 56
weakly sequentially complete, 66

Beurling algebra,
continuous, 73
discrete, 71

bimodule, 10
neo-unital, 10

bounded approximate identity, 11
sequential, 11

bounded compact approximation
property, 54

C∗-algebra, 13, 37
canonical projection, 11, 15
canonical representation, 131
centre, 7
character, 10

augmentation, 75
clusters, 26,27

0-, 26,27
0-, locally uniformly, 30, 157
0-, strongly, 30, 31

compactification,
AP -, 82
Bohr, 82
of a group, 159
LUC-, 82
of semigroups, 82
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