
ELMS: An Environment Description Language for
Multi-Agent Simulation

Fabio Y. Okuyama1, Rafael H. Bordini2,1, and Ant̂onio Carlos da Rocha Costa3,1

1 Programa de Ṕos-Graduaç̃ao em Computaç̃ao, Universidade Federal do
Rio Grande do Sul (UFRGS), Porto Alegre RS, Brazil

okuyama@inf.ufrgs.br

2? Department of Computer Science, University of Liverpool, Liverpool L69 3BX, U.K.
R.Bordini@csc.liv.ac.uk

3 Escola de Inforḿatica, Universidade Católica de Pelotas (UCPel), Pelotas RS, Brazil
rocha@atlas.ucpel.tche.br

Abstract. This paper presents ELMS, a language used for the specification of
multi-agent environments. This language is part of the MAS-SOC approach to
the design and implementation of multi-agent based simulations. The approach is
based on specific agent technologies for cognitive agent programming and high-
level agent communication, as well as ELMS. We here concentrate on introducing
ELMS, which allows the description of environments in which agents are to be
situated during simulations. The ELMS language also allows the definition of the
agents’ perceptible properties and the kinds of (physical) interactions, through
action and perception, an agent can have with the objects of the environment or
the perceptible representations of the other agents in the environment.

1 Introduction

The goal of our overall project is to develop an approach and platform for the devel-
opment of multi-agent based social simulations, incorporating agent technologies for
specifying and running cognitive agents. When a multi-agent system is fully computa-
tional (i.e., not situated in the real world, the Internet, etc.), the specification of the (sim-
ulated) environment where agents are situated is an important task in the engineering of
the system, which is not, however, normally addressed in the literature: environments
are usually simply considered as “given”, or sometimes environments are themselves
modelled as agents. Nevertheless, the characteristics of environments are quite differ-
ent from those of cognitive agents. Therefore, in our practical work, we identified the
need for the use of a language specifically designed for the specification of multi-agent
environments.

Based on that experience, we have developed a prototype of an interpreter for an
environment definition language, presented in detail in [1] and mentioned in [2]. The

? Current affiliation: Department of Computer Science, University of Durham, Durham
DH1 3LE, U.K. E-mail:R.Bordini@durham.ac.uk .



language has been designed to support the description of environments for our multi-
agent based social simulations (although it may turn out to be useful more generally).
Besides the basic environment properties and objects, the language provides the means
for the specification of the “physical” representation of a simulated agent, which we
refer to as the “body of an agent”4, as well as the various kinds of physical interac-
tions, through action and perception, among agents and objects or other agents in the
environment.

This paper is structured as follows. Sect. 2 covers the main ideas of the MAS-SOC
approach to the development of multi-agent based social simulation. We discuss the
classes of environments that can be modelled with ELMS in Sect. 3. Sect. 4 presents
ELMS itself, the language we introduce in this paper and that is designed specifically for
the modelling of multi-agent environments. Then we describe how ELMS environments
are run in Sect. 5. Besides small examples given in Sect. 4, we also give a complete
example in Appendix Appendix A .

2 The MAS-SOC Project

The main goal of the MAS-SOC project (Multi-AgentSimulations for theSOCial Sci-
ences) is to provide a framework for the creation of agent-based social simulations that,
ideally, should not require much experience in programming from users [2]. In partic-
ular, it should allow for the design and implementation of cognitive agents and their
social actions. A graphical user interface facilitates the specification of environments,
agents (their beliefs and plans), and the simulation as a whole. It also helps the man-
agement of libraries of simulation components. From the information input by the user,
the system generates source codes for the interpreter used for agent reasoning (from
the representations of agents’ mental attitudes), and for the ELMS interpreter, whereby
environment objects and agents’ bodies are simulated.

Agents’ practical reasoning is specified in AgentSpeak(L)[3], using theJason in-
terpreter [4] (see also [5]). We do not discuss here the AgentSpeak(L) programming
language, but one can refer to the papers mentioned above, as well as [6, 7], for a com-
plete account of that language. We here concentrate on presenting the ELMS language
and its interpreter.

The interaction between the interpreters (for agents and the environment) and the
graphical interface for creating and controlling the simulations is made possible by the
SACI toolkit, developed as part of the work reported in [8]. This tool also supports the
interactions of agents with the environment (perception and action) as well as speech-
act based agent communication, including interactions such as plan exchange5. SACI
also provides the infra-structure that makes it possible for us to run distributed simula-
tions, thus facilitating large-scale simulations with cognitive agents.

4 Note that in referring to agent’s bodies we do not mean to say that our approach is only ap-
plicable toembodied agents. By “body” we simply mean whatever physical properties of an
agent that may beperceptibleby other agents in the environment. This is quite general: if
an environmentmetaphor is present at all in the multi-agent system being developed, in all
likelihood some characteristics of the agents will be perceivable by other agents.

5 This will be available inJasonsoon, as reported in [5].



In summary, when using the MAS-SOC approach to develop a simulation of a social
system (where agents have cognitive features), the procedure is as follows: one first
defines an environment in ELMS (specifying objects and their interactions, the “bodies”
of the agents, and the ways these can interact with the objects through sensors and
effectors), then one defines the agents’ cognitive aspects with the use of AgentSpeak(L).

Providing mechanisms for specifying social structures explicitly (e.g. groups, or-
ganisations) is part of our objectives for future work, which should also include an at-
tempt to reconcile cognition and emergence. This latter objective is inspired by Castel-
franchi’s idea that only social simulation with cognitive agents (“mind-based social
simulations”, as he calls it) will allow the study of agents’ minds individually and
the emerging collective actions, which co-evolve determining each other [9]. In others
words, we aim (as a long term objective) to provide the basic conditions for MAS-SOC
to be used in the study of a fundamental problem in the social sciences, which is of the
greatest relevance in multi-agent systems as well: the micro-macro link problem [10].

3 Multi-Agent Environments

According to Wooldridge [11], agents are computational systems situated in some en-
vironment, and are capable of autonomous action in this environment in order to meet
their design objectives. Agents perceive and interact with each other via the environ-
ment, and they act upon it so that it reaches a certain state where their goals are achieved.
Therefore, environment modelling is an important issue in the development of multi-
agent systems where agents do not act directly on a physical or existing environment
(e.g., as robots with real sensors and effectors, or Internet agents). This applies to reac-
tive as well as cognitive agent societies (as discussed below). Nevertheless, the multi-
agent systems literature seldom considers this part of the engineering of agent-based
systems, in particular when dealing with cognitive agents: environments are simplyas-
sumedas given.

In a reactive multi-agent system, the environment plays a major role. Since reactive
agents have no memory and no high-level (i.e., speech-act based) direct communication
with each other, it is only perception of the environment that allows them to make deci-
sions on how to act. On the other hand, cognitive agents have an internal representation
of the environment, yet they make decisions (e.g., to adopt new goals, or to change
courses of actions) based on the changes that perception of the environment causes on
that representation. Thus, environment modelling is equally important for both classes
of multi-agent systems. Although some multi-agent systems may be situated in an ex-
isting environment, in agent-based simulations the environment is necessarily a com-
putational process too, so modelling multi-agent environments is always an important
issue in simulations.

In [12], a number of characteristics that can be used to classify environments is
given. We refer to those classifications below so that we can characterise the classes of
environments that can be defined with ELMS.

Accessible vs. inaccessible:Using the ELMS approach, agents have access only to the
environment properties that the simulation designer has chosen to make percepti-



ble to them. Thus, making an ELMS environment accessible or inaccessible is a
designer’s decision.

Deterministic vs. nondeterministic: As ELMS environments can be inaccessible, and
given that there are multiple agents that can change the environment simultane-
ously, from the point of view of an agent, an ELMS environment can appear to be
nondeterministic.

Episodic vs. non-episodic:In ELMS environments, the current state is a consequence
of the previous one and the actions taken by the agents in it. With cognitive agents,
past actions may influence future actions, so each simulation cycle is unlikely to be
just an isolated episode of perceiving and acting (although it is possible to use this
approach for simple reactive agents, this is not its intended use).

Static vs. dynamic: An ELMS environment is meant to be shared by multiple agents.
As various agents can act on this environment, an agent’s action may disable an-
other agent’s action. Thus, from the point of view of agents, the environment can
seem dynamic.

Discrete vs. continuous:ELMS environments tend to be discrete, through the use of
a grid to represent a physical space, although this is not compulsory.

To summarise, ELMS can be used to specify environments that are (from the point
of view of the agents): inaccessible, non-deterministic, non-episodic, and dynamic;
however, they are usually discrete. This class of environments is the most complex
and comprehensive, except for the class of environments that are continuous besides all
that. However, continuous environments are notoriously difficult to simulate; although
ELMS does not prevent that, it does not give much support in that respect either. We
believe that ELMS allows the definition of rather complex environments, supporting
a wide range of multi-agent applications (in particular, but not exclusively, for social
simulation).

4 The ELMS Language

Agents in a multi-agent system interact with the environment in which they are situated
and interact with each other (possibly through the shared environment). Therefore, the
environment has an important role in a multi-agent system, whether the environment
is the Internet, the real world, or some simulated environment. ELMS is intended as a
specification language for the latter form of environments.

We understand as environment modelling, the modelling of external aspects that an
agent needs as input to its reasoning and for deciding on its course of action. Also, there
is the need to model explicitly the physical actions and perceptions that the agents can
do on the environment, as will be seen in Sect. 4.1.

This section introduces the main aspects of the language we defined for the specifi-
cation of the simulated environment that is to be shared by the agents in a multi-agent
system. The language is called ELMS (Environment DescriptionLanguage forMulti-
AgentSimulation).



4.1 Modelling Environments with ELMS

An environment description is a specification of the properties and behaviour of the
environment. In our approach, we also include in such specification the definition of
the features of the simulated “bodies” of the agents. The modelling of such “physical”
aspects of an agent (or agent class, more precisely) includes the definitions of its prop-
erties that may be perceived by others agents, the definitions of the kinds of perceptions
that are available for that agent, and the actions that the agent is able to perform in the
environment.

The definition of the environment includes mainly sets of: objects, to which we
interchangeably refer asresourcesof the environment; reactions that objects display
when agent actions affect them; an (optional) grid to allow the explicit handling of the
spatial positioning of agents and objects in the environment; and the properties of the
environment to which external observers (e.g., the users) have access.

The objects that are part of an environment can be modelled as a set of properties
and a set of actions that characterise the object’s behaviour in response to stimuli. That
is, objects canreact—only agents are pro-active. Agents can be considered components
of the environment insofar as, from the point of view of one agent, any other agent is a
special component of the environment (however, only certain properties of an agent can
be perceived by other agents, and this must be specified by designers of agent-based
simulations). Thus, to define agents from this point of view, it is necessary to list all
properties that define their perceptible aspects, a list of actions that they are able to
execute (pro-actively), and a list of the types of perception to which they have access.
From the point of view of the environment, the deliberative activities of an agent are
not relevant, since they are internal to the agent, i.e., they are not observable to the other
agents in the environment. As mentioned before, in the MAS-SOC approach the mental
aspects of agents are described with the AgentSpeak(L) language.

Quite frequently, spatial aspects of the environment are modelled in agent simu-
lations by means of a grid. Our approach provides a number of features for dealing
with grids, if the designer of the environment chooses to have one. In the constructs
that make reference to the grid, positions can be accessed by absolute or relative coor-
dinates. Relative coordinates are prefixed by ‘+’ and ‘−’ signs, so(+1,−1, +0), for
example, refers to the position at the upper right diagonal from the agent’s current po-
sition. However, the grid definition is optional, as some simulations may not require
any spatial representation. Clearly, there are simulations where the topology resulting
from specific types of agent and object positioning is the main issue of interest for the
investigation for which the simulations are being used. In contrast, there are also simu-
lations where the existence of a topology is not relevant at all as, e.g., in a stock market
simulation, where the main issue under consideration relate to the agent interactions
themselves, and perhaps agents’ interactions with some types of resources. In order to
make ELMS as general as possible, we chose to make the grid an optional feature.

For the definition of the types of perception to which each agent class has access,
it is necessary to define which properties of the environment, agents, and objects are to
be perceived. The conditions associated with each perceptible property can be specified
as well. That is, environment designers can control: which properties of objects will be
accessible to the “minds” of the agents that are given access to a certain perception type,



and under which conditions each (potentially perceivable) property will be effectively
perceived. An action is defined as a sequence of changes in properties (of the environ-
ment in general, its resources, or agents) that it causes, along with the preconditions
that must be satisfied for the action to be actually executed in the environment.

Note that our approach allows for quite flexible environment definitions. It is the
environment designer who decides which properties of the environment can be percep-
tible by agents, and which are observable by external users (as well as defining how
actions change the environment). Any properties associated with objects or with agents
themselves can potentially be specified as perceptible/observable properties.

4.2 Language Constructs in ELMS

The ELMS language uses an XML syntax, which can be somewhat cumbersome to
be used directly. However, recall that environment specifications are to be obtained
from a graphical interface, so users do not need to bother about the language syntax.
Still, environment specifications can be written directly in XML with a simple text
editor, or some other tool, if the user prefers to do so. The use of XML provides various
advantages, for example because of the wide range of XML tools currently available,
and it can be useful for the future development of visualisation mechanisms for ELMS-
based simulations, particularly if they are to be web-based.

An environment specification in ELMS can make use of constructs of nine main
types, and several other constructs that may appear within some of the main ones. There
is no special order for the constructs to appear in a specification. The main types of
ELMS constructs are listed below.

1. Defining agent bodies:

Agent Body: This construct defines a class of agent bodies for the agents that may
join a simulation with that environment. A specification of an agent-body class
contains its name, a list of attributes, a list of actions, and a list of perception
types. The list of attributes is defined as before; it characterises the observable
properties of this class of agent bodies, from the point of view of the environ-
ment and other agents. It is then necessary to specify a list of names for the
actions that agents of this type are able to perform in the environment. The
set of perceptions is a list of the names of perception types (see below) that
are available to agents of this class (i.e., the information that will be accessible
to the agent’s mind at every reasoning cycle). Note that the same perception
and action names can appear in any number of agent-body definitions; that is,
they can be used in all the different classes of agent bodies that may execute
that type of perception/action (the same applies to reactions for resources). The
code sample below defines an agent-body class namedworker robot which
has as attributes an integer and a boolean value. It is able to perform actions
walk right , walk left , load , andunload . The perceptions that are
available for agents belonging to theworker robot class arevision and
audition .

<AGENT_BODY NAME = "worker_robot">
<INTEGER NAME = "id"> "SELF" </INTEGER>



<BOOLEAN NAME = "functional"> "TRUE" </BOOLEAN>
<ACTIONS>

<ITEM NAME = "walk_right"/>
<ITEM NAME = "walk_left"/>
<ITEM NAME = "load"/>
<ITEM NAME = "unload"/>

</ACTIONS>
<PERCEPTIONS>

<ITEM NAME = "vision"/>
<ITEM NAME = "audition"/>

</PERCEPTIONS>
</AGENT_BODY>

Perception: This construct allows the specification of perception types to be listed
in agent-body specifications. A perception type definition is formed by a name,
an optional list of preconditions, and a list of properties that are perceptible.
The listed properties can be any of those associated with the definitions of
resources, agents, cells of the grid, or simulation control variables. If all the
preconditions (e.g., whether the agent is located on a specific position of the
grid) are all satisfied, then the values of those properties will be made available
to the agent’s reasoner as the result of its perception of the environment. Note
that perception can be based on the spatial position of the agent, but this is not
mandatory; any type of perception can be defined by the environment designer.

<PERCEPTION NAME = "vision">
<PRECONDITION>

<EQUAL>
<OPERAND>

<ELEMENT_ATT NAME = "SELFCLASS" ATTRIBUTE = "functional">
<INDEX>"SELF"</INDEX>

</ELEMENT_ATT>
</OPERAND>
<OPERAND> "TRUE" </OPERAND>

</EQUAL>
</PRECONDITION>
<CELL_ATT ATTRIBUTE = "CONTENTS">

<X> +0 </X> <Y> +0 </Y>
</CELL_ATT>

</PERCEPTION>

The code sample above defines a perception calledvision . This perception
has as its precondition that the agent must have itsfunctional attribute
equals toTRUE. If the precondition is satisfied, the agent will receive the infor-
mation about the contents of the cell on the grid where it is currently positioned.

Action: With this construct, the actions that may appear in agent-body definitions
are described. An action definition includes its name, an optional list of pa-
rameters, an optional list of preconditions, and a sequence of commands which
determine what changes in the environment the action causes. The list of pa-
rameters specifies the data that will be received from the agent for further guid-
ing the execution of that type of action. The possible commands for defining
the consequences of executing an action are assignments of values to attributes
(i.e., properties of agents, resources, etc.), and allocations or repositioning of
instances of agents or resources within the grid. Resources can also be instan-
tiated or removed by commands in an action. If the preconditions are all sat-
isfied, then all the commands in the sequence of commands will be executed,
changing the environment accordingly. To avoid consistency problems, actions
are executed atomically. For this reason, they should be defined so as to follow



the concept of an atomic action (although this is again not mandatory); recall
that more complex courses of actions are meant to be part of agents’ internal
reasoning6.
<ACTION NAME = "walk_right">

<PARAMETER NAME="STEPS" TYPE="INTEGER"/>
<PRECONDITION>

<LESSTHAN>
<OPERAND> "STEPS" </OPERAND>
<OPERAND> 3 </OPERAND>

</LESSTHAN>
</PRECONDITION>
<MOVE>

<ELEMENT NAME = "SELFCLASS">
<INDEX>"SELF"</INDEX>

</ELEMENT>
<FROM>

<CELL>
<X>+0</X> <Y>+0</Y>

</CELL>
</FROM>
<TO>

<CELL>
<X>STEPS</X> <Y>+0</Y>

</CELL>
</TO>

</MOVE>
</ACTION>

In the example above, an action namedwalk right is defined. It has as pa-
rameter an integer referred to asSTEPS. The precondition defines that this
parameter must be lower than 3. As a result of the execution of this action, the
agent will walk, to the right, the number of steps specified by the parameter
(i.e., the agent’s body location will be moved within the environment represen-
tation).

2. Defining the environment:
Grid Options: This is used for a grid definition, if the designer has chosen to

have one. The grid can be two or three dimensional, the parameters being the
sizes of the grid on the X, Y, and Z axes. Still within the grid definition, a
list of cell attributes can be given: the attributes defined here will be replicated
for each cell of the grid. Also as part of the cell definition, a list of reactions
can be defined for them7. The code below exemplifies a definition of a two-
dimensional grid that has twenty columns and twenty rows, where each cell
has an integer that represents its colour (which defaults to 0) and a boolean
variable that keeps the information about whether the cell is occupied (e.g., by

6 Since agents are constantly perceiving, reasoning, and acting, the actions they execute in the
environment should normally be atomic. That is, it is known before the next reasoning cycle
whether the previous action was successfully executed, and if it was, its perceptible effects
will be noticed by the agent when it does belief revision just before the next reasoning cycle.
Although it is possible to make alternative design choices where actions are not atomic, it
seems that simulations in particular should be more easily and appropriately engineered this
way.

7 Although the list of reactions is the same for all cells, this does not imply they all have the
same behaviour at all times, as reactions can have preconditions on the specific state of the
individual cells.



an agent) or not. Each of those cells can have the reactions namedreaction1
andreaction2 .

<DEFGRID SIZEX="20" SIZEY="20" SIZEZ="1">
<INTEGER NAME = "cellcolour"> 0 </INTEGER>
<BOOLEAN NAME = "ocuppied"> "FALSE" </BOOLEAN>
<REACTIONS>

<ITEM NAME = "reaction1"/>
<ITEM NAME = "reaction2"/>

</REACTIONS>
</DEFGRID>

Resources:This construct is used to define the objects in an environment (i.e.,
all the entities of the environment that are not pro-active). A definition of a
resource class includes the class name, a list of attributes, and a set of reactions.
The attributes are defined in the same way as for the cell attributes (i.e., by the
specification of its name, type, and initial value). The reactions that a class of
resources can have is given by a list of the names identifying those reactions
(see below how reactions are defined).

<RESOURCE NAME = "water">
<STRING NAME = "state" VALUE = "liquid"/>
<INTEGER NAME = "temperature"> 23 </INTEGER>
<INTEGER NAME = "quantity"> 10 </INTEGER>
<REACTIONS>

<ITEM NAME = "solidify"/>
<ITEM NAME = "melt"/>

</REACTIONS>
</RESOURCE>

The code sample above defines a resource class namedwater . It has a string
attribute that records itsstate value, and there are two integer values that
represent its temperature and quantity. This resource can have thesolidify
andmelt reactions (i.e., the expected reactions to actions changing its tem-
perature).

Reactions: This part of the specification is where the possible reactions of the ob-
jects in the environment are defined. For each type of reaction, its name, a list
of preconditions, and a sequence of commands is given. The commands are
exactly as described above for actions. All expressions in the list of precondi-
tions must be satisfied for the reaction to take place. Differently from actions,
where only one action (per agent) is performed, all reactions that satisfy their
preconditions will be executed “simultaneously” (i.e. in the same simulation
cycle). In the code sample below, the reactionmelt is defined. As precondi-
tion, the temperature attribute must greater than 273 (Kelvin scale) and
thestate attribute must be equal tosolid . This reaction results in chang-
ing the state attribute toliquid . Note the use of the reserved keyword
SELFCLASS, which refers to the class of whatever resource type the reaction
is associated with, and is useful for programming and code reuse.
<REACTION NAME = "melt">

<PRECONDITION>
<GREATERTHAN>

<OPERAND>
<ELEMENT_ATT NAME = "water" ATTRIBUTE = "temperature">

<INDEX> "SELF" </INDEX>
</ELEMENT_ATT>

</OPERAND>
<OPERAND> 273 </OPERAND>

</GREATERTHAN>



<EQUAL>
<OPERAND>
<ELEMENT_ATT NAME = "SELFCLASS" ATTRIBUTE = "state">

<INDEX> "SELF" </INDEX>
</ELEMENT_ATT>

</OPERAND>
<OPERAND> "solid" </OPERAND>

</EQUAL>
</PRECONDITION>

<ASSIGN>
<ELEMENT_ATT NAME = "SELFCLASS" ATTRIBUTE = "state">

<INDEX> "SELF" </INDEX>
</ELEMENT_ATT>
<EXPRESSION> "liquid" </EXPRESSION>

</ASSIGN>
</REACTION>

3. Some operational aspects of a simulation are specified using the following con-
structs:

Observables: This is how the user defines which properties of the agents, re-
sources, and the environment itself will be sent to the MAS-SOC interface
as the result of a simulation cycle; that is, the users specify the particular prop-
erties of the simulated “world” which they are interested in observing from the
simulator interface. The properties to be selected as observable can be any of
those associated with instances of resources and agents, cells of the grid, and
simulation control variables. The observable items are defined in the same way
as the perceptible items in a perception definition.

Initialisation: This part of the specification allows resources in the environment
to be instantiated and allocated to grid positions in the initial state of the sim-
ulation (resources can also be created in the environment or allocated to the
grid dynamically during simulation). All commands in this section are only
executed before the start of the simulation. The initialisation is defined in the
same way as command sequences in action definitions.

Simulation Values: In this section of an ELMS definition, the values for the at-
tributes of instances of resources and agents that are currently part of a sim-
ulation can be defined. The environment controller process (see Sect. 5) can
generate a snapshot of a running simulation by filling in such values from those
contained in its data structures. With the constructs described above, the classes
of agents and resources are simply defined; instantiations can be made in the
initialisation section, or in this one for a simulation that is already running. Also
in this section, the position of instances of agents and resources on the grid can
be defined. The values for environment control variables can be defined by
assignment commands over predefined variable names (e.g., the current sim-
ulation step number). This feature allows the user to save the simulation state
for later execution, or to make on-the-fly changes in the environment (via the
interface or by changing the ELMS code manually) to induce various different
situations in a simulation. Such simulation snapshots may also be useful for
complex forms of visualisation of multi-agent simulations.

Next, we show some of the constructs that are used in ELMS to define commands,
expressions, and attributes.



Attribute Definition: The types of attributes supported by ELMS are: boolean, integer,
float, and string. Attributes are defined by a specific XML tag for each type and an
initial value. The initial value can be a constant or an expression (except for string
expressions, which are currently not allowed).

Expressions: In ELMS, some mathematical, logical, and relational operators are avail-
able. The available relational operators areEQUAL, UNEQUAL, GREATERTHAN,
andLESSTHAN. For mathematical expressions, the following constructs are avail-
able:ADD, SUBTRACT, MULTIPLY, DIVIDE , MOD, SUM(summatory), andPROD
(product). The available logical operators are:AND, OR, and NOT (negation).
Operands of relational operators can be another operation, a constant, and a cell,
resource, or agent attribute. It is also possible to use the commandsRANDand
RANDOM. The former command generates a pseudo-random number between 0 and
1, while the latter command has as parameters a minimum value (inclusive) and
a maximum value (exclusive), generating a pseudo-random integer in this range.
These commands can be used in all parts of the code, except within the “simulation
values” section (where they are not required).

Preconditions: The preconditions for actions, reactions, and perceptions are defined
through a sequence of logical operations. If a logical operator is not explicitly de-
fined,ANDis assumed (as it is most commonly used). For example, the following
code:

<PRECONDITION>
<EQUAL>...</EQUAL>
<GREATERTHAN>...</GREATERTHAN>

</PRECONDITION>

has the same effect as:
<PRECONDITION>

<AND>
<OPERAND>

<EQUAL>...</EQUAL>
</OPERAND>
<OPERAND>

<GREATERTHAN>...</GREATERTHAN>
</OPERAND>

</AND>
</PRECONDITION>

Commands: Below, we useelementto refer to both resources and agents. The com-
mands available in ELMS are: assignment (ASSIGN), allocation of an element on
the grid (IN ), random allocation of an element on the grid (IN RAND), element re-
moval from the grid (OUT), changing the position of an element on the grid (MOVE),
instance creation (NEW), instance exclusion (DELETE).
The MOVEcommand has as parameters an element, its original position, and the
destination. Note that one element can occupy more than one position on the grid,
but elements have a reference point used for relative position calculation: the cell
to which it was first allocated. When using theMOVEcommand, the whole element
is moved by changing its reference point.

5 Running ELMS Environments

The simulation of the environment itself is done by a process that controls the access
and changes made to the data structure that represents the environment (in fact, only that



process can access the data structure); the process is called theenvironment controller.
The data structure that represents the environment is generated by the ELMS interpreter
for a specification in ELMS given as input. In each simulation cycle, the environment
controller sends to all agents currently taking part in the simulation the percepts to
which they have access (as specified in ELMS). Perception is transmitted in messages
as a list of ground logical facts. After sending perception, the process waits for the
actions that the agents have chosen to perform in that simulation cycle.

The execution of a synchronous simulation in ELMS, from the point of view of the
environment controller, follows the steps below:

1. execute the commands in the initialisation section before the start of the simulation;
2. check which percepts from the agent’s perception list are in fact available at that

time (check which perceivable properties satisfy the specified preconditions);
3. send the resulting percepts (those that satisfied the preconditions) to the agents;
4. wait until the chosen actions (to be performed in that cycle) have been received

from all agents8;
5. the order of the actions in the queue of all received actions is changed randomly to

allow each agent to have a chance of executing its action first;
6. check if the first action in the queue satisfies its precondition for execution;
7. execute the action, if the precondition was satisfied;
8. if not, send a message with “@fail ” as content to the agent;
9. remove the action at the front of the queue;

10. if there are any actions left in the queue, go to step 6;
11. check and execute all reactions defined for resources in the environment which had

their preconditions satisfied;
12. send the set of properties defined as “observables” to the interface or to an output

file previously specified;
13. if the step counter has not yet reached the maximum value defined by the user, go

to the step 2.

Note that this corresponds to the (default) synchronous simulation mode. An asyn-
chronous mode is also available.

For the communication between the agents, the SACI (Simple Agent Communi-
caiton Infrastructure) [8] toolkit is used. It supports KQML-based communication and
provides an infrastructure for managing distributed agents. All agents participating in
a simulation are registered to a SACI society. Through it, every member of the society
can communicate with other members by simply sending messages addressed with that
member’s name in the society (regardless of the host where the agent interpreter is run-
ning). This way, it is possible for any SACI-based agent to interact within a simulation,
so that, for example, we can make available an interface for human “agents” to interact
within a MAS-SOC simulated society (although this is not currently one of the main
goals of the MAS-SOC project). This feature (of open SACI societies) can also be very
useful for simulation debugging and analysis (e.g., “observer” agents can be introduced
to monitor aspects of a simulation).

8 Agents send a message with “true ” as its content if they have chosen not to execute an action
in that cycle.



SACI is available as free software athttp://www.lti.pcs.usp.br/saci/ .
The ELMS interpreter too will be made available as free software in the near future.

6 Conclusion

This paper introduced the ELMS language, used for the specification of the character-
istics of agent “bodies” and the environment to be shared by agents in a multi-agent
social simulation. Although the ELMS interpreter is tailored for social simulation im-
plemented according to the MAS-SOC approach, it could be useful for other symbolic
approaches as well. The MAS-SOC approach consists of a distinct combination of
multi-agent techniques that we consider as the most adequate for the construction of
multi-agent based social simulations. We believe that MAS-SOC allows for quite flex-
ible definitions of multi-agent social simulations, taking into considerations not only
cognitive agents but also the environment shared by them.

As future work, there are several improvements to the platform that we plan to carry
out. In particular, we plan to concentrate on higher-level aspects of agent-based simu-
lations which are particularly important for social simulation, such as the specification
of social structures within agent societies, as well as using the ideas of exchange values
from [13] to support social interactions. In the long term, we aim at investigating the
necessary mechanisms for reconciling cognition and emergence following the ideas of
[9], and incorporating such mechanisms into MAS-SOC, thus allowing it to be used
in investigations of the micro-macro link problem. We are currently considering the
implementation of various social simulation applications.

References

1. Okuyama, F.Y.: Descrição e geraç̃ao de ambientes para simulações com sistemas multia-
gente. Dissertaç̃ao de mestrado, PPGC/UFRGS, Porto Alegre, RS (2003). In Portuguese.

2. Bordini, R.H., Okuyama, F.Y., de Oliveira, D., Drehmer, G., Krafta, R.C.: The MAS-SOC
approach to multi-agent based simulation. In Lindemann, G., Moldt, D., Paolucci, M.,
eds.: Proceedings of the First International Workshop on Regulated Agent-Based Social Sys-
tems: Theories and Applications (RASTA’02), 16 July, 2002, Bologna, Italy (held with AA-
MAS02) — Revised Selected and Invited Papers. Number 2934 in the LNAI Series, Berlin,
Springer-Verlag (2004), 70–91.

3. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In
Van de Velde, W., Perram, J., eds.: Proceedings of the Seventh Workshop on Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW’96), 22–25 January, Eindhoven,
The Netherlands. Number 1038 in the LNAI Series, London, Springer-Verlag (1996), 42–55.

4. Bordini, R.H., Ḧubner, J.F., et al.: Jason: A Java-based agentSpeak interpreter used
with saci for multi-agent distribution over the net. Manual, first release edn. (2004)
http://jason.sourceforge.net/ .

5. Ancona, D., Mascardi, V., Ḧubner, J.F., Bordini, R.H.: Coo-AgentSpeak: Cooperation in
AgentSpeak through plan exchange. In Jennings, N.R., Sierra, C., Sonenberg, L., Tambe,
M., eds.: Proceedings of the Third International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS-2004), New York, NY, 19–23 July, New York, NY, ACM
Press (2004), 698–705.



6. Moreira,Á.F., Vieira, R., Bordini, R.H.: Extending the operational semantics of a BDI agent-
oriented programming language for introducing speech-act based communication. In Leite,
J., Omicini, A., Sterling, L., Torroni, P., eds.: Declarative Agent Languages and Technolo-
gies, Proceedings of the First International Workshop (DALT-03), held with AAMAS-03, 15
July, 2003, Melbourne, Australia (Revised Selected and Invited Papers). Number 2990 in the
LNAI Series, Berlin, Springer-Verlag (2004), 135–154.

7. d’Inverno, M., Luck, M.: Engineering AgentSpeak(L): A formal computational model. Jour-
nal of Logic and Computation8 (1998), 1–27.

8. Hübner, J.F.: Um Modelo de Reorganização de Sistemas Multiagentes. PhD thesis, Univer-
sidade de S̃ao Paulo, Escola Politécnica (2003).

9. Castelfranchi, C.: The theory of social functions: Challenges for computational social sci-
ence and multi-agent learning. Cognitive Systems Research2 (2001), 5–38.

10. Conte, R., Castelfranchi, C.: Cognitive and Social Action. UCL Press, London (1995).
11. Wooldridge, M.: Intelligent agents. In Weiß, G., ed.: Multiagent Systems—A Modern Ap-

proach to Distributed Artificial Intelligence. MIT Press, Cambridge, MA (1999), 27–77.
12. Russel, S., Norvig, P.: Artificial Intelligence — A Modern Approach. Prentice-Hall, Engle-

wood Cliffs, NJ (1995).
13. Rodrigues, M.R., da Rocha Costa, A.C., Bordini, R.H.: A system of exchange values to sup-

port social interactions in artificial societies. In Rosenschein, J.S., Sandholm, T., Michael,
W., Yokoo, M., eds.: Proceedings of the Second International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS-2003), Melbourne, Australia, 14–18
July, New York, NY, ACM Press (2003). 81–88.

14. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifiable multi-agent programs. In
Dastani, M., Dix, J., El Fallah-Seghrouchni, A., eds.: Programming Multi-Agent Systems,
Proceedings of the First International Workshop (ProMAS-03), held with AAMAS-03, 15
July, 2003, Melbourne, Australia (Selected Revised and Invited Papers). Number 3067 in the
LNAI Series, Berlin, Springer-Verlag (2004), 72–89.

Appendix A Example of an ELMS Specification

We provide below a very simple example so as to illustrate the use of the ELMS lan-
guage for specifying an environment. A robot (simulated by an AgentSpeak(L) agent)
must find garbage in a territory that is modelled as a10 × 10 grid. When a piece of
garbage is found, the robot collects it and takes it to an incinerator located at the centre
of the territory that is to be kept clean. In the environment used in simulations carried
out to observe the behaviour of the AgentSpeak(L) agent, garbage randomly “appears”
on the grid. We have included some redundant attributes in the example just so that we
could show how to use various ELMS constructs. Due to the lack of space, only a few
excerpts of the code are explained with accompanying text.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE ENVIRONMENT SYSTEM "elms.dtd">
<ENVIRONMENT NAME = "TERRITORY">

<!-- AGENTS SECTION -->

<AGENT_BODY NAME="robot">
<BOOLEAN NAME = "loaded"> "FALSE" </BOOLEAN>
<PERCEPTIONS>

<ITEM NAME = "self_info"/>
<ITEM NAME = "cur_position"/>



</PERCEPTIONS>
<ACTIONS>

<ITEM NAME = "load"/>
<ITEM NAME = "unload"/>
<ITEM NAME = "move_north"/>
<ITEM NAME = "move_south"/>
<ITEM NAME = "move_east"/>
<ITEM NAME = "move_west"/>

</ACTIONS>
</AGENT_BODY>

This excerpt defines a class of agent bodies namedrobot . This class has as attribute a
boolean value namedloaded which is true whenever the robot is carrying a piece of garbage.
The robot is able to perform two types of perceptions:self info andcur position , which
will be defined in the perception section below. Also, it is able to perform six different actions, as
listed above and defined later in the action section.

<!-- PERCEPTIONS SECTION -->

<PERCEPTION NAME="cur_position">
<CELL_ATT ELEMENT = "garbage" ATTRIBUTE ="size" > // SIZE OF THE GARBAGE

<X> +0 </X> <Y> +0 </Y> // PRESENT IN CURRENT CELL
</CELL_ATT>
<CELL_ATT ATTRIBUTE = "colour">

<X> +0 </X> <Y> +0 </Y>
</CELL_ATT>

</PERCEPTION>

This perception allows the agent to have an explicit representation of information about the
cell where it is currently positioned: the size of the piece of garbage in that cell (if there is any)
and the cell’s colour, which is represented by an integer. No information about neighbouring cells
is perceived.

<PERCEPTION NAME="self_info">
<ELEMENT_ATT NAME = "SELFCLASS" ATTRIBUTE = "loaded">

<INDEX>"SELF"</INDEX>
</ELEMENT_ATT>

</PERCEPTION>

<!-- ACTIONS SECTION -->

<ACTION NAME="move_east">
<MOVE>

<ELEMENT NAME = "SELFCLASS">
<INDEX>"SELF"</INDEX>

</ELEMENT>
<FROM>

<CELL>
<X>+0</X>
<Y>+0</Y>

</CELL>
</FROM>
<TO>

<CELL>
<X>+1</X>
<Y>+0</Y>

</CELL>
</TO>

</MOVE>
</ACTION>

<ACTION NAME="move_north"> // SUMMARISED
<ACTION NAME="move_south">
<ACTION NAME="move_west">



<ACTION NAME="load">
<PARAMETER NAME="G1" TYPE="INTEGER" />
<PRECONDITION>

<UNEQUAL> // FAIL CHANCE = 1/20
<OPERAND>

<RANDOM MIN="0" MAX="20"/>
</OPERAND>
<OPERAND> "10" </OPERAND>

</UNEQUAL>
</PRECONDITION>
<OUT>

<ELEMENT NAME = "garbage">
<INDEX> "G1" </INDEX>

</ELEMENT>
<CELL>

<X>+0</X>
<Y>+0</Y>

</CELL>
</OUT>
<ASSIGN>

<ELEMENT_ATT NAME = "SELFCLASS" ATTRIBUTE = "loaded">
<INDEX>"SELF"</INDEX>

</ELEMENT_ATT>
<EXPRESSION> "TRUE" </EXPRESSION>

</ASSIGN>
</ACTION>

The action above removes the garbage from the cell and changes theloaded attribute of
the agent. This action can fail a random number of times, as it has as precondition that a random
number between 0 to 20 must not be equals to 10 or else the action will fail. This nondeterminism
models possible failures of the robot’s grabbing mechanism. The action has as parameter, referred
asG1, the index of the garbage that will be loaded.

<ACTION NAME="unload">
<PARAMETER NAME="G1" TYPE="INTEGER" />
<IN>

<ELEMENT NAME = "garbage">
<INDEX>"G1"</INDEX>

</ELEMENT>
<CELL>

<X>+0</X>
<Y>+0</Y>

</CELL>
</IN>
<ASSIGN>

<ELEMENT_ATT NAME = "incinerator" ATTRIBUTE = "empty">
<INDEX>

<CELL_ATT ELEMENT = "incinerator" ATTRIBUTE ="id" >
<X>+0</X>
<Y>+0</Y>

</CELL_ATT>
</INDEX>

</ELEMENT_ATT>
<EXPRESSION> "TRUE" </EXPRESSION>

</ASSIGN>
<ASSIGN>

<ELEMENT_ATT NAME = "SELFCLASS" ATTRIBUTE = "loaded">
<INDEX>"SELF"</INDEX>

</ELEMENT_ATT>
<EXPRESSION> "FALSE" </EXPRESSION>

</ASSIGN>
</ACTION>

<!-- GRID DEFINITIONS SECTION -->



<DEFGRID SIZEX="10" SIZEY="10">
<INTEGER NAME = "colour">

<RANDOM MIN="0" MAX="16"/>
</INTEGER>
<REACTIONS>

<ITEM NAME ="sprout_trash"/>
</REACTIONS>

</DEFGRID>

<!-- RESOURCES SECTION -->

<RESOURCE NAME="garbage">
<INTEGER NAME="size"> 5 </INTEGER>

</RESOURCE>

<RESOURCE NAME="incinerator">
<BOOLEAN NAME="empty"> "TRUE" </BOOLEAN>
<INTEGER NAME="id"> "SELF" </INTEGER>
<REACTIONS>

<ITEM NAME ="burn"/>
</REACTIONS>

</RESOURCE>

<!-- REACTIONS SECTION -->

<REACTION NAME="burn">
<PRECONDITION>

<EQUAL>
<OPERAND>

<ELEMENT_ATT NAME = "SELFCLASS" ATTRIBUTE = "empty">
<INDEX>"SELF"</INDEX>

</ELEMENT_ATT>
</OPERAND>
<OPERAND> "FALSE" </OPERAND>

</EQUAL>
</PRECONDITION>

<DELETE NAME = "garbage">
<INDEX>

<CELL_ATT NAME = "garbage" ATTRIBUTE = "id">
<X>+0</X>
<Y>+0</Y>

</CELL_ATT>
</INDEX>

</DELETE>
<ASSIGN>

<ELEMENT_ATT NAME = "SELFCLASS" ATTRIBUTE = "empty">
<INDEX>"SELF"</INDEX>
</ELEMENT_ATT>
<EXPRESSION>

"TRUE"
</EXPRESSION>

</ASSIGN>
</REACTION>

<REACTION NAME="sprout_trash">
<PRECONDITION>

<EQUAL>
<OPERAND>

<RANDOM MIN="0" MAX="100"/>
</OPERAND>
<OPERAND> 10 </OPERAND>

</EQUAL>
</PRECONDITION>

<NEW NAME = "incinerator">



<N>1</N>
<CELL>

<X>+0</X>
<Y>+0</Y>

</CELL>
</NEW>

</REACTION>

<!-- OBSERVABLES SECTION -->

<OBSERVABLE>
<CELL_ATT ATTRIBUTE = "colour">

<X> "ALL"</X>
<Y> "ALL" </Y>

</CELL_ATT>
<CELL_ATT ATTRIBUTE = "CONTENTS">

<X> "ALL"</X>
<Y> "ALL" </Y>

</CELL_ATT>
</OBSERVABLE>

<!-- INITIALIZATION SECTION -->

<INITIALIZATION>
<NEW NAME = "incinerator">

<N>1</N> //ONE INSTANCE
<CELL>

<X>4</X>
<Y>4</Y>

</CELL>
</NEW>

</INITIALIZATION>
</ENVIRONMENT>

The simple AgentSpeak(L) code that could be used for the robot’s reasoning has
not been included, as the focus here in on modelling environments, but such code can
be found in [14] and is one of the examples distributed withJason[4].


