
The GNAT Project: A GNU-Ada9X CompilerThe GNAT team�gnat-report@cs.nyu.eduCourant Institute of Mathematical SciencesNew York University251 Mercer Street, New York, NY 10012Cyrille Comarcomar@cs.nyu.eduSup'A�ero andNew York UniversityComputer Science Dept. Franco Gasperonigasperon@inf.enst.frT�el�ecom Paris { ENSTD�epartement Informatique Edmond Schonbergschonber@cs.nyu.eduNew York UniversityComputer Science Dept.
AbstractThe GNAT project at New York University is building a high-quality Ada9X compiler, tobe distributed free and with sources, following the successful mechanisms established bythe Free Software Foundation for the GCC compiler. GNAT will allow students, academics,and software professionals to experiment as early as possible with the new version of Ada.GNAT will also help the spread of Ada to the software community at large.

�Robert Dewar and Edmond Schonberg are the principal investigators on the project. The team is basedat New York University, and includes active participants from a number of other institutions (listed below):Bernard Banner, Cyrille Comar, Sam Figueroa, Richard Kenner, Brett Porter, Gail Schenker (all at NYU),Franco Gasperoni (Telecom Paris), Ted Giering (Florida State University), Paul Hil�nger (UC-Berkeley),Yvon Kermarrec (Telecom Bretagne), Laurent Pautet (Telecom Paris) and Jean-Pierre Rosen (Adalog).1

Contents1 Introduction: Ada9X and the GNAT Project 32 GCC: An Industrial-Strength Compiler 43 The Organization of GNAT 43.1 Introduction : 43.2 Syntax Analysis : 63.3 Semantic Analysis and Expansion : 73.3.1 Type Resolution : 73.3.2 Expansion Activities : 73.4 Gigi and Code Generation : 83.4.1 Discriminated Records and Dynamic Arrays : : : : : : : : : : : : : : 93.4.2 Exceptions : 93.5 Object-Oriented Programming : 103.5.1 Inheritance : 103.5.2 Polymorphism : 113.5.3 Dynamic Dispatching : 113.6 The Runtime: GNARL : 123.7 Library Management : 133.8 The Binder : 144 Conclusion 155 Appendix: How to Obtain GNAT 16

2

1 Introduction: Ada9X and the GNAT ProjectThe Ada community has proposed a number of explanations for the relative lack of successof Ada vis-a-vis of C and more recently C++, in spite of the clear superiority of Ada as alanguage for software engineering. At least one reason for the slow spread of Ada throughthe software community has been the absence of a cheap (or even free) high-quality compilerthat can run on a variety of platforms and is usable both for training and serious softwareconstruction. The issue of training is a particularly critical one: students (and universi-ties) cannot a�ord expensive programming environments, and the choice of programminglanguages for teaching is often ruled by cost considerations. The widespread use of C is inpart due to the ubiquitousness of UNIX. The recent successes of C++ are at least in partattributable to the availability of Turbo-C++ on PC's, and of course G++ (the GCC C++compiler) on UNIX platforms.The imminent introduction of Ada9X presents us with a new opportunity. The lan-guage [2] o�ers up-to-date tools for object-oriented programming, for information systems,for distributed systems, for interfacing with other languages, for hierarchical system de-composition, etc. If a free, high-quality compiler were to appear at the same time as thestandardization of the language is completed, it would assist considerably in spreading theknowledge of the new language, and in encouraging comparisons with existing languages(in which we can expect Ada9X to show its superiority).The GNAT project aims to produce such a compiler. GNAT (an acronym for GNU NYUAda Translator), is a front-end and runtime system for Ada9X that uses the successful GCCback-end as a retargettable code generator. GNAT is thus part of the GNU software, andis distributed according to the guidelines of the Free Software Foundation. GNAT will bea complete compiler, but will not be validaded by New York University. In fact, GNATwill be available before validation procedures for Ada9X compilers are completed, becausetimeliness is crucial to its mission. Preliminary versions of GNAT, albeit very incomplete,are already being distributed, and are contributing to the di�usion of the language. Theavailability of sources for the system is allowing language designers and implementors toparticipate in the writing of GNAT itself. Compiler constructors are also bene�ting fromthe existence of a reference implementation for new language constructs. We give belowinformation on how to obtain GNAT and how to participate in the community e�ort ofcompleting and improving it.The next section describes the GCC compiler system. Next we summarize the structure ofGNAT. Following sections discuss some details of the front-end and code generator. We thenpresent what is probably the most innovative aspect of GNAT, namely the library mech-anism. We then discuss the binder, and conclude with a status report on the completion3

and performance of the system.2 GCC: An Industrial-Strength CompilerGCC is the compiler system of the GNU environment. GNU (a self-referential acronymfor \GNU is Not Unix") is a Unix-compatible operating system, being developed by theFree Software Foundation, and distributed under the GNU Public License (GPL). GNUsoftware is always distributed with its sources, and the GPL enjoins anyone who modi�esGNU software and then redistributes the modi�ed product to supply the sources for themodi�cations as well. In this fashion, enhancements to the original software bene�t thesoftware community at large [5].GCC is today the centerpiece of the GNU software. GCC is a retargetable and re-hostable compiler system, with multiple front-ends and a large number of hardware targets.Originally designed as a compiler for C, it now includes front-ends for C++, Modula-3, For-tran, Objective-C, and most recently Ada. Technically, the crucial asset of the GCC is itsmostly language-independent, target-independent code generator, which produces code ofexcellent quality both for CISC machines such as the Intel and Motorola families, as well asRISC machines such as the IBM RS/6000, the DEC Alpha, or the MIPS R4000. Remark-ably, the machine dependences of the code generator represent less than 10% of the totalcode. To add a new target to GCC, an algebraic description of each machine instructionmust be given using a register-transfer language. Most of the code generation and optimiza-tion then uses the RTL, which GCC maps when needed into the target machine language.The leverage of constructing a front-end for GCC is thus enormous: GNAT potentially hasover 30 targets, and runs already on more that half-a-dozen of them. An Ada9X cross-compiler for a Motorola real-time controller chip was built in a few days using standardGCC con�guration tools for cross-compilation. Furthermore, GCC produces high-qualitycode, comparable to that of the best commercial compilers.3 The Organization of GNAT3.1 IntroductionThe �rst decision to be made was the language in which GNAT should be written. GCCis fully written in C, but for technical reasons as well as non-technical ones, it was incon-ceivable to use anything but Ada for GNAT itself. We started using a relatively smallsubset of Ada83, and in typical fashion extended the subset whenever new features becameimplemented. Six months after the coding started in earnest, we were able to bootstrapthe compiler, and abandon the commercial compiler we had been using up to that point.As Ada9X features are implemented, we are now able to write GNAT in Ada9X. In fact,4

the de�nition of the language depends heavily on hierarchical libraries, and cannot be givenexcept in Ada9X, so that it is natural for the compiler and the environment to use childunits throughout.Figure 1 shows the overall structure of the GNAT system. The front-end of the GNAT

-- -

�

�
--

....... JJJJJĴ
code
code
code

source.o cutableexe-
object
object
object

source1.o

sourcek.o
source.adbAdasource binderGNAT linkerGNATcompiler
GNATRuntimetasking.. Figure 1: The structure of GNAT: compiler, binder, runtime.compiler is thus written in Ada9X. The back-end of the compiler is the back-end of GCCproper, extended to meet the needs of Ada semantics.The front-end comprises four phases, which communicate by means of a rather compactAbstract Syntax Tree (AST). The implementation details of the AST are hidden by severalprocedural interfaces that provide access to syntactic and semantic attributes. The layeringof the system, and the various levels of abstraction, are the obvious bene�ts of writing inAda, in what one might call \proper" Ada style.It is worth mentioning that strictly speaking GNAT does not use a symbol table. Rather,all semantic information concerning program entities is stored in de�ning occurrences ofthese entities directy in the AST. The GNAT structures are thus close in spirit to those ofDIANA [4], albeit more compact. It appears that the AST will be adequate to support anASIS interface [1]. 5

The four phases of the compiler are sketched in �gure 2.
r rr r rr rr rrr rr -.................-- -- -.....................- -.................-.....................- -? ?? r6 6 C procedure callsGiGiAdaAdaSyntaxAnalysis SemanticAnalysis C GCCAda GCC Treefragmentsdecorated AST expandeddecorated ASTexpander back-end

Figure 2: Phases of the GNAT compiler.Subsequent sections describe each of the phases in detail.GNAT includes three other modules which are not involved in code generation but are anintegral part of any Ada compilation system.These are the runtime and tasking executive,the library manager, and the binder.3.2 Syntax AnalysisThe parser is a hand-coded recursive descent parser. It includes a sophisticated errorrecovery system, which among other things takes indentation into account when attemptingto correct scope errors. In our experience, the recovery is superior to that of other compilers,and the parser is remarkably stable in the presence of badly mangled programs. All GNUcompilers heretofore had used LALR(1) parsers generated with Bison (The GNU equivalentof YACC). The choice of a handwritten parser at this date may seem surprising, but is amplyjusti�ed by the following:Clarity. The parser follows carefully the grammar given in the Ada9X reference manual.([2]). This has clear pedagogical advantages, but precludes the use of a table-drivenparser, given that the grammar as given is not LALR(k).Error messages. The most important reason is the quality of the error reporting. Evenin case of serious structural errors, such as an interchange of \;" and \is" betweenspeci�cation and body of a subprogram, GNAT generates a precise and intelligiblemessage. Bottom-up parsers have serious di�culties with such errors.Performance. Even though the overall performance of the system is bounded by the speedof the code generator, it does not hurt that the parser of GNAT is faster than anytable-driven one. 6

3.3 Semantic Analysis and ExpansionThese two interlinked phases have the following purpose:Semantic analysis performs name and type resolution, decorates the AST with varioussemantic attributes, and as by-product performs all static legality checks on the pro-gram.The expander modi�es the AST in order to simplify its translation into the GCC tree.Most of the expander activity results in the construction of additional AST fragments.Given that code generation requires that such fragments carry all semantic attributes,every expansion activity must be followed by additional semantic processing on thegenerated tree. This recursive structure is carried further: some prede�ned operationssuch as exponentiation are de�ned by means of a generic procedure. The expansionof the operation results in the generic instantiation (and corresponding analysis) ofthis generic procedure.There is a further unusual recursive aspect to the structure of GNAT. The programlibrary (described in greater detail below) does not hold any intermediate representation ofcompiled units. As a result, package declarations are analyzed whenever they appear in acontext clause. Furthermore, if a generic unit, or an inlined unit G, is de�ned in a packageP, then the instantiation or inlining of G in the current compilation requires that the bodyof P be analyzed as well. Thus the library manager, the parser, and the semantic analyzercan be activated from within semantic analysis (note the backward arrows in �gure 2).3.3.1 Type ResolutionType and overload resolution is performed by means of the well-known two-pass algorithm.During the �rst (bottom-up) pass, each node in a complete context is labelled with its type,or if overloaded with the set of possible meanings of each overloaded reference. During thesecond pass, the type imposed by the context is used to resolve ambiguities and chose aunique meaning for each overloaded identi�er in the expression. When resolving a call to aprimitive operation of a tagged type, the second pass also determines the actual in the callthat is to serve as controlling argument of the dispatching call.3.3.2 Expansion ActivitiesThe modi�cations performed by the expander are tree transformations that must be ap-plied to those Ada constructs that do not have a close equivalent in C, such as allocators,aggregates, tagged types and dynamic dispatching, and all aspects of the tasking. The7

expansion phase also simpli�es some aspects of semantic analysis which are awkward toperform strictly in one pass, eg. the correct handling of the private part of a packagedeclaration. The most important expansions are the following;1. Construction of initialization procedures for record and array types, and invocationof these procedures for each object of such a type. This is also done for tasks andprotected objects.2. Generic instantiation. Instantiation is always done in-line, so that declaration andbody of the instance are inserted into the AST at the point of instantiation.3. All tasking operations are transformed into calls to subprograms in the run-timesystem. The recursive mechanisms of GNAT are particularly useful here. For example,consider operations on the attribute COUNT. The run-time holds the speci�cation of arun-time function that examines the corresponding queue. Rather than including thedetails of such a function in the compiler proper, the run-time package is analyzed bythe compiler as if it had appeared in the context clause of the current compilation. Ifthe function is subject to an INLINE pragma, the compiler can perform the inliningas well, without forcing the compiler to have detailed information about the run-time, and without a�ecting code quality. Such exibility cannot be achieved with amore conventional compiler organization. Because of the speed of the compiler, thecost of this approach in terms of space and time is comparable or cheaper than theconventional approach.3.4 Gigi and Code GenerationThe phase labeled Gigi (Gnat to Gnu) interfaces the front-end with the GCC code generator.Gigi traverses the decorated and expanded AST, in order to build the corresponding GCCtree, which is then input to the code generator proper. More precisely, the activities of GCCtree construction and code generation are interspersed, so that after each code generationactivity, the GCC tree fragment can be discarded. At no time is a full tree built (there isno such notion in GCC). This is in line with the one-pass model of compilation used for C,and is memory-e�cient.In order to bridge the semantic gap between Ada and C, several code generation routinesin GCC have been extended, and others added, so that the burden of translation is alsoassumed by Gigi and GCC whenever it would be awkward or ine�cient to perform theexpansion in the front-end. For example, there are code generation actions for exceptions,for variant parts, and for access to unconstrained types. As a matter of GCC policy, thecode generator is extended only when the extension is likely to be of bene�t to more thanone language. 8

3.4.1 Discriminated Records and Dynamic ArraysDiscriminated records are implemented without hidden pointers: if the position of a recordcomponent depends on a discriminant (for example if the size of a previous componentdepends of a discriminant) then GCC generates inline code to compute the address of thecomponent, rather than storing o�sets in the object.the implementation of objects whose size is dynamic makes use of so called fat pointers.A fat pointer is a record with two components: a pointer to an object, and a pointer to adescriptor that contains bounds information on the object. Most accesses to such an objectmake use of the descriptor. GCC builds fat pointers when needed, for example when passinga composite type in a call to a formal parameter that is an unconstrained type.3.4.2 ExceptionsThe exception mechanism is intended to be usable by all GCC languages that have excep-tions: Ada, C++, and Modula-3. The mechanism should be su�ciently uniform to allowmulti-language programs to function in the presence of language-speci�c exceptions andexception handlers: for example, an Ada exception may propagate from a C++ module toan Ada handler. The mechanism should also be zero cost, that is to say, there should beno run-time cost attached to the mere presence of a handler, only to the actual occurrenceof an exception.The design of exception handling is closely related to the semantics of �nalization. Recallthat on exit from any construct that declares some entities, there may be cleanup actionsto perform: �nalization of controlled objects, reclamation of local heap-allocated objects,etc. We implement this sequence of actions by means of a single chain that holds all localobjects that may require �nalization, and a single procedure that traverses this chain andinvokes the appropriate �nalization for each object therein. When an exception is raised,the stack must be unwound, and the �nalization routines attached to each frame must beinvoked in turn. The exception manager must be able to locate the exception handler,and then repeatedly unstack a frame and invoke its �nalization procedure. The exceptionmanager uses two tables for this purpose: an unwind table and a handler table.Unwind Table. The linker builds a table of address ranges, each of which is either underthe control of a given exception handler, or has an attached �nalization procedure.The table stores the addresses of each.Handler table. This table holds the list of exceptions managed by a particular handler.The method depends on being able to �nd, without additional structures, the subpro-gram that contains the instruction that raised an exception. To insure that the processing9

is language-independent, the cleanup procedure is parameterless, and only its address needsto be retrievable.Exception propagation proceeds as follows:Locating the handler. During this phase the exception manager uses the PC of theexception-raising instruction to locate the innermost active subprogram that has anapplicable handler. This traversal of the stack is done without unwinding actions, sothat the debugger can be invoked on the o�ending instruction in its proper context,in case there is no applicable handler.Cleanup. In the second phase, stack unwinding takes place, and the unwind table is usedto retrieve the cleanup procedures at each step, until the exception handler takescontrol.3.5 Object-Oriented ProgrammingOne of the most eagerly awaited aspects of Ada9X is its support for object-oriented pro-gramming. In this section we review briey the novel approach of Ada9X to this importantprogramming paradigm, and some GNAT implementation details. We examine in successionthe three critical notions: inheritance, polymorphism, and dynamic dispatching.3.5.1 InheritanceWhat other object-oriented languages call objects are de�ned in Ada9X by means of taggedtypes. A tagged type is a record with a special component, called the tag, which governsdispatching. Tagged types can be extended with additional components. The notion oftype extension, as well as the concept of inheritance of operations, are generalisations of theAda83 mechanism of type derivation. GNAT implements tagged types by following closelythe implementation of regular records. The expander transforms tagged types into recordsaccording to the following schema:type R1 (D1, D2 : Type_D) is taggedrecordC1, Cn : Type_C;end record; type R1 (D1, D2 : Type_D) isrecord_tag : Ada.Tags.Tag;C1, Cn : Type_C;end record;Extensions are transformed as follows:type R2 (D3, D4 : Type_D) isnew R1 (D3, X) withrecordE1, En : Type_E;end record; type R2 (D3, D4 : Type_D) isrecord_parent : R1 (D3, X);E1, En : Type_E;end record;10

The components parent and tag use \ " as pre�x to avoid potential name conictswith user-de�ned components. After this transformation, any reference to an inheritedcomponent is turned into a reference to the embedded parent.3.5.2 PolymorphismPolymorphism denotes the capability of treating in similar fashion objects that belong to aclass of types. Classwide types serve to denote objects that can belong dynamically to anyderivation class.R1'Class is a type that is implicitly de�ned when R1 is de�ned, and which covers R1and all its extensions. All operations on R1 can be applied to a value of type R1'Class.The implementation of classwide types is delicate, because a value of such a type hasan inde�nite subtype, that is to say an unknown number of discriminants and unknowncomponents beyond those inherited from R1. We have found it convenient to de�ne aclasswide type as an extension with unknown typeless storage. For instance, when theexpression new R1'Class (V) is encountered, GNAT will the foloowing typetype R1__Class_Subtype is record_parent : R1 (V.D1, V.D2);_extension : Array_Of_Bits (1 .. V'Size - R1'Size);end record;There is another delicate point concerning the implementation of classwide types. Allmembers of the class must have a compatible layout, so that o�sets of corresponding compo-nents must be identical. This conicts with the need to place discriminants at �xed o�sets,usually at the beginning of the record, so as to be able to calculate the placement of com-ponents that depend on those discriminants. If any descendant can add new discriminantsto a tagged type, it is not possible to make discriminants contiguous. Figure 3 shows thelayout for the types of the previous example: we are forced to place D3 and D4 betweenparent and the components E1, En.3.5.3 Dynamic DispatchingPrimitive operations that are inherited by a type extension can be rede�ned, in whichcase the new de�nition overrides the old one. When a primitive operation of the roottype is applied to a classwide argument, the tag of the argument determines the imple-mentation of the operation which is to be executed, i.e. the original operation or oneof its overridings. The tag is implemented as a pointer to a dispatch table. The tablecontains pointers to the primitive operations of the type. There is one table for eachtagged type, and the layout of all types in a derivation class is compatible, in the sensethat di�erent overridings of the same operation appear in the same table position. Note11

tagD1D2C1Cn
tagD1D2C1Cn

parent
tagD1D2C1Cn

parent...
.

R1 R2 R1'Class
D3D4E1En extension

Figure 3: Storage for classwide typesthat in Ada terms this table is not an array, because each component is an access to asubprogram with a di�erent pro�le. A call to a primitive operation is dispatching if thespeci�c type of its tagged arguments cannot be determined statically. In such a case,the tag of one of the actuals is chosen to determine which subprogram to call. Sim-plifying somewhat,if we consider type R1 introduced in section 3.5.1 and we encounterPrimit n (Param: R1'Class)then dispatching amounts to replacing:Primit n (X) with X. tag.all.Access Primit n.all (X)The layout of the dispatch table is shown in Figure 4. The �rst two components of thetable simplify the implementation of the membership operation for tagged types.3.6 The Runtime: GNARLThe most important activities of the run-time have to do with task management: creation,activation, rendez-vous, termination. The runtime maintains the data structures neededto manage, schedule, and synchronize tasking activities. In order to make GNAT easilyportable, the runtime is written in Ada (with some very small assembly glue) and twoprocedural interfaces, GNARLI and GNULLI, are used to isolate the compiler from theruntime, and the runtime from the underlying operating system.GNARLI (GNAT run-time library interface) is the interface between the compiler andthe run-time. Each Ada construct that applies to tasks or protected objects is implementedby one or more subprograms in the run-time. The expander transforms each occurrence12

tagD1D2C1Cn
- �����objet of type R1 dispatch table for R1distance fromroottags of ancestors -

Access Primit 1
Access Primit n� � � � � � � � � � � �Access Primit 2

table forancestortags
Figure 4:of such constructs into the corresponding series of calls. The packages that constitute therun-time are treated as any other unit of the context of the compilation, and analyzed whenneeded. This obviates the need to place run-time information in the compiler itself, andallows a knowledgeable user to modify the run-time if he/she so chooses. The design ofGNARL is based on the CARTS (Common Ada Run-Time System) speci�cation [3].GNULLI (GNAT low-level library interface) provides the interface between the run-timeand the underlying operating system. The design of GNULLI makes use of a few POSIXthreads primitives, and assumes the existence of such primitives in the host OS. A threadspackage that emulates those primitives is supplied for systems that do not have them, e.g.conventional Unix systems. Otherwise the implementation of GNULLI is straightforwardon modern operating systems such as Solaris, Mach and OS/2.The design and implementation of GNARL have been carried out at Florida State Universityby the group directed by Ted Baker and Ted Giering, and follows their design of previousprotable Ada runtimes, notably CARTS and MRTSI.3.7 Library ManagementThe notion of program library is seen justi�ably as one of the fundamental contributions ofAda to software engineering. The library guarantees that type safety is maintained acrosscompilations, and prevents the construction of inconsistent systems by excluding obsoleteunits. In all Ada compilers to date, the library is a complex structure that holds intermediaterepresentations of compiled units, information about dependences between compiled units,symbol tables, etc. The ARM strongly suggests that such a structure is mandatory, but infact a monolithic library is not required to implement rigorously the semantics of separatecompilation. Furthermore, the monolithic library approach is ill-adapted to multi-languagesystems, and has been responsible for some of the awkwardess of interfacing Ada to other13

languages.We have chosen a completely di�erent approach in GNAT. The library itself is implicit,and object �les depend only on the sources used to compile them, and not on other objects.There are no intermediate representations of compiled units, so that the declarations ofthe units appearing in the context clause of a given compilation are always analyzed anew.Dependency information is kept directly in the object �les, and amounts to a few hundredbytes per unit. The binder can be used to verify the consistency of a system before linking,and is also used to determine the order of elaboration. Given the speed of the front-end,our approach is no less e�cient than the conventional library mechanism, and has threeimportant advantages over it:1. Compilation of an Ada unit is identical to compilation of a module or �le in anotherlanguage: the result of the compilation of one source is one object �le, period.2. Given that object �les only depend on sources, not on other objects, there is no longera required order of compilation. All the components of a system can be compiled inany order. Only the modi�cation of a source program may obsolete a compiled unit.A well-known dreaded phenomenon of previous Ada systems, namely the accidentalrecompilation of one unit that obsoletes a slew of other units in the library, even whenthe source is unchanged, is thus avoided completely.3. Inlining works in a much more exible way than in normal compilers. Given thatcompiling, and thus inlining, is always done from the source, there is no requirementthat the entities to be inlined should be compiled �rst. It is even possible for twobodies to inline functions de�ned in each other, without fear of circularities.It is gratifying that this exible model is fully conformant with the prescribed semanticsgiven in the ARM, and at the same time confortable for programmers used to the behaviorof make and similar tools. The GNAT model simpli�es the construction of multi-languageprograms and makes Ada look more familiar to programmers in other languages.3.8 The BinderThe role of the binder is twofold:� It veri�es the consistency of the objects that are to be assembled into an executable.� It determines a valid order of elaboration for the units in the program, and packagesthe calls to the corresponding elaboration procedures into a single subprogram, to beinvoked before the main program. 14

The binder makes use of the information created when each unit is compiled. Thisinformation includes the semantic dependencies of each unit, the date of latest modi�cationof their sources, the presence of various elaboration pragmas, and whether a given unit maybe a main program.The binder has been designed with exibility in mind. In one mode, it can verify that allobjects depend on a consistent set of sources. Given that time stamps of the sources used fora compilation are kept in the object �les, this check does not require that sources themselvesbe present, which is an advantage in commercial settings for software distribution.Another mode of operation is to verify that the system is up-to-date, that is to say thatno source was modi�ed after compilation. In all cases, possible inconsistencies are diagnosedand treated as fatal errors. There are however cases in which this is undesirable. Forexample, it is irritating to be forced to recompile a large system only because comments wereadded to a low-level package on which many units depend. An additional option instructsthe binder to ignore time stamps and create an elaboration procedure unconditionally. Suchan option requires precise understanding on the part of the user, and is certainly not safe,but it may be indispensable in certain circumstances, and will be welcome by experiencedprogrammers.Finally, the binder is intended to work with other GCC languages, and can producedi�erent output programs. By default, the object �le given as input is taken to be the mainprogram. In this case, the binder builds a C �le containing the function main, which is themandatory main program for a C compilation. This function consists of a series of calls toelaboration procedures, followed by a call to the main Ada program. The intended mainprogram may not even be in Ada, in which case the binder output consists solely of theelaboration calls.4 ConclusionCompiler quality means di�erent things to di�erent users. For students and beginners,GNAT intends to be user-friendly, provide lucid error messages, and fast turn-around forsmall programs. For a software engineer, code quality is paramount, and GNAT can relyon the proven performance of the GCC back-end. For the embedded-systems developer, theexistence of cross-compilation tools is critical, and here as well GCC provides the necessaryfunctionality. For the language researcher and the compiler writer, the existence of sourcesof a full compiler is invaluable.GNAT has no size limitation, beyond that imposed by the full memory of the hostmachine. The speed of the system is substantial: on a 66-Mhz i486 machine, the front-endruns at 40,000 lines/min., and the full compiler at 8,000 lines/min. Such a performance iscomparable to that of the best commercial compilers, and is likely to improve by a factor15

of two when various tracing options are removed and full inlining is supported.To date (Dec. 1993) GNAT is su�ciently complete and robust to compile itself (around110,000 lines of Ada), compile GNARL, and pass hundreds of ACVC tests. Nevertheless,given the size and complexity of Ada9X, we know that a few person/years are still requiredto complete the task. In spite of its incompleteness, the GNAT system already has asmall but dedicated set of users. The cooperative spirit fostered by the activities of theFree Software Foundation is striking: days after the �rst release of GNAT, several portsto unexpected machines were reported, and o�ers were made to the project of importantsoftware components: bindings to Mach, to X-windows, implementation of the informationsystems annex, etc. This synergy within the Ada community is a rewarding byproduct ofthe GNAT project.5 Appendix: How to Obtain GNATGNAT is available by anonymous ftp from cs.nyu.edu, directory pub/gnat. This directorycontains a README �le, sources �les, and binaries for OS/2 and for Sparc/SunOS. Instal-lation on other targets currently requires that GCC already be installed.A mailing list is maintained at New York University to notify users of new version releases.Send mail to gnat-reque@cs.nyu.edu to be included in this list.Users are invited to submit bug reports to gnat-report@cs.nyu.edu. Information on newports, on enhancements to the compiler, as well as other software contributions, are wel-comed at the same electronic address.

16

Acknowledgements. The work we have described is the result of the collective e�ortsof the GNAT team, and we thank all of them for the pleasure of working together. Wethank Richard Stallman, not only for the GCC system, but for his seminal insight thatthe Ada library model could be source-based. We also want to thank Ted Baker (FloridaState University), Bruno Leclerc (T�el�ecom Bretagne), and Tucker Taft (Intermetrics) forinnumerable advice and discussions.References[1] J.B.Bladen et al., Ada Semantic Interface Speci�cation (ASIS), Conference Pro-ceedings, TriAda'91, San Jose,California, October 1991.[2] Ada9X Mapping/Revision Team, Programming Language Ada{Language and Stan-dard Libraries, Draft, Version 4.0, Intermetrics, September 1993.[3] T.P.Baker, and E.W.Giering, III, Implementing Ada9X features using POSIXthreads: design issues, Conference Proceedings, TriAda'93, Seattle, Washington,September 1993.[4] G.Goos, W.A.Wulf, A.Evans, Jr., and K.J.Butler, DIANA - An IntermediateLanguage for Ada, Lecture Notes in Computer Science, number 161, Springer-Verlag,1983.[5] R.M.Stallman, Using and Porting GNU CC, Free Software Foundation, December1992.

17

