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Abstract

For some time, there has existed the idea that dense colloidal systems with repulsive interactions can be interpreted using
certain approaches to glass theory. Recent advances in understanding the role of short-ranged attractive interactions in driving
another type of ‘glass-transition’ have considerably extended the range of potential applications for such systems. Within this
framework, particle gels are now regarded as ‘attractive’ glasses, and for some concentration regimes the details of the density
correlation as we approach gellation for a broad range of experimental systems seem to be well described by glass-transition
ideas and laws. Initial suggestions that this might be so came from theory, but the close collaboration between theory,
simulation, and experimental science has been mutually stimulating. New advances in the theory are now to be expected, and
novel systems where the ideas might be applicable are emerging. The exploration of these ideas is still at the beginning, but
there is a reasonable expectation that the glass paradigm will be more generally useful in many areas of soft matter and
colloid science, perhaps gathering apparently disparate phenomena of particle gellation, polymer gellation, aggregation, and
other aspects of ‘solidification’ into a common interpretive scheme. © 2002 Elsevier Scienc Ltd. All rights reserved.
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1. Introduction

Under a wide variety of conditions, colloidal and
soft matter systems ‘solidify’ for reasons that appear
to be quite unrelated to each other, and which do not
involve the formation of crystalline order. Phrases
such as ‘freezing’, gellation, coagulation, dynamical
arrest, ergodic-non-ergodic transition and glassifica-
tion have all been used to loosely describe these
phenomena which are understood to lead to long-lived
but non-equilibrium states of the system. We shall
typically use the phrases dynamical arrest, or non-
ergodic transition to describe these phenomena where
they apply to colloidal systems. The resulting amor-
phous soft materials are of profound practical impor-
tance, being relevant in the food, medical and numer-
ous other industries, but the lack of a fundamental
coherent picture of these phenomena means that they
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are often dealt with on an ad hoc basis. On the other
hand, the formation of these amorphous soft materi-
als, rather than ordered structures, is sometimes also
an undesirable and severe practical limitation. Thus,
in widely varied applications such as protein crystalli-
sation, the fabrication of ordered crystalline arrays of
colloidal crystal for applications in photonics, and
other arenas, it is the difficulty of forming a crystal of
high quality that is the crucial limitation, and it would
be of considerable interest to understand how this
might be achieved. Therefore, sometimes we wish to
form the disordered structure, and sometimes the
crystal, but have lacked a clear understanding of the
control parameters. Here, the role of an encompass-
ing interpretive framework could be of the greatest
importance. So far, only the first steps of an inte-
grated picture are emerging, but the perspective is
promising [1°®]. It is fortunate that in other areas of
condensed matter science, glasses, and the transition
to them from the liquid (exemplified by common
window glass, but manifested in a very wide range of
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different materials) has been studied from a funda-
mental perspective [2,3,57,4=7]. This has led to
promising progress in developing theoretical tools,
and perhaps more important, general motifs embed-
ded in a powerful descriptive language on which de-
tailed experimental studies in molecular glasses have
been progressed.

It is worth commenting that there are two known
regimes of glassy behaviour. The ‘ideal’ glass transi-
tion, described by mode coupling theory [8-10], and
other simplified treatments [11-13] involves a time
scale for density correlations that grows as a power
law in density or temperature as we approach the
transition. This behaviour, whilst it is often observed
for a limited density or temperature regime for
molecular glasses, eventually crosses over so that the
time scale has an exponential dependence on (tem-
perature or density) distance from the transition. So
far, most of what has been observed in colloidal
glasses appears to be purely ideal, an issue that is
discussed in ref. [13]. One final point, by way of
introduction: much of what we will say concerns new
insights indicating that glass-like arrested states can
arise due to attractive forces that have a short range
compared to the size of the repulsive core. That there
are new phenomena to be found here is a reflection
that this limit is not too significant in molecular
liquids, and has therefore been little explored. It is
really in more complex colloidal systems, where the
particles are themselves large, and the interactions
remain of microscopic scale that this limit becomes
dominant. This observation is at the heart of the
emerging alliance between glass theory, and the
broader range of colloidal and soft matter science.

2. Colloidal systems with repulsive interactions and
the glass transition

It is natural to ask if these fundamental ideas on
more familiar glasses, themselves developing in a very
rapid and exciting manner, are relevant to soft amor-
phous systems. This potential has, explicitly or implic-
itly been addressed by many previous authors, some
in the pages of this journal [14*®,15%®]. However, so
far, the most explicit connections have undoubtedly
been made in dense dispersions that have the proper-
ties of hard sphere fluids [12,13,16%°,17°,18°,
19°,20**,58°]. The phenomena there are well known.
At volume fractions of less than 49% we find only the
fluid. Between 49 and 55% the equilibrium state is
two-phase co-existence of a fluid and an FCC crystal.
However, in preparing these dispersions it is observed
that the system is dynamically much slowed near
volume fractions of 58%, and beyond these concen-
trations it spends extended periods (dependent on the

particle size and other system details) ‘arrested’ in an
amorphous state, rather than relaxing into a crystal.
Detailed study indicates that the system exhibits many
of the properties of an ‘ideal’ glass transition as one
approaches this volume fraction [20°*]. In fact, dy-
namical light scattering data, plotted against the lo-
garithm of time, exhibits the well-known plateau on
approach to the transition [14®®] and the data have
been shown to be quite well described by MCT [20°°].
There is, therefore, precedent for conceiving of the
arrest of the simplest dense colloidal systems, as ‘glass’
transitions of some sort.

Recently, the idea of applying glass concepts and
theories to soft matter and colloidal systems appears
to be attracting a great deal of renewed attention.
Much of this interest seems to stem from the recent
studies of a very simple system, the hard sphere, to
which there is added a short-ranged attraction, and
the interpretation of the phenomena observed there
in terms of non-ergodic ideas derived from glass the-
ory [21°*]. We will describe the findings emerging
there shortly, but let us first note that although a
rather narrow range of problems have been addressed
so far, there is some justification for the emerging
interest in this field. The first point is that, in this
problem of short-ranged attraction, a new paradigm
has emerged. Thus, whilst repulsive hard sphere parti-
cles stop moving at 58% volume fractions (to form a
‘repulsive glass’) simply because they run out of space,
attractive particles can also lose ergodicity because
they ‘stick’. This is important because the range of
applicability of the idea of applying the glass paradigm
now becomes much greater, for many of the interest-
ing and important problems of soft matter and col-
loidal science where there is loss of ergodicity involve
a very significant aspect of attraction. Indeed, an early
experimental report on colloidal particles with deple-
tion-induced attractions [22°®] commented that it
might be possible to treat the particle gellation
phenomenon in terms of glass theory, initiating the
modern interest in this approach. The first calcula-
tions were made mainly on the Baxter model
[23%®,24%*], but it was realised that this was not a
well-behaved numerical limit for the non-ergodic
transition [25°®]. Subsequent calculations have focused
on the square-well [21*®], or hard-core Yukawa po-
tential [26°®], leading to an understanding of how the
arrest evolves with the range of the potential. We will
now turn to the details of the findings of the theoreti-
cal calculations that have emerged in last few years.

3. New glass phenomena driven by short-ranged
attractions; theoretical perspective

The original study of the square well and hard core
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Fig. 1. See reference [1] for a numerically accurate version of this phase-diagram, and futher discussion. (a) The phase (and arrested state)
diagram for a hard-core Yukawa potential with screening parameter b =5 in units of the radius of the core. The equilibrium phases, crystal
(FCO), liquid, and gas are in their conventional arrangements on the phase diagram for a simple substance. For colloidal systems the liquid
and gas are equivalent to (respectively) more- and less- dense colloidal dispersions. The broken curve is the dynamical arrest curve (from
MCT), To the left (or above) the arrest curve the equilibrium phases form normally. Attempts to form phases beneath the arrest curve (or to
its right) experience competition from one or more dynamically arrested state. The value of b illustrated here may be considered to be a fairly
wide well-width, leading to a phase (and state) diagram that is closer to, though still somewhat shifted from, the typical van der Waals
scenario. (b) As for (a), the phase (and state) diagram but for b =30. The liquid-gas bimodal is the solid curve, and the broken curve
underneath is the spinodal. The common point (black circle) is the critical point of the liquid gas coexistence, which is itself metastable) Here
the liquid phase is entirely submerged by the fluid-crystal curve (x), as well as the dynamical arrest curve (circles), due to the narrow
well-width. Indeed, the glass is dominated by attractions for low volume fractions, and this is now viewed as equivalent to the particle gel. The
solid-liquid coexistence region now becomes quite strongly distorted as attractive interactions play a stronger role. The three regions where
potentially different crystallisation kinetics are expected are marked (D—(II1). At low volume fractions part of the fluid-crystal coexistence
region lies outside the dynamical arrest curve(region I), and nucleation of crystals in this region may lead to better crystals, as discussed in
Section 6 of this article in relation to the question of protein crystallisation. Region I may be related to the so-called ‘crystallisation slot’

discussed in reference I, and references to the protein crystallisation literature referred to therein.

Yukawa potential [21*®] has subsequently been ex-
tended, and more complete phase- and state-diagrams
worked out for closely related potentials [1°®,27,28°°],
as well as mechanical [29°] and viscoelastic properties
near the arrest [30,31]. One important observation is
that the essential elements of the story are the same
for a wide variety of potential shapes, in the limit of a
short range [32]. Results for the regime where the
attraction is short ranged may be summarised as
follows. We observe that for such systems there are
two important length-scales, the range of the hard
core, and the range of the attractive well. For the
square well these are well defined, otherwise one
must take steps to establish a reasonable definition. It
transpires that the ratio of the attractive to the repul-
sive range is the important parameter. When this
ratio is large, we expect typical behaviour of a van-der
Waals fluid with the solid, liquid and gas of a simple
substance (solid, more-and less-concentrated phases
in colloidal dispersions). However, when the range of
the attraction narrows, the dynamical arrest that was
found at 58% volume fraction becomes temperature
dependent, and moves to lower density. In fact, it
transpires that a separate and distinct glass, driven by
the strong short ranged attractions emerges [1°®,21°®],

and under certain circumstances this state exhibits
non-equilibrium co-existence with the repulsive glass
alluded to above. We return to the details of this
co-existence later, and focus now on the nature of the
attractive glass, which we identify as the gel state (Fig.
la,b).

The idea of an attractive glass is simple enough,
and it is natural that it should compete with the liquid
when the range of the attraction decreases. However,
in reading what follows, it should be borne in mind
that the energy-entropy competition we refer to is
local, rather than true thermodynamic equilibrium.
There is no sense in which these gels (glasses) are
thermodynamically stable. Entropy due to very local
motions within the cage formed by neighbouring par-
ticles is present in both a liquid and a solid at compa-
rable density. The distinguishing feature is that
longer-ranged diffusive motions in the liquid confer
additional (configurational) entropy, and this is lost
when a colloidal glass is formed, thereby rendering
the glass a non-equilibrium, though stable trapped
state. The breathing movements of the cage, coupled
to the longer ranged rearrangements are central to
diffusion. Particles in the short-ranged attractive fluid
benefit from the attractive interaction only whilst they
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remain within each other’s attractive well. Evidently,
when the range of that attraction is sufficiently small,
those cage rearrangements required for liberating a
caged particle result in particles moving outside each
others attractive range, and the loss of that attractive
energy, this loss being more than the gain from con-
figurational energy gained from longer ranged mo-
tions. The system solidifies into an ‘attractive’ glass.
This argument may be viewed as a sort of generalisa-
tion of the Lindemann criterion in more conventional
systems. It is unsurprising, therefore, that the primary
control parameter determining glassification in attrac-
tive systems should be the range of the attraction.
However, the simplicity of the argument, and its gen-
erality, suggests that this should be a general pheno-
menon. Thus, we may expect the energy of short-
ranged attractions to compete directly with the con-
figurational part of the entropy, leading often to solid-
ification, ‘gellation’, coagulation and the other typical
processes observed in soft matter systems.

4. Origins of re-entrance and novel dynamical
behaviour near glass coexistence

From the general point of view of the glass
paradigm, outlined in the introduction to this article,
there is a group of phenomena that lead to clear, but
unusual, predictions and are therefore highly suitable
for an interesting dialogue between theory and exper-
iment, and potentially validation of key elements of
the overall picture. Here we outline the phenomena,
and later, in Section 5 give a description of the
current experimental situation.

Apparently independent of the detailed nature of
the shape of the interaction potential, there is a
regime of attractive potential well widths where the
attractive and repulsive glasses co-exist. Also, the
coexistence curve terminates within the glass regime
in a ‘higher order’ dynamical behaviour (A3) at which
the attractive and repulsive glass become equivalent
[21°®]. This phenomenon is reminiscent of the critical
point, relevant for equilibrium phases, where two
phases merge to become one with an accompanying
singular behaviour of the thermodynamic derivatives.
Here instead the two phases are dynamically arrested,
and merge in a novel (logarithmic) dynamic singular-
ity that should be observable in dynamical scattering
experiments on approach from the fluid. One may
continue this idea of looking at special points by
identifying that particular well-width for a particular
potential at which the coexistence curve of attractive
and repulsive glasses shrinks to zero length, merging
with the fluid-glass curve itself and resulting in a
single fluid-glass curve. In both cases, there results a
logarithmic singularity in time where dynamical corre-
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Fig. 2. The typical arrangement of liquid and dynamically arrested
(glassy) states for narrow well-widths. This particular diagram is
appropriate for the square well (the ratio of attractive well to core
diameter is 0.03), but it is now known that the overall picture is
unchanged for a number of quite different well-shapes (square well,
Yukawa and others). Note that considerably larger screening
parameters would be required to see this phenomenon than b = 30
exhibited in Fig. 1. Prominent features to note are as follows.
Firstly the presence, and co-existence, for a range of temperatures
and densities of two different arrested states (‘glasses’), one domi-
nated by repulsions, and the other by the attractive glasses. These,
within the theory, are differentiated only by the long term limit of
the density correlation function (so called Edwards-Anderson order
parameter) which parameterises the degree of freedom of move-
ment in the glass, after long time periods. The long-time average
structure is however identical since the structure factor is identical
in the two phases for any point on the glass-glass coexistence curve.
These two states were subsequently named respectively the repul-
sive and attractive glass. The glass—glass ‘coexistence’ curve termi-
nates in the A3 singularity at which the glasses become identical.
Note that for a range of densities one can begin in a glass
(attractive) at low temperature, pass to a liquid, and then re-enter
another glass state (repulsive)at higher temperature. This re-en-
trance behaviour may also be viewed as an anomalous destabilisa-
tion of the glasses at high density, the liquid occupying a small strip
of parameter space that would normally have been viewed as solid.
This is attributed to the cancellation of the leading effects of
attractions and repulsion’s in this restricted regime. Approach to
the vicinity of the A3 singularity within this re-entrant regime leads
to a logarithmic decay of the density correlations, a unique and
distinctive signature of existence, and proximity to that singularity
(see text).

lations are extremely long-lived, and without a natural
definition of elementary time-scale accompanying the
process.

It is important to note that all these phenomena,
re-entrance of the liquid near glass-glass coexistence
and logarithmic relaxation of dynamics in the fluid, on
approach to the A3 singularity, are a result of the
same underlying mechanism of competition between
attractions and repulsions in the regime where they
nearly balance each other. We should expect to see
all these phenomena occurring together in experi-
ment (Fig. 2) (see ref. [29°]).

Finally, whilst these predictions began with theoret-
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ical calculations [21°®], molecular dynamics has now
begun to confirm theory in detail. That particle gella-
tion is related to the dynamical arrest and new evi-
dence for logarithmic decay of correlation in the
vicinity where gellation and hard sphere arrest com-
pete has recently been reported [28°®]. Hard sphere
molecular dynamics calculations have been carried
out to make direct comparisons between theory and
simulation and the re-entrance phenomenon observed
[33°]. In the most recent calculations, a high degree
of agreement between most details of the theory and
simulation has been reported, again for the square
well [34°°].

The basic conceptual framework therefore now
seems to be taking shape, and the agreement between
different models, theoretical techniques and simula-
tions for the spherical potentials is reassuring.

5. Reservations and open questions in relation to
conceptual framework

It should not be thought that the broader concep-
tual framework outlined here is without problems,
and can be accepted without reservation. There are
problems, but it is as yet too early for these to be well
reflected in the literature. For example, the idea of a
glass, driven by attractive interactions should encom-
pass particle gels formed at low and intermediate
volume fractions. On the other hand, such gels are
apparently often quite weak, decomposing quite
rapidly, an aspect not described by current glass the-
ory. Also, the presence of attractive interactions means
that for intermediate densities spinodal decomposi-
tion and phase-separation kinetics intermingle with
arrest. These issues are not well described by mode
coupling theory, although devices for slowing the
phase separation in order to study the low-density
glass have been presented [28*®]. On the other hand,
we consider this limitation of the theory to be a
somewhat understood and temporary limitation, and
as one learns how to express ideas of glass ageing in
such colloidal systems, these issues will be resolved
[35,36].

At present there are deeper questions that are still
open. For example, we have noted that hard core
colloidal systems seem to be well described by MCT,
and other model systems [12]. However, we know that
the this same theory gives an incomplete description
of most true glasses, where characteristic time-scales
grow exponentially on approach to the arrest, rather
than the typical power law dependence of ideal glass
transitions described by mode coupling theory. We
may wonder whether MCT is also quantitatively satis-
factory for more complex soft matter systems, or
whether these also have non-ideal behaviour. Reflec-

tions on these open questions are just beginning to
emerge [13].

6. Short-ranged attractions and the consequences for
model experimental systems

In a certain sense in Section 3 and Section 4 we
have merely given a theoretical rationale for systems
that have been well-known to gel, glassify, or other-
wise solidify into an amorphous state for many years,
and our comments on the experimental literature
must be seen in that light. However, the new experi-
mental interest is partly driven by the fact that the
new conceptual framework that has arisen makes
many detailed and quite subtle predictions for these
phenomena that had not been appreciated before,
and renders more detailed study of interest.

We have already alluded to earlier studies of spher-
ical silicium oxide coated with stearyl alcohol, dis-
persed in benzene [22°°]. Here a broad understand-
ing of the particle gel state has been displayed, in
particular the relationship of the dynamical arrest to
the more dense-less dense colloidal phase-separation
was discussed. However, even earlier [37°], there were
puzzling indications that a dispersion of microgel par-
ticles, then considered to be in the good solvent
regime, might possess non-standard dynamical be-
haviour. In a rather elegant conclusion to this story,
these authors have pointed out that the original sys-
tem involved also some unseparated dissolved free
polymer leading to effective depletion forces and short
ranged attraction, thereby enabling the earlier experi-
ments to be explained. Further studies [38°®] have
indicated that indeed the addition of free polystyrene
to cross-linked polystyrene microparticles leads to re-
entrance, and (their figure 4), a reasonably large
window (roughly two orders of magnitude) where the
characteristic logarithmic decay of correlations per-
tains.

Another interesting and related type of system in-
volves (for example PMMA) colloidal particles in the
presence of free polymer. A long record of study of
this type of system has been developed [39-41°,42],
and it is upon this that many ideas on the role of
short ranged attractions in colloidal systems have
been built. With the emergence of the glass paradigm
this strand of activity has culminated in a synthesis of
experiment, simulation and theory that, combined,
provides compelling evidence for the re-entrant sce-
nario, associated with logarithmic correlations [43®®].

In an interesting series of reports on Pluronic L64
copolymer micelles in solution, extensive evidence is
displayed for the effects of an attractive potential
between the micelles, including the presence of a
lower consulate point, and percolation transition.
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These experiments have the potential disadvantage
that the L64 system is more complex than some of the
microgel or colloidal particle studies, but they provide
access to an interesting particle size range, and are
intriguing in that they provide evidence that the
paradigm will be applicable to a broader range of
systems. For this system, studies using dynamical light
scattering yield a reasonably large time-window where
anomalous dynamical relaxation is observed [44°®]. A
well-defined logarithmic decay was detected over two
decades in time, along with a power-law decay of the
von Schweidler type, both signatures of the A3 type
singularity described earlier. In the most recent arti-
cle [45°°], the same system has been studied using
neutron scattering and the first attempts have been
made to carry out a quantitative connection of phase
diagram, dynamical arrest curves (figure 14 of [45°®])
and scattering data to the theory, based on the square
well. The authors also give very preliminary evidence
of the appearance of a glass—glass transition.

There are, therefore, three systems in the experi-
mental literature where claims have been made that
the re-entrant phase diagram, logarithmic density cor-
relations, and other expected attendant features of
the glass paradigm, have been observed. The first
steps in establishing the paradigm experimentally have
been taken.

7. The glass paradigm applied to more complex
colloidal and soft-matter systems

It should not be thought that the simple particulate
dispersions or micellar systems discussed above are
the only potential candidates to see this type of be-
haviour. Indeed, systems such as polystyrene—polyiso-
prene or styrene—isoprene copolymer micelles in the
presence of free homopolymer melts offer potentially
useful alternative systems for this type of study
[46-49]. Apart from the new range of rheological and
other techniques that can be applied to such systems
they are of interest in extending the paradigm into
more complex systems. Other very recent observa-
tions on star polymers have indicated that some as-
pects of the paradigm may extend even to softer and
longer ranged potentials [50]. Thus, addition of free
polymer is seen to drive what is apparently a star-
polymer repulsive glass back into the fluid as the
repulsions are weakened by depletion interactions. It
is too early to tell if this is indeed the correct inter-
pretation of these interesting results, and if there is
some accompanying higher order dynamical singular-
ity associated with this system.

There has also been, for some time, a stream of
thought that globular proteins possess a short-ranged

potential in comparison to their size [1°®41°,
51°*,59°°]. This raises the rather interesting and im-
portant question of whether simple models from col-
loidal science such as those discussed above can be
helpful in understanding just why such proteins take
so long to crystallise, and having done so, often pos-
sess a low degree of crystallinity. This approach seems
to be somewhat promising, though far from complete.
Very full studies, predating much of what is discussed
here, have lead to a clear picture of the equilibrium
phase diagram for short-ranged potentials, including
the first report that there appear to be two crystalline
states present, one stabilised by repulsions and the
other by attractions, and a transition between them
[52°,53°°,60°]. Building on this work, and the glass
paradigm, an overall picture has been built of the
origin of the ‘gel’ curve in protein crystallisation, and
its possible role in producing crystals of low quality
[1%®,54%,55,56®]. It seems, at the present time, that
the interplay between theory, simulation, and experi-
ments on model colloidal systems may lead to a
deeper understanding of the challenges currently ex-
perienced in producing good quality crystals.

8. Conclusions

The era of application of equilibrium statistical
mechanics to colloidal and soft matter systems has
been highly successful. Hints from many scientists
have now combined to indicate that non-equilibrium,
non-ergodic systems may now be treated within an-
other framework of dynamical arrest or glass transi-
tions, albeit themselves under development. In fact,
as the picture evolves, colloidal science may well play
a leading role in that development.

Admittedly, our ideas are as yet based on relatively
few examples of systems that have been studied theo-
retically, with simulation, and with simple model col-
loidal systems. However, based on these and relying
on our growing knowledge of more simple molecular
glasses, certain expectations of considerable general-
ity have begun to emerge. Thus, there is reason to
suppose that many of the complex systems familiar to
colloidal and soft matter science that are ‘arrested’
may ultimately be interpretable within this paradigm.
The development of a community extending across
the relevant disciplines and experience is in itself, a
promising event, and bodes well for future ex-
plorations. It is pleasing to note that colloidal and soft
matter science may play a leading role in the develop-
ment of our fundamental understanding of one of the
most challenging arenas of condensed matter science.
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