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Basic Tradeoffs for Energy Management in
Rechargeable Sensor Networks

Rahul Srivastavaylember, IEEEand Can Emre KoksaMember,|EEE

Abstract—As many sensor network applications require de- convergence to the optimal achievable uﬂity-lereM is the
ployment in remote and hard-to-reach areas, it is critical O total capacity of the energy source. Based on the insights
ensure that such networks are capable of operating unatteret! developed, we address the problem of energy management in

for long durations. Consequently, the concept of using nodewith - . )
energy replenishment capabilities has been gaining populiy. the presence of a finite data buffer. \{Ve}r(ng)dlfy our basic gnerg
% convergence to

However, new techniques and protocols must be developed tomanagement scheme to achiev®
maximize the performance of sensor networks with energy the maximum utility achievable by a scheme that has access to

replenishment. Here, we analyze limits of the performance fo . .
sensor nodes with limited energy, being replenished at a viable an infinite data and energy buffers. Heitis the data buffer

rate. We provide a simple localized energy management schem SIZ€. In addition, this scheme achieves an exponentialydeca
that achieves a performance close to that with an unlimited Wwith M for the battery discharge probability and a polynomial
energy source, and at the same time keeps the probability of decay withK for the data loss probability. To evaluate these
complete battery discharge low. Based on the insights dewgded, decay rates, the main tools we use are ldrge deviations

we address the problem of energy management for energy- theory and diffusion approximations

replenishing nodes with finite battery and finite data buffer . )
capacities. To this end, we give an energy management scheme 1 he added dimension of renewable energy makes the prob-

that achieves the optimal utility asymptotically while keging lem of energy management in sensor networks substantially

both the battery discharge and data loss probabilities low. different from its non-replenishment counterpart. For emd
with replenishment, conservative energy expenditure reay |
|. INTRODUCTION to missed recharging opportunities due to battery capacity

o . . ) limitations. On the other hand, aggressive usage of energy
Advances in wireless networking combined with data acquljay cause battery outages that leads to lack of coverage or

sition have enabled us to remotely sense our environtent [{ynnectivity for certain time periods. Thus, new technigue
[2]. As these applications may require deployment in hargh st pe developed to balance these seemingly contradictory
to-reach areas, it is cr|t.|cal to ensure that such networ.ks Yoals to maximize performance. Here, auain goalwill be
capable of operating with full autonomy for long durationgy jgentify the performance limits of sensor nodes with ggier
The lack of a continuous power source in most scenarios ghienishment and provide guidelines to approach theseslim
the limited lifetime of batteries have hindered the depleymn Many fundamental wireless communication and networking
of such networks. However, d_ev_elopm_entsin renewable §neigoblems can be stated asility maximization problems,
sources[[BH[9] suggest that it is feasible for sensor netwo gpject to energy constraints. The utility function can be t
to operate unattended for extended periods. These rer‘ew"{‘moughput (e.g., in energy efficient routing), the proligbi
sources of energy typically provide energy replenishmeat a¢ getection of an intruder (e.g., in coverage) or the nekwor
rate that could be variable and dependent on the surroufsiime (e.g., in sleep-wake scheduling) or the achiewabl
ings. Examples include, self-powered sensors that rely phe of reliable transmission in basic wireless commuitcat
harvesting strain and vibration energies from their wogkinhese problems have been mainly addressed for stations with
environment([4], as well as sensors with solar célls [S]-[7] ynjimited and/or non-replenishing energy sources. Here, w
In this paper, we analyze tHamits of the performanceof gqdress the problem of maximizing a utility function of the
networks comprised of sensor nodes with limited energyideiyata transmission rate in the presence of energy replepishm
replenished at a variable rate. We provide a simple loalizghe solution of the optimization problem requires stocicast
energy management schethat achieves a performance, closgptimization techniques involving high computational Bve
to the optimal scheme that has access to an unlimited enef@ds that might be unsuitable for sensor nodes. Consdguent
reservoir. Indeed, we show that, if the performance can QR will focus our attention on simple localized solutionatth
measured by a general utility function of the energy, undgghjeve near-optimal or asymptotically optimal perforeen
mild assumptions on the replenishment process, it is plessiye use tools from large deviations theory and diffusion
to observe a polynomial decay for the probability of complepproximation to find closed-form expressions for the data
battery discharge, and at the same time achie9 él‘ﬁ#) loss and the battery discharge probabilities. These tgdesi
allow us to analyze our schemes under mild assumptions on
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r(t) (t) _ .
% U(e®(t)) of the consumed energy’(¢). We define the time
MB(t) 0 average utility,
Fig. 1. Energy source with a replenishment rafe).

U (r) = = S U(S(0). @

ent problems in networks with energy replenishment. Kagies to maximize its long-term average utilityjS =

et. al., [10] have proposed an activation scheme for reeharg,,, US(r), subject to battery constraints:
able sensors that maximizes the network-level utility ofsse

ing networks. The utility function in[[10] depends on the (s U (2)
number of active sensors. Gatzianas, et. al.,] [11] use back ST .
pressure policies to maximize the network flow of informatio subject to B(t) = max {0, min{M, B(t — 1)
in networks with energy replenishment. While [10] andl[11] +r(t) —eS(t — D}
look at the total system utility, we will focus on the an- and e5(t) < B(t).
alyzing node-level performance leading to localized eperg
management schemes. Liu, et. dl.,][12] have derived a patté¥n€ approach to solving this optimization problem is by gsin
control scheme similar to the one described in this work. fMarkov decision process (MDP) techniques. Since solving
addition to providing stronger convergence results than tMDPs is computationally intensive, these methods may not
one in [12] with sole battery control, we also consider the suitable for computationally-limited sensor nodes. -Con
effect of a finite data buffer in this paper. Kansal, et. &3][ Sequently, we seek schemes that are easy to implement and
introduce the concept of energy neutral operation, whetein Yet achieve close to optimal performance. The next lemma
energy consumed by a node is less than or equal to the endity¢s an upper bound for the asymptotic time-average yutilit
harvested. Vigorito, et. al.[ [14] extend the idea of energighieved over all ergodic energy management policies.
neutral operation to propose an ngorithm that attempts t@mma 1. Let U*° be the solution to Problent](2). Then,
keep the battery state close to a fixed level and at the same’ < U(w)
time stabilizes the duty cycle in order to maximize system
performance. Sharma, et. al., [15] have proposed a thraughp The proof of this lemma, given in Appendix]A, uses
optimal energy management scheme for energy harvestilgfisen’s inequality and conservation of energy arguments.
nodes. However, these works [13]9[15] do not contain dmmall tells us that for any ergodic energy management
analytical evaluation of the battery discharge or the dass | schemeS, U® < U (). With an unlimited energy reservoir
probabilities for their energy management schemes. (i.e., M = oo) and average energy replenishment yaté one

The outline of this paper is as follows. We first state thésese®(t) = pforallt > 1, this upper bound can be achieved.
general form of the utility maximization problem in SectBh However, if M < oo, achievingl'® = U (u) using this simple
and show ways to achieve the maximum achievable utility wi§fheme is not possible. Indeed, due to finite energy storage
replenishing sources. In Section Il we add a finite buffeths and variability inr(¢), B(t) will occasionally get discharged
problem and study energy management schemes that achke/@pletely. At such instances? (t) has to be set t0, which
optimal utility asymptotically while keeping the probatgs Will reduce the time-average utility.
of battery discharge and data loss low. We numerically eval- The question we answer next is, “how close can the average
uate the performance of our energy management schemedlility U° get to the upper bound (u) asymptotically, as

SectionT¥. We wrap up with conclusions in Sectioh V. M — oo, while keeping the long-term battery discharge rate
low?”
Il. ACHIEVING MAXIMUM UTILITY WITH A
FINITE-BATTERY CONSTRAINT B. An Asymptotically Optimal Power Allocation Scheme
A. System Model and Problem Statement In this section we show that there is a trade-off between

Fig. [ shows the energy source (or the battery) of a nodgehieving maximum utility and keeping the discharge rate lo
The total capacity of this battery 8/ units of energy. We First, we make some weak assumptions on the replenishment
denote the total available energy in the battery34s), where Process(t), which we will be using throughout this paper. In
t is the discrete time index. The battery replenishes at a r@@/ticular, we assume that the asymptotic semi-invariagt |
r(t). The replenishment process(t),t > 1} is assumed MOment generating function,
to be an ergodic stochastic process with a long term mean - 1
lim, 00 % >, r(t) = p. A power allocation policyS draws An(s) = li_>m - logE

A . . T o0
energy from this battery at a raté(¢) to achieve certain tasks.
The success of the node in achieving these tasks is measiged (1) exists for s € (—o0, Smax), fOr SOME Spayx >

in terms of a concave and non-decreasing utility fun&iom)_ We also assume that the asymptotic variarce =

lim Lvar(Y7_, r(t)) of r(t) exists. Note that, in prac-
2Note that, in many practical scenarios, it is reasonablestume that r—oo VAN 7(1)) (t) P

the utility function is non-decreasing and concave, simeeet is diminishing tige, the rech_arging process is not nelce_.ssar"y Statiomve
returns for increasing power. this assumption does allow the possibility that the siatisbf

exp (s Z r(t)) ] ) (3)

t=1



U(e3 (1))
discharge probability. We note that the while the order ef th
U+ polynomial decays can be made arbitrarily large, it comes at
[l —— 3 the expense of slower convergence (by some constant factor)
: to the maximum utility function.
Here, we illustrated that with a simple scheme, it is possibl

to achieve desirable scaling laws for the performance of a

o B
5 i o given task, under the assumption that the asymptotic moment
&7 » generating function of the replenishment process exists. T
P eS(1) illustrate the theorem we consider a specific example.
Fig. 2. With schemeB, utility alternates betweeb/+ and U~ Example 1 Capacity of an AWGN Channel

We study the basic limits of point to point communication
r(t) has variations (e.g., due to clouds and the solar powgfin finite but replenishing energy sources. For simplicitg
at different times of the day), it rules out the possibility oconsider the additive white Gaussian noise (AWGN) channel.
long-range dependenciesitt). At time ¢, the transmitter transmits a complex valued block

From the discussion in previous section, we can infer thgfector of symbols)X(¢) and the receiver receiveg(t). We
by choosing a battery drift that goes to zero with increasingye,

battery size, one might achieve a long-term average uthiay Y(t) = hX(t) + W(t), (5)

is close toU (i) as M increases. However, smaller drift away

from the empty battery state implies a more frequent occukhere the channel gaih is a complex constant antv (t)

rence of the complete battery discharge event. In the fatligw is additive white (complex) Gaussian noise with two sided

theorem, we quantify this tradeoff between the achievat@wer spectral densityVy/2. We define the channel SNR as

utility and the battery discharge rate, asymptotically fre t ¥ = E [|2[%] /No. The maximum amount of data that could be

large battery regime. In this regime, the battery siZés large reliably communicated [17] over this channel with an amount

enough for the variations in(t) to average out nicely over theof energye(t) at timet is,

time scale thatB(¢) changes significantly. Consequently, we _ .

now define the Io(ng—term battery discharge rate as the pilebab Cle(t)) = logz (1 + e(t)y) bits/channel use  (6)

ity of discharge, i.€.pgischargd M) = limTﬁoo%Z;’ilIf(t), assuming the block size is long enough so that sufficient

where the indicator variablg? (t) = 1 if B(t) = 0 and is averaging of additive noise is possible. Thus, the rate attwh

identical to0 otherwise. reliable communication can be achieved is a concave non-
Next, we show that one can achieve a battery dischargecreasing function of the transmit power and it can be viewe

probability that exhibits a polynomial decay with the batte as our utility function. Consequently, using a constant gow

size, and at the same time achieves a utility that approachgeshe maximum utility ofC' = C(u) can be achieved, which

the maximum achievable utility agog M )?/M?2. is the famous AWGN channel capacity result.

Theorem 1. Consider any continous, concave and non—.NOW’.We generalize the AWGN capacity result to the case
. L . 92U (e) with finite energy sources. Suppose that we want to transmit
decreasing utility functlorU(e(t)) such that Oe? the maximum amount of data over the AWGN channel, using
for all ¢ > 0. Given any5 > 2, there exists a power 4 patery of energy capacity/ and a replenishment ratet).
allocation schemé such that the associated battery discharg@ye assume that each time slot is long enough for sufficiently

< 0

probability piscrargd M) = ©(M~7) and U(n) = U = |5ng code blocks to be formed. We substitaté ) with C(-)
0 ((M)Q _ in Eq. @) to get the relevant optimization problem. With an
M unlimited energy sourceM = oo) of limited average power

We give a brief sketch of the proof, details of which caw, the maximum achievable long term average rate, i.e., the
be found in AppendiXB. Our proof is constructive as wé&hannel capacity i€'(u) = log,(1 + uy) bits/channel use.
show a strategy that achieves the asymptotic convergete= r8y using the energy management schefngiven in Eq. [(4),
given in Theorenil. Our scheme is motivated by the buffé@n average rat€’® can be achieved such thél(y) — C% =

control strategy introduced in [16] to achieve the neairmat © (1‘)%47]‘2“2 while the battery discharge probability follows

distortipn for variab_le rat_e lossy compression. Considher tpclfischargéM) = O(M~P) for somej > 2.
allocation schemés in which
eB(1) = {M — 3%, B(t) < M/2 (4 C- Basic Limits of Power Allocation Schemes
p+3%, B(t) > M/2 To understand the strength of TheorEn 1, we note that it is

for somesB > 0. As shown in Fig[R, the instantaneous utiIity.nOt tnwa_llto a?“'?"e dec_aymg dlscha_rge probability ar@xm
imum utility with increasing battery size. In fact, an ergﬁi

associated with SchemB alternates betweetv ~ and U™, . .
depending on the battery state. By choosiig— 852 g M €Nnergy management scheme cannot achieve exponential decay
* K

i o o
for some > 2, we show that long-term maximum utility'n discharge probability and convergence (even asymatibtjc

U(p) can be a.Chieved asymPtOtigally while achieving decay,spy ergodic energy management schem¥(t) is the one that satisfies
as a polynomial of arbitrarily high order, for the batteryim, .. 137, e5(t) =E [e5(t)]




to the maximum average utility function simultaneously. We 5
formalize this statement in the following theorem. 0f o

8
Theorem 2. Consider any continous, concave and non- 5
decreasing utility functioi/(-). If an ergodic energy manage- 101 £
ment scheme has a discharge probability§hagd M) = 15 =
O(exp(—a.M)) for some constanty. > 0, then the time E
average utility,U®, for Schemes satisfies/ (1) —U® = Q(1). 20 ©

o5 drift in queue state
The proof of this theorem is provided in AppendiX C and -5 -4 -3 -2 -1 0 1

it is similar to that of Theorerl1. We applgrge deviations
technique to the net drift of the battery process to find ttfgd: 3. Possile drft directions o) (1), 5(t)) for an ANGN channel of
decay rate 0pcnagd M) With M. Jensen’s inequality is then ™" - Here, at fimer () =0, a(t) = 0.

used to lower bound the difference betwdéfu) andUS. data transmitted subject to battery and data buffer cansira
So far, we have shown how to maximize a concave non- 17
decreasing utility function subject to battery constrainAt max lim — ZUD(C(e(t))) (7
S e(t), t>1 T—00 T
every pointin time, one should choose a power level as ctose t t=1
the replenishment rate as the battery constraints allowttdad subject to B(t) = max{0, min{M, B(t — 1)
way one can asymptotically achieve a performance very close +r(t) —elt—1)}}

to that with unlimited energy sources. The main limitation )
of this approach is that it may not be feasible for some Q(t) = max{0, min{K, Q(t - 1)
applications in practice. For instance in many sensor ngtwo +a(t) — Cle(t — 1))},
applications, data is stored in finite buffers for transimiss e(t) < B(t) and Cle(t)) < Q(1).
Since schemds does not adapt to the buffer state, this ma ] ) N )
lead to data losses. To overcome these limitations, in tke néere Up(C(e)) is a non-decreasing concave utility gained by

section, we investigate energy management schemes with fiiansmittingC e) bits. SinceA < C'(u), we know that/p(A)
buffer and battery constraints. is an upper bound on the achievable long-term utility with

any energy management scheme. This statement can be proved
using Jensen’s inequality, following identical steps asyioof
of Lemma[l and we skip it to avoid repetition.

I11. ACHIEVING MAXIMUM UTILITY WITH FINITE

BUFFER AND BATTERY CONSTRAINTS B. An Asymptotically Optimal Energy Management Scheme
Solution of Problem[{7) jointly controls the data queueestat
A. System Model and Problem Statement and the battery state to avoid energy outage and data overflow

while maximizing the utility. The main complexity in such an
In this section, we extend the problem introduced in Segpproach stems from the fact that the drifts@(ft) and B(t)
tion [l to the case when data packets arrive at a node agg dependent. In Fif] 3 we illustrate the connection betwee
are kept in a finite buffer before transmission. Hence, thRe service rate and the energy consumed at a time $tot
task is to transmit packets arriving at the data buffer withoan AWGN channel with SNR dB anda(t) = 0, r(t) = 0.

dropping them due to exceeding the buffer capacity. We defipgr instance, to provide 3 units of service, the node needs to

Q(t) as the data queue state at timjeand the data buffer consume~ 18 units of energy.

size is K < oco. The data arrival process(t), represents  with this dependence, a critical factor one needs to take

the amount of data (in bits) arriving at the data buffer in thigto consideration is the relative “size” of the data buffith

time slot¢. The procesga(t),t > 1} is an ergodic process respect to the battery. In the sequel, we assuiiaege battery

independent of the energy replenishment pro¢e$s. ¢ > 1} regime where the time scale at which changes occuBin) is

andE [a(7)] = A. We assume that the process) has a finite mych larger than the time scale at whi}it) varies. Namely,

asymptotic variancer, = lim. o zvar(3;_; a(t)). The within the duration that some change occursift), Q(t) may

energy replenishment model is the same as used previouifyetuate significantly. Technically, for an AWGN channethvi

We useC(-) as given in Eq(6) as the rate-power functiomn SNRy, this assumption is equivalent fid > 1 (2* — 1)K,

for the wireless channel and assume that data is served.@t the total amount of energy in the battery is much larger

that rate as a function of the consumed enet@ly at time than that required to serve a full data buffer worth of pagket

t. We also assume that < C(u), which is a necessary |ntuitively, in large battery regime, an energy controlalg

condition for system stability[ [15]. Without this conditio rithm should give “priority” to adjusting the queue state to

there exists no joint energy and data buffer control poli@tt achieve a high performance. Consequently, it should choose

can simultaneously keep the long-term battery discharge an¢) such that the drift ofQ(¢) is always toward a desired

data loss rates arbitrarily low. queue state even though this may cause battery drift to be
The objective of an efficient energy management schemegative. Since battery size is large, such temporary ivegat

in this case is to maximize the average utility function of thdrifts are expected to affect the battery discharge ratg onl
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Fig. 4. Relation betweed (), JY) and 65”. _ _
state (i.e.,/2), the battery is always regulated towards full

state (i.e.,\). State equation fo€(t) is given by,
minimally. With these observations, we state the following 1
theorem, which indeed verifies our intuitions. This theoremQ(ltJr )

shows an asymptotic tradeoff between the achieved utility a min{K, Q(t) + a(t) — A — 5D}, Q(t) > K/2 -
the long-term rates of discharge and data losg<as+ oo. | max{0,Q(t) + a(t) — A+ 0@}, Q) < K/2' (10)
In this regime, the data buffer siz& is large enough for

the variations ina(t) to average out nicely over the timeand the state equation fd@(t) is given by,

scale thatQ(t) changes significantly. Consequently, we nOWB(t +1)

define the Iong -term data loss rate as the data loss prdiyabili

i.e., Poss(K) £ lim, o £ =) PP 1IQ( ), where the indicator | {min{M, B(t) +r(t) — p + 65”}}*, Q) > K/2
variable Z¢(t) = 1 if Q(t) = K and is identical to0 {min{M, B(t) + r(t) — p+ 65+, Q) < K/2°
otherwise. (11)

Theorem 3. Consider any non-decreasing concave utility\,here{a}+ = max{0, a}.

2

function Up(-) such that ”‘57;0(6”\ < oo foralle>0.  while p2(K) can be found using a method similar to

For any A\ < C(u), given anyf3gp > 2, there exists an the one used in Theorel 1 (this time for the data queue) to

energy management sche@ethat achieves a data loss prob-calculatepf.nad M), calculation ofpdlscharggM requires a

ab|I|ty ploss( ) = O(K~#2), battery discharge probability careful analysis. More specifically, the battery drift inartic-

Pmscharge(M = O(exp(—agM)) for someag > 0 and ular time slot depends on the data queue state, which makes

Up(\) —U2 =0 ((103;12()2) under the large battery regime. the application of large deviation techniques for caldntat
pdlschar (M) difficult. To show the desired order results, we

Theoren{B states that it is possible to have an exponentr@lnsform the problem in two steps as follows:

decay (with M) for the battery discharge probability and gT1) We construct a sequence of arrival rates such that

polynomial decay (withK) for the data loss probability and ¢'(,.). In this limiting regime, from Eq.[{9)5{",s{" | 0 and

at the same time achieve a time average utility that appesachences(® | 0, for which we also use a sequencefofvalues

the upper bound on the achievable long-term utility,(\), as  that increase tac. As a result, both the battery and the data

(log K)?/ K. Note thatUp (\) can only be achieved with anqueue will operate in thdieavy trafficlimit. Consequently,

infinite battery and data buffer sizes. We provide an oufiare e apply thediffusion approximatiorto the joint queue and

the proof, a full version of which can be found in Appendix Dpattery state process. The underlying continuous prosess i

The proof for this theorem is also constructive as we firstdimensionalreflected Brownian motiofRBM), where we

present Schem@, and then derive the performance metricgpel {(Q(t),B(t)), t > 0} as the diffusion approximation

for this scheme. for the joint queue length and battery process. The reflestio
Consider the energy management sche&hevhere occur at the empty and full queue states, i@(t) = 0 and K
[y 5 Q) > K/2 and at the empty and full battery states, iRB(t) = 0 and M.
eQ(t) = { oy - , (8) Note that, the probabilities for hitting the boundariesadted
p=0" Q) <K/2 for the associated RBMP (Q(t) = K) andP (B(t) = 0) are

(r) (r) identical toP (Q(¢t) = K) and P (B(t) = 0) respectively in

and the driftsj; ’ andd,, ’ are chosen to satisfy the relatlonshu%h heavy traffic limit (Chapter 5[18]). Furthermore, since

Oy — §§r)) A=A C(u— 62r)) _ 5@52 10§(K. 9) the heavy t_raffic I_imit poses a worst case for the probabediti
under consideration, the order results of the for()@hown

From Fig.[4, we note that this choice of energy drifts corrén the heavy traffic limit hold for all\ < C'(u).

spond to a queue drift ¢5(*)| = BQ&?Z%, toward the state  As we show in AppendiXD, with Schem@, Q(¢) is has

K /2, regardless of the queue st&ét). The queue and batterya symmetric distribution around sta@(t) = K /2. Further,

drifts with schemeQ are illustrated in Fig.]5. We observe thawvhenever it reache€)(t) = K/2, it can go above or below

even though Schem@ regulates the data queue to a desire@(t) with equal probability. Consequently, we defi@g, (1) =



|Q(t) — K/2|+ K/2,i.e., the RBM associated with the queue
process in the upper half of the buffer. Proc&3s(t) has
reflections atQ,,(t) = K/2 and K, and one can see that the
probability of lossP (Q(t) = K) = 1P (Q.(t) = K).

(T2) Closed-form analysis of the stationary distribution fog th
state of the RBMs is not possible except in some special cases
given in [19]. Since our model does not fall in that category,
the steady state reflection probabilities cannot be derimed P
closed form. To address this issue, we remove the upper and eéﬂ
lower boundaries for the data buffer and the battery respec-

tively, and allow{Q(t), ¢ > 0} (and hence(Q,(t), t > 0}) Fig- 6. Relation between(®) and 4.

to take on values ifK/2,00) and {B(t), ¢ > 0} to take

on values |r_1(—og, M]. Then, Ulm?‘ef schem@ as given in - 14 prove this theorem (given in Appendi E), we consider

@), we definepgeron(X) = 3limrooo P(Qu(T) > K) 4 power allocation schem that is given by,

and p2 oo M) £ P(B(7) < 0). Using Theorems 1 and .

2 in [20], one can see that2 (K) = O(K ~f2) for some () = p — 6" (13)

Bq > 0 if and only if there exists some, > 0 such that for all 1. The mean drifts for the battery state and the data

DS erion( M) = O(K ~P2). Similarly, Theorem 1 and 2 in[20] queue state are given B{") andC'(y— (")) — ), respectively.

imply that pﬁschargéM) = O(exp(—agM)) if and only if Applying the diffusion limits on these processes, we get the

P deron M) = O(exp(—agM)). Thus, it suffices to show required probability results.

the desired scaling laws for the aforementioned unboundedig.[8 illustrates the relationship between the parameters

queue state and battery state processes. the system. Here, we note th&t) = C'(u — §(")) — \. Any
After transforming the problem as described above to ofrecrease ih(™) would lead to a corresponding decreasé(i.

involving threshold crossing with Brownian motions, we deSince (™ is proportional to the discharge probability decay

rive the individual probabilities using the following tetijues exponent and® is proportional to the data loss probability

in Appendix[D. First, we define a reward of one unit evergecay exponent, we will get the given tradeoff.

time Q. (t) goes aboveX. Using renewal-reward theory, we Theorem[# shows that, while it is possible to achieve

PowerP

find exponential decay rates for battery discharge and data loss
(a)2 (@) probabilities, there is a tradeoff in the decay exponenisieV
Q 6 6 K -f- ” b . 5(7‘) . . .bl .
Poverfion ) = —5—exp | ———= . (12) specifically, by varyingé'"’, it is possible to increase (or_
%a %a decrease) the decay rate exponent for the data loss pribpabil
By substituting 6(*) = %62 IOiK, we have the desired However this will directly result a proportional decrease (

scaling law for the queue overflow probability. Next, wedncrease) in the decay rate exponent for the battery digehar
define two power allocation policies that lead to a highdirobability.
and lower battery discharge probabilities, respectivielythe

same energy replenishment process. The steady-state-proba

bility distribution of the battery state for these policissan ~ Our theorems illustrate tradeoffs for energy management
exponentially-distributed random variable. Applying thell- schemes in the buffer and battery size asymptotic regimes
known squeeze theorem in the limif — oo, we obtain and showed optimality of some simple energy management
the desired scaling law for the battery discharge probgbilischemes. In this section, we conduct simulations to evalu-
Finally, proof for the convergence of the time average tytili ate the performance of those schemes in the presence of

follows the same line of argument to that for Theofgm 1. a finite battery and a finite data buffer. We construct the
energy replenishment proces§&) using the real solar radi-

C. Exploring Tradeoffs Between Battery Discharge and Buffgtion measurements collected at the Solar Radiation Resear
Overflow Probabilities Laboratory [21]. The data set used is the global horizontal

o radiation or the total solar radiation using a PrecisioncBpé
So far, we focused on achieving performance that was clase
: . . . yranometer. We use data from January 1999 to July 2010
to the optimal while keeping the probabilities of discharge

... ~collected at 1 minute intervals. We assume that the energy re
%Ienishment process is proportional to the total solarataat.

In our simulations, we choose the battery size in the range
of 10® — 10° mAh, as in [12]. Fig[IF(d) shows a sample of the
Theorem 4. For a sensor node with energy replenishreplenishment processt) over a 48 hour period. Also, we
ment and a wireless channel with a rate-power funaeised the utility functiorlU(e) = log(1 + ve).
tion C(-), there exists an energy management scheine To compare our scheme, we use the Throughput-Optimal
that achieveslim /o 77 108 Plischargd M) = —%” while (TO) policy given in Eq. (4) of[[15]. The TO policy is given

_s50my_ § by,
limg oo 7 log pied K) = —%‘W for any 0 < y

5 <y — (). " (t) = min{B(t), p — e}, (14)

IV. PERFORMANCEEVALUATION

tradeoff between the probabilities of battery dischargkdata
loss.



wheree is a constant such that(u —e) > . at10° bits and battery capacity is set &t” mAh. In Fig.[9(@)

we observe that the discharge probability increases watffidr
A. Battery Constraints with Infinitely Backlogged Buffer  intensity. For values op < 0.97, schemeQ performs almost
an order of magnitude better than the TO scheme in terms
e?f the discharge probability. For traffic intensities close
uhity the scheme& degenerates to the TO scheme and their

The communication channel is AWGN with SNR = 1, .
and we choose the polynomial decay exponént 2. From performances converge. Fig[ 9(b) shows that the data loss
' éobabilities for both schemes also increases with inangas

Theorem$§P and 1 we know that the TO policy should achiefr o L . .
an exponential decay for discharge probability compared ﬁgfﬁc intensity. Similar to the discharge probabilityy faalues

the quadratic decay for schene On the other hand, the 10O P < 097, thg loss probability for schem@ is almost an .
policy can not achieve the maximum utility while scheiie order of magnitude lower than that for the TO scheme. This

: . - 22 can be explained by the higher discharge probability fofTiBe
should achieve maximum utllity afiog M)”/M". Fig. (D) scheme leading to severe performance degradation. Finadly

plots the battery discharge probability as a function of th o . . )
battery sizeM. As expected, the TO policy performs bette;bserve in FidB¥) that the time average utility decreasts

than schemes. However, the advantage of using poliyis Increasing. This is a direct consequence of increasing battery

evident in Fig[J{d), which compares the time average iasit discharge anq data loss probabilities leading to sub-@btim
achieved by each scheme. It can be seen that, for the choic rfformance in both schemes. As~ 1, the perform_ances of
parameters and data used in this simulation, schg@mehieves € two energy management schemes degrade highly.

the maximum utility U (x) for a battery size ofl0” mAh,

whereas the TO scheme does not achieve the maximum utifly Trade-offs Between Buffer Overflow and Battery Discharge

In Fig. [d, we revisit the power allocation scherfedis-
cussed in Examplél 1 for an infinitely backlogged data buff

even asymptotically. Probabilities
In Fig.[I0, we numerically evaluate the trade-off between
B. Buffer and Battery Constraints battery discharge and data loss given in Theofdm 4. We

Fig. @ compares the performance of power allocatidtse _the data_ arrival ar_1d energy repIe_nishment process used
schemes when both battery and buffer constraints are presBffviously. Fig[10(@) illustrates that in order to increase
We simulate the data arrival process by generating a Markd{€ decay exponent for the battery discharge probability, t
modulated Poisson process with meas- 7.44 bits in every E€Nergy management scheme has to decrease the exponent for
time slot. We use a two-state Markov chain to generate!€ data loss probability. We choose three operating points
bursty data arrival process. One state of the Markov chdfiiS curve and evaluate the battery discharge and data loss
generates a Poisson random variable with mean 25 bits &%@/ing for these points. As we go from operating point 1
the other state generates a Poisson random variable with mt% 3 the data loss probability decay exponent increases and
1. The mean of the energy replenishment progess 9.58 the battery discharge probability decay exponent decseéise
mAh per time slot and we choosg, = 2. In Fig.[{(@), we Fig. [I0(b), we observe that the quickest decay for the loss
fix the buffer size to10° bits and plot the battery discharge®robability is for operating point 1. In Fi§. I0[c), as exfet;
probability as a function of the battery siaé. The discharge W€ See the opposite effect wherein the discharge probabilit
probabilities for both schemes should decay exponentiatly decays fastest for the operating point 3.
both schemes. However, the decay exponent for sch@me
should be larger than the decay exponent for the TO scheme. V. CONCLUSIONS

In fact, the decay exponent for the scher@eshould be In this paper, we studied the basic limits and associated
proportional top, — C~*()), whereas the decay exponent fotradeoffs for energy management schemes in energy repienis
the TO scheme is proportional to< 1 — C~*())) (given in  ing sensor networks. We showed that it is possible to observe
Eq. (14). As expected, the discharge probability for schempelynomial decay for the discharge probability with insed
Q decays faster than that of the TO scheme. In Hig.]8(b), Wwaittery size, and at the same time achi@élog M)?/M?)
plot the data loss probability as a function of the buffeesizconvergence to the maximum achievable utility using a stmpl
while keeping the battery size fixed #° mAh. We observe energy management scheme. We showed the strength of this
that the loss probability for the TO scheme decays faster theesult by showing that it is not possible to simultaneously
that for schemeQ. This trend is expected as the TO schemebserve an exponential decay for the discharge probability
should have an exponential decay compared to a quadrafigi achieve maximum utility. With the insights drawn, we
decay for scheme. Fig.[§{c) compares the convergence chddressed the problem of energy management with buffer and
the time average utilities to the maximum utility functicor f battery constraints. We showed that, in addition to achigvi
the two schemes. We observe that schedneonverges to the O((log K)2/K?) convergence to the optimum utility, it is
maximum utility for moderately large buffer sizes (0* bits). possible to achieve a polynomial decay for the data loss
On the other hand, TO scheme does not achieve the optirpedbability and exponential decay for the the battery disgh
utility even asymptotically. probability using a simple energy management scheme.

Fig. [@ compares the performance of power allocation To analyze the buffer and battery processes we made use
schemes with increasing traffic intensity. We define traffisf large deviations theory and diffusion approximationeeT
intensity asp £ =5 = i+ We fix the buffer length main advantage of using these tools in our work is that it
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allows analytical tractability while keeping the systemdab [21] (2010) Measurement and Instrumentation Data CentatioNal Renew-
fairly general in nature. Finally, we numerically illustea the

performance of the our simple energy management scherﬁég

able Energy Laboratory. [Online]. Available: http://wwwel.gov/midc/
W. Rudin, Principles of Mathematical Analysi8rd ed. McGraw-Hill,
1976.

along with that of another existing scheme, and demonstrates] R. Srivastava and C. E. Koksal, “Efficient Energy Mamaget in
that our scheme can perform up to an order of magnitude better Energy Replenishing Sensor Networks,” Technical Repoepadtment

in terms of outage probabilities while achieving the maximu

utility asymptotically.
One possible future direction of research is the design of

Bs)

timal or near-optimal practical energy management satstio

of Electrical and Computer Engineering, Ohio State Uniagrsiuly
2010. [Online]. Available! http://arxiv.org/abs/100969
[24] J. M. Harrison,Brownian Motion and Stochastic Flow Systerist ed.
John Wiley and Sons, 1985.
R. G. GallagerDiscrete Stochastic Processdst ed. Kluwer Academic
Publishers, 1996.

in the presence of channel fading and multi-user interf@en26] S. M. Ross Stochastic Processegnd ed. Wiley, 1995.
and to build distributed algorithms to realize these scteemel[27] S. Asmussenipplied Probability and Queue@nd ed.  Springer, 2003.
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APPENDIXA
PROOF OFLEMMA [T

To prove this lemma, we first use the finite form of Jensen’s
inequality to establish,

LU )
t=1

Since this inequality holds for any finite, passing the limit
T — 00, the inequality is preserved,

T

<U %Zes(t)

t=1

I S . I s
Jm 2D VW) < lim U{ 23 0
B IR g
=U 71520;;(3 (t)y], (15)

where [[I5) follows sincd/(-) is a continuous functior [22].
From conservation of energy, we have

T

! Zes(t) < lim 1Zr(t) = pu,

lim —
T—00 T
t=1 t=1

T—00 T
since M < oo. Combining Eqgs.[(I5) and_(IL6), we have the
required result,

,
in

(16)

lim =3 U(S(t) = U5 < U(p). (17)

APPENDIXB
PROOF OFTHEOREM[]

In this appendix, we prove that the power allocation scheme
B achieves the scaling properties given in Theofém 1. First,
consider a general form of Schemse

B(t) < M/2
B(t) > M/2’

/14—6_,

18
w40, (18)

B(t) =
for some paird—, 5", that will be chosen later. We will show
that the desired solution involvels = §+ = §5.

Depending on whether the battery state is less than (or more
than) half full, the expected drift of the battery state laes
positive (or negative). GiverB(t) < M/2, the asymptotic
semi-invariant log-moment generating function of the drgtt
state drift,d=(t) £ r(t) — (u—97), is

s» d(t)

1
lim —logkE |exp

T—00 T

An(s) —s(u—07).

Ag-(s)

(19)
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WhereA,.(s) is given by Eq.[(B). Let*_ be the negative rot fi(6)
of Aﬁf (5),1.e,Ag-(s5-) = Ap(s_)—si-(u—0") = 0. Also ~+if
aso- —0, s —0.

Before we prove Theorefd 1, we state and prove the follow-
ing lemmas. Lemmla 2 gives the rate of decay of the probability / !
of battery discharge with respect to the battery sizdor the
SchemeB. LemmalB expresses the rate decay exposgnt 0
for schemeB in terms of the asymptotic variance of energy
replenishment processt). Fig. 11. A geometric proof for the existence #fands > 0 such that for

. ) everyi > J, fi(6) > v+ id.
Lemma 2. The probability of battery discharge under

Scheme3 with battery size M follows pffischarge(M) =
o (exp (s’;;M))’ wheres®_ is the negative root ofi,- (s). In order to find the tightest bound for ea¢chwe choose

67 > 0 to maximize,
Proof: Fix a constantd > 0 and decompose the time line ] ]

into intervals, such that each interval is of lengt ] and OEY, (1 i 1(u B 6‘)) A 1&(_9)’ (23)
the ith interval ends at time slat = i[24]. Assume that the A A

system has been active sinte= —oo. We defineE; asthe guer all ¥ >~ 0 and let N = infi>0 Supg= fi(0) =
event that the battery is empty at the end of time slot 0 and thg i>0 £:(67). We can rewritef; (6) a: B -
last time the battery was half full (i. eM/2) is some instant B B
during the interval—i = [—(i + 1)[24] + 1, —i[24]]. The o p— 5_9 A(=0) . ((M —67)f +Ar(—9))
event of an empty battery at time slot O can be decomposeéi A A

as a union of event&;,

J 1

Sincelim, o £ >/ E[r(t)] = > p— 6, the function

00 (n—067)0+A,(—0) has a negative slope ét= 0. Hence, we
Phschargd M) = Y P (E:) (20) can choose somé > 0, such that(; — 6~)0 + A, (—6) < 0.
i= This implies that there exists & and ag > 0 such that for
A necessary condition for evertf; to occur is, everyi > J,
0 1i(0) >~ +ip (24)
M
Z (eP(t) —r(1) > > (21) as illustrated in FigrJ1. Returning to EG._{20),

t=—(+1)[ 251+1

5 M)=> P(E
Using Chernoff's bound, for ang; > 0, Paischargd M) Z (E:)

0 > 0 M
P ( S (B -r) > %) <) P ( > (B (k) —r(k)) > 7)
~(

i+ 1) [ M ]+1 =0 k=—(i+1)[257+1

SE—exp(@ > <e8<t>—r<t>>>]exp( oy ) Zp( )+ (0,67)])
L t=—(i 141

- . + Y ew <—7 [fi(é)—i—ei(M,é)D
=E |exp | —6; Z r(t) i=J+1
L t=—(i+1)[ 25 1+1 - J M M6
v . v <D exp (=5 |7+ min €(M,67)
xexp|0;(i+1) oA (u—07) ) exp —91-7 i=0
oo M ) ) _
= €Xp 2 2 A H A T 1 l:J']i‘\;
= exp <——7> (J+1)exp < mln e(M 0r )>
exp( M ((J+ )8 + infis s e:(M, 9)))] o5
, , + . (25
wheree; (M, 0;) — 0 asM — oo. 1—exp (—pY)
“Note that A, (0) = 0 and BA%’S () = AS M — oo,
mr oo =3¢ E[d(t)] = 6= > 0. Consequentlysszi <0 lim sup — 1ogpdlschargéM) < -5
will exist. M—oo M



Since this inequality holds for ang > 0, we let A — oc as
follows:

lim sup <7 1Og pdmhargéM)

M:mggggk<1—zor—®)—zA< o)
=~ juf sup [0(1—T(u—0)) — TA(-0)]
- _%gfoTig% [ (u — 05— %) - Ar(—H)} (26)

Next, we find the lower bound. For sorfie> 0, a sufficient

condition for the battery to be empty at some time slot in the

interval [ [T M /2],
0

>

t=—[TM7+1

We can lower bounqbﬁscharggM using the union bound,

714)

0] is that,

(eB(t) —r(t)) > M. (27)

)
P (B(t) = 0 within somet [

0
=P U Bo=0]|c< Z P (B(t) = 0)
t=—[TM/2] t=—[TM/2]
= ’VT;W-‘ pd|schargéM) (28)

We also have

0
P ( S (B () > %)

t=—[TM741

Ny

t=—[LM]+1

We define, Zy 7 2 ﬁzgz,[gwl (1 —0= —r(k)).
Consequently,
0
_ M 1
P( Z (n=29 _T(t))>7)—P<ZM.,T>T>-
t=—[511+1
Now, limy/—ee B [Zarr] = =6~ < 0 <  forall T > 0.
Applying the Gartner-Ellis Theorem, we get,
1
. 2t (2 3)
1 - s
= —212113 [TS —s(u—20)+TA, (—T)}
s 1 - s
=T | (-0 7) - (7))
= —T'sup [—9 (,u -0 - l) - /_XT(—H)} . (30)
0>0 T

Combining Egs.[[28) and (80), we have,
.2
lim inf 108 PGischargd M)

> — inf Tsup [—9 <u —0— 1) - Ar(—H)} - (3D

0>0 T

This gives U@(lfischarge(M )
Lemma 3. The asymptotic variance ofr(t), o;
limy_, o0 Svar (Zthl r(t)) satisfies

Taylor series expansion of;- (s%_

11

From Eqgs.[(26) and_(31) we have,

lim
M — o0

~pram[-0(u-s- L) -nio)

T>0 >0

2
i log pclfischargéM)

- Sd"

= 6 exp (55 4)). !

- 33

6—=0 T
Proof: First, we define/_xgi)(o) = angg;(s) . The

) abouts = 0 gives,

0s
06~

Rearranging the terms, we have
Z A
Differentiating with respect to—, we have,

i Z T AL B

n!

)n 1

- 5. (34)

As i~ — 0, s;— — 0 the above expression reduces to,
0sh_
96~ |5-_o

sinceA!? (0) = 52, Eq. [35) becomes,

0sh_ 2
00~ o2’

oy

A52>(0)5 =1 (35)

6—=0

Lemmal3 implies

0sh_ 2 _
D5 = —5_—% +0(5 )

and hence,

2
Sp- = —=50" +0(57), (36)

T

where @6~)/6~ — 0 asd — 0.
Substituting this in Eq[{32), we have,

oo = 0 (e [ (- 207 +0(67) ) F] ).

T
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By choosing - = %M and @ = B2 we have  Note thats’s > 0 exist8l if and only if E [dS(t)] < o.
Phschargd M) = O(M 7). Therefore, forpgenagdM) to decay exponentially withl/,
Next we show that withi+ = oz“’gTM the scheme achieveswe require,

v 7B 7B _ (log M)?
an ayerage utility/ égch thatU(,L.L) -U - C) (T) E [es(t)] <Er(t) = . (40)
The instantaneous utility/ (e (t)) is zero with an QM —7)
probability. For the remaining time, the utility alternatbe- On the other hand, i [ds(t)] > 0, there exists no rate > 0
tweenU+ and U~ as illustrated in Figl]2. The Taylor seriesat which the battery discharge probability decays expaaknt
expansion of the utility functions aboytwill be, with M, i.e.,p‘gischarggM) = Q(exp(—sM)) for all s > 0. By
‘. 1)/, st ) 2 a2 substitutingr. = s7s in Lemm&4, we get the required scaling
Ut = UG + UV 05"+ UDE@ED +0(6"D): s ) S (exp(—anht)).
and, The difference between the utilities is given by,

U™ =U(p) = U () + U (u)(57)* +0((57)%).
We definep™ as the fraction of time thaB(¢) > M/2 and

Ulp) U = Ulp) — Tim =30 (1))
t=1

p~ = 1—p* as the fraction of time thaB(t) < M/2. The (@) - 1
average utilityU'® can be written as, >U(p)—U ( lim — Z es(t)>

B T—00 T —1

UF = (p+U+ +p U )1 - pﬁseharge{M)) .

(b) (¢)
. (log M)? =U(u) - U (E[S@®)]) = Q). (41)
=U(p) +UD()(p" 6" —p707)+© <72 ,
M Where(a) follows from Eq. [15),(b) follows from the ergod-

(37) icity of e%(¢) and(c) follows from the fact that, > E [e5(¢)]
where Eq. [[37) follows from the fact that ,d+ = oM andU(-) is an increasing function. This completes the proof
and pfisehargd M) = O(M ~7) where > 2. for Theoreni2.

From conservation of energy, the replenishment energy is
consumed completely except for the amount lost due to lyatter

overflows. Thus,

APPENDIXD
PROOF OFTHEOREM[3|

P+ 67) + 07 (1= Dlischargd M) (1 = 67) As discussed in Section_IIIB, our proof is constructive.
= (1 — pBeion(M)), (38) We use the energy management schaihgiven in Eq. [B).
Also, in Step (T1) we show in the heavy traffic limit that, the
data loss and the battery discharge probabilities can badfou
using the appropriate reflection probabilities of the aisged

wherepZ .qon(M) is the probability of the battery being full
under the power allocation schenfe By a trivial extension

of Lemmas[P andJ3, it can be shown thfemon(M) = 2-dimensional RBM. Further, we showed in Step (T2) that

© (M ﬂ)' We can simplify Eq.[(38) as, the scaling laws for the data loss and the battery discharge
pt ot —p 6 =(p (p—9")—pnoe (M—ﬂ) probabilities are preserved when they are approximated by,
—0 (Mfﬁ) . (39) respectively, the associated overflow and the underflow-prob
abilities of the Brownian motion without reflections. We find
By substituting Eq.[(39) in the first-order term of Ef.1(37)the individual probabilities in the following lemmas.
we observe that the schem8 achievesU(u) — UP =

9((10%};)2 . Choosings® = 5+ = o!%M in Eq. @)

completes the proof of Theorenmh 1.

Lemma 5. For energy management schengk given any
ﬁéa? =2, pg/erﬂomﬂK) = O(K_BQ)'

Proof: If we assume the starting state of the Brow-

APPENDIXC nian motion to beQ(0) = K/2. Note that due to the
PROOF OFTHEOREM[Z strong Markovian property of a Brownian motion_[24], the
Consider any ergodic energy management schéntaat Instants {To,, n = 1,2,...} at which the system re-

useseS () units of energy in the time slat Note that scheme NS 0 statek’/2 (i.e., Q(T;) = K/2) is probabilistically
S can be deterministic or randomized. The asymptotic senfdu@l to the starting state. Hence we can study these re-
invariant log moment generating function of the net batteREWal epoctfs to obtain steady state properties for theAdata
drift dS 2 eS(t) — r(t) is given byAys(s). First, we state a dUeue process. Now, consider the random variafiles=
lemma that gives the discharge probability scaling for suhe argmmth{Q(t.) = K/2,Q(0) = K/2,Q(0") > K/2}
S. Since this lemma is a minor modification of Lemfda 2, w8Nd 7i = argmin;»o{Q(t) = K/2,Q(0) = K/2,Q(0") <
omit the proof in this paper. We direct the reader[ta [23] for )
the detailed proof of this lemma. Ssince A 4s (0) and M%is“ =limr o E[dS(7)] <0, 5% >0

s=0

Lemma 4. The probability of battery discharge under!! exist _ _ _
If we assume the starting state to @%0) # 0, we can simply consider

i i S —
SchemeS with battery S'Z.eM fOHOW_S pdischarge(M) — the process to be a delayed renewal process. The steadypstagrties in
O(exp(—s3sM)), wheres’s is the positive root ofiys(s).  the resulting analysis will not change.
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K /2}. The hitting time distributions can be calculated(as [24By choosings(®) ﬂchQ s K "we have,

K 2
P (Tu >t+7(Q(1) = 5t €> Peton K) = 8575 252 (10§{K) exp (—f log K)
_ 3 e— 0@t e 20(%) ¢ o —e— 67 g
-*(SF) e (55) e (55F) ~o(k%). @)
_P<Tl>t+rQ(7)_§—e>, (42) =
Lemma 6 For the energy management schenmg,
whered(y) & - [¥ exp( ) d. Since Eq.[(AR) holds lim o 17 1080 2germon M) = M, where

forall = > 0 ande > 0, the random variableg,, and (- () is the inverse of the rate-power functmﬂ’()
T, will have the same distribution. Furthermore, once the
processQ(t) = K/2, it can go above or belowk /2 with

equal probability. Consequently, we need to study the reh;awo)'

Proof: To calculatep jomon(M) = lim; oo P(B(t) <
first we define power allocation policig3,

associated withQ,(t) £ |Q(t) — K/2| + K/2 and can Quypy o s(r)
find P (Q(t) > K) = 4P (Qu(t) > K), which is identical to T =pn-07, v, (49)
Poverion K€ )-_ ) _ _ and Qo,
If we define a unit reward (i.eR(t) = 1) for every timet
that the proces®,(t) > K then, et =pn—06", Vvt (50)
Jim P(Qu(t) > K) = lim E[R(t)]. (43) Let the battery underflow probabilities associated with

scheme®; andQ, bep2L. . (M) andp2. .. M), respec-

From renewal-reward theory [R5] we can write, . .
AL tively. For the same energy replenishment process),t >

, E [Rn] 0}, the net battery drift is defined a$ (t) £ »(t) — eS(t), for
1 IE t - 44 ! 1
1500 [R(2)] E[X]’ (44) each schemé& € {Q, Q;, Q2}. The net drifts will have the
where E[R,] is the expected award accumulated in onf@!lowing refation,
renewal period, anl [X] is the expected length of the renewal 49 (1) > d9(t) > d2 (1) V¢ (51)

period. To get the correct expression fon;_, . E [R(t)], we

need to write the expressions fir{R,,| andE [X] carefully. |t follows that,

We defineE [X (e)] as the expected time for proce@gt) to

return to /2 given that it starts af{/2 + e. The expression P22 ol M) < D dertionk M) < P kicrionl M)- (52)

for E[X (e)] is given b ,
X(ls g y [26] The Brownian approximation for the battery process under

E[X(e)] = % (45) policies Q; and Q- is an exponential random variable, and
o ] - ~ the undeflow probabilities are given Hy [18], [27],
Similarily, we defineE [R,,(¢)] as the probability of reaching
K beforeK /2 starting atk /2 +e. Passing the limit | 0 will o {r)
give the expected reward accumulated in one renewal period. Pundertionk M) = exp | — 52 My, (53)
Applying the expression for this probability frorn [26], "
exp (25((1) ) 1 and:
E[Rn(e)] = 25@ K o 25£T)
€xp ( 2 ) 1 punzderﬂov\(M) =Cexp | — 52 M|, (54)
5( ). (© "

(46) Substituting Eqs[(83) and_(b4) in E.{52) we have,

e (2?;) %) -1 (r) (r)
a 254 o 20,
Dividing Egs. [@®) by [@b) and passing the limit| 0, we  €XP (‘ =2 M) < Punderfiol M) < exp (‘ 52 M) -
have, " " (55)

200 4 o)) sla)
lim E [R(¢t)] = lim ( i ‘ ) ) (47) For a rate-power functiof'(-), we havezSY) = u—C‘l(/\)Jr
t—00 €l0 26(‘1) K .

ep( 2) 1 05y and 67 = p — C1(\) + O(5@). With 5@ =
fop l°gK — 0asK — 0, we can apply the squeeze theorem
Eq @) to get the required result.

Evaluating the limite | 0, and noting that the stochastlcﬂQ
process will be in the upper half of the buffer with probatblh

[ ]
1/2, for large K we have, ) )
9 ) To illustrate Lemmal16, we consider the AWGN chan-
o ) — 5@ s K nel capacity given in Eq.[16). We have)” = u —
poverflow( )= 52 exp | — 52 : exp((A+6*)) log2)—1 andéér) — - cxp(()\fé(a)ilogQ)fl. We

Y Y
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can use the power series expansion of the exponential umcti  Similarily, by applying the diffusion limit to the data beif

to get,

, 1 A+ 6(@)2(log 2)2
5§)—u—;<(x\+5(a))log2—|—( i ;(og)

+.>

=p— %exp(x\log 2) + 05, (56)
and,
o) = — % ((/\ —6()1og2 + (A= §(a);2(10g 2" +- )
- % exp(Mog 2) + O(3(®). (57)
Substituting these expressions in Eq_1(55), we (¢

p(%schargéM) = @(eXp(_O‘QM))-
Finally, we show that Schem& achieves an average
— — 2
utily US such thattp(\) — UF = © ((550). The
instantaneous utility will be zero when the queue is emp

process we can find the buffer overflow probability as,

(a)
20 K) 7

g2
(62)

wheres(® = C(u — 6")) — \. Substituting this value of(®
in Eq. (62), we get the desired result.

o1
pgverﬂow(K) = tlirgo §P (Qu(t) >K)=exp | —

et

ty

or when the battery is discharged. Due to symmetry of tt

Brownian approximation, the empty buffer probability wike
the same as the data loss (i.e., full buffer) probabilityc8i

pcﬁscharggM) = O(exp(—M)), under the large battery regime

we can ignore the discharge term. The average uﬁﬁglcan
be written as,

U8 = 2 (Un(+59) + Un(A — 5)) (1 - S (K)

2
= Up(N) + U V()2 +0((5)?) (58)
= vo( +0 (L250), (59)

where Eq. [(BB) follows from the fact thapS(K) =
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theory.

O(K —P2) for someB, > 2 and Eq.[(EP) comes from choosing

5 = B2 2K This completes the proof of Theordmh 3.

APPENDIXE
PROOF FORTHEOREMHA]

To prove this theorem, first consider a power allocation

schemef that is given by,
e (t) = p— 860, (60)

We define the battery drift ad eq(t) = 7(t) — €(t). The

mean drift for the battery process is equaldtd). Applying
the diffusion limit, we can write the discharge probability
this energy management schemel[as [18]] [27],

M> |

26(m)
(61)

A
=r

il M) = Jim P (B(1) < 0) = exp (-2
oS o7
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