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Abstract—As many sensor network applications require de-
ployment in remote and hard-to-reach areas, it is critical to
ensure that such networks are capable of operating unattended
for long durations. Consequently, the concept of using nodes with
energy replenishment capabilities has been gaining popularity.
However, new techniques and protocols must be developed to
maximize the performance of sensor networks with energy
replenishment. Here, we analyze limits of the performance of
sensor nodes with limited energy, being replenished at a variable
rate. We provide a simple localized energy management scheme
that achieves a performance close to that with an unlimited
energy source, and at the same time keeps the probability of
complete battery discharge low. Based on the insights developed,
we address the problem of energy management for energy-
replenishing nodes with finite battery and finite data buffer
capacities. To this end, we give an energy management scheme
that achieves the optimal utility asymptotically while keeping
both the battery discharge and data loss probabilities low.

I. I NTRODUCTION

Advances in wireless networking combined with data acqui-
sition have enabled us to remotely sense our environment [1],
[2]. As these applications may require deployment in hard-
to-reach areas, it is critical to ensure that such networks are
capable of operating with full autonomy for long durations.
The lack of a continuous power source in most scenarios and
the limited lifetime of batteries have hindered the deployment
of such networks. However, developments in renewable energy
sources [3]–[9] suggest that it is feasible for sensor networks
to operate unattended for extended periods. These renewable
sources of energy typically provide energy replenishment at a
rate that could be variable and dependent on the surround-
ings. Examples include, self-powered sensors that rely on
harvesting strain and vibration energies from their working
environment [4], as well as sensors with solar cells [5]–[7].

In this paper, we analyze thelimits of the performanceof
networks comprised of sensor nodes with limited energy, being
replenished at a variable rate. We provide a simple localized
energy management schemethat achieves a performance, close
to the optimal scheme that has access to an unlimited energy
reservoir. Indeed, we show that, if the performance can be
measured by a general utility function of the energy, under
mild assumptions on the replenishment process, it is possible
to observe a polynomial decay for the probability of complete
battery discharge, and at the same time achieve aΘ

(
(logM)2

M2

)
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convergence to the optimal achievable utility1. HereM is the
total capacity of the energy source. Based on the insights
developed, we address the problem of energy management in
the presence of a finite data buffer. We modify our basic energy
management scheme to achieve aΘ

(
(logK)2

K2

)

convergence to
the maximum utility achievable by a scheme that has access to
an infinite data and energy buffers. HereK is the data buffer
size. In addition, this scheme achieves an exponential decay
with M for the battery discharge probability and a polynomial
decay withK for the data loss probability. To evaluate these
decay rates, the main tools we use are thelarge deviations
theoryanddiffusion approximations.

The added dimension of renewable energy makes the prob-
lem of energy management in sensor networks substantially
different from its non-replenishment counterpart. For nodes
with replenishment, conservative energy expenditure may lead
to missed recharging opportunities due to battery capacity
limitations. On the other hand, aggressive usage of energy
may cause battery outages that leads to lack of coverage or
connectivity for certain time periods. Thus, new techniques
must be developed to balance these seemingly contradictory
goals to maximize performance. Here, ourmain goalwill be
to identify the performance limits of sensor nodes with energy
replenishment and provide guidelines to approach these limits.

Many fundamental wireless communication and networking
problems can be stated asutility maximization problems,
subject to energy constraints. The utility function can be the
throughput (e.g., in energy efficient routing), the probability
of detection of an intruder (e.g., in coverage) or the network
lifetime (e.g., in sleep-wake scheduling) or the achievable
rate of reliable transmission in basic wireless communication.
These problems have been mainly addressed for stations with
unlimited and/or non-replenishing energy sources. Here, we
address the problem of maximizing a utility function of the
data transmission rate in the presence of energy replenishment.
The solution of the optimization problem requires stochastic
optimization techniques involving high computational over-
heads that might be unsuitable for sensor nodes. Consequently,
we will focus our attention on simple localized solutions that
achieve near-optimal or asymptotically optimal performance.
We use tools from large deviations theory and diffusion
approximation to find closed-form expressions for the data
loss and the battery discharge probabilities. These techniques
allow us to analyze our schemes under mild assumptions on
the battery charging and data arrival processes.

1The following notations will be used to compare rates of convergence:
an = O(bn) if an goes to zero at least as fast asbn; an = o(bn) if an
goes to zero strictly faster thanbn; an = Θ(bn) if an andbn go to zero at
the same rate;an = Ω(bn) if an goes to zero no faster thanbn.
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Fig. 1. Energy source with a replenishment rater(t).

There have been recent works that have studied differ-
ent problems in networks with energy replenishment. Kar,
et. al., [10] have proposed an activation scheme for recharge-
able sensors that maximizes the network-level utility of sens-
ing networks. The utility function in [10] depends on the
number of active sensors. Gatzianas, et. al., [11] use back
pressure policies to maximize the network flow of information
in networks with energy replenishment. While [10] and [11]
look at the total system utility, we will focus on the an-
alyzing node-level performance leading to localized energy
management schemes. Liu, et. al., [12] have derived a battery
control scheme similar to the one described in this work. In
addition to providing stronger convergence results than the
one in [12] with sole battery control, we also consider the
effect of a finite data buffer in this paper. Kansal, et. al., [13]
introduce the concept of energy neutral operation, whereinthe
energy consumed by a node is less than or equal to the energy
harvested. Vigorito, et. al., [14] extend the idea of energy
neutral operation to propose an algorithm that attempts to
keep the battery state close to a fixed level and at the same
time stabilizes the duty cycle in order to maximize system
performance. Sharma, et. al., [15] have proposed a throughput
optimal energy management scheme for energy harvesting
nodes. However, these works [13]–[15] do not contain an
analytical evaluation of the battery discharge or the data loss
probabilities for their energy management schemes.

The outline of this paper is as follows. We first state the
general form of the utility maximization problem in SectionII
and show ways to achieve the maximum achievable utility with
replenishing sources. In Section III we add a finite buffer tothe
problem and study energy management schemes that achieve
optimal utility asymptotically while keeping the probabilities
of battery discharge and data loss low. We numerically eval-
uate the performance of our energy management schemes in
Section IV. We wrap up with conclusions in Section V.

II. A CHIEVING MAXIMUM UTILITY WITH A

FINITE-BATTERY CONSTRAINT

A. System Model and Problem Statement

Fig. 1 shows the energy source (or the battery) of a node.
The total capacity of this battery isM units of energy. We
denote the total available energy in the battery asB(t), where
t is the discrete time index. The battery replenishes at a rate
r(t). The replenishment process{r(t), t ≥ 1} is assumed
to be an ergodic stochastic process with a long term mean
limτ→∞

1
τ

∑τ
t=1 r(t) = µ. A power allocation policyS draws

energy from this battery at a rateeS(t) to achieve certain tasks.
The success of the node in achieving these tasks is measured
in terms of a concave and non-decreasing utility function2

2Note that, in many practical scenarios, it is reasonable to assume that
the utility function is non-decreasing and concave, since there is diminishing
returns for increasing power.

U(eS(t)) of the consumed energyeS(t). We define the time
average utility,

ŪS(τ) =
1

τ

τ∑

t=1

U(eS(t)). (1)

We consider the optimization problem in which a node
tries to maximize its long-term average utility,̄US =
limτ→∞ ŪS(τ), subject to battery constraints:

max
{eS (t), t≥1}

ŪS (2)

subject to B(t) = max
{
0,min{M,B(t− 1)

+ r(t) − eS(t− 1)}
}

and eS(t) ≤ B(t).

One approach to solving this optimization problem is by using
Markov decision process (MDP) techniques. Since solving
MDPs is computationally intensive, these methods may not
be suitable for computationally-limited sensor nodes. Con-
sequently, we seek schemes that are easy to implement and
yet achieve close to optimal performance. The next lemma
gives an upper bound for the asymptotic time-average utility
achieved over all ergodic energy management policies.

Lemma 1. Let Ū∗S

be the solution to Problem (2). Then,
Ū∗S ≤ U(µ).

The proof of this lemma, given in Appendix A, uses
Jensen’s inequality and conservation of energy arguments.
Lemma 1 tells us that for any ergodic energy management
schemeS, ŪS ≤ U(µ). With an unlimited energy reservoir
(i.e.,M = ∞) and average energy replenishment rateµ, if one
useseS(t) = µ for all t ≥ 1, this upper bound can be achieved.
However, ifM < ∞, achievingŪS = U(µ) using this simple
scheme is not possible. Indeed, due to finite energy storage
and variability inr(t), B(t) will occasionally get discharged
completely. At such instances,eS(t) has to be set to0, which
will reduce the time-average utility.

The question we answer next is, “how close can the average
utility ŪS get to the upper boundU(µ) asymptotically, as
M → ∞, while keeping the long-term battery discharge rate
low?”

B. An Asymptotically Optimal Power Allocation Scheme

In this section we show that there is a trade-off between
achieving maximum utility and keeping the discharge rate low.
First, we make some weak assumptions on the replenishment
processr(t), which we will be using throughout this paper. In
particular, we assume that the asymptotic semi-invariant log
moment generating function,

Λ̄r(s) = lim
τ→∞

1

τ
logE

[

exp

(

s
τ∑

t=1

r(t)

)]

, (3)

of r(t) exists for s ∈ (−∞, smax), for some smax >
0. We also assume that the asymptotic varianceσ̄2

r ,

limτ→∞
1
τ var(

∑τ
t=1 r(t)) of r(t) exists. Note that, in prac-

tice, the recharging process is not necessarily stationary. While
this assumption does allow the possibility that the statistics of
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replacements

U(eS(t))

eS(t)µ
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U−

δB

δB

Fig. 2. With schemeB, utility alternates betweenU+ andU−

r(t) has variations (e.g., due to clouds and the solar power
at different times of the day), it rules out the possibility of
long-range dependencies inr(t).

From the discussion in previous section, we can infer that
by choosing a battery drift that goes to zero with increasing
battery size, one might achieve a long-term average utilitythat
is close toU(µ) asM increases. However, smaller drift away
from the empty battery state implies a more frequent occur-
rence of the complete battery discharge event. In the following
theorem, we quantify this tradeoff between the achievable
utility and the battery discharge rate, asymptotically in the
large battery regime. In this regime, the battery sizeM is large
enough for the variations inr(t) to average out nicely over the
time scale thatB(t) changes significantly. Consequently, we
now define the long-term battery discharge rate as the probabil-
ity of discharge, i.e.,pdischarge(M) , limτ→∞

1
τ

∑∞
t=1 IB

0 (t),
where the indicator variableIB

0 (t) = 1 if B(t) = 0 and is
identical to0 otherwise.

Next, we show that one can achieve a battery discharge
probability that exhibits a polynomial decay with the battery
size, and at the same time achieves a utility that approaches
the maximum achievable utility as(logM)2/M2.

Theorem 1. Consider any continous, concave and non-
decreasing utility functionU(e(t)) such that

∣
∣
∣
∂2U(e)
∂e2

∣
∣
∣ < ∞

for all e > 0. Given anyβ ≥ 2, there exists a power
allocation schemeB such that the associated battery discharge
probability pBdischarge(M) = Θ(M−β) and U(µ) − ŪB =

Θ

((
logM
M

)2
)

.

We give a brief sketch of the proof, details of which can
be found in Appendix B. Our proof is constructive as we
show a strategy that achieves the asymptotic convergence rates
given in Theorem 1. Our scheme is motivated by the buffer
control strategy introduced in [16] to achieve the near-optimal
distortion for variable rate lossy compression. Consider the
allocation schemeB in which

eB(t) =

{

µ− δB, B(t) < M/2

µ+ δB, B(t) ≥ M/2
, (4)

for someδB > 0. As shown in Fig. 2, the instantaneous utility
associated with SchemeB alternates betweenU− and U+,
depending on the battery state. By choosingδB1 = βσ̄2

r
logM
M

for someβ ≥ 2, we show that long-term maximum utility
U(µ) can be achieved asymptotically while achieving decay,
as a polynomial of arbitrarily high order, for the battery

discharge probability. We note that the while the order of the
polynomial decayβ can be made arbitrarily large, it comes at
the expense of slower convergence (by some constant factor)
to the maximum utility function.

Here, we illustrated that with a simple scheme, it is possible
to achieve desirable scaling laws for the performance of a
given task, under the assumption that the asymptotic moment
generating function of the replenishment process exists. To
illustrate the theorem we consider a specific example.

Example 1 Capacity of an AWGN Channel
We study the basic limits of point to point communication
with finite but replenishing energy sources. For simplicity, we
consider the additive white Gaussian noise (AWGN) channel.
At time t, the transmitter transmits a complex valued block
(vector of symbols)X(t) and the receiver receivesY(t). We
have,

Y(t) = hX(t) +W(t), (5)

where the channel gainh is a complex constant andW(t)
is additive white (complex) Gaussian noise with two sided
power spectral densityN0/2. We define the channel SNR as
γ = E

[
|h|2
]
/N0. The maximum amount of data that could be

reliably communicated [17] over this channel with an amount
of energye(t) at time t is,

C(e(t)) = log2 (1 + e(t)γ) bits/channel use, (6)

assuming the block size is long enough so that sufficient
averaging of additive noise is possible. Thus, the rate at which
reliable communication can be achieved is a concave non-
decreasing function of the transmit power and it can be viewed
as our utility function. Consequently, using a constant power
µ, the maximum utility ofC̄ = C(µ) can be achieved, which
is the famous AWGN channel capacity result.

Now, we generalize the AWGN capacity result to the case
with finite energy sources. Suppose that we want to transmit
the maximum amount of data over the AWGN channel, using
a battery of energy capacityM and a replenishment rater(t).
We assume that each time slot is long enough for sufficiently
long code blocks to be formed. We substituteU(·) with C(·)
in Eq. (1) to get the relevant optimization problem. With an
unlimited energy source (M = ∞) of limited average power
µ, the maximum achievable long term average rate, i.e., the
channel capacity isC(µ) = log2(1 + µγ) bits/channel use.
By using the energy management schemeB given in Eq. (4),
an average ratēCB can be achieved such thatC(µ) − C̄B =

Θ
(

(logM)2

M2

)

while the battery discharge probability follows

pBdischarge(M) = Θ(M−β) for someβ ≥ 2.

C. Basic Limits of Power Allocation Schemes

To understand the strength of Theorem 1, we note that it is
not trivial to achieve decaying discharge probability and max-
imum utility with increasing battery size. In fact, an ergodic3

energy management scheme cannot achieve exponential decay
in discharge probability and convergence (even asymptotically)

3An ergodic energy management schemeeS(t) is the one that satisfies
limτ→∞

1
τ

∑

τ

t=1 e
S(t) = E

[

eS(t)
]
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to the maximum average utility function simultaneously. We
formalize this statement in the following theorem.

Theorem 2. Consider any continous, concave and non-
decreasing utility functionU(·). If an ergodic energy manage-
ment schemeS has a discharge probabilitypSdischarge(M) =
Θ(exp(−αcM)) for some constantαc > 0, then the time
average utility,ŪS , for SchemeS satisfiesU(µ)−ŪS = Ω(1).

The proof of this theorem is provided in Appendix C and
it is similar to that of Theorem 1. We applylarge deviations
technique to the net drift of the battery process to find the
decay rate ofpSdischarge(M) with M . Jensen’s inequality is then
used to lower bound the difference betweenU(µ) and ŪS .

So far, we have shown how to maximize a concave non-
decreasing utility function subject to battery constraints. At
every point in time, one should choose a power level as close to
the replenishment rate as the battery constraints allow andthis
way one can asymptotically achieve a performance very close
to that with unlimited energy sources. The main limitation
of this approach is that it may not be feasible for some
applications in practice. For instance in many sensor network
applications, data is stored in finite buffers for transmission.
Since schemeB does not adapt to the buffer state, this may
lead to data losses. To overcome these limitations, in the next
section, we investigate energy management schemes with finite
buffer and battery constraints.

III. A CHIEVING MAXIMUM UTILITY WITH FINITE

BUFFER AND BATTERY CONSTRAINTS

A. System Model and Problem Statement

In this section, we extend the problem introduced in Sec-
tion II to the case when data packets arrive at a node and
are kept in a finite buffer before transmission. Hence, the
task is to transmit packets arriving at the data buffer without
dropping them due to exceeding the buffer capacity. We define
Q(t) as the data queue state at timet, and the data buffer
size is K < ∞. The data arrival processa(t), represents
the amount of data (in bits) arriving at the data buffer in the
time slot t. The process{a(t), t ≥ 1} is an ergodic process
independent of the energy replenishment process{r(t), t ≥ 1}
andE [a(τ)] = λ. We assume that the processa(t) has a finite
asymptotic variancēσ2

a = limτ→∞
1
τ var(

∑τ
t=1 a(t)). The

energy replenishment model is the same as used previously.
We useC(·) as given in Eq.(6) as the rate-power function
for the wireless channel and assume that data is served at
that rate as a function of the consumed energye(t) at time
t. We also assume thatλ < C(µ), which is a necessary
condition for system stability [15]. Without this condition,
there exists no joint energy and data buffer control policy that
can simultaneously keep the long-term battery discharge and
data loss rates arbitrarily low.

The objective of an efficient energy management scheme
in this case is to maximize the average utility function of the

−5 −4 −3 −2 −1 0 1
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Fig. 3. Possible drift directions for(Q(t), B(t)) for an AWGN channel of
channel SNR 0 dB. Here, at timet, r(t) = 0, a(t) = 0.

data transmitted subject to battery and data buffer constraints:

max
e(t), t≥1

lim
τ→∞

1

τ

τ∑

t=1

UD(C(e(t))) (7)

subject to B(t) = max{0,min{M,B(t− 1)

+ r(t) − e(t− 1)}},
Q(t) = max{0,min{K,Q(t− 1)

+ a(t)− C(e(t− 1))}},
e(t) ≤ B(t) and C(e(t)) ≤ Q(t).

HereUD(C(e)) is a non-decreasing concave utility gained by
transmittingC(e) bits. Sinceλ < C(µ), we know thatUD(λ)
is an upper bound on the achievable long-term utility with
any energy management scheme. This statement can be proved
using Jensen’s inequality, following identical steps as the proof
of Lemma 1 and we skip it to avoid repetition.

B. An Asymptotically Optimal Energy Management Scheme

Solution of Problem (7) jointly controls the data queue state
and the battery state to avoid energy outage and data overflow
while maximizing the utility. The main complexity in such an
approach stems from the fact that the drifts ofQ(t) andB(t)
are dependent. In Fig. 3 we illustrate the connection between
the service rate and the energy consumed at a time slott for
an AWGN channel with SNR0 dB anda(t) = 0, r(t) = 0.
For instance, to provide 3 units of service, the node needs to
consume∼ 18 units of energy.

With this dependence, a critical factor one needs to take
into consideration is the relative “size” of the data bufferwith
respect to the battery. In the sequel, we assume alarge battery
regime, where the time scale at which changes occur inB(t) is
much larger than the time scale at whichQ(t) varies. Namely,
within the duration that some change occurs inB(t), Q(t) may
fluctuate significantly. Technically, for an AWGN channel with
an SNRγ, this assumption is equivalent toM ≫ 1

γ (2
λ−1)K,

i.e., the total amount of energy in the battery is much larger
than that required to serve a full data buffer worth of packets.

Intuitively, in large battery regime, an energy control algo-
rithm should give “priority” to adjusting the queue state to
achieve a high performance. Consequently, it should choose
e(t) such that the drift ofQ(t) is always toward a desired
queue state even though this may cause battery drift to be
negative. Since battery size is large, such temporary negative
drifts are expected to affect the battery discharge rate only
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δ(a)

δ(a)
λ

µ
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(r)
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δ
(r)
2

Fig. 4. Relation betweenδ(a), δ(r)1 andδ(r)2 .

minimally. With these observations, we state the following
theorem, which indeed verifies our intuitions. This theorem
shows an asymptotic tradeoff between the achieved utility and
the long-term rates of discharge and data loss asK → ∞.
In this regime, the data buffer sizeK is large enough for
the variations ina(t) to average out nicely over the time
scale thatQ(t) changes significantly. Consequently, we now
define the long-term data loss rate as the data loss probability,
i.e., ploss(K) , limτ→∞

1
τ

∑∞
t=1 I

Q
K(t), where the indicator

variable IQ
K(t) = 1 if Q(t) = K and is identical to0

otherwise.

Theorem 3. Consider any non-decreasing concave utility
function UD(·) such that

∣
∣
∣
∂2UD(C(e))

∂e2

∣
∣
∣ < ∞ for all e > 0.

For any λ < C(µ), given anyβQ ≥ 2, there exists an
energy management schemeQ that achieves a data loss prob-
ability pQloss(K) = O(K−βQ), battery discharge probability
pQdischarge(M) = O(exp(−αQM)) for someαQ > 0 and

UD(λ)− ŪQ = Θ
(

(logK)2

K2

)

under the large battery regime.

Theorem 3 states that it is possible to have an exponential
decay (withM ) for the battery discharge probability and a
polynomial decay (withK) for the data loss probability and
at the same time achieve a time average utility that approaches
the upper bound on the achievable long-term utility,UD(λ), as
(logK)2/K2. Note thatUD(λ) can only be achieved with an
infinite battery and data buffer sizes. We provide an outlinefor
the proof, a full version of which can be found in Appendix D.
The proof for this theorem is also constructive as we first
present SchemeQ, and then derive the performance metrics
for this scheme.

Consider the energy management schemeQ, where

eQ(t) =

{

µ− δ
(r)
1 , Q(t) ≥ K/2

µ− δ
(r)
2 , Q(t) < K/2

, (8)

and the driftsδ(r)1 andδ(r)2 are chosen to satisfy the relationship

C(µ− δ
(r)
1 )− λ = λ− C(µ− δ

(r)
2 ) = βQσ̄

2
a

logK

K
. (9)

From Fig. 4, we note that this choice of energy drifts corre-
spond to a queue drift of|δ(a)| = βQσ̄

2
a
logK
K , toward the state

K/2, regardless of the queue stateQ(t). The queue and battery
drifts with schemeQ are illustrated in Fig. 5. We observe that
even though SchemeQ regulates the data queue to a desired

00

M M (K,M)(K,M)

K

2
K

2 KK

δ
(r)
1δ

(r)
2

δ(a)δ(a)

Buffer

State

Buffer

State

Battery

State

Battery

State

Fig. 5. Data queue and battery drifts for schemeQ.

state (i.e.,K/2), the battery is always regulated towards full
state (i.e.,M ). State equation forQ(t) is given by,

Q(t+ 1)

=

{

min{K,Q(t) + a(t)− λ− δ(a)}, Q(t) ≥ K/2

max{0, Q(t) + a(t)− λ+ δ(a)}, Q(t) < K/2
, (10)

and the state equation forB(t) is given by,

B(t+ 1)

=

{

{min{M,B(t) + r(t) − µ+ δ
(r)
1 }}+, Q(t) ≥ K/2

{min{M,B(t) + r(t) − µ+ δ
(r)
2 }}+, Q(t) < K/2

,

(11)

where{a}+ = max{0, a}.
While pQloss(K) can be found using a method similar to

the one used in Theorem 1 (this time for the data queue) to
calculatepBdischarge(M), calculation ofpQdischarge(M) requires a
careful analysis. More specifically, the battery drift in a partic-
ular time slot depends on the data queue state, which makes
the application of large deviation techniques for calculating
pQdischarge(M) difficult. To show the desired order results, we
transform the problem in two steps as follows:
(T1) We construct a sequence of arrival rates such thatλ ↑
C(µ). In this limiting regime, from Eq. (9),δ(r)1 , δ

(r)
2 ↓ 0 and

henceδ(a) ↓ 0, for which we also use a sequence ofK values
that increase to∞. As a result, both the battery and the data
queue will operate in theheavy traffic limit. Consequently,
we apply thediffusion approximationto the joint queue and
battery state process. The underlying continuous process is a
2-dimensionalreflected Brownian motion(RBM), where we
label {(Q(t),B(t)), t ≥ 0} as the diffusion approximation
for the joint queue length and battery process. The reflections
occur at the empty and full queue states, i.e.,Q(t) = 0 andK
and at the empty and full battery states, i.e.,B(t) = 0 andM .
Note that, the probabilities for hitting the boundaries calculated
for the associated RBM,P (Q(t) = K) andP (B(t) = 0) are
identical to P (Q(t) = K) and P (B(t) = 0) respectively in
the heavy traffic limit (Chapter 5 [18]). Furthermore, since
the heavy traffic limit poses a worst case for the probabilities
under consideration, the order results of the form O(·) shown
in the heavy traffic limit hold for allλ < C(µ).

As we show in Appendix D, with SchemeQ, Q(t) is has
a symmetric distribution around stateQ(t) = K/2. Further,
whenever it reachesQ(t) = K/2, it can go above or below
Q(t) with equal probability. Consequently, we defineQu(t) ,
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|Q(t)−K/2|+K/2, i.e., the RBM associated with the queue
process in the upper half of the buffer. ProcessQu(t) has
reflections atQu(t) = K/2 andK, and one can see that the
probability of lossP (Q(t) = K) = 1

2P (Qu(t) = K).
(T2) Closed-form analysis of the stationary distribution for the
state of the RBMs is not possible except in some special cases
given in [19]. Since our model does not fall in that category,
the steady state reflection probabilities cannot be derivedin
closed form. To address this issue, we remove the upper and
lower boundaries for the data buffer and the battery respec-
tively, and allow{Q(t), t ≥ 0} (and hence{Qu(t), t ≥ 0})
to take on values in[K/2,∞) and {B(t), t ≥ 0} to take
on values in(−∞,M ]. Then, under schemeQ as given in
(8), we definepQoverflow(K) , 1

2 limτ→∞ P (Qu(τ) > K)

and pQunderflow(M) , P (B(τ) < 0). Using Theorems 1 and
2 in [20], one can see thatpQloss(K) = O(K−βQ) for some
βQ > 0 if and only if there exists someβ′

Q > 0 such that
pQoverflow(M) = O(K−β′

Q). Similarly, Theorem 1 and 2 in [20]
imply that pQdischarge(M) = O(exp(−αQM)) if and only if
pQunderflow(M) = O(exp(−αQM)). Thus, it suffices to show
the desired scaling laws for the aforementioned unbounded
queue state and battery state processes.

After transforming the problem as described above to one
involving threshold crossing with Brownian motions, we de-
rive the individual probabilities using the following techniques
in Appendix D. First, we define a reward of one unit every
time Qu(t) goes aboveK. Using renewal-reward theory, we
find

pQoverflow(K) =
δ(a)

2

σ̄2
a

exp

(

−δ(a)K

σ̄2
a

)

. (12)

By substituting δ(a) = β′
Qσ̄

2
a
logK
K , we have the desired

scaling law for the queue overflow probability. Next, we
define two power allocation policies that lead to a higher
and lower battery discharge probabilities, respectively,for the
same energy replenishment process. The steady-state proba-
bility distribution of the battery state for these policiesis an
exponentially-distributed random variable. Applying thewell-
known squeeze theorem in the limitM → ∞, we obtain
the desired scaling law for the battery discharge probability.
Finally, proof for the convergence of the time average utility
follows the same line of argument to that for Theorem 1.

C. Exploring Tradeoffs Between Battery Discharge and Buffer
Overflow Probabilities

So far, we focused on achieving performance that was close
to the optimal while keeping the probabilities of discharge
and data loss low. In this section we will look at quantifying
tradeoff between the probabilities of battery discharge and data
loss.

Theorem 4. For a sensor node with energy replenish-
ment and a wireless channel with a rate-power func-
tion C(·), there exists an energy management schemeE
that achieveslimM→∞

1
M log pEdischarge(M) = − 2δ(r)

σ̄2
r

while

limK→∞
1
K log pEloss(K) = − 2(C(µ−δ(r))−λ)

σ̄2
a

for any 0 <

δ(r) < µ− C−1(λ).

RateC(P)

PowerP

δ(a)

λ

C(eE)

µeE

δ(r)

Fig. 6. Relation betweenδ(a) and δ(r).

To prove this theorem (given in Appendix E), we consider
a power allocation schemeE that is given by,

eE(t) = µ− δ(r) (13)

for all t. The mean drifts for the battery state and the data
queue state are given byδ(r) andC(µ−δ(r))−λ, respectively.
Applying the diffusion limits on these processes, we get the
required probability results.

Fig. 6 illustrates the relationship between the parametersof
the system. Here, we note thatδ(a) = C(µ − δ(r)) − λ. Any
increase inδ(r) would lead to a corresponding decrease inδ(a).
Sinceδ(r) is proportional to the discharge probability decay
exponent andδ(a) is proportional to the data loss probability
decay exponent, we will get the given tradeoff.

Theorem 4 shows that, while it is possible to achieve
exponential decay rates for battery discharge and data loss
probabilities, there is a tradeoff in the decay exponents. More
specifically, by varyingδ(r), it is possible to increase (or
decrease) the decay rate exponent for the data loss probability.
However this will directly result a proportional decrease (or
increase) in the decay rate exponent for the battery discharge
probability.

IV. PERFORMANCEEVALUATION

Our theorems illustrate tradeoffs for energy management
schemes in the buffer and battery size asymptotic regimes
and showed optimality of some simple energy management
schemes. In this section, we conduct simulations to evalu-
ate the performance of those schemes in the presence of
a finite battery and a finite data buffer. We construct the
energy replenishment processr(t) using the real solar radi-
ation measurements collected at the Solar Radiation Research
Laboratory [21]. The data set used is the global horizontal
radiation or the total solar radiation using a Precision Spectral
Pyranometer. We use data from January 1999 to July 2010
collected at 1 minute intervals. We assume that the energy re-
plenishment process is proportional to the total solar radiation.

In our simulations, we choose the battery size in the range
of 103−106 mAh, as in [12]. Fig. 7(a) shows a sample of the
replenishment processr(t) over a 48 hour period. Also, we
used the utility functionU(e) = log(1 + γe).

To compare our scheme, we use the Throughput-Optimal
(TO) policy given in Eq. (4) of [15]. The TO policy is given
by,

eTO(t) = min{B(t), µ− ǫ}, (14)
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whereǫ is a constant such thatC(µ− ǫ) > λ.

A. Battery Constraints with Infinitely Backlogged Buffer

In Fig. 7, we revisit the power allocation schemeB dis-
cussed in Example 1 for an infinitely backlogged data buffer.
The communication channel is AWGN with SNRγ = 1,
and we choose the polynomial decay exponentβ = 2. From
Theorems 2 and 1 we know that the TO policy should achieve
an exponential decay for discharge probability compared to
the quadratic decay for schemeB. On the other hand, the TO
policy can not achieve the maximum utility while schemeB
should achieve maximum utility as(logM)2/M2. Fig. 7(b)
plots the battery discharge probability as a function of the
battery sizeM . As expected, the TO policy performs better
than schemeB. However, the advantage of using policyB is
evident in Fig. 7(c), which compares the time average utilities
achieved by each scheme. It can be seen that, for the choice of
parameters and data used in this simulation, schemeB achieves
the maximum utilityU(µ) for a battery size of107 mAh,
whereas the TO scheme does not achieve the maximum utility
even asymptotically.

B. Buffer and Battery Constraints

Fig. 8 compares the performance of power allocation
schemes when both battery and buffer constraints are present.
We simulate the data arrival process by generating a Markov-
modulated Poisson process with meanλ = 7.44 bits in every
time slot. We use a two-state Markov chain to generate a
bursty data arrival process. One state of the Markov chain
generates a Poisson random variable with mean 25 bits and
the other state generates a Poisson random variable with mean
1. The mean of the energy replenishment processµ = 9.58
mAh per time slot and we chooseβQ = 2. In Fig. 8(a), we
fix the buffer size to105 bits and plot the battery discharge
probability as a function of the battery sizeM . The discharge
probabilities for both schemes should decay exponentiallyfor
both schemes. However, the decay exponent for schemeQ
should be larger than the decay exponent for the TO scheme.
In fact, the decay exponent for the schemeQ should be
proportional toµ− C−1(λ), whereas the decay exponent for
the TO scheme is proportional toǫ < µ− C−1(λ)) (given in
Eq. (14). As expected, the discharge probability for scheme
Q decays faster than that of the TO scheme. In Fig. 8(b), we
plot the data loss probability as a function of the buffer size
while keeping the battery size fixed at105 mAh. We observe
that the loss probability for the TO scheme decays faster than
that for schemeQ. This trend is expected as the TO scheme
should have an exponential decay compared to a quadratic
decay for schemeQ. Fig. 8(c) compares the convergence of
the time average utilities to the maximum utility function for
the two schemes. We observe that schemeQ converges to the
maximum utility for moderately large buffer sizes (∼ 104 bits).
On the other hand, TO scheme does not achieve the optimal
utility even asymptotically.

Fig. 9 compares the performance of power allocation
schemes with increasing traffic intensity. We define traffic
intensity asρ , λ

C(µ) = λ
log2(1+γµ) . We fix the buffer length

at 105 bits and battery capacity is set at107 mAh. In Fig. 9(a)
we observe that the discharge probability increases with traffic
intensity. For values ofρ < 0.97, schemeQ performs almost
an order of magnitude better than the TO scheme in terms
of the discharge probability. For traffic intensities closeto
unity the schemeQ degenerates to the TO scheme and their
performances converge. Fig. 9(b) shows that the data loss
probabilities for both schemes also increases with increasing
traffic intensity. Similar to the discharge probability, for values
of ρ < 0.97, the loss probability for schemeQ is almost an
order of magnitude lower than that for the TO scheme. This
can be explained by the higher discharge probability for theTO
scheme leading to severe performance degradation. Finally, we
observe in Fig. 9(c) that the time average utility decreaseswith
increasingρ. This is a direct consequence of increasing battery
discharge and data loss probabilities leading to sub-optimal
performance in both schemes. Asρ → 1, the performances of
the two energy management schemes degrade highly.

C. Trade-offs Between Buffer Overflow and Battery Discharge
Probabilities

In Fig. 10, we numerically evaluate the trade-off between
battery discharge and data loss given in Theorem 4. We
use the data arrival and energy replenishment process used
previously. Fig 10(a) illustrates that in order to increase
the decay exponent for the battery discharge probability, the
energy management scheme has to decrease the exponent for
the data loss probability. We choose three operating pointson
this curve and evaluate the battery discharge and data loss
scaling for these points. As we go from operating point 1
to 3, the data loss probability decay exponent increases and
the battery discharge probability decay exponent decreases. In
Fig. 10(b), we observe that the quickest decay for the loss
probability is for operating point 1. In Fig. 10(c), as expected,
we see the opposite effect wherein the discharge probability
decays fastest for the operating point 3.

V. CONCLUSIONS

In this paper, we studied the basic limits and associated
tradeoffs for energy management schemes in energy replenish-
ing sensor networks. We showed that it is possible to observea
polynomial decay for the discharge probability with increased
battery size, and at the same time achieveΘ((logM)2/M2)
convergence to the maximum achievable utility using a simple
energy management scheme. We showed the strength of this
result by showing that it is not possible to simultaneously
observe an exponential decay for the discharge probability
and achieve maximum utility. With the insights drawn, we
addressed the problem of energy management with buffer and
battery constraints. We showed that, in addition to achieving
Θ((logK)2/K2) convergence to the optimum utility, it is
possible to achieve a polynomial decay for the data loss
probability and exponential decay for the the battery discharge
probability using a simple energy management scheme.

To analyze the buffer and battery processes we made use
of large deviations theory and diffusion approximations. The
main advantage of using these tools in our work is that it
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Fig. 8. Performance evaluation for energy management schemes under buffer and battery constraints.
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allows analytical tractability while keeping the system model
fairly general in nature. Finally, we numerically illustrated the
performance of the our simple energy management schemes
along with that of another existing scheme, and demonstrated
that our scheme can perform up to an order of magnitude better
in terms of outage probabilities while achieving the maximum
utility asymptotically.

One possible future direction of research is the design of op-
timal or near-optimal practical energy management solutions
in the presence of channel fading and multi-user interference
and to build distributed algorithms to realize these schemes.
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APPENDIX A
PROOF OFLEMMA 1

To prove this lemma, we first use the finite form of Jensen’s
inequality to establish,

1

τ

τ∑

t=1

U(eS(t)) ≤ U

(

1

τ

τ∑

t=1

eS(t)

)

.

Since this inequality holds for any finiteτ , passing the limit
τ → ∞, the inequality is preserved,

lim
τ→∞

1

τ

∞∑

t=1

U(eS(t)) ≤ lim
τ→∞

U

(

1

τ

∞∑

t=1

eS(t)

)

= U

(

lim
τ→∞

1

τ

∞∑

t=1

eS(t)

)

, (15)

where (15) follows sinceU(·) is a continuous function [22].
From conservation of energy, we have

lim
τ→∞

1

τ

τ∑

t=1

eS(t) ≤ lim
τ→∞

1

τ

τ∑

t=1

r(t) = µ, (16)

sinceM < ∞. Combining Eqs. (15) and (16), we have the
required result,

lim
τ→∞

1

τ

∞∑

t=1

U(eS(t)) = ŪS ≤ U(µ). (17)

APPENDIX B
PROOF OFTHEOREM 1

In this appendix, we prove that the power allocation scheme
B achieves the scaling properties given in Theorem 1. First,
consider a general form of SchemeB:

eB(t) =

{

µ− δ−, B(t) ≤ M/2

µ+ δ+, B(t) > M/2
, (18)

for some pairδ−, δ+, that will be chosen later. We will show
that the desired solution involvesδ− = δ+ = δB.

Depending on whether the battery state is less than (or more
than) half full, the expected drift of the battery state becomes
positive (or negative). GivenB(t) ≤ M/2, the asymptotic
semi-invariant log-moment generating function of the battery
state drift,d−(t) , r(t) − (µ− δ−), is

Λ̄d−(s) = lim
τ→∞

1

τ
logE

[

exp

(

s

τ∑

t=1

d−(t)

)]

= Λ̄r(s)− s(µ− δ−). (19)

http://www.ee.ucla.edu/~mbs/ipsn05/demo/18_JHsu.pdf
http://www.nrel.gov/midc/
http://arxiv.org/abs/1009.0569
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WhereΛ̄r(s) is given by Eq. (3). Lets∗d− be the negative root4

of Λ̄d−(s), i.e.,Λ̄d−(s∗d−) = Λ̄r(s
∗
d−)−s∗d−(µ−δ−) = 0. Also

asδ− → 0, s∗d− → 0.
Before we prove Theorem 1, we state and prove the follow-

ing lemmas. Lemma 2 gives the rate of decay of the probability
of battery discharge with respect to the battery sizeM for the
SchemeB. Lemma 3 expresses the rate decay exponents∗d−

for schemeB in terms of the asymptotic variance of energy
replenishment processr(t).

Lemma 2. The probability of battery discharge under
SchemeB with battery sizeM follows pBdischarge(M) =

Θ
(

exp
(

s∗
d−

M

2

))

, wheres∗d− is the negative root of̄µd−(s).

Proof: Fix a constantA > 0 and decompose the time line
into intervals, such that each interval is of length⌈M

2A⌉ and
the ith interval ends at time slotti = i⌈M

2A⌉. Assume that the
system has been active sincet = −∞. We defineEi as the
event that the battery is empty at the end of time slot 0 and the
last time the battery was half full (i.e.,M/2) is some instant
during the interval−i =

[
−(i+ 1)⌈M

2A⌉+ 1,−i⌈M
2A⌉
]
. The

event of an empty battery at time slot 0 can be decomposed
as a union of eventsEi,

pBdischarge(M) =
∞∑

i=0

P (Ei) (20)

A necessary condition for eventEi to occur is,

0∑

t=−(i+1)⌈ M
2A ⌉+1

(
eB(t)− r(t)

)
>

M

2
(21)

Using Chernoff’s bound, for anyθi ≥ 0,

P





0∑

t=−(i+1)⌈ M
2A ⌉+1

(eB(t)− r(t)) >
M

2





≤ E



exp



θi

0∑

t=−(i+1)⌈ M
2A ⌉+1

(eB(t)− r(t))







 exp

(

−θi
M

2

)

= E



exp



−θi

0∑

t=−(i+1)⌈ M
2A ⌉+1

r(t)









× exp

(

θi(i+ 1)

⌈
M

2A

⌉

(µ− δ−)

)

exp

(

−θi
M

2

)

= exp

(

− M

2

[

θi

(

1− i+ 1

A
(µ− δ−)

)

− i+ 1

A
Λ̄r(−θi)

+ ǫi(M, θi)

])

, (22)

whereǫi(M, θi) → 0 asM → ∞.

4Note that Λ̄
d−

(0) = 0 and
∂Λ̄

d−
(s)

∂s

∣

∣

∣

∣

s=0

=

limT→∞
1
T

∑

T

t=1 E
[

d−(t)
]

= δ− > 0. Consequentlys∗
d−

< 0
will exist.

iJ

γ + iβ

γ

fi(θ̃)

0

Fig. 11. A geometric proof for the existence ofJ and δ > 0 such that for
every i > J , fi(θ̃) > γ + iδ.

In order to find the tightest bound for eachi, we choose
θ∗i ≥ 0 to maximize,

fi(θ) , θ

(

1− i+ 1

A
(µ− δ−)

)

− i+ 1

A
Λ̄r(−θ), (23)

over all θ > 0 and let γ = infi≥0 supθ≥0 fi(θ) =
infi≥0 fi(θ

∗
i ). We can rewritefi(θ) as,

fi(θ) = θ − µ− δ−

A
θ − Λ̄r(−θ)

A
− i

(
(µ− δ−)θ + Λ̄r(−θ)

A

)

Since limτ→∞
1
τ

∑τ
t=1 E [r(t)] = µ > µ − δ−, the function

(µ− δ−)θ+Λ̄r(−θ) has a negative slope atθ = 0. Hence, we
can choose somẽθ > 0, such that(µ− δ−)θ̃ + Λ̄r(−θ̃) < 0.
This implies that there exists aJ and aβ > 0 such that for
every i > J ,

fi(θ̃) > γ + iβ (24)

as illustrated in Fig. 11. Returning to Eq. (20),

pBdischarge(M) =

∞∑

i=0

P (Ei)

≤
∞∑

i=0

P





0∑

k=−(i+1)⌈ M
2A ⌉+1

(eB(k)− r(k)) >
M

2





≤
J∑

i=0

exp

(

−M

2
[fi(θ

∗
i ) + ǫi(M, θ∗i )]

)

+

∞∑

i=J+1

exp

(

−M

2

[

fi(θ̃) + ǫi(M, θ̃)
])

≤
J∑

i=0

exp

(

−M

2

[

γ + min
0≤i≤J

ǫ(M, θ∗i )

])

+

∞∑

i=J+1

exp

(

−M

2

[

γ + iβ + inf
i>J

ǫi(M, θ̃)

])

= exp

(

−M

2
γ

)[

(J + 1) exp

(

min
0≤i≤J

ǫ(M, θ∗i )

)

+
exp

(

−M
2

(

(J + 1)β + infi>J ǫi(M, θ̃)
))

1− exp
(
−βM

2

)

]

. (25)

As M → ∞,

lim sup
M→∞

2

M
log pBdischarge(M) ≤ −γ
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Since this inequality holds for anyA > 0, we letA → ∞ as
follows:

lim sup
M→∞

2

M
log pBdischarge(M)

≤ − inf
i≥0

sup
θ≥0

[

θ

(

1− i

A
(µ− δ)

)

− i

A
Λ̄r(−θ)

]

= − inf
T≥0

sup
θ≥0

[
θ (1− T (µ− δ))− T Λ̄r(−θ)

]

= − inf
T≥0

T sup
θ≥0

[

−θ

(

µ− δ − 1

T

)

− Λ̄r(−θ)

]

(26)

Next, we find the lower bound. For someT ≥ 0, a sufficient
condition for the battery to be empty at some time slot in the
interval [−⌈TM/2⌉, 0] is that,

0∑

t=−⌈TM
2 ⌉+1

(eB(t)− r(t)) > M. (27)

We can lower boundpBdischarge(M) using the union bound,

P

(

B(t) = 0 within somet ∈
[

−
⌈
TM

2

⌉

, 0

])

= P





0⋃

t=−⌈TM/2⌉
B(t) = 0



 ≤
0∑

t=−⌈TM/2⌉
P (B(t) = 0)

=

⌈
TM

2

⌉

pBdischarge(M). (28)

We also have

P





0∑

t=−⌈TM
2 ⌉+1

(eB(t)− r(t)) >
M

2





= P





0∑

t=−⌈ TM
2 ⌉+1

(µ− δ− − r(t)) >
M

2



 . (29)

We define, ZM,T , 2
TM

∑0
k=−⌈ TM

2 ⌉+1 (µ− δ− − r(k)).
Consequently,

P





0∑

t=−⌈ TM
2 ⌉+1

(µ− δ− − r(t)) >
M

2



 = P

(

ZM,T >
1

T

)

.

Now, limM→∞ E [ZM,T ] = −δ− < 0 < 1
T for all T > 0.

Applying the Gärtner-Ellis Theorem, we get,

lim
M→∞

2

M
logP

(

ZM,T >
1

T

)

= − sup
s≥0

[
1

T
s− s (µ− δ) + T Λ̄r

(

− s

T

)]

= −T sup
s≥0

[

− s

T

(

µ− δ − 1

T

)

− Λ̄r

(

− s

T

)]

= −T sup
θ≥0

[

−θ

(

µ− δ − 1

T

)

− Λ̄r(−θ)

]

. (30)

Combining Eqs. (28) and (30), we have,

lim inf
M→∞

2

M
log pBdischarge(M)

≥ − inf
T≥0

T sup
θ≥0

[

−θ

(

µ− δ − 1

T

)

− Λ̄r(−θ)

]

. (31)

From Eqs. (26) and (31) we have,

lim
M→∞

2

M
log pBdischarge(M)

= − inf
T≥0

T sup
θ≥0

[

−θ

(

µ− δ − 1

T

)

− Λ̄r(−θ)

]

= s∗d− . (32)

This gives uspBdischarge(M) = Θ
(
exp

(
s∗d−

M
2

))
.

Lemma 3. The asymptotic variance ofr(t), σ̄2
r ,

limT→∞
1
T var

(
∑T

t=1 r(t)
)

satisfies

∂s∗d−

∂δ−

∣
∣
∣
∣
δ−=0

= − 2

σ̄2
r

(33)

Proof: First, we defineΛ̄(n)
d− (0) =

∂nΛ̄
d−

(s)

∂sn

∣
∣
∣
s=0

. The

Taylor series expansion of̄Λd−(s∗d−) abouts = 0 gives,

0 = Λ̄d−(s∗) =
∞∑

n=0

Λ̄
(n)
d− (0)

(s∗d−)n

n!

= Λ̄d−(0)
︸ ︷︷ ︸

=0

+Λ̄
(1)
d−(0)s

∗
d− + Λ̄

(2)
d−(0)

(s∗d−)2

2!
+ · · ·

=

∞∑

n=1

Λ̄(n)
r (0)

(s∗d−)n

n!
− (µ− δ−)s∗d−

= µs∗d− +
∞∑

n=2

Λ̄(n)
r (0)

(s∗d−)n

n!
− (µ− δ)s∗d− .

Rearranging the terms, we have
∞∑

n=2

Λ̄(n)
r (0)

(s∗d−)n−1

n!
= −δ−. (34)

Differentiating with respect toδ−, we have,

∂s∗d−

∂δ−

∞∑

n=2

Λ̄(n)
r (0)

(n− 1)(s∗d−)n−2

n!
= −1.

As δ− → 0, s∗d− → 0 the above expression reduces to,

∂s∗d−

∂δ−

∣
∣
∣
∣
δ−=0

Λ̄(2)
r (0)

1

2
= −1. (35)

SinceΛ̄(2)
r (0) = σ̄2

r , Eq. (35) becomes,

∂s∗d−

∂δ−

∣
∣
∣
∣
δ−=0

= − 2

σ̄2
r

.

Lemma 3 implies

∂s∗d−

∂δ−
= − 2

σ̄2
r

+ o(δ−)

and hence,

s∗d− = − 2

σ̄2
r

δ− + o(δ−), (36)

where o(δ−)/δ− → 0 asδ− → 0.
Substituting this in Eq. (32), we have,

pBdischarge(M) = O

(

exp

[(

− 2

σ̄2
r

δ− + o
(
δ−
)
)

M

2

])

.
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By choosing δ− = α logM
M and α = βσ̄2

r we have
pBdischarge(M) = O(M−β).

Next we show that withδ+ = α logM
M the scheme achieves

an average utilityŪB such thatU(µ) − ŪB = Θ
(

(logM)2

M2

)

.

The instantaneous utilityU(eS(t)) is zero with an O(M−β)
probability. For the remaining time, the utility alternates be-
tweenU+ andU− as illustrated in Fig. 2. The Taylor series
expansion of the utility functions aboutµ will be,

U+ = U(µ) + U (1)(µ)δ+ + U (2)(µ)(δ+)2 + o((δ+)2),

and,

U− = U(µ)− U (1)(µ)δ− + U (2)(µ)(δ−)2 + o((δ−)2).

We defineρ+ as the fraction of time thatB(t) > M/2 and
ρ− = 1 − ρ+ as the fraction of time thatB(t) ≤ M/2. The
average utilityŪB can be written as,

ŪB = (ρ+U+ + ρ−U−)(1− pBdischarge(M))

= U(µ) + U (1)(µ)(ρ+δ+ − ρ−δ−) + Θ

(
(logM)2

M2

)

,

(37)

where Eq. (37) follows from the fact thatδ−, δ+ = α logM
M

andpBdischarge(M) = O(M−β) whereβ ≥ 2.
From conservation of energy, the replenishment energy is

consumed completely except for the amount lost due to battery
overflows. Thus,

ρ+(µ+ δ+) + ρ−(1− pBdischarge(M))(µ− δ−)

= µ(1 − pBoverflow(M)), (38)

wherepBoverflow(M) is the probability of the battery being full
under the power allocation schemeB. By a trivial extension
of Lemmas 2 and 3, it can be shown thatpBoverflow(M) =
Θ
(
M−β

)
. We can simplify Eq. (38) as,

ρ+δ+ − ρ−δ− = (ρ−(µ− δ−)− µ)Θ
(
M−β

)

= Θ
(
M−β

)
. (39)

By substituting Eq. (39) in the first-order term of Eq. (37),
we observe that the schemeB achievesU(µ) − ŪB =

Θ
(

(logM)2

M2

)

. Choosing δB = δ+ = α logM
M in Eq. (4)

completes the proof of Theorem 1.

APPENDIX C
PROOF OFTHEOREM 2

Consider any ergodic energy management schemeS that
useseS(t) units of energy in the time slott. Note that scheme
S can be deterministic or randomized. The asymptotic semi-
invariant log moment generating function of the net battery
drift dS , eS(t) − r(t) is given byΛ̄dS (s). First, we state a
lemma that gives the discharge probability scaling for scheme
S. Since this lemma is a minor modification of Lemma 2, we
omit the proof in this paper. We direct the reader to [23] for
the detailed proof of this lemma.

Lemma 4. The probability of battery discharge under
SchemeS with battery sizeM follows pSdischarge(M) =
Θ(exp(−s∗dSM)), wheres∗dS is the positive root of̄µdS (s).

Note thats∗dS > 0 exists5 if and only if E
[
dS(t)

]
< 0.

Therefore, forpSdischarge(M) to decay exponentially withM ,
we require,

E
[
eS(t)

]
< E [r(t)] = µ. (40)

On the other hand, ifE
[
dS(t)

]
≥ 0, there exists no rates > 0

at which the battery discharge probability decays exponentially
with M , i.e.,pSdischarge(M) = Ω(exp(−sM)) for all s > 0. By
substitutingαc = s∗dS in Lemma 4, we get the required scaling
law pSdischarge(M) = Θ(exp(−αcM)).

The difference between the utilities is given by,

U(µ)− ŪS = U(µ)− lim
τ→∞

1

τ

τ∑

t=1

U(eS(t))

(a)

≥ U(µ)− U

(

lim
τ→∞

1

τ

τ∑

t=1

eS(t)

)

(b)
= U(µ)− U

(
E
[
eS(t)

]) (c)
= Ω(1). (41)

Where(a) follows from Eq. (15),(b) follows from the ergod-
icity of eS(t) and(c) follows from the fact thatµ > E

[
eS(t)

]

andU(·) is an increasing function. This completes the proof
for Theorem 2.

APPENDIX D
PROOF OFTHEOREM 3

As discussed in Section III-B, our proof is constructive.
We use the energy management schemeQ given in Eq. (8).
Also, in Step (T1) we show in the heavy traffic limit that, the
data loss and the battery discharge probabilities can be found
using the appropriate reflection probabilities of the associated
2-dimensional RBM. Further, we showed in Step (T2) that
the scaling laws for the data loss and the battery discharge
probabilities are preserved when they are approximated by,
respectively, the associated overflow and the underflow prob-
abilities of the Brownian motion without reflections. We find
the individual probabilities in the following lemmas.

Lemma 5. For energy management schemeQ, given any
β′
Q ≥ 2, pQoverflow(K) = O(K−β′

Q).

Proof: If we assume the starting state of the Brow-
nian motion to beQ(0) = K/2. Note that due to the
strong Markovian property of a Brownian motion [24], the
instants {Tn, n = 1, 2, . . .} at which the system re-
turns to stateK/2 (i.e., Q(Ti) = K/2) is probabilistically
equal to the starting state. Hence we can study these re-
newal epochs6 to obtain steady state properties for the data
queue process. Now, consider the random variablesTu ,

argmint>0{Q(t) = K/2,Q(0) = K/2,Q(0+) > K/2}
andTl , argmint>0{Q(t) = K/2,Q(0) = K/2,Q(0+) <

5SinceΛ̄
dS

(0) and
∂Λ̄

dS
(s)

∂s

∣

∣

∣

∣

s=0

= limτ→∞ E
[

dS(τ)
]

< 0, s∗
dS

> 0

will exist.
6If we assume the starting state to beQ(0) 6= 0, we can simply consider

the process to be a delayed renewal process. The steady stateproperties in
the resulting analysis will not change.
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K/2}. The hitting time distributions can be calculated as [24],

P

(

Tu > t+ τ

∣
∣
∣
∣
Q(τ) =

K

2
+ ǫ

)

= Φ

(
ǫ− δ(a)τ

σ̄a
√
τ

)

− exp

(
2δ(a)ǫ

σ̄2
a

)

Φ

(−ǫ− δ(a)τ

σ̄a
√
τ

)

= P

(

Tl > t+ τ

∣
∣
∣
∣
Q(τ) =

K

2
− ǫ

)

, (42)

whereΦ(y) , 1√
2π

∫ y

−∞ exp
(

−x2

2

)

dx. Since Eq. (42) holds
for all τ > 0 and ǫ > 0, the random variablesTu and
Tl will have the same distribution. Furthermore, once the
processQ(t) = K/2, it can go above or belowK/2 with
equal probability. Consequently, we need to study the renewals
associated withQu(t) , |Q(t) − K/2| + K/2 and can
find P (Q(t) > K) = 1

2P (Qu(t) > K), which is identical to
pQoverflow(K).

If we define a unit reward (i.e.,R(t) = 1) for every timet
that the processQu(t) > K then,

lim
t→∞

P (Qu(t) > K) = lim
t→∞

E [R(t)] . (43)

From renewal-reward theory [25] we can write,

lim
t→∞

E [R(t)] =
E [Rn]

E [X ]
, (44)

where E [Rn] is the expected award accumulated in one
renewal period, andE [X ] is the expected length of the renewal
period. To get the correct expression forlimt→∞ E [R(t)], we
need to write the expressions forE [Rn] andE [X ] carefully.
We defineE [X(ǫ)] as the expected time for processQ(t) to
return toK/2 given that it starts atK/2 + ǫ. The expression
for E [X(ǫ)] is given by [26],

E [X(ǫ)] =
ǫ

δ(a)
. (45)

Similarily, we defineE [Rn(ǫ)] as the probability of reaching
K beforeK/2 starting atK/2+ ǫ. Passing the limitǫ ↓ 0 will
give the expected reward accumulated in one renewal period.
Applying the expression for this probability from [26],

E [Rn(ǫ)] =
exp

(
2δ(a)

σ̄2
a
ǫ
)

− 1

exp
(

2δ(a)

σ̄2
a

K
2

)

− 1

=

2δ(a)

σ̄2
a
ǫ+ o(ǫ)

exp
(

2δ(a)

σ̄2
a

K
2

)

− 1
. (46)

Dividing Eqs. (46) by (45) and passing the limitǫ ↓ 0, we
have,

lim
t→∞

E [R(t)] = lim
ǫ↓0

(
2δ(a)

σ̄2
a

+ o(ǫ)
ǫ

)

δ(a)

exp
(

2δ(a)

σ̄2
a

K
2

)

− 1
. (47)

Evaluating the limit ǫ ↓ 0, and noting that the stochastic
process will be in the upper half of the buffer with probability
1/2, for largeK we have,

pQoverflow(K) =
δ(a)

2

σ̄2
a

exp

(

−δ(a)K

σ̄2
a

)

.

By choosingδ(a) = β′
Qσ̄

2
a
logK
K , we have,

pQoverflow(K) = β′
Q
2
σ̄2
a

(
logK

K

)2

exp
(
−β′

Q logK
)

= O
(

K−β′

Q

)

. (48)

Lemma 6. For the energy management schemeQ,
limM→∞

1
M log(pQunderflow(M)) = − 2(µ−C−1(λ))

σ̄2
r

, where
C−1(·) is the inverse of the rate-power functionC(·).

Proof: To calculatepQunderflow(M) = limt→∞ P (B(t) <
0), first we define power allocation policiesQ1,

eQ1(t) = µ− δ
(r)
1 , ∀ t, (49)

andQ2,

eQ2(t) = µ− δ
(r)
2 , ∀ t. (50)

Let the battery underflow probabilities associated with
schemesQ1 andQ2 bepQ1

underflow(M) andpQ2

underflow(M), respec-
tively. For the same energy replenishment process{r(t), t ≥
0}, the net battery drift is defined asdS(t) , r(t)−eS(t), for
each schemeS ∈ {Q, Q1, Q2}. The net drifts will have the
following relation,

dQ2(t) ≥ dQ(t) ≥ dQ1(t) ∀ t. (51)

It follows that,

pQ2

underflow(M) ≤ pQunderflow(M) ≤ pQ1

underflow(M). (52)

The Brownian approximation for the battery process under
policiesQ1 and Q2 is an exponential random variable, and
the undeflow probabilities are given by [18], [27],

pQ1

underflow(M) = exp

(

−2δ
(r)
1

σ̄2
r

M

)

, (53)

and,

pQ2

underflow(M) = exp

(

−2δ
(r)
2

σ̄2
r

M

)

, (54)

Substituting Eqs. (53) and (54) in Eq. (52) we have,

exp

(

−2δ
(r)
2

σ̄2
r

M

)

≤ pQunderflow(M) ≤ exp

(

−2δ
(r)
1

σ̄2
r

M

)

.

(55)

For a rate-power functionC(·), we haveδ(r)1 = µ−C−1(λ)+

Θ(δ(a)) and δ
(r)
2 = µ − C−1(λ) + Θ(δ(a)). With δ(a) =

βQσ̄
2
a
logK
K → 0 asK → 0, we can apply the squeeze theorem

in Eq. (55) to get the required result.

To illustrate Lemma 6, we consider the AWGN chan-
nel capacity given in Eq. (6). We have,δ(r)1 = µ −
exp((λ+δ(a)) log 2)−1

γ andδ(r)2 = µ− exp((λ−δ(a)) log 2)−1

γ . We



14

can use the power series expansion of the exponential function
to get,

δ
(r)
1 = µ− 1

γ

(

(λ + δ(a)) log 2 +
(λ+ δ(a))2(log 2)2

2
+ · · ·

)

= µ− 1

γ
exp(λ log 2) + Θ(δ(a)), (56)

and,

δ
(r)
2 = µ− 1

γ

(

(λ − δ(a)) log 2 +
(λ− δ(a))2(log 2)2

2
+ · · ·

)

= µ− 1

γ
exp(λ log 2) + Θ(δ(a)). (57)

Substituting these expressions in Eq. (55), we get
pQdischarge(M) = Θ(exp(−αQM)).

Finally, we show that SchemeQ achieves an average
utility ŪQ

D such thatUD(λ) − ŪQ
D = Θ

(
(logK)2

K2

)

. The
instantaneous utility will be zero when the queue is empty
or when the battery is discharged. Due to symmetry of the
Brownian approximation, the empty buffer probability willbe
the same as the data loss (i.e., full buffer) probability. Since
pQdischarge(M) = O(exp(−M)), under the large battery regime
we can ignore the discharge term. The average utilityŪQ

D can
be written as,

ŪQ
D =

1

2

(

UD(λ+ δ(a)) + UD(λ − δ(a))
)

(1 − pQloss(K))

= UD(λ) + U
(2)
D (λ)(δ(a))2 + o

(

(δ(a))2
)

(58)

= UD(λ) + Θ

(
(logK)2

K2

)

, (59)

where Eq. (58) follows from the fact thatpQloss(K) =
O(K−βQ) for someβQ ≥ 2 and Eq. (59) comes from choosing
δ(a) = βQσ̄

2
a
logK
K . This completes the proof of Theorem 3.

APPENDIX E
PROOF FORTHEOREM 4

To prove this theorem, first consider a power allocation
schemeE that is given by,

eE(t) = µ− δ(r). (60)

We define the battery drift asdEbattery(t) , r(t) − eE(t). The
mean drift for the battery process is equal toδ(r). Applying
the diffusion limit, we can write the discharge probabilityfor
this energy management scheme as [18], [27],

pEunderflow(M) = lim
t→∞

P (B(t) < 0) = exp

(

−2δ(r)

σ̄2
r

M

)

.

(61)

Similarily, by applying the diffusion limit to the data buffer
process we can find the buffer overflow probability as,

pEoverflow(K) = lim
t→∞

1

2
P (Qu(t) > K) = exp

(

−2δ(a)

σ̄2
a

K

)

,

(62)

whereδ(a) = C(µ− δ(r))− λ. Substituting this value ofδ(a)

in Eq. (62), we get the desired result.
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