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Abstract—Cellular networks (e.g., 3G) are currently facing severe traffic overload problems caused by excessive traffic demands.
Offloading part of the cellular traffic through other forms of networks, such as Delay Tolerant Networks (DTNs) and WiFi hotspots,
is a promising solution. However, since these networks can only provide intermittent connectivity to mobile users, utilizing them for
cellular traffic offloading may result in a non-negligible delay. As the delay increases, the users’ satisfaction decreases. In this paper, we
investigate the tradeoff between the amount of traffic being offloaded and the users’ satisfaction. We provide a novel incentive framework
to motivate users to leverage their delay tolerance for cellular traffic offloading. To minimize the incentive cost given an offloading target,
users with high delay tolerance and large offloading potential should be prioritized for traffic offloading. To effectively capture the dynamic
characteristics of users’ delay tolerance, our incentive framework is based on reverse auction to let users proactively express their delay
tolerance by submitting bids. We further illustrate how to predict the offloading potential of the users by using stochastic analysis for both
DTN and WiFi cases. Extensive trace-driven simulations verify the efficiency of our incentive framework for cellular traffic offloading.

Index Terms—Cellular Traffic Offloading, Auction, Delay Tolerant Networks, WiFi Hotspots.
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1 INTRODUCTION

THe recent popularization of cellular networks (e.g.,
3G) provide mobile users with ubiquitous Internet

access. However, the explosive growth of user popula-
tion and their demands for bandwidth-eager multimedia
content raise big challenges to the cellular networks. A
huge amount of cellular data traffic has been generated
by mobile users, which exceeds the capacity of cellular
network and hence deteriorates the network quality [1].
To address such challenges, the most straightforward
solution is to increase the capacity of cellular networks,
which however is expensive and inefficient. Some re-
searchers studied on how to select a small part of key
locations to realize capacity upgrade, and shift traffic to
them by exploiting user delay tolerance [2]. Remaining
the capacity of cellular networks unchanged, offloading
part of cellular traffic to other coexisting networks would
be another desirable and promising approach to solve the
overload problem.

Some recent research efforts have been focusing on
offloading cellular traffic to other forms of networks,
such as DTNs and WiFi hotspots [3] [4] [5], and they
generally focus on maximizing the amount of cellular
traffic that can be offloaded. In most cases, due to user
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mobility, these networks available for cellular traffic of-
floading only provide intermittent and opportunistic net-
work connectivity to the users, and the traffic offloading
hence results in non-negligible data downloading delay.
In general, more offloading opportunities may appear by
requesting the mobile users to wait for a longer time
before actually downloading the data from the cellular
networks, but this will also make the users become more
impatient and hence reduce their satisfaction.

In this paper, we focus on investigating the tradeoff
between the amount of traffic being offloaded and the
users’ satisfaction, and propose a novel incentive frame-
work to motivate users to leverage their delay tolerance
for traffic offloading. Users are provided with incentives;
i.e., receiving discount for their service charge if they are
willing to wait longer for data downloading. During the
delay, part of the cellular data traffic may be opportunis-
tically offloaded to other networks mentioned above, and
the user is assured to receive the remaining part of the
data via cellular network when the delay period ends.

The major challenge of designing such an incentive
framework is to minimize the incentive cost of cellular
network operator which includes the total discount pro-
vided to the mobile users, subject to an expected amount
of traffic being offloaded. To achieve this goal, two impor-
tant factors should be taken into account; i.e., the delay
tolerance and offloading potential of the users. The users
with high delay tolerance and large offloading potential
should be prioritized in cellular traffic offloading.

First, with the same period of delay, the users with
higher delay tolerance require less discount to compen-
sate their satisfaction loss. To effectively capture the
dynamic characteristics of the users’ delay tolerance, we
propose an incentive mechanism based on reverse auc-
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tion which is proved to conduct a justified pricing. In our
mechanism, the users act as sellers to send bids, which
include the delay that they are willing to experience and
the discount that they want to obtain for this delay. Such
discount requested by users is called “coupon” in the rest
of the paper. The network operator then acts as the buyer
to buy the delay tolerance from the users.

Second, with the same period of delay, users with
larger offloading potential are able to offload more data
traffic. For example, the offloading potential of a user
who requests popular data is large, because it can easily
retrieve the data pieces from other contacted peer users
during the delay period. Also, if a user has high probabil-
ity to pass by some WiFi hotspots, its offloading potential
is large. To effectively capture the offloading potential of
the users, we propose two accurate prediction models for
DTN and WiFi case respectively.

The optimal auction outcome is determined by consid-
ering both the delay tolerance and offloading potential of
the users to achieve the minimum incentive cost, given
an offloading target. The auction winners set up contracts
with the network operator for the delay they wait and
the coupon they earn, and other users directly download
data via cellular network at the original price. More
specifically, the contribution of the paper is three-fold:

• We propose a novel incentive framework, Win-
Coupon, based on reverse auction, to motivate users lever-
aging their delay tolerance for cellular traffic offloading,
which have three desirable properties: 1) truthfulness, 2)
individual rationality, 3) low computational complexity.

• We provide an accurate model using stochastic anal-
ysis to predict users’ offloading potential based on their
data access and mobility patterns in the DTN case.

• We provide an accurate Semi Markov based predic-
tion model to predict users’ offloading potential based on
their mobility patterns and the geographical distribution
of WiFi hotspots in the WiFi case.

The rest of the paper is organized as follows. In Sec-
tion 2 we briefly review the existing work. Section 3
provides an overview of our approach and the related
background. Section 4 describes the details of our incen-
tive framework, and proves its desirable properties. Sec-
tion 5 evaluates the performance of Win-Coupon through
trace-driven simulations and Section 6 discusses further
research issues. Section 7 concludes the paper.

2 RELATED WORK

To deal with the problem of cellular traffic overload, some
studies propose to utilize DTNs to conduct offloading.
Ristanovic et al. [6] propose a simple algorithm, Mix-
Zones, to let the operator notify users to switch their
interfaces for data fetching from other peers when the
opportunistic DTN connections occur. Whitbeck et al. [7]
design a framework, called Push-and-Track, which in-
cludes multiple strategies to determine how many copies
should be injected by cellular network and to whom, and
then leverages DTNs to offload the traffic. Han et al. [3]

provide three simple algorithms to exploit DTNs to facil-
itate data dissemination among mobile users, in order to
reduce the overall cellular traffic. Many research efforts
have focused on how to improve the performance of data
access in DTNs. In [8], the authors provide theoretical
analysis to the stationary and transient regimes of data
dissemination. Some later works [9] [10] disseminate data
among mobile users by exploiting their social relations.
Being orthogonal with how to improve the performance
of data access in DTNs, in this paper, we propose an
accurate model to capture the expected traffic that can
be offloaded to DTNs to facilitate our framework design.

Public WiFi can also be utilized for cellular traffic
offloading. In [6], the authors design HotZones to enable
users turning on WiFi interfaces when a WiFi connection
is expected to occur based on the user mobility profile
and location information of hot zones covered by WiFi.
In [5], the authors measure the availability and the of-
floading performance of public WiFi based on vehicular
traces. Lee et al. [4] consider a more general mobile
scenario, and present a quantitative study on delayed
and on-the-spot offloading by using WiFi. The prediction
of future WiFi availability is important to the offloading
scheme design, and has been studied in [11] [12]. In [11],
the authors propose to enable mobile users to schedule
their data transfers when higher WiFi transmission rate
can be achieved based on the prediction. In [12], a
Lyapunov framework based algorithm, called SALSA,
is proposed to optimize the energy-delay tradeoff of
the mobile devices with both cellular network and WiFi
interfaces. Different from the existing work, in this paper,
we propose an accurate model to predict how much
traffic that can be offloaded via WiFi hotspots if a mobile
user is willing to wait for certain delay time.

All the existing offloading studies have not considered
the satisfaction loss of the users when a longer delay is
caused by traffic offloading. To motivate users to leverage
their delay tolerance for cellular traffic offloading, we
propose an auction based incentive framework. Auction
has been widely used in network design. Applying auc-
tion in the spectrum leasing is one of the most practi-
cal applications. Federal Communications Commission
(FCC) has already auctioned the unused spectrum in
the past decade [13], and there are a large amount of
works on wireless spectrum auctions [14] [15]. Moreover,
auction has also been applied for designing incentive
mechanism to motivate selfish nodes to forward data
for others [16] [17]. However, none of them has applied
auction techniques to cellular traffic offloading.

This paper substantially extends the preliminary ver-
sion of our results appeared in [18]. In [18], we mainly
focused on how to stimulate users to offload cellular
traffic via DTNs. In this paper, we propose a more general
framework which considers both DTNs and WiFi case.
We provide an accurate model to predict users’ offload-
ing potential in the WiFi case and perform trace-driven
simulations to evaluate its performance. In addition, we
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change the data query model in [18] to more realistic
Zipf-like distribution to evaluate our framework.

3 OVERVIEW

3.1 The Big Picture
In this section, we give an overview of the Win-Coupon
framework. By considering the users’ delay tolerance and
offloading potential, Win-Coupon uses a reverse auction
based incentive mechanism to motivate users to help
cellular traffic offloading. Figure 1 illustrates the main
idea. The network operator acts as the buyer, who offers
coupons to users in exchange for them to wait for some
time and opportunistically offload the traffic. When users
request data, they are motivated to send bids along with
their request messages to the network operator. Each
bid includes the information of how long the user is
willing to wait and how much coupon he wants to
obtain as a return for the extra delay. Then, the network
operator infers users’ delay tolerance. In addition, users’
offloading potential should also be considered when
deciding the auction outcome. Based on the historical
system parameters collected, such as users’ data access
and mobility patterns, their future value can be predicted
by conducting network modeling, and then based on the
information, users’ offloading potential can be predicted.

Fig. 1. The main idea of Win-Coupon

The optimal auction outcome is to minimize the net-
work operator’s incentive cost subject to a given of-
floading target according to the bidders’ delay tolerance
and offloading potential. The auction contains two main
steps: allocation and pricing. In the allocation step, the
network operator decides which bidders are the winners
and how long they need to wait. In the pricing step,
the network operator decides how much to pay for
each winner. Finally, the network operator returns the
bidders with the auction outcome which includes the
assigned delay and the value of coupon for each bidder.
The winning bidders (e.g. user u1 and u2 shown in
Figure 1) obtain the coupon, and are assured to receive
the data via cellular network when their promised delay
is reached. For example, suppose p is the original data
service charge, if user u1 obtains the coupon with value c
in return for delay t, it only needs to pay p−c for the data
service. During the delay period, u1 may retrieve some
data pieces from other intermittently available networks,

e.g., by contacting other peers which cache the data or
moves into the wireless range of APs. Once delay t
passes, the cellular network pushes the remaining data
pieces to u1 to assure the promised delay. The losing
bidders (e.g. user u3 shown in Figure 1) immediately
download data via cellular network at the original price.

3.2 User Delay Tolerance
With the increase of downloading delay, the user’s sat-
isfaction decreases accordingly, the rate of which reflects
the user’s delay tolerance. To flexibly model users’ delay
tolerance, we introduce a satisfaction function S(t), which
is a monotonically decreasing function of delay t, and
represents the price that the user is willing to pay for the
data service with the delay. The satisfaction function is
determined by the user himself, his requested data, and
various environmental factors. We assume that each user
has an upper bound of delay tolerance for each data.
Once the delay reaches the bound, the user’s satisfaction
becomes zero, indicating that the user is not willing to
pay for the data service. Figure 2 shows an example of the
satisfaction function S(t) of a specific user for a specific
data, where tbound is the upper bound of the user’s delay
tolerance. p is the original charge for the data service,
and the satisfaction curve represents the user’s expected
price for the data as the delay increases. For example,
with delay t1 the user is only willing to pay p1 instead
of p. p− p1 is the satisfaction loss caused by delay t1.

Fig. 2. Satisfaction function Fig. 3. Private value

3.3 Auctions
In economics, auction is a typical method to determine
the value of a commodity that has an undetermined and
variable price. It has been widely applied to many fields.
Most auctions are forward auction which involves a single
seller and multiple buyers, and the buyers send bids to
compete for obtaining the commodities sold by the seller.
In this paper, we use reverse auction [19] which involves a
single buyer and multiple sellers, and the buyer decides
its purchase based on the bids sent by the sellers. To begin
with, we introduce some notations.
Bid (bi): It is submitted by bidder i to express i’s valuation
on the resource for sale, which is not necessarily true.
Private value (xi): It is the true valuation made by bidder i
for the resources; i.e., the true price that i wants to obtain
for selling the resource. This value is only known by i.
Market-clearing price (pi): It is the price actually paid by
the buyer to bidder i. This price cannot be less than the
bids submitted by i.
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Utility (ui): It is the residual worth of the sold resource
for bidder i, namely the difference between i’s market-
clearing price pi and private value xi.

The bidders in the auction are assumed to be rational
and risk neutral. A common requirement for auction
design is the so-called individual rationality.

Definition 1: An auction is with individual rationality if all
bidders are guaranteed to obtain non-negative utility.

The rational bidders decide their bidding strategy to
maximize their utility. Let N denote the set of all bidders.
The concept of weakly dominant strategy is defined as:

Definition 2: bi = βi is a weakly dominant strategy for user
i if and only if: ui(βi, β−i) ≥ ui(β

′
i, β−i), ∀β′i �= βi.

Here β−i = {β1, β2, · · · , βi−1, βi+1, · · · , β|N |} denotes
the set of strategies of all other bidders except for bidder
i. We can see a weakly dominant strategy maximizes
i’s utility regardless of the strategies chosen by all other
bidders. If for every bidder, truthfully setting its bid to its
private value is a weakly dominant strategy, the auction
is truthful (strategyproof).

Definition 3: An auction is truthful if each bidder, say i,
has a weakly dominant strategy, in which bi = xi.

The truthfulness eliminates the expensive overhead for
bidders to strategize against other bidders and prevents
the market manipulation. Also, it assures the efficient
allocation by encouraging bidders to reveal their true pri-
vate values. Vickrey-Clarke-Groves (VCG) [20] [21] [22] is
the most well-studied auction format, due to its truthful
property. However, VCG only ensures truthfulness when
the optimal allocation can be found, and it usually cannot
assure the truthfulness when applied to the approxima-
tion algorithms [23]. Unfortunately, the allocation prob-
lem in Win-Coupon is NP-hard. It is known that an
allocation algorithm leads to be truthful if and only if it
is monotone [24]. In order to maintain the truthfulness
property, we design an approximation algorithm and
make it monotone in a deterministic sense. Therefore, our
incentive mechanism possesses three important proper-
ties: 1) truthfulness, 2) individual rationality, and 3) low
computational complexity.

4 MAIN APPROACH OF WIN-COUPON
In this section, we illustrate the details of Win-Coupon.
In the reverse auction based Win-Coupon, the buyer is
the network operator who pays coupon in exchange for
longer delay of the users. The sellers are the cellular users
who sell their delay tolerance to win coupon. The right
side of Figure 1 shows the flow chart of Win-Coupon.
At first, the network operator collects the bids to derive
the delay tolerance of the bidders, and predicts their
offloading potential. Then, based on the derived informa-
tion, a reverse auction is conducted, which includes two
main steps: allocation and pricing. Finally, the network
operator returns the auction outcome to the bidders.

In the rest of this section, we first introduce the bid-
ding. Then, we present auction mechanism and prove its
properties. Finally, we illustrate how to predict bidders’
offloading potential for both DTN and WiFi cases.

4.1 Bidding
To obtain coupon, the users attach bids with their data
requests to reveal their delay tolerance. For each user,
the upper bound tbound of its delay tolerance can be
viewed as the resources that it wants to sell. The user
can divide tbound into multiple time units, and submit
multiple bids b = {b1, b2, · · · , bl} to indicate the value of
coupon it wants to obtain for each additional time unit of
delay, where l equals � tbound

e �, and e is the length of one
time unit. By receiving these bids, the network operator
knows that the user wants to obtain coupon with value
no less than

∑ki

k=1 b
k by waiting for ki time units. The

length of time unit e can be flexibly determined by the
network operator. Shorter time unit results in larger bids
with more information, which increases the performance
of the auction, but it also induces more communication
overhead and higher computational complexity. To sim-
plify the presentation, in the rest of the paper delay t is
normalized by time unit e.

As shown in Figure 2, p − S(t) is the satisfaction loss
of the user due to delay t. Then, p − S(t) represents
the private value of the user to the delay, namely the
user wants to obtain the coupon with value no less than
p−S(t) for delay t. Thus, the private value of the user to
each additional time unit of delay is x = {x1, x2, · · · , xl},
where xk (k ∈ {1, · · · , l}), equals S(k − 1) − S(k). For
example, as shown in Figure 3, the user wants to obtain
the coupon with value no less than x1 if it waits for one
time unit, x1 + x2 for two time units, and x1 + x2 + x3

for three time units. Generally, the user can set its bids
with any value at will, however we will prove that the
auction in Win-Coupon is truthful, which guarantees
that the users would bid their private value; that is,
bk = xk, for all k.

4.2 Auction Algorithms
Win-Coupon is run periodically in each auction round.
Usually, the auction would result in an extra delay for the
bidders to wait for the auction outcome. However, differ-
ent from other long-term auctions, such as the FCC-style
spectrum leasing, the auction round in our scenario is
very short, since hundreds of users may request cellular
data service at the same time. Also, because the bidders
who are willing to submit bids are supposed to have a
certain degree of delay tolerance, the extra delay caused
by auction can be neglected. Next, we describe two main
steps of the auction: allocation and pricing.

4.2.1 Allocation
In traditional reverse auction, the allocation solution
is purely decided by the bids; i.e., the bidders who
bid the lowest price win the game. However, in our
scenario, besides the bids which express the bidders’
delay tolerance, the offloading potential of the bidders
should also be considered. Let {t1, t2, · · · , t|N |} represent
the allocation solution, where ti denotes the length of
delay that network operator wants to buy from bidder i.
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Note that since each bidder is asked to wait for integer
multiples of time unit, ti is an integer. If ti equals zero,
bidder i loses the game. The allocation problem in Win-
Coupon can be formulated as follows:

Definition 4: The allocation problem is to determine the
optimal solution {t1, t2, · · · , t|N |} which minimizes the total
incentive cost, subject to a given offloading target.

minti
∑
i∈N

ti∑
k=1

bki (1)

s.t.
∑
i∈N

V d
i (ti) ≥ v0 (2)

∀i, ti ∈ {0, 1, 2, · · · , li}. (3)

In Eq.(1),
∑ti

k=1 b
k
i denotes the value of the coupon that

the network operator needs to pay bidder i in exchange
for its delay ti. V d

i (t) in Eq.(2) denotes the expected traffic
that can be offloaded, if bidder i downloads data d and
is willing to wait for delay t. We will provide the details
on how to predict V d

i (t) in Section 4.3 and 4.4 for both
DTN and WiFi cases respectively. We assume that within
a short auction round, each bidder only requests one data
item, so that each i is mapped to a single d. Thus, this
constraint ensures that the total expected offloaded traffic
is no less than the offloading target v0. Eq.(3) ensures that
the delay that each bidder i waits does not exceed li, the
maximum number of time units that i is willing to wait.

It is easy to prove that our allocation problem can
be reduced to the 0-1 knapsack problem, under the
assumption that li = 1, for all i. The 0-1 knapsack prob-
lem is proved to be NP-hard, and thus our problem is
also NP-hard. Next, we transform the original problem,
and derive the optimal solution of the new problem by
dynamic programming (DP).

We replace constraint (2) with
∑

i∈N �V d
i (ti)M� ≥

�v0M�, where M = 10n is a common scalar, to transform
V d
i (ti) and v0 into integers. In this way, a table for

DP can be formed and the values in the table can be
resolved gradually. With a larger M , the optimal solution
of the new problem becomes closer to that of the original
problem, and the former converges to the latter when
M increases to infinity. On the other hand, larger M
increases the computational complexity of the algorithm,
and when M is infinite, the approximation algorithm
has pseudo-polynomial complexity. The operator needs
to select a proper scaler M to balance the accuracy and
the computational complexity of the allocation algorithm.
We define V̂ d

i (ti) = �V d
i (ti)M�, and v̂0 = �v0M�.

Let T v
i denote the minimum time units of delay that

bidder i needs to wait to offload v volume of traffic,
and Cv

i denote the corresponding value of coupon that
i requests. Note that here and in the rest of this section,
traffic volume v is scaled by M . Then, we have:

T v
i = argmin

k
{V̂ d

i (k) ≥ v} (4)

Cv
i =

Tv
i∑

k=1

bki (5)

We use B = {b1,b2, · · · ,b|N |} to denote the bid set
including all the bids sent by the bidders in set N , and
use Bi = {b1,b2, · · · ,bi} to denote the bid set including
all the bids sent by the first i bidders in N . Assume
only the first i bidders join the auction, we define Cv

Bi

to be the minimal incentive cost incurred to achieve a
given offloading target v with the bid set Bi, and define
T v
Bi

= {t1, t2, · · · , ti} to be the corresponding optimal
allocation solution. Our allocation algorithm is illustrated
in Algorithm 1 with T v̂0

B giving the optimal allocation
solution. In Algorithm 1, line 4 to 8 update T v

Bi
, Cv
Bi

to
include a new bidder at each iteration. Line 6 searches
for the optimal allocation solution T v

Bi
to obtain minimal

Cv
Bi

. The complexity of the algorithm is O(|N |v̂20).

4.2.2 Pricing
The VCG-style pricing is generally used in forward auc-
tion, which involves single seller with limited resources
for sale, and multiple buyers. The bidders who have the
highest bid win the game, and each winning bidder pays
the “opportunity cost” that its presence introduces to
others. It is proved that this pricing algorithm provides
bidders with the incentives to set their bids truthfully.
Based on the basic idea, in our pricing algorithm, the
network operator also pays bidder i the coupon with
value equal to the “opportunity cost” exerted to all the
other bidders due to i’s presence. Given the offloading
target v̂0, let c1 = Cv̂0

B\{bi} denote the total value of
coupons requested by all the bidders under the opti-
mal allocation solution without the presence of i. Let
c2 = (Cv̂0

B − ∑ti
k=1 b

k
i ) denote the total value of coupons

requested by all the bidders except for i under the current
optimal allocation solution. Then, i’s “opportunity cost”
is defined as the difference between c1 and c2. Thus, i’s
market-clearing price can be derived as:

pi = c1− c2 = Cv̂0

B\{bi} − (Cv̂0

B −
ti∑

k=1

bki ). (6)

Algorithm 1: Win-coupon-Allocation (N ,B)
1 for v = 0 to v̂0 do
2 T v

B1
= {Tv

1 };
3 Cv

B1
= Cv

1 ;

4 for i = 2 to |N | do
5 for v = 0 to v̂0 do
6 s∗ = argmins∈[0,v]{Cs

Bi−1
+ Cv−s

i };

7 T v
Bi

= T s∗
Bi−1

∪ {Tv−s∗
i };

8 Cv
Bi

= Cs∗
Bi−1

+ Cv−s∗
i ;

9 return T v̂0
B , Cv̂0

B ;

The pricing algorithm is illustrated in Algorithm 2,
and the computational complexity of the algorithm is
O(A|N |v̂20), where A is the number of winning bidders.

4.2.3 Properties
In Section 4.2.1, 4.2.2, we have shown that Win-Coupon
can be solved in polynomial time, if a suitable scalar M
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Algorithm 2: Win-coupon-Pricing (N ,B, T v̂0

B , Cv̂0

B )
1 for i = 1 to |N | do
2 if i is the winning bidder then
3 Win-Coupon-Allocation(N \ {i},B \ {bi});
4 pi = Cv̂0

B\{bi} − (Cv̂0
B −∑ti

k=1 bki );

5 else
6 pi = 0;

7 return pi, for all i;

is selected. Next, we prove that Win-Coupon also has the
properties: truthfulness and individual rationality.

Theorem 1: In Win-Coupon, for each bidder, say i, setting
its bids truthfully, i.e., bi = xi, is a weakly dominant strategy.

Proof: We assume that when bidder i sets its bids
truthfully, i.e., bi = xi, network operator would buy
delay ti from it, and its market-clearing price is pi =
Cv̂0

B\{bi} − (Cv̂0

B −∑ti
k=1 b

k
i ). Then, the utility obtained by i

is ui = Cv̂0

B\{bi}−(Cv̂0

B −∑ti
k=1 b

k
i )−

∑ti
k=1 x

k
i . Now, suppose

that bidder i sets its bids untruthfully, i.e., b′i �= xi. Then,
the length of delay t′i that network operator would buy
from i falls into two cases: 1) t′i = ti and 2) t′i �= ti.

In case 1), the market-clearing price paid to bidder i

would become p′i = Cv̂0

B\{b′
i}
−(Cv̂0

B −∑t′i
k=1 b

′k
i ). Due to the

sub-problem optimality in deriving the incentive cost Cv̂0

B ,
Cv̂0

B = Cv̂0−V̂ d
i (t′i)

B\{b′
i}

+
∑t′i

k=1 b
′k
i . Then we have p′i = Cv̂0

B\{b′
i}
−

Cv̂0−V̂ d
i (t′i)

B\{b′
i}

, where Cv̂0

B\{b′
i}

and Cv̂0−V̂ d
i (t′i)

B\{b′
i}

are independent
of the bids sent by bidder i. Therefore, if t′i = ti, then
p′i = pi, which is unaffected and the utility of bidder i
has no change.

In case 2), similarly the market-clearing price paid to
bidder i would be changed to p′i = Cv̂0

B\{b′
i}

− Cv̂0−V̂ d
i (t′i)

B\{b′
i}

.
Then, the new utility obtained by i equals u′i = Cv̂0

B\{b′
i}
−

Cv̂0−V̂ d
i (t′i)

B\{b′
i}

−∑t′i
k=1 x

k
i . The utility gain obtained by bidder

i by setting b′i �= bi can be calculated as:

Δui = u′i − ui = (Cv̂0

B\{b′
i}
− Cv̂0−V̂ d

i (t′i)
B\{b′

i}
−∑t′i

k=1 x
k
i )

−(Cv̂0

B\{bi} − Cv̂0−V̂ d
i (ti)

B\{bi} −∑ti
k=1 x

k
i )

= (Cv̂0−V̂ d
i (ti)

B\{bi} +
∑ti

k=1 x
k
i )− (Cv̂0−V̂ d

i (t′i)
B\{b′

i}
+
∑t′i

k=1 x
k
i ).

When bidder i sets its bids truthfully as bi = xi,
Buying delay with length ti from it is the optimal so-
lution of the network operator to minimize the incen-
tive cost. Therefore, keeping other settings unchanged,
the solution with buying delay t′i instead of ti from
bidder i leads to larger incentive cost. Thus we have
(Cv̂0−V̂ d

i (ti)

B\{bi} +
∑ti

k=1 x
k
i ) < (Cv̂0−V̂ d

i (t′i)
B\{bi} +

∑t′i
k=1 b

k
i ). Since

Cv̂0−V̂ d
i (t′i)

B\{bi} is independent of bi, and bi = xi, we have

Cv̂0−V̂ d
i (t′i)

B\{bi} +
∑t′i

k=1 b
k
i = Cv̂0−V̂ d

i (t′i)
B\{b′

i}
+
∑t′i

k=1 x
k
i . Thus Δui <

0, under this case, bidder i also cannot obtain higher
utility by setting bi �= xi.

Theorem 2: In Win-Coupon, all bidders are guaranteed to
obtain non-negative utility.

Proof: We have proved that for each bidder, say i, if it
participates the auction game, setting its bids truthfully
as bi = xi, is a weakly dominant strategy. The utility that
i obtains equals ui = Cv̂0

B\{bi} − Cv̂0−V̂ d
i (ti)

B\{bi} − ∑ti
k=1 x

k
i =

Cv̂0

B\{bi}−Cv̂0

B , where ti is the optimal length of delay that
the network operator would buy from i to minimize the
incentive cost. Since Cv̂0

B\{bi} is the incentive cost incurred
by the solution with network operator buying delay with
length of 0 instead of ti from bidder i, we have Cv̂0

B\{bi} ≥
Cv̂0

B . Therefore, Win-Coupon guarantees that all bidders
would obtain non-negative utility.

4.2.4 Reserve Price
In forward auction, the seller has the option to declare
a reserve price for its resources. The reserve price means
that the seller would rather withhold the resources if the
bids are too low (lower than the reserve price). In Win-
Coupon, to guarantee the network operator obtaining
non-negative profit, we also provide it with the option
to set a reserve price to indicate the highest incentive
cost it is willing to pay for offloading one traffic unit.
If the value of coupon asked by the bidders exceeds
the reserve price, the network operator would rather not
trade with them. Suppose that the network operator sets
a reserve price c0, which means that it is willing to spend
at most c0 for offloading one traffic unit. Adding the
reserve price c0 can be understood as adding a virtual
bidder in the auction round. The bids sent by the bidder
is {c0, c0, · · · , c0}, and it can offload one traffic unit per
one time unit of delay.

4.3 Prediction of Offloading Potential: the DTN case
By motivating users to wait for some time, part of the
cellular traffic can be offloaded to other intermittently
available networks. One such example is DTN which
generally coexists with cellular networks, and does not
rely on any infrastructure. Mobile users can share data
via DTNs by contacting each other. In urban area with
higher user density, mobile users have more chances to
contact other users who have their requested data. Large
data requests such as video clips tend to drain most of
the cellular network resource, and such requests can also
tolerate some delay. By offloading them via DTNs, the
payload of cellular network can be significantly reduced.
In this section, we illustrate how to predict the potentials
of the users to offload their traffic via DTNs.

4.3.1 Models
Due to high node mobility, large data items are hard to be
completely transmitted when two nodes contact. In [25],
it has been proved that the Random Linear Network
Coding (RLNC) techniques can significantly improve the
data transmission efficiency, especially when the trans-
mission bandwidth is limited. Thus, in our model, RLNC
is adopted to encode the original data into a set of
coded packets. As long as the requester collects enough
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number of any linearly independent coded packets of
its requested data, the data can be reconstructed. Due
to page limit, we omit the details of RLNC and suggest
interested readers to refer to [26]. Besides, when the data
item is large, multi-generation network coding is usually
adopted. To balance the data transmission efficiency, the
computational, and the transmission cost, how to decide
the generation size and how to schedule their generation
transmissions should be carefully considered. Since this
is not the focus of this paper, we will not discuss it in
the paper.

In the following analysis to simplify the presentation,
we assume that the contact process between each node
pair follows i.i.d. Poisson distribution with rate λ, and
exactly one packet can be transmitted when two nodes
contact. Our analysis based on these assumptions can
be extended to more general cases such as node pairs
follow contact processes other than Poisson, and they can
transmit arbitrary number of packets during a contact.

4.3.2 The Main Idea of Prediction
We describe the rationale of prediction in one auction
round. The starting time of this round is denoted by
t0. The objective of the prediction is to calculate the
expected volume of traffic V d

i (t) that can be offloaded
to DTNs, if node i requests data item d and is willing to
wait for delay t. By using RLNC, data item d has been
encoded into a set of coded packets, and any sd linear
independent packets can be used to reconstruct d. We say
that a node retrieves an innovative coded packet, if the
packet is linearly independent to all the coded packets
cached in the node. It has been proven that as long
as the subspace spanned by the sender’s code vectors
does not belong to receivers, the probability to obtain an
innovative packet from the sender is at least 1 − 1/|E|,
where |E| is the size of Galois field to generate coding
coefficients which is generally set to 28 [27]. Therefore, we
assume that when a node contacts another node which
has cached some coded packets of the requested data, it
can always retrieve an innovative packet with a very high
probability. This assumption has been commonly used in
prior works [25] [28]. In practice, if the size of the finite
field to generate the coding coefficients is large enough,
the probability is very close to 1.

Node i can retrieve one packet by contacting a node
which has some coded packets of data item d, until it has
collected all sd packets. We use variable Tr (1 ≤ r ≤ sd) to
represent the time that node i retrieves r packets of d, and
let FTr

(t) denote the Cumulative Distribution Function
(CDF) of Tr. Thus, V d

i (t) can be computed as follows:

V d
i (t) = h

∫ t

0

R(t)(1− FTsd
(t))dt (7)

where h is the size of one coded packet. 1−FTsd
(t) is the

probability that node i has not received all sd packets
at time t. R(t) represents the receiving rate of node i at
time t. Due to the i.i.d Poisson contact processes with

rate λ between node pairs, R(t) equals λNd(t), where
Nd(t) denotes the total number of nodes that has at least
one packet of data d at time t. Next, we describe how to
calculate Nd(t) and FTsd

(t).

4.3.3 Calculation of Nd(t)

Based on nodes’ interests to data d, all the nodes in
the network except for node i can be divided into two
classes: D and I, where D contains all the non-interesters
and I contains all the interesters. The interesters in-
clude both the nodes which are downloading the data,
and those which have already downloaded the data. To
facilitate our analysis, we further divide class I into
sd +2 subclasses: I0, I1, · · · , Isd , IE , based on the nodes’
current downloading progress of data d. Specifically, Ij
(j ∈ [0, sd]) includes all the nodes in the network other
than node i which have already downloaded j packets of
data d, and IE includes all the nodes which have finished
data downloading before and already deleted the data
from their buffer.

Based on our description of Win-Coupon in Section 4,
each node in class I has a promised delay. When the
delay ends, the network operator would automatically
push the remaining data packets to the node. For the
nodes which lose the auction or choose to directly down-
load data without bidding, their waiting delay is zero.
To characterize the different waiting delays of the nodes,
we further decompose each class Ij (j ∈ [0, sd − 1]) into
g + 1 subclasses Ij1, Ij2, · · · , Ijg, Ij∞, where g denotes
the maximal remaining delay of the current downloading
nodes. Ijk (j ∈ [0, sd − 1], k ∈ [1, g]) includes the nodes
in class Ij whose remaining delay is k time slots. For
the new requesters which transit from class D to class
I after time t0, we assume they prefer waiting a long
delay to retrieve the complete data d via DTNs. Such
new requesters in class Ij are classified into the subclass
Ij∞. Under this assumption, the derived V d

i (t) is a lower
bound of the actual value, due to the following reason.
If the delays of the new requesters are limited, after
the delay, the network operator would directly push the
traffic to them, which potentially increases the data copies
in the network, and results in a larger V d

i (t).
Next, we analyze how the network states vary with

time. Let NC(t) denote the number of nodes in class C at
time t > t0. For example, NIjk(t) denotes the number of
nodes in class Ijk at time t. The class transition can be
modeled as two types: active and passive transition.

• Active transition: A node would actively transit from
one class to another class by three ways: 1) The node is in
class D, and transits to class I0∞ by generating a request
for data d; 2) The node is in class Ij (j ∈ [0, sd − 1])
and transits to class Ij+1 by retrieving a packet from a
contacted node; 3) The node is in class Isd , and transits to
class IE by deleting d from its buffer. The active transition
processes are marked as the black arrows in Figure 4.

• Passive transition: A node would passively transit
from class Ijk (j ∈ [0, sd − 1], k ∈ [2, g]) to class Ij(k−1),
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and transit from class Ij1 (j ∈ [0, sd − 1]) to class Isd ,
when one time slot passes. Note that the latter transition
is caused by the network operator pushing the remain-
ing traffic to the node when its promised delay ends.
The passive transition processes are marked as the blue
dotted arrows in Figure 4.

Fig. 4. Class transition processes

In the following, we use Ordinary Differential Equa-
tions (ODEs) to first analyze the active transition process.
We assume that there are qdt portion of the nodes in class
D that transit to class I0∞ between time t and t+dt, where
dt is infinitesimal, and q is the query rate decided by the
popularity of data d. As a node in class Ij (j ∈ [0, sd−1])
contacts another node in class Ij′ (j′ ∈ [1, sd]), the former
node retrieves a packet from the latter and transit into
class Ij+1. Let RIj (t) (j ∈ [0, sd−1]) denote the receiving
rate of the node in class Ij at time t, and we have:

RI0(t) = λ(

sd∑
y=1

NIy (t)) (8)

RIj (t) = λ(

sd∑
y=1

NIy (t)− 1), ∀j ∈ [1, sd − 1] (9)

where 1 in Eq.(9) represents the node itself, since the node
cannot retrieve new packet from itself. After a node has
completely downloaded data d, it may delete it from its
local buffer. We assume that there are γdt portion of the
nodes in class Isd that delete data d and transit to class
IE , between time t and t+ dt. Given all the initial value
of the number of nodes in each classes at the starting
time, NIjk(t) (j ∈ [0, sd], k ∈ [1, g] ∪∞) can be computed
by solving the following ODEs.

d(NI0∞(t))

dt
= ND(t)q −NI0∞(t)RI0(t) (10)

d(NI0k(t))

dt
= −NI0k(t)RI0(t), ∀k ∈ [1, g] (11)

d(NIjk(t))

dt
= NI(j−1)k

(t)RIj−1
(t)−NIjk(t)RIj (t),

∀j ∈ [1, sd − 1], k ∈ [1, g] ∪∞ (12)
d(NIsd (t))

dt
=

∑
∀k

NI(sd−1)k
(t)RIsd−1(t)−NIsd (t)γ. (13)

Eq.(10) characterizes the varying rate of NI0∞(t) which
is composed of two parts: 1) ND(t)q nodes transit to
this class from class D by generating a request for d,

2) NI0∞(t)RI0(t) nodes transit from the class to class
NI1∞(t) by retrieving a packet from its contacted node.
Eq.(11) depicts the varying rate of NI0k(t). NI0k(t)RI0(t)
nodes transit from class I0k to class I1k by retrieving
a packet from others. Eq.(12) shows the varying rate of
NIjk(t) (j ∈ [1, sd−1], k ∈ [1, g]∪∞), which also consists of
two parts: 1) NI(j−1)k

(t)RIj−1(t) nodes join the class from
class I(j−1)k, 2) NIjk(t)RIj (t) nodes leave from the class
to class I(j+1)k. Eq.(13) shows the varying rate of NIsd (t),
where the first term denotes the number of nodes that
join the class from class I(sd−1)k (k ∈ [1, g] ∪∞), and the
second term denotes the number of nodes which delete
the data and transit to class IE .

The passive transition would happen at the end of each
time slot. At the end of each time slot, we update the
number of nodes in each class as follows:

NIjk(t) = NIj(k+1)
(t−), ∀j ∈ [0, sd − 1], k ∈ [1, g − 1] (14)

NIsd (t) = NIsd (t
−) +

sd−1∑
j=0

NIj1(t
−). (15)

The number of nodes in the rest of the classes which
are not listed in Eq.(14) and (15) remains the same.
Also, at the end of each time slot, the maximal delay
of the existing downloading nodes would minus 1 (i.e.,
g = g−1). By combining the active and passive transition
processes, the network state at any time t (t > t0) can
be derived. Thus, we can calculate Nd(t), the number of
nodes which has at least one packet of data d at time t,
as Nd(t) =

∑sd
j=1 NIj (t).

4.3.4 Calculation of FTsd
(t)

The derivative of FTr (t) (r ∈ [2, sd]) is represented as
follows by using ODEs:

dFTr (t)

d(t)
=

Pr(Tr ≤ t+ dt)− Pr(Tr ≤ t)

dt
(16)

=
R(t)dt(Pr(Tr−1 ≤ t)− Pr(Tr ≤ t))

dt
(17)

= R(t)(FTr−1(t)− FTr (t)), ∀r ∈ [2, sd]. (18)

We ignore the probability that node i receives more
than one packet during a very short time interval dt.
Thus, the probability that Tr, the time for node i receives
r packets, is between the range of [t, t + dt] equals the
probability that node i exactly receives r − 1 packets
before time t, and receives the rth packet during time t
to t+ dt. Thus, we derive Eq.(17) from Eq.(16). Similarly,
we also derive dFT1

(t)

d(t) = R(t)(1−FT1
(t)). Therefore, given

the initial values that FTr
(t0) = 0 (r ∈ [1, sd]), FTsd

(t) can
be derived by solving the following ODEs:

dFT1(t)

d(t)
= R(t)(1− FT1(t)) (19)

dFTr
(t)

d(t)
= R(t)(FTr−1(t)− FTr (t)), ∀r ∈ [2, sd].(20)
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4.3.5 Numerical Results
To verify the accuracy of our DTN based prediction mod-
el and analyze the impacts of the system parameters, we
numerically solve the ODEs and compare the prediction
results to the actual values derived from the Monte-Carlo
simulations. In the simulations, we generate 300 nodes
following i.i.d. Poisson contact process, and one data item
with 16 packets and query rate q = 0.001. The same set
of parameters is imported to the ODEs. We focus on the
number of downloaded packets along time t on a specific
node, and compare the results derived in the simulation
with that from solving the ODEs. The results given by the
simulation are averaged over 200 runs. Figure 5(a) shows
the results with different contact rate λ. We can see that
the prediction results are very close to the values given
by the simulations, which verifies the accuracy of our
prediction model. The larger the contact rate is, the earlier
the node collects all 16 packets. We further compare
the results when the query rate q varies, as shown in
Figure 5(b). The prediction also achieves results close
to that of the simulations. As the query rate increases,
the node collects more packets from other peers as time
passes. This implies that if a node requests a popular
item, its offloading potential is large.
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Fig. 5. Numerical results - DTN

4.4 Prediction of Offloading Potential: the WiFi case
Similar to the DTN case, by motivating mobile users to
wait for some time, part of their cellular traffic may be
redirected to WiFi networks when they contact some WiFi
hotspots. In urban areas with wide deployment of WiFi
networks, WiFi offloading can significantly mitigate the
cellular network overload problem. In this section, we
illustrate how to predict the potential of the users to
offload their data traffic via WiFi networks.

4.4.1 Models
Most mobile users have some diurnal patterns (e.g.,
following the same commute path each day), and thus
we can formulate their mobility based on the Markov
model. Due to high node mobility, we also consider
the contact duration limits in the WiFi case. That is,
a large data item may not be completely downloaded
when a node contacts a WiFi hotspot. To predict the
offloading potential, both steady and transient behavior

of node mobility should be considered. Therefore, we
model node mobility by a Semi Markov Process, in which
arbitrary distributed sojourn times are allowed. To avoid
state space explosion, each Markov state represents a
geographical area with a fixed size. The process of a user
moving from a geographical area to another is modeled
as a transition of Markov processes between two states.
We assume that the average downlink bandwidth for
each state is pre-calculated, and the average downlink
data rate of state j is denoted as rj .

Fig. 6. Markov model
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Fig. 7. Numerical results - WiFi

Figure 6 shows an example of the Markov model. There
are nine states and each state represents a uniform sized
geographical area. The value below each state shows its
average downlink bandwidth. As shown in the figure,
node i moves and will successively transits to state 1, 4,
5, and 8. For example, it transits to state 1 at time 17.0,
and will leave state 1 and transit to state 4 at time 35.2.

We model the node mobility as a Markov renewal
process {(Xi

n, T
i
n) : n ≥ 0} with a discrete state space

S = {1, · · · ,m}. Xi
n ∈ S is the state of node i’s nth

transition, and T i
n is the time instance of this transition.

We consider a first order Markov process and assume
that the Markov process is time homogeneous; i.e., the
distribution of these variables does not change over time.

4.4.2 The Main Idea of Prediction
Similar to Section 4.3, the objective of the prediction is to
calculate the expected traffic V d

i (t) that can be offloaded
to WiFi, if node i requests data item d and is willing to
wait for delay t. We assume that node i’s initial state is
j; i.e., the node is in state j when it submits the bid.
To simplify the presentation, we drop the superscript of
Xi

n and T i
n, and use node i as the default target node in

the following analysis. The associated time homogeneous
semi Markov kernel Q is defined as:

Qjk(t) = Pr(Xn+1 = k, Tn+1 − Tn ≤ t|Xn = j)

= pjkSjk(t). (21)

where pjk = Pr(Xn+1 = k|Xn = j) = limt→∞Qjk(t)
is the state transition probability from state j to k, and
P = [pij ] is the transition probability matrix of the embed-
ded Markov chain. Sjk(t) is the sojourn time distribution
at state j when the next state is k; i.e., Sjk(t) is the
probability that the node will move from state j to k
within sojourn time t, which can be derived as:

Sjk(t) = Pr(Tn+1 − Tn ≤ t|Xn+1 = k,Xn = j). (22)
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Let Sj(t) = Pr(Tn+1 − Tn ≤ t|Xn = j) denote the
probability that the node will leave the current state j
to another state within sojourn time t, which represents
the probability distribution of the sojourn time in state j
regardless of the next state. Then, Sj(t) =

∑m
k=1 Qjk(t).

We assume the time is discrete in our model, and define
the homogeneous semi Markov process as Z = (Zt, t ∈
N
∗), which describes the state of node at time t. The

transition probability of Z is defined by φjk(t) = Pr(Zt =
k|Z0 = j), which can be calculated as:

φjk(t) = Pr(Zt = k|Z0 = j)

= (1− Sj(t))δjk +
m∑
l=1

t∑
τ=1

Q̇jl(τ)φlk(t− τ).

where δjk is the Kronecker delta function, which e-
quals to 1 if and only if j = k; otherwise it is ze-
ro. (1 − Sj(t)) is the probability that the node stays
at state j between time 0 and t without any transi-
tion.

∑m
l=1

∑t
τ=1 Q̇jl(τ)φlk(t− τ) represents the probabil-

ity that the node transits at least once between time 0 to t,
where Q̇jl(τ) = Qjl(τ)−Qjl(τ−1) which is the probability
that the node will transit from state j to state l at time t.

Given the transition probability of Z, we can calculate
V d
i (t), the expected traffic that can be transmitted to WiFi

networks within time t when node i requests data d and
moves in the network. The size of data d is denoted as
sd. We define Djk(t) as the expected traffic that can be
transmitted within time t with the initial state j and the
final state k. Then we obtain:

V d
i (t) =

m∑
k=1

Djk(t)φjk(t) =

m∑
k=1

(min(trj , sd)(1− Sj(t))δjk

+

m∑
l=1

t∑
τ=1

min(τrj +Dlk(t− τ), sd)Q̇jl(τ)φlk(t− τ)).

where min(trj , sd) represents the traffic that can be
offloaded if the node stays at state j with no transition be-
fore time t, and the traffic is bounded by the total amount
of data requested by the node. min(τrj +Dlk(t − τ), sd)
is the traffic that can be offloaded if the node transits at
least once before time t. Thus, we derive the offloading
potential in WiFi case. Next, we describe how to calculate
the transition probability matrix P and the sojourn time
probability distribution Sjk(t).

4.4.3 Calculation of P and Sjk(t)

To calculate P and Sjk(t), node’s mobility histories are
needed. Mobile users can upload their mobility infor-
mation to the network operator periodically through
WiFi interfaces on their moibile phones or through wired
networks by using their PCs.
P is the transition probability matrix of the embedded

Markov chain. Each element pjk ∈ P represents the
probability that node i will transit from state j to k. We
define pjk as the observed transition frequency in the
node mobility trace. Then, we obtain pjk = numjk/numj ,
where numjk is the number of transitions from state j to

state k, and numj is the number of transitions from state
j without considering the next transition state.

Sjk(t) is the sojourn time probability distribution at
state j when the next transition state is k. Based on the
node mobility history, Sjk(t) can be estimated as:

Sjk(t) = Pr(tjk ≤ t)

=
numjk(tjk ≤ t)

numjk
. (23)

where tjk is the sojourn time at state j when followed by
state k, and numjk(tjk ≤ t) is the number of transitions
from state j to state k with the sojourn time less than t.

In this way, the cellular network operator can derive
the transition probability matrix and the sojourn time
probability distribution for each node based on their
uploaded mobility history.

4.4.4 Numerical Results
To verify the accuracy of our prediction model in the
WiFi case, we numerically solve the Markov model and
compare the predicted results and the actual results de-
rived by performing the Monte-Carlo simulations. In the
simulations, we generate a map which is divided into 100
(10× 10) geographical grids with a node moving among
these grids. We further generate a transition probability
matrix and the corresponding power-law-like sojourn
time probability distributions for the node. The node can
choose four directions (up, down, left and right) to move
at each transition state, and the probabilities for choosing
the four directions are decided based on the transition
probability matrix. The time that the node stays at the
each state is set according to the corresponding sojourn
time probability distribution. Some WiFi hotspots are
randomly distributed on the map, and each geographical
grid has an average WiFi downlink data rate. If there
is no hotspot placed in the grid, the average downlink
data rate is set to zero. We randomly generate data rates
within the range of 50kbps and 1Mbps for each grid that
contains the WiFi hotspots. In the simulation, the node
is downloading a data item of 250Mb and we consider
three WiFi coverage rates: 0.2, 0.4, and 0.6.

Figure 7 shows the comparison results, in which the
red curves are the expected traffic that can be offloaded
as predicted by our prediction model, and the blue dotted
curves are the actual traffic that has been offloaded as
derived by the Monte-Carlo simulations. As can be seen,
the predicted results are very close to the actual results,
which demonstrates the effectiveness of our WiFi based
prediction model. The larger the WiFi coverage rate, the
more traffic can be offloaded via WiFi. When the coverage
rate is set to 0.6, almost all data can be downloaded via
WiFi if the node is willing to wait for 100 minutes.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of Win-
Coupon through trace-driven simulations for both DTN
and WiFi cases. For each case, we first introduce the
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simulation setup, and then evaluate the performance of
Win-Coupon under various system parameters. In the
evaluation, the following performance metrics are used:

• Offloaded traffic: The total amount of traffic that is
actually offloaded.

• Allocated coupon: The total incentive cost spent by the
network operator for offloading purpose.

• Average downloading delay: The average time a bidder
spends to get the complete data after sending the request.

5.1 The DTN case
5.1.1 Simulation Setup
Our performance evaluation in the DTN case is conduct-
ed on the UCSD trace [29], which records the contact
history of 275 HP Jornada PDAs carried by students over
77 days. Based on the trace, we generate 50 data items,
and each contains 8 packets. The query rate qd for each
data d is generated following Zipf distribution, and the
default skewness parameter w is set to 1.5. The delete
rate γd for each data d is randomly generated within the
range of [1.0 × 10−8, 5.0 × 10−8] following the uniform
distribution. When nodes request data, they can choose
to attach bids with the request message based on their
satisfaction function. In the simulations, we model the
user satisfaction function as: S(t) = p − atb, where p
is the original data service charge, and we assume that
all the data items have the same charge p = 0.8. a
determines the scale of S(t), and a smaller a results in
higher delay tolerance. b determines the shape of S(t).
When b > 1, b = 1 and b < 1, S(t) is a concave, linear
and convex function respectively. In the simulations,
we randomly generate parameters a and b within the
range of [0.04, 0.08] and [0.8, 1.2] respectively following
the uniform distribution for each node to each data unless
specified differently. In the simulations, the trace for the
first five days is used for warmup, during which some
nodes can directly download data without bidding. The
presented results are averaged over 10 runs.

The scale of the trace, in terms of the number of
users and their contact frequencies, is rather small. This
results in long auction rounds for the network operator to
collect enough bids, as well as long downloading delay
experienced by the users. In a university there would
probably be a larger number of users, thus we further
generate a large-scale trace by replicating the nodes in
the original trace 10 times, which seems like a more
reasonable network scale. The evaluation results on the
large-scale trace are given in Section 5.1.5.

5.1.2 Simulation results – impact of number of bidders
First, we evaluate the performance of Win-Coupon for
different number of bidders in the DTN case. The results
are shown in Figures 8(a), 8(b), and 8(c). The number of
bidders is set to 30, 60, and 90 by varying the length
of the auction round. The reserve price is set to 0.2, i.e.,
the network operator is willing to pay at most 0.2 for
offloading one traffic unit. As shown in Figure 8(a), the

actual offloaded traffic by adopting Win-Coupon keeps
close to the offloading target, until a certain upper bound
reaches. The bound represents the upper limit of the
traffic that can be offloaded by fully utilizing the delay
tolerance and the offloading potential of the bidders
given the reserve price. More traffic can be potentially
offloaded if more bidders participate in the auction.

As can be seen from Figures 8(b) and 8(c), with the
increase of offloading target, the allocated coupon and the
average downloading delay increase accordingly, until
reaching the offloaded traffic bound. The total value
of coupon allocated by the network operator is strictly
controlled by the reserve price which is marked as the
black dotted line in Figure 8(b). With the same amount
of traffic that is actually offloaded, the increase in the
number of bidders results in less allocated coupon and
shorter average delay. For example, when the number
of bidders set to 30, 60 and 90, the network operator
spends 6.3, 4.5, and 3.6 to actually offload 80 traffic units,
and the average downloading delay is 12.1, 5.3, and
3.7 hours. The reason behind this phenomenon is that
when more bidders participate in the auction, it is more
likely to have more bidders with high delay tolerance or
large offloading potential. To offload the same amount
of traffic, the bidders with high delay tolerance request
less coupon to compensate their satisfaction loss, and
the bidders with large offloading potential need to wait
for shorter time. Thus, the incentive cost and the delay
decrease when more bidders participate in the auction.

5.1.3 Simulation results – impact of reserve price
To evaluate the impact of reserve price, we fix the dura-
tion of one auction round to be ten minutes, and set the
reserve price to 0.04, 0.06, 0.1, and 0.2 respectively. We
run the simulations for 20 consecutive auction rounds.
The results are shown in Figures 8(d), 8(e), and 8(f). As
can be seen, with the increase of reserve price, more
traffic can be offloaded. This is because higher reserve
price indicates larger willingness of the network operator
to pay for offloading one unit of traffic, and then po-
tentially motivates more users for offloading. When the
reserve price is set to 0.2, almost 60% of the traffic can
be offloaded as shown in Figure 8(d). However, higher
reserve price results in higher incentive cost as shown in
Figure 8(e). To balance this tradeoff, the network operator
can set the reserve price appropriately according to its
budget. Also, as shown in Figure 8(f), the average delay
increases as the reserve price increases, since more users
are selected as the winning bidder and motivated to wait.

5.1.4 Simulation results – impact of delay tolerance
To evaluate the impact of users’ delay tolerance, we
generate three scenarios with high, middle and low delay
tolerance, by randomly setting the parameter a within
the range of [0.04, 0.08], [0.08, 0.16], and [0.16, 0.32]. The
reserve price is set to 0.2, and other settings remain the
same as that used in the last subsection. The simulation
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Fig. 8. Impact of bidder number, reserve price and delay tolerance - DTN
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Fig. 9. Large-scale DTN trace

results are shown in Figures 8(g), 8(h), and 8(i). As
can be seen from Figures 8(g) and 8(i), when the delay
tolerance becomes larger, more traffic can be offloaded,
and the average downloading delay increases. When the
offloading target is set to 240, about 26.8%, 45.2%, and
58.6% of the traffic is offloaded in the scenario with low,
middle and high delay tolerance respectively.

Figure 8(h) shows the value of allocated coupon with
different offloading targets. When the offloading target
is low, e.g., less than 80, as the users’ delay tolerance
gets higher, the incentive cost of the network operator
drops, since less coupon is requested by the bidders.
As the offloading target further increases, the amount
of traffic that is actually offloaded remains almost the
same in the low delay tolerance scenario. This is because
the users in this scenario are not willing to wait longer
and the traffic being offloaded is bounded. Then, the
value of the allocated coupon in this scenario remains the
same. However, in the scenarios with middle and high
delay tolerance, as the offloading target increases more
traffic can be offloaded by better exploiting users’ delay
tolerance, and then the allocated coupon increases.

5.1.5 Simulation results – large-scale trace
In the above simulations, the duration of the auction
round and the downloading delay are pretty long. This
is due to the small scale of the UCSD trace. In reality,
however, the network scale will be much larger, and
then it will be easier for the network operator to collect
enough bids and for the users to contact more peers
within short time. Therefore, we further generate a large-
scale trace including 2750 nodes by replicating the nodes
in the UCSD trace 10 times. The contact rate between
the nodes in the same copy remains the same as in the

original trace, and the contact rate between the nodes in
different copies is set to the average aggregated contact
rate derived in the original trace. The duration of an
auction round is set to only one minute. Figures 9(a)
and 9(b) show the evaluation results when the skewness
parameter w of the data query distribution is set to 1,
1.5, and 2. As can be seen, the larger the w is, the more
traffic can be offloaded. With large w, more queries are for
the popular data, and then it is easier for the requester
to retrieve data from other contacted peers. When the
offloading target reaches 240, almost 70% of the traffic
can be offloaded in the case of w = 2. Also, as shown in
Figure 9(b) when the offloading target is relatively small,
larger w results in shorter delay. This is also due to the
fact that the skewer data query distribution benefits more
for the cellular traffic offloading. When the offloading
target continues to increase, smaller w results in shorter
delay, since the offloading target exceeds the offloading
potential and many users directly download data via
cellular network. More importantly, we can see that the
average delay decreases significantly and becomes more
reasonable for practical use in the large-scale scenario.

5.2 The WiFi case

5.2.1 Simulation Setup
To evaluate the performance of Win-Coupon in the WiFi
case, we use the UMass DieselNet trace [30], which
includes the mobility histories of 32 buses. In the trace,
each bus is equipped with a GPS device, and periodically
records its GPS location. To apply our prediction model,
the map is divided into 10×15 uniform-sized geographi-
cal grids. Based on the mobility information provided by
the trace, we further add synthetic WiFi information. We
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Fig. 10. Impact of reserve price and delay tolerance - WiFi
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Fig. 11. Impact of WiFi coverage rates

assume that some WiFi hotspots are distributed on the
map. We preset a WiFi coverage rate, which represents
the ratio of the number of grids with some WiFi hotspots
to the total number of grids. The downlink data rate for
those grids with WiFi hotspots are randomly generated
within the range of 50Kbps and 1Mbps.

To derive the transition probability matrix and the
corresponding sojourn time probability distributions for
each node, we take two-week traces as the training
data. We pick up one day trace (11-06-2007) which has
relatively high network density to perform Win-Coupon.
The first auction round begins at 8:30 AM and the auction
is performed for 10 consecutive rounds with the interval
of one hour. Since the total number of nodes in the trace is
quite limited, we assume that each node will participate
in the auction to increase the number of participants. The
size of data requested by nodes are randomly generated
within the range of 100Mb and 500Mb.

Similar to the DTN case, we also define the user
satisfaction function as S(t) = p − atb to model user
delay tolerance. We randomly generate parameters a and
b within the range of [0.2, 0.3] and [0.8, 1.2] respectively
following the uniform distribution for each node to each
data unless specified differently. The presented results are
averaged over 10 runs.

5.2.2 Simulation results – impact of reserve price

To evaluate the impact of reserve price, we set the reserve
price to 0.05, 0.06, 0.07, and 0.08, where setting it to 0.05
means that the network operator is willing to pay at most
0.05 for offloading 1Mb traffic. The results are shown
in Figures 10(a), 10(b), and 10(c). Similar to DTN-based
results shown in Figures 8(d), 8(e), and 8(f), larger reserve
price motivates more users to wait longer. Then, more
traffic can be offloaded at the expense of longer average
delay and higher incentive cost. When the reserve price
is set to 0.08, almost 65% traffic can be offloaded, and the
average delay is about 40 minutes.

5.2.3 Simulation results – impact of delay tolerance

We further evaluate the impact of users’ delay tolerance.
Three scenarios with high, middle and low delay toler-
ance are generated by randomly setting the parameter α
in the satisfaction function within the range of [0.1, 0.2],
[0.2, 0.3], and [0.3, 0.4] respectively. The reserve price is set
to 0.07. The evaluation results are shown in Figures 10(d),
10(e), and 10(f). As can be seen, similar trend is captured
in the WiFi case compared to the DTN case. Higher
delay tolerance results in better offloading performance
at the expense of longer downloading delay. To offload
the same amount of traffic, less coupon is allocated in
the high delay tolerance scenario. For example, to offload
20% traffic, 62.6, 47.8, and 28.1 coupon is allocated in the
low, middle and high delay tolerance scenarios, respec-
tively. In the high delay tolerance scenario, almost 75% of
the traffic can be offloaded and the average downloading
delay is only about 50 minutes.

5.2.4 Simulation results – impact of WiFi coverage rate

We set the WiFi coverage rate to 0.4 and 0.6 respec-
tively to evaluate the impact of WiFi availability on the
performance of Win-Coupon. The evaluation results are
shown in Figure 11. Figures 11(a) and 11(b) show the
percentage of offloaded traffic and the average delay re-
spectively when offloading target increases from 1000Mb
to 4500Mb. When the offloading target is set to be low,
e.g., less than 2000Mb, different WiFi coverage rate results
in similar percentage of offloaded traffic. This is because
the relatively low offloading target can be easily achieved
in both network scenarios. However, to offload the same
amount of traffic, the average delay is much shorter when
the WiFi coverage rate is higher. When the WiFi coverage
rate is 0.6, almost 85% of the traffic can be offloaded, and
the average delay is about 30 minutes.

Figures 11(c) and 11(d) show the comparisons of the
expected offloaded traffic predicted by our prediction
model and the actual. The yellow parts shown in the bars
represent the expected traffic to be offloaded based on
our prediction model and the lines drawn in the figure
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denote the traffic that has been actually offloaded. As
can be seen, the expected results are close to the actual
results in both network scenarios. The green parts shown
in the bars represent the volume of traffic that is expected
to be offloaded by the virtual bidder. As explained in
Section 4.2.4, the virtual bidder is added to ensure the
network operator gaining non-negative profit. In other
words, if the actual bidders have low delay tolerance or
small offloading potential, the network operator would
not trade with them and ask them to directly download
data via cellular network (letting the virtual bidders
win the game), even if the offloading target cannot be
achieved. As can be seen when the WiFi coverage rate
reaches 0.6, the offloading target can be almost achieved,
due to the large offloading potential of the bidders.

6 DISCUSSIONS

In this paper, we mainly focused on the downloading
scenario since the majority of cellular traffic is on the
downlink [31]. We also separate WiFi and DTN when
discussing Win-Coupon design. Actually, our framework
is very general, and can be extended to fit many other
scenarios. Win-Coupon consists of two parts: auction
based incentive mechanism and prediction. As long as
the volume of offloaded traffic V d

i (t) can be predicted,
the incentive mechanism can be adopted for coupon
allocation and pricing under various scenarios such as
uploading, downloading, DTN only, WiFi only, or hybrid
of DTN and WiFi. The only difference under various
scenarios is in the prediction part.

Uploading Scenario: In the WiFi case, since only the
contact between the user and the WiFi hotspot affects
offloading, the same prediction method can be used in
the uploading scenario. In the DTN case, the curren-
t prediction method is based on the assumption that
multiple users request the same popular items to share
them through DTNs. Thus, it cannot be directly applied
to the uploading scenario, since users generally upload
different items. Hence, we need to design other offload-
ing strategies and the prediction methods for the DTN
case. For example, the uploading traffic can be offloaded
by jointly using DTN and WiFi. Then, the node which
generates data can transmit it via DTN to a contacted
node which has large potential to have a WiFi connection
in the near future, and upload the data through WiFi.

Hybrid Network Scenario: In the hybrid scenario
which consider both DTN and WiFi, the user offloading
potential should be re-calculated. A naive way is to
simply treat them as two independently coexisting
networks; i.e., mobile users can get data pieces from
both networks during their waiting period. Then, the
prediction is to find the “expected offloaded traffic” of
DTN and WiFi separately using the current prediction
methods, and sum them together. However, there
are other better solutions. For example, instead of only
downloading the data to satisfy their own demand, users
can pro-actively download the popular data items from

WiFi, then cache and share them with others via DTN.
In this case, a joint prediction model is necessary. Also,
more advanced caching mechanisms can be applied.
Based on the techniques in [33][32], socially active nodes
can use WiFi to pro-actively fetch and cache items
with high popularity and low availability in their social
communities and share them with other nodes via DTNs.

7 CONCLUSION

In this paper, we proposed a novel incentive framework
for cellular traffic offloading. The basic idea is to mo-
tivate the mobile users with high delay tolerance and
large offloading potential to offload their traffic to other
intermittently connected networks such as DTN or WiFi
hotspots. To capture the dynamic characteristics of users’
delay tolerance, we design an incentive mechanism based
on reverse auction. Our mechanism has been proved to
guarantee truthfulness, individual rationality, and low
computational complexity. Moreover, we design two ac-
curate models to predict the offloading potential of the
users for both DTN and WiFi cases. Extensive trace-
driven simulations validate the efficiency and practical
use of our incentive framework.
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