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Abstract: UML 2.0 is the upcoming standard of the OMG for specifying 
object-oriented software systems. In this paper we will show how UML 2.0 can 
be applied for the specification of agent-based systems. Moreover we will give 
a short overview on existing agent methodologies to have a reference what has 
to be specified in such systems. The paper concludes with some outlook for 
further research and open issues for specifying agents with UML 2.0. 
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1 Introduction 

Software engineering techniques are a key prerequisite of running successful software projects. 
Without a sufficient approach and adequate tools to support the development of software systems, it 
is virtually impossible to cope with the complexity of commercial software development processes. 
This tendency will increase over the years to come and appropriate software engineering methods 
will continually be in high demand. A software methodology is typically characterized by a modeling 
language – used for the description of models, defining the elements of the model together with a 
specific syntax (notation) and associated semantics – and a software process – defining the 
development activities, the interrelationships among the activities, and how the different activities 
are performed. In particular, the software process defines phases for process and project management 
as well as quality assurance. Each activity results in one or more deliverables – such as specification 
documents, analysis models, designs, code, testing specifications, testing reports, performance 
evaluation reports, etc. – serving as input for subsequent activities. 

The three key phases that one is likely to find in any software engineering process are that of 
analysis, design and implementation. In a strict waterfall model these are the only phases; more 
recent software development process models employ a “round-trip engineering” approach, i.e., 
provide an iteration of smaller granularity cycles, in which models developed in earlier phases can be 
refined and adapted in later phases.  

Agent technology enables the realization of complex software systems characterized by situation 
awareness and intelligent behavior, a high degree of distribution, as well as mobility support. Agent 
technology has the potential to play a key role in enabling intelligent applications and services by 
improving automation of routine processes, and supporting the nomadic users with pro-active and 
intelligent assistance based on principles of adaptation and self-organization.  Hence, agent 
technology can open the way to new application domains while supporting the integration of 
existing and new software, and make the development process for such applications easier and more 
flexible. However, deploying agent technology successfully in industrial applications requires 



industrial-quality software methods and explicit engineering tools, such as UML 2.0. Therefore we 
will take a closer look at the new UML standard and its application to agent-bases systems. 

This paper is structured as follows. In Section 2 we give a short overview on agent methodologies and 
notations to have a reference what has to be specified in agent-based systems. The main chapter is 
Section 3 showing the different UML diagrams and their application for agent-based systems. 
Moreover we apply the model-driven architecture of the OMG for the specification of agent-based 
systems. The paper concludes with some open issues using UML 2.0 for the specification of such 
systems and concludes the paper. 

 

2 Short Overview on Agent Methodologies and Notations 

A considerable number of agent-oriented methodologies and tools are available today, and the agent 
community is facing the problem of identifying a common vocabulary to support them (for details 
see our work in [49], this section is based on it). There is a considerable interest in the agent R&D 
community in methods and tools for analyzing and designing complex agent-based software systems, 
including various approaches to formal specification (see [1] for a survey). Since 1996, agent-based 
software engineering has been in the focus of the ATAL workshop series; it also was the main topic 
of the 1999 MAAMAW workshop [2]. Various researchers have developed methodologies for agent 
design, touching on representational mechanisms, like the GAIA methodology [6] or the extensive 
program underway at the Free University of Amsterdam on compositional methodologies for 
requirements [7], design [8], and verification [9]. In [5] [4], Kinny et al. propose a modeling 
technique for BDI agents. The close affinity between design mechanisms employed for agent-based 
system and those used for object-oriented systems is shared by a number of authors, for example, 
[21]. In particular, since 2000, the Agent-Oriented Software Engineering Workshop (AOSE) has 
become the major forum for research carried out on these topics, including new methodologies such 
as Tropos [31], Prometheus [40], and MESSAGE [19]. Currently, most industrial methodologies are 
based on the Object Management Group’s (OMG) Unified Modeling Language (UML) accompanied 
by process frameworks such as the Rational Unified Process (RUP), see [33] for details. The Model-
Driven Architecture (MDA [44]) from the OMG allows a cascade if code generations from high-level 
models (platform independent model) via platform dependent models to directly executable code (see 
section 3.2 for details). Another approach for agile software engineering that has been receiving 
active coverage is Extreme Programming [28]. 

2.1 Knowledge Engineering Approaches 

Most early approaches supporting the software engineering of agent-based systems were inspired by 
the knowledge engineering community. The three most influential methodologies inspired by this 
strand of research are CommonKADS [31], CoMoMAS [30] and MAS-CommonKADS [10]. 
Knowledge engineers need tools and methods to design good knowledge-based systems (KBS), 
however this relies on knowledge engineer abilities. The CommonKADS methodology was developed 
to support knowledge engineers in modeling expert knowledge and developing design specifications in 
textual or diagrammatic form. CommonKADS is a knowledge engineering methodology as well as a 
knowledge management framework. Two extensions to CommonKADS were developed that take 
agent-specific aspects into account: CoMoMAS and MAS-CommonKADS. MAS-CommonKADS 
[10] adds various extensions to CommonKADS: protocol engineering techniques (namely software 
development lifecycle and MSC96 [45]); object-oriented techniques (OMT [46][47]) and OOSE); 
and enhanced support to additional phases within the software life cycle. 

2.2 Agent oriented Approaches 

A perceived lack of the knowledge engineering software development methodologies was that they 
were not designed before the background of supporting the development of agent systems, and that 
hence they had limited capability to support agent-specific functions, which could only partly be 
overcome by extensions such as seen for MAS-CommonKADS. Gaia [11] is a methodology for 
agent-oriented analysis and design supporting macro (societal) level as well as micro (agent) level 
aspects. Following [11], Gaia was designed to deal with coarse-grained computational systems, to 
maximize some global quality measure, to handle heterogeneous agents independent of programming 



languages and agent architectures, having static organization structures and agents having static 
abilities and services, with less then 100 different agent types. ROADMAP extends Gaia by adding 
elements to deal with the requirements analysis in more detail by using use cases and to handle open 
systems environments. Moreover it focuses more on the specification of interactions based on 
AUML [12]. Another agent-oriented software engineering methodology mainly focusing on societies 
similar to Gaia’s organizations is SODA (Societies in Open and Distributed Agent spaces [14]). As 
ROADMAP it addresses some of the shortcomings of Gaia such as the insufficiencies in dealing with 
open systems or self-interested agents. Moreover SODA takes the agent environment into account 
and provides mechanisms for specific abstractions and procedures for the design of agent 
infrastructures. Based on the analysis and design of agent societies (exhibiting the global behaviors 
not deducible from the behavior of the individual agents) and agent environments (the space where 
agents live and interact, like open, distributed, decentralized, heterogeneous, dynamic, and 
unpredictable environment), SODA provides support for modeling the inter-agent aspects. However 
intra-agent aspects are not covered. Therefore SODA is not a complete methodology; rather, its goal 
is to define a coherent conceptual framework and a comprehensive software engineering procedure 
that accounts for the analysis and design of individual agents from a behavioral point of view, agent 
societies, and agent environments. As most of the considered methodologies do, SODA supports the 
analysis and design phase. 

2.3 Object oriented Approaches 

A good procedure (if not the only viable one) for successful industrial deployment of agent 
technology is to present the new technology as an incremental extension of known and trusted 
methods, and to provide powerful engineering tools that support industry-accepted methods of 
technology deployment. Accepted methods of industrial software development depend on standard 
representations for artifacts to support the analysis, specification, and design of agent software. At 
the moment agent-oriented software engineering is still lacking the availability of suitable software 
processes and tools. The Unified Modeling Language (UML) is gaining wide acceptance for the 
representation of engineering artifacts using the object-oriented paradigm. Viewing agents as the next 
step beyond objects leads several authors (see on a discussion of this topic e.g. [22]) to explore 
extensions to UML and idioms within UML to accommodate the distinctive requirements of agents 
as well as defining software methodologies based on object-oriented approaches. In general, building 
methods and tools for agent-oriented software development on their object-oriented counterparts 
seems suitable as it lends itself to smoother migration between these different technology generations 
and at the same time improves accessibility of agent-based methods and tools to the object-oriented 
developers’ community, which, as per today, prevails in industry. One of the first methodologies for 
the development of BDI agents based on OO technologies was presented in [15][16][17][18]. The 
agent methodology distinguishes between the external viewpoint - the system is decomposed into 
agents, modeled as complex objects characterized by their purpose, their responsibilities, the services 
they perform, the information they require and maintain, and their external interactions - and the 
internal viewpoint - the elements required by a particular agent architecture must be modeled for each 
agent, i.e. an agent's beliefs, goals, and plans. MESSAGE (Methodology for Engineering Systems of 
Software Agents) [19][20] is a methodology which builds upon best practice methods in current 
software engineering such as for instance UML for the analysis and design of agent-based systems. It 
consists of (i) applicability guidelines; (ii) a modeling notation that extends UML by agent-related 
concepts (inspired e.g. by Gaia); and (iii) a process for analysis and design of agent systems based on 
RUP. The MESSAGE modeling notation extends UML notation by key agent-related concepts. 
Tropos [29][35][34] is another good example of a agent-oriented software development 
methodology that is based on object-oriented techniques. In particular, Tropos relies on UML and 
offers processes for the application of UML mainly for the development of BDI agents and the 
agent platform JACK [38]. Some elements of UML (like class, sequence, activity and interaction 
diagrams) are adopted as well for modeling object and process perspectives. The concepts of i* [36] 
such as actor (actors can be agents, positions or roles), as well as social dependencies among actors 
(including goal, soft goal, task and resource dependencies) are embedded in a modeling framework 
which also supports generalization, aggregation, classification, and the notion of contexts [37]. 
Similar to Tropos, Prometheus [41][40][39] is an iterative methodology covering the complete 
software engineering process and aiming at the development of intelligent agents using goals, beliefs, 
plans, and events, i.e. in particular BDI agents, resulting in a specification which can be implemented 
with JACK [38].  The Prometheus methodology covers three phases, namely those of System 



specification, architectural design, and detailed design. Multiagent Systems Engineering (MaSE) 
[25][26][27] has been developed to support the complete software development lifecycle from problem 
description to realization. It offers an environment for analyzing, designing, and developing 
heterogeneous multi-agent systems independent of any particular multi-agent system architecture, agent 
architecture, programming language, or message-passing system. It takes an initial system specification, 
and produces a set of formal design documents in a graphical style. In particular, MaSE offers the ability 
to track changes throughout the different phases of the process. PASSI (Process for Agent Societies 
Specification and Implementation) [23][24] is an agent-oriented iterative requirement-to-code 
methodology for the design of multi-agent systems mainly driven from experiments in robotics. The 
methodology integrates design models and concepts from both object oriented software engineering 
and artificial intelligence approaches. PASSI is supported by a Rational Rose plug-in to have a 
dedicated design environment. In particular, automatic code generation for the models is partly 
supported and a focus lies on patterns and code reuse. 

 

3 UML 2.0 and MDA: Their Usage for Agent-based 
Systems 

3.1 UML 

UML has a long history and is the result of a standardization effort on different modeling languages 
(like Entity-Relationship-Diagrams, the Booch-Notation, OMT, OOSE), namely Unified Modeling 
Language. The most popular versions of UML are UML 1.x, but now UML 2.0 is the upcoming new 
specification for development of systems. The Unified Modeling Language (UML) is a standard 
modeling language for visualizing (using the standardized graphic UML notations), specifying the 
static structure, dynamic behavior and model organization as well as constructing system, by mapping 
UML to programming environment and generate some code automatically, and documenting every 
phase of the lifecycle from analysis and design through deployment and maintenance. UML consists 
of a notation, describing the syntax of the modeling language and a graphical notation, and a meta 
model, describing the semantics of UML, namely the static semantics of UML, but no operational 
semantics. However, UML defines no software process, since a software process describes the 
development activities, dependencies of these activities and how they are applied. Thus UML is not 
a software methodology / method since a methodology consists of a modeling language and software 
process. But UML can be applied by several methodologies. 

The UML 2.0 specification (for details see [51], note that [51] is also the standard reference for this 
section) consists of the Infrastructure Specification, defines foundational language constructs required 
for UML 2.0. The achieved results are adjustment between UML, MOF and XMI, re-structuring of 
language definition (meta-model as well as notation) with the goal to increase understandability and 
extensibility and first class extensibility mechanisms; Superstructure Specification, defines user level 
constructs (diagrams) required for UML 2.0. The achieved results here are modeling of patterns, e.g. 
component based development, specification of run-time architectures; support for scalability and 
encapsulation as well as unique definition of semantics for relations, like generalization, dependencies 
and associations; OCL (Object Constraint Language) a formal language used to describe expressions 
on UML models. The achieved results are meta-model-based definition of OCL, increased 
expressability of OCL and a formal semantics of OCL; Diagram Interchange enables a smooth and 
seamless exchange of documents compliant to the UML standard between different software tools. 
UML 2.0 supports the following diagrams: class, object, component, deployment and composite 
structure diagrams for modeling the static aspects of the systems and use case, state machine, 
sequence, activity, interaction overview, timing and communication diagrams for modeling dynamic 
aspects and packages, models and subsystems for modeling the model management. We focus on the 
first two groups of  diagrams defined in the Superstructure Specification. We will use this distinction 
to present the diagram types and how they can be applied for modeling agent-based systems.  



3.1.1 Structural Diagrams – Static Aspects 

Class Diagram   

A Class Diagram describes on the one side a data model, i.e. collection of declarative (static) model 
elements, like classes and types, and on the other side their contents and relationships. Moreover the 
static structure of the system to be developed and all relevant structure dependencies and data types 
can be modeled with class diagrams. They are applied in various phases of the project, e.g. analysis 
(conceptual modeling of the domain), design (platform independent description) of the 
implementation, detailed design (platform specific description; PSM) and to bridge the gap to the 
behavior diagrams. Class diagrams describe classes and interfaces with their attributes and operations, 
as well as associations between them (including aggregation and composition), but also generalization 
(a specific kind of inheritance) and dependencies among them. New to UML 2.0 is that attributes 
have ordering, graphical notations for associations are defined, graphical interface notation are 
introduced using lollipops, some unification on the notations for e.g. visibility, names and types has 
been done. Moreover attributes have no implicit composition associations and dependencies are 
completely redefined. An example of a class diagrams is illustrated in Fig. 1. 

 
Figure 1 Class diagram 

Class diagrams can be used for the definition of organizational models; in particular the static aspects 
of the organization, its associations and part-of relationships can be modeled. For example, 
departments can be modeled using classes. Their characteristics can be modeled by attributes, whereas 
their services can be modeled using functions. Associations are used to define relationships between 
different organizational units. The description of, for example, sub-departments can be modeled 
using aggregation and composition, where aggregation and composition are special forms of 
associations, namely a whole-part relationship (aggregation) and an aggregation that requires that a 
part instance be included in at most one composite at a time (composition), respectively. 
Generalization is used for refining existing organizational structures. Dependencies are applied to 
define a relationship between e.g. two organizational units, in which a change to one modeling 
element will affect the other modeling element. Similar social structures are e.g. defined by Odell et 
al. using class diagrams, see [43].  However, many modelers are now using composite structures to 
model social structures such as as groups, organizations, and roles. (See Composite Structure Diagram 
subsection.) Ontologies can also be defined with UML. An ontology as a whole is viewed as a 
package, where as a class represents e.g. the class concept of DAML/OWL. The class hierarchy of 
OWL is defined using generalization, whereas properties are modeled by attributes, associations and 
classes. Sub-Properties can be defined by generalization between stereotyped <<property>> classes. 
sameClassAs, samePropertyAs are modeled by stereotyped dependencies between two classes, and 
associations, respectively. Cardinalities are applied to define minCardinality and maxCardinalities. 
For details we refer to [1]. Thus organizational model knowledge can be modeled by using class 



diagrams for the definition of ontologies. Moreover class diagrams can be applied for the definition 
of sub-tasks and sub-goal hierarchies (using generalization) as well as to define the structural aspects 
of tasks (using aggregation and composition). In additional constraints like goals, control features, 
services (functions as interfaces) can be added via attributes, functions and associations. An agent 
model can be defined using class names, inheritance (generalization) of classes and adding name, 
type, position/role, capabilities and constrains, either directly or via associations. A role hierarchy 
can be defined using generalization. However roles cannot be modeled in the necessary detail with 
any UML 2.0 diagram. Service models can also be done by this diagram type, e.g. defining services 
with input/output parameters and pre-/post-conditions as classes with attributes and functions (the 
service interface).  

Object Diagram 

An Object Diagram describes a snapshot of the system at a specific time point, where objects and 
their relationships at a point in time are depicted. Object diagrams are a special case of a class 
diagram or a communication diagram, since objects are an instance of a class, where a link is an 
instance of an association and the values of attributes or simple objects. An Object Diagram consists 
of objects, links and values. Changes in UML 2.0 are that <<copy>> and <<become>> are obsolete 
and multi-object notation is obsolete. An example of an object diagram is depicted in Fig. 2. 

 
Figure 2 Object Diagram 

They can be used for the definition of objects, like speech acts viewed as messages send between 
agents, handled by agents. Moreover agents as instances of agent classes can be modeled to describe 
an agent population during the run-time execution of an agent-based system. 

Composite Structure Diagram  

A Composite Structure Diagram describes the internal structure of a classifier, including the 
interaction points of the classifier to other parts of the system. It shows the configuration of parts 
that jointly perform the behavior of the containing classifier. Moreover, it defines a set of instances 
playing parts (roles), as well as their required relationships given in a particular context 
(architecture). Therefore, the external interfaces are given and an abstraction of operations and 
signals is performed. It shows how the different architecture components are structured and 
interworking. They are applied during top-down modeling of the system, to model the relationship 
between parts of the system through specific interfaces (ports) in a precise manner. They can also be 
used to describe the architecture of the system (architecture diagram) and for specification and 
application of patterns. Since this diagram in newly introduced in UML2.0, we will have a closer look 
at it before showing the application for agent-based systems. An example of a composite structure 
diagram is contained in Fig. 3. 

 
Figure 3 Composite Structure Diagram and its Instantiation 

A part is an element representing a set of instances that are owned by a containing classifier instance 
or role of a classifier. Parts may be joined by attached connectors and specify configurations of 



linked instances to be created within an instance of the containing classifier. Parts are usable in class, 
object, component, deployment and package diagrams. A connector is a link that enables 
communication between two or more instances. The link may be realized by something as simple as a 
pointer or by something as complex as a network connection. A port specifies a distinct interaction 
point between a classifier and its environment or between the (behavior of the) classifier and its 
internal parts. Ports are connected to other ports through connectors through which requests can be 
made to invoke the behavioral features of a classifier. External interfaces are specified as indicated in 
Fig. 4.  

 
Figure 4 Composite Structure Diagram – Ports  

Applied to the agent-based modelling, this diagram can be used for modelling an organization, its 
dependencies and workflows between agents. In addition, the diagram can represent an organization’s 
external interfaces, as well as the internal behaviour and interfaces of an agent. The notion of 
interface for agent-based systems is of course different to usual object-oriented systems. For agent-
based systems the interface defines the speech acts understood by the agent as well as the actions 
performed by an agent. Furthermore this diagram type allows us to express collaboration 
collaborations. The specification of how an operation or classifier, such as a use case, is realized by a 
set of classifiers and associations playing specific roles used in a specific way. The collaboration 
defines an interaction among roles, as illustrated in Sale and BrokeredSale collaborations in Fig. 5. 

 
Figure 5 Collaborations 

This diagram type can be used for defining those agent patterns that can be instantiated in different 
contexts, such as a typical agent broker architecture, or negotiation pattern. Moreover, it allows to 
define the architecture of an agent-based system and how a given agent architecture can be 
instantiated in different contexts. Composite structure diagrams provide a useful way to represent 
social structures such as groups and roles.  A group is a set of agents that are related via their roles, 
where these links must form a connected graph within the group.  Another way to look at this is that 
a group is a composite structure consisting of interrelated roles, where each of the group’s roles has 
any number of agent instances. This definition implies not only that a group is a function of the 
roles contained within it, but also that roles have no meaning without their group referent.  Hence, 
our ability to understand roles is limited by our ability to understand the groups of which they are a 
part.  

A group can be formed to take advantage of the synergies of its members, resulting in an entity that 
enables products and processes that are not possible from any single individual. As with roles, groups 
may be deliberately established (i.e., by a system designer) or they may be emergent. In human 
organization terms, a deliberately established group could be a department or other workgroup that 
has been defined by some organizational authority. In contrast, an emergent group might be a social 



group that forms when several individuals decide to go out for a beer after work. Over time, they 
define themselves as a group (“My Friday Afternoon Drinking Buddies”).   

Groups are commonly formed to regulate, foster, or support the interaction of those agents within 
the group; so the group provides a place for a limited number of agents to interact among themselves 
via roles.  In this way, intra-group associations encourage resource sharing, promote internal 
coordination, establish common supervision, and provide a degree of safety in numbers.   

Groups can be treated as either agents or objects.  An Agentified Group possesses all the features that 
any agent might possess.  For example, it can send and receive messages directly and take on roles. 
Such a group is an agent in its own right, and therefore is a subclass not only of Group but also of 
Agent.  (Such groups can also be referred to as organizations.) In contrast, Non-Agentified Groups 
are still first-class entities; however, these entities do not possess agent properties.  Thus, they are as 
objects, rather than agents. 

 
<<agent>> 

ABC Ltd. 

<<agent role>> 

Manager 

<<agent role>> 

ABC Buyer 

<<agent role>> 

Broker 

 
Figure 6 Example of the ABC Ltd. Agentified Group and its associated Roles. 

Figure 6 represents the Group “ABC Ltd” as a composite structure with three associated roles, 
“Manager”, “Broker” and “ABC Buyer”. The “Manager” interacts directly with the “ABC Buyer” 
and the “Broker”. In this situation, it is possible to interact with the agent “ABC Ltd.” without 
knowing directly about any specific “Manager”, “Broker” or “ABC Buyer” within the department; 
thus, this group is Agentified. The stereotype “<<agent>>” indicates that the group is Agentified. 

 
ABC Ltd. 

<<agent role>> 

Manager 

<<agent role>> 

ABC Buyer 

<<agent role>> 

Broker 

 
Figure 7 Example of the Non-Agentified ABC Ltd. 

Groups can also be formed simply to establish a set of agents for purposes such as intra-group 
synergies or conceptual organization. A Non-Agentified Group is a Group that is not a subclass of 
Agent.  Figure 7 shows a Non-Agentified version of “ABC Customer Sales Dept”. It has the same 
associated Roles; however, it does not have the “<<agent>>” stereotype. In order to interact with 
this Department, you must interact directly with one of its members: a “Manager”, an “ABC Buyer” 
or a “Broker”.  

Component Diagram  

A Component Diagram describes the organizations and dependencies among components. A 
component is a modular part of a system that encapsulates its contents and whose manifestation is 
replaceable within its environment. A component defines its behavior in terms of provided and 
required interfaces. A Component Diagram is applied to support self-containment of components, 
the exchangeability of components and the distributed development and assembling of components. 
In particular information hiding of internal structures of components is supported. Therefore it 
describes components, interfaces, ports as well as the realization, implementation and usage 
relationships with its classes and artifacts. In UML 2.0 implementation is called manifesting with the 
stereotype <<manifest>>. Components are represented completely different and artifacts can be 
associated with packaged elements. Moreover a deployment specification can be given and new 



stereotypes <<device>>, <<execution environment>> and <<subsystem>> were introduced. A 
component is viewed as a specific class, as depicted in Fig 8. 

 
Figure 8 Component Diagram  

In particular interfaces of a component can either be a black-box and white-box representation.  (See 
example in Fig. 9). 

 
Figure 9 Component Diagram – Black and White Box 

An artifact is a physical piece of information that is used or produced by a development process. 
Examples of artifacts include models, source files, scripts, and binary executable files. An artifact 
may constitute the implementation of a deployable component (Fig. 10). 

 
Figure 10  Component Diagram examples. 



Component diagrams can be used to define the input/output behavior of tasks and for the de-
composition of the system architecture. Moreover the black- and white-box notation allows defining 
private and public interfaces of agents. The manifest-stereotype can be used to show how an agent 
component is deployed in distinguished systems. 

Deployment Diagram  

A Deployment Diagram describes the execution architecture of systems and the system architecture. 
System artifacts are represented as nodes, which are connected through communication paths to 
create network systems of arbitrary complexity. Nodes represent run-time computational resources, 
which generally have at least memory and often processing capability. Run-time objects and 
components may reside on nodes. Nodes are typically defined in a nested manner, and represent 
either hardware devices or software execution environments. Deployment diagrams are applied to 
show the run-time environment of a system and to represent “software server” as well as to describe 
the distribution of components. UML 2.0 adds new elements: device, execution environment, and 
deployment specification. Moreover nodes can be defined in more detail and the implement–
relationship is substituted by <<manifest>> relationship. Artifacts are implementations of any 
packageableElement.  (See Fig. 11.) 

 
Figure 11  Deployment diagram and complex node 

A deployment specification specifies a set of properties that specify the execution parameters of a 
component artifact that is deployed on a node and can be aimed at a specific type of container. An 
artifact that reifies or implements deployment specification properties is a deployment descriptor 
(Fig. 12).  

 
Figure 12  Composite Structure Diagram – Ports  

Deployment diagrams can be used to describe the physical distribution of agent instances; in 
particular they can be applied for defining the migration of agents. Moreover this specification 
defines the platform design of an agent-based system. Having e.g. generic agents, the deployment 
specification can be applied to define the customization of agents in a specific context. 

3.1.2  Behavioral Diagrams – Dynamic Aspects 

Use Case Diagram  

Use cases are a means for specifying required usages of a system. Typically, they are used to capture 
the requirements of a system, that is, what a system is supposed to do. The key concepts associated 
with use cases are actors, use cases, and the subject. The subject is the system under consideration to 
which the use cases apply. The users and any other systems that may interact with the subject are 
represented as actors. The required behavior of the subject is specified by one or more use cases, 



which are defined according to the needs of actors. Use case diagrams are applied to define the 
external viewpoint on the system and to support encapsulation. In particular they define the “what” 
instead of “how” a system is realized from the perspective of an external communication partner. 
Thus it describes the system, the use cases of a system, external actors and their relationships 
between actors and use-cases, between actors and between use-cases 

Order Processing System

Order requested

Order canceled

Process

Order

Cancel 

Order

Order sent

Customer Order
Handler

provider

provider

 

Figure 13  A Use Case Diagram for an Order Processing application. 

Agent-based systems can also use these same notions of actor, use case, and subject, as illustrated in 
Figure 13. Some embellishments, however, have been made to this diagram.  First, these include the 
events from the requesting actor to which the subject must respond (sometimes referred to as 
percepts) and the events that affect an actor in some way (sometimes referred to as actions).  These 
are indicated as names on the associations between actors and use cases.  The associations also 
indicate directionality for these events. The second graphical addition indicates the providing actor 
for the service defined by the use case. Both the requesting actor and providing actor are vital to the 
service-oriented approach.  In particular, the metamodel for the W3C’s Web Services Architecture 
[W3C, 2004] defines both of these notions in terms of agents. For example, the Customer actor is 
the requesting agent for the Process Order Service and the Order Handler actor is the providing 
agent.  Figure 14 illustrates some of these same ideas for Use Case Diagrams that represent directed 
relationships. 
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Figure 14  A job scheduling Use Case Diagram with include and extend relationships. 

Such association, therefore, may include multiplicities, end names, association name, and so on. 
While most OO modelers might not take advantage of these features, they are useful for agent-based 
development. One minor extension to the Use Case diagram is the change in the definition of actor. 
UML 2.0 defines an actor as being “played by an entity that interacts with the subject… but which is 
external to the subject.”  Since agent-based actors can request and provide services inside or outside 
the subject area, the definition needs to be changed to indicate that an actor is “played by an entity 
that interacts with the subject’s use case… but which is external to the use case.”  In other words, an 
actor may interact with the subject, or within the subject—and therefore can be internal or external 
to the subject.”  This definitional extension enables an agent-based approach to application 
development.  Figure 15 depicts two internal actors for a Bus Transportation System: Bus Driver and 
Bus Payment Machine. The Bus Driver is the actor that provides the general Bus Service. However, 
an Obtain Payment use cases is included in the Bus Service which is provided by a different actor.  
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Figure 15  An example when internal actors can be providing and/or requesting actors. 

In UML 2.0, an actor “specifies a role played by a user or any other system that interacts with the 
subject. (The term “role” is used informally here and does not necessarily imply the technical 
definition of that term ….).”  An actor, then, can represent a single role, such as the Customer or 
Manager actors in the figures, above.   
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Figure 16  Indicating Actor roles and resources. 

Internal actors might also become requestors for services from external actors.  For example in Fig. 
16, the Shipment Inquiry Interface actor requests a Shipment Search service from the Tracking 
Inquiry agent.  While no association has been drawn directly from the Shipment Inquiry Interface 
actor and the Tracking Inquiry agent, it is implied.  First, the Shipment Inquiry Interface actor is the 
provider for the determine Shipment Interface service; therefore, this actor is in charge of requesting 
services to support it.  Second, the request is for the Shipment Search service; therefore the request is 
drawn to the service directly.  Since the service is provided by the Tracking Inquiry actor, the link to 
the actor is implied.  While this approach may seem non-standard in practice, it does not violate the 
UML 2.0 metamodel.  Furthermore, to support the service-oriented approach, clearly specifying the 
requested service would seem to provide better clarity than just drawing an association to the external 
agent.  Groups of actors and functionality can be expressed using Composite Structure Diagrams. 

Activity Diagram  

Activity modeling emphasizes the sequence and conditions for coordinating lower-level behaviors. 
These are commonly called control flow and object flow models. The actions coordinated by activity 
models can be initiated because other actions finish executing, because objects and data become 
available, or because events occur external to the flow.  For agents, all these conditions are useful.  
However, from the agent standpoint, additional UML 2.0 features are also practical.  For example in 
the following figure (Figure 17), the Activity Diagram represents a business process that an agent 
system might support. By its title, it suggests that this is a plan for the Process Order service.   



Receive Fill
Order

Ship
OrderOrder

Close
Order

Send
Invoice

Make
Payment

Accept
Payment

[order
accepted]

[order
rejected]

Process Order {plan rule = (When orderPaymentType = invoice)}

Requested
Order

Invoice

 

Figure 17  An Activity Diagram for a Process Order service. 

Each plan can be expressed as an Activity diagram. However, UML 2.0 needs to be extended to 
define plan rule conditions.  As mentioned earlier, the plan rule specifies those conditions under 
which the associated activity may be invoked.  In the example below, the plan rule condition  
indicates that when Process Order service is requested for an order is to be invoiced, this particular 
Activity Diagram plan is executed.  Different Activity Diagrams may specify alternate plans for 
Process Order based on, say, credit card or cash payment instead.  It should be noted that to support 
the ability of a process (i.e. service or goal) to choose from multiple plans requires an extension to 
UML 2.0.  Currently, UML 2.0 can only invoke a single Activity Diagram for a given process.  For 
implementations of BDI planning systems, such as Agentis [Agentis Software, 
http:www.agentissoftware.com], , activity-based plans are typically simplified by remove branching 
conditions and replacing them with finer-grain plans. This normalization process can be 
accomplished during design time and does not require an extension to UML 2.0. 

Indicating the role for the processes within an Activity Diagram is also useful. In UML 2.0, Activity 
Diagrams can represent this in two ways: partitions and annotated processes. In the diagram below, 
partitions for Order Handler and Invoice Handler roles are represented as swimlanes.   
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Figure 18   An Activity Diagram with role-based swim lanes. 

However, graphical swimlanes are not always that clearest express partitioning. In UML 2.0, each 
process on an Activity Diagram can be notated individually with the appropriate designation. For 
example in the diagram below, the Order Handler and Invoice Handler roles are placed within each 
processes’ round-cornered rectangle.  
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Figure 19   An Activity Diagram with role-based annotations. 

Group can be depicted as partitions and annotated processes in UML 2.0, as well.  However, both role 
and group associations need to be added to the UML 2.0 metamodel to use the partitions and 
annotated processes. Within UML 2.0, no notion of goal, per se, exists. However, two ways of think 
about goals for Activity Diagrams are supported. First, the activity final node (the bulls eye) is 
considered the goal for the activity, because it is the end point for the process. Second, at a more 
macro level, the service can be thought of as supporting a goal. For example, the Process Order 
activity can be thought of as providing a service that supports the goal of processing orders. For 
example, in Agentis, a Process Order goal is synonymous with being able to provide a Process Order 
service. The only other issue that has been identified involves the control nodes in the flow 
(decision/merge nodes and fork/join nodes).  While the semantics of the control node is understood, 
the responsibility for its underlying processing is not.  If the Activity Diagram has a “control” agent 
that coordinates the process flow, each Activity Diagram can be associated with a providing role, as 
mentioned earlier.  Another option is that each of the control nodes could be associated with a role 
that provides the control node functionality with in the activity context (as indicated in the 
example, above).  Both options may also be chosen, where a control agent is responsible for 
coordinating the overall process flow by delegating to more specialized roles to handle each control 
node—just as it could for the individual processes in the diagram.  Both options are also supported by 
UML 2.0. 

State Machine Diagram  

A State Machine Diagram describes the discrete behavior modeled through finite state-transition 
systems. The sequences of states that an object or an interaction goes through during its life in 
response to events, together with its responses and actions can be modeled. State Machine Diagrams 
are applied for the state descriptions of e.g. classifiers, for detailing of use cases, for behavior 
description of interfaces and ports, for detailed descriptions of event and signal handling. They 
describe states (simple, composite, submachine states), transitions, state machine, regions, initial and 
final state and pseudostates. In UML 2.0 interfaces can posses protocol state machines, state entry 
and exit and termination can be formulated and rules for transitions in inherited state machines are 
added and updated 

UML 2.0 distinguishes between behavioural state machines, i.e. state machines can be used to specify 
behaviour of various model elements. For example, they can be used to model the behaviour of 
individual entities (e.g., class instances). The state machine formalism described is an object based 
variant of Harel statecharts; and Protocol State machines, i.e. Protocol state machines are used to 
express usage protocols. Protocol state machines express the legal transitions that a classifier can 
trigger. The state machine notation is a convenient way to define a lifecycle for objects, or an order 
of the invocation of its operation. Because protocol state machines do not preclude any specific 
behavioral implementation, and inforces legal usage scenarios of classifiers, interfaces and ports can 
be associated to this kind of state machines. 

The State Machine Diagram provides a graphical way representing discrete behavior through finite 
state transition systems. 
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Figure 20  A State Machine Diagram for a Process Order service. 

State machine can be applied for modeling interaction protocols, similar to sequence diagrams and to 
model plans.  

Sequence Diagram  

The most common kind of Interaction Diagram is the Sequence Diagram, which focuses on the 
message interchange between a number of lifelines. In particular, a Sequence Diagram describes an 
Interaction by focusing on the sequence of messages that are exchanged, along with their 
corresponding event occurrences on the lifelines. In particular, time sequences but does not include 
object relationships.  This can be done either in a generic form (describes all possible scenarios) or in 
an instance form (describes one actual scenario). Sequence diagrams are applied to model interactions 
and in various phases of the software development process (e.g. use case refinement, modeling of test 
scenarios, communication model, detailed modeling of message exchanges or specification of 
interfaces) 

Prior to UML 2.0, FIPA defined an agent-based that extended UML 1.x to include roles, decision 
points, concurrency, modularity, and multicasting (Example in Figure 21(a)).  UML 2.0 includes 
representation of all these notions except role and multicasting support. UML 2.0 adds e.g. loops, 
alternatives, parallelism, sequences and critical fragments. 

Role notation can initially include making each lifeline define a role.  The current UML 2.0 
metamodel is not far from this general concept, but the agent-based notion of role is not defined by 
UML 2.0.  Therefore, the extension to the Sequence Diagram metamodel needs to include equate the 
lifeline with a metamodel notion of role. Furthermore, some agent-based applications involve 
dynamic and multiple classification of agents in their roles. In these kinds of applications, 
representing role change and multiple roles for an agent requires more research and extended 
notation.  Representing groups is not part of UML 2.0, and would therefore need to be added 

To support the notation of multicast and multiresponse, a cardinality-based notation was added to 
the message lines (Figure 21(b)). For example, the cfp message is annotated to indicate a message 
that would be multicast from an Initiator to n Participants. The response then involves a refusal 
from j Participants and proposal from k other Participants; and so on. This notation represents a 
first try at representing multicasting, however it still requires more consideration.  For instance, 
policies may need to be stated that multiple responses (e.g., the number of refusal and proposal 
responses may not exceed the number of multicast cfp invitations to participants.)  
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 (a) UML 1.x with extensions (b) UML 2.0 

Figure 21  UML 1.x agent extensions and UML 2.0 Sequence Diagrams 

Communication Diagram  

Communication Diagrams (formerly known as Collaboration Diagrams in UML 1.x) focus on the 
interaction between lifelines message passing is central. They correspond to simple Sequence 
Diagrams that use none of the structuring mechanisms such as interaction occurrences and combined 
fragments. It also assumes a strict ordering of messages. A Communication Diagram describes the 
interaction between lifelines where the architecture of the internal structure and how this 
corresponds with the message passing is central. In particular, sequencing of messages is characterized 
through a sequence numbering scheme. Are known as collaboration diagrams of UML 1.x. They are 
applied similar to simple sequence diagrams.  However, due to their limited expressiveness, 
Communication Diagrams can only be used to represent simple and straight-forward interactions.  
While they remain as part of the UML 2.0 set of diagrams, their usefulness is limited. 
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Figure 22  A Communication Diagram with role-based annotations. 

Communication Diagrams require the same role-based extensions as the Sequence Diagrams.  Role 
notation can initially include making each lifeline define a role.  The current UML 2.0 metamodel is 
not far from this general concept, but the agent-based notion of role is not defined by UML 2.0.  
Therefore, the extension to the Communication Diagram metamodel needs to include equate the 
lifeline with a metamodel notion of role. Furthermore, some agent-based applications involve 
dynamic and multiple classification of agents in their roles.  In these kinds of applications, 



representing role change and multiple roles for an agent requires more research and extended 
notation. Representing groups is not part of UML 2.0, and would therefore need to be added. To 
support the notation of multicast and multi-response, a cardinality-based notation was added to the 
message lines in the same manner as sequence diagrams in Figure 21(b). For example, the cfp message 
is annotated to indicate a message that would be multicast from an Initiator to n Participants. The 
response then involves a refusal from j Participants and proposal from k other Participants; and so 
on. This notation represents a first try at representing multicasting, however it still requires more 
consideration. For instance, policies may need to be stated that multiple responses (e.g., the number 
of refusal and proposal responses may not exceed the number of multicast cfp invitations to 
participants.)  

Interaction Overview Diagram 

Interaction Overview Diagrams define interactions through a variant of Activity Diagrams in a way 
that promotes overview of the control flow. Interaction Overview Diagrams focus on the overview 
of the flow of control where the nodes are interactions. The lifelines and the messages do not appear 
at this overview level. For example, the UML 1.x diagram in Figure 23(a) would be graphically 
cumbersome to express as a Sequence Diagram in UML 2.0, because of the resulting plethora of 
boxes within boxes. By using the Interaction Overview Diagram, the flow can be more clearly 
delineated as depicted in Figure 23(b). 
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(a) UML 1.x agent extensions with looping (b) A UML 2.0 Interaction Overview Diagram  
     representation for Figure 24. 

Figure 23  UML 1.x agent extensions with looping. 

The Interaction Overview Diagram (IOD) contains Sequence Diagrams and therefore needs to address 
the extensions indicated for Sequence Diagrams (see above). The only other issue that has been 
identified involves the control nodes in the flow (decision/merge nodes and fork/join nodes). (This 
issue similar to those that exist for the Activity Diagram.) While the semantics of control node is 
understood, the responsibility for its underlying processing is not. If the Interaction Overview has a 
“control” agent that coordinates the process flow, each IOD can be associated with a providing role. 
Another option is that each of the control nodes could be associated with a role that provides the 
control not functionality with in the IOD context. Both options may also be chose, where a control 
agent is responsible for coordinating the overall process flow by delegating to more specialized roles 
to handle each control node. 

3.2 MDA 

Our approach towards this end is a model-driven development and architecture (MDA; for details see 
[50]) as promoted by the Object Management Group (OMG) for the development of agent-based 



systems. Key to MDA is the importance of models in the software development process. Within 
MDA the software development process is driven by the activity of modeling the business software 
system. The MDA development process does not look very different from a traditional lifecycle, 
containing the same phases (requirements, analysis, low-level design, coding, testing, and 
deployment). One of the major differences to traditional development processes lies in the nature of 
the artifacts that are created during the development process. These artifacts are formal models, i.e. 
models that can be understood by computers and finally be transformed into a representation that 
lends itself to execution. The following three models are at the core of the MDA: Computation 
Independent Model (CIM): This is the most abstract model within MDA is independent of 
computational technology. It describes the business (logic) and therefore defines business processes 
and workflows in detail. Platform Independent Model (PIM): This model is defined at a high level of 
abstraction; it is independent of any implementation technology. It describes a software system that 
supports some business. Within a PIM, the system is modeled from the viewpoint of how it best 
supports the business. Whether a system will be implemented on a mainframe with a relational 
database, on an EJB application server or on an agent-platform is irrelevant at the PIM level. 
Platform Specific Model (PSM): In the next step, the PIM is transformed into one or more PSMs. It 
is tailored to specify a system in terms of the implementation constructs available in one specific 
implementation technology. A PIM is transformed into one or more PSMs. For each specific 
technology platform a separate PSM is generated. Most systems today span several technologies; 
therefore it is common to have many PSMs with one PIM. The final step in the development is the 
transformation of each PSM to code. Because a PSM fits its technology rather closely, this 
transformation is relatively straightforward. 

Summarizing the different approaches of section 2 and the usage of UML 2.0 diagrams from section 
3.1 we distill the following necessary aspects to be covered by a model-driven architecture covering 
major areas of agent-based systems (only focusing on CIM and PIM): 

Computational Independent Model  

The CIM has to deal with the following aspects: Use Cases: Taken from object-oriented software 
development, use case scenarios are a suitable method to derive the functional requirements of a 
system need to be derived. I.e. UML 2.0 use case diagrams are applied. Environment Model: In [43], 
Odell et al. consider several aspects of environment modeling ranging from physical environments to 
agent communication and to how their considerations could be embedded into the FIPA architecture. 
Domain / Ontology Model: This model defines the ontologies of the domain and relates them to 
other existing ontologies using e.g. UML class diagrams and Semantic Web representation languages. 
Role Model: This model describes the roles in a domain, on the one hand in the traditional object-
oriented sense (actor-role relationship), but also defining roles characterizing social relationships 
within an agent-based system. Goal/Task Model: This model defines the objectives of an agent in 
terms of soft and hard goals, and should also support means-ends analysis (as in Tropos). Moreover, 
the notion of tasks and plans should be provided to support the description of agent behavior at a 
high level of abstraction. Interaction Model: This model defines the regime of interaction and 
collaboration among entities and groups of entities, at a level which abstracts from specific 
interaction protocols. Organization/Society Model: This model defines to a reasonable extent the 
real-world society and organization and hence the social context within which agents in an agent-
based system acts and interacts. Business process models: The notion of business processes is key for 
corporate business applications. Business processes describe the means and the ends of business 
interactions. For agents to support corporate applications, it is important to be able to access 
executable definitions of business processes, to reason about the semantics of goal-directed business 
processes (see [48]), and to relate business process to the organizational model, the interaction 
model, and the task model. 

Platform Independent Model 

Interaction Protocol Model: This model defines the interaction between different agent class, agent 
instances and roles at the level of interaction protocols, such as the Contract Net. Internal Agent 
Model: This model deals in particular with goals, beliefs and plans of agent classes, how they are 
defined and which underlying architecture is used. Agent Model: This model describes the behavior of 
agents and agent groups, i.e. how different agent are collaborating together independent of their 
implementation. The interaction model defines the concrete interaction of the agents, whereas the 
internal agent model defines the internal behavior of an agent, e.g. in terms of BDI, and the agent 



model defines the behavior of an agent seen by other agents. Service / Capability Model: Defines the 
services and capabilities of agents, mostly using service description languages and mechanisms such as 
UDDI or DAML-S. Acquaintance Model: This model provides agents with models of other agents’ 
beliefs, capabilities, and intentions. It can be used to determine suitable partners for collaboration or 
to predict others’ behavior e.g., in a coordination task. Deployment / agent instance model: This 
model describes which agent instances exist, the migration is considered as well as the dynamic 
creation of agents.  

 

4 Open Issues and Conclusions 

As an OMG standard, UML 2.0 is now considered a “final” standard, as of November 2004. In other 
words, many of the errors and inconsistencies of the original submission have been rectified. More 
than 3000 issues were files and resolved by the UML 2.0 Finalization Task Force. As such software 
vendors can begin to build software tools that support the UML 2.0 Superstructure and Infrastructure. 
In addition, a firmer foundation is now available to adequately support the extensions for agent-based 
system modeling. The FIPA Modeling Technical Committee and the OMG Agent Special Interest Group 
are actively working on extending UML for agent-based system modeling. These efforts are primarily 
supported by the work of more than a dozen software tool vendors. The notation presented in this paper is 
an interim result of this effort. UML has no “off-the-shelf” constructs to express: goals, agent, groups, 
multicasting, generative functions, such as cloning, birthing, reproduction, parasitism and symbiosis, 
emergent phenomena, and many other nature-based constructs that are helpful for representing agent 
structures. Furthermore, agent researchers are still trying to determine useful ways of representing agents 
and agent-based systems. As such, we cannot expect to have rich modeling languages for agents for 
several more years. (The first OMG “agent UML” request for proposal is not scheduled to be issued until 
the Fall of 2005.) However, we can begin to provide the agent community with guidelines for notations 
that provide obvious benefit—such as those presented in this chapter. 
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