
UML 2.0 and Agents:
How to Build Agent-based Systems with the

new UML Standard

Bernhard Bauer1 and James Odell2
1Programming of Distributed Systems, Institute of Computer Science, University of Augsburg, D-86135 Augsburg, Germany

 bauer@informatik.uni-augsburg.de, Tel. +49 821 598 2118

Agentis Software, Ann Arbor, Michigan, USA
http://www.jamesodell.com

email@jamesodell.com, Tel +1 (734) 994-0833

Abstract: UML 2.0 is the upcoming standard of the OMG for specifying
object-oriented software systems. In this paper we will show how UML 2.0 can
be applied for the specification of agent-based systems. Moreover we will give
a short overview on existing agent methodologies to have a reference what has
to be specified in such systems. The paper concludes with some outlook for
further research and open issues for specifying agents with UML 2.0.

Keywords: UML 2.0, Agent-based Systems, agent-oriented Software
Engineering

1 Introduction

Software engineering techniques are a key prerequisite of running successful software projects.
Without a sufficient approach and adequate tools to support the development of software systems, it
is virtually impossible to cope with the complexity of commercial software development processes.
This tendency will increase over the years to come and appropriate software engineering methods
will continually be in high demand. A software methodology is typically characterized by a modeling
language – used for the description of models, defining the elements of the model together with a
specific syntax (notation) and associated semantics – and a software process – defining the
development activities, the interrelationships among the activities, and how the different activities
are performed. In particular, the software process defines phases for process and project management
as well as quality assurance. Each activity results in one or more deliverables – such as specification
documents, analysis models, designs, code, testing specifications, testing reports, performance
evaluation reports, etc. – serving as input for subsequent activities.

The three key phases that one is likely to find in any software engineering process are that of
analysis, design and implementation. In a strict waterfall model these are the only phases; more
recent software development process models employ a “round-trip engineering” approach, i.e.,
provide an iteration of smaller granularity cycles, in which models developed in earlier phases can be
refined and adapted in later phases.

Agent technology enables the realization of complex software systems characterized by situation
awareness and intelligent behavior, a high degree of distribution, as well as mobility support. Agent
technology has the potential to play a key role in enabling intelligent applications and services by
improving automation of routine processes, and supporting the nomadic users with pro-active and
intelligent assistance based on principles of adaptation and self-organization. Hence, agent
technology can open the way to new application domains while supporting the integration of
existing and new software, and make the development process for such applications easier and more
flexible. However, deploying agent technology successfully in industrial applications requires

industrial-quality software methods and explicit engineering tools, such as UML 2.0. Therefore we
will take a closer look at the new UML standard and its application to agent-bases systems.

This paper is structured as follows. In Section 2 we give a short overview on agent methodologies and
notations to have a reference what has to be specified in agent-based systems. The main chapter is
Section 3 showing the different UML diagrams and their application for agent-based systems.
Moreover we apply the model-driven architecture of the OMG for the specification of agent-based
systems. The paper concludes with some open issues using UML 2.0 for the specification of such
systems and concludes the paper.

2 Short Overview on Agent Methodologies and Notations

A considerable number of agent-oriented methodologies and tools are available today, and the agent
community is facing the problem of identifying a common vocabulary to support them (for details
see our work in [49], this section is based on it). There is a considerable interest in the agent R&D
community in methods and tools for analyzing and designing complex agent-based software systems,
including various approaches to formal specification (see [1] for a survey). Since 1996, agent-based
software engineering has been in the focus of the ATAL workshop series; it also was the main topic
of the 1999 MAAMAW workshop [2]. Various researchers have developed methodologies for agent
design, touching on representational mechanisms, like the GAIA methodology [6] or the extensive
program underway at the Free University of Amsterdam on compositional methodologies for
requirements [7], design [8], and verification [9]. In [5] [4], Kinny et al. propose a modeling
technique for BDI agents. The close affinity between design mechanisms employed for agent-based
system and those used for object-oriented systems is shared by a number of authors, for example,
[21]. In particular, since 2000, the Agent-Oriented Software Engineering Workshop (AOSE) has
become the major forum for research carried out on these topics, including new methodologies such
as Tropos [31], Prometheus [40], and MESSAGE [19]. Currently, most industrial methodologies are
based on the Object Management Group’s (OMG) Unified Modeling Language (UML) accompanied
by process frameworks such as the Rational Unified Process (RUP), see [33] for details. The Model-
Driven Architecture (MDA [44]) from the OMG allows a cascade if code generations from high-level
models (platform independent model) via platform dependent models to directly executable code (see
section 3.2 for details). Another approach for agile software engineering that has been receiving
active coverage is Extreme Programming [28].

2.1 Knowledge Engineering Approaches

Most early approaches supporting the software engineering of agent-based systems were inspired by
the knowledge engineering community. The three most influential methodologies inspired by this
strand of research are CommonKADS [31], CoMoMAS [30] and MAS-CommonKADS [10].
Knowledge engineers need tools and methods to design good knowledge-based systems (KBS),
however this relies on knowledge engineer abilities. The CommonKADS methodology was developed
to support knowledge engineers in modeling expert knowledge and developing design specifications in
textual or diagrammatic form. CommonKADS is a knowledge engineering methodology as well as a
knowledge management framework. Two extensions to CommonKADS were developed that take
agent-specific aspects into account: CoMoMAS and MAS-CommonKADS. MAS-CommonKADS
[10] adds various extensions to CommonKADS: protocol engineering techniques (namely software
development lifecycle and MSC96 [45]); object-oriented techniques (OMT [46][47]) and OOSE);
and enhanced support to additional phases within the software life cycle.

2.2 Agent oriented Approaches

A perceived lack of the knowledge engineering software development methodologies was that they
were not designed before the background of supporting the development of agent systems, and that
hence they had limited capability to support agent-specific functions, which could only partly be
overcome by extensions such as seen for MAS-CommonKADS. Gaia [11] is a methodology for
agent-oriented analysis and design supporting macro (societal) level as well as micro (agent) level
aspects. Following [11], Gaia was designed to deal with coarse-grained computational systems, to
maximize some global quality measure, to handle heterogeneous agents independent of programming

languages and agent architectures, having static organization structures and agents having static
abilities and services, with less then 100 different agent types. ROADMAP extends Gaia by adding
elements to deal with the requirements analysis in more detail by using use cases and to handle open
systems environments. Moreover it focuses more on the specification of interactions based on
AUML [12]. Another agent-oriented software engineering methodology mainly focusing on societies
similar to Gaia’s organizations is SODA (Societies in Open and Distributed Agent spaces [14]). As
ROADMAP it addresses some of the shortcomings of Gaia such as the insufficiencies in dealing with
open systems or self-interested agents. Moreover SODA takes the agent environment into account
and provides mechanisms for specific abstractions and procedures for the design of agent
infrastructures. Based on the analysis and design of agent societies (exhibiting the global behaviors
not deducible from the behavior of the individual agents) and agent environments (the space where
agents live and interact, like open, distributed, decentralized, heterogeneous, dynamic, and
unpredictable environment), SODA provides support for modeling the inter-agent aspects. However
intra-agent aspects are not covered. Therefore SODA is not a complete methodology; rather, its goal
is to define a coherent conceptual framework and a comprehensive software engineering procedure
that accounts for the analysis and design of individual agents from a behavioral point of view, agent
societies, and agent environments. As most of the considered methodologies do, SODA supports the
analysis and design phase.

2.3 Object oriented Approaches

A good procedure (if not the only viable one) for successful industrial deployment of agent
technology is to present the new technology as an incremental extension of known and trusted
methods, and to provide powerful engineering tools that support industry-accepted methods of
technology deployment. Accepted methods of industrial software development depend on standard
representations for artifacts to support the analysis, specification, and design of agent software. At
the moment agent-oriented software engineering is still lacking the availability of suitable software
processes and tools. The Unified Modeling Language (UML) is gaining wide acceptance for the
representation of engineering artifacts using the object-oriented paradigm. Viewing agents as the next
step beyond objects leads several authors (see on a discussion of this topic e.g. [22]) to explore
extensions to UML and idioms within UML to accommodate the distinctive requirements of agents
as well as defining software methodologies based on object-oriented approaches. In general, building
methods and tools for agent-oriented software development on their object-oriented counterparts
seems suitable as it lends itself to smoother migration between these different technology generations
and at the same time improves accessibility of agent-based methods and tools to the object-oriented
developers’ community, which, as per today, prevails in industry. One of the first methodologies for
the development of BDI agents based on OO technologies was presented in [15][16][17][18]. The
agent methodology distinguishes between the external viewpoint - the system is decomposed into
agents, modeled as complex objects characterized by their purpose, their responsibilities, the services
they perform, the information they require and maintain, and their external interactions - and the
internal viewpoint - the elements required by a particular agent architecture must be modeled for each
agent, i.e. an agent's beliefs, goals, and plans. MESSAGE (Methodology for Engineering Systems of
Software Agents) [19][20] is a methodology which builds upon best practice methods in current
software engineering such as for instance UML for the analysis and design of agent-based systems. It
consists of (i) applicability guidelines; (ii) a modeling notation that extends UML by agent-related
concepts (inspired e.g. by Gaia); and (iii) a process for analysis and design of agent systems based on
RUP. The MESSAGE modeling notation extends UML notation by key agent-related concepts.
Tropos [29][35][34] is another good example of a agent-oriented software development
methodology that is based on object-oriented techniques. In particular, Tropos relies on UML and
offers processes for the application of UML mainly for the development of BDI agents and the
agent platform JACK [38]. Some elements of UML (like class, sequence, activity and interaction
diagrams) are adopted as well for modeling object and process perspectives. The concepts of i* [36]
such as actor (actors can be agents, positions or roles), as well as social dependencies among actors
(including goal, soft goal, task and resource dependencies) are embedded in a modeling framework
which also supports generalization, aggregation, classification, and the notion of contexts [37].
Similar to Tropos, Prometheus [41][40][39] is an iterative methodology covering the complete
software engineering process and aiming at the development of intelligent agents using goals, beliefs,
plans, and events, i.e. in particular BDI agents, resulting in a specification which can be implemented
with JACK [38]. The Prometheus methodology covers three phases, namely those of System

specification, architectural design, and detailed design. Multiagent Systems Engineering (MaSE)
[25][26][27] has been developed to support the complete software development lifecycle from problem
description to realization. It offers an environment for analyzing, designing, and developing
heterogeneous multi-agent systems independent of any particular multi-agent system architecture, agent
architecture, programming language, or message-passing system. It takes an initial system specification,
and produces a set of formal design documents in a graphical style. In particular, MaSE offers the ability
to track changes throughout the different phases of the process. PASSI (Process for Agent Societies
Specification and Implementation) [23][24] is an agent-oriented iterative requirement-to-code
methodology for the design of multi-agent systems mainly driven from experiments in robotics. The
methodology integrates design models and concepts from both object oriented software engineering
and artificial intelligence approaches. PASSI is supported by a Rational Rose plug-in to have a
dedicated design environment. In particular, automatic code generation for the models is partly
supported and a focus lies on patterns and code reuse.

3 UML 2.0 and MDA: Their Usage for Agent-based
Systems

3.1 UML

UML has a long history and is the result of a standardization effort on different modeling languages
(like Entity-Relationship-Diagrams, the Booch-Notation, OMT, OOSE), namely Unified Modeling
Language. The most popular versions of UML are UML 1.x, but now UML 2.0 is the upcoming new
specification for development of systems. The Unified Modeling Language (UML) is a standard
modeling language for visualizing (using the standardized graphic UML notations), specifying the
static structure, dynamic behavior and model organization as well as constructing system, by mapping
UML to programming environment and generate some code automatically, and documenting every
phase of the lifecycle from analysis and design through deployment and maintenance. UML consists
of a notation, describing the syntax of the modeling language and a graphical notation, and a meta
model, describing the semantics of UML, namely the static semantics of UML, but no operational
semantics. However, UML defines no software process, since a software process describes the
development activities, dependencies of these activities and how they are applied. Thus UML is not
a software methodology / method since a methodology consists of a modeling language and software
process. But UML can be applied by several methodologies.

The UML 2.0 specification (for details see [51], note that [51] is also the standard reference for this
section) consists of the Infrastructure Specification, defines foundational language constructs required
for UML 2.0. The achieved results are adjustment between UML, MOF and XMI, re-structuring of
language definition (meta-model as well as notation) with the goal to increase understandability and
extensibility and first class extensibility mechanisms; Superstructure Specification, defines user level
constructs (diagrams) required for UML 2.0. The achieved results here are modeling of patterns, e.g.
component based development, specification of run-time architectures; support for scalability and
encapsulation as well as unique definition of semantics for relations, like generalization, dependencies
and associations; OCL (Object Constraint Language) a formal language used to describe expressions
on UML models. The achieved results are meta-model-based definition of OCL, increased
expressability of OCL and a formal semantics of OCL; Diagram Interchange enables a smooth and
seamless exchange of documents compliant to the UML standard between different software tools.
UML 2.0 supports the following diagrams: class, object, component, deployment and composite
structure diagrams for modeling the static aspects of the systems and use case, state machine,
sequence, activity, interaction overview, timing and communication diagrams for modeling dynamic
aspects and packages, models and subsystems for modeling the model management. We focus on the
first two groups of diagrams defined in the Superstructure Specification. We will use this distinction
to present the diagram types and how they can be applied for modeling agent-based systems.

3.1.1 Structural Diagrams – Static Aspects

Class Diagram

A Class Diagram describes on the one side a data model, i.e. collection of declarative (static) model
elements, like classes and types, and on the other side their contents and relationships. Moreover the
static structure of the system to be developed and all relevant structure dependencies and data types
can be modeled with class diagrams. They are applied in various phases of the project, e.g. analysis
(conceptual modeling of the domain), design (platform independent description) of the
implementation, detailed design (platform specific description; PSM) and to bridge the gap to the
behavior diagrams. Class diagrams describe classes and interfaces with their attributes and operations,
as well as associations between them (including aggregation and composition), but also generalization
(a specific kind of inheritance) and dependencies among them. New to UML 2.0 is that attributes
have ordering, graphical notations for associations are defined, graphical interface notation are
introduced using lollipops, some unification on the notations for e.g. visibility, names and types has
been done. Moreover attributes have no implicit composition associations and dependencies are
completely redefined. An example of a class diagrams is illustrated in Fig. 1.

Figure 1 Class diagram

Class diagrams can be used for the definition of organizational models; in particular the static aspects
of the organization, its associations and part-of relationships can be modeled. For example,
departments can be modeled using classes. Their characteristics can be modeled by attributes, whereas
their services can be modeled using functions. Associations are used to define relationships between
different organizational units. The description of, for example, sub-departments can be modeled
using aggregation and composition, where aggregation and composition are special forms of
associations, namely a whole-part relationship (aggregation) and an aggregation that requires that a
part instance be included in at most one composite at a time (composition), respectively.
Generalization is used for refining existing organizational structures. Dependencies are applied to
define a relationship between e.g. two organizational units, in which a change to one modeling
element will affect the other modeling element. Similar social structures are e.g. defined by Odell et
al. using class diagrams, see [43]. However, many modelers are now using composite structures to
model social structures such as as groups, organizations, and roles. (See Composite Structure Diagram
subsection.) Ontologies can also be defined with UML. An ontology as a whole is viewed as a
package, where as a class represents e.g. the class concept of DAML/OWL. The class hierarchy of
OWL is defined using generalization, whereas properties are modeled by attributes, associations and
classes. Sub-Properties can be defined by generalization between stereotyped <<property>> classes.
sameClassAs, samePropertyAs are modeled by stereotyped dependencies between two classes, and
associations, respectively. Cardinalities are applied to define minCardinality and maxCardinalities.
For details we refer to [1]. Thus organizational model knowledge can be modeled by using class

diagrams for the definition of ontologies. Moreover class diagrams can be applied for the definition
of sub-tasks and sub-goal hierarchies (using generalization) as well as to define the structural aspects
of tasks (using aggregation and composition). In additional constraints like goals, control features,
services (functions as interfaces) can be added via attributes, functions and associations. An agent
model can be defined using class names, inheritance (generalization) of classes and adding name,
type, position/role, capabilities and constrains, either directly or via associations. A role hierarchy
can be defined using generalization. However roles cannot be modeled in the necessary detail with
any UML 2.0 diagram. Service models can also be done by this diagram type, e.g. defining services
with input/output parameters and pre-/post-conditions as classes with attributes and functions (the
service interface).

Object Diagram

An Object Diagram describes a snapshot of the system at a specific time point, where objects and
their relationships at a point in time are depicted. Object diagrams are a special case of a class
diagram or a communication diagram, since objects are an instance of a class, where a link is an
instance of an association and the values of attributes or simple objects. An Object Diagram consists
of objects, links and values. Changes in UML 2.0 are that <<copy>> and <<become>> are obsolete
and multi-object notation is obsolete. An example of an object diagram is depicted in Fig. 2.

Figure 2 Object Diagram

They can be used for the definition of objects, like speech acts viewed as messages send between
agents, handled by agents. Moreover agents as instances of agent classes can be modeled to describe
an agent population during the run-time execution of an agent-based system.

Composite Structure Diagram

A Composite Structure Diagram describes the internal structure of a classifier, including the
interaction points of the classifier to other parts of the system. It shows the configuration of parts
that jointly perform the behavior of the containing classifier. Moreover, it defines a set of instances
playing parts (roles), as well as their required relationships given in a particular context
(architecture). Therefore, the external interfaces are given and an abstraction of operations and
signals is performed. It shows how the different architecture components are structured and
interworking. They are applied during top-down modeling of the system, to model the relationship
between parts of the system through specific interfaces (ports) in a precise manner. They can also be
used to describe the architecture of the system (architecture diagram) and for specification and
application of patterns. Since this diagram in newly introduced in UML2.0, we will have a closer look
at it before showing the application for agent-based systems. An example of a composite structure
diagram is contained in Fig. 3.

Figure 3 Composite Structure Diagram and its Instantiation

A part is an element representing a set of instances that are owned by a containing classifier instance
or role of a classifier. Parts may be joined by attached connectors and specify configurations of

linked instances to be created within an instance of the containing classifier. Parts are usable in class,
object, component, deployment and package diagrams. A connector is a link that enables
communication between two or more instances. The link may be realized by something as simple as a
pointer or by something as complex as a network connection. A port specifies a distinct interaction
point between a classifier and its environment or between the (behavior of the) classifier and its
internal parts. Ports are connected to other ports through connectors through which requests can be
made to invoke the behavioral features of a classifier. External interfaces are specified as indicated in
Fig. 4.

Figure 4 Composite Structure Diagram – Ports

Applied to the agent-based modelling, this diagram can be used for modelling an organization, its
dependencies and workflows between agents. In addition, the diagram can represent an organization’s
external interfaces, as well as the internal behaviour and interfaces of an agent. The notion of
interface for agent-based systems is of course different to usual object-oriented systems. For agent-
based systems the interface defines the speech acts understood by the agent as well as the actions
performed by an agent. Furthermore this diagram type allows us to express collaboration
collaborations. The specification of how an operation or classifier, such as a use case, is realized by a
set of classifiers and associations playing specific roles used in a specific way. The collaboration
defines an interaction among roles, as illustrated in Sale and BrokeredSale collaborations in Fig. 5.

Figure 5 Collaborations

This diagram type can be used for defining those agent patterns that can be instantiated in different
contexts, such as a typical agent broker architecture, or negotiation pattern. Moreover, it allows to
define the architecture of an agent-based system and how a given agent architecture can be
instantiated in different contexts. Composite structure diagrams provide a useful way to represent
social structures such as groups and roles. A group is a set of agents that are related via their roles,
where these links must form a connected graph within the group. Another way to look at this is that
a group is a composite structure consisting of interrelated roles, where each of the group’s roles has
any number of agent instances. This definition implies not only that a group is a function of the
roles contained within it, but also that roles have no meaning without their group referent. Hence,
our ability to understand roles is limited by our ability to understand the groups of which they are a
part.

A group can be formed to take advantage of the synergies of its members, resulting in an entity that
enables products and processes that are not possible from any single individual. As with roles, groups
may be deliberately established (i.e., by a system designer) or they may be emergent. In human
organization terms, a deliberately established group could be a department or other workgroup that
has been defined by some organizational authority. In contrast, an emergent group might be a social

group that forms when several individuals decide to go out for a beer after work. Over time, they
define themselves as a group (“My Friday Afternoon Drinking Buddies”).

Groups are commonly formed to regulate, foster, or support the interaction of those agents within
the group; so the group provides a place for a limited number of agents to interact among themselves
via roles. In this way, intra-group associations encourage resource sharing, promote internal
coordination, establish common supervision, and provide a degree of safety in numbers.

Groups can be treated as either agents or objects. An Agentified Group possesses all the features that
any agent might possess. For example, it can send and receive messages directly and take on roles.
Such a group is an agent in its own right, and therefore is a subclass not only of Group but also of
Agent. (Such groups can also be referred to as organizations.) In contrast, Non-Agentified Groups
are still first-class entities; however, these entities do not possess agent properties. Thus, they are as
objects, rather than agents.

<<agent>>

ABC Ltd.

<<agent role>>

Manager

<<agent role>>

ABC Buyer

<<agent role>>

Broker

Figure 6 Example of the ABC Ltd. Agentified Group and its associated Roles.

Figure 6 represents the Group “ABC Ltd” as a composite structure with three associated roles,
“Manager”, “Broker” and “ABC Buyer”. The “Manager” interacts directly with the “ABC Buyer”
and the “Broker”. In this situation, it is possible to interact with the agent “ABC Ltd.” without
knowing directly about any specific “Manager”, “Broker” or “ABC Buyer” within the department;
thus, this group is Agentified. The stereotype “<<agent>>” indicates that the group is Agentified.

ABC Ltd.

<<agent role>>

Manager

<<agent role>>

ABC Buyer

<<agent role>>

Broker

Figure 7 Example of the Non-Agentified ABC Ltd.

Groups can also be formed simply to establish a set of agents for purposes such as intra-group
synergies or conceptual organization. A Non-Agentified Group is a Group that is not a subclass of
Agent. Figure 7 shows a Non-Agentified version of “ABC Customer Sales Dept”. It has the same
associated Roles; however, it does not have the “<<agent>>” stereotype. In order to interact with
this Department, you must interact directly with one of its members: a “Manager”, an “ABC Buyer”
or a “Broker”.

Component Diagram

A Component Diagram describes the organizations and dependencies among components. A
component is a modular part of a system that encapsulates its contents and whose manifestation is
replaceable within its environment. A component defines its behavior in terms of provided and
required interfaces. A Component Diagram is applied to support self-containment of components,
the exchangeability of components and the distributed development and assembling of components.
In particular information hiding of internal structures of components is supported. Therefore it
describes components, interfaces, ports as well as the realization, implementation and usage
relationships with its classes and artifacts. In UML 2.0 implementation is called manifesting with the
stereotype <<manifest>>. Components are represented completely different and artifacts can be
associated with packaged elements. Moreover a deployment specification can be given and new

stereotypes <<device>>, <<execution environment>> and <<subsystem>> were introduced. A
component is viewed as a specific class, as depicted in Fig 8.

Figure 8 Component Diagram

In particular interfaces of a component can either be a black-box and white-box representation. (See
example in Fig. 9).

Figure 9 Component Diagram – Black and White Box

An artifact is a physical piece of information that is used or produced by a development process.
Examples of artifacts include models, source files, scripts, and binary executable files. An artifact
may constitute the implementation of a deployable component (Fig. 10).

Figure 10 Component Diagram examples.

Component diagrams can be used to define the input/output behavior of tasks and for the de-
composition of the system architecture. Moreover the black- and white-box notation allows defining
private and public interfaces of agents. The manifest-stereotype can be used to show how an agent
component is deployed in distinguished systems.

Deployment Diagram

A Deployment Diagram describes the execution architecture of systems and the system architecture.
System artifacts are represented as nodes, which are connected through communication paths to
create network systems of arbitrary complexity. Nodes represent run-time computational resources,
which generally have at least memory and often processing capability. Run-time objects and
components may reside on nodes. Nodes are typically defined in a nested manner, and represent
either hardware devices or software execution environments. Deployment diagrams are applied to
show the run-time environment of a system and to represent “software server” as well as to describe
the distribution of components. UML 2.0 adds new elements: device, execution environment, and
deployment specification. Moreover nodes can be defined in more detail and the implement–
relationship is substituted by <<manifest>> relationship. Artifacts are implementations of any
packageableElement. (See Fig. 11.)

Figure 11 Deployment diagram and complex node

A deployment specification specifies a set of properties that specify the execution parameters of a
component artifact that is deployed on a node and can be aimed at a specific type of container. An
artifact that reifies or implements deployment specification properties is a deployment descriptor
(Fig. 12).

Figure 12 Composite Structure Diagram – Ports

Deployment diagrams can be used to describe the physical distribution of agent instances; in
particular they can be applied for defining the migration of agents. Moreover this specification
defines the platform design of an agent-based system. Having e.g. generic agents, the deployment
specification can be applied to define the customization of agents in a specific context.

3.1.2 Behavioral Diagrams – Dynamic Aspects

Use Case Diagram

Use cases are a means for specifying required usages of a system. Typically, they are used to capture
the requirements of a system, that is, what a system is supposed to do. The key concepts associated
with use cases are actors, use cases, and the subject. The subject is the system under consideration to
which the use cases apply. The users and any other systems that may interact with the subject are
represented as actors. The required behavior of the subject is specified by one or more use cases,

which are defined according to the needs of actors. Use case diagrams are applied to define the
external viewpoint on the system and to support encapsulation. In particular they define the “what”
instead of “how” a system is realized from the perspective of an external communication partner.
Thus it describes the system, the use cases of a system, external actors and their relationships
between actors and use-cases, between actors and between use-cases

Order Processing System

Order requested

Order canceled

Process

Order

Cancel

Order

Order sent

Customer Order
Handler

provider

provider

Figure 13 A Use Case Diagram for an Order Processing application.

Agent-based systems can also use these same notions of actor, use case, and subject, as illustrated in
Figure 13. Some embellishments, however, have been made to this diagram. First, these include the
events from the requesting actor to which the subject must respond (sometimes referred to as
percepts) and the events that affect an actor in some way (sometimes referred to as actions). These
are indicated as names on the associations between actors and use cases. The associations also
indicate directionality for these events. The second graphical addition indicates the providing actor
for the service defined by the use case. Both the requesting actor and providing actor are vital to the
service-oriented approach. In particular, the metamodel for the W3C’s Web Services Architecture
[W3C, 2004] defines both of these notions in terms of agents. For example, the Customer actor is
the requesting agent for the Process Order Service and the Order Handler actor is the providing
agent. Figure 14 illustrates some of these same ideas for Use Case Diagrams that represent directed
relationships.

Work Order
Scheduler

Customer
Service Agent

Commercial
Customer

Manager

Schedule
Job

Approve
Overtime

Review
Work Order

Select
Technician

Confirm
with Customer

<<include>>
<<include>>

<<include>>

<<extend>>

Customer

provider

provider

provider

provider

Customer
Service Agent

providerConfirm
request Confirm

response

Figure 14 A job scheduling Use Case Diagram with include and extend relationships.

Such association, therefore, may include multiplicities, end names, association name, and so on.
While most OO modelers might not take advantage of these features, they are useful for agent-based
development. One minor extension to the Use Case diagram is the change in the definition of actor.
UML 2.0 defines an actor as being “played by an entity that interacts with the subject… but which is
external to the subject.” Since agent-based actors can request and provide services inside or outside
the subject area, the definition needs to be changed to indicate that an actor is “played by an entity
that interacts with the subject’s use case… but which is external to the use case.” In other words, an
actor may interact with the subject, or within the subject—and therefore can be internal or external
to the subject.” This definitional extension enables an agent-based approach to application
development. Figure 15 depicts two internal actors for a Bus Transportation System: Bus Driver and
Bus Payment Machine. The Bus Driver is the actor that provides the general Bus Service. However,
an Obtain Payment use cases is included in the Bus Service which is provided by a different actor.

Bus service
request

Bus
Customer

provider
Bus

Service

Obtain
Payment

provider

Payment
request

Payment

Bus Driver

Bus Payment
Machine

Bus service

Bus Transportation System

<<include>>

Figure 15 An example when internal actors can be providing and/or requesting actors.

In UML 2.0, an actor “specifies a role played by a user or any other system that interacts with the
subject. (The term “role” is used informally here and does not necessarily imply the technical
definition of that term ….).” An actor, then, can represent a single role, such as the Customer or
Manager actors in the figures, above.

Shipment
Inquirer

Find Lost
Shipment

Determine
ETA

Determine
Shipment

Status

Shipment Inquiry
Interface

{general: CSA}

«include»

«include»

pr
ov

ide
r

provider

provider

Allocate
Appropriate

CSA

«include»

Shipment
Search

provider

provider

Allocation Mgr
{general: CSA}

Request for tracking info

Tracking info

Request Shipment

StatusShipment
Status

Request to find

lost shipment

Request for ETA

Lost shipment

status

ETA

Figure 16 Indicating Actor roles and resources.

Internal actors might also become requestors for services from external actors. For example in Fig.
16, the Shipment Inquiry Interface actor requests a Shipment Search service from the Tracking
Inquiry agent. While no association has been drawn directly from the Shipment Inquiry Interface
actor and the Tracking Inquiry agent, it is implied. First, the Shipment Inquiry Interface actor is the
provider for the determine Shipment Interface service; therefore, this actor is in charge of requesting
services to support it. Second, the request is for the Shipment Search service; therefore the request is
drawn to the service directly. Since the service is provided by the Tracking Inquiry actor, the link to
the actor is implied. While this approach may seem non-standard in practice, it does not violate the
UML 2.0 metamodel. Furthermore, to support the service-oriented approach, clearly specifying the
requested service would seem to provide better clarity than just drawing an association to the external
agent. Groups of actors and functionality can be expressed using Composite Structure Diagrams.

Activity Diagram

Activity modeling emphasizes the sequence and conditions for coordinating lower-level behaviors.
These are commonly called control flow and object flow models. The actions coordinated by activity
models can be initiated because other actions finish executing, because objects and data become
available, or because events occur external to the flow. For agents, all these conditions are useful.
However, from the agent standpoint, additional UML 2.0 features are also practical. For example in
the following figure (Figure 17), the Activity Diagram represents a business process that an agent
system might support. By its title, it suggests that this is a plan for the Process Order service.

Receive Fill
Order

Ship
OrderOrder

Close
Order

Send
Invoice

Make
Payment

Accept
Payment

[order
accepted]

[order
rejected]

Process Order {plan rule = (When orderPaymentType = invoice)}

Requested
Order

Invoice

Figure 17 An Activity Diagram for a Process Order service.

Each plan can be expressed as an Activity diagram. However, UML 2.0 needs to be extended to
define plan rule conditions. As mentioned earlier, the plan rule specifies those conditions under
which the associated activity may be invoked. In the example below, the plan rule condition
indicates that when Process Order service is requested for an order is to be invoiced, this particular
Activity Diagram plan is executed. Different Activity Diagrams may specify alternate plans for
Process Order based on, say, credit card or cash payment instead. It should be noted that to support
the ability of a process (i.e. service or goal) to choose from multiple plans requires an extension to
UML 2.0. Currently, UML 2.0 can only invoke a single Activity Diagram for a given process. For
implementations of BDI planning systems, such as Agentis [Agentis Software,
http:www.agentissoftware.com], , activity-based plans are typically simplified by remove branching
conditions and replacing them with finer-grain plans. This normalization process can be
accomplished during design time and does not require an extension to UML 2.0.

Indicating the role for the processes within an Activity Diagram is also useful. In UML 2.0, Activity
Diagrams can represent this in two ways: partitions and annotated processes. In the diagram below,
partitions for Order Handler and Invoice Handler roles are represented as swimlanes.

Fill
Order

Ship
Order

Send
Invoice

Accept
Payment

Close
Order

Make Payment

[order
accepted]

Receive
Order

Invoice

In
vo

ic
e

H
an

dl
er

O
rd

er
 H

an
dl

er
C

us
to

m
er

«a
ttr

ib
ut

e»
 p

ro
vi

de
rR

ol
e :

 R
ol

e
« e

xt
er

na
l »

Figure 18 An Activity Diagram with role-based swim lanes.

However, graphical swimlanes are not always that clearest express partitioning. In UML 2.0, each
process on an Activity Diagram can be notated individually with the appropriate designation. For
example in the diagram below, the Order Handler and Invoice Handler roles are placed within each
processes’ round-cornered rectangle.

(Invoice
Handler)

(Order
Handler)

(Order
Handler)

(Order
Handler) (Order

Handler)

[order
accepted]

Invoice

«external»

Receive
Order

Fill Order Ship Order
Close Order

Send Invoice Make
Payment

Accept
Payment

(Customer)
(Invoice
Handler)

Figure 19 An Activity Diagram with role-based annotations.

Group can be depicted as partitions and annotated processes in UML 2.0, as well. However, both role
and group associations need to be added to the UML 2.0 metamodel to use the partitions and
annotated processes. Within UML 2.0, no notion of goal, per se, exists. However, two ways of think
about goals for Activity Diagrams are supported. First, the activity final node (the bulls eye) is
considered the goal for the activity, because it is the end point for the process. Second, at a more
macro level, the service can be thought of as supporting a goal. For example, the Process Order
activity can be thought of as providing a service that supports the goal of processing orders. For
example, in Agentis, a Process Order goal is synonymous with being able to provide a Process Order
service. The only other issue that has been identified involves the control nodes in the flow
(decision/merge nodes and fork/join nodes). While the semantics of the control node is understood,
the responsibility for its underlying processing is not. If the Activity Diagram has a “control” agent
that coordinates the process flow, each Activity Diagram can be associated with a providing role, as
mentioned earlier. Another option is that each of the control nodes could be associated with a role
that provides the control node functionality with in the activity context (as indicated in the
example, above). Both options may also be chosen, where a control agent is responsible for
coordinating the overall process flow by delegating to more specialized roles to handle each control
node—just as it could for the individual processes in the diagram. Both options are also supported by
UML 2.0.

State Machine Diagram

A State Machine Diagram describes the discrete behavior modeled through finite state-transition
systems. The sequences of states that an object or an interaction goes through during its life in
response to events, together with its responses and actions can be modeled. State Machine Diagrams
are applied for the state descriptions of e.g. classifiers, for detailing of use cases, for behavior
description of interfaces and ports, for detailed descriptions of event and signal handling. They
describe states (simple, composite, submachine states), transitions, state machine, regions, initial and
final state and pseudostates. In UML 2.0 interfaces can posses protocol state machines, state entry
and exit and termination can be formulated and rules for transitions in inherited state machines are
added and updated

UML 2.0 distinguishes between behavioural state machines, i.e. state machines can be used to specify
behaviour of various model elements. For example, they can be used to model the behaviour of
individual entities (e.g., class instances). The state machine formalism described is an object based
variant of Harel statecharts; and Protocol State machines, i.e. Protocol state machines are used to
express usage protocols. Protocol state machines express the legal transitions that a classifier can
trigger. The state machine notation is a convenient way to define a lifecycle for objects, or an order
of the invocation of its operation. Because protocol state machines do not preclude any specific
behavioral implementation, and inforces legal usage scenarios of classifiers, interfaces and ports can
be associated to this kind of state machines.

The State Machine Diagram provides a graphical way representing discrete behavior through finite
state transition systems.

Proposed

Rejected

Aborted

Reneged

Committed Paid

A: REQUEST

B: PROPOSE

B: SHIP

A: PAY

A: ASSERT Bad

B: COMMIT

A: ASSERT Out

A: ASSERT Out

B. RENEGE

B: REFUSE

A: ASSERT Out
B: REFUSE

Open Closed

Requested Shipped

Figure 20 A State Machine Diagram for a Process Order service.

State machine can be applied for modeling interaction protocols, similar to sequence diagrams and to
model plans.

Sequence Diagram

The most common kind of Interaction Diagram is the Sequence Diagram, which focuses on the
message interchange between a number of lifelines. In particular, a Sequence Diagram describes an
Interaction by focusing on the sequence of messages that are exchanged, along with their
corresponding event occurrences on the lifelines. In particular, time sequences but does not include
object relationships. This can be done either in a generic form (describes all possible scenarios) or in
an instance form (describes one actual scenario). Sequence diagrams are applied to model interactions
and in various phases of the software development process (e.g. use case refinement, modeling of test
scenarios, communication model, detailed modeling of message exchanges or specification of
interfaces)

Prior to UML 2.0, FIPA defined an agent-based that extended UML 1.x to include roles, decision
points, concurrency, modularity, and multicasting (Example in Figure 21(a)). UML 2.0 includes
representation of all these notions except role and multicasting support. UML 2.0 adds e.g. loops,
alternatives, parallelism, sequences and critical fragments.

Role notation can initially include making each lifeline define a role. The current UML 2.0
metamodel is not far from this general concept, but the agent-based notion of role is not defined by
UML 2.0. Therefore, the extension to the Sequence Diagram metamodel needs to include equate the
lifeline with a metamodel notion of role. Furthermore, some agent-based applications involve
dynamic and multiple classification of agents in their roles. In these kinds of applications,
representing role change and multiple roles for an agent requires more research and extended
notation. Representing groups is not part of UML 2.0, and would therefore need to be added

To support the notation of multicast and multiresponse, a cardinality-based notation was added to
the message lines (Figure 21(b)). For example, the cfp message is annotated to indicate a message
that would be multicast from an Initiator to n Participants. The response then involves a refusal
from j Participants and proposal from k other Participants; and so on. This notation represents a
first try at representing multicasting, however it still requires more consideration. For instance,
policies may need to be stated that multiple responses (e.g., the number of refusal and proposal
responses may not exceed the number of multicast cfp invitations to participants.)

FIPA-ContractNet-Protocol

Initiator Participant

cfp

refuse

propose

reject-proposal

accept-proposal

cancel

inform

dead-

line

failure

x

x

x

n

j

k

k-a

k-r

FIPA-ContractNet-Protocol

Initiator Participant

cfp

refuse

propose

reject-proposal

accept-proposal

cancel

inform

failure

alt

alt

alt

n

j

k

k-a

k-r

 (a) UML 1.x with extensions (b) UML 2.0

Figure 21 UML 1.x agent extensions and UML 2.0 Sequence Diagrams

Communication Diagram

Communication Diagrams (formerly known as Collaboration Diagrams in UML 1.x) focus on the
interaction between lifelines message passing is central. They correspond to simple Sequence
Diagrams that use none of the structuring mechanisms such as interaction occurrences and combined
fragments. It also assumes a strict ordering of messages. A Communication Diagram describes the
interaction between lifelines where the architecture of the internal structure and how this
corresponds with the message passing is central. In particular, sequencing of messages is characterized
through a sequence numbering scheme. Are known as collaboration diagrams of UML 1.x. They are
applied similar to simple sequence diagrams. However, due to their limited expressiveness,
Communication Diagrams can only be used to represent simple and straight-forward interactions.
While they remain as part of the UML 2.0 set of diagrams, their usefulness is limited.

12: assert +
 request
14: pay

6: request

2: question

3: inform

4:

10: refuse

5: propose
7: commit

 8: commit
11: ship

9: assert

13: ship

1.1: request

<<role change>>

1.2: request

1.3: request

<<role change>>

<<role change>>

Contractor2Contractor1

Contractor

Customer

Competitor
Analyzer Competitor

ContractorDebtor

Negotiator

Figure 22 A Communication Diagram with role-based annotations.

Communication Diagrams require the same role-based extensions as the Sequence Diagrams. Role
notation can initially include making each lifeline define a role. The current UML 2.0 metamodel is
not far from this general concept, but the agent-based notion of role is not defined by UML 2.0.
Therefore, the extension to the Communication Diagram metamodel needs to include equate the
lifeline with a metamodel notion of role. Furthermore, some agent-based applications involve
dynamic and multiple classification of agents in their roles. In these kinds of applications,

representing role change and multiple roles for an agent requires more research and extended
notation. Representing groups is not part of UML 2.0, and would therefore need to be added. To
support the notation of multicast and multi-response, a cardinality-based notation was added to the
message lines in the same manner as sequence diagrams in Figure 21(b). For example, the cfp message
is annotated to indicate a message that would be multicast from an Initiator to n Participants. The
response then involves a refusal from j Participants and proposal from k other Participants; and so
on. This notation represents a first try at representing multicasting, however it still requires more
consideration. For instance, policies may need to be stated that multiple responses (e.g., the number
of refusal and proposal responses may not exceed the number of multicast cfp invitations to
participants.)

Interaction Overview Diagram

Interaction Overview Diagrams define interactions through a variant of Activity Diagrams in a way
that promotes overview of the control flow. Interaction Overview Diagrams focus on the overview
of the flow of control where the nodes are interactions. The lifelines and the messages do not appear
at this overview level. For example, the UML 1.x diagram in Figure 23(a) would be graphically
cumbersome to express as a Sequence Diagram in UML 2.0, because of the resulting plethora of
boxes within boxes. By using the Interaction Overview Diagram, the flow can be more clearly
delineated as depicted in Figure 23(b).

sd FIPA-Iterated-ContractNet-Protocol

[nonfinal

iteration]

[final

iteration]

Initiator Participant

cfp m

sd

inform

failure

Initiator Participant
accept

sd

alt

Initiator Participant

reject

cfp-2

 j!n

k=n-j

alt

sd

Initiator Participant

refuse

propose

j!n

k=n-j

alt

sd

proposal made

refused

refused

revised-cfp

revised-cfp

proposal
made

rejected

rejected

Initiator

(a) UML 1.x agent extensions with looping (b) A UML 2.0 Interaction Overview Diagram
 representation for Figure 24.

Figure 23 UML 1.x agent extensions with looping.

The Interaction Overview Diagram (IOD) contains Sequence Diagrams and therefore needs to address
the extensions indicated for Sequence Diagrams (see above). The only other issue that has been
identified involves the control nodes in the flow (decision/merge nodes and fork/join nodes). (This
issue similar to those that exist for the Activity Diagram.) While the semantics of control node is
understood, the responsibility for its underlying processing is not. If the Interaction Overview has a
“control” agent that coordinates the process flow, each IOD can be associated with a providing role.
Another option is that each of the control nodes could be associated with a role that provides the
control not functionality with in the IOD context. Both options may also be chose, where a control
agent is responsible for coordinating the overall process flow by delegating to more specialized roles
to handle each control node.

3.2 MDA

Our approach towards this end is a model-driven development and architecture (MDA; for details see
[50]) as promoted by the Object Management Group (OMG) for the development of agent-based

systems. Key to MDA is the importance of models in the software development process. Within
MDA the software development process is driven by the activity of modeling the business software
system. The MDA development process does not look very different from a traditional lifecycle,
containing the same phases (requirements, analysis, low-level design, coding, testing, and
deployment). One of the major differences to traditional development processes lies in the nature of
the artifacts that are created during the development process. These artifacts are formal models, i.e.
models that can be understood by computers and finally be transformed into a representation that
lends itself to execution. The following three models are at the core of the MDA: Computation
Independent Model (CIM): This is the most abstract model within MDA is independent of
computational technology. It describes the business (logic) and therefore defines business processes
and workflows in detail. Platform Independent Model (PIM): This model is defined at a high level of
abstraction; it is independent of any implementation technology. It describes a software system that
supports some business. Within a PIM, the system is modeled from the viewpoint of how it best
supports the business. Whether a system will be implemented on a mainframe with a relational
database, on an EJB application server or on an agent-platform is irrelevant at the PIM level.
Platform Specific Model (PSM): In the next step, the PIM is transformed into one or more PSMs. It
is tailored to specify a system in terms of the implementation constructs available in one specific
implementation technology. A PIM is transformed into one or more PSMs. For each specific
technology platform a separate PSM is generated. Most systems today span several technologies;
therefore it is common to have many PSMs with one PIM. The final step in the development is the
transformation of each PSM to code. Because a PSM fits its technology rather closely, this
transformation is relatively straightforward.

Summarizing the different approaches of section 2 and the usage of UML 2.0 diagrams from section
3.1 we distill the following necessary aspects to be covered by a model-driven architecture covering
major areas of agent-based systems (only focusing on CIM and PIM):

Computational Independent Model

The CIM has to deal with the following aspects: Use Cases: Taken from object-oriented software
development, use case scenarios are a suitable method to derive the functional requirements of a
system need to be derived. I.e. UML 2.0 use case diagrams are applied. Environment Model: In [43],
Odell et al. consider several aspects of environment modeling ranging from physical environments to
agent communication and to how their considerations could be embedded into the FIPA architecture.
Domain / Ontology Model: This model defines the ontologies of the domain and relates them to
other existing ontologies using e.g. UML class diagrams and Semantic Web representation languages.
Role Model: This model describes the roles in a domain, on the one hand in the traditional object-
oriented sense (actor-role relationship), but also defining roles characterizing social relationships
within an agent-based system. Goal/Task Model: This model defines the objectives of an agent in
terms of soft and hard goals, and should also support means-ends analysis (as in Tropos). Moreover,
the notion of tasks and plans should be provided to support the description of agent behavior at a
high level of abstraction. Interaction Model: This model defines the regime of interaction and
collaboration among entities and groups of entities, at a level which abstracts from specific
interaction protocols. Organization/Society Model: This model defines to a reasonable extent the
real-world society and organization and hence the social context within which agents in an agent-
based system acts and interacts. Business process models: The notion of business processes is key for
corporate business applications. Business processes describe the means and the ends of business
interactions. For agents to support corporate applications, it is important to be able to access
executable definitions of business processes, to reason about the semantics of goal-directed business
processes (see [48]), and to relate business process to the organizational model, the interaction
model, and the task model.

Platform Independent Model

Interaction Protocol Model: This model defines the interaction between different agent class, agent
instances and roles at the level of interaction protocols, such as the Contract Net. Internal Agent
Model: This model deals in particular with goals, beliefs and plans of agent classes, how they are
defined and which underlying architecture is used. Agent Model: This model describes the behavior of
agents and agent groups, i.e. how different agent are collaborating together independent of their
implementation. The interaction model defines the concrete interaction of the agents, whereas the
internal agent model defines the internal behavior of an agent, e.g. in terms of BDI, and the agent

model defines the behavior of an agent seen by other agents. Service / Capability Model: Defines the
services and capabilities of agents, mostly using service description languages and mechanisms such as
UDDI or DAML-S. Acquaintance Model: This model provides agents with models of other agents’
beliefs, capabilities, and intentions. It can be used to determine suitable partners for collaboration or
to predict others’ behavior e.g., in a coordination task. Deployment / agent instance model: This
model describes which agent instances exist, the migration is considered as well as the dynamic
creation of agents.

4 Open Issues and Conclusions

As an OMG standard, UML 2.0 is now considered a “final” standard, as of November 2004. In other
words, many of the errors and inconsistencies of the original submission have been rectified. More
than 3000 issues were files and resolved by the UML 2.0 Finalization Task Force. As such software
vendors can begin to build software tools that support the UML 2.0 Superstructure and Infrastructure.
In addition, a firmer foundation is now available to adequately support the extensions for agent-based
system modeling. The FIPA Modeling Technical Committee and the OMG Agent Special Interest Group
are actively working on extending UML for agent-based system modeling. These efforts are primarily
supported by the work of more than a dozen software tool vendors. The notation presented in this paper is
an interim result of this effort. UML has no “off-the-shelf” constructs to express: goals, agent, groups,
multicasting, generative functions, such as cloning, birthing, reproduction, parasitism and symbiosis,
emergent phenomena, and many other nature-based constructs that are helpful for representing agent
structures. Furthermore, agent researchers are still trying to determine useful ways of representing agents
and agent-based systems. As such, we cannot expect to have rich modeling languages for agents for
several more years. (The first OMG “agent UML” request for proposal is not scheduled to be issued until
the Fall of 2005.) However, we can begin to provide the agent community with guidelines for notations
that provide obvious benefit—such as those presented in this chapter.

Acknowledgements:

We would like to thank Gerhard Weiß for the invitation to contribute an article to this journal.

5 References
[1] C. A. Iglesias, M. Garijo, and J. C. González. A Survey of Agent-Oriented Methodologies.

Proceedings of Fifth International Workshop on Agent Theories, Architectures, and
Languages, pages 185-198, University Pierre et Marie Curie, 1998.

[2] F. J. Garijo, and M. Boman. Multi-Agent System Engineering. Proceedings of
MAAMAW'99. Springer, ed., 1999.

[3] H. V. D. Parunak, and J. Odell. Engineering Artifacts for Multi-Agent Systems, ERIM CEC,
1999.

[4] D. Kinny, and M. Georgeff. Modelling and Design of Multi-Agent Systems. Intelligent Agents
III, Springer, 1996.

[5] D. Kinny, M. Georgeff, and A. Rao. A Methodology and Modelling Technique for Systems of
BDI Agents. 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent
World (MAAMAW'96)., pages 56-71. Springer, 1996.

[6] M. Wooldridge, N. R. Jennings and D. Kinny. The Gaia Methodology for Agent-Oriented
Analysis and Design. International Journal of Autonomous Agents and Multi-Agent Systems, 3,
2000.

[7] D. E. Herlea, C. M. Jonker, J. Treur, and N. J. E. Wijngaards. Specification of Behavioural
Requirements within Compositional Multi-Agent System Design. Proceedings of Ninth
European Workshop on Modelling Autonomous Agents in a Multi-Agent World, pages 8-27,
Springer, 199

[8] F. M. T. Brazier, C. M. Jonkers, and J. Treur. Principles of Compositional Multi-Agent System
Development. Proceedings 15th IFIP World Computer Congress, WCC'98, Conference on
Information Technology and Knowledge Systems, IT&KNOWS'98, pages 347-360, Chapman
and Hall, 1998.

[9] C. M. Jonker, and J. Treur. Compositional Verification of Multi-Agent Systems: a Formal
Analysis of Pro-activeness and Reactiveness. Proceedings of International Workshop on
Compositionality (COMPOS'97), Springer, 1997.

[10] C.A. Iglesias, M. Garijo, J.C. Gonzalez, and J.R. Velasco. A methodological proposal for
multiagent systems development extending CommonKADS. In Proc. of 10th KAW, Banoe,
Canada, 1996.

[11] Wooldridge, M., Jennings, N.R. and Kinny, D: The Gaia Methodology for Agent-Oriented
Analysis and Design, Journal of Autonomous Agents and Multi-Agent Systems, 3 (3), pp. 285-
312, 2000

[12] Bauer, B., Müller, J.P., Odell, J.: Agent UML: A Formalism for Specifying
Multiagent Software Systems, International Journal on Software Engineering and Knowledge
Engineering (IJSEKE), Vol. 11, No. 3, pp.1-24, 2001 Engineering, 2001.

[13] Juan, Th., Pearce, A., Sterling, L.: ROADMAP: Extending the Gaia Methodology for Complex
Open Systems, in Proceedings of AAMAS 2002, ACM Press, 2002.

[14] Omicini, A.: SODA: Societies and Infrastructures in the Analysis and Design Of Agent-based
Systems, in: Proceedings of AOSE 2000, Springer, 2000.

[15] Kinny, D., Georgeff, M., Rao, A.: A Methodology and Modeling Technique for Systems of BDI
Agents, in Proceedings of the Seventh European Workshop on Modelling Autonomous Agents
in a Multi-Agent World (MAAMAW 96), LNAI 1038, Springer, 1996.

[16] Kinny, D. and Georgeff, M.: A design methodology for BDI agent systems. Technical Report
55, Australian Artificial Intelligence Institute, Melbourne, Australia, 1995.

[17] Kinny, D. and Georgeff, M: Modelling techniques for BDI agent systems. Technical Report 54,
Australian Artificial Intelligence Institute, Melbourne, Australia, 1995.

[18] Kinny, D. and Georgeff, M: Modelling and Design of Multi-Agent Systems, Proc. ATAL 96,
1996.

[19] MESSAGE web site: http://www.eurescom.de/public/projects/P900-series/p907/
[20] Giovanni Caire , Wim Coulier , Francisco Garijo, Jorge Gomez, Juan Pavon , Philippe

Massonet, Francisco Leal, Paulo Chainho , Paul Kearney, Jamie Stark, Richard Evans , Agent
Oriented Analysis using MESSAGE/UML, Proceedings AOSE 2001, Springer 2001.

[21] Birgit Burmeister: Models and methodology for agent-oriented analysis and design. In Working
Notes of the KI’96 Workshop on Agent-Oriented Programming and Distributed Systems,
1996. DFKI Document D-96-06.

[22] Bauer, B.; Bergenti, F., Massonet, Ph., Odell, J.: Agents and the UML: A Unified Notation for
Agents and Multi-Agent Systems, Proceeding AOSE 2001, Montreal, Springer, 2001.

[23] PASSI website: www.csai.unipa.it/passi
[24] M. Cossentino, C. Pot ts: A CASE tool supported methodology for the design of multi-agent

systems, in Proc. The 2002 International Conference on Software Engineering Research and
Practice (SERP'02) Las Vegas (NV), USA, 2002.

[25] Mark F. Wood Scott A. DeLoach An Overview of the Multiagent Systems Engineering
Methodology, In: Proceedings of the First International Workshop on Agent-Oriented
Software Engineering, P. Ciancarini, M. Wooldridge, (Eds.) LNCS. Vol. 1957, Springer, 2001.

[26] Wood, M. F.: Multiagent Systems Engineering: A Methodology for Analysis and Design of
Multiagent Systems. MS thesis, AFIT/GCS/ENG/00M-26. School of Engineering,

[27] DeLoach, S. A., Wood M. F.: Multiagent Systems Engineering: the Analysis Phase. Technical
Report, Air Force Institute of Technology, AFIT/EN-TR-00-02, June 2000.

[28] Beck, K. Extreme Programming Explained. Addison Wesley, 1999.
[29] Fausto Giunchiglia _ , John Mylopoulos _ , and Anna Perini _ The Tropos Software

Development Methodology: Processes, Models and Diagrams
[30] Norbert Glaser. Contribution to Knowledge Modelling in a Multi-Agent Framework (the Co-

MoMAS Approach). PhD thesis, L’Universtit´ e Henri Poincar´ e, Nancy I, France,
November, 1996.

[31] A. Th. Schreiber, B. J. Wielinga, J. M. Akkermans, and W. Van de Velde. CommonKADS: A
comprehensive methodology for KBS development. Deliverable DM1.2a KADS-
II/M1/RR/UvA/70/1.1, University of Amsterdam, Netherlands Energy Research Foundation
ECN and Free University of Brussels, 1994.

[32] Semantic Web Inititiative: http://www.semanticweb.org
[33] Ivar Jacobson, Grady Booch, James Rumbaugh: The Unified Software Development Process,

Addison Wesley, 1998.

[34] J. Mylopoulos, M. Kolp, and J. Castro. UML for agent-oriented software development: The
Tropos proposal. In Proc. of the 4th Int. Conf. on the Unified Modeling Language UML'01,
Toronto, Canada, Oct. 2001

[35] Tropos web site http://www.cs.toronto.edu/km/tropos/
[36] i* web site: http://www.cs.toronto.edu/km/istar/
[37] J. Castro, M. Kolp and J. Mylopoulos. Towards Requirements-Driven Information Systems

Engineering: The Tropos Project. Information Systems, Elsevier, Amsterdam, The
Netherlands, 2002.

[38] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas. JACK Intelligent Agents – Components
for Intelligent Agents in Java. Technical Report TR9901, AOS, January 1999.
http://www.jackagents.com/pdf/tr9901.pdf.

[39] Lin Padgham and Michael Winikoff: Prometheus: A Methodology for Developing Intelligent
Agents, In: Proceedings of AOSE 2002, Springer, 2002.

[40] Prometheus home page: http://www.cs.rmit.edu.au/agents/SAC/methodology.shtml
[41] Lin Padgham and Michael Winikoff, Prometheus: A Pragmatic Methodology for Engineering

Intelligent Agents. In Proceedings of the workshop on Agent-oriented Methodologies at
OOPSLA 2002. November 4, 2002

[42] H. Van Dyke Parunak and James Odell. Representing Social Structures in UML, In: Proceedings
of AOSE 2001, Springer, 2001.

[43] James J. Odell, H. Van Dyke Parunak, Mitch Fleischer, and Sven Brueckner: Modeling Agents
and their Environment, In: Proceedings of AOSE 2002, Springer, 2002.

[44] Model-driven Architecture: http://www.omg.org/mda/
[45] Rudolph, E., Grabowski, J., & Graubmann, P. Tutorial on message sequence charts (MSC. In

Proceedings of FORTE/PSTV'96 Conference, 1996.
[46] Rumbaugh, J.: OMT: The development model. JOOP Journal of Object Oriented Programming,

pages 8-16, 76, 1995
[47] Rumbaugh, J.: OMT: The dynamic model. JOOP Journal of Object Oriented Programming,

pages 6-12,1995.
[48] Agentis. http://www.agentissoftware.com.
[49] Bauer, B. and Müller, J.P.: Methodologies and Modeling Languages, in: Agent-Based Software

Development, Luck M., Ashri R. D’Inverno M. (eds.) Artech House Publishers, Boston,
London, 2004.

[50] Kleppe M., Warmer J., Bast W. MDA Explained – The Model Driven Architecture: Practice
and Promise, Addison Wesley, 2003

[51] Upcoming UML 2.0 Standard: http://www.omg.org/uml

