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ABSTRACT: Deployable structures can be stored in a compact, folded configu- 
ration and are easily deployed into load-bearing, open forms. Hence, they are 
suitable for applications where speed and ease of erection and reusability are de- 
sired. The structures investigated here are prefabricated space frames made of so 
called scissor-like elements, sets of two straight bars connected to each other by a 
pivot. These structures are stress-free and self-standing in both their folded and 
deployed configurations, thus overcoming major disadvantages of previous designs. 
This study deals with deployable structures that are flat and subjected to normal 
loads in their deployed configuration. Although the behavior for that loading case 
is linear, the availability of an equivalent continuum model for stiffness prediction 
is desirable because it can significantly reduce the computational effort during 
preliminary design. The derivation of such a model is not straightforward because 
of the unorthodox geometry and the rotations allowed by the hinged and pivotal 
connections. This problem is addressed by first applying the direct stiffness method 
within a symbolic manipulation framework to transform the lattice structure to an 
equivalent single-layer grid, and then using existing expressions to obtain the desired 
equivalent plate. The model exhibits good accuracy and convergence characteristics 
for uniform loads. 

INTRODUCTION 

Deployable structures are prefabricated assemblages of structural mem- 
bers that can be transformed from a closed, compact configuration to a 
predetermined, expanded form in which they are stable and can carry loads 
(Merchan 1987). This behavior is achieved by using kinematic connections 
that permit relative rotations among individual components  that undergo 
small elastic deformations. This paper deals with strut-type deployable struc- 
tures that use one-dimensional  bars as basic components.  

The basic module of these structures is the so-called scissor-like element  
(SLE) shown in Fig. 1. It consists of two bars connected to each other at 
an intermediate point through a pivotal connection. At  their four end nodes 
the bars are hinged to end nodes of other SLEs to form larger units. More 
specifically, an improved version of scissor-type deployable structures is 
investigated. These structures are stress-free in their folded configurations, 
develop stresses and exhibit a geometrically nonl inear  behavior during de- 
ployment, and experience a snap-through that "locks" them in their de- 
ployed configuration, at which point they are self-standing and stress-free, 
except for dead-weight effects. This is made possible by enforcing suitable 
geometric constraints between the member  lengths. An  important  design 
requirement is that the response during deployment,  even though geo- 
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FIG. 1. Scissor-Like-Element 

metrically nonlinear, remains elastic from a material point of view, so that 
the bars have no residual stresses in the deployed configuration. By having 
this response, these structures overcome major disadvantages of previous 
designs, such as need for external stabilization and reduced load-bearing 
capacity in the deployed configuration. An example of such a flat structure 
is shown in Fig. 2. 

These structures were introduced in the department of architecture at 
Massachusetts Institute of Technology (MIT) by Zalewski (Krishnapillai 
and Zalewski 1981), who recognized their great potential and identified the 
need for an in-depth investigation of their geometric and structural char- 
acteristics. The writers have been carrying out such an investigation during 
the last few years (Rosenfeld and Logcher 1988; Logcher et al. 1989; Gantes 
1988; Gantes et al. 1989; Gantes et al. 1990, 1993a, 1993b; Gantes et al. 
1990, 1991a, 1991b, 1992; Rosenfeld et al. 1993), and have managed to 
come up with a systematic design methodology that is presented in detail 
in Gantes (1991). 

This paper describes one of the tools derived as part of that methodology, 
namely an "equivalent" continuum model that helps predict the stiffness 
characteristics of deployable flat slabs when they are subjected to normal 
loads in their deployed configuration. It is true that the exact finite element 
analysis in the deployed configuration is not particularly expensive, since it 
is linear. But the storage space requirements are very large, and start be- 
coming a serious problem as the number of units increases. This is also due 
to the complicated pivotal and hinged connections that require more than 
one nodal point to be described accurately. These drawbacks provided the 
motivation for the derivation of an equivalent continuum model for the 
prediction of deflections. This continuum approximation is particularly use- 
ful for performing parametric studies in the preliminary design stage. 

In the next section, previous work on the derivation of equivalent con- 
tinuum models for space trusses and frames is presented. The differences 
between those structures and deployable lattice structures are identified, 
and explain the need for a different, two-step approach. The first step, 
substitution of the structure by a single-layer grid of uniform beams, is 
described next. The second step, using existing expressions from the liter- 
ature to substitute the grid by an orthotropic plate of uniform thickness, is 
then described. Finally, the model is tested for a specific case, and its 
limitations are outlined. 
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DEPLOYMENT ANALYSIS OF FLAT SLAB 
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FIG. 2. Successive Deployment Stages of Flat Deployable Structure 

MOTIVATION FOR "I'WO-STEP APPROACH 

A considerable amount of work has been produced by many researchers 
in reducing the computational effort required for the analysis of large, 
repetitive structures with many degrees of freedom. One of the most active 
investigators in the field is A. K. Noor, who has numerous relevant pub- 
lications (Noor et al. 1978; Noor and Weisstein 1981; Noor and Andersen 
1981; Noor 1982; Noor 1983; Noor and Russell 1986). Noor (1983) classified 
the possible approaches for the analysis of large, repetitive lattice structures 
into four main categories. The first category is the direct method, wherein 
the structure is analyzed as a system of discrete finite elements. This method 
has the obvious drawback of high computational cost for structures with 
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many degrees of freedom. The second category replaces the actual structure 
with an equivalent continuum model. This method has the limitations that 
local deformation effects are typically not accounted for, and difficulties are 
associated with any other type of connections, except hinges. The third 
category is the discrete field method, which uses the regularity of the lattice 
to write the equilibrium and compatibility equations at a typical joint and 
then perform Taylor series expansion to replace these equations with dif- 
ferential equations for the whole structure. This method works well for 
simple geometries, but encounters problems for complex lattice configu- 
rations. Finally, the fourth category is the periodic structure approach, which 
combines finite elements and transfer matrix methods to solve structures 
with rotationally symmetric geometries and beam-like lattices. 

Our efforts focused on deriving an "equivalent" continuum model, and, 
more specifically, to obtain a slab of uniform thickness made of a uniform 
material that behaves macroscopically in the same way as the deployable 
structures investigated here. Although the equivalent continuum approach 
does not always have a rational theoretical basis, it can provide satisfactory 
results for several types of problems and was chosen for its simplicity and 
cost effectiveness. It has been used in the past to predict stiffness (Makowski 
1981; Noor et al. 1978; Tamma and Saw 1987) and stability (Noor and 
Weisstein 1981) characteristics of repetitive structures. 

The approach used by Noor is based on energy equivalence. The equiv- 
alent continuum structure is defined as having the same amount of strain 
energy stored in it as that of the original lattice structure when both are 
deformed identically (Noor and Russell 1986). In pin-jointed trusses, an 
ordinary continuum is used for which the displacement field completely 
characterizes the motion of the structure. For structures with rigid connec- 
tions, however, a so-called "micropolar continuum" has to be used, where 
the motion is characterized by both a displacement field and an independent 
rotation field (Noor 1983). Beam structures with rigidly jointed flexural 
members have been handled by McCallen and Romstad (1988) without 
micropolar elasticity by taking into account an additional strain energy term 
not included in the Timoshenko beam theory. 

Another approach for deriving 'equivalent' continuum models is that of 
effective rigidities, introduced by K. Heki, another leading investigator in 
the field (Heki 1968, 1972, 1984, 1985, 1986). The effective rigidity of a 
lattice plate is defined as the rigidity of an equivalent plate that deforms in 
the same manner as the lattice plate. To derive the effective rigidities, the 
deformations of the two plates are equated to each other for some appro- 
priate loading conditions (Heki 1972). This method has been used also by 
other researchers. Nayfeh and Hefzy applied Heki's approach to derive 
effective rigidities for several types of space trusses and space frames (Nayfeh 
and Hefzy 1978, 1980, 1982). 

Aswani et al. (1982) applied the methodology of Nayfeh and Hefzy to 
derive an equivalent continuum for a lattice beam consisting of tetrahedral 
units with pinned connections. Their study demonstrated the satisfactory 
agreement of approximate and exact results for deflections and natural 
frequencies, and stressed the influence of transverse shear deformation on 
the performance of the method. Tamma and Saw (1987) compared the 
energy-equivalence method as proposed by Noor and the stiffness-equiva- 
lence approach as applied by Nayfeh and Hefzy to predict deflected shapes 
of lattice beams, and showed that the results were in very good agreement. 
A stiffness-equivalence approach was adopted for our study. 

75 



An additional difficulty associated with the derivation of equivalent con- 
tinua for deployable structures is related to the pivotal connections. It is a 
different connection type than the pinned and rigid connections that had 
been encountered in previous research efforts, and complicates the solution 
by allowing for free rotations between the two bars of a scissor-like element. 
The procedure used to overcome this difficulty was to first substitute each 
SLE by an equivalent uniform beam, and thus obtain an equivalent to the 

b) 

c) 

FIG. 3. Two-Step Derivation of Equivalent Slab: (a) Deployable Lattice Structure 
in Its Flat Deployed Configuration; (b) Equivalent Single Layer Grid; (c) Equivalent 
Uniform Slab 
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initial structure single-layer grid. This grid can be further substituted by a 
uniform slab. This procedure is illustrated in Fig. 3. The individual steps of 
the derivation will be further explained in the following sections. 

SUBSTITUTION OF SLES BY UNIFORM BEAMS 

The first step in the derivation of an equivalent continuum uniform plate 
for a deployable flat lattice structure consists of substituting all scissor-like 
elements of the structure with equivalent uniform beams. A stiffness equiv- 
alence is desired, hence, the equivalent beam is defined as one that deflects 
identically as the SLE for a given loading. This discussion focuses on flat 
deployable lattice structures consisting of units with square-plan view similar 
to the structure shown in Fig. 2. The details of such a square unit are outlined 
in Fig. 4. These units have two types of SLEs--symmetr ic  (outer) SLEs 
that form the sides of the square and nonsymmetric (inner) SLEs that form 
the half-diagonals. A development of these two different SLEs on a common 
plane is also illustrated in Fig. 4. 

Separate derivations are required for these two types of elements. Stretch- 
ing and in- and out-of-plane bending are the modes of deformation addressed 
for each element. The terms in- and out-of-plane bending refer to defor- 
mations of the bars in and out of the local plane (xy) of the SLE, respectively 
(Figs. 5-9).  Fig. 5 illustrates the concept of a uniform beam with equivalent 
in-plane-bending characteristics as a symmetric SLE. The SLE is supported 
in a way that simulates the boundary conditions imposed on it when it 
deforms as part of the overall structure. The SLE is loaded with a vertical 
uniformly distributed load qo,, where the index o refers to the outer SLE 
and the index y to the local in-plane direction of the SLE. This load causes 
a vertical displacement go, of the pivotal connection node. The equivalent 
beam is clamped at both ends, since the upper and lower end nodes of the 
SLE do not have any relative horizontal displacements, thus not allowing 
for a rotation of the end cross section as a whole. The same load qoy is 
applied on the uniform beam, and it must cause an equal vertical displace- 
ment goy at the center of the beam. 

It is not easy, however, to obtain an analytical expression for the vertical 
displacement go~ and thus for the 'equivalent' moment of inertia I eq  . The 
. . . . .  o y  

independent rotations of the two bars at the pwotal connection cannot be 
treated with conventional structural analysis techniques, and the assumption 
that the connection behaves as rigid due to small overall displacements of 
the structure leads to erroneous results and overestimates the stiffness of 
the element. The method used to overcome this problem was to apply the 
direct stiffness method (Przemieniecki 1968) within a symbolic manipulation 
program, in this case MACSYMA (VAX 1985). 

The idea of using symbolic manipulation for computational mechanics 
has been proposed a few times in the past. It has mainly been applied to 
derive analytical expressions of stiffness matrices for finite element analysis, 
and thus avoid numerical integration (Kikuchi 1989; Noor and Andersen 
1981). In our case, a somewhat different use is made. The local stiffness 
matrices of the four beam elements of the SLE are defined within MAC- 
SYMA. Next, the transformation matrices of these elements with respect 
to a global coordinate system are defined, and are used to transform local 
to global stiffness matrices. Then, the direct stiffness method is used to 
assemble the global stiffness matrix for the whole structure. This process 
takes into account the boundary conditions by releasing the appropriate 
degrees of freedom. The peculiarities of the pivotal connections are also 
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FIG. 4. Two Types of SLEs for Square Units of Flat Structure and Their Geometry 
in Deployed Configuration 

accounted for by defining one node for each bar, and using the master node/ 
slave node technique (Bathe 1982) to constrain the common degrees of 
freedom. The resulting stiffness matrix is inverted to obtain the flexibility 
matrix. The load is lumped on the nodes and the loading vector is defined, 
and multiplied to the flexibility matrix to yield the displacement vector. The 
following expression for the vertical displacement 8oy at the center of the 
beam is obtained: 
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In-Plane-Bending Equivalent Beams for Symmetric SLEs 

(Z 1 -[- Z2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 1 )  

9Ioy sin2"/ 

zl = 12Aoloy sin2"y COS2~/ 71- 4AZe 2 COS4"y . . . . . . . . . . . . . . . . . . . . . . . . . .  (2) 

and 

e 2 

Z2 ~" 31o, sinZ'y + Aoe 2 COS2"W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (3) 

Ao, Io,,, and Eo = cross-sectional area, moment of inertia for in-plane bend- 
ing, and Young's modulus of the members of the outer SLE, respectively. 
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Stretching-Equivalent Beams for Symmetric SLEs 

The length e and the angle 3' are shown in Fig. 4, and define the geometry  
of the outer SLE in the deployed configuration. For the equivalent beam 
holds 

qov L4 
, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (4) 

So," -- 384EeqoIeqoy 

where Eeq o and Ieqo~ = Young's  modulus and the moment  of inertia of  the 
equivalent beam,  respectively, and 

L = 2e sin 3' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (5) 

Combining (1) and (5), and assuming that Eeq o is equal to Eo, we obtain 

e2 sin33' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (6) 
Lqo , . -  24(zl + z2) 

A similar procedure is followed to derive the equivalent cross-sectional area 
for outer SLEs. The loading and the boundary conditions are illustrated in 
Fig. 6. The results obtained for the deflections of the SLE and the equivalent 
beam, respectively, are 

Poe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7) 
~o, - EoAo sin23' 

and 

80 



(a) I Y 

Pi, 

~,6i, 1 + ~5% 
(b) Y 2 

x 

FIG. 7. In-Plane-Bending Equivalent Beams for Nonsymmetric SLEs 

PoL 
ao,  = E e q A e q  ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (8) 

so that 

Aeqo  = 2 A o  sin3~/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (9) 

The height of an equivalent rectangular cross-section is given by 

12Ieqo v 

heq ~ = ~/ --'~eqo " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Cl O ) 

The same process is applied to determine the effective bending and stretch- 
ing rigidities of diagonal scissor-like elements. The loading and boundary 
conditions are shown in Figs. 7 and 8, respectively. The result obtained for 
the moment of inertia of the 'equivalent' beams is 
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FIG. 9. Out-of-Plane-Bending Equivalent Beams for Symmetric SLEs 
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(a + c) 3 sin3o~ cos2 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (11) 
/eqv, = Ai6(b + 2d) 

where the lengths a, b, c, and d, and the angles o~ and 0 are shown in Fig. 
4, and define the geometry of the inner SLE in the deployed configuration. 

The expression for the area Aeq,  of the equivalent beam is very compli- 
cated and is not given here. A very long Fortran command with that expres- 
sion was generated directly by MACSYMA, and used in a subroutine that 
calculates the properties of the equivalent continuum model. The height of 
an equivalent rectangular cross section is given by 

12/eq v 
heqi : -t/  " ~ - "  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (12) 

Concerning the equivalent bending rigidities of the scissor-like elements for 
out-of-plane loading, the pivotal connections are of no great importance, 
since small, if any, relative rotations between the two bars will occur due 
to the nature of the imposed loads and deformations. An outer SLE sub- 
jected to a concentrated out-of-plane load Po~ at the middle, as shown in 
Fig. 9, will deflect by 

aoz = 48Eoloz  " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (13) 

since each one of the two bars of the SLE acts as a simply supported beam. 
The deflection in the middle of an equivalent beam is given by 

~oz - 
P o L  3 

192Eeqo Lqoz 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 1 4 )  

Although the SLE as a whole will rather behave as a simply supported 
beam, the equivalent beam is calculated as clamped at both ends, since the 
structure is substituted by a grid of rigidly connected beams. Combining 
(13) and (14), we get 

1 
I e% = -~ Ioz �9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (15) 

The out-of-plane-bending rigidity of the set of two nonsymmetric SLEs as 
they are shown in Figs. 7 and 8 can be neglected, since the system will 
behave as a mechanism for out-of-plane loading. In reality, this is not exactly 
the case, since another set of two inner SLEs will provide some support in 
the middle. The out-of-plane bending rigidity, however, will be very small 
due to the asymmetry of the element that will cause significant torsional 
deformations for any loads that are not in-plane. Therefore, it is reasonable 
to assume that 

/ ~  -- o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 1 6 )  

This completes the first step of the derivation of the equivalent continuum 
model, namely the substitution of all SLEs by uniform beams. 
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SUBSTITUTION OF EQUIVALENT GRID BY EQUIVALENT SLAB 

The initial flat deployable structure [Fig. 3(a)] has now been substituted 
with an equivalent grid of uniform beams running in 0 ~ 90 ~ 45 ~ and - 45 ~ 
directions that are rigidly connected to each other [Fig. 3(b)]. Several expres- 
sions exist in the literature that can be used for the substitution of this grid 
by an equivalent uniform plate [Fig. 3(c)]. Since the derivation of the equiv- 
alent uniform beams for the SLEs was based on stiffness considerations, a 
stiffness-based approach was chosen for the second part of the derivation 
as well, namely the approach of Nayfeh and Hefzy (1982). 

In Nayfeh and Hefzy (1982), expressions are derived for the effective 
continuum properties of several types of planar grids, among them the 0 ~ 
90 ~ 45 ~ - 4 5  ~ grid encountered here. The derivation in Nayfeh and Hefzy 
(1982) is a three-step process. First, all basic planar lattices are identified. 
Then, effective continuum properties are derived for each of them in local 
coordinates. The direct method is used for that, namely, the nodal displace- 
ments of the basic lattice are equated to those at the corners of the continuum 
plate element under the same loading. Constitutive relations of the form 
% = Cijkte, (i, j, k, l = 1, 2, 3) are derived. The constitutive matrices are 
transformed to global coordinates according to the formula Cijkl = 
Cpqrs~pi~q]~rk~sl, where 13~j = OxJOxj is the direction cosine of the angle 
between the local axis x~ and the global axis xi. Finally, the contributions 
of all basic lattices are added up and averaged over the equivalent plate 
element. The result for the grid in question is an orthotropic model with 
the following constitutive matrix: 

C = 

 1111c1220 0 0 ! /  
ICn22 Cml 0 0 0 

o o o  o 
0 0 C1313 0 
0 0 0 C1313 
0 0 0 0 C1212 3 

. . . . . . . . . . . . . . . . . .  (17) 

which has four independent constants Cl111 , Cl122 , C1313 , and C1212. Direc- 
tions 1 and 2 are in-plane, as defined by the orientation of symmetric SLEs, 
and direction 3 is perpendicular to the plane of the slab. The stress and 
strain vectors are defined by 

E = 

I O'llq 
0"22 / 
0"33 1 
0"23 / 
0"13 / 
0"12 / 

E22 
E33 
E23 
El3 
1~12 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (18a) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (18b) 

and are related by 
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ff = Ce 

The four constitutive constants are given by 

Cll l  1 E~ EiAeq = o + , + 
Lheq 2N/~Lheq 

EiAeq~ 3Efle% 
C l 1 2 2  ~ _ _  

2"g~Zheq X//2L 3heq 

3EoIeqov 3EiIe% 
C 1 3 1 3  - . _]_ L 3heq 2k/2L 3heq 

EiAeqi 6Eoleqoz 
G212-  2"k/2Lhe~q + L3he---~ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (19) 

3EiIeqiz 
N/~L 3heq . . . . . . . . . . . . . . . . . . . . . . . .  (20) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (21) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (22) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (23) 

where heq = thickness of the equivalent slab defined as: 

h e q : ( ~ ) ( h e q o + h e q ~ )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (24) 

This completes the second step of the derivation of the equivalent continuum 
slab, namely, the substitution of the grid by a uniform slab. 

MODEL VERIFICATION AND LIMITATIONS 

At this point, the derivation of an equivalent uniform plate for flat de- 
ployable structures has been completed. The properties of the continuum 
plate are expressed through the constitutive matrix C. To make use of the 
model and assess its accuracy, known analytical expressions for the calcu- 
lation of deflections of uniform plates under several types of loads can be 
applied. The orthotropic nature of the equivalent continuum has to be taken 
into account during that process. Furthermore, the rotational inertia of the 
bars, and, particularly, shear deformation effects should be taken into ac- 
count, as illustrated by the study of Aswani et al. (1982). 

The expressions for deflections of anisotropic plates given by Ambart-  
sumyan (1970) have been used here to predict the maximum deflections in 
the middle of rectangular deployable lattice structures when they are simply 
supported in their deployed configuration and subjected to normally applied 
loads. The deflection w of an arbitrary point (x, y) for a rectangular plate 
with dimensions ax by bl that is simply supported along its four edges and 
subjected to arbitrary normally applied loads is given by a trigonometric 
series 

W = 
_ _  nwy ~ f, . .  sin mrrx sin - -  

r n = l  n = l  a I bl 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (25) 

where 

fmn Alton 
= Aom. e%,, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (26) 

where Aim , and Aom. are calculated as functions of the geometry and the 
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constitutive coefficients. The values of amn can be obtained by expansion 
of the external load function F(x,  y)  into a double Fourier series 

F(x, y) = ~ ~ o~.,. sin m~r__~x sin nTry . . . . . . . . . . . . . . . . . . . . . . . .  (27) 
t n = l  n = l  al bl 

For the case of a uniformly distributed load q 

f l 6 q  1 ,  m , n  = 1 , 3 , 5  . . . .  
a,,,,, = ~ ~2 mn  . . . . . . . . . . . . . . . . . . . . . . .  (28) 

[ 0, otherwise 

For the case of a concentrated load P applied at the point (~, ~q) 

4P sin m~r~ sin n'rr'q m ,  n = 1, 2, 3 . . . . . . . . . . . . . . . .  (29) 
~" "  albl al bl 

First, the response to a uniformly distributed load was investigated. Fig. 
10 shows the convergence characteristics of  the equivalent continuum model 
as a function of the number  of units of the structure in each direction. The 
error measure plotted on the vertical axis is defined as the difference of 
exact deflection, as obtained from finite element analysis, f rom predicted 
deflection divided by the exact deflection. 
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The difference between exact and predicted results is due to partial vi- 
olation of the assumptions involved in the derivation. During both steps of 
the derivation, substitution of SLEs by uniform beams and substitution of 
the grid of uniform beams by an equivalent orthotropic plate, certain as- 
sumptions were made concerning the boundary conditions and the defor- 
mation modes to which the members are subjected, and for which stiffness 
equivalence is guaranteed. In reality, the structure does not behave in exact 
accordance with these assumptions; therefore; an error is observed. Our 
assumptions are better satisfied for lattice structures with larger number of 
units, which explains the good agreement with the exact finite element 
results as the number of units increases. 

These results refer to a square structure with specific unit configuration 
in terms of geometry and member properties. However, several other geo- 
metric configurations as well as other cross-sectional properties were tested 
with similar results. In general, it can be said that the model provides 
satisfactory results, except for the following cases when larger errors can 
be encountered: 

�9 For bars of the outer SLEs that do not satisfy the relation e2/Ao ~ 
1,000 by an order of magnitude or more. Note that this relation 
holds for normal beams. 

�9 For "thin" bars with a width to height ratio of two or more. 
�9 For structures where outer SLEs have much stiffer bars than inner 

SLEs. 

The derivation assumptions are violated much more when the structure 
is subjected to other types of load that result in quite different modes of 
deformation than those assumed. For a concentrated load applied in the 
middle of the structure, no consistent results could be obtained for the 
deflections, although the error was always less than 30% for more than 
eight units in each direction. This behavior is consistent with what has been 
reported in the literature for the performance of other 'equivalent' models 
for repetitive structures under concentrated loads (Makowski 1981). It is 
therefore recommended to use the 'equivalent' continuum model only in 
the preliminary design stage for the prediction of deflections due to uni- 
formly distributed load. 

In that case, the proposed model can provide considerable savings in time 
and required computer resources. It is meaningful to use the approximate 
model only for structures with a large number of units for three reasons. 
First, the higher number of degrees of freedom results in large computer 
space requirements that make finite element analysis very expensive. Sec- 
ond, for long spans stiffness governs the design, hence the deflections pre- 
dicted by the approximate model constitute the deciding design constraint. 
Third, the accuracy of the deflections given by the continuum model is then 
acceptable for design calculations. 

SUMMARY AND CONCLUSIONS 

The derivation of a stiffness-equivalent continuum model for the predic- 
tion of deflections of flat deployable lattice structures that are subjected to 
normal loads in their deployed configuration has been described. The dif- 
ficulties encountered were due to the unorthodox geometry and the rotations 
between members allowed by the hinged and pivotal connections. This led 
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to a two-step approach. First, the structure is substituted by a single-layer 
grid of uniform beams. Then, this grid is replaced by an orthotropic plate 
of constant thickness. The model demonstrated satisfactory accuracy and 
convergence characteristics for deployable flat lattice structures with square- 
plan view in the deployed configuration that are simply supported along 
their edges and are loaded uniformly. 

Further research is required, particularly pertaining to structures of other 
shapes and different support conditions. Prediction of stresses by the model 
would, of course, be desirable, but the preceding two-step approach does 
not appear to be promising in that direction. From a practical design point 
of view, however, this is not a big obstacle, since these structures are almost 
always governed by stiffness (Gantes 1991). 

Finally, the growing potential of symbolic manipulation for engineering 
problems has been demonstrated. Difficulties related to the maximum order 
of matrices that can be inverted will be alleviated in the future due to 
continuous hardware and software improvements, but can also be overcome 
by substructuring, Hence, further contributions can be achieved by applying 
this powerful tool. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

a, b, c, d, e 
Ao 
Ai 

Aeq o 

Aeq~ 

al, bl 
C 

Eo 
E, 

Eeqo 

Eeqi 

F(x, y) 
fm. 

heq 
heq o 

heq, 

Ieq oy 

Ieqoz 

Ieq iy 

Ieqi z 

Iiy 

I .  

-- member lengths (illustrated in Fig. 4); 
-- cross-sectional area of members of symmetric (outer) SLEs; 
= cross-sectional area of members of nonsymmetric (inner) 

SLEs; 
-- cross-sectional area of equivalent beam for symmetric (outer) 

SLEs; 
= cross-sectional area of equivalent beam for nonsymmetric 

(inner) SLEs; 
= dimensions of rectangular flat slab; 
= equivalent constitutive matrix; 
= equivalent constitutive coefficients; 
= Young's modulus of material of symmetric (outer) SLEs; 
= Young's modulus of material of nonsymmetric (inner) SLEs; 
= Young's modulus of material of equivalent beam for sym- 

"metric (outer) SLEs; 
= Young's modulus of material of equivalent beam for non- 

symmetric (inner) SLEs; 
= function of external loads normally applied upon flat slab; 
= coefficients by Ambartsumyan for calculation of slab de- 

flections; 
= thickness of equivalent plate; 
= height of equivalent rectangular cross section of beam that 

replaces symmetric (outer) SLEs; 
= height of equivalent rectangular cross section of beam that 

replaces nonsymmetric (inner) SLEs; 
= moment of inerti~i of equivalent beam for symmetric (outer) 

SLEs in plane of SLE; 
= moment of inertia of equivalent beam for symmetric (outer) 

SLEs perpendicular to plane of SLE; 
= moment of inertia of equivalent beam for nonsymmetric 

(inner) SLEs in plane of SLE; 
= moment of inertia of equivalent beam for nonsymmetric 

(inner) SLEs perpendicular to plane of SLE; 
= moment of inertia of members of nonsymmetric (inner) 

SLEs in plane of SLE; 
= moment of inertia of members of nonsymmetric (inner) 

SLEs perpendicular to plane of SLE; 
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W 
Z1 
Z2 

et, ~t, 0 

~mn 
AOmn, Alton 

Io~ = moment  of inertia of  members  of  symmetric  (outer) SLEs 
in plane of SLE; 

loz = moment  of  inertia of members  of  symmetric (outer) SLEs 
perpendicular  to plane of SLE; 

L = length of side of polygon in deployed configuration; 
P = concentrated load applied upon flat slab; 

Pix = concentrated load applied upon inner SLE in local x-direc- 
tion; 

P i y =  concentrated load applied upon inner SLE in local y-direc- 
tion; 

Pox = concentrated load applied upon outer  SLE in local x-di- 
rection; 

Poz = concentrated load applied upon outer  SLE in local z-di- 
rection; 

q = uniformly distributed load applied upon fiat slab; 
qor = uniformly distributed load applied upon outer  SLE in local 

y-direction; 
= transverse displacement of slab; 
= auxiliary variable defined in text; 
= auxiliary variable defined in text; 
= angles between members  in deployed configuration (illus- 

trated in Fig. 4); 
= Fourier expansion coefficients of load function F(x, y); 
= coefficients by Ambar t sumyan  for calculation of slab de- 

flections; 
~,x = nodal displacement for inner SLE in local x-direction; 
~iy = nodal displacement for inner SLE in local y-direction; 
~ox = nodal displacement for outer  SLE in local x-direction; 
~o = nodal displacement for outer  SLE in local y-direction; 
~orz = nodal displacement for outer  SLE in local z-direction; 

e = strain vector; 
e~t = elements of strain vector; 
r = stress vector; and 

r 0 = elements of stress vector. 
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