
Combinatorial ECG Analysis for Mobile Devices

Costas S. Iliopoulos
∗

Algorithm Design Group
Department of Computer Science

King’s College London
Strand, London WC2R 2LS, England

csi@dcs.kcl.ac.uk

Spiros Michalakopoulos
†

Algorithm Design Group
Department of Computer Science

King’s College London
Strand, London WC2R 2LS, England

spiros@dcs.kcl.ac.uk

ABSTRACT
A combinatorial model for analyzing and interpreting an
electrocardiogram (ECG) was presented in [Allali et al. ’10]
and [Iliopoulos & Michalakopoulos ’09 and ’10]. An applica-
tion of the model is QRS peak detection and the resulting
algorithm was shown to be space, as well as time efficient.
Experimental results on the MIT-BIH Arrhythmia database
were shown. In this paper, the peak detection algorithm
is implemented in Java ME. The program is deployed on a
mobile phone and simulators, and experimental results are
discussed.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Medical information sys-
tems

General Terms
Algorithms, Performance

Keywords
ECG analysis, MIT-BIH arrhythmia database, QRS detec-
tion, Java ME, Mobile phone development

1. INTRODUCTION
An electrocardiogram (ECG) is obtained by placing elec-
trodes on the skin and measuring the direction of electrical
current discharged by the heart. The current is plotted into
waveforms and displayed as in Figure 1.

A lead provides a view of the heart’s electrical activity be-
tween one positive and one negative pole [16, 18]. Most stan-
dard ECG recordings are obtained using a 12-lead device, in

∗Digital Ecosystems & Business Intelligence Institute,
Curtin University, Perth, Australia.
†Supported by the Engineering and Physical Sciences Re-
search Council (EPSRC) under the Doctoral Training
Award (DTA).

MIR’10, March 29–31, 2010, Philadelphia, Pennsylvania, USA.

clinical settings, and a 2-lead device, in Holter (ambulatory)
monitors. The sample in Figure 1 is from a 2-lead reading, as
are all 48 records in the MIT-BIH Arrhythmia database [13]
that was used for development and testing purposes.

There are many algorithms [14, 7], and software that inter-
pret electrocardiograms. A comparative study [12] identi-
fied a number of algorithmic approaches used, such as neu-
ral networks [8], digital filters/wavelet transform [1, 11] and
syntactic algorithms [19, 15]. Some of these algorithms have
been implemented and tested with remarkable results, most
notably [1].

The novel approach taken here has similarities to the syntac-
tic methods. Using a simple alphabet the algorithm reads
the signals and from the differences between consecutive
electrical potentials builds sequences of characters, as shown
in Figure 2. The advantage of the approach developed here is
the low space (RAM) requirements, as opposed to the mem-
ory demands in traditional signal processing algorithms.

Holter monitors normally record ECG data for a period of 24
or 48 hours. Recent advances in mobile device technology
have made it possible for cellular phones and other hand-
held devices to be considered for recording ECG data [17,
4]. The recorded data can be compressed [5, 6], and ei-
ther held on the device or packaged and sent. In the case
of cellular phones, the ECG data could be automatically
transmitted at regular times, or when certain exceptional
program conditions are met.

2. DEFINITIONS
A signal s is a k-tuple (t, pMLII , pV 1, ...), where t is the
time in seconds and pE is the electrical potential at lead E
in millivolts. When the signal read is from a single lead, it
is represented as a pair, a 2-tuple, (t, p).

A sequence of signals s1, s2, . . . , sn is a sequence of pairs,
(t1, p1), (t2, p2), . . ., (tn, pn). The readings are taken at
regular time intervals, the sample rate σ. Note that σ =
ti+1 − ti = ti − ti−1, for all i ∈ [2, n− 1].

Let Σ̂ and Σ be the following alphabets:

Σ̂ = {−−,−, 0, +, ++}

Σ = {C−−, C−, C0, C+, C++}

Figure 1: Short sample of ECG for record 101 from
the MIT-BIH arrhythmia database.

and A the set of non-trivial pairs:

A = {(+, 0), (−, 0), (++, +), (−−,−)}
Note that trivial pairs are (0, 0), (+, +),

The rate of change is the difference between the potentials
of two consecutive signals. Thus, at position i, the rate of
change is pi − pi−1. A gradual rate increase is depicted as
C+, a sharp rate increase as C++ and gradual and sharp
decreases equivalently as C− and C−−. A negligible or zero
rate change is C0.

Two parameters, a low threshold µE and a high threshold
µ′E are used to filter the rates of change for readings from
lead E. For single lead readings, the thresholds are denoted
as µ and µ′. For example, in the MIT-BIH Arrhythmia
database (the test db), it has heuristically been determined
that reasonable values for many records are µMLII = 0.01
and µ′MLII = 0.05.

The direction of the rate of change is a character d in Σ. To
determine di, Equation 1 is used:

di =

C0, if |pi+1 − pi| ≤ µ
C−, if − µ′ < pi+1 − pi < −µ
C+, if µ < pi+1 − pi < µ′

C−−, if pi+1 − pi ≤ −µ′

C++, if pi+1 − pi ≥ µ′

(1)

Two consecutive rate changes have direction equivalence,
when there’s a smooth transition from one rate change to
the other, without a significant change of direction.

A consecutive sequence of direction equivalent rate changes
is defined as C[x, k] of Cx, where x ∈ Σ̂, k ∈ N+ and for some
Cx ∈ Σ. A direction equivalent series C[x, k], is referred to
simply as a series when it is implicit from the context.

Formally, Cx is equivalent to Cy,

Cx ∼ Cy (2)

if (x, y) ∈ A. Furthermore, the two sequences are equivalent

Cx1Cx2 ...Cxk ≈ Cy1Cy2 ...Cyk (3)

if Cxi ∼ Cyi , ∀i.

Figure 2: The differences between consecutive
ECG signals define letters from alphabet Σ =
{C0, C+, C−, C++, C−−}.

Also note, C[+, k] ≈ Cx1Cx2 ...Cxk , where xi ∈ {+, 0}, for
i ∈ [1..k], C[++, k] ≈ Cx1Cx2 ...Cxk where xi ∈ {++, +} for
i ∈ [1..k] and similarly for C[−, k] and C[−−, k].

Finally, the formal definition of the QRS Detection Problem
is:

Problem 1 (QRS Detection). Given an electrocar-
diogram as a sequence of signals s1, s2 . . ., sn = (t1, p1),
(t2, p2), . . ., (tn, pn), where ti, pi ∈ R, detect the QRS
complexes and the RR intervals.

3. IMPLEMENTATION
The implementation for use on mobile devices was done in
Java ME (Java Platform, Micro Edition). This was cho-
sen because of the extensive availability of the Java plat-
form on mobile phones and other hand-held devices. From
a programming perspective, Java ME is simply a cut-down
version of Java, with a reduced set of API’s.

The initial implementation, in [9, 10] was done in C++. The
program was tested on all 48 records in the test db, and the
experimental results were concerned with the accuracy of
peak detection. The results were promising, in the range
of 80% overall, with higher than 95% on “normal” records.
As discussed in the papers, given improved learning period
processing, better accuracy results should be achievable on
the more “difficult” records.

For the mobile device version of the program, the C++ code
was initially ported to Java. Although there were very few
challenges, given the similarities in the programming lan-
guages, the differences in the running speed are significant,
due to the fact that C++ is a compiled language, whereas
Java is partly interpreted. Table 1 shows a comparison of
the runtime on 3 records from the test db.

The Java program was tested for correctness against the
C++ version, by comparing the percentages of accuracy of
QRS peak detection. The translation was found to be accu-
rate, because the percentages were identical. This was the

Table 1: Running time of the program on records
100, 106 and 119 in the test database. Each record
has length 30 mins.

Record C++ Java
100 5.2 sec 6.88 mins
106 5.1 sec 6.84 mins
119 5.6 sec 7.61 mins

most important aspect of the porting, since the ultimate
goal was not a Java version of the program, but a Java ME
version. Thus, the Java code was not optimized, which may
account partially for the large difference in runtime speed
from the C++ version.

The program was then ported to Java ME. In the original
implementation, which was not overly concerned with stor-
age details, the ECG signal files were read in and processed,
using a vector vR, which was not reallocated until the pro-
gram finished processing a record. For the mobile device
version, only the necessary data need be read in and pro-
cessed for each window of length ω , and then discarded
from the heap. Thus, a modification to the algorithm was
to use a queue data structure qR instead of a vector.

Another implementation detail was the simulation of real
world conditions. The program was designed with the vision
of the data being input to the phone, via USB connection,
or possibly Bluetooth technology. This requires hardware in
the form of ECG sensors that transmit this data and com-
municate with the phone. Because of the current difficulties
in obtaining such devices, an attempt to simulate real-world
conditions was made, by delaying the reading of each signal
by the sample rate σ in the cases where the reading by the
program occurs faster than σ. This is generally the case in
the emulators that the program was tested on, but not in
the case of the mobile phone the program was run on. For
more information about the tests, please see Section 5.

4. THE ALGORITHM
An outline of the algorithm:

Step 1: During the learning period determine values µ, µ′,
rr max, rr min, pot min, pot max, k1 and k2 for the sub-
ject.

Step 2: Determine di by difference in potential from last
signal, as in Equation 1.

Step 3: Either add di to current series C[x, k] or start a new
series if certain conditions met. If added to current series
and identifies a normal beat, then store in vR.

Step 4: Repeat steps 2 and 3 until end of electrocardiogram.

In step 3 it is stated that a new series is started if certain con-
ditions are met. The next paragraphs describe what these
conditions are and how they are met.

The algorithm holds 5 counters, one for each character in
Σ, i.e. +count, −count, 0count, −−count and ++count. The

appropriate counter is incremented when the current series
is C[x, k] and di is not equivalent to x, i.e. if di = Cy � Cx,
the y counter (ycount) is incremented. All the counters are
zeroed when a new series is initiated.

To start a new series, di’s counter must be above a cer-
tain number ν. This means that the current series C[x, k]
is only terminated after ν characters y1, y2, ..., yν , such that
y1 = y2 = ... = yν and yi � x are read. This implies
that whichever non-equivalent character y’s counter, ycount,
reaches ν first, becomes the new x.

Finally, again in step 3, if di ∼ x a check must be made
whether a normal beat has been identified. In effect, what is
checked is whether the time of this beat has occurred within
rr min and rr max of the last identified beat. Pseudo-code
for the algorithm is depicted in Algorithm 1.

From qR, the time difference between two R waves, the RR
interval is calculated, qRi − qRi−1 . The heart rate is calcu-
lated by averaging a number, for example 3 in the test db,
of successive RR intervals.

Algorithm 1 “Pure” Online Process ECG

1: function PureOnlineProcessECG
2: C[x, k] ← [0, 0] . current series
3: C′[x, k] ← [0, 0] . previous series
4: while not end of ECG do
5: calculate di as in Equation 1
6: if di ∼ Cx then
7: increment current series
8: if normal beat then
9: push beat onto qR

10: calculate heart rate
11: pop last element off qR
12: else
13: increment count: ycount ← ycount + 1
14: if ycount ≥ ν then . new series
15: C′[x, k] ← C[x, k]
16: C[x, k] ← [y, ycount]
17: zeroise all counters

5. EXPERIMENTAL RESULTS
The algorithm was implemented, and tests were carried out
on records from the test db. The implementation was tested
on two virtual devices, the Sun Java(TM) Wireless Toolkit
2.5.2 for CLDC emulator, and Nokia Series 40 6th Edition
SDK emulator, and one physical device, the Nokia 2630 mo-
bile phone.

The tests were performed on various records and the accu-
racy of the translation from C++ to Java to Java ME was
confirmed. Thus, in evaluating the performance of the pro-
gram the only concern is the speed of execution. Table 2
shows a comparison between the running times of the three
devices.

As discussed previously, in the “real world”, the ECG data
would be read into the device via some form of ECG sensors.
It would be processed in chunks and discarded, because of
low memory capacity in hand-held devices. The tests were
performed with data from the test db, by embedding 1 min
chunks of the file into the program.

Table 2: Experimental results on 1 min segments
of record 100 from test db. The sample rate σ =
1000/360 ms.

Device Speed (sec) Compared to σ
Sun emulator 8.651 7 times faster

Nokia emulator 41.286 1.5 times faster
Nokia phone 235.914 4 times slower

5.1 The Demos
For the purposes of the demos1, the execution speed has
been slowed down for the emulators, by attempting to simu-
late the reading in of data at the same sample rate as in the
test database, σ = 1000/360 ms. They show the execution
of roughly 30 sec of data from record 100.

A heart rate is considered “normal” if it lies between 50 and
110 beats per minute [3]. In Algorithm 1, a positive beat
detection is considered valid if it results in a 50 to 110 bpm
heart rate i.e., if it is between 0.55 and 1.2 sec from the pre-
vious beat detection. The heart rate in the implementation
is calculated by averaging each 3 consecutive valid beats.

6. CONCLUSIONS & FURTHER WORKS
In this paper, the QRS peak detection algorithm of [9, 10]
was modified and implemented for mobile devices. Java ME
was chosen because of the wide availability of the Java plat-
form on devices. Tests were carried out and experimental
results were discussed, which show that the current techno-
logical limitations, possibly combined with the chosen lan-
guage and implementation, fail to deliver a useful real-world
solution.

It is believed however, that the model remains promising.
The Java code could be optimized, which would significantly
decrease the running time. However, it is felt that the factor
is too large, 4 times slower, than can be achieved by code
optimization alone.

A solution which could possibly achieve the objective would
be to implement the algorithm in a different language and for
different platforms. Java is inherently slow and a comparison
of the same program written in C++ as opposed to Java,
albeit not for hand-held devices, suggests that the execution
speed for the specific program is faster by a magnitude of
80 times for the compiled C++ version.

7. REFERENCES
[1] V. X. Afonso, W. J. Tompkins, T. Q. Nguyen, and

S. Luo. Ecg beat detection using filter banks.
Biomedical Engineering, IEEE Transactions on,
46(2):192–202, Feb. 1999.

[2] J. Allali, P. Ferraro, C. S. Iliopoulos, and
S. Michalakopoulos. Combinatorial detection of
arrhythmia. In Proceedings of the 3rd International
Conference on Bio-inspired Systems and Signal
Processing (BIOSIGNALS 2010), 2010. (to appear).

1at the time of writing, these can be seen at:
http://www.dcs.kcl.ac.uk/pg/spiros/videos/sun-demo.htm, and
http://www.dcs.kcl.ac.uk/pg/spiros/videos/nokia-demo.htm

[3] ANSI/AAMI. EC38: Ambulatory Electrocardiographs.
Association for the Advancement of Medical
Instrumentation, 1998.

[4] X. Chen, C. T. Ho, E. T. Lim, and T. Z. Kyaw.
Cellular phone based online ecg processing for
ambulatory and continuous detection. Computers in
Cardiology, pages 653–656, Sept. 2007.

[5] J. A. Crowe, N. M. Gibson, M. S. Woolfson, and M. G.
Somekh. Wavelet transform as a potential tool for ecg
analysis and compression. Biomed. Eng., 14(3), 1992.

[6] M. L. Hilton. Wavelet and wavelet packet compression
of electrocardiograms. IEEE Trans. Biomed. Eng,
44:394–402, 1997.

[7] Y. H. Hu, S. Palreddy, and W. J. Tompkins. A
patient-adaptable ecg beat classifier using a mixture of
experts approach. Biomedical Engineering, IEEE
Transactions on, 44(9):891–900, 1997.

[8] Y. H. Hu, W. J. Tompkins, J. L. Urrusti, and V. X.
Afonso. Applications of artificial neural networks for
ecg signal detection and classification. Journal of
Electrocardiology, 26, 1994.

[9] C. S. Iliopoulos and S. Michalakopoulos. A
combinatorial model for ecg interpretation. In
Proceedings of ICMIBE 2009, International
Conference on Medical Informatics and Biomedical
Engineering. World Academy of Science, June 2009.

[10] C. S. Iliopoulos and S. Michalakopoulos. A
combinatorial model for ecg interpretation.
International Journal of Biological and Life Sciences,
02(1), 2010.

[11] H. Inoue and A. Miyazaki. A noise reduction method
for ecg signals using the dyadic wavelet transform
(special section of papers selected from itc-cscc’97).
IEICE transactions on fundamentals of electronics,
communications and computer sciences,
81(6):1001–1007, 1998.

[12] B. U. Kohler, C. Hennig, and R. Orglmeister. The
principles of software qrs detection. Engineering in
Medicine and Biology Magazine, 21(1):42–57, 2002.

[13] Massachusets Institute of Technology. Mit-bih ecg
database. 1999. Available: http://ecg.mit.edu/.

[14] G. Moody and R. Mark. Development and evaluation
of a 2-lead ecg analysis program. Computers in
Cardiology, pages 39–44, 1982.

[15] G. Papakonstantinou, E. Skordalakis, and F. Gritzali.
An attribute grammar for qrs detection. Pattern
Recogn., 19(4):297–303, 1986.

[16] Springhouse (Editor). ECG Interpretation Made
Incredibly Easy! Lippincott Williams & Wilkins, 4th

edition, 2007.

[17] F. Sufi, Q. Fang, and I. Cosic. Ecg r-r peak detection
on mobile phones. In Engineering in Medicine and
Biology Society, 2007. EMBS 2007. 29th Annual
International Conference of the IEEE, pages
3697–3700, 2007.

[18] M. S. Thaler. The Only EKG Book You’ll Ever Need.
Lippincott Williams & Wilkins, 5th edition, October
2006.

[19] J. K. Udupa and I. S. N. Murthy. Syntactic approach
to ecg rhythm analysis. IEEE Trans. Biomed. Eng.,
BME-27(7):370– 375, July 1980.

