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Abstract. Regular model checking is a form of symbolic model check-
ing technique for systems whose states can be represented as finite words
over a finite alphabet, where regular sets are used as symbolic representa-
tion. A major problem in symbolic model checking of parameterized and
infinite-state systems is that fixpoint computations to generate the set of
reachable states or the set of reachable loops do not terminate in general.
Therefore, acceleration techniques have been developed, which calculate
the effect of arbitrarily long sequences of transitions generated by some
action. We present a systematic method for using acceleration in regular
model checking, for the case where each transition changes at most one
position in the word; this includes many parameterized algorithms and
algorithms on data structures. The method extracts a maximal (in a cer-
tain sense) set of actions from a transition relation. These actions, and
systematically obtained compositions of them, are accelerated to speed
up a fixpoint computation. The extraction can be done on any repre-
sentation of the transition relation, e.g., as a union of actions or as a
single monolithic transducer. Using this approach, we are for the first
time able to verify completely automatically both safety and absence of
starvation properties for a collection of parameterized synchronization
protocols from the literature; for some protocols, we obtain significant
improvements in verification time. The results show that symbolic state-
space exploration, without using abstractions, is a viable alternative for
verification of parameterized systems with a linear topology.

1 Introduction

A major approach in algorithmic verification of parameterized and infinite-state
systems is to extend the paradigm of symbolic model checking [17] by appropriate
symbolic representations; examples include Petri nets, timed automata, systems
with unbounded communication channels, integers and reals. One direction is
regular model checking, which considers systems whose states can be represented
as finite words over a finite alphabet; regular sets are used to represent sets of
states and transition relations. Regular model checking has been proposed as a
uniform paradigm for algorithmic verification of several classes of parameterized
and infinite-state systems [26, 32, 16, 4].

In symbolic model checking of parameterized and infinite-state systems, a
major problem is that fixpoint computations that generate the set of reachable



states or the set of reachable loops (for verifying liveness properties) do not ter-
minate in general, since there is no uniform bound on the distance (in number
of transitions) from an initial configuration to any reachable configuration. To
make fixpoint computations converge more frequently, acceleration techniques
have been developed, which calculate the effect of arbitrarily long sequences of
transitions generated by some action (i.e., a subset of the transition relation).
This has been done, e.g., for systems with unbounded FIFO channels [11, 12, 14,
1], systems with counters [13, 18], and for parameterized systems [6]. Accelera-
tion is typically applied to small actions, e.g., corresponding to a single program
statement or simple loop, since acceleration of larger actions or the entire transi-
tion relation is often intractable. Fixpoint computations can be sped up by using
accelerated actions in each iteration, thereby allowing the fixpoint computation
to converge in many practical cases (e.g., [1]).

For regular model checking, methods have been developed for computing the
set of reachable configurations or reachable loops [25, 16, 19, 8]. These algorithms
typically work well for small system models, but have difficulties to cope with
large transition relations. For instance, the automata-theoretic approach for pa-
rameterized systems [3] transforms verification of a liveness property into the
problem of finding reachable loops for a system with a rather large transition
relation. There has been no systematic way to to extract actions for acceleration
from such a transition relation, and therefore liveness properties for several pa-
rameterized mutual exclusion protocols have not been proven automatically by
this class of techniques.

In this paper, we present a systematic approach for using acceleration to
speed up fixpoint computations in regular model checking. We consider unary
systems, in which each computation step changes at most one position in the
word; many models of parameterized algorithms and algorithms on data struc-
tures are unary. Our approach is based on accelerating a class of actions (called
separable) which can be efficiently accelerated. We present techniques for

(a) systematically extracting a set of separable actions which is maximal in the
sense that any other separable action is included in some extracted one; the
extraction can be done on any representation of the transition relation, e.g.,
as a union of actions or as a single monolithic transducer,

(b) systematically composing actions to form separable actions that represent
the effect of several transitions; such compositions are analogous to program
loops; many verification examples require the acceleration of such composi-
tions, rather than single actions, for termination.

We have implemented our approach in the context of our LTL(MSO) model
checker for parameterized systems [3], and verified safety and liveness properties
of several idealized parameterized protocols from the literature, including param-
eterized algorithms for mutual exclusion (e.g., the Bakery algorithm by Lamport,
algorithms by Burns, Szymanski, and Dijkstra). The most important result is
that, for the first time, liveness properties have been successfully verified for all
of these algorithms; previous approaches have not been successfully applied to
all of them. One should also note that our verification, following the automata



theoretic approach, does not employ any form of abstraction: it computes an
exact representation of the set of reachable states and reachable loops.

Related Work. Works on acceleration techniques in other contexts include tech-
niques for systems with FIFO channels [1, 12, 14] and systems with counter vari-
ables [9, 32]. Finkel, Leroux and colleagues have presented a systematic frame-
work for acceleration techniques for programs with a finite number of variables,
typically ranging over integers [10, 23]. Their approach cannot be used for regu-
lar model checking, in which systems can not be modeled by a fixed number of
integer variables. For regular model checking, Pnueli and Shahar [28] show how
specific acceleration schemes can be defined in a version of S1S. They did not
consider composition of actions, which is necessary in many cases, and they have
reported verification of liveness for only one example, after applying a manually
supplied abstraction. In our earlier work [6], we proved safety properties of sev-
eral parameterized protocols by accelerating individual actions; this approach
did not consider composition of actions and would therefore not have been able
to verify liveness properties.

Proving liveness properties of parameterized systems has been considered also
in other approaches. Pnueli, Xu, and Zuck [29] use a version of counter abstrac-
tion to prove absence of starvation properties for Szymanski’s algorithm and the
Bakery algorithm. Their abstractions are rather coarse, and lose information so
that, e.g., safety properties can no longer be checked. Fang, Piterman, Pnueli,
and Zuck [22, 21] infer a ranking function and helpful directions of a certain form,
by generalizing from the verification of finite instances. These approaches require
that a system can be verified using assertions of a certain form. In our earlier
work [5], we proved liveness properties by backwards reachability analysis from
“terminated” configurations; this technique can be combined with other tech-
niques for proving liveness, but can not be used to find counterexamples (bugs);
our technique is based on state-space exploration, which is guaranteed to report
counterexamples when they exist.

Abdulla et al. [2] verify safety properties of parameterized protocols by over-
approximation of backwards reachable states; their approach can not be used
for proving liveness properties. Other works apply abstraction [15] or regular
inference [24] directly on the automata that represent reachable states or the
transition relation.

Outline. In the next section, we introduce the framework of regular model check-
ing and the fixpoint computations that are our concern. Section 3 presents our
technique for extracting parts of a transition relation for acceleration. In Sec-
tion 4, we present how to use our systematic acceleration in the verification of
liveness properties. Experimental results from our implementation, and compar-
isons with other results are presented in Section 5. Section 6 presents conclusions
and future work directions.



2 The Regular Model Checking Framework

Let Σ be a finite alphabet. A relation R on Σ∗ (the set of finite words over Σ)
is length-preserving if w and w′ are of equal length whenever (w,w′) ∈ R. In
this paper, we will only consider length-preserving relations on Σ∗. A relation
R on Σ∗ is regular if the set {(a1, a

′
1) · · · (an, a

′
n) | (a1 · · · an, a

′
1 · · · a

′
n) ∈ R} is

a regular subset of (Σ × Σ)∗. A regular relation Σ∗ can be represented by a
finite-state transducer, i.e., a finite automaton over (Σ ×Σ).

Regular relations are closed under union ∪, intersection ∩, relational compo-

sition ◦, as well as concatenation · defined by R · R′ 4
= {(w1 · w′

1, w2 · w′
2) |

w1 R w2 and w′
1 R′ w′

2}. For a (regular) set S of words, let S ◦ R denote the
(regular) set {w | ∃w′ ∈ S. w′ R w}. We use R+ to denote the (not necessar-
ily regular) transitive closure of R; and R∗ the reflexive-transitive closure. We
denote by Id = {(w,w′) | w = w′} the identity relation on Σ∗.

Definition 1. A regular transition system (RTS for short) over Σ is a pair
(I,R), where

I is a regular set over Σ, denoting a set of initial configurations, and
R is a regular relation on Σ∗, denoting the transition relation.

A fair regular transition system (FRTS for short) over Σ is a tuple (I,R,F),
where (I,R) is an RTS and F is a regular set overΣ, denoting the set of accepting
configurations. Transition relations and regular sets are typically represented by
transducers and automata, or by regular expressions. ut

A configuration w of an RTS (I,R) is a word a1 a2 · · · an ∈ Σ∗. A com-
putation of (I,R) is a finite or infinite sequence w0, w1, w2, . . . of configurations
such that w0 ∈ I and wiRwi+1 for all adjacent pairs of configurations. A con-
figuration is reachable if it occurs in some computation. An infinite computation
w0, w1, w2, . . . of a FRTS is accepting if wi ∈ F for infinitely many i.

Many parameterized systems with linear or ring-shaped topologies can be
modeled as regular transition systems, by letting each position in a configuration
model the local state of a system component. As an example of a parameterized
system, we describe the mutual exclusion algorithm by Burns. In the algorithm,
an arbitrary number of processes compete for a critical section. The processes
are numbered, say from 1 to N . The local state of each process consists of a
control state ranging over the integers from 1 to 7 and one Boolean flag, flag. A
pseudo-code description of the behavior of process number i is shown in Figure 1.
For instance, according to the code on line 4, if the control state of a process i
is 4, and if the value of flag is 1 for some process j < i, then the control state
of i may be changed to 1; otherwise to 5. Line 7 represents the critical section.

To model Burns’ algorithm as an RTS, we let Σ be the set of possible lo-
cal states, e.g., represented as tuples 〈pc, flag〉. A system configuration is a
word in Σ∗. The effect of line j can be represented by a regular relation αj .
For instance, α1 corresponds to Id · [(pc = 1) −→ (pc := 2, f lag := 0)] · Id
where the notation (pc = 1) −→ (pc := 2, f lag := 0) represents the relation



1: flag[i] := 0
2: if ∃j < i : flag[j] = 1 then goto 1
3: flag[i] := 1
4: if ∃j < i : flag[j] = 1 then goto 1
5: await ∀j > i : flag[j] 6= 1
6: flag[i] := 0
7: goto 1

Fig. 1. Burns’ mutual exclusion algorithm

{(〈pc1, f lag1〉, 〈pc2, f lag2〉) | pc1 = 1, pc2 = 2 and flag2 = 0}. To distinguish
between branches, let αja, αjb denote the if and else branch of αj , for j = 2, 4.

It is also possible to model programs that operate on linear unbounded data
structures such as queues, stacks, integers, etc. For instance, a stack can be
modeled by letting each position in the word represent a position in the stack.
The stack should initially contain an arbitrary but bounded number of empty
stack positions, which are “statically allocated”. We can then faithfully model
all finite computations of the system, by initially allocating sufficiently many
empty stack positions. We will consider two verification problems:

Reachability: Compute the set of reachable states of a given RTS (I,R), i.e.,
the set I ◦ R∗. The problem of verifying any safety property can in the
standard way be reduced to that of computing the set of reachable states of
a suitable RTS.

Repeated reachability: Does a given FRTS (I,R,F) have an infinite accept-
ing computation? The problem of verifying a liveness properties can, using
the classical automata-theoretic framework [31] adapted to regular model
checking [3], be reduced to the problem of repeated reachability of a suitable
FRTS. A repeated reachability problem can be checked by computing the
transitive closure of a transition relation, to be described in Section 4.

In general, these problems are undecidable, but techniques have been developed
which are complete for certain classes of RTSs, and also verify examples from
the literature (e.g., [25, 8]).

3 Verification using Acceleration

We can attempt to compute both reachable and repeatedly reachable config-
urations by standard fixpoint iterations. Let us describe this for the case of
reachability. A naive computation of the set I ◦ R∗ of reachable states is to
compute the sequence C0, C1, C2, · · · , where C0 = I and Ci+1 = Ci∪ (Ci ◦R), until
a fixpoint is reached, i.e., Ck+1 = Ck for some k. This approach is guaranteed
to terminate for finite-state systems, but not in general for parameterized and
infinite-state systems, since there is no uniform bound on the number of compu-
tation steps needed to reach any particular configuration. For RTSs, I ◦R∗ and



R+ are in general not computable, but incomplete techniques have been devel-
oped [7, 16, 19], which are guaranteed to complete under conditions which are
typically satisfied when R is “simple”, but not when R is the entire transition
relation of an RTS. We therefore present a method to compute I ◦R∗ or R+ by
decomposing R into “simple” parts, compute the transitive closure of each part,
and then use the results in a refined fixpoint computation.

To this end, let an action of the RTS (I,R) be any subset of R. We use α to
range over actions. By acceleration, we mean to compute α+ from α. The fixpoint
computation described in the previous paragraph is modified by instead defining
Ci+1 as the result of choosing an appropriate αi ⊆ R+, and letting Ci+1 =
Ci ∪ (Ci ◦ α

+

i ). The test for convergence remains the same: is Ci = Ci ∪ (Ci ◦ R)?
The main problem is to decide how to choose the sequence of actions α0 α1 · · ·
to accelerate, in order to converge at I ◦ R∗.

We will consider the class of unary RTS, in which each computation step
changes at most one position in a configuration. This class contains many pa-
rameterized synchronization algorithms. For unary RTSs, there is a particular
class of actions (called separable) which can be accelerated efficiently.

Definition 2. A regular relation R is unary if w and w′ differ in at most one
position whenever w R w′. A RTS (I,R) is unary if R is unary. A unary relation
is separable if it is of form φL · τ · φR , where φL, φR ⊆ Id , and τ is a relation
on Σ. We call φL the left context and φR the right context of φL · τ · φR .

Separable unary actions are interesting, because there are efficient tech-
niques for accelerating them, which are complete when φL and φR satisfy certain
conditions that hold for a majority of separable unary actions encountered in
practice [6, 25], and yield good underapproximations otherwise. Our verification
strategy is therefore to generate a sequence α0 α1 · · · of separable unary actions
to drive the above modified fixpoint computation. To avoid overapproximation,
we must obviously require αi ⊆ R∗ for each i. To make the fixpoint computa-
tion as powerful as possible, we will generate as “large” actions as possible. By
this, we will mean that any unary separable action in R is subsumed. We would
also like to require the same for any composition of such actions, but this is not
possible, since if α and α′ are separable unary actions, then in general α ◦ α′ is
not unary and α∪α′ is not separable. We therefore define restricted versions of
these operations, separable composition ◦s and separable union ∪s, as follows

(φL · τ · φR) ◦s (φ′L · τ ′ · φ′R)
4
= (φL ∩ φ′L) · τ ◦ τ ′ · (φR ∩ φ′R)

(φL · τ · φR) ∪s (φ′L · τ ′ · φ′R)
4
= (φL ∩ φ′L) · τ ∪ τ ′ · (φR ∩ φ′R)

where the changes in α and α′ are constrained to occur in the same position.
The resulting actions are separable, and can be efficiently accelerated.

Definition 3. Let R be a regular relation. A set of actions A is separable-
complete with respect to R, if it satisfies:



(U) For any sequence α1, . . . , αn of separable unary actions, where αj ⊆ R
for j ∈ [1, n], there is an action α ∈ A such that

(α1 ◦s . . . ◦s αn)+ ⊆ α+

If condition (U) is true for n ≤ k, for some bound k, the set is separable-complete
up to k, and k is called the composition depth. ut

As a special case, if A is separable-complete up to 1, then any separable
unary action α′ ⊆ R is subsumed by some α ∈ A.

Let us see why separable-completeness is relevant for Burns’ algorithm. Imag-
ine that we are computing I ◦R∗ for Burns’ algorithm, using a fixpoint compu-
tation. Consider a configuration where there are arbitrarily many processes on
line 2, each with α2b enabled. It is then possible for any single process to proceed
to line 5, via lines 3 and 4. However, whenever α3 is executed by some process
i, all processes j < i are blocked. Hence, in order for arbitrarily many processes
to move from 2 to 5, they must act sequentially from higher to lower index. It
follows that we need the accelerated sequential composition (α2b ◦s α3 ◦s α4b)

+,
to capture this behaviour; a fixpoint computation using only α+

2b, α
+

3 , α
+

4b would
need unboundedly many computation steps. If (U) were true, we would have an
action with α+ ⊇ (α2b ◦sα3 ◦sα4b)

+, allowing us to compute the set of reachable
configurations.

We are now ready to present our technique for generating actions to be
accelerated in the fixpoint computation; it will automatically generate a finite
set of actions which is separable-complete.

Generation Procedure. Our procedure for generating a sequence of actions that
satisfy condition (U) has three steps.

1. We obtain any finite set of separable actions A′ such that R = ∪A′.
One way to do this is to extract such actions from a representation of R
as a minimal deterministic automaton T = 〈S,Σ × Σ, s0, δ, F 〉, as follows.
Let T (s,Q) equal T but with s0 = s and F = Q. Then R is the union of
actions {φL · τ · φR} where φL = T (s0, {s}) ∩ Id , and φR = T (t, F ) ∩ Id ,
and τ = δ(s, t) for states s, t ∈ S (and φL, φR, τ 6= ∅).

2. We thereafter transform A′ so that it has the property that any separable
unary action α ⊆ R is in (i.e., a subset of) the separable union of some
actions in A′. For this purpose, we define two operations on separable unary
actions:

(φL · τ · φR) uL (φ′L · τ ′ · φ′R)
4
= (φL ∩ φ′L) · (τ ∩ τ ′) · (φR ∪φ′R)

(φL · τ · φR) uR (φ′L · τ ′ · φ′R)
4
= (φL ∪φ′L) · (τ ∩ τ ′) · (φR ∩ φ′R)

Closing the set of actions under the operations uL and uR achieves the goal.
As an optimization, we delete actions that are then subsets of other actions.

3. Finally, we close the set of actions A′, from previous step, under ∪s. Again,
as an optimization, we delete actions that become subsets of other actions.



We motivate step 2 for Burns’ algorithm. Suppose step 1 is applied to a det-
erministic representation of R. We get A′ ⊇ {α, α′}, with α = φL4a · (τ3 ∪ τ) · Id ,
and α′ = φL4b · (τ3 ∪ τ

′) · Id , for some τ, τ ′. The desired property is false: α3 is
not in the separable union of α, α′ (nor of A′). The left context of α3 has been
divided. However, α3 = (α uR α′), giving the desired property. Without step 2,
our procedure underapproximates α3 and sequential compositions involving α3.

The generated actions are separable-complete up to 1 by construction (by
steps 2 and 3). Let us now establish that they are even separable-complete. We
use the following lemma, which establishes how ◦s and ∪s are related.

Lemma 1. Let A′ = {α1, . . . , αm} be a set of separable unary actions, with
αj = φ

j
L · τj ·φ

j
R, for j ∈ [1,m]. Let σ = αi1 ◦sαi2 ◦s . . .◦sαin

be any composition
such that each α ∈ A′ occurs at least once. Then:

σ ⊆ φ 1
L ∩ . . . ∩ φm

L · (τ1 ∪ . . .∪ τm)+ · φ 1
R ∩ . . . ∩ φm

R

ut

Theorem 1. The set of actions generated by steps 1–3 is separable-complete.

Proof. Given any sequence α1, . . . , αn, where αj ⊆ R for j ∈ [1, n]. Let us denote
the fact that the generated actions have composition depth 1 by (U1). By (U1),
there are actions α′

1, . . . , α
′
n generated by our procedure such that αj ⊆ α′

j ,
for each j. Again by (U1), there exists a generated α = φL · τ · φR such that
α ⊇ α′

1 ∪s . . .∪s α
′
n. Now, by the lemma, α′

1 ◦s . . . ◦s α
′
n ⊆ φL · τ+ · φR. Finally,

(φL · τ+ · φR)+ ⊆ α+. ut

Note on complexity. Our procedure is essentially conjoining the guards of the
actions; so an upper bound of the number of obtained actions is 2|A′|, where A′ is
the least set satisfying the property of step 2. For our benchmark (see Section 5),
the actions can only be composed in a monotonic order, so the bound is only
|A′|2. Nonetheless, in practice, we may choose to combine actions under ∪s a
fixed number of iterations in step 3, obtaining A with composition depth k.

4 Verifying liveness

In this section, we describe how to verify liveness properties, which are reduced
to the repeated reachability problem of a suitable FRTS. In particular, we de-
scribe how liveness properties of parameterized algorithms are verified using our
LTL(MSO) model checker [3].

Recall that the falsification of a liveness property can be reduced to checking
whether an FRTS has an infinite accepting run. Since the transition relation is
length-preserving, so that each computation can visit only a finite set of config-
urations, this problem can be solved by repeated reachability, i.e., by checking
whether there exists a reachable loop containing some configuration from F .
This is equivalent to checking whether there is a reachable configuration w in F
such that (w,w) ∈ Id ∩ R+, which can be checked as follows [27].



(1) Compute the set of reachable configurations Inv = I ◦ R∗, as described in
Section 3.

(2) Let InvF = {(w,w′) | w ∈ Inv ∩F , (w,w′) ∈ R}, i.e., the relation containing
all pairs of consecutive reachable configurations, where the first satisfies F .

(3) Compute the relation InvF ◦ R∗ as a fixpoint, which in the acceleration-
based version constructs the sequence C0, C1, C2, · · · , where C0 = InvF and
Ci+1 = Ci ∪ Ci ◦ α

+

i for a suitable action αi ⊆ R+, until Ci = Ci ∪ Ci ◦ R.

(4) If the fixpoint computation in (3) converges, a repeatedly reachable config-
uration w exists if and only if (InvF ◦ R∗) ∩ Id is non-empty.

Note that if Ci ∩ Id is non-empty for some approximation Ci, we can abort the
fixpoint computation of (3), and report that Ci contains a repeatedly reachable
configuration.

The reachability phase (1) computes a fixpoint on sets of configurations,
while the repeated reachability phase (3) computes a fixpoint on relations of
configurations; the latter is significantly more difficult to compute.

We next show how this procedure specializes to verifying absence of starva-
tion for parameterized systems. A typical liveness property, absence of starva-
tion, is of form � ∀i (φ(i) −→ ♦ψ(i)), where i ranges over processes modeled
by positions in the configuration. For instance, for Burns’ algorithm we check
the property � ∀i ((pc[i] = 1 ∧ i = 0) −→ ♦pc[i] = 7). This property is proven
assuming weak process fairness, i.e., that in an infinite computation, each pro-
cess is infinitely often either blocked or progressing, which can be expressed as
∀i�♦(α(i) ∨ ¬En(α(i))), where α(i) is a disjunction of all actions process i can
take, and En(α(i)) is true if and only if process i is not blocked.

To verify absence of starvation using the automata-theoretic approach [31,
3], the transition relation, fairness requirements and the negation of the live-
ness properties are conjoined and compiled into an FRTS, which accepts all
fair computations of the system which violate the liveness property, i.e., sat-
isfy ♦∃i (φ(i) ∧ �¬ψ(i)). The negation of the liveness property is transformed
into an extra boolean component bviolate(i) in the local state of each position
i, such that if bviolate(i) is true, then process i satisfies �¬ψ(i). Process i may
non-deterministically set bviolate(i) to true. The weak fairness requirement is
transformed into an extra boolean component bfair(i) in the local state of each
position i and the set F of accepting configurations in which bfair(i) is 1 for all
i and bviolate(i) is 1 for some i. All components bfair(i) are set to 0 immediately
after some configuration in F was visited, and each bfair(i) is thereafter set to 1
whenever process i satisfies α(i) ∨ ¬En(α(i)). The repeated reachability prob-
lem becomes to check whether there is an infinite computation which first visits
a configuration where bviolate(i) is 1 for some i, and thereafter infinitely often
visits a configuration in F .

The above procedure can be adapted to this setting by inserting a step (1′)
between steps (1) and (2), which computes the set Inv′ = [Inv ∧ ∃i(φ(i) ∧
bviolate(i))] ◦ R′∗, where R′ is R constrained to follow the semantics of bviolate,
as described above. For the remaining steps, Inv′ and R′ take the roles of Inv



and R. For step (3), we further constrain R′ to follow the semantics of bfair. We
have also added the following optimizations to our model checker.

– Separating updates of bfair(i). We separate the updates of bfair(i) into one
action that sets it when α(i) is taken, and one action that sets it when
¬En(α(i)); this equivalent modeling makes the acceleration work more effi-
ciently, since actions remain unary.

– One violating witness. We constrain the transition relation so that bviolate(i)
can be true for at most one process i; this simplifies the transition relation.
Note that this does not forbid other processes from violating the property.

5 Experimental results

We have implemented the systematic acceleration method described in this paper
in our LTL(MSO) model checker [3], and used it to generate the set of reachable
states, as described in Section 3, and to check absence of individual starvation
under weak fairness for parameterized synchronization algorithms from the liter-
ature, as described in Section 4. The models are described in detail in [27], and
are available at http://user.it.uu.se/~mayanks/systematic/. For the Bak-

ery algorithm, we verified the property Ba
4
= �∀i (q[i] = w −→ ♦q[i] = cs).

All other checked liveness properties were of form �∀i (φ(i) −→ ♦ψ(i)), where
ψ(i), defined as pc[i] = cs, represents that process i is in the critical section,
and where φ(i) expresses that process i intends to reach the critical section, and
that also it is reasonable to suspect that process i is guaranteed to succeed in
doing so. For each choice of φ(i) our implementation either reports a success
in verification, or a counterexample. We checked several properties, whose φ(i)
are given below, named after the initial letters of their corresponding protocols;
Bakery, Burns, Szymanski, Dijkstra.

Bu1 : pc[i] = 1 ∧ i = 0 Sz1 : pc[i] = 1
Bu2 : pc[i] = 1 ∧ i 6= 0 Sz2 : pc[i] = 2
Bu3 : pc[i] 6= 1 ∧ i 6= 0 Sz3 : pc[i] 6= 1
Bu4 : i = 0
Di1 : p[i] ∧ flag[i] 6= 0 ∧ ∀j 6= i . pc[j] 6= 3
Di2 : p[i] ∧ flag[i] = 0 ∧ ∀j 6= i . pc[j] 6= 3

We used composition depth k as a parameter, successively using higher values if
the verification did not succeed within a certain time bound. The times are given
for the best values of k, not including “too low k” time. All protocols worked
with some k ∈ [2, 5]. Dijkstra’s protocol needed 5, and Szymanski’s protocol was
significantly slower with k > 2, due to its actions using many different guards. If
the generated actions become separable-complete for parameter k, using a higher
value is not significantly slower, as testing for separable-completeness is quick. By
Lemma 1, we need not consider k higher than the number of actions generated in
step 2 of the generation procedure – that k gives the best approximation of R+,
but can be suboptimal with respect to time. To handle the fact that one action



of Dijkstra’s protocol is not unary, we extended the composition techniques to
a class of non-unary actions in the most straight-forward way. The experiments
were run on a PC with a 2.4 GHz processor and 1 GB of RAM.

Results and Comparison with Related Work. Our verification results are pre-
sented in Table 1. The table contains time measured in seconds for the analysis,
but does not include the translation from LTL(MSO) formulas into FRTSs.
False properties, for which a counterexample was found, are marked “(f)”. In
the table, we compare our times with the works [27, 3, 5], as they use similar
techniques, and were in fact timed on the same system. We also present related
work, in alphabetical order with respect to authors. Note that works [27, 3, 28]
could only have succeeded to verify Burns’ and Dijkstra’s protocols if the right
sequential compositions were included; but they are difficult to find manually.

[2] Abdulla et al. use overapproximation for safety properties, obtaining times
an order of magnitude better than ours (0.004–3.9 seconds), but the tech-
nique can not be extended to liveness properties.

[5] These techniques compute states which are guaranteed to satisfy ψ(i) us-
ing backwards reachability, thus avoiding the repeated reachability problem.
However, they are not able to produce counterexamples, and are sometimes
slower (due to requiring many accelerations).

[15] Bouajjani et al. verify liveness of Bakery, as well as safety of all listed pro-
tocols, using counter-example guided abstractions, in 0.06–0.73 seconds.

[21, 22, 20] Fang et al. verify the Bakery protocol using automatically generated ranking
functions, but do not report running times.

[27, 3] The works of Nilsson et al. [27, 3] report times for essentially the same tech-
nique, so we gave the best time for each protocol. The verification setting is
as ours, but without the systematic addition of sequential compositions.

[28] Pnueli and Shahar, use user defined accelerations to verify safety properties
of Szymanski’s protocol in 0.2 seconds, as well as some protocols not in our
benchmark.

[29] Pnueli et al. verify liveness of the Bakery and Szymanski protocols using
manually supplied counter abstractions, in 1 and 96 seconds respectively.
Their modeling of Szymanski’s protocol is slightly different from ours, so we
can not say which of the true properties were checked.

Using the techniques of this paper, we can compute an exact representation
of the reachable loops for all the above protocols. It has, to our knowledge, never
been done for Burns’ and Dijkstra’s protocols before.

6 Conclusions and Future Work

We have presented a systematic method for using acceleration to speed up fix-
point computations in regular model checking. The method is defined for unary
transition relations, and is independent of how the transition relation is repre-
sented. We show how to accelerate a set of actions which is maximal in a cer-
tain sense, in order to make the verification as powerful as possible. Using this



Table 1. Liveness (to the left) and safety (to the right) results.

Property This work [27, 3] [5]

Ba 13 23 36
Bu1 98 450
Bu2 56 (f)
Bu3 60 (f)
Bu4 144
Sz1 540 (f)
Sz2 1369 435
Sz3 1635
Di1 244 3311
Di2 1031 (f)

Protocol This work [27, 3]

Bakery 4 5
Burns 15 39
Szymanski 19 34
Dijkstra 25 38

approach, we have succeeded in verifying safety and liveness of parameterized
synchronization protocols, whose verification has not been reported before.

Our work shows that acceleration-based symbolic state-space exploration can
be used efficiently also in regular model checking, thus extending this approach
from other classes of systems (e.g., [1, 12, 14, 32, 10, 23]). Future work includes
extending the approach to non-unary transition relations, in order to handle,
e.g., systems with synchronous communication between adjacent processes.
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