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Abstract—This paper presents an application of a socially  In the domain of physical therapy, SAR is particularly
assistive robotics (SAR) system to hands-off post-stroke rah  promising for stroke rehabilitation. Stroke affects a targ
bilitation. We validate the technical feasibility and efficacy of percentage of the population worldwide, with over 9 million

our system in guiding, motivating, and administering an upper . .
extremity rehabilitation task. The robot, which consists of a people affected annually, many of whom go on to live with

humanoid torso on a mobile base, monitors user performance on Motor disa_bi“ties [5]-. _This POPU|ati0n also _Of.ten .SUfferS
a wire puzzle task through a wearable inertial measurement unit from associated cognitive deficits. Therapeutic intenegrst

and signals from the puzzle. Smoothness of stroke-affected limb for stroke typically consist of intense one—on—one practic
movement is used as the evaluation metric. Five adults of mild with a trained clinician, focusing on specific real-world

to moderate functional ability in the chronic phase of stroke L IR
recovery interacted with our SAR system over three separate tasks modeled on activities of daily living (ADLs). Such

days. The inertial data from the five participants were analyzed task—specific practice can lead to recovery from motor task
using frequency domain techniques. Subsequently, the amount deficits. However, the number of individuals affected by

of power in frequency bands corresponding to voluntary (0.1 stroke is outpacing the number of trained clinicians and
to 2Hz) and involuntary motion/jerk (4 to 8Hz) was evaluated. medical resources, and has produced a growing gap between

We found that, in adults of mild severity (Upper Extremity
Fugl-Meyer Assessment scores greater than 40), the motion the necessary amount of therapy and the amount that can be

becomes smoother (the amount of jerk is reduced) over 3 days Provided with the current standard of care.

of task practice. In adults of moderate motor severity (scores

below 40), the motion became less smooth. This may indicate This is where SAR can serve a valuable role. Given the

that the combination of our task and SAR system is better getarmination of a deficit and an associated rehabilitation

suited for individuals with higher functional ability, and needs . b trained clinici SAR b d

augmentation in order to aid those of lower functional ability regimen by a ftraine C|n|C|an, can be gse as a

levels. methodology and a therapeutic tool for the guidance and
provision of an intervention. Our past work has evaluated

I. INTRODUCTION the technological feasibility and acceptance of SAR robots

Socially assistive robotics (SAR) has emerged as a promi@-the post-stroke population [6] [7].
ing set of methodologies for the provision and adminisbrati )
of motivation, encouragement, and rehabilitation for thos [N this paper, we present our SAR framework as a proof
suffering from cognitive, motor, and/or social deﬁcits_[l]of concept for t_he provision Qf a therapeutic intervention t
The intersection of assistive robotics and socially inttve affect changes in motor function. We use motion smoothness
robotics, SAR focuses on hands—off interactions with rebo®s the kinematic measure of motor function. This metric is
in therapeutic settings. Using embodiment, emotion, gi,alowe” es_tablishe_d; it has be_en used by Elble et gl. as a measure
personality, user models, socially situated learning,iateh- ©f motion quality [8] and is employed by physical therapists
tionality, SAR robots can manipulate and guide interactio®S 0ne of the sub parameters of motion quality assessment
with users in order to achieve desired behavioral outcomis Standard tools such as the Wolf Motor Function Test
[2]. This methodology has shown promise for a number §YVMFT) and the Test d'Evaluation des Membres &tigurs
domains, including tutoring, emotional expression, défy d€ Personnes Ags (TEMPA) [9] [10].

assistance, and physical therapy [1] [3] [4]. ) o o
We begin by providing some background on rehabilitation
This work was supported by the National Institute of Neugial robotics. Next, we describe our system and the methods used.

Disorders and Stroke, Award UO1NS056256. The content iglsdhe \\e then present our data analysis algorithms and results
responsibility of the authors and does not necessarilyesgmt the official d finall ffer di . d ' lusi ' di h '
views of the NINDS or the NIH. This work is also supported bymneNs- @nd finally ofter discussion and conclusions regarding the

0709296 award and NSF 11S-0713697 award. research outcomes.



Il. BACKGROUND

A. Rehabilitation Robotics

The field of rehabilitation robotics has benefited from re-
cent advances in sensing and actuation. The general approac
in this field has been to create orthoses that physicallyante
with individuals with motor deficits. Lower extremity (LE)
devices such as the LOKOMAT [11] and ALEX (active
leg exoskeleton), designed for gait retraining, apply ésrto
the leg sections in an attempt to retrain healthy gait patter
[12]. Upper extremity (UE) devices include the ARM Guide, Fig. 1. Bandit, the humanoid robot used in our experiments.
developed by Reinkensmeyer et al., to help individualsetarg
objects using the affected limb [13]. The ARMin Il system,
developed by Reiner et al., is an exoskeleton-like robatgusi
a design based on human shoulder dynamics, also targeted
for stroke rehabilitation [14]. Another UE training system
developed by Schweighofer et al., allows users to practice
functional tasks modeled on activities of daily living sueh
closing a door or turning a doorknob [15].

The maturity of the rehabilitation robotics field is also
indicated by the fact that devices have been tested in alinic
trials. Lo et al. utilized the MIT Manus robot in a large
clinical trial [16] and demonstrated that the robot could
produce clinical outcomes similar to those obtained usirf%p- 2. The physical setup for the SAR rehabilitation expents: Bandit
dose equivalent human—administered therapies. htumanoid robot, wire puzzle, wands, and wearable motion senso

B. Socially Assistive Robotics

The field of socially assistive robotics (SAR) is a newer  !ll- SAR SYSTEM FORMOTOR TASK PRACTICE

development and is defined as the provision of assistan'&e
through social (not physical) interactions with robots. [A]
SAR robot uses non—contact verbal and non—verbal feedbackThe physical setup for our SAR system consisted of a
coaching, and encouragement to guide a user during th@manoid robot torso, an instrumented wire puzzle, and
performance of a task. SAR systems can demonstrate tagkarable sensors. The robot used in our experiments is
goals, monitor the user, and provide extrinsic performantiee humanoid Bandit, developed at the USC Interaction
feedback. The lack of physical contact means there arelLaboratory in conjunction with BlueSky Robotics (Figure 1)
minimum of safety concerns. Further advantages inclufée have used Bandit in a variety of SAR interactions in the
lower costs and increased accessibility relative to cantagast [17] [18] [6]. In this study, Bandit was used to guide
based robot systems. A SAR interaction can take place participants during the performance of a wire puzzle game
a multitude of environments, including the laboratory, th@~igure 2). Participants were seated at a desk facing Bandit
clinic, and the user’'s home. and the puzzle and had a selection of wands; the goal was
Our past work has shown the efficacy of SAR in & guide the ring at the end of each wand along the wire
variety of domains, including elder care [17] [18], Autisnpuzzle without contacting the wire (Figure 3). Bandit used
Spectrum Disorders [19], stroke assessment [20] [21], atwlo different “coaching styles:” in one, Bandit instructix
stroke rehabilitation [7]. A key advantage of non—contagtarticipants which wand to use, while in the other, they ehos
SAR over contact-based robotics in the stroke populationti®e wand themselves. Task difficulty was controlled by ap-
that individuals can use the more affected limb in the typgsopriately selecting wands with smaller or larger diamste
of meaningful, unconstrained, functional tasks encowaterand puzzles with lower or higher complexity (wire curvajure
in daily life. This approach also has the ability to providé Phidget InterfaceKit was used to electrically instrument
personalized therapeutic interactions that can complethen the puzzles; this allowed us to collect error (total numbier o
therapist. We view SAR as complementary to contact—baseahtacts between the ring and puzzle) and movement time
rehabilitation systems, with its usefulness being esfigciadata.
targeted toward post-acute stages of stroke rehabilitatio Participant arm motion was monitored using an inertial
which have been shown to potentially continue life-long. measurement unit (IMU) also developed in our laboratory
In the following, we describe the implementation of ouf22]. The IMU captured 3—axis each of accelerometer, rate
SAR system for intense, task—specific training for postk&tr gyroscope, and magnetometer data. The complete experimen-
rehabilitation and present preliminary results. tal setup is shown in Figure 2.

Physical Setup



minute sessions, with 10-minute breaks in between. Each
session consisted of many bouts, where a bout is defined
as completing the puzzle once, from Start to End and back.
The number of bouts in each session depended entirely on the
participant’s speed of motion. On Days 2 and 3, no motor
assessments were administered; the time was spent in the
3 15-minute sessions and breaks in between. A different
wire puzzle was used for each day, increasing in difficulty
on each day. The puzzle used on Day 3 was the longest
and had the most curves/bends, thereby requiring the most
Fig. 3. The wire puzzle and wand setup. Wands of differerficdities ~pronation/supination at the wrist.
are shown. Multiple puzzle shapes were also used. Pamisiuided the  The robot provided instruction, feedback, and motivation.
wand along the wire puzzle from Start to End, and back, attiexpd avoid The instruction was provided at the beginning of each ses-
contact between the puzzle and the wand.
sion, the beginning of each bout, and when users made errors.
At the beginning of each session, the robot described tles rul
and goals of the wire puzzle task. At the beginning of each
B. Software Framework bout,gthe robot told thepuser which wand to ugse, ar?d pointed
The software architecture of the SAR system was deve the wand with its right hand. Whenever the user made an
oped by Mead et al. [6] and consists of a task manageregor, such as using the wrong wand or failing to moving
task—oriented controller, and activity layers. Ttk man- the wand in the right direction, the robot reiterated thé tas
ager is the entry point and main system client; it managegstructions.
the robot behavior at the beginning of each interaction andreedback was provided at the end of each bout. The
during transitions between tasks. Tlask—oriented controller robot provided knowledge of performance in the form of
guided the user during the actual performance of the pectifiovement time and the number of errors. For example, it
task, kept track of the estimated user state, and determinggd: “You took five seconds, and touched the wire four
the appropriate feedback regarding how many errors wefges” In addition to verbalizing performance resultse th
made, or instructions for completing the puzzle. Finalig t robot nodded its head with an amplitude proportional to the
activity layersprovide system input and output. Theser yser's performance.
activity layer obtained input from the puzzle data (# of Motivation was provided in the form of verbalized en-
errors and movement time) and the IMU data. Robot verbgburaging statements (e.g., “good job”, “congratulatipns
and non-verbal gestures, including providing encourageémerurther, the robot made congratulatory gestures (e.g.jingov
knowledge of performance, pointing at wands, and nodding arms up and down in a cheering motion) in response to
were controlled by theobot activity layer. These componentsimproved performance.
were used together to create a dynamic, adaptive interactio |n addition to the measures described in the previous
V. METHODS section (puzzle and IMU data), we also collected fatigue
’ . and psychometric data. We collected self-reported fatigue
For our study, the autonomous humanoid SAR robgteagyres at the start and end of each 15-minute session,
Bandit initiated, motivated, and terminated the experitaen 5, survey data regarding the quality and quantity of the
interactions. The experimenter’s only roles were the aemip,,qt gestures and verbalizations at the end of each day. We
istration of consent forms, motor function assessments, afs optained data regarding the perceived usefulnesseof th

surveys. After administering assessments, the experénenbgy with a survey based on the valid and reliable Intrinsic
led the participants into the room with Bandit; after placin,qtivation Index scale [23].

the IMU on the participant’s wrist, the experimenter left

the room and allowed Bandit to run the remainder of the V. DATA ANALYSIS AND RESULTS

experiment. At the completion of the 3 15-minute practice Motion smoothness was used as a performance metric for

sessions, the experimenter returned to the room, remoeed tifle participants. This feature has been used as a measure

IMU, administered the exit survey, and ended the session. \Wemotion quality in the domain of motor control [24] [25].

recruited 5 participants for the study. The cohort condistéduman motion can be broadly categorized mtduntaryand

of 3 males and 2 females between the ages of 24 and W#ioluntarycomponents. Voluntary motion is intentional and

All were individuals in the chronic phase of stroke recoyerys characterized by the frequency band between 0.1 and 2Hz.

right—hand dominant and right—hand affected by strokeh witnvoluntary motion includes jerk and tremor, best captungd

UE Fugl-Meyer Assessment (FMA) scores between 31 atite higher band, between 4 and 8Hz.

60 (with 66 being the maximum possible score). We analyzed accelerometry data for the 5 participants
The practice schedule took place over 3 days with breatger the 3—day experiment. The data were preprocessed

of 1-2 days between each session. On Day 1, motor asing a fifth order Butterworth low pass filter (15Hz cutoff

sessments were administered by a physical therapist. Streguency), to remove high frequency noise, and a high pass

sequent to this, participants practiced the task for 3 1%iter (0.1Hz cutoff frequency), to remove low frequency
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Fig. 4. Individual power spectrum data for all participarféots A and C depict the results for the moderate severitymio the 0.1-2Hz and 4-8Hz
frequency bands, respectively. Plots B and D depict thelteefor the mild severity group in the 0.1-2Hz and 4-8Hz frawyebands, respectively.

device drift components. Next, the power (in dB/Hz) wathe values for the low and high frequency band groups,

computed using the formula in Equation 1: and By ¢, and the MoS and MiS groups. Note that individual
) ) ) data are displayed; the MoS group consisted of participants
Power— > (Fip + Fyy + F7) (1y 1and 21, p2) and the MiS group consisted of participants
N 3, 4, and 5 %3, p4, p5). The y—axis is power in [db/Hz],

where F; are the Fast Fourier Transform (FFT) coefficient nd thez—axis is the interven_tion day. Each Iing represents
for the z—, y—, and z—axis accelerometer signals, aid the Cha!”ge for a given 15-minute session. In Figure 4A, '
is the number of FFT coefficients in a given frequen:i?z?s 3 lines representing power change between Day 1, first

; - —minute block and Day 3, first 15—-minute block; Day 1,
band. This computation was performed for the 0.1-2 minu ) . ]
low frequency band,B;; and the 4-8Hz high frequencysecond 15—minute block and Day 3, second 15—-minute block;

band,B},; for each 15-minute practice session, and for ea d Day 1, third 15-minute block and Day 3, third 15-minute

participant. After consultation with a physical therapise lock.

divided our participants into two groups: the two partici ~~ When evaluating the voluntary motion band (0.1-2Hz),
in our moderate severitioS group had UE FMA scores of We note that in the MoS group (Figure 4A), the amount
37 and 37 while the three participants in theld severity Of power increases for all participants. With the MiS group
(MiS) group had UE FMA scores of 46, 51, and 51. ThéFigure 4B), the results are mixed, with some instances of
idea behind this segregation was to study the effect of SARawer increase, and some of decrease. When looking at the
based intense motor task practice on the motor functignalierk band (4-8Hz), in the MoS group (Figure 4C), once again,
of participants with mild and moderate severity. It is knowfhe amount of power increases (indicating motion is getting
that, according to the challenge point framework (CPHAESS smooth). However, for the MiS group (Figure 4D), the
participant skill level interacts with functional task fitilty ~@mount of power in this band decreases in all but one case.
and task performance [26] We began by analyzing the pow-gﬂis is indicative of the fact that motion for the MiS group
values for each participant individually between Days 1 arfiPt smoother over the course of the 3 days.

3. We used Days 1 and 3 to obtain a comparison betweerilo evaluate the relationships between these data, we per-
performance with and without task familiarity. This is noformed a repeated measures analysis of variance (ANOVA)
a learning study that focuses on the participants learningnéhin the MoS and MiS groups. We first performed the
specific task over multiple sessions. Instead, the paatitip analysis for all data points, without regard for the freqren
performed different and increasingly more difficult wirezpu bands. The results, shown in Table I, indicate significant co
zle tasks within each session and on each day. Performanglation. This would indicate that individuals in each goou
on Day 1 reflects ability with minimal task familiarity, andhad virtually identical performance on the task; however,
can be considered their baseline performance. Performanbservations of video recordings of the practice sessions
on Day 3 reflects abilities after having gained familiaritibw indicated that some variability did exist. This led us to in-
the task. In future studies, pre-/post—assessment masashirevestigate the correlation for each growthin the frequency
functional ability will be used to establish a functionakba bands we have described. The results of this analysis are
line and outcome change for participants. Figure 4 depiaspicted in Table Il. The results only indicate significant



TABLE |

ANOVA RESULTS FOR MILD AND MODERATE SEVERITY CORRELATION
| Correlation Coefficient| 4
plxp2 0.9579 3.5¢
p3xp4 0.8976 T o3l
pP3xp5 0.9420 2
p4xp5 0.9479 2 25¢
[
TABLE Il
ANOVA RESULTS FOR MILD AND MODERATE SEVERITY CORRELATION 1.5¢
WITHIN FREQUENCY BANDS 1l
| Frequency band Correlation Coefficient| 05 1 3
plxp2 By 0.6088 Day
plxp2 By 0.5779
p3xp4 By -0.0435 Fig. 6. Power in the 4-8Hz frequency band for mild and mode=tergy
p3xp5 By 0.5552 individuals over the 3 day practice period.
p4xp5 By 0.1299
p3xp4 By 0.1735
p3xp5 Bhf 0.0454
p4xp5 By 0.7446 VI. DISCUSSION

A. Changes in Voluntary Motion

S . : : The results depicted in Figures 5 and 6 indicate that, for
correlation in one instance (p45). We discuss this result . !
) . . . the MiS and MoS groups, the mean amount of power in the
in Section VI. We also wanted to investigate any grou . .

. oluntary motion band increased between days 1 and 3. If
effects. To do so, we computed the mean and variance O

ower in the various bands for all members of each arote look at the individual data depicted in Figure 4, we see
b . ) : . 9 %r?at power in this band increased for all participants in the
(MoS and MiS). Figure 5 depicts the changes in power

By s over the course of the 3 days for both groups. Figure,t%oS group, and only some of the MiS group. As indicated in

. . e literature, skill acquisition (or motor learning) haseb
depicts the changes in power B, over the course of the 3 correlated with increased power in this frequency band. For
days. Visually, it appears that there are similar trend$@ih P 9 y '

roups in the 0.1-2Hz band, and an inverse relationshipein &ﬁ‘ose who showed decreased power in this band, there was
group i ' PEIN 0y kil acquisition; this indicates that the participantsre

4-8Hz band. To evaluate this relationship, we performed a = . . )
ogneratlng above or below the optimal challenge point, and
repeated measures ANOVA on the mean values between b% .
. L that no learning occurred.
groups. The results are shown in Table Ill, and indicate non— - R - -
o o S o The trend visible in Figure 5 indicates that a similar
significant positive correlation iB;;, and non-significant . . .
. . mechanism may be at work in both the MoS and MiS groups.
negative correlation i3y, . . . . . .
For both groups, there is a net increase in power in this
band. The lack of significant correlation between the means
9 : ‘ of the two groups is likely due to the small sample size; we
anticipate that with additional data, we will be able to fient
validate this hypothesis.

B. Changes in Jerk/Involuntary Motion

~
\
A}

- 1 As depicted in Figure 6, the MiS group showed decreased
6.5 .- ] power in the jerk frequency band. The MoS group, however,
Y ] showed increase in the amount of power in this band. There
was negative correlation between the groups (though not
statistically significant). This is likely due to the reiailevel
5 1 3 of task difficulty for the MoS group. The power values in
Day this band indicate that participants’ motion was not gettin
smoother, and thus, there was no apparent motor learning
taking place in the MoS group.

Looking again at the individual performances in Figure 4D,
we can see that, for the MiS group, all instances excluding
one indicated a decrease in power. This is most compelling:
these results show that MiS individuals obtained useful
practice, indicated by improved motion quality (smoott®)es

Power [dB/Hz]
\

Fig. 5. Power in the 0.1-2Hz frequency band for mild and modesaverity
individuals over the 3 day practice period.

TABLE Il
ANOVA RESULTS COMPARING MEAN VALUES BETWEEN MILD AND
MODERATE SEVERITY GROUPS

| Frequency band p-value |

MoSxMiS
MoSxMiS

Blf
Bpy

0.207
-0.432

This could also indicate that MoS individuals were unable to
cope with the difficulty level, and motion quality decreased
over time.



C. Automated Robot—Guided Intervention

(7]

We reiterate here that the intervention was administered
completely autonomously by the SAR robot, based on ob-

servations of the user state obtained from the various sen

|

modalities. This study thus shows that our SAR system can be
used to affect desirable behavior changes in some indilgdua
post—stroke, but studies with larger sample sizes are dee
to determine if the results are statistically significant

properly adapt the system, data from this study can be used to

characterize a range of UE FMA scores for which the task,
designed, is appropriate. While this will be beneficial to the
population, it will also allow us to gain more insight intceth
human—robot interaction, as the task will be more direct@rz]
matched to the participants’ challenge level. Evidence has
shown that maintaining an appropriate challenge level i3]
human—human interactions has a number of benefits, both
physical and psychological [26]. If we can more adequately
maintain challenge level, we can take advantage of thd&él
benefits to strengthen SAR-guided interaction.

VIlI. CONCLUSIONS

]

A3

(15]

We have presented a socially assistive robot—guided inter-
action for motor task practice. The initial results fromsthi[16]
work have shown that this interaction, administered com-
pletely autonomously by the robot, effected motor changes
in the target population. Further validation is required to
determine if the outcomes have clinical significance, but we
believe that this adds support to the demonstrated potentia,
for the continued investigation of the use of SAR methods

in the administration of intense motor task practice. Feuth
work includes gesture assessment using metrics for toaject

precision, velocity, and motion smoothness.
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