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Abstract—This paper presents an application of a socially
assistive robotics (SAR) system to hands-off post–stroke reha-
bilitation. We validate the technical feasibility and efficacy of
our system in guiding, motivating, and administering an upper
extremity rehabilitation task. The robot, which consists of a
humanoid torso on a mobile base, monitors user performance on
a wire puzzle task through a wearable inertial measurement unit
and signals from the puzzle. Smoothness of stroke-affected limb
movement is used as the evaluation metric. Five adults of mild
to moderate functional ability in the chronic phase of stroke
recovery interacted with our SAR system over three separate
days. The inertial data from the five participants were analyzed
using frequency domain techniques. Subsequently, the amount
of power in frequency bands corresponding to voluntary (0.1
to 2Hz) and involuntary motion/jerk (4 to 8Hz) was evaluated.
We found that, in adults of mild severity (Upper Extremity
Fugl–Meyer Assessment scores greater than 40), the motion
becomes smoother (the amount of jerk is reduced) over 3 days
of task practice. In adults of moderate motor severity (scores
below 40), the motion became less smooth. This may indicate
that the combination of our task and SAR system is better
suited for individuals with higher functional ability, and needs
augmentation in order to aid those of lower functional ability
levels.

I. I NTRODUCTION

Socially assistive robotics (SAR) has emerged as a promis-
ing set of methodologies for the provision and administration
of motivation, encouragement, and rehabilitation for those
suffering from cognitive, motor, and/or social deficits [1].
The intersection of assistive robotics and socially interactive
robotics, SAR focuses on hands–off interactions with robots
in therapeutic settings. Using embodiment, emotion, dialog,
personality, user models, socially situated learning, andinten-
tionality, SAR robots can manipulate and guide interactions
with users in order to achieve desired behavioral outcomes
[2]. This methodology has shown promise for a number of
domains, including tutoring, emotional expression, dailylife
assistance, and physical therapy [1] [3] [4].
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In the domain of physical therapy, SAR is particularly
promising for stroke rehabilitation. Stroke affects a large
percentage of the population worldwide, with over 9 million
people affected annually, many of whom go on to live with
motor disabilities [5]. This population also often suffers
from associated cognitive deficits. Therapeutic interventions
for stroke typically consist of intense one–on–one practice
with a trained clinician, focusing on specific real–world
tasks modeled on activities of daily living (ADLs). Such
task–specific practice can lead to recovery from motor task
deficits. However, the number of individuals affected by
stroke is outpacing the number of trained clinicians and
medical resources, and has produced a growing gap between
the necessary amount of therapy and the amount that can be
provided with the current standard of care.

This is where SAR can serve a valuable role. Given the
determination of a deficit and an associated rehabilitation
regimen by a trained clinician, SAR can be used as a
methodology and a therapeutic tool for the guidance and
provision of an intervention. Our past work has evaluated
the technological feasibility and acceptance of SAR robots
in the post–stroke population [6] [7].

In this paper, we present our SAR framework as a proof
of concept for the provision of a therapeutic intervention to
affect changes in motor function. We use motion smoothness
as the kinematic measure of motor function. This metric is
well established; it has been used by Elble et al. as a measure
of motion quality [8] and is employed by physical therapists
as one of the sub parameters of motion quality assessment
in standard tools such as the Wolf Motor Function Test
(WMFT) and the Test d’Evaluation des Membres Supérieurs
de Personnes Agées (TEMPA) [9] [10].

We begin by providing some background on rehabilitation
robotics. Next, we describe our system and the methods used.
We then present our data analysis, algorithms, and results,
and finally offer discussion and conclusions regarding the
research outcomes.



II. BACKGROUND

A. Rehabilitation Robotics

The field of rehabilitation robotics has benefited from re-
cent advances in sensing and actuation. The general approach
in this field has been to create orthoses that physically interact
with individuals with motor deficits. Lower extremity (LE)
devices such as the LOKOMATR© [11] and ALEX (active
leg exoskeleton), designed for gait retraining, apply forces to
the leg sections in an attempt to retrain healthy gait patterns
[12]. Upper extremity (UE) devices include the ARM Guide,
developed by Reinkensmeyer et al., to help individuals target
objects using the affected limb [13]. The ARMin III system,
developed by Reiner et al., is an exoskeleton–like robot using
a design based on human shoulder dynamics, also targeted
for stroke rehabilitation [14]. Another UE training system,
developed by Schweighofer et al., allows users to practice
functional tasks modeled on activities of daily living suchas
closing a door or turning a doorknob [15].

The maturity of the rehabilitation robotics field is also
indicated by the fact that devices have been tested in clinical
trials. Lo et al. utilized the MIT Manus robot in a large
clinical trial [16] and demonstrated that the robot could
produce clinical outcomes similar to those obtained using
dose equivalent human–administered therapies.

B. Socially Assistive Robotics

The field of socially assistive robotics (SAR) is a newer
development and is defined as the provision of assistance
through social (not physical) interactions with robots [1]. A
SAR robot uses non–contact verbal and non–verbal feedback,
coaching, and encouragement to guide a user during the
performance of a task. SAR systems can demonstrate task
goals, monitor the user, and provide extrinsic performance
feedback. The lack of physical contact means there are a
minimum of safety concerns. Further advantages include
lower costs and increased accessibility relative to contact–
based robot systems. A SAR interaction can take place in
a multitude of environments, including the laboratory, the
clinic, and the user’s home.

Our past work has shown the efficacy of SAR in a
variety of domains, including elder care [17] [18], Autism
Spectrum Disorders [19], stroke assessment [20] [21], and
stroke rehabilitation [7]. A key advantage of non–contact
SAR over contact–based robotics in the stroke population is
that individuals can use the more affected limb in the types
of meaningful, unconstrained, functional tasks encountered
in daily life. This approach also has the ability to provide
personalized therapeutic interactions that can complement the
therapist. We view SAR as complementary to contact–based
rehabilitation systems, with its usefulness being especially
targeted toward post–acute stages of stroke rehabilitation,
which have been shown to potentially continue life-long.

In the following, we describe the implementation of our
SAR system for intense, task–specific training for post–stroke
rehabilitation and present preliminary results.

Fig. 1. Bandit, the humanoid robot used in our experiments.

Fig. 2. The physical setup for the SAR rehabilitation experiments: Bandit
humanoid robot, wire puzzle, wands, and wearable motion sensor.

III. SAR SYSTEM FORMOTOR TASK PRACTICE

A. Physical Setup

The physical setup for our SAR system consisted of a
humanoid robot torso, an instrumented wire puzzle, and
wearable sensors. The robot used in our experiments is
the humanoid Bandit, developed at the USC Interaction
Laboratory in conjunction with BlueSky Robotics (Figure 1).
We have used Bandit in a variety of SAR interactions in the
past [17] [18] [6]. In this study, Bandit was used to guide
participants during the performance of a wire puzzle game
(Figure 2). Participants were seated at a desk facing Bandit
and the puzzle and had a selection of wands; the goal was
to guide the ring at the end of each wand along the wire
puzzle without contacting the wire (Figure 3). Bandit used
two different “coaching styles:” in one, Bandit instructedthe
participants which wand to use, while in the other, they chose
the wand themselves. Task difficulty was controlled by ap-
propriately selecting wands with smaller or larger diameters,
and puzzles with lower or higher complexity (wire curvature).
A Phidget InterfaceKit was used to electrically instrument
the puzzles; this allowed us to collect error (total number of
contacts between the ring and puzzle) and movement time
data.

Participant arm motion was monitored using an inertial
measurement unit (IMU) also developed in our laboratory
[22]. The IMU captured 3–axis each of accelerometer, rate
gyroscope, and magnetometer data. The complete experimen-
tal setup is shown in Figure 2.



Fig. 3. The wire puzzle and wand setup. Wands of different difficulties
are shown. Multiple puzzle shapes were also used. Participants guided the
wand along the wire puzzle from Start to End, and back, attempting to avoid
contact between the puzzle and the wand.

B. Software Framework

The software architecture of the SAR system was devel-
oped by Mead et al. [6] and consists of a task manager, a
task–oriented controller, and activity layers. Thetask man-
ager is the entry point and main system client; it manages
the robot behavior at the beginning of each interaction and
during transitions between tasks. Thetask–oriented controller
guided the user during the actual performance of the practice
task, kept track of the estimated user state, and determined
the appropriate feedback regarding how many errors were
made, or instructions for completing the puzzle. Finally, the
activity layers provide system input and output. Theuser
activity layer obtained input from the puzzle data (# of
errors and movement time) and the IMU data. Robot verbal
and non-verbal gestures, including providing encouragement,
knowledge of performance, pointing at wands, and nodding,
were controlled by therobot activity layer. These components
were used together to create a dynamic, adaptive interaction.

IV. M ETHODS

For our study, the autonomous humanoid SAR robot
Bandit initiated, motivated, and terminated the experimental
interactions. The experimenter’s only roles were the admin-
istration of consent forms, motor function assessments, and
surveys. After administering assessments, the experimenter
led the participants into the room with Bandit; after placing
the IMU on the participant’s wrist, the experimenter left
the room and allowed Bandit to run the remainder of the
experiment. At the completion of the 3 15–minute practice
sessions, the experimenter returned to the room, removed the
IMU, administered the exit survey, and ended the session. We
recruited 5 participants for the study. The cohort consisted
of 3 males and 2 females between the ages of 24 and 75.
All were individuals in the chronic phase of stroke recovery,
right–hand dominant and right–hand affected by stroke, with
UE Fugl–Meyer Assessment (FMA) scores between 31 and
60 (with 66 being the maximum possible score).

The practice schedule took place over 3 days with breaks
of 1–2 days between each session. On Day 1, motor as-
sessments were administered by a physical therapist. Sub-
sequent to this, participants practiced the task for 3 15–

minute sessions, with 10–minute breaks in between. Each
session consisted of many bouts, where a bout is defined
as completing the puzzle once, from Start to End and back.
The number of bouts in each session depended entirely on the
participant’s speed of motion. On Days 2 and 3, no motor
assessments were administered; the time was spent in the
3 15–minute sessions and breaks in between. A different
wire puzzle was used for each day, increasing in difficulty
on each day. The puzzle used on Day 3 was the longest
and had the most curves/bends, thereby requiring the most
pronation/supination at the wrist.

The robot provided instruction, feedback, and motivation.
The instruction was provided at the beginning of each ses-
sion, the beginning of each bout, and when users made errors.
At the beginning of each session, the robot described the rules
and goals of the wire puzzle task. At the beginning of each
bout, the robot told the user which wand to use, and pointed
to the wand with its right hand. Whenever the user made an
error, such as using the wrong wand or failing to moving
the wand in the right direction, the robot reiterated the task
instructions.

Feedback was provided at the end of each bout. The
robot provided knowledge of performance in the form of
movement time and the number of errors. For example, it
said: “You took five seconds, and touched the wire four
times.” In addition to verbalizing performance results, the
robot nodded its head with an amplitude proportional to the
user’s performance.

Motivation was provided in the form of verbalized en-
couraging statements (e.g., “good job”, “congratulations”).
Further, the robot made congratulatory gestures (e.g., moving
its arms up and down in a cheering motion) in response to
improved performance.

In addition to the measures described in the previous
section (puzzle and IMU data), we also collected fatigue
and psychometric data. We collected self–reported fatigue
measures at the start and end of each 15–minute session,
and survey data regarding the quality and quantity of the
robot gestures and verbalizations at the end of each day. We
also obtained data regarding the perceived usefulness of the
task with a survey based on the valid and reliable Intrinsic
Motivation Index scale [23].

V. DATA ANALYSIS AND RESULTS

Motion smoothness was used as a performance metric for
the participants. This feature has been used as a measure
of motion quality in the domain of motor control [24] [25].
Human motion can be broadly categorized intovoluntaryand
involuntarycomponents. Voluntary motion is intentional and
is characterized by the frequency band between 0.1 and 2Hz.
Involuntary motion includes jerk and tremor, best capturedby
the higher band, between 4 and 8Hz.

We analyzed accelerometry data for the 5 participants
over the 3–day experiment. The data were preprocessed
using a fifth order Butterworth low pass filter (15Hz cutoff
frequency), to remove high frequency noise, and a high pass
filter (0.1Hz cutoff frequency), to remove low frequency
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Fig. 4. Individual power spectrum data for all participants. Plots A and C depict the results for the moderate severity group in the 0.1–2Hz and 4–8Hz
frequency bands, respectively. Plots B and D depict the results for the mild severity group in the 0.1–2Hz and 4–8Hz frequency bands, respectively.

device drift components. Next, the power (in dB/Hz) was
computed using the formula in Equation 1:

Power=

∑
(F 2

ix + F 2

iy + F 2

iz)

N
(1)

whereFi are the Fast Fourier Transform (FFT) coefficients
for the x−, y−, and z−axis accelerometer signals, andN
is the number of FFT coefficients in a given frequency
band. This computation was performed for the 0.1–2Hz
low frequency band,Blf and the 4–8Hz high frequency
band,Bhf for each 15–minute practice session, and for each
participant. After consultation with a physical therapist, we
divided our participants into two groups: the two participants
in our moderate severityMoS group had UE FMA scores of
37 and 37 while the three participants in themild severity
(MiS) group had UE FMA scores of 46, 51, and 51. The
idea behind this segregation was to study the effect of SAR–
based intense motor task practice on the motor functionality
of participants with mild and moderate severity. It is known
that, according to the challenge point framework (CPF),
participant skill level interacts with functional task difficulty
and task performance [26]. We began by analyzing the power
values for each participant individually between Days 1 and
3. We used Days 1 and 3 to obtain a comparison between
performance with and without task familiarity. This is not
a learning study that focuses on the participants learning a
specific task over multiple sessions. Instead, the participants
performed different and increasingly more difficult wire puz-
zle tasks within each session and on each day. Performance
on Day 1 reflects ability with minimal task familiarity, and
can be considered their baseline performance. Performance
on Day 3 reflects abilities after having gained familiarity with
the task. In future studies, pre-/post–assessment measures of
functional ability will be used to establish a functional base-
line and outcome change for participants. Figure 4 depicts

the values for the low and high frequency band groups,Blf

andBhf , and the MoS and MiS groups. Note that individual
data are displayed; the MoS group consisted of participants
1 and 2 (p1, p2) and the MiS group consisted of participants
3, 4, and 5 (p3, p4, p5). The y−axis is power in [db/Hz],
and thex−axis is the intervention day. Each line represents
the change for a given 15–minute session. In Figure 4A,p1
has 3 lines representing power change between Day 1, first
15–minute block and Day 3, first 15–minute block; Day 1,
second 15–minute block and Day 3, second 15–minute block;
and Day 1, third 15–minute block and Day 3, third 15–minute
block.

When evaluating the voluntary motion band (0.1–2Hz),
we note that in the MoS group (Figure 4A), the amount
of power increases for all participants. With the MiS group
(Figure 4B), the results are mixed, with some instances of
power increase, and some of decrease. When looking at the
jerk band (4–8Hz), in the MoS group (Figure 4C), once again,
the amount of power increases (indicating motion is getting
less smooth). However, for the MiS group (Figure 4D), the
amount of power in this band decreases in all but one case.
This is indicative of the fact that motion for the MiS group
got smoother over the course of the 3 days.

To evaluate the relationships between these data, we per-
formed a repeated measures analysis of variance (ANOVA)
within the MoS and MiS groups. We first performed the
analysis for all data points, without regard for the frequency
bands. The results, shown in Table I, indicate significant cor-
relation. This would indicate that individuals in each group
had virtually identical performance on the task; however,
observations of video recordings of the practice sessions
indicated that some variability did exist. This led us to in-
vestigate the correlation for each groupwithin the frequency
bands we have described. The results of this analysis are
depicted in Table II. The results only indicate significant



TABLE I
ANOVA RESULTS FOR MILD AND MODERATE SEVERITY CORRELATION

Correlation Coefficient

p1×p2 0.9579
p3×p4 0.8976
p3×p5 0.9420
p4×p5 0.9479

TABLE II
ANOVA RESULTS FOR MILD AND MODERATE SEVERITY CORRELATION,

WITHIN FREQUENCY BANDS

Frequency band Correlation Coefficient

p1×p2 Blf 0.6088
p1×p2 Bhf 0.5779
p3×p4 Blf -0.0435
p3×p5 Blf 0.5552
p4×p5 Blf 0.1299
p3×p4 Bhf 0.1735
p3×p5 Bhf 0.0454
p4×p5 Bhf 0.7446

correlation in one instance (p4×p5). We discuss this result
in Section VI. We also wanted to investigate any group
effects. To do so, we computed the mean and variance of
power in the various bands for all members of each group
(MoS and MiS). Figure 5 depicts the changes in power in
Blf over the course of the 3 days for both groups. Figure 6
depicts the changes in power inBhf over the course of the 3
days. Visually, it appears that there are similar trends forboth
groups in the 0.1–2Hz band, and an inverse relationship in the
4–8Hz band. To evaluate this relationship, we performed a
repeated measures ANOVA on the mean values between both
groups. The results are shown in Table III, and indicate non–
significant positive correlation inBlf , and non–significant
negative correlation inBhf .
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Fig. 5. Power in the 0.1–2Hz frequency band for mild and moderate severity
individuals over the 3 day practice period.

TABLE III
ANOVA RESULTS COMPARING MEAN VALUES BETWEEN MILD AND

MODERATE SEVERITY GROUPS

Frequency band p-value

MoS×MiS Blf 0.207
MoS×MiS Bhf -0.432
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Fig. 6. Power in the 4–8Hz frequency band for mild and moderate severity
individuals over the 3 day practice period.

VI. D ISCUSSION

A. Changes in Voluntary Motion

The results depicted in Figures 5 and 6 indicate that, for
the MiS and MoS groups, the mean amount of power in the
voluntary motion band increased between days 1 and 3. If
we look at the individual data depicted in Figure 4, we see
that power in this band increased for all participants in the
MoS group, and only some of the MiS group. As indicated in
the literature, skill acquisition (or motor learning) has been
correlated with increased power in this frequency band. For
those who showed decreased power in this band, there was
no skill acquisition; this indicates that the participantswere
operating above or below the optimal challenge point, and
that no learning occurred.

The trend visible in Figure 5 indicates that a similar
mechanism may be at work in both the MoS and MiS groups.
For both groups, there is a net increase in power in this
band. The lack of significant correlation between the means
of the two groups is likely due to the small sample size; we
anticipate that with additional data, we will be able to further
validate this hypothesis.

B. Changes in Jerk/Involuntary Motion

As depicted in Figure 6, the MiS group showed decreased
power in the jerk frequency band. The MoS group, however,
showed increase in the amount of power in this band. There
was negative correlation between the groups (though not
statistically significant). This is likely due to the relative level
of task difficulty for the MoS group. The power values in
this band indicate that participants’ motion was not getting
smoother, and thus, there was no apparent motor learning
taking place in the MoS group.

Looking again at the individual performances in Figure 4D,
we can see that, for the MiS group, all instances excluding
one indicated a decrease in power. This is most compelling:
these results show that MiS individuals obtained useful
practice, indicated by improved motion quality (smoothness).
This could also indicate that MoS individuals were unable to
cope with the difficulty level, and motion quality decreased
over time.



C. Automated Robot–Guided Intervention

We reiterate here that the intervention was administered
completely autonomously by the SAR robot, based on ob-
servations of the user state obtained from the various sensor
modalities. This study thus shows that our SAR system can be
used to affect desirable behavior changes in some individuals
post–stroke, but studies with larger sample sizes are needed
to determine if the results are statistically significant. To
properly adapt the system, data from this study can be used to
characterize a range of UE FMA scores for which the task, as
designed, is appropriate. While this will be beneficial to the
population, it will also allow us to gain more insight into the
human–robot interaction, as the task will be more directly
matched to the participants’ challenge level. Evidence has
shown that maintaining an appropriate challenge level in
human–human interactions has a number of benefits, both
physical and psychological [26]. If we can more adequately
maintain challenge level, we can take advantage of these
benefits to strengthen SAR-guided interaction.

VII. C ONCLUSIONS

We have presented a socially assistive robot–guided inter-
action for motor task practice. The initial results from this
work have shown that this interaction, administered com-
pletely autonomously by the robot, effected motor changes
in the target population. Further validation is required to
determine if the outcomes have clinical significance, but we
believe that this adds support to the demonstrated potential
for the continued investigation of the use of SAR methods
in the administration of intense motor task practice. Future
work includes gesture assessment using metrics for trajectory
precision, velocity, and motion smoothness.
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