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Abstract. MicroRNAs (miRNAs) have recently been discovered as an
important class of non-coding RNA genes that play a major role in regu-
lating gene expression, providing a means to control the relative amounts
of mRNA transcripts and their protein products. Although much work
has been done in the genome-wide computational prediction of miRNA
genes and their target mRNAs, two open questions are how miRNAs
regulate gene expression and how to efficiently detect bona fide miRNA
targets from a large number of candidate miRNA targets predicted by ex-
isting computational algorithms. In this paper, we present evidence that
miRNAs function by post-transcriptional degradation of mRNA target
transcripts: based on this, we propose a novel probabilistic model that
accounts for gene expression using miRNA expression data and a set
of candidate miRNA targets. A set of underlying miRNA targets are
learned from the data using our algorithm, GenMiR (Generative model
for miRNA regulation). Our model scores and detects 601 out of 1,770
targets obtained from TargetScanS in mouse at a false detection rate of
5%. Our high-confidence miRNA targets include several which have been
previously validated by experiment: the remainder potentially represent
a dramatic increase in the number of known miRNA targets.

1 Introduction

Recent results show that there may not be many more mammalian protein-
coding genes left to be discovered [9]. As a result, one of the main goals in
genomics is now to discover how these genes are regulated. In the basic model
for gene regulation, transcription factors act to enhance or suppress the tran-
scription of a gene into messenger RNA (mRNA) transcripts. Recent evidence
points to the existence of an alternative, post-transcriptional mechanism for gene
regulation in which the abundances of transcripts and/or their protein products
are reduced. In particular, microRNAs (miRNAs), a subclass of so-called non-
coding RNA genes [8], have been identified as such a component of the cell’s
regulatory circuitry. miRNA genes do not go on to produce proteins, but in-
stead produce short, 22-25 nt-long mature miRNA molecules. These then target
mRNA transcripts through complementary base-pairing to short target sites.



miRNAs are believed to either trigger the degradation of their targets [3,20] or
repress translation of the transcript into protein [1]. There is substantial evidence
that miRNAs are an important component of the cellular regulatory network,
providing a post-transcriptional means to control the amounts of mRNA tran-
scripts and their protein products. Previous work has focused primarily on the
genome-wide computational discovery of miRNA genes [5, 19, 23] and their cor-
responding target sites [13,16,17,24]. Experiments have shown that multiple
miRNAs may be required to regulate a targeted transcript [16] and that miR-
NAs can regulate the expression of a substantial fraction of protein-coding genes
with a diverse range of biological functions [1,4].

Although many miRNA genes and target sites have been discovered by com-
putational algorithms [5,6], there remain two open problems in miRNA ge-
nomics. One is to determine whether miRNAs regulate their targets through
the post-transcriptional degradation mechanism, through the translational re-
pression mechanism, or possibly both. Another problem is the fact that there
are relatively few miRNA targets which have experimental support [13,16]. The
computational algorithms used to find targets have limited accuracy [16,17] due
to the short lengths of miRNA target sites and thus empirical methods are
needed to tease out true miRNA targets from false ones. Experimental valida-
tion of targets is currently done through in wvitro reporter assays [13, 18] which
provide some measure as to whether the miRNA binds to a target site. One con-
cern with this type of assay is that a miRNA-target pair validated in vitro might
not be biologically relevant inside the cell [1]. In addition, assays performed on
a single miRNA-target pair might also erroneously reject the pair given that the
combinatorial nature of miRNA regulation isn’t taken into account and many
miRNAs may be required to observe down-regulation of the targeted transcript.
Finally, such assays are relatively expensive and time-consuming to conduct, so
that only a handful of targets have been validated using this method. Expres-
sion profiling has been proposed as an alternative method for validating miRNA
targets [20], but this has the problem of becoming intractable due to the combi-
natorial nature of miRNA regulation in which the action of many miRNAs must
be taken into account.

While computational sequence analysis methods for finding targets and ex-
pression profiling methods have their own respective limitations, we can bene-
fit from the advantages of both by combining the two methods [11] to detect
miRNA targets. Given the thousands of miRNA targets being output by target-
finding programs [13,16,17] and given the ability to profile the expression of
thousands of mRNAs and miRNAs using microarrays [12,21], we motivate a
high-throughput computational technique for detecting miRNA targets in which
both sequence and gene expression data are combined. The pipeline for detect-
ing targets is shown in Fig. 1: a set of candidate miRNA targets is first gener-
ated using a target-finding program. Our model uses this set of candidates to
account for gene expression using miRNA microarray expression data while tak-
ing into account the combinatorial nature of miRNA regulation. In this paper,
we first address the question as to how miRNAs regulate gene expression: we
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Fig. 1. Pipeline for detecting miRNA targets using GenMiR: a set of candidate targets
is generated using a target-finding program (e.g.: TargetScanS). The candidates, along
with expression data for mRNAs and miRNAs, are input into the GenMiR probability
model. The output of the model consists of a set of miRNA targets which are well-
supported by the data.

GenMiR

will present evidence in favor of the post-transcriptional degradation model for
miRNA regulation. From this, we will formulate a probabilistic graphical model
in which miRNA targets are learned from expression data. Under this model,
the expression of a targeted mRNA transcript can be explained through the reg-
ulatory action of multiple miRNAs. Our algorithm, GenMiR (Generative model
for miRNA regulation), learns the proposed model to find a set of miRNA tar-
gets which are biologically relevant. We will show that our model can accurately
identify miRNA targets from expression data and detect a significant number of
targets, many of which provide insight into miRNA regulation.

2 Post-transcriptional degradation (PTD) VS.
translational repression (TR)

We will begin by addressing the question of whether miRNAs regulate gene ex-
pression by post-transcriptional degradation of target mRNAs [3] or by repress-
ing translation of a targeted transcript [1] into proteins. In the first scenario,
we expect that both mRNA expression levels and protein abundances will be
decreased through the action of a miRNA. In the second scenario, protein abun-
dances would be decreased without any necessary change in the expression of
their parent mRNA. To determine which of the two mechanisms of miRNA reg-
ulation is most likely given biological data, we will present two simple Bayesian
networks for the proposed mechanisms, shown in Figure 2a. Each network con-
sists of a directed graph where nodes representing both miRNA and mRNA
expression measures as well as protein abundances are linked via directed edges
representing dependencies between the 3 variables. Thus, each network encodes
a different set of dependencies between miRNA, mRNA and protein measures:



our aim here is to see which set of dependencies best describes biological reality.
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Fig. 2. (a) Bayes nets for degradation and repression regulatory mechanisms: each
network presents a particular set of dependencies between miRNA, mRNA and protein
measures (b) Scatter plot of scores obtained from both models for each miRNA-mRNA-
protein triplet: most of the data is better accounted for by the PTD model than by
the TR model.

To do so, we examined data profiling the expression of 78 mouse miRNAs [2]
with mRNA expression data [25] paired to protein mass-spectrometry data [15]
consisting of the measurements of 3,080 mRNA-protein pairs across 5 tissues
common to the 3 data sets. All the measured values were then ranked across
tissues to get discrete rank values. We then used a set of human miRNA targets
output from the target-finding program TargetScanS [17,26]. These consisted
of a total of 12,839 target sites in human genes which were identified based
both on miRNA-target site complementarity as well as conservation in 3-UTR
regions across 5 mammalian species (human, mouse, rat, dog and chicken). After
mapping these targeted transcripts to the mouse mRNAs and miRNAs in the
above data using the Ensembl database and BLAT [7], we were left with 473
candidate miRNA-target interactions involving 211 unique mRNA-protein pairs
and 22 unique miRNAs.

With the above data in hand, we gathered statistics over mRNA, protein and
miRNA measurements x, y, z across tissues t = 1, - - - , 5 for each putative miRNA
targets. We then scored the two regulatory models for each miRNA/mRNA/
protein triplet using Bayesian scores [10] computed as

BayesianScore(PT D) Zlog( (ye|ze) (xt|zt)p(zt))

BayesianScore(T'R) Zlog( (ye|ze, 2¢)p (xt,zt)) (1)

where each conditional probability term is a multinomial probability averaged
over a Dirichlet prior distribution. These scores correspond to the log-likelihood



of a miRNA/mRNA /protein data triplet given one of the two models for miRNA
regulation. Figure 2b shows a scatter plot of the 2 scores for each mRNA-miRNA-
protein triplet: we can see that in the vast majority of cases, the PTD model
offers a far better fit to our data than the TR model, providing good evidence
in favor of the PTD model within the current debate of whether miRNAs act by
degrading targets or by repressing translation [1, 3]. With this result in hand, we
will now motivate the use of both mRNA and miRNA expression data to detect
miRNA targets.

3 Exploring miRNA targets using microarray data
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Fig. 3. Rank expression profiles of targeted mRNAs and corresponding miRNAs: each
profile measures expression across 17 mouse tissues. For targeted mRNA transcripts
(top row), a rank of 17 (black) denotes that the expression in that tissue was the highest
amognst all tissues in the profile whereas a rank of 1 (white) denotes that expression in
that tissue was lowest amongst all tissues. miRNA intensities are shown using a reverse
colormap (bottom row), with a rank of 17 (white) denoting that the expression was
highest and a rank of 1 (black) denotes that expression in that tissue was lowest. Each
miRNA targets and down-regulates multiple mRNA transcripts and a given mRNA
transcript may be targeted by multiple miRNAs.

To explore putative relationships between mRNAs and miRNAs, we used the
above microarray expression data profiling the expression of a total of 41,699
mRNA transcripts and 78 miRNAs across 17 tissues common to both data sets:
expression values consisted of arcsinh-normalized intensity values in the same
range, with negative miRNA intensities were thresholded to 0. From the above



set of 12, 839 TargetScanS targets, 1,770 are represented across this set of miR-
NAs and mRNAs in the form of 788 unique mRNAs and 22 unique miRNAs: the
set of putative miRNA-mRNA pairs are shown in Fig. 3. Given the expression
data and a set of putative targets, we looked for examples of down-regulation in
which the expression of a targeted mRNA transcript was low in a given tissue
and the targeting miRNA was highly expressed in that same tissue.

Among miRNAs in the data from [2], miR-16 and miR-205 are two that are
highly expressed in spleen and embryonic tissue respectively (Fig. 3). The cu-
mulative distribution of expression of their targeted mRNAs in these two tissues
is shown in Fig. 4. The plots show that the expression of targeted mRNAs is
negatively shifted with respect to the background distribution of expression in
these two tissues (p < 1077 and p < 0.0015 using a one-tailed Wilcoxon-Mann-
Whitney test, Bonferroni-corrected at o = 0.05/22). This result suggests that
regulatory interactions predicted on the basis of genomic sequence can be ob-
served in microarray data in the form of high miRNA /low targeted transcript
expression relationships. While it is feasible to find such relationships for a single
miRNA using an expression profiling method [20], to test for the more realistic
scenario in which mRNA transcripts are down-regulated by multiple miRNAs,
we would require a large number of microarray experiments for a large number
of miRNAs. Additional uncertainty would be introduced by miRNAs that are
expressed in many tissues. An alternative is to use data which profiles the ex-
pression of mRNAs and miRNAs across many tissues and formulate a statistical
model which links the two using a set of candidate miRNA targets. A sensible
model would account for negative shifts in tissue expression for targeted mRNA
transcripts given that the corresponding miRNA was also highly expressed in
the same tissue. By accounting for the fact that miRNA regulation is combi-
natorial in nature [4,16], we will construct such a model which will hopefully
capture the basic mechanism of miRNA regulation. The model takes as inputs a
set of candidate miRNA targets and expression data sets profiling both mRNA
transcripts and miRNAs: it then accounts for examples of down-regulation in
the expression data to output a subset of the candidate miRNA targets which
are well-supported by the data.

4 A probabilistic graphical model for miRNA regulation

In this section, we describe our model of miRNA regulation. Under this model,
the expression of a targeted transcript can be reduced by the action of one
or many miRNAs, each of which will be allowed to reduce it by some fixed
amount. Conditioned on observing high expression of one or many miRNAs,
the expression of a targeted transcript is negatively shifted with respect to a
background level which is to be estimated. The particular miRNAs that will
participate in targeting a transcript will be selected using a set of unobserved
binary indicator variables; the problem of detecting miRNA targets will therefore
consist of inferring which of these indicator variables are turned on and which
are turned off given observed data.

Consider two separate expression data sets profiling N mRNA transcripts
and M miRNAs across T tissues. Let indices ¢ = 1,--- ,N and j = 1,--- M
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Fig. 4. Effect of miRNA negative regulation on mRNA transcript expression: shown are
cumulative distributions for (a) Expression in embryonic tissue for mRNA transcripts
targeted by miR-205 (b) Expression in spleen tissue for mRNA transcripts targeted
by miR-16. A shift in the curve corresponds to down-regulation of genes targeted by
miRNAs. Targets of miR-205 and miR-16 (solid) show a negative shift in expression
with respect to the background distribution (dashed) in tissues where miR-205 and
miR-16 are highly-expressed.

denote particular mRNA transcripts and miRNAs in our data sets. Let x; =
[2i1 - 2;7]" and z; = [z;1--- zj7]T be the expression profiles over the T tissues
for mRNA transcript i and miRNA j such that z; is the expression of the i*"
transcript in the t'* tissue and zj; is the expression of the j* miRNA in the
same tissue. Suppose now that we are given a set of candidate miRNA-target
interactions in the form of an N x M binary matrix C where ¢;; = 1 if miRNA
J putatively targets transcript ¢ and ¢;; = 0 otherwise. The matrix C therefore
contains an initial set of candidate miRNA targets for different miRNAs: these
are putative miRNA-mRNA regulatory relationships within which we will search
for cases which are supported by the microarray data.

Due to noise in the sequence and expression data, the limited accuracy of
computational target-finding programs as well as incomplete knowledge of the
regulatory network of the cell, there is uncertainty as to which miRNA targets
are in fact biologically relevant. We can represent this uncertainty using a set of
unobserved binary random variables indicating which of the candidate miRNA
targets are well supported by the data. We will assign an unobserved random
variable s;; to each candidate miRNA-target interaction such that s;; = 1 if
miRNA j genuinely targets mRNA transcript . Then, the problem of detecting
miRNA targets can be formulated in terms of finding a subset {(¢,5) € Cls;; =
1} such that miRNA-target interactions in this subset are supported by the
observed expression data.

We can now describe a relationship between the expression of a targeted
mRNA transcript and a miRNA in tissue t:

E[Iit|5ij = 1,th,@] = Ut — )\ijt, )\j >0 (2)
Elzit|si; =0, 251, 0] = e



where )\; is some positive regulatory weight that determines the relative amount
of down-regulation incurred by miRNA j, u; is a background expression pa-
rameter and @ consists of the \; and p; parameters. Thus, the above explicitly
models the relationship observed in Fig. 4 in which the expression of a tar-
geted transcript is negatively shifted with respect to the background given that
a miRNA is highly expressed. Thus, miRNAs can never directly increase the
expression of their target transcripts, in accordance with current evidence about
their functions [1, 20].
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Fig. 5. Bayesian network used for detecting miRNA targets: each mRNA transcript is
assigned a set of indicator variables which select for miRNAs that are likely to regulate
it given the data.

We can extend the above to allow for multiple miRNAs to cooperate in tuning
the expression of a targeted transcript. Here, each miRNA is allowed to decrease
the expression of its target transcript by some relative amount A; such that

Elwal{sij} {2t} 0] = pe — Y _ Njsijzje,  Aj >0
i

We are now able to present our model for miRNA regulation: we will do
so using the framework offered by probabilistic graphical models, where we can
explicitly represent dependencies between observed and unobserved variables as
well as model parameters using a directed graph. If we denote the prior targeting
probabilities as p(s;; = 1|¢;; = 1) = m and S as the set of s;; variables, we can
write the probabilities in our model given the expression of the miRNAs and a
set of candidate miRNA targets as

p(XZ|Z,S,@) :N(Xi;u—zj)\jsijzj,E), Aj >e>0

p(8|C,0) =11(; , P(si51C. 0) = I1(i g 0(siss ) I jyeo ™ (1 — 7)1 7%
p(X,8|C, Z,6) = [[, p(xi|Z,S,0) II, p(s:|C. 6) 3)



where € is a lower bound on the regulatory weights A;, 0(-,-) is the Dirac delta
function, X and Z are the sets of observed expression profiles for mRNAs and
miRNAs, C is the set of candidate miRNA targets and © = {u, 3, 7, {)\j}jﬂil}
is the set of model parameters containing the background expression g and
covariance matrix X, the prior targeting probability 7 and the miRNA regulatory
weights A;. The parameter € addresses the constraint that miRNAs cannot make
a null contribution to the expression of its target given that the interaction
between the miRNA and its target is valid.

The above model links the expression profiles of mRNA transcripts and miR-
NAs given a set of candidate miRNA targets: within these, we will search for
relationships which are supported by the data by inferring the settings for the
unobserved s;; variables. Fig. 5 shows the Bayesian network corresponding to
Equation 3: each mRNA transcript in the network is assigned a set of indicator
variables which select for miRNAs that are likely to regulate it given the data.

Having presented the above probabilistic model for miRNA regulation, we
are now faced with the task of inference, or computing the posterior probability
p(sij|xi, Z,C,0) o g\, P(%i,S|Z, C, ) that a given miRNA target is valid
conditioned on the data. Exact inference would require summing over a number
of terms exponential in the number of miRNAs. Unfortunately, this summation
will be computationally prohibitive for transcripts which are targeted by a large
number of miRNAs. Thus, we will turn instead to an approximate method for
inference which will make the problem tractable.

5 Variational learning for detecting miRNNA targets

For variational learning [14, 22] in a graphical model with latent variables H and
observed variables £, the exact posterior p(H|€) is approximated by a distri-
bution ¢(H;¢) parameterized by a set of variational parameters ¢. Variational
inference therefore consists of an optimization problem in which we optimize the
fit between q(H; ¢) and p(H,E) with respect to the variational parameters ¢.
This fit is measured by the Kullback-Leibler (KL) divergence D(q||p) between
the ¢ and p distributions, which can be written as

q(H; )
p(H,E)

q(S|C)
p(X,S|C,Z,0)

D(qllp) = /H q(H; ) log dH = q(S|C)log
S

where X, Z, C and S have been substituted as the observed and latent variables
& and 'H respectively.

The approximating distribution can be further simplified via a mean-field de-
composition of the g-distribution in which all the latent s;; variables are assumed
to be independent and thus

q(S|C) = Hq(sij|C) = H 5;‘;1(1 Bt n

(i,9)€eC

where the variational parameters 3;; will be fitted to the observed data X, Z, C.
We will therefore approximate the intractable posterior p(s;j|x;, Z, C, ©) with



a simpler distribution ¢(s;;|C) which will make inference tractable. If we write
the expected sufficient statistics u;, W and V as

> AiBiz (5)

J:(i,4)€C

WZNZ(Xi_(N_ui))(Xi_(N_ui))T
Ver Y X G- e

i g:(i,j)€C

then the KL divergence D(g||p) can be written simply as

D(qllp) = > (ﬁijlog@ﬂ ﬁu)log ﬁ”) - log[X]

(i,5)eC
N -1
+ 7tr(2 (W + V)) + const. (6)

Approximate inference and parameter estimation will be accomplished via
the variational EM algorithm [14,22], which iteratively minimizes D(q||p) with
respect to the set of variational parameters (E-step) and the model parame-
ters (M-step) until convergence to a local minimum. Thus, taking derivatives of
D(q||p) and setting to zero yields the following updates:

Variational E-step:

v(i,j) € C,
Bij ™ Ts1 Aj
=T | A (ki (= X MbBuzm+F2)
I kj:(i,k)€C

(7)

Variational M-step:

B ) )

> = diag(W + V)

_ > Bz B (Xi — (B = Xzjiimec )‘kﬁikzk))
Vi, Aj=max| — S Gy 1z, , €
3 715y .
. Z(i,j)ec ﬁij
~ card(C)




where the expected sufficient statistics u;, W and V are obtained from the E-
step. Now that we have defined the update equations for performing inference
and estimating model parameters, we will use the above algorithm to learn a
subset of candidate miRNA targets which are biologically relevant.

6 Results

We can now turn to the problem of detecting miRNA targets. We start from
the above set of 1,770 TargetScanS 3’-UTR targets and use the microarray data
from [2] and [25] to learn our model. The GenMiR algorithm was initialized
with 8;; = 7 = 05 V(4,j) € C, \; =0.01Vj =1,---, M and the parameters
w, X were initialized to the sample mean and covariance of the mRNA expression
data. The algorithm was run for 200 iterations or until convergence with e = 0.01.
Once our model has been learned from the data, we assign a score to each of the
candidate interactions (i, ) € C according to

Score(i,j) = logy, < Bij ) (10)
1 —Bi;

Thus a miRNA-mRNA pair is awarded a higher score if it was assigned a higher

probability of being bona fide under our model given the data.

To assess the accuracy of our model, we performed a series of permutation
tests in which we learned scores from data where the mRNA transcript labels
were permuted, under the null hypothesis is that there are no regulatory in-
teractions between mRNAs and miRNAs. We generated 100 data sets in which
transcript labels were permuted and we learned our model on each data set. The
resulting empirical cumulative distributions over scores for both the permuted
and unpermuted data are shown in Fig. 6a. The plot indicates that many of
the candidate miRNA targets may be bona fide, as significantly more miRNA
targets can be learned from the unpermuted data than from the permuted data
(p < 10724, WMW).

To make a set of predictions, we can threshold the score: for different values
of this threshold, we get a certain number of false detections. We can estimate
the sensitivity and specificity of each threshold value by comparing the num-
ber of miRNA targets with score above the threshold to the average number of
targets corresponding to the permuted data which also have a score above the
threshold. By varying the threshold, we obtain the curve shown in Fig. 6b which
relates the fraction of candidate targets detected ({# of candidate targets de-
tected}/{# of candidate targets}) to the average false detection rate ({Average
# of permuted targets detected}/{# of candidate targets}) for different thresh-
old values, where the average false detection rate is computed for each threshold
value using the average fraction of permuted miRNA-targets that are detected
over the 100 permutations. Setting the threshold score to —0.022 to control for
an average false detection rate of 5%, we have detected a total of 601, or 34% of
the 1,770 TargetScanS candidates. This suggests that many biologically relevant
miRNA targets can be found in our expression data and that our model is able
to accurately find them.



=
[

o
a

o
o)

©

Detected
miRNA
targets

Cumulative frequency
o
N © o 9 ©
o
I
(2]

Fraction of targets detected

; 0.4
.8 . AUCG, i = 0-87
0.75 ,," 0.2 AUC e = 051
-0.1 -0.05 0 0.05 0.1 0 0.2 0.4 06 08 1
Score Average false detection rate
(a) (b)

Fig. 6. (a) Empirical cumulative distribution of scores for the permuted data (dashed)
and unpermuted data (solid); all scores above the threshold score correspond to de-
tected miRNA targets (b) Fraction of candidate targets detected ({# of candidate tar-
gets detected}/{# of candidate targets}) VS. average false detection rate ({Average
# of permuted targets detected}/{# of candidate targets}) using both GenMiR scor-
ing (circle) and naive Pearson correlation scoring (cross), with areas under the curves
(AUC) shown.

While the above results are encouraging, we might wonder as to whether
our model offers any real advantage over naively detecting miRNA targets us-
ing Spearman correlation, where we would expect that the expression profiles
corresponding to valid miRNA-mRNA pairs are anti-correlated across tissues.
By looking at candidate miRNA targets independently of one another using this
score, we obtain the curve shown in Fig. 6b. The plot shows that by looking
at a single miRNA-mRNA pair and ignoring the action of other miRNAs, the
naive method leads to poor performance. In contrast, the GenMiR algorithm
can detect a higher number of candidate miRNA targets for a given number of
false detections by taking into account multiple miRNAs per targeted transcript,
obtaining a good overall fit to the data.

6.1 Biologically relevant targets detected by GenMiR

Within our set of high-confidence miRNA targets, we observe some of the small
number of targets that have experimental support (Fig. 7). In particular, we
correctly predict the interaction between miR-101 and the mouse homolog of
the human N-MYC gene [18], as well as the relationship between miR-92 and
MAP2K4 [18], a gene involved in signal transduction. In addition, we recovered
7 mouse homologs of human transcripts that were shown to be downregulated
[20,26] in brain by miR-124a.

The remainder of our miRNA targets potentially represent a dramatic in-
crease in the number of known targets. The full list of miRNA targets detected
using GenMiR and their corresponding scores is available on the project web
page (see Appendix), along with GO annotations. The broad range of GO anno-
tations for our miRNA targets further reinforces the prevalent hypothesis [1, 4]
that miRNAs indeed regulate a wide variety of biological processes. Given the
above results, we believe that most of these targets are biologically relevant and
provide insight into miRNA regulation.
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Fig. 7. Rank expression profiles of experimentally validated miRNA targets across 17
mouse tissues which are also detected by our model. For targeted mRNA transcripts, a
rank of 17 (black) denotes that the expression in that tissue was the highest amongst
all tissues in the profile whereas a rank of 1 (white) denotes that expression in that
tissue was lowest amongst all tissues. Targeting miRNA intensities are shown using a
reverse colormap, with a rank of 17 (white) denoting that the expression was highest
and a rank of 1 (black) denotes that expression in that tissue was lowest.

7 Discussion

In this paper we have presented evidence that miRNAs indeed regulate gene
expression by degrading their target transcripts. Using this as a foundation,
we have developed GenMiR, a novel probabilistic model and learning algorithm
for detecting miRNA targets by combining candidate targets with a model for
mRNA and miRNA expression. Our model accounts for both mRNA and miRNA
expression microarray data given a set of candidate targets and learns the un-
derlying set of biologically relevant miRNA targets. We have shown how to learn
the model from expression data: the learned model has been shown to provide a
good representation of miRNA regulation and can be used to accurately identify
miRNA targets from expression data.

Our model is the first to explicitly use expression data and the combinatorial
aspect of miRNA regulation to detect miRNA targets. Previous work done in [24]
has focused on de novo finding of targets based on sequence and then associating
miRNAs to their activity conditions through mRNA expression data alone. Our
work differs from [24] in that we use observed miRNA expression to detect
miRNA targets, whereas the model from [24] did not detect targets on the basis of
miRNA expression data. In contrast to that method, we are explicitly modeling
the generative process for mRNA expression given both miRNA expression and
a set of candidate targets to perform detection: our model also explicitly takes
into account the influence of multiple miRNAs on the expression of a single
targeted mRNA transcript, an important feature which the model of [24] lacks.

We note that there are many sources of noise in our pipeline for detecting
miRNA targets: these include the significant amounts of noise in the microarray



data sets and different hybridization conditions for the two microarray experi-
ments. Additional noise is introduced by errors in the human genomic sequence
data used to find the candidate targets, false positives within the set of can-
didate targets and the lossy mapping between the human and mouse genomes
when mapping targets to our data. As a result, the fraction of candidate miRNA
targets (34%) that we detect in our mouse expression data is surprisingly high.
Given that we can accurately detect many miRNA targets in the presence of
abundant noise using a relatively simple model, we can think of several ways in
which we could extend the model to mitigate these sources of uncertainty.

We could learn from expression data given candidate miRNA targets from
several target-finding programs and examine over-represented high-scoring tar-
gets. We could also relax the current assumption that the entire population of
genes is generated from a single background expression profile: instead, we could
model the background expression of co-expressed groups of genes. We expect that
extending the model along these dimensions will greatly increase the accuracy
with which we can identify biologically relevant miRNA targets from expression
data and we are actively pursuing these ideas. In closing, our model provides a
probabilistic framework for finding miRNA targets which uses microarray data.
The model makes significant progress towards understanding the functional ge-
nomics of miRNAs, providing insight into a key mechanism of gene regulation.
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9 Appendix

A supplementary table containing all detected miRNA targets and corresponding
human gene identifiers can be found at http://www.psi.toronto.edu/  GenMiR
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