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1.1 INTRODUCTION

Finding optimal solutions is in general computationally intractable for many com-
binatorial optimization problems, e.g., those known as NP-hard [54]. The classical
approach for dealing with this fact was the use of approximation algorithms, i.e., re-
laxing the goal from finding the optimal solution to obtaining solutions within some
bounded distance from the former [61]. Unfortunately, it turns out that attainable
bounds in practice (that is, at a tenable computational cost) are in general too far
from the optimum to be useful in many problems. The days in which researchers
struggled to slightly tighten worst-case bounds that were anyway far from practical,
or in which finding a PTAS (let alone a FPTAS) for a certain problem was considered
a whole success are thus swiftly coming to an end. Indeed, two new alternative lines
of attack are being currently used to treat these difficulties. On one hand, a new
corpus of theory is being built around the notion of fixed-parameter tractability that
emanates from the field of parameterized complexity [40][41]. On the other hand,
metaheuristics approaches are being increasingly used nowadays. Quoting [27], the
philosophy of these latter techniquestiy to obtain probably optimal solutions to

your problem, for provably good solutions are overwhelmingly hard to obta8€e

also [27][97] for some prospects on the intersection of both fields (parameterized
complexity and metaheuristics).

Focusing on the latter techniques, metaheuristics approaches can be broadly cat-
egorized into two major classes: single-solution search algorithms (also known
as trajectory-based or local-search based algorithms), and multiple-solution search
algorithms (also-known as population-based or —arguably stretching the term— evo-
lutionary algorithms). Examples of the former class are descent local search (LS)
[109], greedy heuristics (GH) [81], simulated annealing (SA) [72], or tabu search
(TS) [56]. Among the latter class, one can cite genetic algorithms (GA) [63], evolu-
tion strategies (ES) [115], genetic programming (GP) [74], ant colony optimization
(ACO) [22], scatter search (SS) [55], estimation of distribution algorithms (EDAS)
[79], and others. We refer the reader to [23][58][108][116] for good overviews of
metaheuristics.

Over the years, interest in metaheuristics has risen considerably among researchers
in combinatorial optimization. The flexibility of these techniques makes them prime
candidates for tackling both new problems and variants of exiting problems. This fact,
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together with their remarkable effectiveness (not to mention the algorithmic beauty of
the paradigm), acted as a major attractor of the research community attention. In this
expanding scenario, the communal confidence on the potential of these techniques had
to endure a crucial test in the middle of the 1990s when some important theoretical
results were released. To be precise, the formulation of the so-ddtelree-
Lunch Theorem(NFL) by Wolpert and Macready [139] made it definitely clear
that a search algorithm strictly performs in accordance with the amount and quality
of the problem knowledge they incorporate. However, far from undermining the
confidence on the usefulness of metaheuristics, this result contributed to render
clear the need for adopting problem-dependent strategies within these techniques.
Following the terminology of L. Davis [38], who together with other researchers
pioneered this line of work long before these results became public, we use the
term hybrid metaheuristics to denote to these techniques. Here, the term “hybrid”
refers to the fact that metaheuristics are typically endowed with problem-dependent
knowledge by combining them with other techniques (not necessarily metaheuristic).

The best results found for many practical or academic optimization problems
are obtained by hybrid algorithms. Combinations of algorithms such as descent
local search, simulated annealing, tabu search, and evolutionary algorithms have
provided very powerful search algorithms. The introduction of parallelism plays a
major role in these hybrid algorithms. The reason is twofold: (i) the use of parallel
programming techniques grants access to utilizing highly-powerful computational
platforms (multiprocessor systems, or distributed networks of computers), and (ii)
parallelism opens a plethora of possibilities for attaining new hybrid algorithms, of
increased search capability.

We will here present an overview of these parallel hybrid metaheuristics, focusing
both on algorithmic and computational aspects. Previously, and for the sake of
self-containedness, sequential hybrid metaheuristics will be briefly surveyed.

1.2 HISTORICAL NOTES ON HYBRID METAHEURISTICS

The hybridization of metaheuristics in sequential scenarios dates back to the origins of
the paradigm itself, although it was initially considered as a minor issue (at least within
the majority of the evolutionary computing community). Before the popularization
of the NFL Theorem, general-purpose (evolutionary) metaheuristics were believed
to be quasi-optimal searchers, globally better than other optimization techniques.
All theoretical nuances that our current understanding of the issue have brought (see
e.g. [42, 138]) notwithstanding, these results stress the fact that hybridizing (in its
broad sense of problem-augmentation) is determinant for achieving top-performance.
With hindsight, the group of researchers that advocated for the centrality of this
hybridization philosophy were on the right track. Let us start by providing some
historical background on the development of the topic.

One of the keystones in the development of hybrid metaheuristics was the con-
ception ofmemetic algorithm$§106] (MAs). This term was given birth in the late
1980s to denote a family of metaheuristics that tried to blend several concepts from
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tightly separated —at that time— families such as EAs and SA. The adjentivestic
comes from the terrmeme coined by R. Dawkins [39] to denote an analogous to
the genein the context of cultural evolution. One of the first algorithms to which
the MA label was assigned dates from 1988 [106], and was regarded by many as a
hybrid of traditional genetic algorithms (GAs) and simulated annealing (SA). Part of
the initial motivation was to find a way out of the limitations of both techniques on
a well-studied combinatorial optimization problem thEN EUCLIDEAN TRAvV-
ELING SALESMAN (ETSP) problem. Less than a year later, in 1989, Moscato and
Norman identified several authors who were also pioneering the introduction of
heuristics to improve the solutions before recombining them [59][100] (see other ref-
erences and the discussion in [95] and [97]). Particularly coming from the GA field,
several authors were introducing problem-domain knowledge in a variety of ways.
In [95] the denomination of memetic algorithms was introduced for the first time.
It was also suggested thetiltural evolutioncan be a better working metaphor for
these metaheuristics to avoid the biologically constrained thinking that was restricting
progress at that time. See also [96][97][98].

L. Davis was other of the champions of this hybrid approach to optimization. He
advocated for the inclusion of problem-dependent knowledge in genetic algorithms
by means ofid hocrepresentations, or by embedding specialized algorithms within
the metaheuristic. He followed this latter approach in [94], where backpropagation
[120] was used as a local-searcher within a genetic algorithm aimed at optimizing
the weights of a neural network. This algorithm qualifies as a memetic algorithm,
and constitutes an approach that has been used by many other researchers in this
context. We refer to [25] for a general survey of these previous works, and an
empirical comparison of GA, ES, and EDAs hybridized with backpropagation. Davis
also studied the combination of GAs with the conspicuous k-means algorithm for
classification purposes [69][70]. Regardiad hocrepresentations, he provided
strong empirical evidence on the usefulness of utilizing problem-specific non-binary
representations within GAs, e.g., real-coded representations. These guidelines are
well-illustrated in [38].

It must be noted that an important part of the metaheuristic community —
traditionally associated to the field of operations research (OR)— grew in these years
in relative isolation from the EC community. They were thus largely unconstrained
by disputable theoretical disquisitions, or by the dominant orthodoxy. This allowed a
more pragmatic view of the optimization process, free of biologically-oriented think-
ing. One of the most distinctive and powerful fruits of this line of research is scatter
search. The foundations of this population-based metaheuristic can be traced back to
the 1970s in the context of combining decision rules and problem constraints [55].
Despite some methodological differences with other population-based metaheuristics
(e.g., SS relies more on deterministic strategies rather than on randomization), SS
shares some crucial elements with MAs: both techniques are explicitly concerned
with using all problem-knowledge available. This typically results in the use of
problem-dependent combination procedures and local-improvement strategies, see
[57][78].
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The same pragmatic view that gives rise to SS can be found in the origins of asyn-
chronous teams (A-Teams), back in the 1980s [131]. These techniques generalized
the notion of population from a set of solutions to a set of any relevant structures
for the problem at hand (e.g., solutions and partial solutions may co-exist). This
set of structures acts as a shared memory, much like it is done in blackboard sys-
tems [104]. A set of agents operate on this shared memory following a predefined
data-flow in order to produce new structures. These agents are assimilable to the
operators of population-based metaheuristics, and as in MAs and EAs may comprise
local-improvers, constructive heuristics, and selection and replacement procedures.
See [130] for more details.

1.3 CLASSIFYING HYBRID METAHEURISTICS

It is possible to fit the vast majority of hybrid metaheuristics into some of the major
hybrid templates described in the previous section. Nevertheless, it is worth trying
to provide a more systematic characterization of hybrid metaheuristics, so that the
structure of the algorithm can be easily grasped. Several authors have attempted such
classification schemes. We will here address two of these.

E.-G. Talbi [128] proposed a mixed hierarchical-flat classification scheme. The
hierarchical component captures the structure of the hybrid, whereas the flat compo-
nent specifies the features of the algorithms involved in the hybrid. More precisely,
The structure of the hierarchical portion of the taxonomy is shown in the upper part
of Figure 1.1. At the first level, we may distinguish between low-level and high-level
hybridizations. The low-level hybridization addresses the functional composition of
a single optimization method. In this hybrid class, a given function of a metaheuristic
is replaced by another metaheuristic. On the contrary, in high-level hybrid algorithms,
the different metaheuristics are self-contained. We have no direct relationship to the
internal workings of a metaheuristic. As to relay hybridization, a set of metaheuris-
tics is applied one after another, each using the output of the previous as its input,
acting in a pipeline fashion. On the other hand, teamwork hybridization represents
cooperative optimization models, in which we have many parallel cooperating agents,
where each agent carries out a search in a solution space.

Four classes are thus derived from this hierarchical taxonomy:

e LRH (Low-level Relay Hybrid): typical examples belonging to this class are
MAs or SS where local improvement is performed by some non-general pur-
pose mechanism. For example, in [2], the TSP is tackled using a MA endowed
with 2-opt optimization. Also for this problem, [91] defines a LRH hybrid
combining simulated annealing with local search. In both cases, the main idea
is to embed deterministic local search technigues into the metaheuristic so that
the latter explores only local optima.

e LTH (Low-level Teamwork Hybrid): this class typically comprises combina-
tions of metaheuristics with strong exploring capability (e.g., most EAs) with
exploitation-oriented metaheuristics (e.g., most single-solution metaheuris-
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Fig. 1.1 Talbi's classification of hybrid metaheuristics.

tics). In such a combination, the former algorithms will try to optimize locally,
while the population-based algorithms will try to optimize globally. For ex-
ample, when a GA is used as a global optimizer, it can be augmented with HC
or SA to perform local search (a typical local-search-based MA). This can be
done in a variety of ways. First of all, it is possible to use the local search al-
gorithm as a mutation operator. There are numerous examples of this strategy,
using HC [125][134] [68], TS [51][50][71][133], or SA [16][19][137]. This
kind of operators is usually qualified aamarckian referring to the fact that
individuals are replaced by the local optima found after applying local search
(contrary to the Baldwin model where the local optima is just used to evaluate
the individual). Other possibility is using local-search within crossover, e.g.,
[86][107]. A similar strategy has been used in non-crossover-based meta-
heuristics such as ACO [127][124], where local search has been introduced to
intensify the search.

e HRH (High-level Relay Hybrid): in a HRH hybrid, self-contained metaheuris-
tics are executed in a sequence. For example, it is well known that EAs are not
well suited for fine-tuning structures which are very close to optimal solutions.
Instead, the strength of EAs is in quickly locating the high performance re-
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gions of vast and complex search spaces. Once those regions are located, it may
be useful to apply local search heuristics to the high performance structures
evolved by the EA. Many authors have used the idea of HRH hybridization for
EAs. In [87][129], the authors introduce respectively SA and TS to improve
the population obtained by a GA. In [105], the author introduces HC to im-
prove the results obtained by an ES. In [85], the algorithm proposed starts from
simulated annealing and uses GAs to enrich the solutions found. Experiments
performed on the graph partitioning problem using the tabu search algorithm
exploiting the result found by a GA give better results than a search performed
either by the GA, or the tabu search alone [129].

e HTH (High-level Teamwork Hybrid): the HTH scheme involves several self-
contained algorithms performing a search in parallel, and cooperating to find
an optimum. Ideally HTH would perform at least as well as one algorithm
alone, although there might be undesired detrimental interactions (i.e., one
algorithm could mislead another one, or let it fall within a fithess trap). The
HTH hybrid model has been applied to SA [44], GP [73], ES [135], ACO [89],
SS[37] and TS [45] among others.

As to the flat classification, several dichotomies are defined:

e Homogeneous versus heterogeneous: In homogeneous hybrids, all the com-
bined algorithms use the same metaheuristic. Hybrid algorithms such as the
island model for GAs [111], belong to this class of hybrids. Arguably, the term
‘hybrid’ is somewhat forced with homogeneous algorithms, unless different
parameters are used in each of these. For example, in HTH based on tabu
search, the algorithms may be initialized with different initial solutions, tabu
list sizes, etc [136].

In heterogeneous algorithms, different metaheuristics are used. A heteroge-
neous HTH algorithm based on genetic algorithms and tabu search has been
proposed in [34] to solve a network design problem. The population of the
GA is asynchronously updated by multiple tabu search algorithms. The best
solutions found by tabu search algorithms build an elite population for the GA.

The GRASP method (Greedy Randomized Adaptive Search Procedure) may be
seen as an iterated heterogenous HRH hybrid, in which local search is repeated
from a number of initial solutions generated by randomized greedy heuristic
[48][47]. The method is called adaptive because the greedy heuristic takes into
account the decisions of the precedent iterations [46].

e Global versus partial: in global hybrids, all the algorithms search in the whole
research space. The goal is here to explore the space more thoroughly. All the
above mentioned hybrids agéobal hybrids, in the sense that all the algorithms
solve the whole optimization problem. A global HTH algorithm based on tabu
search has been proposed in [32], where each tabu search task performs a given
number of iterations, then broadcasts the best solution. The best of all solutions
becomes the initial solution for the next phase.
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In partial hybrids, the problem to be solved is decomposed into sub-problems,
each one having its own search space. Then, each algorithm is dedicated to the
search in one of these sub-spaces. Generally speaking, the sub-problems are
all linked with each others, thus involving constraints between optima found by
each algorithm. Hence, the algorithms communicate in order to respect these
constraints and build a global viable solution to the problem. This approach
has been applied for GAs [66], and for SA with TS algorithms [126].

e Specialist versus general: all the above mentioned hybridgesreralhybrids,
in the sense that all the algorithms solve the same target optimization prob-
lem. Specialisthybrids combine algorithms which solve different problems.
An example of such a HTH approach has been developed in [10] to solve the
quadratic assignment problem (QAP). A parallel TS is used to solve the QAP,
while a GA makes a diversification task, which is formulated as another opti-
mization problem. The frequency memory stores information relative to all the
solutions visited by TS. The GA refers to the frequency memory to generate
solutions being in unexplored regions.

Another approach of specialist hybrid HRH heuristics is to use a heuristic to
optimize another heuristic, i.e. find the optimal values of the parameters of
the heuristic. This approach has been used to optimize SA and noisy methods
(NM) by GA [77], ACO by GA [3], and a GA by a GA [121].

C. Cotta [24] proposed another taxonomy for hybrid metaheuristics. This taxon-
omy has the dichotomsgtrongvs. weakas its root. First of all, strong hybridization
refers to the placement of problem-knowledge into the core of the algorithm, affecting
its internal components. Specifically, a representation of problem solutions allowing
the extraction of their most important features, and reproductive operators working
on that representation are required. These two aspects are closely related and must
be carefully selected to obtain adequate performance. The term ‘strong’ reflects
the tight coupling that exists between the basic model and the included knowledge.
Examples of strong hybrid algorithms include metaheuristics wsiHgocoperators,
tailored to deal with the particulars of the problem, e.g., the Edge Assembly Crossover
operator defined in [102] for the TSP (involving a greedy repair algorithm), or the
different recombination operators defined in [29] for flowshop scheduling (involving
the manipulation of non-trivial features of solutions), or in [28] for Bayesian network
inference (involving the manipulation of phenotypic information). Strong hybridiza-
tion also comprises algorithms with non-trivial genotype-to-phenotype mappings.
For example, the use afecoderd93] in order to produc@on-homogeneougpre-
sentations [24][119] (representations that do not cover uniformly the search space,
but give preference to promising regions), as in e.g. [20] for the multi-constraint
knapsack problem and the set covering problem. Problem-space search [30][123]
—the use of metaheuristic with an embedded construction heuristic that is guided
through problem-space— also fall within this class.

On the other hand, it is possible to combine algorithms performing different
searches, thus resulting in a weak hybrid algorithm. This term tries to capture the fact
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Fig. 1.2 Taxonomy of weak hybrid algorithms.

of hybridization taking place in a higher level and through a well-defined interface,
therefore allowing algorithms to retain their identities. This terminology is consistent
with the classification of problem-solving strategies in artificial intelligencstrasg

and weak methods [92]. It also relates closely to the low-level vs. high-level
dichotomy in Talbi's taxonomy, and as in the former it allows further refinement. To

be precise, a three-dimensional basis is defined (see Figure 1.2), each of whose axes
supports a certain dichotomy, as shown below:

e Control axis: this axis determines whether two algorithms interact at the same

level, or there exists a hierarchical relationship between them. The first case
corresponds t@ooperativesystems, in which each algorithm performs its
own search, with eventual information exchanges. The second case describe
coercivemodels, in which one of the algorithms assumes a role of master,
imposing the way the second algorithm has to perform its search (by means
of either an external control of the parameterization, or by setting exploration
constraints).

Usually, cooperative models are associated to techniques with similar compu-
tational requirements, so a useful information exchange can be performed. For
example, the homogeneous hybrids mentioned before (e.g., [111][136]), and in
generalgo-with-the-winneralgorithms [8] [110] are comprised here. On the
other hand, coercive models are usually associated to embedded metaheuris-
tics, i.e., high-level relay hybrids. Besides the HRH mentioned before, one can
cite the hybridizations of exact and heuristic techniques defined in [31], where
branch-and-bound (BnB) is used as a crossover operator.
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e Temporal axis: this axis captures those aspects related to when the interaction
between algorithms takes place, and what the behavior of the algorithm between
interactions is. In principle, there are two major possibilit@gichronisnand
asynchronism The first case comprises those models in which one of the
algorithm waits at a synchronization point. Example of such synchronous
algorithms are relay hybrids as described before, as well as teamwork hybrids
with synchronous interaction (e.g., synchronous migration-based EAs [7]).
The second case comprises asynchronous teamwork hybrids, as well as some
mixtures of teamwork and relay hybrids (e.g., in [26] a coercive HRH model is
asynchronously parallelized, resulting in the simultaneous execution of a GA
master, and several BnB slaves; recall that the sequential version of this hybrid
would by a synchronous coercive model).

e Spatial axis: this axis allows classifying weak hybrids from the point of view
of the search space explored by each of the involved algorithms. To be precise,
openand closedmodels can be distinguished. In the former, there exist no
constraint on the search space considered by each of the algorithms, i.e., any
point in the search space is potentially reachable. In closed models exploration
is restricted to a certain subspace. This can owe to a external coercion by one
of the algorithms, or to an internal feature of the algorithm behavior (e.g., think
of decomposition approaches, in which each algorithms is assigned a portion
of the search space).

Local-search-based MAs are typical examples of open models since the local-
searcher can potentially visit any point of the search space (obviously, the
features of the search landscape are determinant for this purpose; anyway, this
does not obey to internal algorithmic reasons, but depends on the input to the
algorithm). Another open (synchronous coercive) model can be found in [53],
where a GA is used to explore the queue of open problems in a BnB algorithm.
On the other hand, the globally optimal forma completion approach defined in
[114] is a closed model (during recombination, some feature of solution are
fixed, and the subspace of solutions with those features is exhaustively explored
to determine the best solution). A related closed model is the dynastically
optimal recombination defined in [31], where the subspace comprising all
solutions that can be built using the information comprised in a set of parents
is exhaustively explored during recombination.

The taxonomies described in this section are aimed at specifying the algorithmic
and functional details of a hybrid metaheuristics. Next section will be devoted to
discuss some computational details affecting the implementation of these hybrids.

1.4 IMPLEMENTING PARALLEL HYBRID METAHEURISTICS

Parallelism can be brought into hybrid metaheuristics in many ways. A taxonomy for
this purpose is actually proposed in [128]. We here concentrate on the paralleliza-
tion of hybrid metaheuristics on general-purpose computers, since this is the most
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widespread computational platform. Parallel hybrids may then be firstly classified
according to the different characteristics of the target parallel architecture:

e SIMD versus MIMD: In SIMD (Single Instruction stream, Multiple Data
stream) parallel machines, the processors are restricted to execute the same
program. They are very efficient in executing synchronized parallel algo-
rithms that contain regular computations and regular data transfers. So, SIMD
machines have been used for some parallel hybrid algorithms such a HTH
based on tabu search arranged in a 2-dimentional cyclic mesh on a Maspar
MPP-1 [43].

When the computations or the data transfers become irregular or asynchronous,
the SIMD machines become much less efficient. In parallel MIMD (Multiple
Instruction stream, Multiple data stream), the processors are allowed to perform
different types of instructions on different data. HTH hybrids based respec-
tively on tabu search [49][45], simulated annealing, and genetic algorithms
[101] have been implemented on networks of transputers.

e Shared-memory versus Distributed-memory: The advantages of parallel hy-
brids implemented on shared-memory parallel architectures are their simplicity.
However, parallel distributed-memory architectures offer a more flexible and
fault-tolerant programming platform.

e Homogeneous versus Heterogeneous: Most massively parallel machines (MPP)
and cluster of workstations (COW) such as IBM SP/2, Cray T3D, and DEC
Alpha-farms are composed of homogeneous processors. The proliferation
of powerful workstations and fast communication networks have shown the
emergence of heterogeneous network of workstations (NOW) as platforms for
high-performance computing (see Figure 1.3).

Parallel hybrid metaheuristics can also be classified according to whether the
number and/or the location of work (tasks, data) depend or not on the load state of
the target parallel machine:

e Static: this category represents parallel heuristics in which both the number of
tasks of the application and the location of work (tasks or data) are generated
at compilation time (static scheduling). The allocation of processors to tasks
(or data) remains unchanged during the execution of the application regardless
of the current state of the parallel machine. Most of the proposed parallel
heuristics belong to this class.

An example of such an approach for TS is presented in [112]. The neigh-
borhood is partitioned in equal size partitions depending on the number of
workers, which is equal to the number of processors of the parallel machine.
In [18], the number of tasks generated depends on the size of the problem and
is equal ton?, wheren is the problem size. In [11], a parallel GA is proposed,
where the number of tasks generated is equal to the population size which is
fixed at compilation time.
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Fig. 1.3 Parallel implementation of heterogeneous HTH algorithms.

When there are noticeable load or power differences between processors, the
search time of the static approach presented is derived by the maximum execu-
tion time over all processors (presumably on the most highly loaded processor
or the least powerful processor). A significant number of tasks are often idle
waiting for other tasks to complete their work.

e Dynamic: to improve the performance of parallel static heuristics, dynamic
load balancing must be introduced [112][12]. This class represents heuristics
for which the number of tasks is fixed at compilation time, but the location of
work (tasks, data) is determined and/or changed at run-time. Load balancing
requirements are met in [112] by a dynamic redistribution of work between
processors. During the search, each time a task finishes its work, it proceeds
to a work-demand.

However, the degree of parallelism in this class of algorithms is not related to
load variation in the target machine: when the number of tasks exceeds the
number of idle nodes, multiple tasks are assigned to the same node. Moreover,
when there are more idle nodes than tasks, some of them will not be used.

e Adaptive: parallel adaptive programare parallel computations with a dynam-
ically changing set of tasks. Tasks may be created or killed as a function of
the load state of the parallel machine. A task is created automatically when a
node becomes idle. When a node becomes busy, the task is killed. In [10], a
parallel adaptive implementation has been proposed for HTH specialist hybrid
combining tabu search and genetic algorithms.
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1.5 APPLICATIONS OF PARALLEL HYBRID METAHEURISTICS

This section will provide an overview of the numerous applications of parallel meta-
heuristics. Of course, this overview is far from exhaustive since new applications are
being developed continuously. However, it is intended to be illustrative of the prac-
tical impact of these optimization techniques. Table 1.1 shows such an illustrative
sample of applications. It must be note that we have focused on those applications
involving a truly parallel implementation of a hybrid metaheuristic.

For further information about applications of parallel hybrid metaheuristics we
suggest querying bibliographical databases or web browsers for the keyipares
allel hybrid metaheuristic’or “parallel hybrid evolutionary algorithm’.

1.6 CONCLUSIONS

This work has presented a general overview of hybrid metaheuristics, with special
emphasis on their utilization on parallel environments. For this purpose, we have
surveyed different taxonomies of these techniques, covering both algorithmic and
computational aspects of parallel metaheuristics.

As it was mentioned before, pure (i.e., general-purpose, not augmented with prob-
lem knowledge) population-based heuristics such as GAs, GP, ES, and ACO are not
well suited in general to search in highly-dimensional combinatorial spaces. Hence
the need for hybridizing with other techniques in order to achieve practical results. A
very common strategy to do so is hybridizing population-based metaheuristics with
local search heuristics (open synchronous coercive models — HRH), as it is done in
MAS/SS. Most times, this is done in sequential settings, although the authors often
indicate in their future work the parallelization of the algorithms. Thisis an indication
of the growing interest in developing parallel hybrid algorithms.

Parallel schemes ideally provide novel ways to parallelize hybrid algorithms by
providing new algorithmic models. Furthermore, parallel computing systems offer
a way to provide the large computational power needed for tackling the increas-
ing complexity of hard combinatorial optimization problems. Clusters of existing
commodity workstations are a low-cost hardware alternative to run parallel meta-
heuristics. Obviously, issues of heterogeneity and work load appear. Nevertheless,
the flexibility of metaheuristics (either parallel or sequential) makes them much less
sensitive to these issues than other classical optimization techniques. For this reason,
they constitute excellent candidates to approach the hardest optimization tasks in the
years to come.
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Table 1.1 Some applications of parallel hybrid metaheuristics.

Domain

Problem

References

Combinatorial Optimization

0-1 Integer Linear Programming  [15] [30] [103]

Boolean Function [73]1[77]

Capacitated Network Design [33]

Graph Coloring [62]

Graph Partitioning [80][82] [90]

Independent Set [60]

Maximum Cut [5]

Multi-commodity Allocation [35]

Packing [75] [76]

Quadratic Assignment [16] [18] [64]
[65]

Set Partitioning [83] [84]

Traveling Salesman Problem [9]1[26][77]
[88] [90][99]
[100][122]

Vehicle Routing [13] [117][126]

Engineering and Electronics Cell Placement [14][17]
Floorplan Design [21]
VLSI Design [1][118]

Functional Optimization

[101] [111] [132]
[135]

Machine Learning

Neural Networks

[4] [67]

Physics and Chemistry

Molecular Structure

[113] [140]

Scheduling Resource Allocation [5]
Task Allocation [52]
Task Scheduling [112]

Telecommunications Antenna Placement [6]
Error Correcting Codes [6]
Frequency Assignment [5]1[36]
Mapping [43]
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