Leaping multiple headers in a single bound:
wire-speed parsing using the Kangaroo system

Christos Kozanitis John Huber Sushil Singh George Varghese
University of California San Diego Cisco Inc Cisco Inc University of California San Diego
Email: ckozanit@cs.ucsd.edu San Diego, CA San Jose, CA

Abstract—More fundamental than IP lookups and packet Ethernet IP TCP
classification in routers is the extraction of fields such ash Dest o 14 bytes 20 bytes <« 20Dbytes
and TCP Ports that determine packet forwarding. While parsing
of packet fields used to be easy, new shim layers (e.g., MPLS, 96 bits
802.1Q, MAC-in-MAC) of possibly variable length have greatly |« > %
increased the worst-case path in the parse tree. The problens

exacerbated by the need to accommodate new packet headers 4 8
and to extract other higher layer fields. Programmable routes 16 7 70 ‘ "
for projects such as GENI will need such flexible parsers. In - g PER

this paper, we describe the design and implementation of the
Kangaroo system, a flexible packet parser that can run at 40
Gbps even for worst-case packet headers. Because conventib Fig. 1. A simple sequence of packet headers. Whenever fisfevalues
solutions that traverse the parse tree one protocol at a time of offsets are in bits.

are too slow, Kangaroo usesookahead to parse several protocol

headers in one step using a new architecture in which a CAM

directs the next set of bytes to be extracted. The challengs to bytes from the start of the IP header. Further, extractireg th

keep the number of CAM entries from growing exponentially |P length (field B in Figure 1) together with a check of the
with the amount of lookahead. We deal with this challenge |p protocol field (fieldC') provides the start offset of the TCP

using a non-uniform traversal of the parse tree, and an offlire . .
dynamic programming algorithm that calculates the optimal header field, from which the TCP header can be extracted.

walk. Our experiments on a NetFPGA prototype show a speedup 1hUS in 3 or 4 processing steps, some of which can be easily
of 2 compared to an architecture with a lookahead of 1. The parallelized, all the key fields in the TCP and IP headers can
architecture can be implemented as a parsing block in a staratd be extracted.
400 MHz ASIC at 40 Gbps using less than 1% of chip area. Why Parsing is a Bottleneck todajtowever, parsing has
become a problem because of three fairly recent develogment
The first and biggest issue is the presence of a large number of
ermediate headers used to add tags to packets (e.g., MPLS
S to create tunnels (e.g., GRE). These include a number of
ecent shim headers such as 802.1Q, several layers of MPLS
luding EOMPLS, and IP-in IP encapsulation.

I. INTRODUCTION

This paper introduces packet parsing as an important n
packet forwarding bottleneck in high speed routers, and
scribes algorithms to combat this bottleneck by extractind
processing multiple protocol headers in a single step. T
classical bottlenecks in a high speed router are IP lookups,
packet classification, switching QoS processing. However, — vemec s2iq S24q upLs - wpLs - wpLs Pl ewe e
each of these processing steps is based on fields in the packet B S B i B S
being processed. For instance, IP lookups depend on the IP ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ H ‘
Destination Address, packet classification is often based o
the TCP port numbers, and both switch and QoS processing Fig. 2. A more complex but realistic sequence of packet hsade
often requires access to the TOS bits. If we refepassing
as the extraction of key packet fields such as IP Destinationlf we draw a simple protocol tree picture with each protocol
and TCP Ports, then it is obvious that parsing is even maae a node (Figure 3) then the sequence in Figure 1 corresponds
fundamental than lookups or switching. to the leftmost path in the tree of length 3, while the seqaenc

At first glance, parsing does not seem to be a bottlenedk.Figure 2 corresponds to the rightmost path of length 9. If
If one envisions the simplest sequence of packet headers intuitively represent the complexity of a parsing path by
(Figure 1) where Ethernet is followed by a fixed length IPvthe length of the corresponding path in the protocol treen th
header and then TCP, then field extraction is hardly diis apparent that the packet in Figure 2 is 3 times harder to
issue. Extracting the Ethertype field (fieldl in Figure 1 at parse than the packet of Figure 1.
an offset of 96 bits) and checking for EtherType = IPv4 Complex packet headers such as depicted in Figure 2 are
allows extraction of the IP header starting at byte 14. Theorth optimizing for because they are commonly used in
IP Destination address is easily extracted at an offset of fpBactice. Most commercial routers are designed to handle

expressions as parsing in this paper. By parsing we mean the
exploration of afew selected fields of a packet directed by a
parse tree, as opposed to a scaralbfpayload bytes looking

for a regular expression.

The third development is a trend among router vendors
and academics to develop flexible and even re-programmable
routers. Router vendors such as Cisco have increasinglg mad
many components of their routers flexible such that the behav
ior of the component can be changed at run-time by changing
parameters or even microcode. This is motivated by the need
to respond to quickly changing customer demands in the face
of long design cycles to design chips (2 years) and develop
a router (3 years or greater). Flexibility has even reached t
high-end with Cisco’s CRS-1 [2] 92 Tbps router which uses

various combinations of these headers. First, 802.1Q Shl 2 programmable packet processors. Ironically, for speed

headers are universal because of so-called VLAN tagging tbf,aRS—l uses a hardwired parser. Thus the CRS-1 cannot handle

allows customers [10] to multiplex several logical netwsrk . . .
. .._wijre-speed implementations of new protocol formats as doul

for each department on a single corporate network witho,
]g enabled by our Kangaroo system.

;eoazr 10(5 I?(?:S;J?e(i;Sniﬂo?lggéxzzyoﬁﬁz :2;/2 tt(\;v?n:iﬁﬁ:;o rAcademic researchers have recently advocated not only

VLANS with custoragr ?/LANS Mexible but completely re-programmable routers to allow th

N MPLS has b ' de f dard f ﬁcreation of new routing and forwarding mechanisms. Efforts
_ext, . as become a de acto stan ara for traffielude Stanford's NetFPGA [21] and Washington University

engineernng b_y creating a so-called tunnel_ .Wh'Ch a”OWS_ tlﬁ'ogrammable Router [12]. Both efforts are motivated by the

tunneled traffu; to be mappesd onnto Spec'f'cl quelées W'th@%Nl project [7] that seeks to enable clean slate Interredtiar

a sequence o routers. MI.DL allows tunnels to be createa res. But a programmable parser is an essential compone

within tunnels_so that traffic from various edge routers caly o programmable router in order to support new protocols

be routed on first level tunnels, that are then aggregated OrbElsin without speed degradation. Thus we have implemented

s_econd-l_evel tunne_ls b_etvyeen regions, and So-on. This é6rm, high-speed, flexible parser for the NetFPGA platform we
hierarchical tunneling is implemented by stacking segasnc escribe in Section VI

of MPLS headers, and 4 levels are commonly supported YIn conclusion, there is a need for a flexible packet parsing

most rout(_ars. Muluplg levels are especially needed to 8UPP o dule that can handle arbitrary protocol trees includiegg
VPNs, which are rputlnely deployed by ISPs today. [16] Shov\’/ﬁth long worst-case paths containing a number of nestad shi
that one can Con3|derab|y reduc_e the overall number ofdabg}, , protocol headers. Given that edge routers are routinely
used n the network by increasing the stack depth, and ﬂi‘%%dling 10 Gbps, there is a need for at building such a flexibl
the optimum stack depth is around 4. packet module that operates at close to 10 Gbps using say a

Thus every commercial vendor optimizes for processingoGa, and at 40 Gbps to handle core router speeds using a
headers such as Figure 2 at wire-speed. Cisco [4] suppQiisy| portion of a networking ASIC.

6 levels of MPLS and at least two levels of VLAN tags at The contributions of this paper are: a new CAM-driven
40 Gbps. Juniper [S] supports 5 MPLS headers on T-series jiuhitecture to perform lookahead ((Section IV); a dynamic
addition to two IeveI; of VLAN tags. However, neither Suﬂporprogramming algorithm to select the amount of lookahead
programmable parsingt 40 Gbps. (Section V); and a prototype implementation on the Stanford
IPSec also allows the use of security headers to creajgiEPGA board [21] (Section VII).
encrypted tunnels. Finally, Mobile IP and other protocdts® The rest of the paper is organized as follows. Section Il de-
use GRE encapsulation to add further information to packefges the problem and presents a model of parser performance.
In sum, each shim header adds some useful information sgction 111 introduces lookahead and Section IV describes t
as VLAN tags, traffic engineering tunnel tags, and securiifangaroo architecture. Section V describes the algorithe t
and mobility information. maps from protocol trees to CAM entries. Section VI de-
The second development is a recent trend in routers to géribes a NetFPGA implementation, and Section VII dessribe
beyond simple packet forwarding to do application-awarm afhe performance evaluation. Section VIII describes relate
security-aware routing. For example, some corporate rsutgyork, and Section IX states conclusions.
are required to identify and provide QoS guarantees for SAP

Fig. 3. A protocol tree representing the packet headers gurEil and
Figure 2. The ovals represent potential lookahead pravgsgportunities.

traffic. Such applications require the extraction of morekea Il. MODELING PARSING SPEED AND COST
fields which further increases the worst-case path lengtheén In other network bottlenecks such as IP lookup, the worst-
required parse tree. case is always a minimum sized (often 40 byte) packet. For

We note that some routers also scan packets for strings gradsing, however, the most time-consuming path in the parse
regular expressions. We do not consider searching for aegutree is often caused by a packet larger than a minimum sized

packet. Further, a path of 4 protocols with long headers (eimplementation must deal with two challenges: dependsncie
IP, 20 bytes) is easier to process than a path of 3 protoctils wand variable length headers.

short headers (e.g., MPLS, 4 bytes). This is because thetong DependenciesConsider parsing the packet of Figure 2. If
arrival time of the longer headers provide more processitige first Ethernet type field (at an offset of 12 bytes) is 0x810
“headroom”. there is a second Ethernet type Field (at an offset of 16 hytes

Thus, we use a new measure for parsing speed: the mihd- do a lookahead of 2, the parser must simultaneously fetch
mum of the average number of bits per cycle across all pathe 16-bit fields corresponding to the two type fields at byte
in the parse tree. The average number of bits per cycle dffsets 12 and 16. The difficulty, however, is that the valtie a
a path isH/C, where H is the sum of the lengths of all byte offset 16 (second 802.1Q) is omyeaningfulif the first
protocol headers parsed along the path, @nis the number Ethernet type is 0x9100. By contrast, if the first Etherngety
of cycles required to parse the path. Intuitively, a packeid field is IP, then the next offset the chip must fetch is the IP
arrive containing the headers corresponding to the paiimia t length field (at offset 116 bits). Dependencies can be broken
H/R, where R is a measure of the arrival rate. The packdty extractingall possible 2nd level offsets, and all possible 3rd
will take C cycles to process. Wire speed processing occurdéfrel offsets. However if 6 protocols follow Ethernet andlea
the arrival time is greater than the processing time — inrothprotocol has an average of 5 possible successor protocols, a
words, if H/R > C. But that impliesH/C > R. Thus using lookahead 3 chip has to fetch 30 possible fields in a cycle —
the smallest value of/ /C formalizes the worst-case parsing@ memory bandwidth challenge.
time of a packetelative to the time it takes for the packet to Variable Length HeadersA second challenge is lookahead
arrive. across protocols whose header sizevasiable such as TCP.

The number of parsing cycles required to parse a protod®th IP and TCP contain a 4-bit long header length (IHL)
path depends on the number of protocols parsed in a sinfjdd in their headers. Alternately, in the GRE header, bits C
cycle. We use the terrookaheadto refer to the maximum R, K and S are used to signal the presence of the checksum,
number of protocols parsed in a parsing cycle. As an exampleyting, key, and sequence number fields respectivelyllina
for commercial parse trees, the worst-case path is EtherMdPLS headers are 32-bits long headers and can be chained.
two 802.1Q, 4 MPLS, IP and ICMP, which has a total head&it 23 of the MPLS header is called trstack bit The stack
length H of 496 bits. Using lookahead 1, the 9 protocols iRit is set to O for all intermediate MPLS headers but is set to
this path will take 9 parsing cycles to process. 1 for the final header.

The speed measure for the worst-case ICMP path (afte2€aling with DependenciesA uniform lookahead of2
adding the lengths of all headers) will then b@6/9 or 56 would require the chip to fetch fields corresponding to all 6
bits per parsing cycle. In most implementations, one pgrsiROssible successor protocols of Ethernet (ARP, RARP, MPLS,
cycle may require 3-4 clock cycles; however, the data path c#, and two 802.1Q’s). Uniform lookahead of 3 is even worse.
be pipelined so that 1 parsing cycle can be done every clddRwever, the worst-case path we seek to optimize in Figure 3
cycle. Thus the maximum throughput at 400 MHz is 18 Gbpi$ the long path on the right of 9 nodes (Ethernet, 2 802.1Q
To achieve 40 Gbps, we can either use multiple copies ofrtgaders, 4 MPLS Headers ...). There is no point doing
lookahead 1 parser (packet parallelism) or process more th@okahead for the path on the left (Ethernet, IP, TCP) bezaus
one protocol per parsing cycle (lookahead.). this path is only of length 3.

Finally, our cost measure for a parser is the sum of the Thus, an efficient strategy for lookahead 3 is to only fetch
storage and logic costs expressed in gate equivalents. i@ first Ethernet type field, together with speculative feg
storage costs will include costs to store the parse treelijsmaf the second and third potential Ethernet type fields. No
and registers required to store the pipeline of packetstiast other fields are fetch.ed. If the first Ethernet type flelq is IE’,
be concurrently processed by the parse engine for speed. NBg Speculative fetching of the next 2 potential type fielsls i
that packet parallel solutions will incur these costs fochea Wasted. Butin that case the chip is traversing the easy éesitm
replicated copy. We also consider a secondary cost meas@@h where lookahead is unnecessary.
the total amount of power consumed. We will show that using Further, lookahead is not needed on portions of a long path

lookahead> 1 provides a cheaper solution in terms of storag€ontaining long headers. For example, consider a protabl p
logic, and power up to 40 Gbps. of 9 protocols ending with IP and TCP that have 20 byte

headers. Assume that the initial protocols (such as MPLS)

have short 4 byte headers. To keep up with wire speed, while

we may have to process 3 MPLS headers in 1 cycle (lookahead
We say that a parser has lookahdaifl the parser processesof 3 allows 12 bytes per cycle), we only need to process 1 IP

up to L packet headers in a single cycle. Lookahead greatar TCP header in 1 cycle (lookahead of 1 allows 20 bytes

than 1 is impossible when parsing in software. It is, howevegrer cycle). We present a dynamic programming algorithm in

possible in hardware using multiplexers that can conctigrenSection V that calculates the minimum amount of lookahead.

route several fields of a stored packet in memory to the pgrsiRigure 3 depictsion-uniform lookaheadby partitioning each

unit (Figure 5). A lookahead 2 parser can ideally have twigeath into ovals of different sizes.

the throughput of a lookahead 1 parser. However, a lookaheadealing with Variable LengthsOur main strategy is to

IIl. L OOKAHEAD CHALLENGES

avoid lookahead across variable length headers whereger po

sible. This works because many such headers are long (e.g.,
IP is 20 bytes), and we can use the ALU to calculate the offset

of the next header. However, MPLS headers must be handled
because they are 4-bytes long. It is easy to check if another
MPLS header follows by checking the stack bit. However, t
determine which protocol (IPv4, IPv6, or Ethernet) follow:

after the end of a sequence of MPLS headers, the parser ri:/t _ Tf_tL
comparison

\v2)

extract bits 23-36 following the MPLS headers to see if th unit
are 4, 6, or 0 respectively. We have done a careful study of al A Hass
variable length protocols including GRE and ARP (which we Benicts add
omit for lack of space) to prove that our methods apply to all
existing protocols. Finally, for short headers that ardalde Protocol Extracted
length we add extra TCAM entries for each possible header peduences Fields

length as explained in Section V.

Fig. 5. A more detailed view of the architecture. Note tha domparison
IV. L OOKAHEAD ARCHITECTURE INKANGAROO unit corresponds to the CAM, Hash Table and ALU in Figure 4.

For a lookahead of 3 in Figure 3, a parsing chip will

simultaneously extract the Ethernet Type Field at an offset,, ., . o " .
of 12 bytes (say Field 1), and two speculative type fields foF Il this the Kan.garoo system because it “leaps over rieitip
' Yeaders in a single step. Such lookahead requires a CAM

potential 802.1qg type fields (say Fields 2 and 3 at offsets

16 and 20 bytes respectively). The chip then executes t\f\{ledth of i+ 16 bits. We usek = 3 and L = 25 in our

following decision logic: implementation. A further reduction of TCAM entries can be
g gic. achieved by adding an ALU to calculate lengths of variable

if (Field 1 == 802.1g) AND (Field 2== length headers such as IPv4.

Inner 802.1q) AND (Field 3== MPLS) then Recall that even on long paths we wish to use lookahead of
Continue parsing MPLS 1 on sequences of long headers (e.g. IP), and larger lootahea

else if (Field 1 == IP) then on sequences of short headers (e.g., MPLS). We facilitége th
Continue parsing IP by using a hybrid comparison unit that consistbotha CAM

. erad if . . i and a hash table. Multiple fields of time-critical portions o
This decision logic corresponds to a longest prefix mat%{m path are fetched via the CAM, while one field at a time

on the concatenation of Fields 1, 2, and 3. But this can easily, pe fetched using the hash table for less critical pastion

be done, as in IP lookups, by a Ternary Content Addressakige chojce of hashing versus CAM is made by a bit in the
Memory (TCAM) as in Figure 4, with one entry corresponding, iruction corresponding to the last match.

to the first decision and one entry (with wildcards for Fields The multiplexers that do field extraction must be designed

2 and 3) corresponding to the second decision. carefully. A naive approach (fot — 4, I — 256) would
route each of 256 * 8 bits to 64 outputs, requiring 256 * 8
Delay * 64 wires. However, hierarchical multiplexing in two stage
Registet considerably reduces gate count. We describe details later
M Fields like IP can occur at various offsets, for example

immediately after Ethernet or after MPLS. Without care,

Inst Packet |
Reg Data [

Interpretation parsing IP would require a CAM entry for each possible offset
Mem i/ Decode We avoid this duplication using a base register (Figure &) th
holds the packet offset of the last header parsed. CAM entrie
[can then be storerklative to the base register. Each of these
| | optimizations adds delay to the basic processing. However,

Fig. 4. Lookahead parsing architecture in the Kangarooe®yst these delays can be pipelined using 4 pipeline stages.

If the chip merely extracted the first 24 bytes of the pack@’r Detailed Architecture

and used these 24 bytes to index the CAM, the CAM would Consider the parser architecture of Figure 5. An “instruc-
be very wide (192 bhits). Instead, our architecture con@ten tion” requests a number of offsets from the packet memory and
the extracted fields before indexing, making the CAM wordlso specifies whether the comparison should be performed by
smaller. For example, in this example, we only need to indéixe CAM or the hash table. The instruction also specifies the
the CAM with three 16-bit fields or 48 bits. The architecturenputs of the ALU used to identify the end of variable length
(Figure 5) allows a lookahead &fby extracting up td: 16-bit headers like IP. A multiplexer selects either the outputhef t
fields from anywhere within the firdt bytes of the packet. We CAM or the hash table to index the Interpretation Memory, in

. . . . Ethernet 8021q IMP MPLS MPLS MPLS MPLS IPv4 TCP
which each word is formatted as shown in Figure 6. Note that 112bits 32 bits 32bits 32bits 32bits 32bits 32bits ~ 160bits 160 bits

the architecture is fully flexible because all of the memerie—————s«—— e+
and CAMs can be configured to add support for any set ‘of ‘ ‘ -~ ‘ ‘ ‘ ‘ ‘

protocaols.
about the currently recognized headers. The remaindereof f{ig: 7. The packet headers for an imaginary new service pobtee call

The first part of the instruction word contains information
P. S is the stack bit for MPLS.

word contains a bit that selects whether a hash or CAM matc

will be used next, the offset requests for the next execution CAM Hash Table
cycle, and the inputs to the ALU. If the hash table is selected | 7
the packet data is masked to remove unnecessary information 1234.8847.0xxx <eth 8100>

The bit is set by an offline algorithm that configures all | == | |...
memories as described in Section V.

6bits | Jhbit . 11bits _ _48bits 3 bits 16 bits Fig. 8. The CAM and hash table contents for the example
recognized |Hash/| next offset mask ALU ALU
field CAM | instruction op |lmmediate

cycleQ The parser uses lookahead 1 to extract the Ethernet
Fig. 6. The format of a "parsing” instruction in the Interfion Memory ~field. shifter 1 contains the Ethernet type of the Ethernéd fie
while shifters 2-3 are not used. The base register value is 0.

The packet data module of Figure 4 uses shifters that chR¢ next match is specified to be in the hash table.
fetch any 16-bit long field of the first 256 bytes of the packet. ¢yclel This cycle recognizes the Ethernet type of 802.1Q,
TheDecodemodule of Figure 4 consists oftmse registethat and sets up a lookahead 3 instruction to parse an 802.1Q
stores the offset of the last header that was parsed. Relafigader, an IMP header and one MPLS header. After a match
offsets are converted to absolute values by adding the valjgh Ethernet,8100n the hash table, an instruction is fetched
of the base register Each protocol can specify fields to behat recognizes 802.1Q and makes requests for 3 offsets: a)
extracted and stored (such as IP Destination Address) in thf offset of the Ethernet type of the 802.1q header (112 bits
output FIFO as long the protocol is verified by the CAM. D) the offset of the Ethernet type of the IMP header (112 +

In a single execution step, the outputs of the three shifte?3 bits, see Figure 7 and c) the bit sequence that starts from
are concatenated to form a word that concurrently querié¥® Stack bit (23rd bit in MPLS header) of the possible MPLS
both the TCAM and the hash table. If the word matches, tfgader that follows the Ethernet header. The next match is
corresponding index is used to fetch the “next instructiorfPecified to be in the CAM. Thus, shifterl is assigned bit
(Figure 6). In our implementation, these instruction wordgffset 112, shifter2 is assigned offset 112 +32 and shifter3
are stored in a RAM indexed by the output of the Tcamassigned offset 112 + 32 + 32 + 23. The base register becomes
The multiple separate CAM nodes corresponding to eaéf2 which is where the Ethernet header ends. This will cause a
lookahead node are stored in a single shared CAM. To avéitfitch with the 1234.8847.0xxx entry of the CAM in the next
ambiguity, each “CAM node” entry is prefixed with a smaleycle which means that the first Ethernet type field corredpon

unique integer. to IMP and IMP’s Ethernet type indicates that MPLS follows.
Finally, since the MPLS stack bit is 0, more MPLS headers
B. Sample Kangaroo Execution should be expected.

We describe a sample Kangaroo execution parsing theFurther cycles (not shown) are needed to parse up to TCP.
packet shown in Figure 7, which is similar to that of Figure 2jowever, the sample execution shows how a new protocol
with the exception of aewimaginary Layer 2 service protocol IMP can be handled by our flexible parser in 2 cycles (instead
IMP. Assume that the IMP header is 4 bytes long and thatat 4 cycles when implemented naively) by adding one entry
contains a 16-bit type field that starts at the beginning ef 0 the CAM and hash table.

IMP header. If the IMP type field i®x8847, then the next
protocol that follows is MPLS. The IMP protocol field follows
an 802.1g header which also has a type field at the start of
the field. The 802.1q type field is equal@®1234 when IMP Besides the hardware architecture, the second part of the
follows. Kangaroo system is an offline algorithm that “compiles” the

Assume 3 shifters numbered from 1 to 3. The CAM angarse tree in a few seconds to output the CAM and hash table
hash table entries are shown in Figure 8. For illustratientries whenever packet headers are changed. The parsing co
purposes only, we ignore delays caused by the memory grdcessor is then briefly (less than 1 msec) taken offlineawhil
pipeline registers and assume that the datapath of Figuréhé CAM and hash table entries are updated.
takes 1parsing cycle. The parsing will vary between using The offline algorithm needs a specification of a parse tree.
lookahead 3 and lookahead 1. We only show the first 2 cycl€he simplest specification of a parse tree is a graph with one
due to lack of space. vertex for each protocol. Each protocol nodiehas outgoing

V. COMPILING PARSERINSTRUCTIONS FROMPARSE
TREES

edges to the protocols that can appear alfeHowever, some For example, at 400 MHz and 40 Gbps, the chip must process
protocols such as IPv4, require the examination of more thafo0 bits per clock cycle. Actually, what we have so far called
one 16-hit field in the header. Also, there can be cycles ih sua cycle is best referred to agarsingcycle and actually takes

a graph. One can have a packet that has Ethernet over MPL8Jock cycles: 2 clocks to read the interpretation memory and
then over the inner Ethernet one can have MPLS again, ahdo read the packet. However, by concurrently working on 4
so on. In practice, there are limits to such absurd recursigracket headers, the required speedBobits per clock cycle

but they must be specified. translates intaB bits per parsing cycle.

Thus we specify a parse tree using a graph whose verticeg\lgorithm SpecificationGiven a directed acyclic grapgh =
denote thefields that need to be examined in a single steV, E), each vertex of which is labeled with the size of the
For example, the graph (Figure 9) has two nodes (IRwnd header it represents, a maximum lookahea# efements per
IPv4_2) for the IPv4 length and protocol fields respectivelyaccess, and a required spe@dn bits/cycle, cluster the nodes
We require that the graph be a Directed Acyclic Graph (DA G into clusters such thd) each cluster contains no more
to eliminate ambiguities caused by cycles. This is done lyank connected node§ for every path from the root to any
unrolling recursive traversals within the original graph to leaf, P/C' < B, whereP is the number of header bits in the
the specified limits. path andC' is the number of clusters in the path aiiyl the

Variable length headers are modeled using dummy nodasmber of CAM entries is minimized
that carry no information. However, the existence of dummy The algorithm uses dynamic programming, a form of re-
nodes in a path means that the fields of subsequent proto@lssion that avoids recomputing repeated subproblems. We
should be fetched according to the size represented by espkcify the recursion by describing the initializatione ttost
dummy node. The offline algorithm ensures that dummy nodgsction, the base cases at which the recursion “bottonis out
are always included in a group of other nodes, but TCAMNd the recursive step.
values are not generated for dummy nodes. Figure 9 containSince the parse “tree” is a DAG, a starting nodean be
the graph which models a variable length IPv4 header usif@ind using a topological ordering of the DAGG |V |+|E|)
three dummy nodes (nodes containing a *) assuming that th@e. For each subproblem, the cost function is the quantity
IPv4 header has a length of either 5, 6, or 7 words. OPT(i,b) that denotes the minimum number of CAM entries
that are required from the subtree rooted; aubject to the
speed requirement of bits per cycle for the subtree. The
algorithm output isOPT (s, B)wheres is the start node of
the graph. The base cases consist of all subtrees with &p to
nodes rooted at some nodg in which every path fromy,
ends at a leaf node, and in which none of the nodes of the
path is connected with nodes that are not in the path.

The recursive step requires a notion called fiirege of a
path. Formally, the fringe of a path is the set of all nodes tha
are not contained in the path but are neighbors of nodes in
the path. The intent is to traverse a portion of the subtree in
one step using lookahedd and then to continue recursively
with each node in the fringe of the first lookahead step. The
Fig. 9. Protocol graph. Note the three dummy nodes thatvfolRv4_1 and cost of the original subproblem is th&um of the number
the two nodes (IPv4l and IPv42) that represent the two fields of IPv4. of CAM entries required by each node in the fringe. CAM

storage is minimized by picking the path with the minimum
A. Algorithm to Create Table entries such value. More formally, the minimum number of entries

We now describe an efficient dynamic programming algder the subproblem starting at nodevith speed requirement
rithm that can be run offline to create the hash and CAWNI(and initial speed constrairit) is shown in eq. (1)
table entries that control parsing at run-time. In Sectiowd In this formula, Paths(i) refers to the set of paths that
measured the speed of a parser pathHa&” where H is start fromi such that the number of the vertices in each path
the total length of headers in the path afidis the number does not exceed. Also, entries(p) is the sum of the number
of parsing cycles. The number of parsing cycles of a path outgoing edges of each node in pathFinally, W (p, j) is
is the number of lookahead clusters (see ovals in Figure &fined for a nodg on the fringe of path as follows:W (p, j)
on a path. The goal of the algorithm is to decompose eveasythe sum of the header lengths of all nodes from the start
path into lookahead clusters while minimizing CAM entriesf the path to the node on the path that is the predecessor of
and maintaining the worst-case speed requirement. We assunade ;.
that the major cost of the parsing engine is the the amount ofThe algorithm recursively builds the solution startingnfro
TCAM; minimizing TCAM storage minimizes size and powerthe root and proceeding until all leaves are covered. This

Based on the desired bit rate and clock speed, the desigepensive recursive solution is converted to an efficient dy
calculates the required bits per cyd® of the parse engine. namic programming version using memoization, by storing

OPT(i,b) = i tri OPT(j,B + (b—W(p, j 1
(i,b) pe%gs(i){jg;we(p) entries(p) + (J, B+ ((P, 7))} 1)

outcomes of recursive calls in an array. The complexityraftés1 out of 232). This leaves enough room to implement other
memoization i< (|E||V'|d*), whered is the maximum degree. processing tasks. As we will see, an implementation on an
Given that the lookaheat is small (3) and the branching ASIC is even less resource intensive.

factord of real parse trees is also smadt (0), the algorithm

VIlI. KANGAROO EVALUATION
takes only a few seconds to run.

We obtained the following parse tree supported by several
VI. NETFPGA KANGAROO IMPLEMENTATION Cisco routers. Shim headers that can follow Ethernet are

802.1q, nested 802.1q, resirc tag, service tag, 802.1ah and

We prototyped our lookahead architecture on the NetFP%Z.lad. Ethernet and Shim headers can be followed by up
platform [21] which contains a Xilinx Virtex 2 pro FPGA. ThetO 4 MPLS headers. ARP. RARPIPv4. or IPV6. MPLS is

parser can output two 32-bit fields for each of 6 protocol T[?ollowed by Ethernet,IPv4, or IPv6. IPv4/IPv6 is followed

top-level design is a four stage pipeline. In the first stage, TCP. UDP. GRE. ESP. ICMP. or a second IPv4 header
base register is used to read data from the packet. The secm ca’n be f(y)llowe(’j by a,n IPv6’extensi0n header which, in

stage masks out relevant bits from the fetched packet da} is followed by TCP, UDP, ESP or ICMPV6. Finally, GRE
The third stage performs the Iookup usmg_the CAM or ha n also be followed by IPv4/IPv6. The parse tree support up
table. The fourth stage looks up the instruction memoryréheto three different lengths for IPv4, and up to eight differen
is also an execution unit that executes the instruction thist i lengths for GRE. Note that aIthou,gh we have used a specific
placed in the first pipeline stage as it uses only combimﬂtorbarse tree for our evaluation, the architecture can handle a

logic.) e i . protocol,
Muxing of 256 bytes to three 16-bit fields is done efficiently We compared our results against a simple programmable

in two st_eps using FPGA block RAMs. Qonsider a requegh ser of lookahead 1 (the state of the art today) that parses
for 16 bits starting at offset 325. The first step produc

i single protocol header in one step. Such an architecture ca
the a_ddresses of two 1§'b't words that are guaranteed g ,piaineq if we remove the CAM from the matching unit
contain the rgquested bits. In the exam_p_lel, these are eFigure 5 and keep only the hash table. We verified this
words at positions 20 and 21 (found by dividing 325 by 1%ference design by comparing it to the gate count and speed

implemented by removing the 4 qust significant bits). . of a commercial programmable lookahead parser implemented
In the second step, the two 16-bit words output by the fII’BE/ Cisco Systems.

step (saywo andw;) and the 11 bit offset are used to produce a) Speedup of LookaheadEigure 10 shows the maxi-

the final result. This is done using 16 multiplexers whosg,m parsing speed in bits per cycle for five architectures:
|'nputs are arranged accordmg to the fol!owmg_ rule. Eacdh t?bokahead 1 without an ALU, lookahead 1 with an ALU,
¢ of the output can be any bit af, that is in position greater onq |gokahead 2, 3, and 4 with an ALU. The figure shows
than and any bit ofw, that is in position less than FOr ¢ parsing at 40 Gb/s can be done using lookahead 3 (96
example, the first bit of the output can be any bitwf. The s per cycle) at around 400 MHz. From Figure 10, we can
second bit of the output can be any bit@f not including ¢4\ jate the relative speedups of each architecture sighia
the first bit or the first bit ofw,. By contrast, a single step 5okahead 1 without an ALU. The addition of an ALU speeds
m_ult|plexer would have required 2048 * 16 * 128 gates angp lookahead 1 parsing by only 10%. Lookahead 2 improves
wires. _ . . throughput by more than 50%, and lookahead 3 almost doubles
The design was implemented in Verilog and downloaded {gryghput compared to Lookahead 1. Further, lookahead 4
the NetFPGA board. The logic utilization of the Virtex 2 proyng higher is almost useless for the parse tree we used.
/device 50 FPGA of the board was 10% and the speed that we b) CAM cost of LookaheadEigure 11 contains the num-
could achieve after place and route was 70 MHz. Since tBgy of bytes of TCAM for each architecture to achieve thesrate
I/0 capabilities of the NetFPGA are limited to 1 Gbps in eacthown in Figure 10. TCAM bytes is the number of TCAM
of the four network interfacgs, we generated traffic intbyna oniries multiplied by the number of TCAM bytes per entry.
to demonstrate higher parsing speeds. We used the NetFPGhe that a TCAM entry for lookahead 2 is 4 bytes, while
so we could verify timing and execution in lieu of an ASIC4 entry for lookahead 3 is 6 bytes. Both lookahead 2 and
We monitored the outputs of the system using the Chipscopgkahead 3 require 40 CAM entries, but this is 160 bytes
analyzer after connecting the Xilinx USB Cable to the JTAG |gokahead 2 and 240 bytes for lookahead 3. The cost for

port of the board. _ ‘lookahead 4 is 330 bytes with no speed gain.
Using a lookahead of 3, we were able to implement parsing

in the NetFPGA at 10 Gbps using a clock of 63 MHz. Thé- Packet parallelism versus lookahead
implementation took less thai®% of the available logic (2410 Figure 12 shows the cost in FPGA slices for four different
out of 23,616 slices) and less thaf% of the RAM blocks FPGA implementations. The first three bars starting from the

Speed Rates Logic Distribution of NetFPGA

100 3000

90 r
80
70 r
60 -
50 r
40
30 [
20 r
10 -

— Speed ‘

2500
2000 r
1500

slices

1000

Speed (bits/cycle)

500 r

1 2 3 parallel

) noALU 1+ALU 2. 3 4 Core utilization CAM utilization ——
Fig. 10. The worst case speeds for various architectures.bah labeled,

for instance, represents lookahead 2. . . L) .
P Fig. 12. The cost in FPGA logic slices for the various ardtiiees. The

bar labeled2 for instance represents lookahead 2. The bar labeled glarall

TCAM requirement in bytes represents 2 copies of lookahead 1.

350
300 |)
g 207] of the ASIC can store 100K CAM bits. Using 48 bit wide
2 200t] CAMSs, this is about 2000 CAM entries, which is much more
2 150} | than sufficient for the 40 entries needed for today's parse
= 100 | trees. Further, reasonably priced ASICs (smaller than $100
are around 180 square mm in size. Thus, the logic together
S0 with the CAM entries will take less than 1% of the chip area,
0 : : which allows plenty of room for other logic such as lookups
noALU 1+ALU 2 3 4

and classification. Given that a lookahead 3 implementation
can achieve 96 bits/cycle, a 420 MHz implementation can

Fig. 11. TCAM storage costs in bytes for various lookaheddes .
provide a throughput of 40 Gbps.

For comparison, we also used a Cisco Verilog implementa-
left show the cost in slices for lookahead of 1, 2, and t%n of a lookahead 1 parser. Comp"ed using an IBM ASIC
respectively. The rightmost bar represents packet pésafle |iprary, the logic cost was 5K flops. Thus the total cost of a 2-
USing two COpieS. It is obtained by taklng twice the cost @f ﬂbopy packet para||e| imp|ementati0n (exc|uding re-seqm
leftmost bar. The solid portion of each bar represents thelo costs) is at least 10,000 flops to reach 40 Gbps. Given that
costs excluding CAM costs, while the remainder represenfere is roughly a 6: 5 ratio between flops and TCAM bits
CAM costs. (from the IBM ASIC library used by Cisco), the “cost” of

The comparison understates the cost of packet paralleligano bytes of TCAM (for a lookahead 3 implementation)
because it ignores the re-sequencing costs. Note alsohidatriormalized to flops is 1600 flops. Assuming that the logic for
logic cost (excluding CAM costs) of lookahead 2 and 3 ipokahead 3 costs 20% more than lookahead 1 (see Figure 12),
about 20% higher than Lookahead 1 because of the extra a@gt total logic cost of lookahead 3 is 6000 flops (logic) +
of multiplexing. 1600 flops (CAMs) which is 7600 flops. Thus the cost of

In Figure 12, if we disregard the cost of the TCAM, thyacket parallelism, even measured conservatively, is at le
cost of a lookahead 3 implementation is 1770 slices while t389% more than that of lookahead. This confirms the intuition
cost of a 2-copy implementation of comparable speed (packgised on the FPGA results.
parallelism) is 2600 slices. Thus, disregarding FPGA CAM
costs, lookahead is cheaper than packet parallelism. Hawev Further, for 65nm at 400 Hz, 5K flops consume 54mW
if we add the CAM costs, the cost of lookahead 3 is Zeéﬁh'le 320 bytes of TCAM consumes 4.8 mW. Thus the packet

slices which ismore than the 2-copy solution. However, thisparallel solut.ion_ uses almost double the power. Thg other

comparison is biased by the lack of native support for TCAMEPSES of replication (packet storage, re-assembly logity o

in Virtex-2 Pro FPGAs. Even 40 CAM entries are expensiv%trengthen the case for lookahead up to 40 Gbps.

because TCAMs have to be naively implemented using logic.Finally, we note that all programmable parsers will require

On the other hand, in an ASIC (as we show next), the cost afleast 2 cycles to read an Interpretation Memory and 2 sycle

40 TCAM entries is negligible. Thus the right comparison it read the packet. Thus even a parser with lookahead 1 will

indeed to disregard CAM costs. need to be pipelined 4-deep to achieve 18 Gbps. Using two
c) Extension to ASICsNetworking ASICs being de- copies will only double storage. Thus, packet registeragfer

signed today use 65nm technology that corresponds tousing packet parallelism is also worse than a comparable

density of 100k CAM Bits/square mm. Thus, 1 square mmokahead 3 solution.

VIIl. RELATED WORK also be interesting in its own right. For example, it can bedus

to implement IP lookups and Packet Classification as well as
fparsing. While it is obvious that any architecture that has a
Ternary CAM can implement lookups and classification, the

) . . . use of a tree of CAM nodes may reduce memory compared
including BPF [18], Pathfinder [14] and DPF [15]. While ther?o laying out the entire databaseyin a CAM. A CX\M-driEJ/en

is some prior work in programmable hardware parsing (e.g., |, : . . : . .
' : fchitecture, with suitable augmentation, may provideran i
[17]), we are the first to consider lookahead greater than 1.” " . :
teresting alternative for a network processor design.

There are also patents by EZchip [6] and Avici [8] that use As we look back to protocol developments in the last ten

TCAMs for programmability but there is no evidence that theg//ears we see the emeraence of a large number of shim headers
uselookaheadthe main new idea in this paper. Additionally hat V\'/ere designed to %dd informati%n (such as tags, tunnel
none of the work we have seen in industry describes acompi\i rs) after the fact to protocols such as IP and Etherr,1et that
to automatically generate CAM entries. .
)) were not designed for these purposes. There has also been

Our offline algorithm has some analogs to the dynamig, increasing trend to make finer granularity routing and QoS
programming algorithm used in [20] to find the optimal travelye isions based on more header fields. Finally, both researc
sal of a trie for multi-bit IP lookup. Non-uniform traversal 5ng market forces have led a trend towards more flexible
however, requires CAMs unlike [20]. Our dynamic programgters, and hence towards flexible parsers. None of these
ming algorithm is also more intricate because it must OfMi s show any signs of abating. Thus we believe that high-
?r?rzgzz every possible fringe of a subtree and not just "flafheed parsing will remain a fundamental bottleneck, ashyort

of study as IP lookups, packet classification, or switching.

Most prior work in efficient parsing is in the context o
software and produced innovative parse trees represamgati

X. ACKNOWLEDGEMENTS

IX. CONCLUSIONS We would like to thank Flavio Bonomi, Tom Edsall, and
Pere Monclus from Cisco Inc. for their help and support. We
. _ thank Brian Kantor for naming our system. This work was
Wh|le we have shown good speedups with IOOkahe%’ade possible by a grant from Cisco Systems and NSF grant

as with IP lookups, there are clearly other approaches ey

. . . - R-0509546.
speeding up parsing. First, within each header some amount
of parallelism can be exploited without using lookaheadnas REFERENCES
extracting the IP Length and IP Protocol from the IP headeri] http:/mww.intel.com/design/network/products/apiily/ixp1200.htm.
Second, the parse tree traversal can be pipelined withag us [2] http://newsroom.cisco.com/dlls/partners/news/4p0 prod 06-

. . . 09.html.
lookahead. Third, one could replicate multiple slower pess [3] http://newsroom.cisco.com/dlls/2004/HaB2504c. htm.

and use packet-by-packet parallelism. Each of these method] nhttp:/mmww.cisco.com/en/US/docs/ios/12sr/12 2srblfea-
bears investigation and has their own set of tradeoffs. ture/guide/lsrmbrfc.html.

. , . [5] http://www.juniper.net/techpubs/software/nog/Aogls/html/check-
The biggest advantage of Kangaroo’s lookahead parsing mpls-rsvp8.html.

is its ability to deal cheaply with a large number of con-[6] http:/iwww.patentstorm.us/patents/6944168/deicr. html

: : http://www.geni.net/
secutive headers that appear in a small number of pac http://www.google.com/patents?id=j8iXAAAAEBAJ&dAviCi

bytes. Figure 2 gives a real example which contains 6 headgt$ hitp:/iwww.networksorcery.com/enp/topic/ipsuiiten.

(2 802.1g and 4 MPLS) in 24 bytes. As speeds increas$t)] leee 802.1q reviewhttp://en.wikipedia.org/wiki/IEEE802.1Q

_ . : [11] IEEE Std 802.1Q-2005
such worst-case sequences wil greatly stress standaschgar 12] A proposed architecture for the geni backbone platfoividashington

algorithms that do not employ lookahead. A little lookahead ~ university Technical Report, WUCSE-2006-14

can avoid the need for replicating the entire parsing logic 13] J. Allen et al, IBM Powernp network processor: Hardwsodtware and

applications.|BM Journal of Research and Developmehktay 2003.
handle such sequences of small headers. [14] M. Bailey, et al PATHFINDER: A pattern-based packetsslifier. OSD|,

On the other hand, the disadvantage of lookahead parsing]; 1994.

; ; ; ; D. Engler and F. Kaashoek. DPF: Fast, flexible messagruliiplexing
is that it requires the use of CAMs (which are less dend® using dynamic code generatioACM SIGCOMM 1996,

than SRAMs within ASICs or FPGAs) and it needs mOr@e) A. Gupta, A. Kumar, and R. Rastogi. Exploring the trafebetween
complicated fetching of the packet data. However, a limited label size and stack depth in MPLS routing:EE INFOCOM 2003.

; ;] P. Kobiersky, J. Korenek, L. Polack. Packet headeryaimland field
amount of lookahead parsing requires Only a small numdé? extraction for multigigabit networksDDECS pages 96-101, 2009.

of CAM gntries. Similarly, if we limit Ourselyes to fetching[1g] s. McCanne and V. Jacobson. The BSD packet filter: A nehitcture
consecutive headers, the cost of the muxing becomes very for user-level packet capturd)JSENIX Winter Conferencepages 259

; ; ; i 270, 1993.
cheap. The dynamlc programming algorlthm can be mod|f|?g] E. Rosen, A. Viswanathan, and R. Callon. Multiprotoladiel switching

to calculate the best use of lookahead given both restnistio architecture, 2001.
Thus in this form, at the very least, we are confident th§0] V. Srinivasan and G. Varghese. Faster IP lookups usimgrolled prefix

; ; expansion.ACM Transactions on Computer Systerfigb 1999.
lookahead parsing will be a useful complement to Oth?fl] J.Lockwood et al NetFPGA — an open platorm for gigabie

techniques. network switching and routing. IEEE International Conference on
The CAM-driven architecture we devised for Kangaroo may Microelectronic Systems Educatjop007.

