
Logic Synthesis and Optimization Benchmarks User GuideVersion 3.0Saeyang Yang1
This report is issued to provide documentation for the benchmark examples used in conjunctionwith the 1991 MCNC International Workshop on Logic Synthesis and the extention of the 1989Logic Synthesis and Optimization Benchmarks User Guide. Its distribution is limited to peercommunication and to participants of the workshop.This report contains material previously published and distributed by the University of Cali-fornia (Copyright 1979, 1980, 1983, 1986 Regents of the University of California) and StanfordUniversity.For information about the ideas expressed herein, contact the author(s) directly. For informationabout the MCNC Technical Report Series, or Industrial A�liates Program, contact CorporateCommunications, MCNC, P.O. Box 12889, Research Triangle Park, NC 27709; (919) 248-1842.January 15, 1991
1Microelectronics Center of North Carolina, P. O. Box 12889, Research Triangle Park, NC 27709

Contents1 Acknowledgements 22 Benchmark Distribution 33 Benchmark Examples Included in v3.0 Release 53.1 FSM Examples : 63.2 Sequential Multi-Level Examples : 83.3 Combinational Multi-Level Examples : 103.4 Two-Level Examples : 124 Data Formats for Benchmark Examples 134.1 FSM Format : 134.1.1 Examples: dk27.kiss2 : 144.2 Multi-Level Formats : 154.2.1 Introduction : 154.2.2 BLIF Multi-Level Format Description : 154.2.3 SLIF Description : 264.3 Two-Level Format : 304.3.1 ESPRESSO INPUT FILE DESCRIPTION : : : : : : : : : : : : : : : : : 304.3.2 KEYWORDS : 304.3.3 LOGICAL DESCRIPTION OF A PLA : : : : : : : : : : : : : : : : : : : 314.3.4 SYMBOLS IN THE PLA MATRIX AND THEIR INTERPRETATION : 314.3.5 Example con1.pla : 32
1

5 Cell Library Descriptions 335.1 Lib1: The Small Unit-Delay Model : 335.1.1 Lib1.1: Combinational : 335.1.2 Lib1.2: Sequential : 335.2 Lib2: The MOSIS 2u standard cell library : 335.3 Lib3: The ADVANCELL D library : 336 Cell Library Formats 346.1 MISII/SIS Library Format : 346.1.1 MISII/SIS Library Format Example : 356.2 MCNC Library Format : 366.2.1 MCNC Library Format Example : 377 Guidelines for Reporting Results 387.1 Suggested Benchmark Subsets : 387.2 Quality Criteria : 407.2.1 Area Results : 407.2.2 Delay Results : 417.2.3 Preserving I/O Behavior in Sequential Optimization : : : : : : : : : : : : 417.2.4 CPU Results : 428 Readings and References 43
2

1 Acknowledgements
The logic synthesis and optimization benchmarks distributed by the Microelectronics Centerof North Carolina include the ISCAS'85 and ISCAS'89 set. Additional benchmarks have beenprovided by the following individuals and organizations:Nico BenschopPhillips Research LaboratoriesEindhoven, The NetherlandsGiovanni De MicheliStanford UniversityDepartment of Electrical EngineeringPalo Alto, CAPetra MichelSiemens AGDept. ZFE F2 DES1Munchen, GermanyOCT Tools DistributionElectronics Research LaboratoryUniversity of California, BerkeleyBerkeley, CAEllen SentovichElectronics Research LaboratoryUniversity of California, BerkeleyBerkeley, CAFabio SomenziUniversity of ColoradoDepartment of Electrical & Computer EngineeringBoulder, COLouise TrevillyanIBM Corporation0B4/4A17, Route 100Somers, NYThis user guide extends the version 2.0 prepared by Robert Lisanke in December 1988. ACM/SIGDAfunded Doug Maltais, a graduate student at NCSU, to assist with preparing data for version3.0. Funding for distribution of the benchmarks for the 1991 MCNC International Workshop onLogic Synthesis has been provided by ACM/SIGDA.3

2 Benchmark DistributionThe benchmark examples for the 1991 International Workshop on Logic Synthesis can be ob-tained from MCNC in two ways.1. If you have access to an ARPA Net connection you may establish an FTP connection tohost "mcnc.mcnc.org" and copy the �les using the "get" command. The login name is"anonymous" and the password is any string (we ask that you use your name or homelogin id). The �les are in the "/pub/benchmark/LGSynth91" directory.Check the FTP man page for details. The following command sequence will obtain all thebenchmark data contained in subdirectories fsmexamples (FSMs in KISS2 format), sm-lexamples (sequential multi-level "extended blif" examples), cmlexamples (combinationalmulti-level "blif" examples), twolexamples (two-level examples in ESPRESSO format), wk-slibrary (the workshop libraries to be used for synthesis), and wksdoc (this document inLaTeX form).The command sequence to establish a connection to the host machine is:ftp mcnc.mcnc.organonymous (in response to the "Name" prompt)(your id) (in response to the "password" prompt)cd pub/benchmark/LGSynth91If you have a UNIX(tm) machine on the Arpanet, check to see if you have the \uncompress"command available. Shipping the benchmarks over in compressed form is much faster thanin plaintext. If you have uncompress, then dobinaryget LGSynth91.tar.Zbyeon your local machine, uncompress the �le with the commanduncompress LGSynth91.tar.Zun-tar the �le with the commandtar -xvf LGSynth91.tarIf you do not have the uncompress utility, but do have the \tar" facility then take theuncompressed version, as inbinaryget LGSynth91.tarbyeand then on your local machinetar -xvf LGSynth91.tar 4

If you do not have the \tar" utility available, you may have to copy the �les explicitly.binarycd fsmexamplesmget *cd ../smlexamplesmget *cd ../cmlexamplesmget *cd ../twolexamplesmget *cd ../wkslibrarymget *cd ../wksdocmget *bye2. We are prepared to send you a 9-track tape in TAR format. Contact Jeri Williams byphone (919 248-1938) or email (benchmarks@mcnc.org) and tell her your requirements.The cost of materials and handling are being covered by a grant from the Associationof Computing Machinery, Special Interest Group on Design Automation (ACM/SIGDA).You are free to copy and distribute material further to your colleagues as long as you don'tcharge for these services.Benchmarks are updated/corrected periodically and you may ftp to "mcnc.mcnc.org" and cdto /pub/benchmark/LGSynth91/bench.update for an update. If you have technical questionsabout the benchmarks, try to contact the benchmark originators whenever possible. If you wantto share your results and comments, send e-mail to benchmarks@mcnc.org and we will try to postthem. For more detailed information about these benchmarks, you may contact Franc Brglez,Workshop Chair, (919) 248-1925; email brglez@mcnc.org or Saeyang Yang at (919) 248-1886;e-mail syang@mcnc.org.

5

3 Benchmark Examples Included in v3.0 ReleaseThe logic synthesis and optimization benchmark set consists of examples from four broad cate-gories.1. Finite-state tables in KISS2 format.2. Sequential Multi-level logic in extended BLIF(Berkeley Logic Interchange Format) or SLIF(StructureLogic Interchange Format).3. Combinational Multi-level logic in BLIF or SLIF.4. Two-level logic in Berkeley PLA (ESPRESSO) format or SLIF.The following sections present tables for each benchmark category. The tables list the names ofexamples included in the v3.0 benchmark set along with some characteristics for each benchmark.

6

3.1 FSM ExamplesFSM Name Inputs Outputs Products Statesbbara 4 2 60 10bbsse 7 7 56 16bbtas 2 2 24 6beecount 3 4 28 7cse 7 7 91 16dk14 3 5 56 7dk15 3 5 32 4dk16 2 3 108 27dk17 2 3 32 8dk27 1 2 14 7dk512 1 3 30 15don�le 2 1 96 24ex1 9 19 138 20ex2 2 2 72 19ex3 2 2 36 10ex4 6 9 21 14ex5 2 2 32 9ex6 5 8 34 8ex7 2 2 36 10keyb 7 2 170 19kirkman 12 6 370 16lion 2 1 11 4lion9 2 1 25 9mark1 5 16 22 15mc 3 5 10 4modulo12 1 1 24 12opus 5 6 22 10planet 7 19 115 48planet1 7 19 115 48pma 8 8 73 24s1 8 6 107 20s1a 8 6 107 20s8 4 1 20 5s820 18 19 232 25s1494 8 19 250 48s208 11 2 153 18s27 4 1 34 6s420 19 2 137 18s832 18 19 245 25s1488 8 19 251 48s510 19 7 77 47s386 7 7 64 13s298 3 6 1096 218sand 11 9 184 32
7

FSM Name Inputs Outputs Products Statesscf 27 56 166 121shiftreg 1 1 16 8sse 7 7 56 16styr 9 10 166 30tav 4 4 49 4tbk 6 3 1569 32tma 7 6 44 20train11 2 1 25 11train4 2 1 14 4

8

3.2 Sequential Multi-Level Examples
Circuit Circuit Approx.Name Function Inputs Outputs Latches Gatesbigkey Key Encription 262 197 221 4765clma Bus Interface 382 82 33 ~35000clmb Bus Interface 382 0 33 ~35000dsip Encription Circuit 228 197 224 2097mm30a Minmax Circuit 33 30 90 1549mm4a Minmax Circuit 7 4 12 153mm9a Minmax Circuit 12 9 27 492mm9b Minmax Circuit 12 9 26 538mult16a Multiplier 17 1 16 208mult16b Multiplier 17 1 30 212mult32a Multiplier 33 1 32 416mult32b Multiplier 32 1 62 436sbc Snooping Bus Controller 40 56 28 645s27 Logic 4 1 3 10s208.1 * Digital Fractional Multiplier 10 1 8 104s298 PLD 3 6 14 119s344 4-bit Multiplier 9 11 15 160s349 4-bit Multiplier 9 11 15 161s382 Tra�c Light Controller 3 6 21 158s386 Controller 7 7 6 159s400 Tra�c Light Controller 3 6 21 162s420.1 * Digital Fractional Multiplier 18 1 16 218s444 Tra�c Light Controller 3 6 21 181s510 Controller 19 7 6 211s526n Tra�c Light Controller 3 6 21 194s526 Tra�c Light Controller 3 6 21 193s641 PLD 35 24 19 379s713 PLD 35 23 19 393s820 PLD 18 19 5 289s832 PLD 18 19 5 446s838.1 * Digital Fractional Multiplier 34 1 32 288s1196 Logic 14 14 18 529s1423 Logic 17 5 74 657s1488 Controller 8 19 6 653s1494 Controller 8 19 6 647s5378 Logic 35 49 179 2779s38417 Logic 28 106 1636 22179s9234.1 * Logic 36 39 211 5597s13207.1 * Logic 62 152 638 7951s15850.1 * Logic 77 150 534 9772s38584.1 * Logic 38 304 1426 192539

* These examples corrected with respected to original versions. See /bench.update for details.

10

3.3 Combinational Multi-Level Examples
Circuit Circuit Approx.Name Function Inputs Outputs Gates9symml Count Ones 9 1 43C1355 Error Correcting 41 32 546C17 Logic 5 2 6C1908 Error Correcting 33 25 880C2670 ALU and Control 233 140 1193C3540 ALU and Control 50 22 1669C432 Priority Decoder 36 7 160C499 Error Correcting 41 32 202C5315 ALU and Selector 178 123 2307C6288 16-bit Multiplier 32 32 2406C7552 ALU and Control 207 108 3512C880 ALU and Control 60 26 383alu2 ALU 10 6 335alu4 ALU 14 8 681apex6 Logic 135 99 452apex7 Logic 49 37 176b1 Logic 3 4 13b9 Logic 41 21 125c8 Logic 28 18 164cc Logic 21 20 47cht Logic 47 36 229cm138a Logic 6 8 17cm150a Logic 21 1 69cm151a Logic 12 2 33cm162a Logic 14 5 43cm163a Logic 16 5 42cm42a Logic 4 10 17cm82a Logic 5 3 27cm85a Logic 11 3 38cmb Logic 16 4 41comp Logic 32 3 151cordic Logic 23 2 102count Counter 35 16 143cu Logic 14 11 48dalu Dedicated ALU 75 16 1697decod Decoder 5 16 22

11

Circuit Circuit Approx.Name Function Inputs Outputs Gatesdes Data Encription 256 245 ~4000example2 Logic 85 66 277f51ml Arithmetic 8 8 43frg1 Logic 28 3 105frg2 Logic 143 139 1004i1 Logic 25 16 46i10 Logic 257 224 2260i2 Logic 201 1 109i3 Logic 132 6 90i4 Logic 192 6 120i5 Logic 133 66 285i6 Logic 138 67 340i7 Logic 199 67 471i8 Logic 133 81 1831i9 Logic 88 63 522k2 Logic 45 45 1201lal Logic 26 19 114majority Voter 5 1 9mux Mux 21 1 91my adder Adder 33 17 223pair Logic 173 137 1434parity Parity 16 1 68pcle Logic 19 9 68pcler8 Logic 27 17 84pm1 Logic 16 13 39rot Logic 135 107 691sct Logic 19 15 91t481 Logic 16 1 2072tcon Logic 17 16 41term1 Logic 34 10 358too large Logic 38 3 578ttt2 Logic 24 21 200unreg Logic 36 16 97vda Logic 17 39 585x1 Logic 51 35 285x2 Logic 10 7 42x3 Logic 135 99 715x4 Logic 94 71 369z4ml 2-bit Add 7 4 20

12

3.4 Two-Level ExamplesCircuit ProductName Inputs Outputs Terms5xp1 7 10 759sym 9 1 87apex1 45 45 206apex2 39 3 1035apex3 54 50 280apex4 9 19 438apex5 117 88 1227b12 15 9 431bw 5 28 87clip 9 5 167con1 7 2 9cordic 23 2 1206cps 24 109 654duke2 22 29 87e64 65 65 65ex4 128 28 620ex5 8 63 256ex1010 10 10 810inc 7 9 34misex1 8 7 32misex2 25 18 29misex3 14 14 1848misex3c 14 14 305o64 130 1 65pdc 16 40 2406rd53 5 3 32rd73 7 3 141rd84 8 4 256sao2 10 4 58seq 41 35 1459spla 16 46 2296t481 16 1 481vg2 25 8 110xor5 5 1 16Z5xp1 7 10 128Z9sym 9 1 420

13

4 Data Formats for Benchmark ExamplesEach benchmark category has its own data representation or format. FSM examples use KISS2 format.The sequential multi-level examples use an extended BLIF or a SLIF, and combinational multi-levelexamples use a BLIF or SLIF. All two-level examples use the ESPRESSO format or SLIF.4.1 FSM FormatFSM benchmarks are distributed in KISS2 format. To improve uniformity, FSM benchmarks receivedhave been modi�ed to adhere to the following conventions:1. KISS2 headers include the following information:.i n # number of inputs.o m # number of outputs.p p # number of products.s s # number of states used.r r # reset state2. KISS2 format don't care states are '*' . A current-state don't-care condition indicates that nomatter what state you are in, a speci�ed input produces a transition to a given next state andoutput condition. For example,.1--- * RESET 0000 # go to state RESET if bit 0 is true,# regardless of the current stateDon't-care next states are usually indicated if an input and current-state condition can not occur.In this case, outputs would also be don't care (indicated by - for each output).3. Unused states are assumed by default in KISS2 to have don't-care next states and outputs. If onlyk out of 2**n states are used, then the (2**n - k) unused states have the following interpretation:---- unused_1 * ---- # don't care about next or out---- unused_2 * ---- # will never occur.---- unused_2**n-k * ----

14

4.1.1 Examples: dk27.kiss2dk27.kiss2.i 1.o 2.p 14.s 7.r START0 START state6 000 state2 state5 000 state3 state5 000 state4 state6 000 state5 START 100 state6 START 010 state7 state5 001 state6 state2 011 state5 state2 101 state4 state6 101 state7 state6 101 START state4 001 state2 state3 001 state3 state7 00

15

4.2 Multi-Level Formats4.2.1 IntroductionThe multi-level sequential or combinational logic is represented in two di�erent formats, (extended)BLIF or SLIF. The BLIF and SLIF may be read by the Berkeley MISII/SIS program. Also, SLIF canbe read by the Stanford synthesis tool, OLYMPUS.4.2.2 BLIF Multi-Level Format DescriptionBerkeley Logic Interchange Format (BLIF)University of CaliforniaBerkeleyThe goal of BLIF is to describe a logic-level hierarchical circuit in textual form. A circuit is an arbitrarycombinational or sequential network of logic functions. A circuit can be viewed as a directed graph ofcombinational logic nodes and sequential logic elements. Each node has a two-level, single-output logicfunction associated with it. Each feedback loop must contain at least one latch. Each net (or signal)has only a single driver, and either the signal or the gate which drives the signal can be named withoutambiguity.In the following, angle-brackets surround nonterminals, and square-brackets surround optional con-structs.Models: A model is a
attened hierarchical circuit. A blif �le can contain many models and refer-ences to models described in other blif �les. A model is declared as follows:.model <decl-model-name>.inputs <decl-input-list>.outputs <decl-output-list>.clock <decl-clock-list><command>...<command>.enddecl-model-name is a string giving the name of the model.decl-input-list is a white-space-separated list of strings (terminated by the end of the line) giving theformal input terminals for the model being declared. If this is the �rst or only model, then thesesignals can be identi�ed as the primary inputs of the circuit. Multiple .inputs lines are allowed,and the lists of inputs are concatenated.decl-output-list is a white-space-separated list of strings (terminated by the end of the line) giving theformal output terminals for the model being declared. If this is the �rst or only model, then thesesignals can be identi�ed as the primary outputs of the circuit. Multiple .outputs lines are allowed,and the lists of outputs are concatenated. 16

decl-clock-list is a white-space-separated list of strings (terminated by the end of the line) giving theclocks for the model being declared. Multiple .clock lines are allowed, and the lists of clocks areconcatenated.command is one of: <logic-gate> <generic-latch> <library-gate><model-reference> <subfile-reference> <fsm-description><clock-constraint> <delay-constraint>Each command is described in the following sections.The blif parser allows the .model, .inputs, .outputs, .clock and .end statements to be optional. If .modelis not speci�ed, the decl-model-name is assigned the name of the blif �le being read. It is an error touse the same string for decl-model-name in more than one model. If .inputs is not speci�ed, it can beinferred from the signals which are not the outputs of any other logic block. Similarly, .outputs canbe inferred from the signals which are not the inputs to any other blocks. If any .inputs or .outputsare given, no inference is made; a node that is not an output and does not fanout produces a warningmessage.If .clock is not speci�ed (e.g., for purely combinational circuits) there are no clocks. .end is implied atend of �le or upon encountering another .model.Important: the �rst model encountered in the main blif �le is the one returned to the user. The only.clock, clock-constraint, and timing-constraint constructs retained are the ones in the �rst model. Allsubsequent models can be incorporated into the �rst model using the model-reference construct.Anywhere in the �le a `#' (hash) begins a comment that extends to the end of the current line. A `\'(backslash) as the last character of a non-comment line indicates concatenation of the subsequent lineto the current line. No whitespace should follow the `\'.Example:.model simple.inputs a b.outputs c.names a b c # .names described later11 1.end# unnamed model.names a b \c # `\' here only to demonstrate its use11 1Both models \simple" and the unnamed model describe the same circuit.Logic Gates: A logic-gate associates a logic function with a signal in the model, which can be usedas an input to other logic functions. A logic-gate is declared as follows:.names <in-1> <in-2> ... <in-n> <output><single-output-cover>output is a string giving the name of the gate being de�ned.in-1, in-2, ... in-n are strings giving the names of the inputs to the logic gate being de�ned.17

single-output-cover is, formally, an n-input, 1-output PLA description of the logic function correspond-ing to the logic gate. f0, 1, {g is used in the n-bit wide \input plane" and f0, 1, {g is used in the1-bit wide \output plane". The on-set is speci�ed with 1's in the \output plane," the off-set isspeci�ed with 0's in the \output plane," and the dc-set is speci�ed with {'s in the \output plane."The logic gate can have either its on-set and dc-set speci�ed, or its off-set and dc-set speci�ed.A sample logic-gate with its single-output-cover:.names v3 v6 j u78 v13.151--0 1-1-1 10-11 1In a given row of the single-output-cover, \1" means the input is used in uncomplemented form, \0"means the input is complemented, and \{" means not used. Elements of a row are anded together, andthen all rows are ored.As a result, if the last column (the \output plane") of the single-output-cover is all 1's, the �rst n columns(the \input plane") of the single-output-cover can be viewed as the truth table for the logic gate namedby the string output. The order of the inputs in the single-output-cover is the same as the order of thestrings in-1, in-2, ..., in-n in the .names line. A space between the columns of the \input plane" andthe \output plane" is required.The translation of the above sample logic-gate into a sum-of-products notation would be as follows:v13.15 = (v3 u78') + (v6 u78) + (v3' j u78)To assign the constant \0" to some logic gate j, use the following construct:.names jTo assign the constant \1", use the following:.names j1The string output can be used as the input to another logic-gate before the logic-gate for output is itselfde�ned.For a more complete description of the PLA input format, see espresso(5).External Don't Cares: External don't cares are speci�ed as a separate network within a model,and are speci�ed at the end of the model speci�cation. Each external don't care function, which isspeci�ed by a .names construct, must be associated with a primary output of the main model andspeci�ed as a function of the primary inputs of the main model (hierarchical speci�cation of externaldon't cares is currently not supported).The external don't cares are speci�ed as follows: 18

.exdc.names <in-1> <in-2> ... <in-n> <output><single-output-cover>_exdc indicates that the following .names constructs apply to the external don't care network.output is a string giving the name of the primary output for which the conditions are don't cares.in-1, in-2, ... in-n are strings giving the names of the primary inputs which the don't care conditionsare expressed in terms of.single-output-cover is an n-input, 1-output PLA description of the logic function corresponding to thedon't care conditions for the output.The following is an example circuit with external don't cares:.model a.inputs x y.outputs j.subckt b x=x y=y j=j.exdc.names x j1 1.end.model b.inputs x y.outputs j.names x y j11 1.endThe translation of the above example into a sum-of-products notation would be as follows:j = x * y;external d.c. for j = x;Flip
ops and latches: A generic-latch is used to create a delay element in a model. It representsone bit of memory or state information. The generic-latch construct can be used to create any type oflatch or
ip-
op (see also the library-gate section). A generic-latch is declared as follows:.latch <input> <output> [<type> <control>] [<init-val>]input is the data input to the latch.output is the output of the latch.type is one of ffe, re, ah, al, asg, which correspond to \falling edge," \rising edge," \active high,"\active low," or \asynchronous."control is the clocking signal for the latch. It can be a .clock of the model, the output of any functionin the model, or the word \NIL" for no clock.init-val is the initial state of the latch, which can be one of f0, 1, 2, 3g. \2" stands for \don't care"and \3" is \unknown." Unspeci�ed, it is assumed \3."19

If a latch does not have a controlling clock speci�ed, it is assumed that it is actually controlled by a singleglobal clock. The behavior of this global clock may be interpreted di�erently by the various algorithmsthat may manipulate the model after the model has been read in. Therefore, the user should be awareof these varying interpretations if latches are speci�ed with no controlling clocks.Important: All feedback loops in a model must go through a generic-latch. Purely combinational-logiccycles are not allowed.Examples:.inputs d # a clocked flip-flop.output q.clock c.latch d q re c 0.end.inputs in # a very simple sequential circuit.outputs out.latch out in 0.names in out0 1.endLibrary Gates: A library-gate creates an instance of a technology-dependent logic gate and associatesit with a node that represents the output of the logic gate. The logic function of the gate and its knowntechnology dependent delays, drives, etc. are stored with the library-gate. A library-gate is one of thefollowing:.gate <name> <formal-actual-list>.mlatch <name> <formal-actual-list> <control> [<init-val>]name is the name of the .gate or .mlatch to instantiate. A gate or latch with this name must be presentin the current working library.formal-actual-list is a mapping between the formal parameters of name (the terminals of the library-gate) and the actual parameters of the current model (any signals in this model). The format fora formal-actual-list is a white-space-separated sequence of assignment statements of the form:formal1=actual1 formal2=actual2 ...All of the formal parameters of name must be speci�ed in the formal-actual-list and the singleoutput of name must be the last one in the list.control is the clocking signal for the mlatch, which can be either a .clock of the model, the output ofany function in the model, or the word \NIL" for no clock.init-val is the initial state of the mlatch, which can be one of f0, 1, 2, 3g. \2" stands for \don't care"and \3" is \unknown." Unspeci�ed, it is assumed \3."A .gate refers to a two-level representation of an arbitrary input, single output gate in a library. A .gateappears under a technology-independent interpretation as if it were a single logic-gate.A .mlatch refers to a latch (not necessarily a D
ip
op) in a library. A .mlatch appears under atechnology-independent interpretation as if it were a single generic-latch and possibly a single logic-gatefeeding the data input of that generic-latch. 20

.gates and .mlatches are used to describe circuits that have been implemented using a speci�c library ofstandard logic functions and their technology-dependent properties. The library of library-gates mustbe read in before a blif �le containing .gate or .mlatch constructs is read in.The string name refers to a particular gate or latch in the library. The names \nand2," \inv," and\jk rising edge" in the following examples are descriptive names for gates in the library. The followingblif description:.inputs v1 v2.outputs j.gate nand2 A=v1 B=v2 O=x # given: formals of this gate are A, B, O.gate inv A=x O=j # given: formals of this gate are A & O.endcould also be speci�ed in a technology-independent way (assuming \nand2" is a 2-input nand gate and\inv" is an inverter) as follows:.inputs v1 v2.outputs j.names v1 v2 x0- 1-0 1.names x j0 1.endSimilarly:.inputs j kbar.outputs out.clock clk.mlatch jk_rising_edge J=j K=k Q=q clk 1 # given: formals are J, K, Q.names q out0 1.names kbar k0 1.endcould have been speci�ed in a technology-independent way (assuming \jk rising edge" is a JK rising-edge-triggered
ip
op) as follows:.inputs j kbar.outputs out.clock clk.latch temp q re clk 1 # the .latch.names j k q temp # the .names feeding the D input of the .latch-01 11-0 1.names q out0 1.names kbar k0 1.endModel (subcircuit) references: A model-reference is used to insert the logic functions of onemodel into the body of another. It is de�ned as follows:21

.subckt <model-name> <formal-actual-list>model-name is a string giving the name of the model being inserted. It need not be previously de�nedin this �le, but should be de�ned somewhere in either this �le, a .search �le, or a master �le thatis .searching this �le. (see .search below)formal-actual-list is a mapping between the formal terminals (the decl-input-list, decl-output-list, anddecl-clock-list) of the called model model-name and the actual parameters of the current model.The actual parameters may be any signals in the current model. The format for a formal-actual-listis the same as its format in a library-gate.A .subckt construct can be viewed as creating a copy of the logic functions of the called model model-name, including all of model-name's generic-latches, in the calling model. The hierarchical nature of theblif description of the model does not have to be preserved. Subcircuits can be nested, but cannot beself-referential or create a cyclic dependency.Unlike a library-gate, a model-reference is not limited to one output.The formals need not be speci�ed in the same order as they are de�ned in the decl-input-list, decl-output-list, or decl-clock-list; elements of the lists can be intermingled in any order, provided the namesare given correctly. Warning messages are printed if elements of the decl-input-list or decl-clock-list arenot driven by an actual parameter or if elements of the decl-output-list do not fan out to an actualparameter. Elements of the decl-clock-list and decl-input-list may be driven by any logic function of thecalling model.Example: rather than rewriting the entire blif description for a commonly used subcircuit several times,the subcircuit can be described once and called as many times as necessary:.model 4bitadder.inputs A3 A2 A1 A0 B3 B2 B1 B0 CIN.outputs COUT S3 S2 S1 S0.subckt fulladder a=A0 b=B0 cin=CIN s=S0 cout=CARRY1.subckt fulladder a=A3 b=B3 cin=CARRY3 s=S3 cout=COUT.subckt fulladder b=B1 a=A1 cin=CARRY1 s=XX cout=CARRY2.subckt fulladder a=JJ b=B2 cin=CARRY2 s=S2 cout=CARRY3# for the sake of example,.names XX S1 # formal output `s' does not fanout to a primary output1 1.names A2 JJ # formal input `a' does not fanin from a primary input1 1.end.model fulladder.inputs a b cin.outputs s cout.names a b k10 101 1.names k cin s10 101 1.names a b cin cout11- 11-1 1-11 1.endSub�le References: A sub�le-reference is: 22

.search <file-name>�le-name gives the name of the �le to search.A sub�le-reference directs the blif reader to read in and de�ne all the models in �le �le-name. Asub�le-reference does not have to be inside of a .model. sub�le-references can be nested.Search �les would usually be used to hold all the subcircuits referred to in model-references, while themaster �le merely searches all the sub�les and instantiates all the subcircuits it needs.A sub�le-reference is not equivalent to including the body of sub�le �le-name in the current �le. It doesnot patch fragments of blif into the current �le; it pauses reading the current �le, reads �le-name as anindependent, self-contained �le, then returns to reading the current �le.The �rst .model in the master �le is always the one returned to the user, regardless of any sub�le-references than may precede it.Finite State Machine Descriptions: A sequential circuit can be speci�ed in blif logic form, asa �nite state machine, or both. An fsm-description is used to insert a �nite state machine description ofthe current model. It is intended to represent the same sequential circuit as the current model (whichcontains logic), but in FSM form. The format of an fsm-description is:.start_kiss.i <num-inputs>.o <num-outputs>[.p <num-terms>][.s <num-states>][.r <reset-state>]<input> <current-state> <next-state> <output>...<input> <current-state> <next-state> <output>.end_kiss[.latch_order <latch-order-list>][<code-mapping>]num-inputs is the number of inputs to the FSM, which should agree with the number of inputs in the.inputs construct for the current model.num-outputs is the number of outputs of the FSM, which should agree with the number of outputs inthe .outputs construct for the current model.num-terms is the number of \<input> <current-state> <next-state> <output>" 4-tuples that follow inthe FSM description.num-states is the number of distinct states that appear in \<current-state>" and \<next-state>" columns.reset-state is the symbolic name for the reset state for the FSM; it should appear somewhere in the\<current-state>" column.input is a sequence of num-inputs members of f0, 1, {g.output is a sequence of num-outputs members of f0, 1, {g.current-state and next-state are symbolic names for the current state and next state transitions of theFSM.latch-order-list is a white-space-separated sequence of latch outputs.23

code-mapping is newline separated sequence of:.code <symbolic-name> <encoded-name>num-terms and num-states do not have to be speci�ed. If the reset-state is not given, it is assigned tobe the �rst state encountered in the \<current-state>" column.The ordering of the bits in the input and output �elds will be the same as the ordering of the variablesin the .inputs and .outputs constructs if both an fsm-description and logic functions are given.latch-order-list and code-mapping are meant to be used when both an fsm-description and a logicaldescription of the model are given. The two constructs together provide a correspondence between thelatches in the logical description and the state variables in the fsm-description. In a code-mapping,symbolic-name consists of a symbolic name from the \<current-state>" or \<next-state>" columns, andencoded-name is the pattern of bits (f0, 1g) that represent the state encoding for symbolic-name. Thecode-mapping should only be given if both an fsm-description and logic functions are given. .latch-orderestablishes a mapping between the bits of the encoded-names of the code-mapping construct and thelatches of the network. The order of the bits in the encoded names will be the same as the order of thelatch outputs in the latch-order-list. There should be the same number of bits in the encoded-name asthere are latches if both an fsm-description and a logical description are speci�ed.If both logic-gates and an fsm-description of the model are given, the logic-gate description of the modelshould be consistent with the fsm-description, that is, they should describe the same circuit. If they arenot consistent there will be no sensible way to interpret the model, which should then cause an error tobe returned.If only the fsm-description of the network is given, it may be run through a state assignment routineand given a logic implementation. A sole fsm-description, having no logic implementation, cannot beinserted into another model by a model-reference; the state assigned network, or a network containingboth logic-gates and an fsm-description can.Example of an fsm-description:.model 101 # outputs 1 whenever last 3 inputs were 1, 0, 1.start_kiss.i 1.o 10 st0 st0 01 st0 st1 00 st1 st2 01 st1 st1 00 st2 st0 01 st2 st3 10 st3 st2 01 st3 st1 0.end_kiss.endAbove example with a consistent fsm-description and logical description:.model.inputs v0.outputs v3.2.latch [6] v1 0.latch [7] v2 0 24

.start_kiss.i 1.o 1.p 8.s 4.r st00 st0 st0 01 st0 st1 00 st1 st2 01 st1 st1 00 st2 st0 01 st2 st3 10 st3 st2 01 st3 st1 0.end_kiss.latch_order v1 v2.code st0 00.code st1 11.code st2 01.code st3 10.names v0 [6]1 1.names v0 v1 v2 [7]-1- 11-0 1.names v0 v1 v2 v3.2101 1.endClock Constraints: A clock-constraint is used to set up the behavior of the simulated clocks, andto specify how clock events (rising or falling edges) occur relative to one another. A clock-constraint isone or more of the following:.cycle <cycle-time>.clock_event <event-percent> <event-1> [<event-2> ... <event-n>]cycle-time is a
oating point number giving the clock cycle time for the model. It is a unitless numberthat is to be interpreted by the user.event-percent is a
oating point number representing a percentage of the clock cycle time at which aspeci�c .clock event occurs. Fifty percent is written as \50.0."event-1 through event-n are one of the following:<rise-fall>'<clock-name>(<rise-fall>'<clock-name> <before> <after>)where rise-fall is either \r" or \f" and stands for the rising or falling edge of the clock and clock-name is a clock from the .clock construct. The apostrophe between rise-fall and clock-name is aseperator, and serves no purpose in and of itself.before and after are
oating point numbers in the same \units" as the cycle-time and are used to de�nethe \skew" in the clock edges. before represents maximum amount of time before the nominal timethat the edge can arrive; after represents the maximum amount of time after the nominal time thatthe edge can arrive. The nominal time is event-percent% of the cycle-time. In the unparenthesizedform for the clock-event, before and after are assumed \0.0."All events, event-1 ... event-n, speci�ed in a single .clock event are to be linked together. A routinechanging any one edge should also modify the occurrence time of all the related clock edges.Example 1: 25

.clock clock1 clock2.clock_event 50.0 r'clock1 (f'clock2 2.0 5.0)Example 2:.clock clock1 clock2.clock_event 50.0 r'clock1.clock_event 50.0 (f'clock2 2.0 5.0)Both examples specify a nominal time of 50% of the cycle time, that the rising edge of clock1 must occurat exactly the nominal time, and that the falling edge of clock2 may occur from 2.0 units before to 5.0units after the nominal time.In Example 1, if r'clock1 is later moved to a di�erent nominal time by some routine then f'clock2 shouldalso be changed. However, in Example 2 changing r'clock1 would not a�ect f'clock2 even though theyoriginally have the same value of event-percent.Delay Constraints: A delay-constraint is used to specify parameters to more accurately computethe amount of time signals take to propagate from one point to another in a model. A delay-constraintis one or more of :.area <area>.delay <in-name> <phase> <load> <max-load> <brise> <drise> <bfall> <dfall>.wire_load_slope <load>.wire <wire-load-list>.input_arrival <in-name> <rise> <fall> [<before-after> <event>].default_input_arrival <rise> <fall>.output_required <out-name> <rise> <fall> [<before-after> <event>].default_output_required <rise> <fall>.input_drive <in-name> <rise> <fall>.default_input_drive <rise> <fall>.output_load <out-name> <load>.default_output_load <load>rise, fall, drive, and load are all
oating point numbers giving the rise time, fall time, input drive, andoutput load.in-name is a primary input and out-name is a primary output.before-after can be one of fb, ag, corresponding to \before" or \after," and event has the same formatas the unparenthesized form of event-1 in a clock-constraint..area sets the area of the model to be area..delay sets the delay for input in-name. phase is one of \inv," \noninv," or \unknown" for inverting,non-inverting, or neither. max-load is a
oating point number for the maximum load. brise, drise,bfall, and dfall are
oating point numbers giving the block rise, drive rise, block fall, and drive fallfor in-name..wire load slope sets the wire load slope for the model..wire sets the wire loads for the model from the list of
oating point numbers in the wire-load-list..input arrival sets the input arrival time for the input in-name. If the optional arguments are speci�ed,then the input arrival time is relative to the event..output required sets the output required time for the output out-name. If the optional arguments arespeci�ed, then the output required time is relative to the event.26

.input drive sets the input drive for the input in-name..output load sets the output load for the output out-name..default input arrival, .default output required, .default input drive, .default output load set the corre-sponding default values for all the inputs/outputs whose values are not speci�cally set.There is no actual unit for all the timing and load numbers. Special attention should be given whenspecifying and interpreting the values. The timing numbers are assumed to be in the same \unit" asthe cycle-time in the .cycle construct.4.2.3 SLIF DescriptionStructure Logic Interchange Format (SLIF)Stanford UniversityDescription: SLIF is a concise format used to describe a structural view of logic circuits and theirinterconnections. It is an hierarchical, non-procedural notation that is described in ASCII �les.Syntax: SLIF is a free-format notation; i.e., statements may begin at any point on a line, and whites-pace may be used freely. Each statement must be terminated by a semicolon. Statements may appear inany order within the description of a model, with the restriction that inputs, outputs, inouts and typesmust be declared before they are used and that the last statement in the model description must be the.endmodel statement (see the Commands section below for more details).Identi�ers are character strings restricted to alphanumeric characters and the following symbols:: ^ % [] . / -Variables, model names and instance names are all identi�ers. There are two special variables, "1" and"0", which represent the logic values TRUE and FALSE, respectively.Commands in SLIF are command words preceded by a period (e.g., .library). and are summarized inthe next section. Any declaration that does not begin with a command is a logic statement and has theform var = expression;where var is an identi�er and expression is an expression in Boolean form, consisting of variables andoperators. The operators +, * and 0 represent Boolean addition, multiplication and inversion (i.e., AND,OR and NOT), respectively; the `*' operator is optional and may be omitted. e.g.,out = reset0 + clock � (in00 + (in1 � in2));is equivalent to out = reset0 + clock(in00 + in1in2);An expression, like a literal, may be complemented using the prime (i.e., apostrophe) symbol; e.g.,x = (a(b+ c)0 + d)0;27

By default, the expression represents the ON SET of the variable var. Two symbols, 0 and ~ are appendedto var to indicate the expression is its OFF SET or DON'T CARE SET respectively. The ~ can also beused in the expression to indicate the DON'T CARE SET of a variable. Used alone, ~ means the globalDON'T CARE SET of the surrounding model.There are two built-in functions. The arguments of these functions must be variables (not expressions).The built-in functions are:D(a,c) A
ow-through generic D-type latch, which has input a and is clocked by c.T(a,b) A three-state gate whose output is a when b is true, or high-impedance otherwise.The use of a built-in function is indicated by the `@' symbol; e.g.,out1 = @D(sig1; clock0);In addition to built-in functions, library functions may be called; these are de�ned as a separate model(see .library below).Comments are identi�ed by the symbol `#'. This symbol indicates that the remainder of the line is tobe ignored by any program reading the SLIF description.Commands:.attribute type name variable name parameters ; Speci�es parameters for one variable (or oneinstance), named variable name. The parameters consist of a sequence of strings, integers and
oats, de�ned in the type type name. If the type used allows for a variable number of parameters,the corresponding list has to be enclosed in parentheses "(" and ")"..call instance name model name (inputs ; inouts ; outputs) ; Creates an instance instance nameof the SLIF model model name, which may be described in the same �le or in a �le speci�ed bya .search statement. The called model may be a library element. Variables are linked accordingto the parameter listing; inputs, inouts and outputs are lists of variables separated by commas,which must agree in number and order with those in the called model..date time stamp ; Specify the time of the last modi�cation (optional). The time stamp format isYYMMDDHHmmSS where YY is the year, MM the month, DD the day, HH the hour, mm theminutes, and SS the seconds. Each element of the time stamp is a two-digit number..endmodel name ; Terminates the model. Each model has to be terminated by this declaration.There may be more than one model within the same �le..global attribute type name parameters ; Speci�es parameters valid for an entire model..include �le name ; Indicates that the information in �le name will be read as if it was part of thecurrent �le..inouts var1 var2 ... varn ; Declares variables var1 ... varn as primary bidirectional \inouts.".inputs var1 var2 ... varn ; Declares variables var1 ... varn as primary inputs..library ; Identi�es the model as a library element..model name ; Indicates the beginning of a new model and assigns it name name. Each model has tobe declared using this declaration. Multiple models may be described in a single �le..net var1 var2 ... varn ; Lists variables that are connected together. The net will be named afterone of the variables. If there are primary inputs, outputs or inouts then the net will be inheritone of their names; otherwise it will be named after var1.28

.outputs var1 var2 ... varn ; Declares variables var1 ... varn as primary outputs..search �le name ; Indicates that models included in �le name may be used, if they are needed. Usersare encouraged to use the absolute path to the �le..type type name spec1 spec2 ... specn ; Declares a type type name as a sequence of speci�cationsspec1 spec2 ... specn where spec is any of %d %f %s (integer,
oat or string). A number may beused in front of a spec, to tell how many specs are to be used. A spec or set of specs can alsobe included inside parentheses, to indicate a variable number of that spec (or set of specs). Atype is used whenever a .attribute or .global attribute command is used. The type de�nes all theinformation that follows the type name. For .attribute, a string HAS to be inserted between thetype name and the typed information. This string indicates the variable (or instance) to whichthe attribute will be attached.Example:�leA:.model main ; # de�nition of model "main".inputs a b c d ; # inputs list.outputs w x y z ; # outputs list.inouts t ; # inouts list.include �leC ; # �leC will be inserted here.search �leB ; # �leB may contain needed# models.type FORMAT1 2 %s %d ; # type de�nition.type FORMAT2 (%s (%f));.attribute FORMAT2 r (a (2.0)) ; # annotation of signal "r".attribute FORMAT1 inst0 z b 5 ; # annotation of instance "inst0"q = a b ; r = a b' + a' b ; # logic equationsx = r' ; s = a' b' c' ;y = d + d' (s + c q) ;w = @ T (y, enable) ; # tristate element.net enable clock r ; # all 3 signals are the same net.call inst0 OR2 (b, c; ; z) ; # OR-gate described externally.call inst1 d latch (c, clock; ;w); # D-latch described externally.endmodel main ; # end de�nition (model "main")�leB:# Externally-called models. Calling model must have# argument lists of correct size and in correct order..model d latch ;.inputs a b ;.outputs t ;t = @ D(a,b) ; # built-in function.endmodel d latch ;.model OR2;.inputs x y;.outputs z;.library; # identi�es as a library element.endmodel OR2;�leC: 29

Information that will be inserted in model main.type FORMAT1 2 %s %d ; # types may be rede�ned if all.type FORMAT2 (%s (%f)) ; # de�nitions are consistent.global attribute FORMAT1 cap low 5;.global attribute FORMAT2 (min res (3.0) typ res (5.0 0.2));.global attribute FORMAT2 (delay (0.1 0.3 1.0 2.1));Comments: Problems, comments and suggestions should be addressed to mailhot@Pegasus.Stanford.EDU.Authors: Giovanni DeMicheliPhilip JohnsonDavid KuFrederic Mailhot

30

4.3 Two-Level FormatThe two-level benchmarks are represented in either the ESPRESSO-MV format or the SLIF. TheESPRESSO-MV format is described by man(5) page in the ESPRESSO distribution from the Universityof California at Berkeley. The ESPRESSO-MV format description is repeated here.4.3.1 ESPRESSO INPUT FILE DESCRIPTIONESPRESSO accepts as input a two-level description of a Boolean switching function. This is describedas a character matrix with keywords embedded in the input to specify the size of the matrix and thelogical format of the input function. Comments are allowed within the input by placing a pound sign(#) as the �rst character on a line. Comments and unrecognized keywords are passed directly from theinput �le to standard output. Any white-space (blanks, tabs, etc.), except when used as a delimiter inan embedded command, is ignored. It is generally assumed that the PLA is speci�ed such that each rowof the PLA �ts on a single line in the input �le.4.3.2 KEYWORDSThe following keywords are recognized by ESPRESSO. The list shows the probable order of the keywordsin a PLA description. [d] denotes a decimal number and [s] denotes a text string..i [d] Speci�es the number of input variables..o [d] Speci�es the number of output functions..type [s] Sets the logical interpretation of the character matrix as described below under "LogicalDescription of a PLA". This keyword must come before any product terms. [s] is one of f, r, fd, fr, dr,or fdr..phase [s] [s] is a string of as many 0's or 1's as there are output functions. It speci�es which polarityof each output function should be used for the minimization (a 1 speci�es that the ON-set of thecorresponding output function should be used, and a 0 speci�es that the OFF-set of the correspondingoutput function should be minimized)..pair [d] Speci�es the number of pairs of variables which will be paired together using two-bit decoders.The rest of the line contains pairs of numbers which specify the binary variables of the PLA which willbe paired together. The binary variables are numbered starting with 1. The PLA will be reshaped sothat any unpaired binary variables occupy the leftmost part of the array, then the paired multiple-valuedcolumns, and �nally any multiple-valued variables..kiss Sets up for a KISS-style minimization..p [d] Speci�es the number of product terms. The product terms (one per line) follow immediately afterthis keyword. Actually, this line is ignored, and the ".e", ".end", or the end of the �le indicate the endof the input description..e (.end) Marks the end of the PLA description. 31

4.3.3 LOGICAL DESCRIPTION OF A PLAWhen we speak of the ON-set of a Boolean function, we mean those minterms which imply the functionvalue is a 1. Likewise, the OFF-set are those terms which imply the function is a 0, and the DC-set(don't care set) are those terms for which the function is unspeci�ed. A function is completely describedby providing its ON-set, OFF-set and DC-set. Note that all minterms lie in the union of the ON-set,OFF-set and DC-set, and that the ON-set, OFF-set and DC-set share no minterms.The purpose of the ESPRESSO minimization program is to �nd a logically equivalent set of product-terms to represent the ON-set and optionally minterms which lie in the DC-set, without containing anyminterms of the OFF-set.A Boolean function can be described in one of the following ways:1) By providing the ON-set. In this case, ESPRESSO computes the OFF-set as the complement of theON-set and the DC-set is empty. This is indicated with the keyword .type f in the input �le, or -f onthe command line.2) By providing the ON-set and DC-set. In this case, ESPRESSO computes the OFF-set as the com-plement of the union of the ON-set and the DC-set. If any minterm belongs to both the ON-set andDC-set, then it is considered a don't care and may be removed from the ON-set during the minimizationprocess. This is indicated with the keyword .type fd in the input �le, or -fd on the command line.3) By providing the ON-set and OFF-set. In this case, ESPRESSO computes the DC-set as the comple-ment of the union of the ON-set and the OFF-set. It is an error for any minterm to belong to both theON-set and OFF-set. This error may not be detected during the minimization, but it can be checkedwith the subprogram "-do check" which will check the consistency of a function. This is indicated withthe keyword on the command line.4) By providing the ON-set, OFF-set and DC-set. This is indicated with the keyword .type fdr in theinput �le, or -fdr on the command line.If at all possible, ESPRESSO should be given the DC-set (either implicitly or explicitly) in order toimprove the results of the minimization.A term is represented by a "cube" which can be considered either a compact representation of analgebraic product term which implies the function value is a 1, or as a representation of a row in a PLAwhich implements the term. A cube has an input part which corresponds to the input plane of a PLA,and an output part which corresponds to the output plane of a PLA (for the multiple-valued case, seebelow).4.3.4 SYMBOLS IN THE PLA MATRIX AND THEIR INTERPRETATIONEach position in the input plane corresponds to an input variable where a 0 implies the correspondinginput literal appears complemented in the product term, a 1 implies the input literal appears uncom-plemented in the product term, and - implies the input literal does not appear in the product term.With logical type f, for each output, a 1 means this product term belongs to the ON-set, and a 0 or -means this product term has no meaning for the value of this function. This logical type corresponds toan actual PLA where only the ON-set is actually implemented.32

With logical type fd (the default), for each output, a 1 means this product term belongs to the ON-set,a 0 means this product term has no meaning for the value of this function, and a - implies this productterm belongs to the DC-set.With logical type fr, for each output, a 1 means this product term belongs to the ON-set, a 0 meansthis product term belongs to the OFF-set, and a - means this product term has no meaning for thevalue of this function.With logical type fdr, for each output, a 1 means this product term belongs to the ON-set, a 0 meansthis product term belongs to the OFF-set, a - means this product term belongs to the DC-set, and a~implies this product term has no meaning for the value of this function.Note that regardless of the logical type of PLA, a ~ implies the product term has no meaning for thevalue of this function. 2 is allowed as a synonym for -, 4 is allowed for 1, and 3 is allowed for~. Also,the logical PLA type can also be speci�ed on the command line.4.3.5 Example con1.plaThe following two-level logic description is an example of the ESPRESSO format..i 7.o 2.p 9-1--1-- 101-11--- 10-001--- 1001---1- 10-0--0-- 011---0-- 010-----0 0101--1-- 0110-0--- 01.e

33

5 Cell Library DescriptionsWhen comparing results of synthesis programs, the target library must be standardized. For maximum
exibility, and to encourage more participation, we have selected four libraries. The benchmarks may berealized using anyone of these libraries. When reporting results, it is important to specify which librarywas used for implementing a logic example.5.1 Lib1: The Small Unit-Delay Model5.1.1 Lib1.1: CombinationalThis library consists of a subset of gates that are commonly used in ASIC libraries. The gates havea simple timing model. The delay through the logic is one unit per cell plus 0.2 units for each fanoutof a cell. The complete library is available in electronic form (MISII and textual) with the benchmarkdistribution. A hard copy of the library can be created by the user and appended to this document.5.1.2 Lib1.2: SequentialThis library consists of a subset of gates and Flip
ops that are commonly used in ASIC libraries. Thegates and
ip
ops have a simple timing model. The delay through the logic is one unit per cell plus0.2 units for each fanout of a cell. The complete library is available in electronic form (SIS) with thebenchmark distribution. A hard copy of the library can be created by the user and appended to thisdocument.5.2 Lib2: The MOSIS 2u standard cell libraryThis is a library of combinational cells that is somewhat more realistic. It contains 29 gates includingfour di�erent size inverters for bu�ering purposes. The timing model is separate rise/fall with a separatedelay equation and capacitive load associated with each input pin. The complete library is available inelectronic form (MISII and textual) with the benchmark distribution. A hard copy of the library can becreated by the user and appended to this document.5.3 Lib3: The ADVANCELL D libraryThis is a library obtained from industry. It contains 66 gates including six di�erent size inverters andfour non-inverting bu�ers for bu�ering purposes. The timing model is separate rise/fall with a separatedelay equation and capacitive load associated with each input pin. The complete library is available inelectronic form (MISII) with the benchmark distribution. A hard copy of the library can be created bythe user and appended to this document.
34

6 Cell Library FormatsThe cell libraries are made available in both the MISII/SIS and MCNC formats. The MISII/SIS formatcan be read by the MISII and SIS program. The MCNC format is made available as an easily human-readable format, and an optional parser/reader is available for this format upon request. Both formatscontain the same information.6.1 MISII/SIS Library FormatA cell is speci�ed in the following format:GATE <cell-name> <cell-area> <cell-logic-function><pin-info>..<pin-info><cell-name> is the name of the cell in the cell library. The resulting net-list will be in terms of thesenames.<cell-area> de�nes the relative area cost of the cell. It is a
oating point number, and may be in anyunit system convenient for the user.<cell-logic-function> is an equation written in conventional algebraic notation using the operators'+' for OR, '*' for AND, ' !' for NOT, and parentheses for grouping. The names of the literals in theequation de�ne the input pin names for the cell; the name on the left hand side of the equation de�nesthe output of the cell. The equation terminates with a semicolon.Only single-output cells may be speci�ed. The ' !' operator may only be used on the input literals, oron the �nal output; it is not allowed internal to an expression. (This constraint may disappear in thefuture).Also, the actual factored form is signi�cant when a logic function has multiple factored forms. Inprinciple, all factored forms could be derived for a given logic function automatically; this is not yet im-plemented, so each must be speci�ed separately. Note that factored forms which di�er by a permutationof the input variables (or by De Morgan's law) are not considered unique.Each <pin-info> has the format:PIN <pin-name> <phase> <input-load> <max-load><rise-block-delay> <rise-fanout-delay><fall-block-delay> <fall-fanout-delay><pin-name> must be the name of a pin in the <cell-logic-function>, or it can be * to specify identicaltiming information for all pins. 35

<phase> is INV, NONINV, or UNKNOWN corresponding to whether the logic function is negative-unate, positive-unate, or binate in this input variable respectively. This is required for the separaterise-fall delay model. (In principle, this information is easily derived from the logic function; this �eldmay disappear in the future).<input-load> gives the input load of this pin. It is a
oating point value, in arbitrary units convenientfor the user.<max-load> speci�es a loading constraint for the cell. It is a
oating point value specifying themaximum load allowed on the output.<rise-block-delay> and <rise-fanout-delay> are the rise-time parameters for the timing model. Theyare
oating point values, typically in the units nanoseconds, and nanoseconds/unit-load respectively.<fall-block-delay> and <fall-fanout-delay> are the fall-time parameters for the timing model.They are
oating point values, typically in the units nanoseconds, and nanoseconds/unit-load respec-tively.All of the delay information is speci�ed on a pin-by-pin basis. The meaning is the delay information forthe most critical pin is used to determine the delay for the gate.6.1.1 MISII/SIS Library Format ExampleGATE xor 5.5 O=a*!b+!a*b; PIN * UNKNOWN 2 999 1.9 0.5 1.9 0.5GATE xor 5.5 O=!(a*b+!a*!b); PIN * UNKNOWN 2 999 1.9 0.5 1.9 0.5GATE xnor 5.5 O=a*b+!a*!b; PIN * UNKNOWN 2 999 2.1 0.5 2.1 0.5GATE xnor 5.5 O=!(!a*b+a*!b); PIN * UNKNOWN 2 999 2.1 0.5 2.1 0.5GATE mux21 4.5 O=a*s+b*!s;PIN a NONINV 1 999 1.6 0.4 1.6 0.4PIN b NONINV 1 999 1.6 0.4 1.6 0.4PIN s UNKNOWN 2 999 2.0 0.4 1.6 0.4GATE mux21 4.5 O=!(!a*s+!b*!s);PIN a NONINV 1 999 1.6 0.4 1.6 0.4PIN b NONINV 1 999 1.6 0.4 1.6 0.4PIN s UNKNOWN 2 999 2.0 0.4 1.6 0.4

36

6.2 MCNC Library FormatThe MCNC library �le has the form---------------------------<cell_description><cell_description><cell_description>" "" "" "--------------------------Where <cell_description> iscell begin <name>area=<float>equation="<logic equation>"max_loads=<float>primitive=<string>termlist<terminal_name>unateness=<string: INV, NONINV, UNKNOWN>loads=<float>/* requires at least one set of best, worst or nominal */nominal_rise_delay=<float>nominal_rise_fan=<float>nominal_fall_delay=<float>nominal_fall_fan=<float>worst_rise_delay=<float>worst_rise_fan=<float>worst_fall_delay=<float>worst_fall_fan=<float>best_rise_delay=<float>best_rise_fan=<float>best_fall_delay=<float>best_fall_fan=<float> ;cell end <name>1. All above text lines are optional except "cell begin" and "cell end."
37

6.2.1 MCNC Library Format ExampleExample:cell begin xnorarea=5.0equation="y = ! ((a + b) * (!a + !b))"max_loads=10primitive=XNORtermlistaunateness=UNKNOWNloads=2.0nominal_rise_delay=1.4nominal_rise_fan=2.9nominal_fall_delay=2.3nominal_fall_fan=3.6 ; /* terminal "b" with attributes */bunateness=UNKNOWNloads=2.0nominal_rise_delay=1.4nominal_rise_fan=2.9nominal_fall_delay=2.3nominal_fall_fan=3.6 ; /* terminal "b" with attributes */y ; /* output terminal, no attributes */cell end xnor

38

7 Guidelines for Reporting ResultsA survey of researchers indicated that the following procedures and quality criteria would be useful fora meaningful comparison of various synthesis and optimization methods.7.1 Suggested Benchmark SubsetsBecause of the large number of examples in each benchmark set, it will be di�cult to run and report onall examples. To insure some overlap of examples between researchers reporting results, please attemptto include the following listed examples from each category in your subset of examples. If you can reporton all examples, so much the better.
Suggested for the FSM set:1. cse2. don�le3. dk164. dk5125. ex16. keyb7. styr8. s19. s1a10. s29811. tbk12. tmaSuggested for the sequential multi-level set:1. Optimization(a) s298(b) s400(c) s444(d) s510(e) s526(f) s713(g) s820(h) s1488 39

(i) s5378(j) s9234.12. Veri�cation(a) clma(b) clmb(c) mm30a(d) bigkey(e) mult32b(f) sbc(g) s38584.1(h) s15850.1(i) s13207.1Suggested for the combinational multi-level set:1. C4322. C13553. C19084. C26705. C35706. C62887. C75528. t4819. rot10. b911. dalu12. des13. k2Suggested for the two-level set:1. duke22. rd843. misex24. misex3c5. b126. cordic7. cps8. ex49. ex101010. pdc11. spla 40

Factored Literals Before Mapping After MappingIndex Init. Ckt Optimized Tr-pr1 b9 236 152 1862 ttt2 341 211 2683 apex7 290 292 3674 example2 366 377 4885 C1908 1497 535 6726 C1355 1064 558 6387 C2670 2075 936 11198 s1488 1387 717 913Table 1: Counting literals does not translate into transistor pairs7.2 Quality CriteriaResearchers may report their results in terms of multiple objectives such as transistor pair counts,propagation delay, and CPU time. It is also important to address such issues as follows:� Was your circuit synthesized by totally automatic means ?� How many trials or di�erent scripts (multiple runs) were used ?� What were the best results ever seen for an example, regardless of whether the method wasautomatic or if multiple trials were used ?7.2.1 Area ResultsOne of the problems in multi-level area minimization is how to choose a cost function that will abstractlyand accurately represent the �nal objective cost, say transistor pairs after the technology mapping or thelayout area after the placement and routing. Often, results of optimization are reported in terms of thetotal number of literal counts. This problem arises with the two phases of optimization: the technologyindependent phase and the technology dependent phase. The literal count, typically used in technologyindependent phase, is too optimistic to predict the transistor pairs after the technology mapping. InTable 1, we examined 8 circuits with the initial literal count ranging from 54 to 2075 (Init. Ckt). Usingalgebraic factorization in misII (with script.algebraic) the literal count appears reduced in most instancesand ranges from 152 to 936 (optimized). After completing the technology mapping optimization phase(the library used is mcnc.genlib), we report the number of literals as transistor pairs, ranging from 186 to1119 (Tr-pr). We calculated the percentages in gain/loss in literal count before the technology mappingwith the corresponding percentages in gain/loss in transistor count after the technology mapping. Theresults are shown in Table 2. Note that for circuits 1, 5, 7, and 8 the di�erence in the two counts aresubstantial. Even worse, for circuit 3 and 4 the reduction in literals does not represent the upper boundon the reduction in transistor pairs.The results shown here give a clear indication that in order to measure e�ectiveness of a given multi-leveloptimization strategy, one must unambiguously state the results of technology mapping before and afterthe technology independent phase of optimization.As it has been observed by this experiment that the literal counts before the technology mapping givespoor and inaccurate area estimator measures, it is strongly recommended to report the area estimatorafter a technology mapping. The results may be reported with the following information:41

Before Mapping After MappingIndex Init Opt % Init Opt %1 b9 236 151 35.6 202 186 7.92 ttt2 341 211 38.1 429 268 37.53 apex7 290 292 -0.7 403 367 8.94 example2 366 377 -3.0 494 488 1.25 C1908 1497 535 64.3 1962 672 30.16 C1355 1064 558 47.6 1057 638 39.67 C2670 2075 936 54.9 1409 1119 20.68 s1488 1387 717 48.3 1125 913 18.8Table 2: Minimizing literals need not minimize transistor pairs� Total Area - The sum of the cell areas as de�ned for each cell in the library (specify lib1, lib2 orlib3).� Transistor Pairs - Optionally, report the number of transistor pairs in a multi-level implementationusing the libraries (specify lib1, lib2 or lib3).� Gates - The total number of gates or cells used (again, specify library used).� Grids - The sum of gates and transistor pairs.7.2.2 Delay ResultsWhen using library 1 (LIB1) gate delay computation reduces to a simple strategy. Compute each gatedelay as 1.0 plus 0.2 times the number of fanouts at the gate's output. Then compute the longest delaysto all points from inputs to outputs.For library 2 or library 3 results, the following delay results would be more useful:� Critical path delay time through the netlist using the intrinsic-plus-fanout delay model given inthe libraries (Lib2 and Lib3).� The preferred critical-path-delay analysis method is to use LATCH-TO-LATCH delays for com-puting the longest path through the logic. This assumes that all primary inputs and outputs arelatched. To accomplish this assume standard load on all outputs (DFF latch) and assume thestandard drive on all inputs (DFF latch). The load and drive of the standard latch is the same asfor the inv2x inverter.Note that latch-to-latch delays must be used to account for the di�erence in loads that appear onthe inputs of di�erent circuit realizations. Otherwise, circuits with arbitrarily large input loadscould be realized without adding delay.7.2.3 Preserving I/O Behavior in Sequential OptimizationWhen the sequential resynthesis and retiming technique is applied to a sequential circuit, the I/Obehavior should be preserved. Especially, the output value of resynthesized and(or) retimed circuitshould be same as that of original circuit after the initializing sequence is applied. Therefore, when theresult of sequential resynthesis and retiming technique is reported, describe the method that solves thisinitialization problem. 42

7.2.4 CPU ResultsIndicate total CPU requirements for your procedure (Time and machine). Indicate how many trialswere needed to obtain your presented results.

43

8 Readings and ReferencesThe following references cover background, algorithms, and further insights on multi-level sequential logicsynthesis[1, 2], multi-level combinational logic synthesis[3, 4], decomposition and factoring[5, 6], technol-ogy mapping[7, 8, 9], two-level logic minimization [10, 11], and previous logic synthesis benchmarking[12,13].References[1] S. Malik, E.M. Sentovich, R.K. Brayton, and A. Sangiovanni-Vincentelli. Retiming and Resynthesis:Optimizing Sequential Networks with Combinational Techniques , In IEEE Transactions on CADpages 74 { 84, Jan. 1991.[2] G. De Micheli. Synchronous Logic Synthesis: Algorithms for Cycle-Time Minimization , In IEEETransactions on CAD pages 63 { 73, Jan. 1991.[3] D. Bostick, G. Hachtel, R. Jacoby, P. Moceyunas, C. Morrison, and D. Ravenscroft. The BoulderOptimal Logic Design System. In IEEE International Conference on Computer-Aided Design,pages 62 { 65, November 1987.[4] R. Lisanke, G. Kedem, and F. Brglez. DECAF: Decomposition and Factoring for Multi-Level LogicSynthesis. Technical Report, Microelectronics Center of North Carolina, Research Triangle Park,NC, August 1987.[5] R. Brayton and C. McMullen. The Decomposition and Factorization of Boolean Expressions. InIEEE International Symposium on Circuits And Systems, pages 49 { 54, May 1982.[6] R. Brayton and C. McMullen. Synthesis and Optimization of Multi-Level Logic. In IEEE Interna-tional Conference on Computer Design, pages 23 { 28, October 1984.[7] D. Gregory, K. Bartlett, A. deGeus, and G. Hachtel. SOCRATES: A System for AutomaticallySynthesizing and Optimizing Combinational Logic. In IEEE 23rd Design Automation Conference,pages 79 { 85, June 1986.[8] K. Keutzer. DAGON: Technology Binding and Local Optimization by DAG Matching. In IEEE24th Design Automation Conference, pages 341 { 347, June 1987.[9] R. Lisanke, F. Brglez, and G. Kedem. McMAP: A Fast Technology Mapping Procedure for Multi-Level Logic Synthesis. In IEEE International Conference on Computer Design, October 1988.[10] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic Minimization Algo-rithms for VLSI Synthesis. Kluwer Academic Press, Boston, 1984.[11] R. Rudell. Multiple-Valued Logic Minimization for PLA Synthesis. Technical Report, University ofCalifornia, Electronics Research Laboratory, Berkeley, CA, June 1986.[12] A. deGeus. Logic Synthesis and Optimization Benchmarks. In IEEE 23rd Design AutomationConference, page 78, June 1986.[13] R. Lisanke. Logic Synthesis and Optimization Benchmarks User Guide: Version 2.0 TechnicalReport, Microelectronics Center of North Carolina, Dec. 1988.
44

