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nt knowledge on the toxicity, speciation and biogeochemistry of arsenic in aquatic
environmental systems. The toxicity of arsenic is highly dependent on the chemical speciation. The effects of
pH, Eh, adsorbing surfaces, biological mediation, organic matter, and key inorganic substances such as sulfide
and phosphate combine in a complex and interwoven dynamic fashion to produce unique assemblages of
arsenic species. The number of different arsenic species found in environmental samples and an understanding
of the transformations between arsenic species has increased over the past few decades as a result of new and
refined analytical methods. Changes in arsenic speciation and in total arsenic content of foods upon processing
have suggested possible risks associated with processed and unprocessed food. Arsenic removal from water
using adsorbents, chemical oxidation, photolysis and photocatalytic oxidation techniques is also reviewed.

© 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Arsenic (As, atomic number=33) is a ubiquitous element, which
occurs naturally in the earth's crust. It ranks 20th in natural
abundance, 14th in seawater, and 12th in the human body (Mandal
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Table 1
Some arsenic compounds of environmental interest.

Name Formula or structure Name Formula or structure

Methylarsine CH3AsH2 Arsenobetaine (CH3)3As+CH2COO−, AB
Dimethylarsine (CH3)2AsH Arsenocholine (CH3)As+CH2 CH2OH, AC
Trimerthylarsine (CH3)3As Dimethylarsinoylribosides 1–11
Monomethylarsonic acid CH3AsO(OH)2 , MMAV Triaklylarsonioribosides 12, 13
Monomethylarsenous acid CH3As(OH)2, MMAIII Dimethylarsonoulribtol sulfate 14
Dimethylarsinic acid (CH3)2AsO(OH), DMAV Glycerophosphorarsenocholine 15
Dimethylarsenous acid (CH3)2AsOH, DMAIII Glycerophosphatidylarsenocholine 16
Trimethylarsinic oxide (CH3)3AsO, TMAO
Tetramethylarsonium ion (CH3)4As+, TMA+
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and Suzuki, 2002). Since its isolation in 1250 A.D., it has been used in
various fields such as medicine, electronics, agriculture and metal-
lurgy (Nriagu and Azcue, 1990). More than 245 minerals contain
arsenic and although the ultimate source of arsenic is geological,
human activities such as mining, the burning of fossil fuels, and
pesticide application, also cause arsenic pollution (Bissen and
Frimmel, 2003a,b). Arsenic exists in four oxidation states, +V
(arsenate), +III (arsenite), 0 (arsenic), and − III (arsine). In addition
to arsenite, arsenate, and their methylated derivatives, there are “fish
arsenic” (arsenobetaine, AB and arsenocholine, AC) and arsenosugar
compounds of environmental interest (Ng, 2005). The molecular
formulae of organic arsenic compounds are given in Table 1 and
structures of arsenosugars are provided in Fig. 1.

Both inorganic and organic forms of arsenic have been determined
in water (IPCS, 2001). Early work on the formation of methylated As
species was reviewed several decades ago (Challenger, 1945).
Methylated As species are formed through arsenic metabolism using
S-adenosyl methionine (SAM) as a methyl donor and glutathione
(GSH) as an essential co-factor (Vahter, 1994). This process is
responsible for the reported presence of MMAV and DMAV (abbrevia-
tions and structures shown in Table 1) in human urine as well as in
seashells and eggshells (Braman and Foreback, 1973). Most of the
organic compounds given in Table 1 have been found in marine and
terrestrial systems (Francesconi and Edmonds, 1997; Grotti et al.,
2008). The occurrence of organoarsenic compounds in fish and other
aquatic fauna and flora has been shown in several studies (Frances-
coni et al., 1994; Maeda, 1994; Geiszinger et al., 2002; Schmeisser et
al., 2004; Kahn et al., 2005; Meier et al., 2005; Soeroes et al., 2005;
Schaeffer et al., 2006; Jankong et al., 2007; Grotti et al., 2008). It is
noteworthy that arsenobetaine, which is themost commonly reported
organoarsenical in marine animals, is virtually absent in the vetebrate
and invertebrate freshwater organisms analyzed by Schaeffer et al.
(2006). This represents the major difference in arsenic speciation
between marine and freshwater organisms. Recently, arsenolipids
have been found in cod fish oil; causing human health concerns
(Rumpler et al., 2008).

In seawater, the concentration of arsenic is usually less than 2 µg L−1

(Ng, 2005). The levels of arsenic in unpolluted surface water and
groundwater vary typically from1–10µg L−1. In freshwater, thevariation
is in the range of 0.15–0.45 µg L−1 (Bissen and Frimmel, 2003a,b). In
thermal waters, concentrations of upto 8.5 mg L−1 and 1.8–6.4 mg L−1

have been reported in New Zealand and Japan, respectively (Ritchie,
1961; Nakahara et al., 1978). Natural geological sources of As to drinking
water are one of the most significant causes of arsenic contamination
around theworld. Arsenic contamination indifferentparts of theworld is
summarized in Table 2. TheWorld Health Organization (WHO) has set a
guideline of 10 µg L−1 as the drinking water standard. As Table 2
suggests, arsenic imposes significant risks to thehealthof peopleofmany
different countries. Asmany as 60–100million people globallymay be at
risk of exposure to excessive levels of arsenic (Ng et al., 2003).

This review presents a detailed summary of the current knowledge
of arsenic biogeochemistry in natural water systems. Fairly current
reviews on arsenic geochemistry of aquatic systems (Korte and
Fernando, 1991; Smedley and Kinniburgh, 2002) have focused on
groundwater geochemistry because of the importance of groundwater
as a source of drinking water and because some of the highest natural
levels of aquatic arsenic are found in these waters. This review focuses
on fresh and marine waters and describes concentrations and
speciation of arsenic as affected by pH, Eh, organic matter, key
inorganic substances such as phosphate and sulfide, and adsorbents. A
thorough review of the knowledge of changes in arsenic speciation in
food as a function of processing is also presented along with a
thorough discussion of arsenic contaminated water remediation with
a special focus on chemical, catalytic, and photocatalytic strategies.

2. Toxicity of inorganic and organic arsenic species

Arsenic is toxic to both plants and animals and inorganic arsenicals
are proven carcinogens in humans (Ng, 2005). The toxicity of arsenic
to human health ranges from skin lesions to cancer of the brain, liver,
kidney, and stomach (Smith et al., 1992). A wide range of arsenic
toxicity has been determined that depends on arsenic speciation.
Generally inorganic arsenic species are more toxic than organic forms
to living organisms, including humans and other animals (Goessler
and Kuehnett, 2002; Meharg and Hartley-Whitaker, 2002; Ng, 2005).
The oral LD50 for inorganic arsenic ranges from 15–293 mg (As) kg−1

and 11–150 mg (As) kg−1 bodyweight in rats and other laboratory
animals respectively (Done and Peart, 1971; Ng, 2005). Exposure to
arsenic trioxide by ingestion of 70–80mg has been reported to be fatal
for humans (Vallee et al., 1960). Arsenite (iAsIII) is usually more toxic
than arsenate (iAsV). Recent studies found that MMAIII and DMAIII are
more acutely toxic and more genotoxic than their parent compounds
(Mass et al., 2001; Petrick et al., 1993, 2000). These trivalent arsenicals
are more toxic than iAsV, MMAV, and DMAV in vitro (Styblo et al.,
2000; Mass et al., 2001). This may be related to more efficient uptake
of trivalent methylated arsenicals than of pentavelent arsenicals by
microvessel endothelial cells and CHO (Chinese Hamster Ovary) cells
(Hirano et al., 2003; Dopp et al., 2004). Recently, LC50 values were
calculated as 571, 843, 5.49, and 2.16 µM for iAsV, DMAV, iAsIII, and
DMAIII, respectively, for human cells (Naranmandura et al., 2007). This
study also showed that dimethylmonothioarsenic (DMMTAV) is much
more toxic than other pentavelent nonthiolated arsenicals (Naran-
mandura et al., 2007).

The toxicity of trivalent arsenic is related to its high affinity for
the sulfhydryl groups of biomolecules such as glutathione (GSH) and
lipoic acid and the cysteinyl residues of many enzymes (Aposhian
and Aposhian, 2006). The formation of As(III)–sulfur bonds results
in various harmful effects by inhibiting the activities of enzymes
such as glutathione reductase, glutathione peroxidases, thioredoxin
reductase, and thioredoxin peroxidase (Schuliga et al., 2002; Wang
et al., 1997; Lin et al., 2001; Chang et al., 2003). An example of AsIII–S
bond formation is the 1:3 complex of As with Cys-containing
tripeptide GSH, which has an unusually high stability constant (Rey
et al., 2004). Such AsIII-GSH conjugates have been detected in the
bile of rats (Suzuki et al., 2001). Stable arsenic complexes with the
common reductant, dithioerythritol, and other dithiols, are known



Fig. 1. Examples of structures of arsenosugars, 1–16 of Table 1 (modified from Ng, 2005 with permission of CSIRO).
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to exist (Zahler and Cleland, 1968; Kolozsi et al., 2008). The higher
toxicity of MMAIII than iAsIII may be caused by a higher affinity of
MMAIII for thiol ligands in biological binding sites than AsIII–thiolate
complexes (Spuches et al., 2005). DMAIII also forms complexes with
sulfur-rich proteins (Shiobara et al., 2001; Naranmandura et al.,
2006).
It is generally accepted that pentavalent arsenicals do not directly
bind to sulfhydryl groups to cause toxic effects (Suzuki et al., 2008).
However, a recent study reported that sulfide-activated pentavalent
arsenic could bind to the sulfhydryl group of GSH (Raab et al., 2007).
An exposure of DMAV to cabbage (Brassica oleracea) gave dimethyl-
monothioarsinic acid-GSH conjugate (DMMTAV-GSH). DMMTAV was



Table 2
Continent of arsenic in different parts of the world.

Continent Location Arsenic source Conc. μg L−1 Sampling period Reference

Americas Pampa, Cordoba, Argentina 2–15 m 100–3810 Not stated Nicolli et al. (1989)
Cordoba, Argentina N100 Astolfi et al. (1981)
Chile 470–770 United Nations (2001)
Lagunera region, Mexico Well waters 8–624 Not Sated Razo et al. (1990)
Peru Drinking water 500 1984 Sancha and Castro (2001)
Northeastern Ohio Natural origin b1–100 Not Stated Matisoff et al. (1982)
Western USA Drinking water 1–48,000 1988 Welch et al. (1988)

Europe Hungary Deep groundwater 1–174 1974 Sancha and Castro (2001)
Romania Drinking water bores 1–176 2001 Gurzau and Gurzau (2001)
South-west Finland Well waters; natural origin 17–980 1993–1994 Kurttio et al. (1998)

Asia Bangladesh Well waters b10–N1000 1996–1997 Dhar et al., 1997
Calcutta, India Near pesticide production plant b50–23,080 1990–1997 Mandal et al. (1996)
West Bengal, India Arsenic-rich sediments 3–3700 1989–1996 Mandal et al. (1996)
Nepal Drinking water 8–2660 2001 Shrestha et al. (2003)
Hanoi, Vietnam Arsenic-rich sediments 1–3050 1999–2000 Berg et al. (2001)
Xinjiang, PR China Well water 0.05–850 1983 Yinlong (2001)
Shanxi, PR China Well water 0.03–1.41 Not Stated Yinlong (2001)
Inner Mongolia, China Drinking water; bores 1–2400 1990s Guo et al. (2001)
Ronpibool, Thailand Water contaminated by tin mining waste 1–5000 1980s Choprapwon and Porapakkham (2001)
Nakhon Si Thammarat Province, Thailand Shallow (alluvial) groundwater, mining 1.25–5114 1994 Williams et al. (1996)
Fukuoka, Japan Natural origin 0.001–0.293 1994 Kondo et al. (1999)
Mekong River floodplain, Cambodia Groundwater 1–1340 2004–2006 Buschmann et al. (2007)
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found in the urine of arsenic-exposed humans and animals (Raml
et al., 2007; Naranmandura et al., 2007) and showed distinct behavior
and toxicity in vivo and in vitro relative to those of the corresponding
oxo acids (Suzuki et al., 2007; Naranmandura et al., 2007; Raml et al.,
2007). Interestingly, DMMTAV demonstrated a significantly higher
cytotoxicity than nonthiolated DMAV (Raab et al., 2007; Raml et al.,
2007). Moreover, the toxicity of DMMTAV is comparable to that of
trivalent arsenicals. The toxicity of DMMTAV may be caused by the
production of reactive oxygen species (ROS) during its exposure,
which may cause mutagenesis and DNA damage, initiating cancer
(Kitchin, 2001). A mechanism has been proposed to suggest the
production of ROS through the redox equilibrium between DMAV and
DMAIII in the presence of GSH (Naranmandura et al., 2007; Suzuki
et al., 2008).
3. Analysis of inorganic and organic arsenic species

Currently, HPLC-ICPMS (High Performance Liquid Chromatography—

Inductively Coupled Plasma Mass Spectrometry) is the most
commonly utilized technique for arsenic speciation analysis,
which quantifies virtually all environmentally relevant forms of
arsenic at appropriate concentration ranges. Atomic absorption by
either hydride generation or heated graphite atomizer is also
routinely used in many laboratories. One of the interesting
developments in analytical methods for inorganic and organic As
species is the inclusion of UV-irradiation of the sample prior to
measurement of As, which overcomes the inability of some
organoarsenic compounds to form volatile hydrides (Cullen and
Dodd, 1988; Atallah and Kalman, 1991; De Bettencourt and
Andreae, 1991; Howard and Hunt, 1993). An average 25% increase
in the concentration of total dissolved As in coastal marine waters
was found in analysis conducted by hydride generation atomic
absorption spectrophotometry after sample UV-irradiation
(Howard and Comber, 1989). This increase was attributed to
arsenosugars and related breakdown products, which do not all
form volatile species when reduced with borohydride. Average
increases in MMAV and DMAV of 47% and 79%, respectively, were
also found after UV-irradiation. Photooxidation is commonly
coupled with liquid chromatographic separation, which allows for
the analysis of complex environmental samples with separation of
arsenicals including iAsIII, iAsV, MMAIII, MMAV, DMAIII, DMAV, AB,
AC, phenylarsonic acids and potentially most if not all organoarse-
nicals of environmental importance. Recent developments in the
detection of hydrides have included atomic fluorescence spectro-
scopy (Ouyang et al., 1999; Gomez-Ariza et al., 2000; Simon et al.,
2004; Schaeffer et al., 2005) and ICP or ICP/MS (Rubio et al., 1993a;
Gomez-Ariza et al., 2000; Nakazato and Tao, 2006) for the
detection of arsenohydrides. The use of a high efficiency photo-
oxidation (HEPO) reactor which was able to oxidize organoarseni-
cals such as AB to iAsV with as little as 3.5 s of irradiation with
185 nm vacuum UV light without the addition of a chemical
oxidizing agent has been described (Nakazato and Tao, 2006).
Other studies applied potassium persulfate to oxidize organoarse-
nicals by UV irradiation (Atallah and Kalman, 1991; Rubio et al.,
1993b; Howard and Hunt, 1993; Willie, 1996). The determination of
iAsIII, iAsV, mono-, di- and trimethyl arsine, MMAIII, MMAV, DMAIII,
DMAV, and TMAO in natural waters with detection limits of several
ng L−1 was carried out using gas stripping, selective reduction and
cold trap cooling, followed by trap warming or gas chromatography
and detection by atomic absorption, flame ionization (FID) or
electron capture (ECD) (Andreae, 1977).

A comprehensive review on current analytical methods for arsenic
has been recently written (Francesconi and Kuehnelt, 2004) and the
reader is referred to that work for a detailed comparison of analytical
methods. Schaeffer et al. (2006) describe the development of a cation-
and anion-exchange HPLC separation coupled to electrospray selected
reactionmonitoring (HPLC/ES-SRM)method for the analysis of fifteen
different organoarsenic compounds found in marine and freshwater
samples. The advantage of this method stems partially from the fact
that it is a relatively soft ionization method (avoids the high tempera-
tures required for ICP and thus the atomization process) and produces
a molecular ion, which allows for species identification from the
molecular ion and fragmentation patterns with greater certainty due
to tandem mass spectrometry (MS/MS). Importantly, the identifica-
tion of species could be carried out, which were undetected by ICP/
MS. ICP/MS ultimately atomizes all As species and relies on retention
times for species identification.
4. Dependence of arsenic speciation on environmental parameters

4.1. Effect of pH

Of the several forms of arsenic, As(III), As(V), MMAV, and DMAV

undergo acid–base equilibria, thus different major and minor species



Fig. 2. Distribution of As(III), As(V), MMA, and DMA hydroxide species as a function of pH at 25 °C.
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will be present depending on the pH. As(OH)3 dissociates sequentially
in water according to Eqs. (1)–(3) (Pierce and Moore, 1982).

AsðOHÞ3⇔AsðOHÞ2O− þ H
þ

pKa1 ¼ 9:2 ð1Þ

AsðOHÞ2O−⇔AsðOHÞO2−
2 þ H

þ
pKa2 ¼ 12:1 ð2Þ

AsðOHÞO2−
2 ⇔AsO

3−
3 þ H

þ
pKa3 ¼ 12:7 ð3Þ

Fig. 2 shows that at neutral pH, As(OH)3 is the dominant species
while As(OH)2O− represents a small fraction (b1.0%) and the
contribution of As(OH)O2

− and AsO3
− is insignificant. As(V) is a

triprotic acid (Goldberg and Johnston, 2001) (Eqs. (4)–(6)).

AsOðOHÞ3⇔H
þ þ AsO2ðOHÞ−2 pKa1 ¼ 2:3 ð4Þ

AsO2ðOHÞ−2 ⇔H
þ þ AsO3ðOHÞ2− pKa2 ¼ 6:8 ð5Þ

AsO3ðOHÞ2−⇔H
þ þ AsO

3−
4 pKa3 ¼ 11:6 ð6Þ

At pH 7, almost equal concentrations of AsO2(OH)2− and AsO3

(OH)2− will be present (Fig. 2). MMA and DMA are diprotic and
monoprotic acids, respectively (Eqs. (7)–(9)) (Cox and Ghosh,
1994).

CH3AsOðOHÞ2⇔H
þ þ CH3AsO2ðOHÞ− pKa1 ¼ 4:1 ð7Þ

CH3AsO2ðOHÞ−⇔H
þ þ CH3AsO

2−
3 pKa2 ¼ 8:7 ð8Þ

ðCH3Þ2AsOðOHÞ⇔H
þ þ ðCH3Þ2AsO−

2 pKa1 ¼ 6:2 ð9Þ

The major species of MMAV is CH3AsO2(OH)− at a neutral pH,
but the minor species, CH3AsO3

2− will also be present (Fig. 2). In
the case of DMAV, both (CH3)2AsO(OH) and (CH3)2AsO2

− exist at
pH 7 (Fig. 2).
4.2. Effect of Eh

Both redox potential (Eh) and pH impose important controls on
arsenic speciation in the natural environment (Ferguson and Gavis,
1972). Fig. 3 shows the Eh–pH diagram for inorganic As compounds in
the natural environment. Under oxidizing conditions (high Eh values),
inorganic arsenic occurs primarily as H3AsO4 (iAsV) at pHb2, and both
H2AsO4

− and HAsO4
2− species exist in the pH range from 2–11. At low

Eh values, H3AsO3 is the predominant inorganic arsenic species (iAsIII)
under reducing conditions (Fig. 3). If Eh values below −250 mV exist
in the environment, arsenic compounds such as As2S3 in the presence
of sulfur or hydrogen sulfide can be formed (Fig. 3) but these
conditions are not environmentally relevant. The solubility of these
compounds is very limited under neutral and acidic conditions
(Ferguson and Gavis, 1972). Under very strong reducing conditions,
arsine and elemental arsenic are formed (Fig. 3) but again, only rarely,
if ever in the natural environment.

An example of the effect of redox conditions on As speciation is
illustrated in the levels of inorganic arsenic species in the water
column of the stratified Lake Pavin (France) (Seyler andMartin,1989).
In well oxidized surface waters of Lake Pavin, iAsV dominates with %
iAsIII/As(tot) varying from 7–12% above the redoxcline. At depth,
below the redoxcline, in waters characterized by a total depletion of
dissolved oxygen, acidic pH and the presence of hydrogen sulfide and
high turbidity, as expected iAsIII becomes the dominant form of
inorganic As in which %iAsIII/As(tot) values increased from 51 to 90%
with increasing depth. Low levels of MMAV and DMAV were also
detected in samples. Importantly, iAsIII was consistently detected in
highly oxygenated surface waters and at the redoxcline of Lake Pavin
the data yielded a ratio of iAsIII/As(V) close to one (Seyler and Martin,
1989). However, the calculated ratios were determined to be 1010. This
suggests that there are other processes such as sorption, adsorption,
precipitation, and biological mediation besides oxidizing versus
reducing conditions playing a role in distributions of inorganic arsenic
in natural waters (Fig. 4).



Fig. 4. Possible processes in biogeochemical cycling of arsenic (reproduced from
Reisinger et al., 2005 with permission of the American Chemical Society).

Fig. 3. The Eh–pH diagram for arsenic at 25 °C and 1 atmosphere with total arsenic
10−5 mol L−1 and total sulfur 10−3 mol L−1. Solid species are enclosed in
parentheses in the cross-hatched area, which indicates a solubility in parentheses in
the cross-hatched area, which indicates a solubility of less than 10−5.3 mol L−1

(reproduced from Ferguson and Gavis, 1972 with permission from Elsevier).
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The importance of biological processes in affecting the speciation
of As in natural waters was illustrated in a study of seawater samples
from the coast of Southern California with surface concentrations
hovering at around 2.0 µg L−1 total As (Andreae, 1978). While iAsV

was the most abundant As species in the photic zone, iAsIII, DMAV and
MMAV were found to positively correlate with both chlorophyll
concentrations and C14 uptake, indicating that reduction of iAsV to
iAsIII and methylation of iAsV were likely associated with biological
activities. The occurrence of MMAV and DMAV in marine macroalgae
and the correlation of arsenate with phosphate concentrations in the
photic zone pointed to reduction and methylation of iAsV as a
mechanism to assist marine primary producers with overcoming the
inhibition of phosphate uptake by iAsV. The phenomenon of
phosphate uptake inhibition by iAsV has also been demonstrated
for algae (Blum, 1966). Competitive binding between arsenate and
phosphate onto nonbiological substrates is discussed in the next
section.

4.3. Effect of adsorption

Adsorption of dissolved arsenic onto particulate phases has been
actively studied not only because of its pivotal role in determining As
concentrations and speciation in natural waters but as an important
remediation tool for arsenic removal in contaminated drinking water.
Iron oxides and hydroxides of a variety of composition and degree of
crystallinity are virtually ubiquitous in natural aqueous systems
and are known to play a major role in As geochemistry. Ferrihydrite
(approximately Fe2O3·2H2O), formed from the rapid precipitation of
Fe(III) from aqueous solution, is largely amorphous with a high
adsorptive surface area and is often used to simulate solid adsorption
surfaces in aquifers (Stollenwerk, 2003). While earlier studies of As
adsorption onto iron and aluminum oxyhydroxides found behavior
conforming to Langmuir isotherms (Ferguson and Anderson, 1974;
Anderson et al., 1976; Gupta and Chen, 1978), later work distin-
guished between the adherence of both arsenite and arsenate to a
Langmuir isotherm at lower As concentrations (0.667–13.3 µM),
while at higher As concentrations (33.4–667 µM), linear adsorption
isotherms for arsenite and arsenate adsorption onto amorphous iron
hydroxide were found (Pierce and Moore, 1982). The observed
change in isotherm adherencewith change in As concentration range
was most likely due to the variability of adsorption sites on the solid
surface. Initial As adsorption at low As levels involves sorption to the
strongest surface sites and this results in Langmuir behavior as those
sites become filled. Henceforth, adsorption continues onto weaker
surface sites, which may be more numerous than the stronger sites
and may involve penetration of As onto sites of a permeable
amorphous solid, and adsorption proceeds with a linear relationship
(constant adsorption constant). The oxidation state of As and pH of
the system are crucial to adsorptive behavior as is the presence of
competing ions. For example, Maximum iAsIII adsorption occurred on
amorphous hydroxide at around pH 7 while iAsV adsorption was
fairly independent of pH at low As concentrations but increased with
pH decrease (pH 9–4) at higher As concentrations (Pierce andMoore,
1982). While some adsorption studies have shown that iAsV adsorbs
more strongly than does arsenite at concentration ranges typical of
natural systems (Pierce and Moore, 1982), higher adsorptive
capacities of goethite and amorphous iron hydroxide at pHb9 for
arsenite compared to arsenate have been found (Lenoble et al, 2002).

The effects of oxyanions such as phosphate, sulfate, carbonate and
silicate on As adsorption onto solid phases is complicated by not only
competition for active sites but by redox processes and co-precipita-
tion (Han et al., 2007; Ciardelli et al., 2008). Recent studies point to a
solubilization of arsenic from sediment and iron oxyhydroxide
surfaces by carbonate and bicarbonate under environmentally
relevant conditions (Kim et al., 2000; Appelo et al., 2002; Anawar
et al., 2004; Arai et al., 2004; Stachowicz et al., 2007). Clays and
oxides/oxyhydroxides of aluminum and manganese are also impor-
tant adsorbents of As, especially in iron deficient systems (O'Day,
2006). The oxidation of iAsIII to iAsV upon adsorption onto clay
minerals such as illite and kaolinite has also been described (pH range
4–10) (Manning and Goldberg, 1997). This study observed iAsIII

oxidation in the absence of clay mineral surfaces at pHN9. Studies of
the extent of adsorption of arsenic onto different clays have shown,
that as has been often reported with iron oxyhydroxides, iAsV adsorbs
to a greater extent than does iAsIII, specifically at pHb7. At higher pH
values, the extent of iAsIII and iAsV adsorption is more similar (Frost
and Griffin, 1977; Lin and Puls, 2000).

The effects of carbonate species on arsenic adsorption are complex.
Different adsorbed carbonate concentrations due to different pCO2

conditions resulted in enhanced/suppressed iASV adsorption onto
hematite (pH 4–8) (Arai et al., 2004). Bicarbonate adsorption may
decrease the ability of sediments to adsorb iAs under conditions
similar to those of Bangladesh groundwater (Arai et al., 2004).
Bicarbonate is an effective competitor with iAsIII and iAsV for
adsorption onto goethite under field conditions with the largest effect
seen at the lowest experimental pH (~6.5). (Stachowicz et al., 2007).



Fig. 5. Model structure of As–NOM complex (reproduced from Wang and Mulligan,
2006a,b).
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Although the charge distributionmodel was effective in modelling the
bicarbonate interaction, comparison with field conditions indicated
that bicarbonate alone could not account for As loading of aquifer
materials and other species such as phosphate and the effect of
organic matter may also play important roles.

Because of the chemical similarities between phosphate and iAsV,
competitive binding to solids is expected and well documented on
surfaces such as goethite (Gao andMucci, 2001), and ferrihydrite (Jain
and Loeppert, 2000; Dixit and Hering, 2003). Leaching of arsenic by
phosphate solutions has been found to occur from lead arsenate
contaminated soils (Peryea, 1991). Phosphate inhibition of iAsV

adsorption onto ferrihydrite was found to be significant over the
entire pH range studied (3–10) by Jain and Loeppert (2000) with a
strong dependence on pH and phosphate concentration. For iAsV, the
effect was greatest at high pHwhile the opposite was true for arsenite.
The results suggested that iAsV and iAsIII compete for the same surface
sites on ferrihydrite, with a mild preference for iAsV. Sites with a much
higher affinity for iAsIII than for phosphate were also suggested (Jain
and Loeppert, 2000). A lack of any effect of sulfate on iAsV adsorption
was observed, however, sulfate was found to reduce iAsIII adsorption
at acidic pH with the effect increasing as pH was lowered (Jain and
Loeppert, 2000). In contrast to the lack of effect of sulfate on iAsV

adsorption onto ferrihydrite, (Jain and Loeppert, 2000), sulfate was
found to reduce the adsorption of iAsV onto hematite (Xu et al., 1988).
The anionic species of silicic acid (H4SiO4) have been shown to
compete effectively with iAsV and iAsIII for adsorption sites on iron
oxyhydroxides (Swedlund andWebster, 1999; Davis et al., 2001), and,
as was true for phosphate, the behavior was pH dependent.

4.3.1. Effect of organic matter
The effect of organic matter (OM) on As adsorption, speciation,

and mobility is also a topic of keen interest because of the ubiquitous
nature of natural organic matter in aqueous systems. OM consisting
of relatively high molecular weight humic substances and distinct
molecules of lower molecular weight, contain unique assemblages of
reactive functional groups including but not limited to phenol and
carboxylic acid which are negative at neutral pH (Macalady and
Ranville, 1998). Functional groups associated with OM can be involved
in As speciation due to (i) possible redox reactions of As, (ii) organic
matter coatings on inorganic adsorbents and (iii) aqueous complexa-
tion of As species (Redman et al., 2002). The pH dependent charges
associated with OM and arsenic species are key considerations when
evaluating interactions between OM and arsenic.

The effects of OM on arsenic adsorption/mobility depend partly on
the solubility of the OM itself under aqueous system conditions (e.g.
pH and ionic strength). Fulvic acid (FA) and natural organic matter
(NOM) have lower average molecular weights and greater pH
solubility ranges than humic acid (HA), which is base soluble but
acid insoluble.When FA or NOM is used tomodel OM, adsorption of As
species onto a solid phase such as goethite or ferrihydrite, its presence
tends to inhibit As adsorption due to competition for adsorption sites
with DOM and due to complexation of As by DOM, increasing the
mobility of arsenic. The complexation of iAsIII by aqueous solutions of
Suwannee River NOM (SRNOM) was analyzed by capillary electro-
phoresis (Lenhart and Yang, 2004). The intensity of iAsIII peak
decreased and changes occurred in NOM peaks (splitting of peaks)
upon mixing solutions of iAsIII and NOM, indicating the formation of
AsIII–NOM complexes. When HA is used to model OM, a significant
amount of the HA is present as solid phase (depending mainly on pH
and ionic strength conditions) or exists as a solid coating on a mineral
phase. This tends to remove As from the aqueous phase, enhancing As
adsorption and immobilization (Stollenwerk, 2003). The pH effects on
As speciation, and the charge on the solid surface, were found to be
the major parameters affecting sorption behavior for systems contain-
ing iAsV, FA, and inorganic solid phases (iron and aluminum oxides,
quartz and kaolinite (Xu et al., 1988)). When the pH was less than
the IEP (isoelectric point; the pH at which the charge on a surface
is zero), the solid surface adsorbs H+, increasing positive charge,
which facilitates anionic adsorption. The differences in pH dependent
adsorption of iAsIII and iAsV have been discussed in detail (Stollenwerk,
2003).

The effects of NOM on arsenic adsorption have recently been
reviewed (Wang and Mulligan, 2006a,b), with emphasis on the
importance of competitive binding onto available adsorption sites, the
mobilization of As by DOM and the immobilization of As by POM.
Redman et al. (2002) used six different NOM samples from diverse
sources of origin to study the effects of NOM on the adsorption of iAsIII

and iAsV onto hematite under natural freshwater conditions. All NOM
samples effectively competed with both iAsIII and iAsV for adsorption
sites on hematite, and consequently diminished As adsorption onto
hematite. Four of the six NOM samples were found to form soluble
complexes with iAsIII and iAsV. The extent of aqueous complexation of
As species increased with the Fe content of the NOM samples and thus
the complexation of anionic As species by anionic NOM (carboxylate
and phenolate functional groups) was explained by complexation
through metal ions such as FeIII. An intuitive structure for a possible
NOM–Fe–As complex has recently been proposed (Fig. 5) (Wang and
Mulligan, 2006a,b). Sorption onto aquifer solids and/or precipitation
of solids incorporating arsenic as a major or trace element can
immobilize arsenic. Arsenic mobility (leaching/desorption) corre-
lated well with concentrations of DOM for soils contaminated with As
(Kalbitz and Wennrich, 1998).

Redox effects on As adsorption have been emphasized by Wang
and Mulligan (2006a,b). For example, a rapid facilitated oxidation of
iAsIII to iAsV by six NOM samples upon incubation in darkness with no
relationship to sample metal content was observed by Redman et al.
(2002). SRFA (Suwannee River FA) promoted the reduction of iAsV to
iAsIII under both light and dark conditions while the oxidation of iAsIII

to iAsV was promoted to a greater extent at pH 2 than at pH 6
(Tongesay and Smart, 2005, 2007). An enhancement of iAsIII oxidation
to iAs V for adsorption onto TiO2 (a semiconductor often used to
catalyze redox reactions) in the presence of DOM fromvarious sources
under alkaline conditions and in the absence of both light and O2, was
reported by Liu et al. (2008, in press).

The important role of pH in affecting the adsorption of arsenic onto
solid surfaces in the presence of OM is well documented. The pH
dependent inhibition of As uptake by the surface of TiO2 in the
presence of NOM was observed by Liu et al. (2008, in press). Shi et al.
(2008) looked at the effects of lowmolecular weight organic acids and
pH on iAsV adsorption onto goethite and observed that citrate was
most effective at inhibiting arsenate adsorption, especially at lower pH
values (pH=4.0), although oxalate dissolved more gorthite than did
citrate, suggesting that competition for binding sites, rather than
goethite dissolution, was the key reason for arsenic mobilization. The
effects of SRFA and a peat HA on iAsIII and iAsV adsorption onto
goethite also showed significant pH effects (Grafe et al., 2001). HA
reduced iAsV adsorption between pH 6–9 while SRFA reduced iAsV

adsorption between pH 3–8 and both inhibited iAsIII adsorption at pH

http://dx.doi.org/doi:10.1016/j.jhazmat.2008.07.068
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750 V.K. Sharma, M. Sohn / Environment International 35 (2009) 743–759
3–8, suggesting that more than one OM functional group was
involved. A similar study using ferrihydrite as the solid phase, yielded
very different results: iAsV adsorption onto ferrihydrite was not
decreased by either SRFA or the HA while iAsIII adsorption was
reduced by SRFA and HA had no effect (Grafe et al., 2002).

As noted above, the effects of POM on arsenic adsorption have been
most commonly studied by introducing the less water-soluble fraction
of humic substances, humic acid, into the reaction suspension. In an
early study, two further purified commercially available humic acids
(Fluka AG and Aldrich) were used to study pH and ionic competition
effects on the adsorption of iAsIII and iAsV onto solid HA (Thanaba-
lasingama and Pickering, 1986). The adsorption experiments yielded
Langmuir isotherms with maximum uptake at pH 5.5 with maxi-
mum remobilization of pre-sorbed As by phosphate species and
lesser effects from sulfate and carbonate. This study suggested that
the HA surface is acting like an anion exchanger, possibly employing
amino groups as the active site (Thanabalasingama and Pickering,
1986). The adsorption of iAs onto kaolinite was enhanced upon
coating kaolinite with Fluka HA and the observed behavior
reinforced the possiblity of HA amino group participation in iAs
adsorption reactions (Cornu et al., 1999). A later study further
examined the possible role of HA amino groups by measuring iAsV

adsorption onto HA coated kaolinite using two humic acids of
different nitrogen content and found that the HA with the higher N/
C content adsorbed more arsenate as a kaolinite coating (Saada et al.,
2003). The experiments were done at pH 7, as were those by Cornu
et al. (1999) and the authors hypothesize a pivotal role by amino
groups which would be positively charged at pH 7 and could act as
important anion exchangers. The effect of Aldrich HA coating on the
rate of As adsorption onto hematite was also carried out in which HA
coated hematite was characterized by slower adsorption kinetics and
a lower adsorption capacity than the uncoated hematite (Ko et al.,
2004). This work described the oxidation of iAsIII to iAsV as the
dominant redox reaction (Ko et al., 2004). An unusual source of OM
(mixture of peat moss and poultry manure) was used to determine
the influence of OM on arsenic speciation and mobilization in
synthetic chromated copper arsenate (CCA) contaminated soils for
long periods of exposure (upto 40 days) (Dobran and Zagury, 2006).
This study found that while iAsV was the predominant dissolved and
sorbed form of As at high OM contents, formation of adsorbed iAsIII

was significant and both arsenate and arsenite mobilization was
enhanced with a noted persistence of soluble iAsV.

One weakness of many of the humic acid studies, is the use of
commercially obtained humic acids. There are significant differences
in functional group contents between commercial humic acids and
those extracted and purified by International Humic Substances
Society (IHSS) methods (Malcolm and MacCarthy, 1986). There is a
clear need for research on the effects of noncommercial humic acids
on adsorption and speciation of As in aqueous systems.

Studies on adsorption of organic forms of arsenic are limitedmainly
to MMAV and DMAV. Adsorption of MMAV and DMAV onto ferrihydrite
and activated alumina while varying pH, ionic strength, and sorbate–
sorbent ratio have been measured (Cox and Ghosh, 1994). A decrease
of adsorption with increasing pH was observed. Adsorption decreases
significantly at pH values above 7, but ionic strength showed only a
weak dependence (Cox and Ghosh, 1994). The triple-layer surface
complexation model was used to interpret results, which suggested
two different types of active sites, while modelling a homogeneous
surface gave inconsistent results (Cox and Ghosh, 1994). Similar
adsorption behavior for MMAV and iAsV for adsorption onto hydrous
Al2O3 was observed (Ghosh and Yuan, 1987). An adsorption study
using goethite, hematite and lepidocrocite found that sorption
decreased in the order iAsVNDMAV=MMAVN iAsIII below pH 7 and
iAsVN iAsIIINMMAV=DMAV above pH 7 (Bowell, 1994).

Inmany instances, high concentrations of organicmatter in natural
waters coincidewith reducing and/or highly sulfidic conditions. These
conditions are often found in groundwater and thus their effects on As
speciation may be critical with respect to the potability of water
supplies.
4.4. Sulfidic waters

Arsenic chemistry in sulfidic environments may be controlled by
the formation of thioarsenic species (thioarsenite and/or thioarse-
nate) (Wilkin et al., 2003; Hollibaugh et al., 2005). The formations of
some thioarsenite species are described by the following reactions in
sulfidic waters (Eqs. (10)–(15)) (Wilkin et al., 2003).

AsðOHÞ03 þ HS
− þ H

þ→AsðOHÞ2ðSHÞ0 þ H2O logK ¼ 8:69 � 0:29 ð10Þ

AsðOHÞ03 þ HS
−→AsðOHÞ2S− þ H2O logK ¼ 3:54 � 0:36 ð11Þ

AsðOHÞ2S− þ HS
−→AsðOHÞS2−2 þ H2O logK ¼ 5:06 � 0:49 ð12Þ

AsðOHÞS2−2 þ HS
− þ H

þ→AsS3H
2− þ H2O logK ¼ 11:78 � 0:89 ð13Þ

AsðOHÞS2−2 þ HS
−→AsS

3−
3 þ H2O logK ¼ 3:89 � 0:41 ð14Þ

AsS3H
2− þ HS

− þ 2H
þ→AsðSHÞ−4 logK ¼ 16:16 � 0:29 ð15Þ

Visible–UV absorption spectra of thioarsenite and thioarsenates
have been calculated from structural components (Tossell, 2003).
Raman and X-ray absorption spectroscopic methods have also been
applied to study thioarsenic speciation (Mikenda et al., 1982; Wood
et al., 2002; Bostick and Fendorf, 2005; Beak et al., 2008). HPLC-ICPMS
has also been used to study the speciation of arsenic in sulfidic
solutions (Hollibaugh et al., 2005; Rochette et al., 2000; Wilkin et al.,
2003; Stauder et al., 2005). Interpretation of the results from both
spectroscopic and chromatographic methods agrees on monomeric
species, but differs on the possible presence of polymeric species. The
drawback of spectroscopic methods is that they usually use As and
sulfide concentrations in the As–S–H2O system, which are much
higher than those present in natural environments. In addition,
spectroscopic methods provide data on composite speciation of
solutions rather than on individual arsenic species. Chromatographic
methods have an advantage in this regard, but they have difficulties in
detecting polymeric species. This may be the cause of differences
reported in the literature for thioarsenic species, i.e. whether
thioarsenites (Wilkin et al., 2003) or thioarsenates (Stauder et al.,
2005) are present in sulfidic waters. This indicates a limitation of
chromatographic methods in that the oxidation state of arsenic is
inferred rather than measured (Beak et al., 2008).

There may be as many as eight different arsenosulfur species
present in arsenite- and sulfide-containing solutions (Wood et al.,
2002). Analysis of laboratory and environmental samples suggest that
arsenic-thio compounds comprised ≥50% of the total arsenic in
sulfidic environments (Hollibaugh et al., 2005; Stauder et al., 2005;
Planer-Friedrich et al., 2007). Spectroscopic measurements as well as
solubility studies of As2S3 in hydrogen sulfide solutions suggest that
HAsS2O− and HAsS3− are present in sulfidic waters undersaturated
with respect to As2S3 (Helz et al., 1995). Under nearly saturated
conditions, the trimer As3S63− dominates (Webster, 1990; Eary, 1992;
Helz et al., 1995). Four arsenic–sulfur species with As:S ratios from 1:1
to 1:4 have been identified by Wilkin et al. (2003). The proposed
formula for the As:S ratio of 1:4 was H4AsS4− while the suggested
species with ratios, 1:1, 1:2, and 1:3 were equivalent to thioarsenites
(Wilkin et al., 2003). Monomeric and trimeric thioarsenite species
have been suggested as the most probable arsenic–sulfur complexes
in sulfidic waters (Nordstrom and Archer, 2003).

In sulfidic groundwaters and artificial arsenite/hydrogen sulfide
solutions, thioarsenates are formed (Stauder et al., 2005). The high
affinity between As(III) and sulfur results in the addition of the free



Fig. 6. Proposed mechanism of arsenosugars decomposition in top soil. R=–O–PO(OH)
O–CH2–CH(OH)CH2(OH), –SO2(OH), –O–SO2(OH) (reproduced from Castlehouse et al.,
2003 with the permission of the American Chemical Society).
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electron pair of AsIII to form AsV in thioarsenates. Mono-, di-, tri-, and
tetrathioarsenates have also been determined in geothermal waters of
Yellostone National Park (Planer-Friedrich et al., 2007). Determination
of (oxy)thioarsenates in sulfidic waters has been carried out by
Wallschlager and Stadey (2007) using anion exchange chromatogra-
phy/ICPMS.. A recent examination of arsenic speciation of sulfidic
solutions using X-ray absorption spectroscopy raised doubts on the
validity of thioarsenate analysis using chromatographic methods
because thioarsenate chromatographic peaks may appear at positions
identical to those of thioarsenites in undiluted sulfidic water samples
(Beak et al., 2008). This study demonstrated that dilution prior to
chromatographic analysis changes the speciation distribution in
samples (Beak et al., 2008). It may be possible that natural sulfidic
systems are characterized by complex nonequilibrium distributions of
arsenic oxyanions, thioarsenites, and thioarsenates. Biochemical
processes also play a major role in arsenic speciation in sulfidic
waters as described by Fisher et al. (2008).

5. Transformation of arsenosugars

Arsenosugars are commonly found inmarine algae including those
species used in human food consumption (Francesconi et al., 2002a,
b). Arsenosugars can also be found in marine animals feeding on algae
such as scallops (Lai et al., 1999) and have also been identified in
marine and freshwater fish and mussel samples (Schmeisser et al.,
2004; Šlejkovec et al., 2006; Soeroes et al., 2005b). Although AB is the
most commonly reported arsenosugar in marine organisms, it is
virtually absent in freshwater organisms (Schaeffer, 2006b). High
concentrations of arsenosugars were found in seaweed in which the
concentration of arsenic was as high as100 µg g−1 (Castlehouse et al.,
2003). Arsenosugars are assumed to be relatively nontoxic to animals
and humans relative to inorganic arsenic species (Kaise et al., 1996;
Sakurai et al., 1997). However biotransformations of arsenosugars can
result in toxic arsenicals (Francesconi et al., 2002a,b).

Biotransformation of arsenosugars in humans has been found to
produce DMAV as a major metabolite (67%) in urine (Francesconi et
al., 2002a,b). Diethylarsinoylethanol (DMAE) and TMAO have been
found as other minor constituents of arsenic metabolites (Francesconi
et al., 2002a,b). Metabolism of arsenosugars yielded DMAV in excreted
urine samples of sheep fed with seaweed (Hansen et al., 2003). Other
metabolites in minor amounts were DMAE, TMA+, iAsV, and
methylarsonic acid (MMAV) (Hansen et al., 2003). Biotransformation
of arsenic in soil amended with the seaweed species, Laminaria
digitata and Fucus vesiculosus, containing 85% total As as arsenosugars,
was studied in microcosm experiments (Castlehouse et al., 2003). The
dominant species found in soil porewaters were DMAV, iAsV, and iAsIII.
A mechanism for the decomposition of arsenosugars to form these
species has been proposed (Fig. 6). Decomposition of F. vesiculosus
was slow relative to the fast transformation of arsenosugars to DMAV,
hence low concentrations of arsenosugars in the water-extractable
phase was expected (Castlehouse et al., 2003). The arsenosugars
identified in the used seaweed species have a dimethyl arsinoyl
moiety, which is still present in the main metabolite DMAV (Fig. 6),
indicating that the ribofuranoside moiety on the arsenic can be
removed easily in soil to form DMAV. Interestingly, MMAV as an
intermediate was not identified in the pore water samples, suggesting
that either MMAV strongly binds to the soil matrix or is not very stable
under the experimental conditions (Castlehouse et al., 2003).

6. Transformation of arsenic species during thermal treatment

An extensive survey of cooked Canadian foods elucidated an
increase in total arsenic levels of cooked relative to uncooked food
such as marine and freshwater fish, which was correlated with a
decrease in the weight of the food, (Dabeka et al., 1993). Similarly,
total arsenic contents of fresh sea bass fillets increased significantly
upon microwave oven cooking of the fillets (Ersoy et al., 2006). The
decrease in moisture content during cooking was suggested as the
reason for the increase in arsenic content. However, another study on
seafood samples reported both decreases and increases in total arsenic
contents after cooking (Devesa et al., 2001a). The increase in arsenic
levels could be due to loss of water, while solubilization or
volatalization of arsenic compounds during the cooking may have
caused a decrease in concentration of arsenic (Devesa et al., 2001a). In
this study, the arsenobetaine (AB) content in water of cooked
crustaceans and bivalves was determined (Devesa et al., 2008).
Thermal treatment of mussels resulted in a lowering of the total
arsenic level, which could be due to the loss of some arsenic species
such as iAsV, AB and other arsenosugars during the process (Lai et al.,
2004). Decomposition of arsenic species upon baking at 160 °C has
been observed (Van Elteren and Slejkovex, 1997).

Transformation of arsenic species during heat treatment has been
studied in detail (Devesa et al., 2001a,b,c, 2005). Studies on seafood
cooked by various means such as grilling, roasting, boiling, and
microwaving reveals AB as themajor species found, followed by DMAV

and TMA+ (Table 1) in the cooked seafood (Devesa et al., 2005) while
minor species such as AC and MMAV were also detected. Increases in
DMAV and TMA+ were observed during cooking. A kinetic study was
carried out by heating AB at different temperatures (85–190 °C) and
for different time periods. The effect of pH on the heating process was
also studied by varying the pH from 4.5–8.0 (Devesa et al., 2001b).
There was no effect of pH observed at 120 °C. However, with
temperature increases of 150–180 °C, decomposition of AB to form
TMAO and TMA+ were observed (Fig. 7). The kinetics of two reactions
for the formation of these species were found to follow first-order
kinetics for the degradation of AB (Devesa et al., 2001b). When
heating at 160 °C was carried out for 24 h, the AB was fully degraded
with the formation of 11% TMAO and 68% TMA+ of the transformed AB
(Devesa et al., 2001b). Activation energy values were calculated as
108.6 kJ mol−1 and 200.2 kJ mol−1, respectively, for TMAO and TMA+.
This indicates that generation of TMAO is faster than that of TMA+

from the thermal transformation of AB. Less than 1.1% transformation



Fig. 7. Percentage of transformation of AB into TMAO (●) and TMA+ (○) at different
temperatures. Time of application at each temperature was 44 min (reproduced from
Devesa et al., 2001b with the permission of the American Chemical Society).
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of AC into TMAO in the temperature range 150–180 °C was observed
(Devesa et al., 2001b). Samples of sole, dory, sardine, and hake were
subjected to different cooking processes (frying, baking, and grilling)
at various temperatures (Devesa et al., 2001c). Similar results were
obtained in another study (Hanaoka et al., 2001). Decarboxylation of
AB yields TMA+ due to thermal treatment of seafood samples.
Recently, concerns have also been raised on consumption of arsenic in
cooked hijiki seaweed and rice (Laparra et al., 2005; Caumette et al.,
2007; Nakamura et al., 2008; Torres-Escrbano et al., 2008).
7. Remediation of arsenic contamination

7.1. Adsorbents

The most common method of arsenic removal from water and
wastewater is the use of different adsorbents. In treatment of As
contaminated water, adsorption of As by common coagulating agents
(alum and ferric salts such as ferric chloride and ferric sulfate) have
been studied extensively (EPA, 2000), revealing maximumAs removal
(over 95% of arsenate removed at levels of 10–50 mg/L at pH range
5.0–7.5) with ferric sulfate. An extensive review of the applications of
different adsorbents with their advantages and disadvantages has
recently been published (Mohan and Pittman, 2008). A review on
recent developments in laboratory approaches for arsenic remedia-
tion of contaminated water has also been published (Mondal et al.,
2006). Adsorption of arsenic by activated carbon has also been studied
in detail (Gu et al., 2005; Chuang et al., 2005). This method removes
only a fewmilligrams of arsenic per gram of activated carbon. There is
also the problem of regeneration of spent adsorbent if activated
carbon is used. There are several other adsorbents, which have equal
or greater efficiency than activated carbon for removal of arsenic.
These adsorbents include activated alumina, ion-exchange resins,
sand, silica, clays, iron, iron compounds, and organic polymers
(Goldberg and Johnston, 2001; Mohan and Pittman, 2008). Activated
alumina requires low pH and oxidation of AsIII for efficient As removal
(Lin and Wu, 2001; Singh and Pant, 2004). Ion-exchange resins are
less pH dependent, but other common constituents of natural waters
such as sulfates and nitrates, reduce the efficiency (Baciocchi et al.,
2005). Clays, sand, and silica are relatively less efficient than most
other adsorbents (Manning and Goldberg, 1997; Goldberg, 2002).
Iron-based adsorbents (IBS) appear to be an emerging treatment
method for removal of arsenic. An advantage of IBS is that they have
strong affinities for arsenic at neutral pH, hence no pH adjustment is
needed (Mohan and Pittman, 2008).
7.2. Phytoremediation

Phytoremediation, plant based environmentally-friendly technol-
ogy, for the remediation of sites contaminated with As, has been
recently reviewed (Lasat, 2002; Cherian and Oliveira, 2005; Dickinson
et al., 2009). The chinese brake fern, Pteris vittata, was found to be
resistant to arsenic and capable of hyperaccumulating large amounts
of As in its fronds (Ma et al., 2001) and the potential phytoremediation
of As contaminated soil and water using P. vittata has been investi-
gated (Huang et al., 2004; Elless et al., 2005; Wei and Chen, 2006;
Anderson andWalsh, 2007). Other plants have also demonstrated the
capacity to hyperaccumulate As (Francesconi et al., 2002a,b; Meharg,
2003; Du et al., 2005; Keller et al., 2007; Tripathi et al., 2007; Gonzaga
et al., 2008; Zhang et al., 2008). Mechanisms for As tolerance deployed
by plants vary. It is hypothesized that hyperaccumulation is associated
with the interaction of As with high-affinity chelating molecules
present in the cytoplasm of the plant. For example, an arsenate-
activated glutaredoxin from the fern P. vittata L. regulates intracellular
arsenite (Sundaram et al., 2008). Arsenic accumulation in the
hyperaccumulating fern species (P. vittata and P. multifida) and in
the non-hyperaccumulating species (P. ensiformis and P. semipinnata)
may involve arsenic reductase and superoxide dismutase enzymes
(Liu et al., 2008, in press). Various biological processes such as plant–
microbe interactions can also affect phytoremediation efficiencies
(Cherian and Oliveira, 2005). Recent molecular studies have shown
that many gene products are involved in the process of hyperaccu-
mulation of As (Dhankar et al., 2002), hence single genes and
multigenic engineering approaches may be applied to enhance the
efficiency of phytoremediation (Padmavathiamma and Li, 2007;
Tripathi et al., 2007).

Phytostabilization methods using plants can also be applied for
long-term remediation of As. This method limits uptake and excludes
mobilization of As. One of the major benefits of phytostabilization is
that the above-ground vegetative biomass is not contaminated with
As, thus reducing the risk of arsenic transfer through food chains
(Madejon et al., 2002). Woody species have also been investigated
with respect to photostabilization (French et al., 2006; Vazquez et al.,
2006). More recently, four Eucalyptus species were used for photo-
stabilization of As in gold mine tailings (King et al., 2008).
Additionally, natural attenuation processes including many biological
applications may transform As to less toxic species and this topic has
been recently reviewed (Wang and Mulligan, 2006b).

7.3. Chemical oxidation

As shown in Fig. 3, under typical anoxic groundwater conditions, at
a near neutral pH of 7, AsIII is the predominant form of arsenic, while in
oxic groundwater, AsV dominates (Masscheleyn et al., 1991). Arsenite
has a low affinity to mineral surfaces, while arsenate adsorbs easily to
solid surfaces. An oxidation/precipitation technology should thus be
very effective for the removal of arsenic from water (Borho and
Wilerer, 1996; Raven et al., 1998; Jain et al., 1999; Lin and Wu, 2001;
Bissen and Frimmel, 2003b; Ghurye and Clifford, 2004; Leupin and
Hug, 2005). Many studies have been published on the oxidation of AsIII

by traditional chemical oxidants (Ox) such as chlorine, chlorine
dioxide (ClO2), chloroamine (NH2Cl), ozone, hydrogen peroxide,
permanganate (MnO4

−), and ferrate (FeO4
2−) (Frank and Clifford,

1986; Kim and Nriagu, 1999; Pettine et al., 1999; Emett and Khoe,
2001; Johnston and Heijnen, 2001; Bissen and Frimmel, 2003b; Lee et
al., 2003; Ghurye and Clifford, 2004; Vasudevan et al., 2006; Dodd et
al., 2006; Sharma et al., 2007). The kinetics of the reactions with O3,
Cl2, H2O2, NH2Cl, and ferrate are first-order with respect to both AsIII

and oxidants (Pettine et al., 1999; Lee et al., 2003; Dodd et al., 2006;
Sharma et al., 2007). Fig. 8 shows the trend of the observed rate
constants, k, for various oxidants as a function of pH. Chlorine and
ozone react very rapidly, while NH2Cl and H2O2 are sluggish in



Fig. 8. Observed rate constants (k, M−1 s−1) as a function of pH for the oxidation of As
(III) by different oxidants (reproduced from Sharma et al., 2007 with the permission of
Taylor and Francis).

Fig. 9. Rateconstants (M−1 s−1)andhalf-lives(t1/2) foroxidationofAs(III)atpH7.0.Datawere
taken from Sharma et al., 2007 and half-lives were calculated using 2mg L−1 dose of oxidant.
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reacting with AsIII. Ozone reacts faster with AsIII than with chlorine in
the pH range 6.0–9.0. Though kinetic measurements have not been
conducted for MnO4

− oxidation, its reaction with AsIII is fast (Ghurye
and Clifford, 2004). Chlorine dioxide is a powerful oxidant but it is
unable to completely oxidize AsIII (Ghurye and Clifford, 2004). The
reaction of FeVI with AsIII is fast (Lee et al., 2003), however, the pH
dependence of the FeVI reaction with AsIII is opposite to that of other
oxidants (see Fig. 8). This suggests that the reactivity of FeVI may be
largely due to electrostatic interactions rather than to the nucleophilic
behavior of AsIII species (Sharma et al., 2007).

Stoichiometries of the oxidation reactions are expressed in the
following equations.

Cl2 : AsðOHÞ3 þ HOCl→AsO
3−
4 þ Cl

− þ 4H
þ ð16Þ

ClO2 : AsðOHÞ3 þ 2ClO2 þ H2O→AsO
3−
4 þ 2ClO

−
2 þ 5H

þ ð17Þ

5AsðOHÞ3 þ 2ClO2 þ H2O→5AsO
3−
4 þ 2Cl

− þ 17H
þ ð18Þ

NH2Cl : AsðOHÞ3 þ NH2Cl þ H2O→AsO
3−
4 þ NH

þ
4 þ Cl

− þ 3H
þ ð19Þ

H2O2 : AsðOHÞ3 þ H2O2→AsO
3−
4 þ 3H

þ þ H2O ð20Þ

O3 : AsðOHÞ3 þ O3→AsO
3−
4 þ O2 þ 3H

þ ð21Þ

MnO
−
4 : 3AsðOHÞ3 þ 2MnO

−
4 →3AsO

3−
4 þ 2MnO2 þ 7H

þ þ H2O ð22Þ

FeO
2−
4 : 3AsðOHÞ3 þ 2FeO

2−
4 þ H2O→3AsO

3−
4 þ 2FeðOHÞ3 þ 5H

þ ð23Þ
Oxidant amount requirements for the oxidation of AsIII can be

determined from these Eqs. (16)–(23). The reaction with ClO2, varies
whether the reaction goes through a one-electron or five-electron
transfer process (Eqs. (17) and (18)). The presence of interfering
substances such as FeII, Mn(II), sulfide (HS− and S2−), and total
organic carbon (TOC) inwater samples may interfere with the oxidant
demand. For example, oxidation of AsIII by ozone was significantly
reduced in the presence of S2− and TOC (Dodd et al., 2006).

Free chlorine or hypochlorite is effective for AsIII oxidation, but
chlorination creates and leaves disinfectant by-products (DBPs) in
treated water. Trihalomethanes (THMs) are examples of DBPs that
have been shown to be carcinogenic in rodents (Boorman et al., 1999).
Ozone can reduce levels of THMs and halo acetic acids (HAAs), but
it can form the potent carcinogenic bromate ion by reacting with
bromide present in water (Gunten, 2003; Richardson, 2006). One
study suggests that treatment with NH2Cl produced N-nitrosodi-
methylamine (NDMA), a suspected human carcinogen (Mitch and
Sedlak, 2002). The use of ClO2 is restricted to high quality water such
as treated surface water (Gates, 1998). Dosing of ClO2 must be kept
low; for example, in the United States, dosages ranging from 1.0 to
1.4 mg L−1 are used mainly for the preoxidation of surface water
(Gates, 1998). Reduction of ClO2 produces chlorite ion, which is
considered a blood poison (Condies, 1986) and higher dosages of ClO2

(N1.4 mg L−1) are likely to produce chlorite levels that exceed the
USEPA standard of 1 mg L−1. Ferrate(VI) (FeVIO4

2−, FeVI) can address
some of the concerns related to the use of other chemical oxidants for
removing arsenic (Sharma, 2007a). Interestingly, FeVI does not react
with bromide ion and thus carcinogenic bromate ion would not be
produced in the treatment of bromide-containing water (Sharma,
2007a). Moreover, a by-product of FeVI is non-toxic, FeIII, which acts as
a powerful coagulant (Sharma, 2002, 2004; Sharma et al., 2005a,b;
Yngard et al., 2008) that is suitable for the removal of AsV, the oxidized
product of AsIII (reaction (23)), in water (Lee et al., 2003; Sharma et
al., 2007). Thus FeVI acts as multifunctional chemical: oxidant,
disinfectant, and coagulant in a single mixing (Sharma, 2007b).

Comparisons of rate constants and half-lives for the oxidation of
AsIII by different oxidants at pH 7.0 are given in Fig. 9. Chlorine, ozone,
and ferrate would react instantaneously i.e. millisecond time scale
with iAsIII. Comparatively, H2O2 and NH2Cl oxidize AsIII very slowly
and removal of arsenic using these oxidants would take hours. It
should be pointed out that scavenger substances present in water will
affect the fast kinetics of iAsIII oxidation with chlorine, ozone, and
ferrate. However, proper selection of oxidants can reduce the effect of
scavengers on oxidant effectiveness. For example, it is better to use
ozonation rather than chlorination in order to remove arsenic from
water that contains excess ammonia because ozone reacts slowly with
ammonia. On the other hand, if high levels of DOM are present,
chlorination is a better choice due to a much slower reaction rate of
free available chlorine (FAC) with DOM than that of ozone.

Interestingly, ion pairs between ferrous (a common constituent of
groundwater) and AsIII is known to react with Fe(VI) in the removal of
arsenic from water (Vogel and Johnson, 1988). Reaction of FeVI with
this ion pair produces highly insoluble ferric arsenate, which
immediately settles from solution (Eqs. (24) and (25)).

Fe
2þ þ AsO

3−
4 →FeAsO

−
4 ð24Þ

FeAsO
−
4 þ FeO

2−
4 →FeAsO4ðsÞ þ FeðOHÞ3 ð25Þ

The optimum removal of arsenic (approximately 2 µg L−1) was
obtained with a total iron/arsenate ratio ≈8:1 at pH 5.0 at an initial
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arsenic concentration of 50 µg L−1 in deionized water. In river
water, the concentration of arsenic was lowered from 517 to below
50 µg L−1 with the addition of 2 mg L−1 FeVI (Lee et al., 2003).
Laboratory results also showed removal of arsenic by ferrate(VI)
(Sharma et al., 2007). Vogel and Johnson (1998) found that a small
dose of FeVI (0.5 mg L−1) in combination with the major coagulant
FeIII at doses of 2.0 and 4.0 mg L−1 was required to remove arsenic
from riverwater. Removal of MMAV and DMAV by ferrate has also
been sought (Vogel and Johnson, 1998). The removal efficiency
follows the trend: iAsVNMMAVNDMAV.

Finally, a combination of FeII and H2O2 (i.e. Fenton reaction) has
been shown to oxidize AsIII (Hug and Leupin, 2003). At low pH (≤5.0),
a hydroxyl radical (•OH) (FeII+H2O2→FeIII+ •OH+OH−) has been
suggested as an oxidizing species. However, at neutral pH, FeIV, instead
of hydroxyl radical, can possibly oxidize AsIII (AsIII+FeIV→AsIV+FeIII)
(Hug and Leupin, 2003). The use of the Fenton reagent, followed by
passage through a column of zero valent Fe has been found to be
effective in remediating arsenic (Krishna et al., 2001).
7.4. Photochemical oxidation

Photochemical oxidation of iAsIII using UV light irradiation has
been investigated in several studies. In an early study the oxidation of
iAsIII by the photolysis of hydrogen peroxide under acidic conditions
was evaluated and evidence for the existence of an intermediate
species, AsIV, was given (Daniels, 1962). This intermediate species was
also suggested in the photochemical oxidation of ferrous sulfate in the
presence of arsenic acid (Wood, 1958). Dissolved AsIV was later
characterized in pulse radiolysis of aqueous arsenous acid, iAsIII and
iAsIV (Klaning et al., 1989). Addition of FeIII to As-contaminated water
in perchlorate/perchloric solution at pH 0.5–2.5, followed by exposure
to UV or solar light enhanced the removal of arsenic (Emett and Khoe,
2001). According to the proposed reactions in this study, FeIII-hydroxide
and -chloride species absorb photons to give highly oxidizing hydroxyl
and dichloro radicals which convert iAsIII to iAsV. This photochemical
method is suitable for acidic mining effluents (Emett and Khoe, 2001).
However, this system was also found to be useful under natural water
conditions (Hug et al., 2001). An oxidation of iAsIII solution containing
0.06–5mg/L FeII,III using90W/m2UV-A light removedmore than 90%of
the 500 µg L−1 total arsenic in 2–3 h. Addition of citrate to this solution
strongly accelerated the oxidation of iAsIII (Hug et al., 2001). Solar-light
instead of UV-light can also remove arsenic from natural water upon
addition of iron and citrate (Lara et al., 2006). Hug et al. (2001)
suggested that the addition of a few drops of lime or lemon juice into
watermay be helpful in enhancing the photochemical oxidation of iAsIII

to the less harmful iAsV. The influence of dissolved organicmatter on the
UV-A and visible light oxidation of iAsIII has also been examined
(Buschmann et al., 2007). The oxidation rate increased linearly with
DOC using SRHA. Excited triplet and/or phenoxyl radicals were
suggested as possible participants in the oxidation of iAsIII. The rates
are also influenced by pH and the increase was of a factor of 10 from pH
4–8.Hence bothDOCandpHcontrol the half-lives of oxidation of iAsIII in
natural waters (Buschmann et al., 2007). For example, a half-life of 0.7 h
for 8 µM iAsIII at pH 5 and 25 °C was determined under natural sun light
for a solution containing 10 mg L−1 DOC and 18 µM FeIII (Kocar and
Inskeep, 2003). However, the half-life is shorter by a factor of 80 for a
solution containing 5mgL−1 DOC and 45 µMFeIII at pH7.2 (Buschmann
et al., 2007). It should be pointed out that solar-light oxidation of iAs(III)
may not be practical in high productivity waters where the reduction of
iAsV byalgae is probably faster than the photochemical oxidationof iAsIII

(Kuhn and Sigg, 1993; Aurillo et al., 1994; Hellweger and Laa, 2004).
However, as noted above (Section4.3.1) Redmanet al. (2002) found that
NOM significantly increased the oxidation of iAsIII even in darkness. The
photochemical decomposition of other arsenic species such as MMAV,
DMAV, and AB has also been reported (Brockbank et al., 1988).
Recently, oxidation of iAsIII was accomplished by using vacuum-UV
lamp irradiation at 185 and 254 nm wavelengths (Yoon et al., 2008).
The effects of FeIII, H2O2, and humic acids were examined in this study.
Humic acid did not show any influence on the oxidation, but both FeIII

and H2O2 increased oxidation efficiency. Under the experimental
conditions, exposure to a vacuum-UV lamp resulted in a higher
efficiency of oxidation of iAsIII than that obtainedwith UV-C/H2O2 and
UV-A/Fe(III)/H2O2 oxidation methods (Yoon et al., 2008). The
oxidation of iAsIII to iAsV using a vacuum UV light was also equally
effective in natural water samples. The total arsenic ([iAsIII]+[iAsV])
could be achieved easily by adding activated alumina or FeCl3, which
coagulates/precipitates iAs(V) (Yoon et al., 2008).

Photochemical oxidation of iAsIII in the presence of potassium
peroxydisulfate (KPS) has been evaluated (Woods et al., 1963a,b;
Nishida and Kimura, 1989). Photochemical exposure of the KPS
aqueous solution produces a sulfate anion radical (SO4

•−), which is a
powerful oxidant for iAsIII. Earlier workers used coupled Fe-KPS and a
tungsten lamp to oxidize iAsIII (Woods et al., 1963a,b). Photoexposure
via a tungsten lamp yielded a slow rate of iAsIII oxidation, but the
addition of Fe substantially increased the rate. A later study, carried
out in 0.5 M KPS solution (Nishida and Kimura, 1989) concluded that
this oxidation method was not applicable under environmental
conditions. The study was also done by using KPS under visible light
in the presence of the tris (2,2′-bipyridine) ruthenium(II) ions as a
sensitizer (Yamazaki-Nishida and Kimura, 1990) with the application
of light produced by a weak tungsten source, resulting in inefficient
oxidation of iAsIII. A very recent study suggests the use of an intense
UV light source with the KPS system in order to achieve effective
oxidation of iAsIII (Nepolian et al., 2008). In this study, no pH effect in
the range from 3–9 was observed. The presence of humic acid was
initially detrimental to the oxidation, but after 30 min, the rate was
similar to that without humic acid. Evidence was provided for the
involvement of the SO4

•− radical as the primary oxidant for oxidation
of iAsIII in the KPS system.

7.5. Photocatalytic oxidation

The efficient oxidation of iAsIII to iAsV by photocatalytic oxidation
(PCO) can be achieved (Yang et al., 1999; Bissen et al., 2001).
Oxidation using titanium dioxide (TiO2), PCO of iAsIII to iAsV followed
by adsorption of iAs by TiO2 has been proposed by Dutta et al. (2004,
2005). The adsorption of iAsV onto TiO2 is influenced by pH, type of
TiO2, initial arsenic concentration, and the presence of anions (e.g. CO3

2−

and PO4
3−) and NOM (Dutta et al., 2004; Bang et al., 2005; Ferguson and

Hering, 2006; Pena et al., 2005, 2006; Liu et al., 2008, in press).
Adsorption of iAsV onto TiO2 is more extensive at low pH than at high
pH (Lee and Choi, 2002; Dutta et al., 2004; Pena et al., 2005). The
presence of 2–15 mg L−1NOM present in TiO2 suspensions decreased
the adsorption of iAsV on the surfaces, probably due to the
competition of NOM with iAsV for available binding sites on the TiO2

surface (Liu et al., 2008, in press). Another possibility is that NOM
adsorption modifies the surface charge of TiO2. The PCO of iAsIII in
suspensions with low TiO2 loadings followed by subsequent adsorp-
tion of iAsV onto TiO2 surfaces in slightly acidic media reduced arsenic
to concentrations below theWHO drinking water limit of 10 µg L−1 in
water (initial [As]=66.7 µM) (Dutta et al., 2005). A slag-iron oxide-
TiO2 adsorbent has also been used for removal of arsenic after PCO
oxidation of iAsIII (Zhang and Itoh, 2006). Adsorptionwas efficient and
the necessary amount of adsorbent was 2 and 5 g L−1 for removal of
20 and 50 mg L−1 iAsIII, respectively, in water.

The mechanism of PCO of AsIII in TiO2 suspensions has been
investigated in detail. Some initial studies suggested the superoxide
ion as the major oxidant species Lee and Choi, 2002; Ryu and Choi,
2004; Ferguson et al., 2005). Several studies thereafter proposed the
hydroxyl radical as an important oxidant in the PCO of iAsIII

(Dutta et al., 2005; Xu et al., 2005; Yoon and Lee, 2005). Subsequently,
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photoelectrochemical measurements during the PCO of iAsIII were
conducted which lent support to the proposed mechanism of
superoxide as the main species responsible for oxidation (Ryu and
Choi, 2006). However, recently, an argument was made which
invalidates the electrochemical measurements in this study and
rules out the proposed role of the superoxide species (Leng et al.,
2007). Finally, it has been suggested that the superoxide ion is
involved when PCO occurs under normal conditions of only dissolved
oxygen and water (Rye and Choi, 2007).

Recently, photocatalytic degradation of MMAV and DMAV using
Degussa P25 and nanocrystalline TiO2 have been investigated (Xu
et al., 2007, 2008). The adsorption of MMAV and DMAV onto TiO2

shifted the isoelectric point of the TiO2 surface from 5.8 to 4.1 for
MMAV and from 5.8 to 4.8 for DMAV (Jing et al., 2004). The bidentate
and monodentate inner sphere complexes of MMAV and DMAV with
TiO2 surfaces are formed, respectively (Jing et al., 2004). In the use of
Degussa P25 TiO2, both MMAV and DMAV were readily mineralized to
iAsV (Xu et al., 2007). The photocatalytic oxidation of DMAV formed
MMAV as the intermediate, which was subsequently oxidized to iAsV.
The pH had little effect on the degradation of MMAV and DMAV in the
pH range between 3 and 7. Evidence for the hydroxyl radical as the
primary oxidant was discussed (Xu et al., 2007). A later study using
nanocrystalline TiO2 also suggested the hydroxyl radical as a primary
oxidant (Xu et al., 2008). In addition, this study determined
Fig. 10. Variation of TOC, TC, and HCOOH concentrations during the photodegradation
process of MMA (a) and DMA (b). Initial MMA=DMA=10 mg-As/L, TiO2=0.02 g/L,
ionic strength=0.04MNaCl (reproduced fromXu et al., 2008with permission from the
American Chemical Society).
concentrations of total organic carbon (TOC), total carbon (TC), and
formic acid during the photocatalytic oxidation of MMAV and DMAV

(Fig. 10). The mass balance of carbon in the oxidation of MMAV

suggested that the methyl group in MMAV may be oxidized to
methanol and formaldehyde. Formaldehyde can be oxidized to formic
acid under the conditions and was observed as a product of the
reaction (Fig. 10). The oxidation of methanol is slow, hence it can be
another product of the oxidation of MMAV. Similar results were
obtained with DMAV, which indicated that all methyl groups of the
molecule were transformed to organic compounds such as formic acid
(Fig. 10).

8. Concluding remarks

Tremendous progress has been made in understanding the
mechanisms of the toxicity of iAsIII, but much remains to be learned
about mechanisms of the toxic effects of activated AsV species. The
biogeochemistry of As in the environment is very complex and much
has been elucidated in the last few decades about As speciation and
the important parameters and processes that affect the speciation and
mobility of As under different conditions. Speciation studies on As
have been greatly affected by the evolution of analytical methods,
which have increased differentiating power and lowered detection
limits for As species. Arsenic mobility is greatly influenced by the
concentration and nature of adsorbent surfaces and the adsorption
process itself is affected by many factors including but not limited to
pH, Eh, the presence of organic matter (OM) and competing ions.
Under environmentally relevant conditions, dissolved organic matter
(DOM) tends to compete with dissolved arsenic species for active sites
on adsorbents and thus increases arsenic mobility. However, OM is
also capable of facilitating redox reactions of arsenic species and thus
affects As speciation. More research is needed on the effects of
noncommercially obtained or natural POM, such as humic acids, on As
speciation and mobility. Phosphate, carbonate and bicarbonate ions
aremost commonly reported as competing ions of consequence in the
environment and can inhibit As adsorption or increase As leaching
from mineral surfaces.

Although AsV species predominate in oxygenated waters and AsIII

dominates under reducing conditions, the redox speciation of As is
typically not at equilibrium conditions but is affected by the kinetics of
interwoven processes. Sulfidic groundwaters may also be character-
ized by nonequilibrium distributions of arsenic species including
thioarsenates, thioarsenites, and both inorganic and other organic
arsenicals.

Arsenosugars, though of considerably lesser toxicity than their
inorganic counterparts, are of special interest because they are
widespread in many different aquatic organisms, many of which are
food sources. Arsenobetaine (AB) is very commonly found in seafood
while monomethylarsonic acid (MMAV) and dimethylarsinic acid
(DMAV) are the most commonly reported degradation products of AB
formed upon cooking aquatic organisms.

Although photo-oxidation of As species has been studied as a
means of remediation and as an analytical tool, little is known about
the possible importance of the effects of natural levels of sunlight over
prolonged time periods on As speciation in diverse aquatic environ-
ments such as marine, brackish and freshwater systems. Effective
methods based on chemical, photochemical, and photocatalytic
oxidation and adsorption onto coagulants exist for removing arsenic
from drinking water supplies. More information of the removal
efficiency of these methods in environmental-relevant conditions is
needed.
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