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Real-Time Dynamic Trajectory Smoothing for Unmanned Air Vehicles
Erik P. Anderson, Randal W. Beard, and Timothy W. McLain

Abstract—This brief presents a real-time, feasible trajectory
generation algorithm for unmanned air vehicles (UAVs) flying
through a sequence of waypoints. The algorithm produces ex-
tremal trajectories that transition between straight-line path
segments in a time-optimal fashion. In addition, the algorithm can
be configured so that the dynamically feasible trajectory has the
same path length as the straight-line waypoint path. Implementa-
tion issues associated with the algorithm are described in detail.
Simulation studies show the effectiveness of the proposed method.

Index Terms—Autonomous systems, optimal control, path plan-
ning, trajectory generation, unmanned air vehicles (UAVs).

I. INTRODUCTION

RECENT advances in computing, sensing, and battery tech-
nology have made unmanned vehicles a viable option in

both military and commercial applications [1]. For unmanned
vehicle technology to be useful, autonomous, semiautonomous,
and cooperative behaviors must be developed. Central to these
behaviors are automatic trajectory generation algorithms.

Our particular interest has been cooperative timing problems
for unmanned air vehicles (UAVs) [2], [3], where the trajecto-
ries must be both feasible, and satisfy stringent timing or path
length constraints. Our approach decomposes the trajectory gen-
eration problem into two steps: a waypoint path planning step,
where the straight-line paths are not time-parameterized, and a
time-parameterized trajectory generation step to “smooth” the
waypoint paths into dynamically feasible trajectories [4]. This
brief describes the trajectory generation procedure. The salient
features of our approach are that the trajectory generator: 1)
smoothes through a set of waypoints, minimizing the deviation
from the associated waypoint path; 2) satisfies the curvature and
velocity constraints imposed by the dynamics of the UAV; 3)
maintains the path length of the associated waypoint path; and
4) operates in real-time.

While the trajectory generation technique introduced in this
brief is well suited to cooperative timing missions, it can also
be used in problems where timing may not be critical. For ex-
ample, it may be desirable to pass directly over the waypoints
while minimizing the deviation from the original waypoint path.
Another possible scenario is that the UAV could carry a sensor
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with a finite-dimensional footprint [5]. It may be desired to con-
figure the trajectory generator so that the UAV passes within a
specific distance of the waypoint while minimizing the transi-
tion time between the straight-line path segments. The technique
presented in this brief is well matched to these scenarios.

Our approach is based on the local reachability region of the
aircraft and on basic geometry. In that sense, it is similar to the
approaches reported in [2], [6], and [7]. In [6], it is shown that
the shortest path between two points satisfying curvature con-
straints comprises circles and straight-line path segments. Ref-
erence [7] builds upon Dubins’s ideas to generate feasible tra-
jectories for UAVs given kinematic and path constraints by al-
gorithmically finding the optimal location of Dubins circles and
straight-line paths. In [2], Dubins circles are superimposed as fil-
lets at the junction of straight-line waypoint paths produced from
a Voronoi diagram. Our approach differs from [2], [6], and [7] in
that the trajectory is generated in real-time by a dynamic process.
Rather than inserting fillets and planning the trajectory a priori,
our approach dynamically generates the trajectory in flight. The
advantage of doing this is that the algorithm is more reactive to
dynamically changing environments and temporally distributes
the computations, making it feasible to implement in real-time.

Several other approaches to UAV path planning have recently
appeared in the literature including probabilistic maps [8], dif-
ferential flatness [9], [10], and optimal control techniques [11],
[12].

II. PROBLEM STATEMENT AND PRELIMINARIES

We will assume that the UAV is flying at a constant alti-
tude and that the UAV dynamics subject to velocity-hold and
heading-hold autopilots are first order [13]

(1)

(2)

(3)

(4)

where and are known constants that depend on the im-
plementation of the autopilot. In addition, the underlying UAV
dynamics constrain the heading rate and velocity as follows:

(5)

(6)

Definition 1: A trajectory is called dy-
namically feasible if there exist inputs and such that

implies that , and the dynamics
(1)–(4) and constraints (5)–(6) are satisfied, for all .

The input to the trajectory generator is a waypoint path
where is the desired

velocity of the UAV, and denote the waypoints ex-
pressed in inertial coordinates.
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In our approach, the trajectory generator is given by

(7)

(8)

(9)

where is an input that will be selected to meet
the specified objectives. Note that (7)–(9) have a mathemat-
ical structure similar to the kinematics of the UAV. We will as-
sume that the trajectory is to be traversed at a constant velocity

. Note that if , then (7)–(9) are
guaranteed to generate dynamically feasible trajectories. There-
fore the feasibility issue is satisfied a priori. Equations (7)–(9)
are solved via a fixed-step ordinary differential equation (ODE)
solver and propagated in real-time. In other words, the output
of the trajectory smoother corresponds in time to the evolu-
tion of the UAV dynamics. If a fourth-order Runge–Kutta algo-
rithm [14] is used, then will need to be computed four times
each sample period. Therefore, the computational complexity
depends on the computation of .

Note that if , then the trajectory smoother given in
(7)–(9) traces out a right-handed circle whose center is given by

(10)

Similarly, if , then the trajectory smoother traces out the
left-handed circle with center

(11)

The local reachability region of the trajectory smoother is
bounded by these two circles which have a radius given by

. Note that as the desired velocity increases, the
minimum turning radius increases. Since the boundaries of the
reachability region are given by circles with known centers and
radii, finding the intersection of the reachability region with
lines and circles can be done in a computationally efficient
manner.

III. EXTREMAL TRAJECTORIES

In this section, we define a class of dynamically feasible tra-
jectories called -trajectories, and show that they are minimum-
time extremal trajectories.

Consider the waypoint path defined by the three waypoints
, and , and let

denote unit vectors along the corresponding path segments as
shown in Fig. 1. Letting denote the angle between and
we get . As shown in Fig. 1, let be a circle
of radius whose center lies on the bisector of the angle
formed by the three waypoints, such that the circle intersects
both the lines and at exactly one point each.
The bisector of will intersect at two locations. Let be the
intersection that is closest to .

From Fig. 1, it can be seen that
. Manipulating this expression, the distance between and

is found to be . A unit vector

Fig. 1. Inscribed circle used in the definition in �-trajectories.

Fig. 2. Dynamically feasible �-trajectory.

pointing along the bisector of the angle formed by the three
waypoints is given by

(12)

The point is therefore given by
. Let denote a parameterized point on the line between
and , on the bisector of the angle

(13)

where . Clearly , and .
As shown in Fig. 2, let be a circle of radius

whose center lies in the direction of and intersects . Also,
let be a circle of radius placed such that it intersects
and in exactly one location each. Define similarly,
as shown in Fig. 2.

Definition 2: A -trajectory is defined as the trajectory that
is constructed by following the line segment until inter-
secting , which is followed until is intersected, which is
followed until intersecting which is followed until the line
segment is intersected, as shown in Fig. 2.

Theorem 3: The -trajectory shown in Fig. 2 is the unique,
dynamically feasible, minimum-time-extremal trajectory that
transitions from the waypoint segment to the waypoint
segment , passing directly through .

Proof: The proof requires a change of variables followed
by a standard application of Pontryagin’s minimum principle
[15]–[17].

IV. DYNAMIC TRAJECTORY SMOOTHING

This section describes a real-time algorithm that generates
-trajectories for . If 1, then the -trajectory

transitions from the waypoint segment to the waypoint
segment in minimum time. If 0, then the -tra-
jectory executes a minimum-time transition subject to the con-
straint that it passes directly over . We will also show in this
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Fig. 3. Graphical depiction of the essential idea behind the selection of u.

Fig. 4. Block diagram of the trajectory smoothing algorithm for � 2 [0; 1).

section how to select so that the -trajectory has the same path
length as the original waypoint path.

The essential idea for the algorithm is shown in Fig. 3. The
right and left turning constraints given in (10) and (11) are
denoted by and , respectively, at different time instances.
The progression of time is denoted by . The right
turning constraint is not shown at times and to avoid
cluttering the figure. At time the trajectory smoother is
tracking the waypoint segment . When the left turning
circle intersects at time is set to . The left
turning constraint is followed until the right turning circle

corresponds exactly with at time . The trajectory
smoothing input is then set to and the right turning con-
straint is followed until the left turning constraint intersects
the waypoint segment at time . The input is again
set to until it reaches the waypoint segment at time ,
where is set to zero.

For , a flow chart of the trajectory smoothing se-
lection scheme for is shown in Fig. 4. The nominal state of
the trajectory smoothing algorithm is to track the current way-
point path segment. Since the ODEs (7)–(9) are solved using a
fixed-sample-rate solver, it is not possible to track the path by
simply setting 0. A suitable tracking algorithm is discussed
in Section V. When the trajectory smoother begins tracking the
current waypoint segment, the location of is computed. If
the turn is clockwise, then the constraint circle is monitored

Fig. 5. Trajectory smoothing algorithm for � = 1.

until it intersects , at which point ( in Fig. 3).
When , the motion of the trajectory smoother is such
that is stationary. The constraint circle is monitored until
it coincides exactly with , at which time (time ).

is now stationary and is monitored until it intersects the
line segment from the right, at which time
(time ). The constraint circle is stationary and is moni-
tored until it only intersects at one point, at which time
tracking is resumed (time ). Similar steps are followed if the
turn is counterclockwise.

The switching times are determined by finding circle and
line intersections. Practical issues associated with finding the
switching times in digital hardware are discussed in Section V.

If 1, then the trajectory smoothing algorithm simplifies
considerably. Similar to the case when , the first step
is to determine and the direction of the turn. As shown
in Fig. 5, for a clockwise turn the trajectory smoother tracks
the straight-line path segment until coincides with

, at which point ( in Fig. 5). is then sta-
tionary and is monitored until the entire circle is to the left
of (time ), at which time tracking is resumed.

The following theorem asserts that the trajectory smoothing
algorithm implements the extremal -trajectories defined in
Section III.

Theorem 4: The trajectory smoothing algorithm depicted in
Fig. 4, implements the extremal -trajectories defined in Sec-
tion III.

Proof: See [16].
The trajectory smoother can be configured to run in several

modes, depending on the application for which it is being used.
For example, it may be desirable to choose so that the trajec-
tory passes a distance from the waypoint. This mode could be
used to ensure that the footprint of a sensor attached to a UAV
passes over the waypoint. If , then
using (13), it is straightforward to show that the proper choice
of is

If it is desired that the trajectory pass directly over the waypoint,
then choose 0. On the other hand, if it is wished to transi-
tion between waypoints with only one turn, choose 1.

For timing critical missions it is often desirable to plan the
mission based on the waypoint paths. However, if the trajectory
smoothing process changes the path length of the waypoint path,
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then the timing of the mission will be compromised. Therefore,
it is desirable to choose such that the path length of the -tra-
jectory is equal to the path length of the waypoint path. Toward
that end, the next Lemma derives an analytic expression for the
path length of a -trajectory.

Lemma 5: If , and , then the path length
of the -trajectory shown in Fig. 2 is given by

(14)

where

(15)

and

(16)

Proof: The proof is an application in geometry [16],
[17].

From Lemma 5, it is clear that the path length difference be-
tween the waypoint path and the associated -tra-
jectory is given by

(17)

The following lemma will be used to find such that the -tra-
jectory has the same path length as the waypoint trajectory.

Lemma 6: If and , then is a de-
creasing function of . In addition, ,
and .

Proof: is shown to be decreasing by differentiating (17)
with respect to and showing that . The endpoint
inequalities require application of the Lagrange remainder the-
orem. Details are given in [16] and [17].

The next theorem shows that there exists a such
that the path lengths are equal.

Theorem 7: If is given by (17), where
is given by (15) and , then there exists

a unique such that 0. Furthermore, the
-trajectory corresponding to has the same path length as

the waypoint path , i.e.

In addition, a bisection search algorithm can be used to deter-
mine with accuracy where is the number of func-
tion evaluations of .

Fig. 6. Effect of fixed sample-rate on switching-time detection.

Proof: From Lemma 5 we know that is the difference
in path length between the -trajectory and the waypoint
path. Therefore, if 0, the path lengths are equal. From
Lemma 6, we know that there is a unique such
that 0.

Since and the first step of a bisection
search is at 0.5. The sign of determines to within

. Subsequent function calls further refine the estimate.

V. IMPLEMENTATION ISSUES

In this section, we discuss several implementation issues that
must be addressed to ensure robust behavior of the trajectory
smoother when it is implemented in digital hardware. Real-time
implementation requires that the differential (7)–(9) be solved
via a numerical ODE solver (e.g., Runge–Kutta) using a fixed
time-step. The fixed time-step creates several problems for de-
tecting the switching times shown in Fig. 3.Forexample, suppose
that the trajectory smoother is tracking the straight-line segment

and the algorithm is looking for the intersection of
with in order to detect the switching time , then we may
have the scenario depicted in Fig. 6. The circle may not inter-
sect the circle exactly at the sample times. Therefore, we
need a robust method for detecting circle and line intersections
and for indicating when the intersection has been missed.

Toward that end, define the function

sign

sign (18)

where is the unit vector pointing into the plane. The function
can be used for several purposes. First, if and are

unit vectors along the vectors and , as shown
in Fig. 2, then the direction of the turn is given by ,
where indicates that the turn from the current
path segment to the next path segment will be clockwise (a right-
handed turn), and indicates that the turn will
be counterclockwise (a left-handed turn). The function can
also be used to partition the plane into two distinct halves, as
shown in Fig. 7. Referring to Fig. 3, we will discuss the robust
detection of switching times through .

Switching Time : Recalling that the center of circle is
and that the center of circle is , it can be seen

from Fig. 8 that the distance between the center of and
is given by . Prior to switching time , this dis-
tance is greater than ; after switching time , this distance
is less than . Therefore the switching time can be de-
termined by monitoring , assuming that at some
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Fig. 7. 	 divides into two distinct subregions.

Fig. 8. Effect of finite sample-times for � � 1.

sample time this quantity is less than . However, if ,
then it is possible that at the sample times
both before and after the intersection at time , as shown in
Fig. 8. Therefore, it is also necessary to detect when has
moved from the half plane to the half plane . Guided
by Fig. 7, this can be accomplished by monitoring the sign of

, where

If , then , otherwise
.

Switching Time : The switching time can also be de-
tected via a half-plane argument. As shown in Fig. 9, oc-
curs when the center of circle transitions from to

, which can be detected with the function

Switching Time : Robustly detecting switching time can
be accomplished as follows. First, reflect the location of at
switching time through the line that bisects the angle . The
unit vector that defines the bisector of is given by (12). The
reflection of a vector through the line described by is given by
the Householder transformation [18]

Therefore, as shown in Fig. 10, we have
.

Fig. 9. Switching time t .

Fig. 10. Switching time t .

Fig. 11. Waypoint tracking.

The next step is to wait until crosses into the half plane
defined by that contains . Referring to Fig. 10, we are
looking for a transition from half plane to . This is robustly
identified when switches from to .

The last step is to look for the intersection of with the
line segment . With reference to Fig. 10, this is robustly
identified when crosses from half plane into half plane

, or in other words, when

switches from to .
Switching Time : The detection of switching time is sim-

ilar to the detection of switching time .
Tracking: The final implementation issue is due to the fact

that at switching time , the trajectory generator, i.e., , may
not be aligned perfectly with the waypoint segment ;
therefore setting 0 will cause it to drift from the waypoint
segment. During the straight-line section a tracking algorithm
is needed that causes the trajectory generator to asymptotically
track the waypoint segment, while still satisfying the constraint

.
Referring to Fig. 11, let be the angle

created by the waypoint path. To simplify the development, we
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Fig. 12. Phase portrait for the transformed tracking problem.

will shift the origin to and rotate the data by . Accord-
ingly we have

The control objective is to drive and to zero asymp-
totically, given the control constraint . The following
theorem describes how this can be done.

Theorem 8: Given the nonlinear system

(19)

with control constraint where is a positive con-
stant. If

(20)

where , and , then the origin is
asymptotically stable and the domain of attraction is given by

.
Proof: Using the change of variables

(21)

and the Lyapunov function

the proof follows by standard Lyapunov arguments [17].
The phase portrait of system (19) with the control (20) after

the transformation (21) is shown in Fig. 12 for several values of
, and . Fig. 12 shows the stability of the tracking error and

the qualitative dependence of the transients on the parameters.
Comparing the subplots on the left, it is seen that the damping
characteristics are strongly dependent on . Comparing the top
subplots we see that the rise time of the tracking error is strongly
dependent on . It can also be seen that tracking response is not
significantly influenced by .

VI. SIMULATION

The trajectory smoothing algorithm has a small computa-
tional load and can be run in real-time. In test runs of 200 000
iterations on a 1.8 GHz Pentium-class computer, the algorithm
execution time exhibited a bimodal distribution. If the trajec-
tory smoother was executing a turn, the average run time for one
time-step was approximately 39 s; if the trajectory smoother
was executing a straight segment, the average run time for one
step was approximately 16 s. The computational simplicity of
the algorithm enables its implementation in UAV applications
where computational resources are modest.
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Fig. 13. Sample trajectories.

Simulation results for the trajectory smoother are shown
in Fig. 13 for minimum-time transitions 1 , transitions
through the waypoint 0 , and transitions matching the
length of the original straight-line path ( variable between 0
and 1). The smoothing algorithm was run in real time as the path
was flown. As a turn on the path is completed, the smoothing
algorithm looks to the next two waypoints and calculates the
smooth transition for the next turn.

For the minimum-time transitions shown in Fig. 13, it can
be seen that the location of the center of the turn circle corre-
sponding to 1 varies depending on the angle between
adjoining path segments. The same is true for the 0 turn cir-
cles of the paths passing through the waypoints. For the equal-
length path, the values for each turn that result in equal path
lengths depend on the angle between adjoining segments. For
the last four turns of the equal-length path the values were
0.266, 0.136, 0.406, and 0.374. Typically, the more acute angles
require smaller values to equalize the length.

VII. CONCLUSION

A method for generating time-extremal trajectories for tran-
sitioning between successive waypoint path segments has been
developed. These paths satisfy kinematic input constraints that
model the dynamic capabilities of a UAV and have been imple-
mented via a simple, real-time algorithm. In addition, a method
for generating trajectories with the same length as the original
straight-line path has been developed.

There are several advantages to the dynamic trajectory
smoothing approach. First, it integrates easily with waypoint
path planning algorithms that produce straight-line paths.
Second, the approach has low computational overhead. In fact,
trajectories are generated in real-time, as the vehicle transitions
along the path. Third, the dynamic trajectory smoother mini-
mizes the time that the vehicle deviates from the straight-line
path. These advantages make this approach a viable alternative
for implementation in UAV applications.
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