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The origins of cancer robustness and evolvability
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Unless diagnosed early, many adult cancers remain incurable diseases. This is despite an intense

global research effort to develop effective anticancer therapies, calling into question the use of

rational drug design strategies in targeting complex disease states such as cancer. A fundamental

challenge facing researchers and clinicians is that cancers are inherently robust biological systems,

able to survive, adapt and proliferate despite the perturbations resulting from anticancer drugs.

It is essential that the mechanisms underlying tumor robustness be formally studied and

characterized, as without a thorough understanding of the principles of tumor robustness,

strategies to overcome therapy resistance are unlikely to be found. Degeneracy describes the

ability of structurally distinct system components (e.g. proteins, pathways, cells, organisms)

to be conditionally interchangeable in their contribution to system traits and it has been broadly

implicated in the robustness and evolvability of complex biological systems. Here we focus on

one of the most important mechanisms underpinning tumor robustness and degeneracy, the

cellular heterogeneity that is the hallmark of most solid tumors. Based on a combination of

computational, experimental and clinical studies we argue that stochastic noise is an underlying

cause of tumor heterogeneity and particularly degeneracy. Drawing from a number of recent data

sets, we propose an integrative model for the evolution of therapy resistance, and discuss recent

computational studies that propose new therapeutic strategies aimed at defeating the adaptable

cancer phenotype.

Introduction

Although modern therapies have increased patient lifespan,

the majority of adult cancers remain terminal diseases.1 This is

because anticancer drugs generally lose efficacy due to the

emergence of therapy resistance within tumors, which remains

a significant obstacle to long-term patient survival. Some

cancers, such as acute myeloid leukemia and ovarian and

breast cancers, show an initial response to chemotherapeutics

but invariably relapse, with the recurrent cancer often resistant

to any further therapeutic intervention.2 Other cancers such

as melanoma and pancreatic and colon cancers contain

fewer proliferating cells during therapy, but the tumor mass

nonetheless remains stable within the patient throughout

treatment.2 Tumors utilize many mechanisms to avoid and/or

overcome chemotherapeutics. The diversity of drug evasion

mechanisms that are observed in tumors, combined with the

challenge of effective in vivo drug delivery, renders the
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Insight, innovation, integration

Despite an intense global research effort, most adult

cancers remain incurable. The challenge facing researchers

is that cancer is a complex disease, displaying many trait

properties that drive tumor progression. One such trait

property is therapy resistance, widely regarded as the greatest

obstacle preventing long-term patient survival. Here we

integrate findings from mathematical models, experimental

systems and clinical studies to provide an updated schema

for the evolution of cancer therapy resistance. In this new

paradigm, selectively filtered cellular and sub-cellular hetero-

geneity provides cancer with the crucial property of

degeneracy, rendering tumors both robust and evolvable.

We then explore the latest generation of conceptual and

computational models that, by directly attacking tumor

evolvability, have proposed new therapeutic paradigms that

may help reduce or overcome therapy resistance in tumors.

Integrative Biology Dynamic Article Links

www.rsc.org/ibiology CRITICAL REVIEW

Pu
bl

is
he

d 
on

 1
4 

O
ct

ob
er

 2
01

0.
 D

ow
nl

oa
de

d 
on

 1
7/

05
/2

01
6 

19
:0

5:
51

. 
View Article Online / Journal Homepage / Table of Contents for this issue

http://dx.doi.org/10.1039/c0ib00046a
http://dx.doi.org/10.1039/c0ib00046a
http://dx.doi.org/10.1039/c0ib00046a
http://pubs.rsc.org/en/journals/journal/IB
http://pubs.rsc.org/en/journals/journal/IB?issueid=IB003001


18 Integr. Biol., 2011, 3, 17–30 This journal is c The Royal Society of Chemistry 2011

identification and targeting of therapy-resistance mechanisms

difficult.

Trait robustness is a ubiquitous and fundamental property

at all organizational scales in biology and is prevalent for

instance in gene expression, protein folding, metabolic flux,

physiological homeostasis, development, and organismal

fitness.3,4 Here we define robustness as ‘a property that allows

a system to maintain its function despite internal and external

perturbations’.5 Robustness requires the maintenance of

system function as opposed to simply maintaining a stable

state,4 and biological systems often achieve this robustness

through adaptation, a principle dramatically illustrated in the

anhydrobiosis of tardigrade, which can suspend their meta-

bolism under conditions of extreme dehydration, surviving for

years in a dormant state.6 Adaptive change is not a unique

property of extremophiles as cancers, an inherently robust

disease system, are able to adapt to and accommodate many

different physiological insults, such as low oxygen and

metabolic stress.7 In this review we argue that selection

occurring over cellular trait heterogeneity is one of the

fundamental causes of cancer robustness. In cancer, cell trait

heterogeneity originates from under-regulated stochastic

processes at the genetic, epigenetic and protein expression

levels. Studies of tumor heterogeneity have revealed extensive

cellular trait variation within tumors with respect to size,

morphology, antigen expression and membrane composition.8

Individual tumor cells also display diverse functional behaviors

in terms of proliferation rate, cell–cell interactions, metastatic

potential and sensitivity to therapy.8 Sequencing studies have

demonstrated surprising levels of genetic diversity between

individual patient tumors of the same type.9 Heritable intra-

tumoral heterogeneity increases the probability of tumors

harboring a therapy-resistant phenotype and has been hypo-

thesized to endow tumors with the necessary adaptability to

survive and recur after treatment.7,10,11 More generally, we

propose that tumor heterogeneity provides the phenotypic

diversity necessary for the rapid evolution that occurs in many

cancers.

Evolvability is defined as ‘the capacity to generate heritable,

selectable phenotypic variation’.12 Since the seminal paper

from Nowell in 1976 describing cancer as an evolutionary

system,13 many studies support the idea that tumors are indeed

evolving systems.14 In this paradigm individual cancer cells

become the reproductive units within the population, and

those cells that have acquired a survival advantage through

random genetic or heritable epigenetic change are selected

through multiple rounds of clonal expansion, during which

they acquire further alterations that combine to produce a

malignant phenotype.15 For evolution to occur there must be

some form of selection pressure combined with sufficient

heritable variation within the population. Many such selection

pressures exist for tumor cells in vivo, such as limited nutrients,

oxidative stress, and competition for space, as well as extrinsic

factors such as immuno-surveillance and anticancer

therapeutics.14

In melanoma,16 colon cancer17 and esophageal cancer,18 an

increasing number of genetic mutations characterize different

phases of neoplastic progression, suggesting a model of

sequential mutation acquisition during tumor evolution.

This has been best characterized in adenocarcinomas of the

large intestine, in which the number of oncogeneic mutations

correlates with tumor grade and stage.19 Notably, when

isolating different stages of neoplasia in the same tumor

specimen, Vogelstein and colleagues demonstrated that

although identical ras mutations were present in both regions,

the more aggressive carcinomatous regions contained at least

one mutation that was absent in the less aggressive adenomatous

region.17 This sequential model of tumor progression supports

the idea that successive mutation enhances the fitness of

the tumor cells, followed by positive selection and clonal

expansion. However as with any evolutionary process, the

sequential progression observed in these studies is likely

providing a ‘selection-biased’ perspective on an underlying

stochastic process involving genetic drift, hitchhiking and

other dynamic population properties.8,20

More direct evidence for tumor evolution was provided

recently in breast cancer. By comparing all somatic coding

mutations in a metastatic breast cancer relative to the original

primary tumor resected nine years previously, Shah et al.

revealed that only five of 32 coding mutations found in the

metastases were present in the original tumor, demonstrating

that evolution had occurred during disease progression.21 A

recent genetic analysis of breast tumors has so far provided the

clearest picture of tumor evolution in vivo. By studying the

cellular composition of breast tumors, Wigler and colleagues

identified multiple clonal subpopulations.22 The observation

that all subpopulations within a single tumor shared many

of the same chromosome breakpoints provides additional

supporting evidence for an evolutionary model of tumor

growth, with new clones evolving out of pre-existing tumor

cells.22

Further support for the idea of evolution driving tumor

development comes from studying the emergence of tumor

therapy resistance. In lung cancer, mutant clones containing

point mutations within the epithelial growth factor (EGF)

receptor drive tumor recurrence that is resistant to further

EGF receptor inhibition.23 Likewise, resistance to Glivec in

chronic myeloid leukemia is often due to mutant clones with

point mutations within the BCR-ABL tyrosine kinase.24,25 In

the case of Glivec resistance in chronic myeloid leukemia,

there is evidence that resistant mutants are present in patient

tumors before drug treatment,26 suggesting that cancer

therapies select for pre-existent resistant mutants within

tumors. This is reminiscent of natural selection acting on

standing genetic variation which is believed to occur in many

biological contexts27 such as in bacterial populations, where

pre-existing resistant mutants drive the evolution of bacterial

phage resistance.28

Given these findings, we propose that a better understanding

of the principles of tumor evolvability will allow for the design

of new therapeutic paradigms that minimize or inhibit tumor

evolution, and thus prevent the emergence of therapy

resistance. As heritable phenotypic variation is a prerequisite

of tumor evolution, we first focus our attention on four

mechanisms thought to be responsible for generating tumor

heterogeneity in patients: genetic instability, epigenetic

instability, stochastic protein dynamics and tumor micro-

environments. Next we provide a brief analysis of the crucial
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relationship between robustness and evolvability. We then

present an integrative model of tumor evolution in which we

propose how heterogeneity at different biological scales can

facilitate evolution and the generation of complex tumor

properties. Finally, we explore how a systems biology

approach may be used to help overcome robust, evolvable

tumors in patients.

Sources of heterogeneity

1 Genomic instability

Heterogeneity within tumor genomes. The Cancer Genome

Atlas has published DNA sequences from numerous cancers,

providing many fundamental insights into tumor biology. The

identification of mutant genes driving transformation was the

primary goal of these sequencing studies.29 The systematic

characterization of cancer genomes revealed the unexpected

finding that most cancer types display significant intertumor

mutational heterogeneity.15 Most solid tumors contain on

average 50 non-silent mutations in the coding regions of

different genes, with only a small fraction of these genes being

mutated across tumors.15 For example, when Greenman et al.

sequenced 518 protein kinases in 210 tumors of different

origins and identified 1007 likely driver mutations,30 very

few commonly mutated genes were identified. This finding

also holds true within individual tumor types, as sequencing of

brain, pancreatic and colon cancers has revealed that only a

few common mutations exist for each tumor type.29,31–34

Studies in breast and colon cancer have confirmed the diverse

mutational heterogeneity within these tumors underpins their

immunological heterogeneity.35–37

Sequencing technologies are now sufficiently advanced to

allow researchers to begin assessing intra-tumor genomic

heterogeneity. Recent sequencing of a primary breast tumor

using next-generation sequencing confirmed that intermediate

grade breast tumors do indeed contain clonal subpopulations.21

By developing a new technology termed sector-ploidy-profiling

(SPP) Navin et al.22 revealed that primary breast carcinomas

consist of either a single major clonal population, or several

primary clonal subpopulations.22 Given that this technology

currently lacks the sensitivity to detect uncommon clones

within populations,22 this first pass almost certainly under-

estimates the true level of genetic heterogeneity present in solid

tumors. Nevertheless these initial studies provide the impor-

tant proof-of-principle that intra-tumor genetic heterogeneity

exists, and begin to shed light on the evolutionary dynamics

occurring within tumors.21,22

The mutator phenotype model. What is driving genomic

heterogeneity within tumors? The mutator model of tumor

initiation posits that mutations that increase genomic instability

(the so called mutator phenotype) drive tumorigenesis by

allowing tumor cells to rapidly acquire the portfolio of

mutations required for cellular transformation through an

increase in random mutation events. This idea, pioneered

and championed by Loeb and colleagues, was initially based

on the analysis of DNA polymerases and DNA repair

enzymes,38 but has subsequently been expanded to include

other sources of genomic instability common to tumors.39–41

For example, chromosomal instability generates many

chromosomal defects in tumors, including aneuploidy, trans-

locations, inversions, interstitial deletions, amplifications and

loss-of-heterozygosity.42 Multiple mechanisms drive chromo-

some instability including activation of key oncogenes known

to drive cellular transformation (reviewed in ref. 42 and 43),

providing tumors with ample capacity to generate genomic

instability.

A firm theoretical foundation supporting the mutator model

has been provided by recent modeling studies. The first study,

undertaken by Beckman and Loeb, assumed that all potential

mechanisms of tumorigenesis are in operation. The major

insight of this work was the novel idea that mechanisms that

produce malignant lineages most efficiently should be considered

the most likely to generate clinical cancers.44 In this model,

efficiency is defined as the number of malignant lineages

generated in a given time. This schema allowed the first direct

comparison of the relative efficiencies of mutator and non-

mutator pathways in cancer lineage production,44 and demon-

strated that mutator mutations increase the efficiency of

tumorigenesis under many realistic simulation conditions.44

Most compellingly, the mutator phenotype became increasingly

important as the number of mutations required for cellular

transformation rose.44 Thus, for tumors requiring only two

mutations, the mutator phenotype offers no advantage.44

However, when the number of mutations required for transfor-

mation exceeds six, then the mutator phenotype imparts a

significant advantage in the efficiency of tumorgenesis.44

As stated by Jarle Breivik ‘Each random mutation may be

regarded as a bet, and the odds are always unfavorable, simply

because there are more ways to damage a genome than

improve it. As for roulette, you may get a lucky strike, but

the more bets you make, the more certain it is that you will

lose’.45 Clonal extinction due to reduced fitness is known as

negative clonal selection and is one of the most serious

criticisms leveled against the mutator model.45 To directly

address whether negative clonal selection negates the mutator

hypothesis, Beckman recently developed an updated model

that incorporated the mutator’s reduced fitness within its

underlying assumptions.46 This model revealed that even with

negative clonal selection, mutator cells still provide the

most efficient route to tumorigenesis.46 The model made an

important new prediction: that there exists an optimal muta-

tion rate for tumors, above which the deleterious effects of

reduced fitness do lead to negative clonal selection and tumor

collapse.46 Support for this idea has recently been generated

using bacterial competition models, where Loeb and colleagues

experimentally confirmed that mutator strains of E. coli

displaying a high mutation rate invariably suffer negative

clonal selection and die out, whereas those mutator strains

that fall within a narrow optimal range of mutation rates

consistently prevail and survive in evolutionary competition

assays.47 Importantly, these results suggest that mutator cells

are not necessarily doomed to extinction due to reduced

fitness.47 Beckman’s updated model also confirmed two predic-

tions of the earlier model: that mutator mutations are most

likely to occur early in tumorigenesis, and that the mutator

phenotype becomes increasingly important as more oncogenic

mutations are required for transformation.44,46 In an
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independent study, Zhou et al. explored evolutionary

dynamics in silico using a numerical model based on Highly

Optimized Tolerance (HOT),48 a mathematical paradigm used

to understand how selectively acquired robustness can lead to

the evolution of complexity.49 In this model, mutators played

a primary role in adaptation, whereas low-mutators preserved

well-adapted phenotypes.48 Taken together, these three

models support the hypothesis that mutator phenotypes both

increase the efficiency of tumorigenesis (and thus increase the

probability of tumor initiation) and drive tumor adaptation

throughout disease progression.

The correlation between tumor incidence and advanced age

has been used to estimate that the minimum number of genetic

mutations that drive oncogenesis is five to six.50–52 Pediatric

tumors such as retinoblastoma require significantly fewer

mutations for transformation,53–55 whereas late-onset adult

tumors may require as many as 10–12 events.56 Experimental

models initially suggested that 3–4 mutations were sufficient to

generate transformed cells.57 However recent experimental

data indicates that more mutations are in fact required.

Mahale et al. explored the efficiency of transformation using

a combination of four oncogenes in a human fibroblast model

of transformation.58 Using this established experimental

system they made the striking observation that tumorigenicity

significantly increased after serially passaging tumor cells

either in vitro or in vivo. The observed increase in tumorigenicity

correlated with the selection of dominant clones, suggesting

that malignant transformation is a stochastic process initiated

by the four defined oncogenes, but that full transforma-

tion involves clonal selection of tumors harboring further

transforming mutations.58 Nicholson and Duesberg then

extended these analyses to reveal fundamental differences in

the karyotypes and phenotypes of clones derived from a single

parent cell with four oncogenes, providing direct evidence that

evolution had indeed occurred during expansion both in vitro

and in vivo.59 These authors went on to demonstrate that

individual clones evolve further during serial passaging in

culture, generating either enhanced tumorigenicity or drug

resistance in vitro.59 These findings are consistent with recent

reports showing a correlation between genomic instability and

drug resistance,60,61 supporting the idea that the rate of tumor

evolution, including the acquisition of therapy resistance, is

significantly enhanced by genomic instability. Taking a

complementary approach and working in parallel, the

systematic and comprehensive analysis of Ye et al. showed

that tumorigenicity is positively associated with genomic

diversity in five independent models of tumor progression.62

These combined data sets provide experimental evidence for a

direct causal relationship between genomic instability and

cancer evolution.

Direct confirmation of this relationship came recently using

a mouse model of genomic instability.63 Sotillo et al. induced

lung tumor formation in mice by doxycyline-mediated expression

of oncogeneic Ras either alone or in combination with Mad2,

a knownmediator of chromosomal instability.63 The expression

of oncogenic Ras alone generated lung tumors, whereas Mad2

expression alone did not. However the addition of chromo-

some instability through Mad2 co-expression markedly

enhanced Ras tumorigenicity, as revealed by a more rapid

disease onset and mortality, a more aggressive tumor pheno-

type, and a two-fold increase in the size of the Ras + Mad2

tumors compared to tumors expressing Ras alone.63 The

increased aggressiveness of Ras + Mad2 tumors correlated

with increased aneuploidy (a marker of chromosomal instability)

and a rise in the diversity of Ras + Mad2 tumor sub-types

compared to the Ras-only control.63 When the oncogenic

protein expression was ablated by doxycycline withdrawal,

both the Ras and the Ras + Mad2 tumors collapsed,

consistent with the idea of oncogenic Ras expression

driving tumor growth. Ras-only tumors never recurred after

doxycycline withdrawal. In striking contrast, approximately

half of the Ras + Mad2 tumors returned, with recurrent

tumors displaying both increased aneuploidy and new signal

transduction pathway activation.63 The most plausible inter-

pretation of these results is that the increased genomic

instability of the the Ras + Mad2 tumor allowed the evolution

of Ras-independent tumor cells, which then drove tumor

recurrence despite the loss of oncogenic Ras expression.

2 Epigenetic instability

It has been cogently argued that as a single genome is capable

of generating the diversity of cell phenotypes present in

metazoan organisms, the same mechanisms that underpin

normal cell diversity may also drive tumor heterogeneity and

contribute to tumor evolution.64 Cell diversity in somatic

organisms is regulated through epigenetic mechanisms. By

epigenetics we mean ‘the study of mitotically and/or meiotically

heritable changes in gene function that cannot be explained by

changes in DNA sequence’.65 This fulfils the biologists defini-

tion of ‘a stably heritable phenotype resulting from changes in

a chromosome without alterations in the DNA sequence’66

while accommodating the existence of pseudo-stable states

driven by network dynamics and long-lived stochastic

fluctuations.

Deregulated chromatin structure as a source of epigenetic

heterogeneity. The structure of chromatin determines how

genetic information is organized within the cell.67 Chromatin

consists of repeating units of nucleosomes, which in turn are

made up of B146 bp of DNA wrapped around an octomer of

four core histone proteins (H3, H4, H2A and H2B).68 The

organization of the genome into discrete structures provides

mechanisms for regulating whether genes are active or silent.

Epigenetic mechanisms used to modify chromatin structure,

and hence control gene expression, can be divided into three

categories: DNA methylation, covalent histone modification,

and non-covalent mechanisms such as incorporation of novel

histone variants (reviewed in ref. 69). These modifications

work together to alter the structural dynamics of chromatin

to create an epigenetic profile that sits atop the genetic base,

shaping the output of the mammalian genome to regulate

developmental stages and define discrete cell types.69

This epigenomic profile is extensively distorted in cancers.69

Cancers display global changes in DNA methylation, covalent

modifications of histones, extensive non-covalent changes, and

altered expression profiles of chromatin-modifying enzymes.67

These ‘epimutations’ can silence tumor-suppressing genes and

activate oncogenes, and are likely to be functionally equivalent
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to genomic cancer mutations.70 Indeed, we now know that

hundreds of genes are either silenced or activated in cancers

due to epigenetic changes, and the list continues to grow.67,71

Although epigenetic alterations are reversible, they are mitotically

heritable, and therefore available to natural selection and able to

actively participate in tumor evolution.70

Intriguingly, multiple epigenetic aberrations have been

directly linked to genomic instability (reviewed in ref. 70).

DNA hypomethylation at repeat sequences increases genomic

instability by promoting chromosomal rearrangements.72

Hypomethylation of transposable elements can lead to their

activation and translocation, increasing genomic instability.73

Genomic instability can also be caused by epigenetic inactiva-

tion of genes encoding DNA repair proteins.74,75 Indeed, the

silencing of the DNA repair protein MGMT and global DNA

demethylation are thought to be early initiating events in

tumor formation.76–78 Thus epigenetic modifications are well

placed to contribute directly to genomic instability and tumor

heterogeneity, thereby enabling tumor evolution.

Deregulated regulatory RNA as a source of epigenetic hetero-

geneity. It is now clear that regulatory RNAs are directly

linked to tumorigenesis and progression by acting as either

oncogenes or tumor supressors.79 The best characterized

regulatory RNAs contributing to cancers are microRNAs

(miRNAs), small RNAs that are generally 22 residues long

and form the sequence-specific part of the RNA-induced

silencing complex (RISC) that binds to mRNAs and inhibits

their translation and stability.79 Shortly after their discovery in

mammals, a series of studies revealed that a significant number

of miRNAs display altered expression in various tumors.80–85

It has now been experimentally confirmed that some miRNAs

induce or accelerate tumorigenesis, acting as oncogenes.86,87

Other miRNAs function as tumor suppressors, displaying

anti-proliferative or pro-apoptotic functions in experimental

models.88,89

One of the primary functions of miRNAs in normal develop-

ment is the stabilization of cellular phenotypes.79 Regulatory

loops play a central role in maintaining robust phenotypic

reproducibility of developmental programs.90 This type of

system control comprises a collection of feedback loops that

monitor and quantitatively regulate the output of signaling

networks.91 Negative feedback loops embedded within signaling

networks are prevalent and are known to stabilize pathway

dynamics.91 Experimental evidence suggests that an important

role of miRNAs is to impose stabilizing negative feedback

loops during development.92,93 In line with this function,

miRNA expression is reduced in late-stage tumors and correlates

with tumor aggressiveness, which is thought to be due to an

increase in tumor heterogeneity resulting from destabilized

pathway dynamics.79

Deregulated network dynamics as a source of epigenetic

heterogeneity. Normal lineage commitment and differentiation

is regulated through complex regulatory networks. Networks

containing large numbers of mutually regulating com-

ponents can generate multiple stable equilibrium states, called

attractors.94,95 These stable states have been proposed to

correspond to different differentiated cell types within an

organism by driving cell-type-specific gene expression

patterns.94 A pure attractor is a stable state driven by the

balance between regulatory loops within a genetic network

and is not the result of covalent modifications. In reality,

attractors are likely to result from a combination of regulatory

loops within kinase cascades, non-coding RNA networks,

genetic networks and chromatin remodeling. An epigenetic

landscape contains all the possible stable attractor states and

the unstable transition states.96 Normal cellular differentiation

is governed by growth factors, cellular contextual cues, cell

cycle regulators and complex regulatory loops, which define

the attractors in normal tissue differentiation. In cancer,

although many of these regulatory signals are deregulated,

there remains an epigenetic landscape littered with patho-

logical attractors that represent cancer cell states. Tumor cells

therefore have access to a variety of connected attractor states,

allowing tumors to display some of the characteristics of a

complex developmental phenotype.96

The cancer stem-cell model in light of the epigenetic land-

scape. An epigenetic landscape populated with diverse attrac-

tor states provides an integrative view of cancer that

accommodates many disparate observations, making it a

powerful paradigm to understand tumor biology. For example,

some of the controversies about the cancer stem cell model of

cancer (see ref. 97) may be reconciled using the epigenetic

landscape paradigm. The cancer stem cell hypothesis states

that a subset of tumor cells with stem cell-like properties

drive tumor initiation, progression, and recurrence.97 These

‘cancer stem cells’ have the purported ability to self-renew

indefinitely, generate rapidly cycling progenitor cells which

then differentiate into all cell types within the tumor, thereby

generating the tumor bulk and intercellular trait heterogeneity.

In effect, tumors represent a pathological simulacrum of

normal tissue growth, with chaotic tumor differentiation a

parody of the controlled differentiation program that occurs in

healthy tissue. Tumor progression arises from the metastatic

spread of cancer stem cells and, importantly, disease

recurrence is then thought to be due to the accelerated

repopulation of cancer stem cells that are inherently therapy

resistant.98 The generality of this hypothesis has, however,

recently been questioned.99,100 A possible explanation for the

disparate results in the literature regarding the existence or

otherwise of cancer stem cells could rest with what could be

called the stability of the epigenetic landscape of individual

tumors. Cancers with a stable epigenetic landscape have

correspondingly stable attractors, locking cancer cells into

defined states. Here cancer cells occupying attractors with

‘stem cell’ properties are predicted to play a central role in

driving the tumor biology, including tumor initiation and

therapy resistance, even though they are genetically identical

to their non-stem cell counterparts. From an epigenetic land-

scape perspective, the cancer stem cells would sit atop a

hierarchy of connected attractors that radiate outward to

stable attractors representing distinct cell fates. This statement

follows from the assumption that the initial epigenetic land-

scape has been carefully shaped over evolutionary time to

establish distinct cell-fate pathways, and that the tumor has

maintained some of this developmental architecture. However,
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very aggressive tumors with high levels of genetic and

epigenetic instability would be expected to display a progressive

deregulation of the epigenetic landscape, resulting in attractors

that become increasingly less stable and that no longer connect

with the same clear hierarchical architecture (see Fig. 1). As a

result of deregulation, the cancer stem cell attractor should be

less critical in driving disease, because cancer cells are able to

move more freely between different attractor states, including

transitions to what might have once been a cancer stem cell

phenotype.

Recent experimental evidence from malignant melanoma

provides support for this model.101 Roesch et al. recently

identified a slow-cycling subpopulation of cells within melanoma

tumors that functions as the tumor-maintaining cell population.101

These slow-cycling tumor-maintaining cells express JARID1B,

a histone 3 K4 (H3K4) demethylase that in healthy organs is

highly expressed in regenerative tissues.102–104 In melanoma,

JARID1B is associated with negative regulation of the cell

cycle.105,106 Knockdown of JARID1B initially stimulated

tumor growth, however growth could not be maintained in

the absence of JARID1B,101 revealing the JARID1B cell

subpopulation as crucial in maintaining continual tumor

growth. Intriguingly, JARID1B expression appears to be

dynamic, with JARID1B-negative cells able to spontaneously

generate JARID1B-positive cells and vice versa.101 Together

these results and other findings reviewed in ref. 107 argue

against a hierarchical cancer stem cell model, instead suggesting

that melanoma tumor-initiating cells are generated spontaneously

or induced by environmental cues within the melanoma tumor

bulk, consistent with the idea of pseudo-stable attractor states

driving tumor growth in aggressive cancers.

Unstable epigenetic states add another layer of complexity

to tumor biology, the phenomenon of transient therapy resistance.

The existence of a transiently resistant drug state within

tumors was first proposed based on the observation that some

drug-resistant tumors become responsive after a break

from treatment.108–110 A recent study has provided experi-

mental confirmation that transient drug resistance does occur

in lines derived from multiple cancers, driven by epigenetic

modification.111 Transient treatment of tumor cells with various

chemotherapeutics has identified a small fraction of quiescent

cells that are B500 fold less sensitive to anticancer drugs than

their parental cells.111 In clonally derived populations, drug

tolerance emerges de novo and is reversible, although it can

become stabilized over time.111 Transient drug resistance is

driven by activation of the insulin growth factor 1 (IGF-1)

receptor and an altered chromatin state requiring histone

demethylase RBP2.111 Importantly, the transiently drug-

resistant subpopulation can be ablated using inhibitors of

IGF-1 or chromatin-modeling agents, suggesting an avenue

of therapeutic redress for future studies.111 In combination

with clinical studies108–110 the study of Sharma et al. provides

support for the existence of a transient drug-resistant attractor

states that reflect states within a deregulated epigenetic land-

scape. Moreover, with each cell displaying slightly unique

epigenetic landscape properties and different positioning

within the landscape, tumors could be endowed with an

enormous repertoire of transient cell responses that enhances

the tumor’s overall robustness in the face of therapy. This idea

is well established in bacterial populations where phenotypic

outliers contribute to population fitness, one relevant example

being the so called ‘persisters’ in bacterial populations that

express an increased resistance to penicillin that can then be

inherited.112–115

3 Stochastic protein dynamics

Recent work has focused attention on the role of stochastic

protein expression fluctuations in generating trait hetero-

geneity within clonal populations.116 When analyzed by

flow-cytometry, protein abundance in clonal mammalian cell

populations can vary by as much as three orders of magnitude

due to stochastic fluctuation.64,116 This variation imparts

several important characteristics on the clonal population.

First, the outliers of the population can display very different

biological properties,116 showing that purely stochastic effects

can generate functionally diverse subpopulations within a

clonal group of cells.116 In mammalian cells, such stochastic

fluctuations in protein expression can be reasonably long lived,

lasting up to 11 days in culture,116 meaning that they can

impart phenotypic variety over clinically relevant timeframes.

Recent work provides support that these types of stochastic

fluctuations do indeed afford tumors protection from anti-

cancer drugs, with Cohen and colleagues discovering significant

cell-to-cell variability in the temporal behavior of drug-

induced protein expression, which correlated with the ability

of cells to resist drug-induced apoptosis.117 This finding,

together with the study of Sharma et al. described in the

previous section, provide the first evidence that transient

non-genetic phenotypic states contribute to therapy resistance

in tumors and may explain historical studies showing tumors

that repopulate after a drug treatment can sometimes remain

sensitive to that drug.118 Even though transient states are, by

definition, relatively short lived and therefore invisible to

natural selection, transient resistant states can potentially

contribute to the evolution of therapy resistance. While several

possible pathways to inheritance exist, one plausible mechanism

would involve clonal expansions originating from mutations

that alter regulation of the epigenetic landscape and stabilize

the drug resistant phenotype. This model fits with the recent

Fig. 1 (Left panel) An illustration of hierarchy within an epigenetic

landscape for a single transition pathway from stem cell (C) to final

cell type (A). (Right panel) Deregulation and modification of the

epigenetic landscape as a consequence of genetic instability and the

mutator phenotype. The illustration is modified from ref. 177 and was

originally created to illustrate the recently discovered existence of

hierarchy within the conformational landscape of large proteins.
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observation of transient drug resistant states becoming

stabilized over time,111 and may help explain the biology of

chronic myeloid leukemia (CML), where a rare subpopulation

of quiescent CML cells resists conventional therapy and is

thought to drive disease relapse.119

4 The tumor micro-environment

Genetic, epigenetic and stochastic protein dynamics sources of

heterogeneity do not act in isolation, as important cross-scale

interactions also take place within tumors. Tumor cells

continually interact with the surrounding tumor micro-

environment, a relationship that has crucial roles in tumor

initiation and progression. One relevant example is regions of

low oxygen (hypoxic regions) commonly found within solid

tumors that are the result of an imbalance between supply and

consumption of oxygen.120 Many cancers including squameous

cell carcinoma of the uterine, head and neck cancers, breast

cancers and brain tumors have regions of low oxygen in

contrast to normal adjacent tissue.121,122 Patients with hypoxic

tumors have significantly lower overall survival,121 with

hypoxia an independent prognostic factor for poor clinical

outcome in many tumors,118 indicating that hypoxic regions

play an active role in tumor malignancy.

Hypoxic regions within tumors contribute to tumor hetero-

geneity in at least three ways. First, tumor cells in hypoxic

environments display reduced expression of DNA repair genes

and corresponding increased levels of genomic instability.120,123

Thus hypoxia can contribute directly to the mutator pheno-

type and might enhance tumor evolution. Consistent with this

idea, hypoxic tumor cells display increased resistance to

radiation and drugs124,125 as well as an increased incidence

of both apoptosis-resistant126 and invasive clones,127 supporting

the hypothesis that hypoxic environments drive tumor cell

evolution towards more aggressive phenotypes. Second,

hypoxic environments can directly regulate the epigenetic state

of tumor cells. Cells in hypoxic regions are dependent on

anaerobic glycolytic metabolism,128 which in turn acidifies the

hypoxic region through the generation of lactic acid.128 The

combination of low oxygen and low pH triggers tumor cell

cycle arrest and quiescence,120,128 increasing phenotypic

heterogeneity and rendering tumor cells insensitive to many

anticancer therapies as described above. A third confounding

factor is that the low vascularization responsible for hypoxic

regions reduces the concentrations of drugs within hypoxic

regions,129 a condition known to favor selection of drug-

resistant clones.130

The tumor microenvironment is composed of many non-

transformed cell types such as endothelial cells, fibroblasts,

and immune cells, all of which interact with tumor cells and

modulate the tumor microenvironment.131 There is a large

body of research demonstrating that tumorigenesis is strongly

influenced by the non-malignant cells within the tumor micro-

environment (reviewed in ref. 132). It is likely that tumor cells

co-evolve with their micro-environments, and during the

course of disease progression changes in micro-environment

create local differences in selection pressure, thereby driving

some of the heritable differences that are observed across

cancer cells within a single tumor. From this perspective, at

least some of the phenotypic, genetic and epigenetic diversity

observed at the cell population level is likely to be a natural

consequence of tumor-microenvironment interactions. These

ideas are discussed in detail in recent reviews.14,131,133

Heterogeneity and degeneracy as an enabler of

tumor robustness and evolvability

Above we explored how tumor heterogeneity provides the

phenotypic variation required for natural selection to act

upon, thereby increasing tumor evolvability. Next we briefly

examine how tumor heterogeneity may enhance tumor robustness

and evolvability by endowing tumors with the system property

of degeneracy. Degeneracy is the ability of structurally

dissimilar system components to perform the same function

or generate the same output.134 Like robustness, degeneracy is

also a ubiquitous property of biological systems.134 It is

important to note that degeneracy is distinct from the simpler

design principle of redundancy. In redundant systems, multiple

identical components are present within the system, one

important example being the multiplicity of pacemaker cells

that robustly regulate heartbeat. Redundancy is common both

in engineering and biology, where it provides robustness in

response to very specific perturbations, e.g. compensating for

the loss or failure of an identical component. In contrast

to redundant components, degenerate components perform

similar functions within certain contexts but distinct and

separate functions in others. For degeneracy to arise, system

components must display functional plasticity, i.e. context-

sensitivity in the different functional responses generated by

each component. Recent analyses indicate that the conditionally

overlapping functionality of degenerate components plays a

fundamental role in reconciling requirements of robustness

and evolvability in nature.135

For instance, recent in silico simulation experiments

have revealed that networks composed of redundant multi-

functional proteins (i.e. proteins having either identical or

completely unique functions) are robust but do not provide

a system with mutational access to very many distinct heritable

phenotypes.135 Allowing multi-functional proteins to partially

overlap in functionality (i.e. protein degeneracy) resulted in

networks that were both exceptionally robust and exceptionally

evolvable.135 This relationship between degeneracy, robust-

ness and evolvability appears to arise at many different scales

in biological systems but has yet to be fully understood.134 On

the one hand, having diversity amongst functionally similar

components will enhance robustness in a manner that is

straightforward to understand. If components are somewhat

different, they also have somewhat different weaknesses: a

perturbation or attack on the system is less likely to present

a risk to all components at once.136 Edelman and Gally have

documented numerous biological examples of this relationship

between degeneracy and robustness.134

One clinically important example of this relationship

between degeneracy and tumor cell robustness comes from

receptor tyrosine kinase (RTK) coactivation in tumor cells.137

The epidermal growth factor receptor (EGFR) is amplified,

mutated or rearranged in over 40% of Glioblastoma multi-

forme (GBM) tumors,138,139 the most common and aggressive
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primary brain cancer in adults. Nevertheless most GBM

patients whose tumors are driven by oncogenic EGFR fail

to respond to specific EGFR inhibitors, despite the fact that

oncogenic activation of the EGFR is a crucial transforming

event for these tumors.140 It was discovered that multiple

RTKs are co-activated in GBM tumors, and as many RTKs

share common downstream components, co-activation of

multiple RTKs allows GBM tumors to maintain robust

signaling simply by switching RTK usage in the presence of

specific inhibitors.141,142 Combinations of RTK inhibitors

were required to overcome degenerate RTK usage in GBM

tumor cells.141,142 The RTK coactivation strategy has

subsequently been observed in other tumor types, suggesting

that degenerate RTK usage may represent a general

pathway by which tumor cells evade targeted therapies

(reviewed in ref. 137).

The example above describes how robustness can be

achieved through direct functional compensation. While this

mechanism is intuitively obvious, degenerate components

might also collectively contribute to the stability of many

traits simultaneously, distributing robustness throughout a

system.143 As reviewed in ref. 136 and 143 there is some

evidence to suggest that degenerate components can allow

systems to establish networked compensatory pathways whose

inherent versatility in resource usage enables buffering against

a much greater variety of perturbations than can be accounted

for by direct functional compensation alone.135

In some respects, the theoretical relationship between

degeneracy and evolvability is also straightforward to under-

stand. Because degenerate components are only conditionally

similar, circumstances can arise where the components display

unique functions and these can contribute to measurable trait

differences.134 At the molecular level, this is observed in the

conditional silencing of single nucleotide polymorphisms

within protein coding genes. A conditional similarity affords

synonymous codons mutational access to amino acids that are

the same for some mutations but different for others. For

example, in the synonymous arginine codons CGG and CGT,

the former can access amino acids {Leu; Pro; Gly; Gln; Trp}

through single point mutation, while the latter can reach

{Leu; Pro; Gly; His; Ser; Cys}. On the one hand, this provides

synonymous codons with higher mutational robustness. On

the other hand, by drifting over silent mutations, this also

increases mutational access to amino acid residues. It has

recently been shown that this conditional silencing can be

exploited to enhance the evolvability of bacterial cell lines.144

Degeneracy might also facilitate evolvability in more complex

and less direct ways. For instance, it has been proposed that

the compensatory actions of degenerate proteins can lead to

cryptic differences between cell states that only become

realized as measurable trait differences at some later time,

e.g. when thresholds for trait stability are crossed.143 In either

scenario, it is the conditional similarity amongst degenerate

components that is believed to afford robustness while

providing the requisite variety of distinct phenotypes that is

necessary for evolvability.143 While these theoretical develop-

ments and supporting studies appear promising, the complexity

of biological systems has so far precluded a thorough experi-

mental assessment of this proposed role of degeneracy in

facilitating robustness and evolvability. However the functional

divergence of redundant genes in many organisms, combined

with large-scale gene deletion studies in yeast, worms and plants

provides compelling support for the role of degeneracy as an

enabler of robustness and evolution (reviewed in ref. 145).

Degeneracy within a cancer cell appears to play an impor-

tant role in tumor robustness as seen by the ability of tumor

cells to co-activate multiple RTKs.141,142 However, individual

cancerous cells within a heterogeneous tumor are also likely to

express both distinct and overlapping functional outputs

thereby establishing degeneracy at a higher organizational

level within the tumor. This idea is supported by the ability

of tumor cells to stochastically switch from one cell state to

another, such as alternating between tumor-initiating versus

proliferative cell states,101 or adopting transient drug-resistant

states.111,117 These studies provide the first evidence that

individual tumor cells can functionally replace other cell types

within the tumor. Cells that switch to a new cell state will not

necessarily be identical to those cells being replaced, and

therefore could harbor heritable trait differences with survival

characteristics, such as therapy resistance. In this way degeneracy

within the cell population could directly facilitate tumor

evolvability, and may provide a general explanation for the

evolution of therapy resistance in aggressive cancers.

The relationship between robustness and evolvability

in tumors

A cohesive paradigm characterizing the intimate relationships

between robustness and evolvability, which is fundamental

to our understanding of biology, has until recently eluded

theoreticians.12,143,146–148 While evolvability is repeatedly seen

to support the robustness of higher level traits, it is not clear

that robustness always supports evolvability. For instance,

it is apparent that evolvability increases a cell population’s

robustness by enabling the population to adapt.5,12 On the

other hand, trait robustness within the cell seems to oppose

evolvability, as cells that are robust to mutational change

would be expected to have difficulty discovering distinct

heritable phenotype that allow for adaptation to environ-

mental change.149

A series of computational studies have resolved this tension

by showing how robustness and evolvability arise at different

timescales and furthermore showing phenotypic robustness to

be a precondition to evolution.147,150–152 Robust phenotypes

allow a population to accumulate neutral mutations, increasing

genotypic diversity.147 Because many of these neutral genotypes

harbor distinct phenotypically consequential sensitivities to

further genetic modification, mutational robustness enhances

access to phenotypic diversity over time, facilitating evolution.147

The idea that robustness facilitates evolution has strong

experimental support. Bloom et al. found that only robust

(thermostable) protein variations could tolerate the destabilizing

mutations needed to confer novel activities, whereas non-

robust (thermosensitive) proteins could not evolve new

activities.153 Measuring evolution of thermotolerance in an

RNA virus, McBride and co-workers found that populations

derived from robust clones evolved greater resistance to heat

shock relative to populations founded by non-robust
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clones.154 These studies provide direct empirical evidence that

robustness can facilitate evolvability. Chaperone proteins such

as Hsp90 function to buffer the expression of genetic and

epigenetic variation, increasing an organism’s robustness to

mutation.155 Chaperones have been shown to function as an

enabler of evolution in both eukaryotes156 and prokaryotes.157

Tumors make good use of the buffering ability of chaperones;

Hsp90 buffers tumor cells against mutations that impinge

signaling,158,159 or are lethal.160,161 These combined studies

support the hypothesis that molecular and cellular robustness

facilitates tumor evolvability.

An integrative model of tumor robustness and

evolvability

1 Increasing evolutionary potential through tumor degeneracy

The studies presented in this review emphasize several research

trends that we propose could form the basis of a new

integrated model of tumor robustness and evolvability. First,

a tumor precursor cell that acquires a mutator phenotype

within a narrow optimal range has a reasonable probability of

acquiring sufficient transforming mutations to become a

mature, malignant cancer cell before accumulating deleterious

mutations and suffering negative clonal selection. The mutator

phenotype is also predicted to generate a destabilized

epigenome, allowing cells to transiently adopt multiple

discrete cell fates and further increase genomic instability

(positive feedback). Stochastic protein dynamics within

individual cells can in some cases help to further enhance the

diversification of cell states within the tumor, amplifying the

phenotypic heterogeneity generated through (epi)genomic

instability. The net effect of this three-tiered destabilization

is the generation of a high degree of cellular trait heterogeneity

within the tumor, which affords the cancer a greater repertoire

of responses to the perturbations it encounters during growth,

thus rendering it a more adaptable and robust system. For

instance, with individual tumor cells able to transiently

adopt a variety of cell fates, individual cells of one type can

functionally replace other cell types through environment-

induced trait plasticity. On the other hand, these compensa-

tory cell transitions do not result in identical cell states

(the cells are degenerate) and cells of a similar type will display

unique strengths and weaknesses that play out in a competitive

environment to the overall benefit of tumor robustness. With

many traits having a heritable basis, transient resistance can

transform into persistent tumor properties under sustained

selective pressure, i.e. genetic assimilation.162,163 In short, we

propose that enhanced tumor robustness and evolvability is

conferred through the development of degenerate selective

repertoires that arise naturally in cell populations presented

with genetic instability, epigenetic instability, and stochastic

protein dynamics. These proposed relationships between tumor

robustness, degeneracy, and evolvability are summarized

in Fig. 2.

While the studies reviewed in this article support the model

described above, there are aspects of the proposed model that

could be modified or elaborated upon and still be supported by

the accumulated evidence within these studies. For instance,

under the mutation-selection balance that constrains the like-

lihood of initial disease onset within the mutator hypothesis, a

mutator phenotype would not be highly maladaptive if

preceded by (selectively passive) mutations that elevate the

mutational robustness (i.e. attenuated phenotypic effects from

mutations) through so called capacitance or genetic buffering

of a pre-cancerous cell. Examples of common tumor muta-

tions that can increase genetic capacitance include p53 loss-of-

function (=loss of apoptotic response to DNA damage),

constitutive PI3-kinase signaling (pushing cells into a proliferative

anti-apoptotic state) and increased chaperone expression

(direct increase in genetic buffering). Stochastic fluctuations

in protein expression may also serve as a genetic buffering

system by compensating for loss-of-function mutations or

suppressing deleterious protein expression. With elevated

levels of genetic buffering, a clonal population could sub-

sequently acquire a mutator phenotype under nearly neutral

conditions, thereby enhancing the overall likelihood of the

mutator phenotype pathway. Even in the absence of elevated

genetic buffering, mutational robustness is exceptionally high

in eukaryotic genomes compared to the more compact

genomes of viruses and bacteria,164 and this genetic neutrality

should increase the plausibility of a mutator phenotype

pathway beyond the conditions suggested from the simulation

studies reviewed earlier.

2 Increasing evolutionary potential through cryptic heritable

variation in tumors

Counter-intuitively, high levels of mutational robustness163

within cancer cells may also have a direct positive impact on

a tumor’s ability to evolve therapy resistance. While heritable

phenotypic diversity is a precondition for evolutionary

adaptation, the competitive environment within a tumor will

suppress trait differences that are deleterious to cell survival

and fecundity and will thereby impose some constraints on the

type and amount of phenotypic heterogeneity that can arise;

both within a cell population microenvironment and across

the entire tumor. However, due to the cell’s inherent genetic

and epigenetic capacitance, mutations can readily accumulate

in a cell population that appear phenotypically cryptic

(or selectively hidden) under stabilizing selection but that

become expressed or released under perturbed (e.g. stressful)

environmental conditions. This conditional exposure of

trait variation is often discussed as a phenomena known as

cryptic genetic variation (cgv) or ‘‘hidden reaction norms’’

(for reviews see ref. 165 and 166). cgv describes heritable

phenotypic variation that is hidden under ‘‘normal conditions’’

but that is released in the presence of novel alleles or novel

environments.

Given the high mutational robustness within the human

genome, a mutator phenotype should facilitate an accelerated

accumulation of high levels of this cryptic genetic variation

that can be subsequently (partially) released in ways that

depend on the stressful environments encountered. This

scenario, inherent mutational robustness combined with

elevated (epi)genetic instability, is particularly promising

because it would provide the necessary fuel for tumor adapta-

tion under new stressful environments while bypassing the
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negative clonal selection that limits phenotypic variability

under stable conditions.

While cryptic genetic variation has been observed in a

variety of species and cell populations,165,166 the origins of

cgv are not fully understood, making it unclear when or how

genetic buffering mechanisms will permit cgv to arise. Very

recent simulation studies have found that each of the hallmark

features of cgv are readily observed in biological simulations

when mutational robustness is achieved through biomolecular

degeneracy.167 Because degeneracy is ubiquitous at protein,

complex assembly, and molecular pathway levels within the

cell, it would thus seem plausible that cgv can accumulate in

tumor cell populations. Moreover, under the mutator pheno-

type scenario, cgv should accumulate rapidly and strongly

influence the evolvability of cancer.

Using a systems biology approach to attack robust

and evolvable tumors

Keeping firmly in mind Horrobin’s fears that biomedical

research is becoming a ‘glass bead game’ with little contact

with reality,168 we now focus on the design of new therapeutic

strategies that combat tumor evolvability in an effort to

mitigate therapy resistance. Our overarching hypothesis is that

an understanding of the principles of tumor evolvability

will allow the design of general therapeutic paradigms that

minimize tumor evolution, in the hope of preventing or

delaying the emergence of therapy resistance. There has

been a significant body of research devoted to developing

mathematical models of the evolution of therapy resistance,

with the aim of developing general dosing strategies to inhibit

tumor evolution.169–173 Below we focus on three recently

published modeling approaches that illustrate how combining

simulations, theory, and empirical evidence could help in the

development of therapeutic strategies that can overcome the

evolution of therapy resistance.

As even a small number of resistant cells at the start of the

therapy can prevent a cure, Foo and Michor recently modeled

the worst-case scenario of the inevitable emergence of therapy

resistance due to a single (epi)genetic mechanism.174 Impor-

tantly, they have taken into account the effects of drug toxicity

and side effects174 in an approach designed to give the best

outcome for the patient by comparing continuous or pulsed

therapy regimes, determined by the maximal time before

tumor recurrence occurs.174 The assumptions used in this

analysis are consistent with the high probability of resistance

experienced in clinical trials. Foo and Michor found that

strategies involving drugs delivered in high dose pulses,

effectively slowing the net growth of resistant cells, provided

the best outcome for patients in silico with respect to delay of

tumor recurrence and drug toxicity.174 This high-dose-pulse

approach may be useful in identifying optimum therapy

schedules to avoid or delay resistance driven by a single

(epi)genetic event.174

In their recent manuscript, Silva and Gatenby have taken an

ecological approach in their war on cancer.175 Inspired by

successful biological control of pest species in ecosystems, they

seek to stabilize rather than cure patient tumors, thereby

Fig. 2 Three tiers of noise-genetic instability, epigenetic instability, stochastic protein dynamics, and the feedback between these tiers-provides a

strong source of divergence in the internal and external properties of cancer cells, i.e. the mutator phenotype. Cellular robustness achieved (in part)

through degeneracy allows for high amounts of heritable heterogeneity to accumulate in a cell population. While the mutator phenotype

introduces new heritable variants at a rapid rate, canalization will hide, and selection will filter, the phenotypic diversity that is actually observed in

a microenvironment-dependent fashion. Other factors such as genetic drift and tumor expansion can also influence the speed and extent that

heritable variation accumulates. When presented with novel environmental conditions such as the administration of a new drug therapy,

directional selection will then act on any of the standing genetic variation that is expressed as selectively relevant phenotypic differences. Some of

this phenotypic variation is pre-existing and some is conditionally exposed by the new therapy. The overall extent of heritable phenotypic variation

will influence the propensity to evolve a persistent therapy resistance and thus impact the robustness of the cancer.
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avoiding the introduction of strong selective forces that drive

the evolution of therapy resistance. Fundamental to their

model is the assumption, based on experimental data sets

and historic modeling results, that resistant cells are present

within the tumor at low numbers due to their reduced fitness

compared to sensitive tumor cells.175 The aim of their

therapeutic approach is to maintain a sufficient number of

the rapidly proliferating, sensitive cells throughout therapy to

compete with and suppress the emergence of the slower-

cycling resistant clones. An additional insight in the work of

Silva and Gatenby is the incorporation of the role of the tumor

microenvironment, specifically hypoxic regions, in modulating

drug accessibility to resistant tumor cells within the hypoxic

zone. To overcome the hypoxic barrier to therapy, Silva

and Gatenby took advantage of tumor cell dependence on

glycolytic metabolism by using the glucose competitor

2-deoxy-glucose to target resistant cells within the hypoxic

tumor core. This was combined with a standard chemotherapy

that targeted sensitive, proliferating cells on the tumor edge.

How well do patients do on this ‘adaptive therapy’ strategy

compared to traditional therapy regimes? In silico simulations

suggest that the patients would survive significantly longer

when the two therapies were administered as separate doses,

with the best results obtained when the resistant cells were

first targeted with 2-deoxy-glucose then sensitive cells attacked

with the chemotherapy.175 This approach managed to

eradicate the resistant subpopulation, heralding the possibility

of tumor elimination and patient remission.175 A potential

criticism of this work is the untested biological assumptions

that underpin the model. However, previous work by the same

group has shown adaptive therapy maintains a significantly

lower tumor burden than conventional therapy approaches in

an established animal tumor model,176 providing promising

experimental support for the efficacy of this approach.

Our model of tumor evolution introduced in the previous

section highlights important relationships arising in natural

evolution that could inform the development of new therapeutic

paradigms. For instance, the cgv pathway outlines a process

by which tumor adaptation arises due to drug therapy

induced traits that are otherwise selectively hidden within

the extant genetic and epigenetic diversity. Even with the high

(epi)genetic instability that is associated with a mutator

phenotype, any accumulation of cgv will take time and this

imposes important restrictions on the adaptive response

capabilities of a tumor. For instance, if drug therapies cause

the release of cgv under directional selection, this would also

act to momentarily reduce cgv and transiently lower the

tumor’s evolvability to additional stresses. Assuming the cgv

pathway significantly contributes to tumor evolution, we

propose that a drug regimen that cycles through drug therapy

sequences with a timing that maximizes the rate of cgv release

could drive tumors to a more fragile state and help lead to

their ultimate demise.

While the perspectives on tumor evolution proposed in our

model are all reliant upon the onset of degenerate heritable

phenotypes through genetic and epigenetic destabilization,

there are differences in the timing and conditions for trait

heterogeneity expression that could have significant implica-

tions to therapeutic strategies. As robustness arises from the

presence of multiple partially overlapping pathways for

the establishment and maintenance of traits, we predict that

this would confer a predisposition towards single target

resistance because suppressed pathways are compensated for

by degenerate pathways. For polygenic traits that have a

large and distributed mutational target, directed selection

(under new stress conditions) is more likely to evolve

cells with enhanced degenerate pathways,134,135 which

according to one study could potentially lead to multiplicative

effects on cellular robustness over time.143 While degeneracy

at the cell population level (cgv) can be theoretically

eliminated using the sequential drug strategy suggested

above, this would be less effective against late stage cancers

if a mutually supporting network of new degenerate path-

ways were to become fixated within the cancer genome. In

these circumstances of newly adapted cellular robustness,

multi-target therapies acting on complementary pathways

might provide the only promising avenue for complete

eradication.

Conclusion

Cancer is a complex disease, displaying emergent properties

that are driven by an evolvable (epi)genome that is fueled by

stochastic noise and the contextual, dynamic interactions that

occur within tumor environments. One such emergent property

is therapy resistance, widely regarded as the greatest obstacle

to long-term patient survival. Recent studies using mathematics,

cell biology, animal models and clinical data have started to

unravel mechanisms underpinning evolvability in tumors.

These ideas have in turn inspired the development of

mathematical models that, by integrating an understanding

of the mechanisms of tumor robustness, therapy resistance and

tumor evolvability, are providing a new tool in the identifica-

tion of novel dosing strategies that may help to delay or

prevent the emergence of therapy resistance in human cancer

patients.

By viewing cancer as a robust, evolvable system, a number

of researchers are now coming to the conclusion that single

therapeutic targets might be fundamentally unsuitable as a

general treatment strategy because the inherent heritable

variation in cancer makes it a moving and elusive target. As

emphasized in ref. 107, targeted therapy approaches are likely

to fail if the molecular targets are present in only a subset of

proliferating cancer cells. Instead, we propose that directly

attacking the origins of cancer evolvability using therapeutic

strategies that reduce heritable variation could provide a

rational alternative approach.
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