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Abstract— Visual odometry has been promoted as a funda-
mental component for intelligent vehicles. Relying solely on
monocular image cues would be desirable. Nevertheless, this is
a challenge especially in dynamically varying urban areas due
to scale ambiguities, independent motions, and measurement
noise. We propose to use probabilistic learning with auxiliar
depth cues. Specifically, we developed an expert model that
specializes monocular egomotion estimation units on typical
scene structures, i.e. statistical variations of scene depth layouts.
The framework adaptively selects the best fitting expert. For
on-line estimation of egomotion, we adopted a probabilistic
subspace flow estimation method. Learning in our framework
consists of two components: 1) Partitioning of datasets of
video and ground truth odometry data based on unsupervised
clustering of dense stereo depth profiles and 2) training a
cascade of subspace flow expert models. A probabilistic quality
measure from the estimates of the experts provides a selection
rule overall leading to improvements of egomotion estimation
for long test sequences.

I. INTRODUCTION

Visual odometry aims to recover an agent’s motion

through the world by means of cameras, which is known to

be ill-posed due to the lack of depth knowledge. Although

sensors like laser scanners or time-of-flight cameras can by-

pass large portions of this problem, they have drawbacks like

cost, weight, range limits, limited resolution and reflection.

GPS would be a viable alternative for pure position and

orientation estimation if it was more precise and always

available. Inertial measurement units (IMUs) offer a good

alternative but are prone to drift. Fusion of these sensors has

been an active area of research, but still, many purposeful

applications need camera images for other tasks like object

detection or further high-level image interpretation.

Visual odometry has recently advanced with new outlier

rejection methods and the incorporation of stereo cues with

time constraints ([1], [2], [3]).

Along this line, an interesting learning based and versatile

approach for outlier rejection has been proposed by [4]. It

is based on the observation that if the depth profile, as seen

by the camera, is roughly constant over time, the flow field

created by a moving agent lies in a very low-dimensional

subspace of all possible flow fields [5]. In fact, this has the

following interpretation: Flow fields observed by a forward-

facing camera in a car moving through an environment with

roughly constant depth profile can be represented as a linear

combination of a looming flow field and a flow field caused

by a rotation (c.f. Fig 3). This approach makes the reasonable

assumption that the scene flow has several interdependent

causes, like deviations from the depth profile, independently

moving objects and erroneous measurements. Their approach

sets these causes apart from inlier flow vectors with a

robust variant of probabilistic PCA (pPCA, [6]) that is

trained using an Expectation-Maximization (EM) scheme.

Inferred coefficients of the low-dimensional subspace flow

representation are linearly related to the movement of the

observing platform. The approach has the additional ad-

vantage that arbitrary camera configurations can be used

without calibration, including multiple-camera systems, fish-

eye lenses and catadioptric setups.

This and other monocular approaches rely on the depth

constancy assumption which is likely to be violated in struc-

tured urban areas. Our approach to on-line motion estimation

from camera images directly addresses the ill-posed nature

of camera data. We use unsupervised learning methods at

different stages to incorporate knowledge about the scene

structure and apply this knowledge adaptively. Instead of

using further specialized sensors, we are motivated to ap-

proach the underlying estimation problem using a minimum

number of cues with the intention that a more versatile image

interpretation can emerge from the solution.

In this paper we present a framework consisting of two

contributions: 1) we assume different amounts of variation

of flow within the image; preliminary tests showed that flow

vectors in the lower left and right image corners of a forward-

facing camera stem from close-by objects and therefore have

greater amplitude and variability; 2) we further address the

constant-depth assumption by training several estimators,

each specialized on a characteristic scene depth profile, and

each yielding a motion estimate with an associated quality

measure.

We acquire context knowledge with the help of the K.I.T.

datasets of video & ground truth odometry data ([7], [8]) by

unsupervised clustering of stereo depth profiles, and train

a cascade of subspace flow expert models. This way we

implicitly make use of depth cues in the optical flow without

explicitly calculating them on-line. We show results that can

compete with a state-of-the-art visual odometry system.

The remainder of this paper is structured as follows: after

putting our method in context in section II, we describe our

framework in more detail in III. In section IV we evaluate



Fig. 1. Example frame from a test sequence captured from a forward-facing camera in a car, with optical flow overlaid. Our model assigns high probabilities
to the flow vectors being produced by self-motion (green) and low probabilities for other causes (red). Causes could be erroneous correspondence (e.g. on
the right), independently moving objects (e.g. bicycles on the left) or deviations from the constant depth profile (e.g. the building in the background on
the left).

the performance of our method including comparisons to

other visual odometry approaches. We summarize and point

to further research directions in section V.

II. RELATED WORK

Our approach for probabilistic and monocular visual

odometry borrows ideas from ensemble learning ([9]) and

transfer learning ([10]). Ensemble learning has been ap-

plied in machine vision for detecting human poses from

monocular images [11], as well as pedestrian detection and

view classification ([12], [13], [14], [15]) for single and

sequences of images. Romer and Rosales [11] estimate an

ensemble of regression experts, each specializing on smaller

domains of feature input spaces and a mapping through

regression to corresponding pose hypotheses. In a similar

context, classification experts are trained to enhance the

overall pedestrian classification rate with view-depending

classification experts ([12], [13]). A more compact model

has been presented, that exploits mixture-of-expert models

for pedestrian classification considering shape information

and view-points ([14], [15]). In our paper we do not exploit

stereo cues directly like [2]. Instead we adopt the approach of

Roberts et al. [4] for monocular egomotion estimation. This

approach, like any other monocular algorithm, is prone to

violations of depth constancy, but models outliers caused by

e.g. independently moving objects in a probabilistic subspace

model. In particular, we use the approach to learn experts of

egomotion estimators adapted to different depth profiles. As

such, we exploit the implicit knowledge of depth cues by

sorting the training data for our expert models according to

clusterings of scene depth profiles that we obtain with the

publicly available stereo code for rectified images from K.I.T.

(libelas) [3]. Our approach is new in that we use characteris-

tic scene depth layouts, obtained with unsupervised learning,

just to define the domains of training samples that the experts

should be responsible for. They are trained on these domains

with the corresponding flow as feature input.

III. METHODS

In this section we describe our approach in detail. We give

an overview of the work flow of our framework in Fig 2.

A. Optical Flow Extraction

For optical flow extraction we use the publicly available

library libviso2 from K.I.T. [16]. We divide the image into

a grid of non-overlapping cells of size 20 × 20 pixels. For

each cell libviso2 provides at random one flow vector, which

overall results in a flow field ft. We chose this grid cell size

trading off large training efforts with possibly many missing

values from small grid cells against high variance of flow

vectors as consequence of larger cells.

B. Flow Subspace Representation

Our framework is based on the learnt robust decomposition

of optical flow vectors, ft, into outlier and inlier flow vector

components [4]. In this probabilistic approach inlier flow is

modeled as a linear combination of basis flow vector fields

B = (B1, · · · ,BJ) and added noise, while outlier flow is

modelled as pure noise

fti =

{
(Bxt)i + μi + εin

ti if zti = 1

εout
ti if zti = 0 .

(1)

Flow vector components are indexed by i = 1, . . . , I , and

frame numbers are denoted by t = 1, . . . , T throughout the

paper. The binary latent variables zti determine whether a

measured flow vector component is regarded as an inlier

(zti = 1) or not. Outliers are caused by false flow measure-

ments, independently moving objects or deviations from the

expected depth profile (c.f. Fig. 1). They are modeled by a

zero-mean Gaussian error εout
ti with mean 0 and variance

σ2
out. Inlier flow is modeled with error εin

ti ∼ N (0, σin,i)
with either a different variance σ2

in,i for each flow vector

component (inhomogeneous case) or with same variance

σ2
in,i = σ2

in for all components i (original, homogeneous case

described in [4]).



(a) Training procedure of our system

(b) Performing inference with our system

Fig. 2. System overview for training (a) and inference (b).

During training (c.f. Fig. 2(a)), basis flow fields

B1, . . . ,BJ , coefficients x = (x1, . . . ,xt), inlier as-

signments z = (z1, . . . , zt), as well as error variances

σin,i,σout have to be optimized together from a set of ob-

served flow fields. To perform this optimization, Roberts et
al. [4] propose an Expectation-Maximization (EM) scheme

based on probabilistic PCA (pPCA) [6]. The probabilistic

model underlying pPCA is extended in two ways: it is

modified to handle missing values and outliers using equation

1. The authors formulate the optimization as a maximum-

likelihood problem, from which they derive update equations

for the EM algorithm. Our implementation follows their

formulae which we do not repeat here. We just specify here

the modified formula for our extension of training individual

variances σi for each flow vector component i

σ2
in,i =

(∑
t∈Si

E(zti)

)−1 ∑
t∈Si

E(zti)

(
y2ti − 2ytiBi E(xt) + trace(Cov(xt)B

T
i Bi)

)
. (2)

Here, Si is the set of flow vectors for which flow vector

component i is observed (i.e., not a missing value), yti =
fti − (

∑d
j=1 Bjixtj + μi) is the deviation of the observed

flow from a flow field synthesized from basis flow fields,

and E(xt) and Cov(xt) are mean and covariance of the

coefficients xt. The expectation E(zti) can be viewed as the

probability for flow vector component fti being an inlier, and

is referred to as the inlier probability.

We thus arrive at an EM scheme that alternates between

updating the assignments z and coefficients x in the E-

step and optimizing the remaining model parameters in

the M-step. After convergence of the EM procedure we

orthogonalize and normalize the obtained basis flow vectors

to make the subspace representation more stable. During

inference (see also Fig. 2(b)), only the E-step has to be

performed, which requires a few iterations because subspace

coefficients and inlier assignments are co-dependent. Figure

1 visualizes inlier probabilities assigned to a sample frame.

C. Expert System Training

A general drawback of this monocular approach is, that

it requires flow originating from a scene profile that stays

roughly constant over time for training and on-line inference.

Static objects and geometry can alter the depth profile,

resulting in different flow; objects rendering own motion

further alter the ego-motion induced flow fields, especially if

they get close. The statistical approach described in the last

section can deal with these cases as long as those outliers

form a minority of the flow in the image or do not conform

to the same wrong motion estimate. If, however, the system

encounters a large field of consistent outlier flow, caused e.g.

by a crossing bus occupying more than half of the image, the

system may be fooled to take those flow vectors as inliers,

resulting in a wrong motion estimate.

Our working hypothesis is to increase robustness of

performance through flexibility without losing specificity.



Thus, trained estimators are specialized on different situa-

tions. Each of these estimators is specialized implicitly in

a prototypical scene depth profile and is referred to as an

expert. For defining these ‘situations’ during training, we

exploit additional data in the form of disparity maps that we

calculate from stereo image pairs using open library libelas
[8]. Since we only need a very rough idea about the statistical

distribution of depth profiles, we save computational effort

by subsampling the disparity images of every tenth frame

by a factor of three. We further reduce their dimensionality

using the probabilistic missing-value algorithm pPCA by

Verbeek1) with ten principal components (c.f. Fig. 2(a)).

The resulting projections dt, t = 1, . . . , D of the disparity

images onto the lower-dimensional PCA space are then

clustered by a Mixture of Gaussians (MoG) model ([17])

with parameterization Θ consisting of K multidimensional

Gaussian distributions with means m1, . . . ,mK and general

covariance matrices C1, . . . ,CK :

p(dt|Θ) =

K∑
k=1

πkN(dt;mk,Ck) , (3)

where
∑K

k=1 πk = 1. We assign images based on their

corresponding embedded disparity profiles d1, . . . ,dT to

one of the resulting ‘situation’, i.e., mixture components

(mk,Ck), k = 1, . . . ,K, except for a few cases where the

assignment to a component is not clear (i.e., the entropy

over the component membership exceeding a threshold).

Subsequently, the resulting K subsets of training frames

are used to train egomotion estimators as described above,

resulting in K estimators, each with their own set of basis

flow vectors, inlier variance and motion map.

For the testing phase we select for each time step, t,
the estimate from the expert kt, that can best explain the

measured flow. This is determined by calculating on-line the

mean inlier confidence of each expert. We deliberately chose

a winner-takes-all (WTA) selection criterion

kt = argmaxk=1,...,K

1

I

I∑
i=1

E(ztik) , (4)

where E(ztik) is the probability that expert k considers flow

vector component i of frame t as an inlier i.e., caused by

self-motion.Note that the choice of expert is done purely

on the confidences returned by the experts from monocular

input, no disparity or other additional data is needed during

on-line inference.

D. Mapping to Motion

The final step in our system pipeline is the mapping from

inferred subspace flow coefficients to incremental platform

motion. To train this linear mapping we use iteratively

reweighted least squares with a bisquare weighting function.

Since each of our experts works on a different flow subspace,

the motion mapping differs for all of them.

Fig. 3. Basis flow fields of an estimator trained with inhomogeneous
inlier variance. Top: first basis component corresponding to a strong forward
motion. Bottom: second basis flow field, corresponding to a rotation with
slight backward motion.

Fig. 4. Estimated inlier variances in horizontal (top) and vertical (bottom)
flow vector components of an estimator trained with inhomogeneous inlier
variance σ2

in,i. As expected the variance is much higher in the lower image
corners than in the middle. Colors are on a logarithmic scale.

IV. EVALUATION

For evaluating our system we performed training and

inference on a set of rectified images captured by a car in an

urban environment [7], [8] at approximately 10 frames per

second (→ dt ≈ 0.1s). The car was equipped with GPS

and an IMU to obtain ground truth motion and position

information, as well as a stereo camera rig for estimating

disparities that we used for defining our experts. To keep

the data consistent we worked on five sequences of the first

day (sequences 2009_09_08_drive_0010, 15, 16, 19, and 21),

dividing each sequence into a first half for training and a

second half for testing. Overall, we arrived at a training

and testing sequence (3201 frames). As ground truth, we

preferred the IMU data over the GPS since that seemed to be

more consistent with motion estimates in a preliminary test.

1http://lear.inrialpes.fr/~verbeek



Fig. 5. Estimated trajectories of single estimators trained with homo-
geneous (blue) and inhomogeneous (green) inlier variances, ground truth
(black).

We smoothed x,y,z and yaw data and calculated speed as the

euclidean distance between x,y,z values of successive frames.

During inference we measured the motion error as the root

mean squared difference between our system’s estimate and

the ground truth for rotation and forward motion.

A. Single estimators

As first evaluation we trained only a single estimator

with homogeneous and inhomogeneous inlier variance on

our training set and did an analysis of performance on

the test set. The flow basis fields learnt by the estimator

with homogeneous inlier variance are depicted in Fig. 3,

maps of the inhomogeneous inlier variance of the other

estimator are shown in Fig. 4. Horizontal and Vertical flow

vector components are shown at all flow grid cells. Figure

5 shows the trajectories resulting from inference on the test

set. The root mean squared error per frame of the estimator

with homogeneous inlier variance was 0.050 m
dt

in speed and

1.59 × 10−3 rad
dt

in angular velocity. Training an estimator

with inhomogeneous inlier variance in the same way reduced

those errors to 0.021 m
dt

and 5.29 × 10−4 rad
dt

, respectively,

confirming that the introduction of inhomogeneous inlier

variance paid off.

B. Expert System

Next, we put our expert system to the test. As a first

evaluation we inspected the means of the Gaussian mixture

components, back-projected into the disparity space as shown

in Fig. 6 for the example of a 3-expert system. The experts

seem to have specialized in clearly distinct depth profiles.

Fig. 7 shows the confidences of these three experts on the

first 500 frames of the test set.

Fig. 8 illustrates two interesting failure cases of a single

estimator that can be resolved using an expert system.

In expert systems the choice of number of experts i.e.,

the model complexity, is critical. Therefore, we tested the

Fig. 6. Means of disparity clusters shown as deviations from the overall
disparity mean. Blue corresponds to low disparities i.e., high distance, red to
close objects. Clusters 2 and 3 correspond to the typical road depth layout
with the difference that an expert trained on cluster 2 (middle) expects
closer objects in the lower left than usual (e.g. approaching or parked cars)
while the expert trained on cluster 3 (bottom) represents the opposite: lower
disparities on the left correspond to a relatively wide road, higher disparities
on the right require parked cars or other objects there.

Fig. 7. Expert confidences of a 3-expert system trained on depth profiles
in Fig. 6 on the first 500 frames of the test set.

effect of expert number K on mean squared motion error in

forward and rotation motion and compared the results to the

ground truth and to a single estimator.

Fig. 9 shows an overview. In the homogeneous case,

the trend seems to be that more experts perform better for

rotation. For speed, the error shows clear improvement only

for 2 and 3 experts. For higher model complexities, it stays

constant but is still below the single-estimator error. In the

inhomogeneous case, there seems to be an optimum of 3

experts, after which the error raises with number of experts

and even goes considerably above the single-estimator error.

This effect might have to do with the drastically higher

number of variables in the inhomogeneous case. This might

have lead to an overfitting for clusters with smaller sample

numbers and the training data available.

To show that our expert system captures the relevant depth

information, we compared the choice of expert made by our

system based on the flow data alone with the choice that

would result from the full disparity data. Experts trained



(a) Estimates of speed (top) and rotation (bottom) of single-estimator (orange), expert systems of different numbers of experts, and ground truth (black) on
part of the test data. In this example, expert systems and single estimator were trained with homogeneous inlier variance.The red circles show failure cases
of the single estimator that are detailed in the following.

(b) Flow fields for failure cases in frames 144 (left) and 336 (right) indicated by red circles above. Flow vector color corresponds to inlier probability
assigned by a single estimator: green = caused by egomotion, red=outlier. In both examples the flow vectors on the left and right cars are much longer
than one would expect for the observer’s true speed since the cars violate the expected depth profile. The estimator therefore misinterprets the flow as
caused by a quick right turn and discards the flow on the street as outliers.

(c) Same flow fields as above but with inlier probability assigned by our 10-expert system which is able to cope with this situation since one of the
experts was trained on depth profiles that roughly correspond to this geometric layout. That expert is therefore able to correctly interpret the observed
flow and give a very confident and more accurate motion estimate.

Fig. 8. Time course of motion estimates (a) and details for two failure cases of the single-estimator system (b) that are resolved by an expert system (c)

with inhomogeneous inlier variance were correctly chosen

for 73.60% of frames of our testing sequence when using 3

Experts. For higher numbers of experts that number declined

to e.g. 28.12% with 10 experts. Using experts with homo-

geneous inlier variance showed similar results. This shows

that our monocular system is able to ‘hallucinate’ depth —

or the relevant aspect of depth — to a certain extent.

C. Comparison to Other Approaches

To show that our approach can compete with current visual

odometry approaches, we compared the trajectories estimated

by our system with those estimated with the system by

Geiger et al. [16]. Fig. 10 shows the resulting trajectories for

homogenous (10(a)) and inhomogeneous (10(b)) estimators.

We compared a single estimator and our system with model

complexity of K = 3 and K = 7 experts with the Geiger

approach using mono and stereo information as well as the

ground truth. As expected, the stereo algorithm outperforms

our system, since it makes excessive use of stereo informa-

tion data in the estimation. The mono version seems to yield

results with larger errors. However we have to mention that

this code is labelled ‘experimental’. For comparison, we only

show the x and y component of the full 6 degree-of-freedom

results that [16] produces.

V. CONCLUSION AND OUTLOOK

To summarize, we have presented a system for monocular

odometry that uses a system of experts, which allows for

a robust interpretation of flow by decomposing optical flow

into basis flow fields and linearly mapping those to platform

motion. We have detailed our expert system as well as our

extension to the probabilistic PCA and outlier model from

[4]. Evaluating our system shows that our extensions lead

to lower errors in estimated platform motion, comparable to

state-of-the-art self-motion estimation approaches.

We plan to extend our system in several respects. The

selection process of experts can surely be improved upon.

Using more training data reduces overtraining problems e.g.



(a) Results of experts trained with homogeneous inlier variance.

(b) Results of experts trained with inhomogeneous inlier variance.

Fig. 9. Effect of model complexity (number of experts) on the system’s
root mean squard error for forward translation (left) and rotation (Right),
evaluated on the test set. ‘1 expert’ are the results of a single estimator.

in cases of inhomogeneous inlier variance with many experts.

Stochastic temporal modeling and model selection might be

an interesting direction to investigate on top of our approach.

Constructing high-level cognitive loops comprising knowl-

edge about outlier flow and detected objects might pay off

since these two sources of information might be beneficial

to both, object detection and identification of outlier flow.
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