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AbstractIn a large-scale information system such as a digital library or the web, a set of dis-tributed caches can improve their e�ectiveness by coordinating their data placement deci-sions. In this paper, we examine the design space for cooperative placement and replace-ment algorithms. Our main focus is on the placement algorithms, which attempt to solvethe following problem: given a set of caches, the network distances between caches, andpredictions of the access rates from each cache to a set of objects, determine where toplace each object in order to minimize the average access cost. Replacement algorithmsalso attempt to minimize access cost, but they work by selecting which objects to evictwhen a cache miss occurs.Using simulation, we examine three practical cooperative placement algorithms includ-ing one that is provably close to optimal, and we compare these algorithms to the optimalplacement algorithm and several cooperative and non-cooperative replacement algorithms.We draw �ve primary conclusions from these experiments: (1) cooperative placement cansigni�cantly improve performance compared to local replacement algorithms particularlywhen the space of individual caches is limited compared to the universe of objects; (2)although the Amortized Placement algorithm is only guaranteed to be within 14 times theoptimal, in practice it seems to provide an excellent approximation of the optimal; (3) in acooperative caching scenario, the recent GreedyDual local replacement algorithm performsmuch better than the other local replacement algorithms because it implicitly coordinatesthe replacement decisions of the caches; (4) our Hierarchical GreedyDual replacement algo-rithm yields further performance improvements over the GreedyDual algorithm especiallywhen there are idle caches in the system; and (5) a key challenge to coordinated placementalgorithms is generating good predictions of access patterns based on past accesses.1 IntroductionConsider a large-scale distributed information system, such as a digital library or the world wideweb, that provides access to shared objects. Caching popular objects close to the clients is afundamental technique for improving the performance and scalability of such a system. Cachingenables requests to be satis�ed by a nearby copy and hence reduces not only the access latencybut also the burden on the network and server.1Department of Computer Science, University of Texas at Austin, Austin, TX 78712. Email:fmadhukar,dahling@cs.utexas.edu.�This work was supported in part by an NSF CISE grant (CDA-9624082) and grants from Intel, Novell, andSun. Dahlin was also supported by an NSF CAREER grant (9733842).1



A powerful paradigm to improve cache e�ectiveness is cooperation, where caches cooperateboth in serving each other's requests and in making storage decisions. In the simplest cachingscheme caches never consult one another, and when a cache miss occurs, a cache contacts theserver directly. In the widely deployed and studied Harvest and Squid hierarchical cachingsystems [4, 22], the caches are arranged in a hierarchy, and each cache cooperates with a fewsibling and parent caches to service requests. In a more general scenario, each cache wouldcooperate with all other caches in a cooperative caching system. More general cooperationsuch as this is particularly attractive in environments where machines trust one another such aswithin an Internet service provider, cache service provider, or corporate intranet. In addition,cooperation across such entities could be based on peering arrangements such as are now commonfor Internet routing.There are two orthogonal issues to cooperative caching: �nding nearby copies of objects(object location) and coordinating the caches while making storage decisions (object placement).The object location problem has been widely studied [2, 4, 21]. Many recent studies on theobject location problem (e.g., Summary Cache [7], Cache Digest [19], Hint Cache [20], CRISP [9]and Adaptive Web Caching [27]) generalize from hierarchies to more powerful cache-to-cachecooperation scenarios. However, these algorithms do not address the object placement issue.E�cient cache coordination algorithms would greatly improve the e�ectiveness of a givenamount of cache space and are hence crucial to the performance of a cooperative caching system.We believe that the importance of such algorithms will increase in the future as the number ofshared objects continues to grow enormously and as the Internet becomes the home of more largemultimedia objects. Although the falling cost of disk storage allows caches to grow rapidly, it alsodrives down the cost of server storage. Hence in the long run the universe of servers supplyingobjects will have much more data than any individual cache can store.In this paper we focus on the cache coordination issue and provide placement and replacementalgorithms that allow caches to coordinate storage decisions. The placement algorithms attemptto solve the following problem: given a set of cooperating caches, the network distances betweencaches, and predictions of the access rates from each cache to a set of objects, determine where toplace each object in order to minimize the average access cost. On the other hand, replacementalgorithms determine which objects are to be evicted when a cache miss occurs.We examine an optimal placement algorithm and three practical placement algorithms andcompare them to several local, uncoordinated replacement algorithms and a new hierarchicalextension to the GreedyDual algorithm [3, 25]. We drive this comparison with simulation studiesbased on both synthetic and trace workloads. The synthetic workloads allow us to examinesystem behavior in a wide range of situations, and the trace allows us to examine performanceunder a workload of widespread interest: web browsing.Based on these experiments, we reach �ve primary conclusions.� Cooperative placement can signi�cantly improve performance compared to local replace-ment algorithms particularly when the space of individual caches is limited compared tothe universe of objects.� It was established in an earlier theoretical work by Korupolu, Plaxton and Rajaraman [14]that, under the hierarchical model for distances, the Amortized Placement algorithm isalways within a constant factor (about 13:93) of the optimal. But for practical purposes,this factor is still large. Based on our new experiments here, we infer that the AmortizedPlacement algorithm yields an excellent approximation of the optimal for a wide range of2



workloads. This is an important result for two reasons. First, in systems that can generategood estimates of access frequencies, Amortized Placement is a practical algorithm thatcan be expected to provide near-optimal performance. Second, for large-scale studies ofcache coordination, Amortized Placement can provide a practical \best case" baselineagainst which to test other algorithms. In addition, we �nd that a simpli�ed version ofthe algorithm called Greedy Placement also provides an excellent approximation of optimaleven though in theory its performance can be arbitrarily worse than optimal.� In a cooperative caching scenario, the GreedyDual local replacement algorithm performsmuch better than the other local replacement algorithms because its inclusion of accesscost in its replacement decisions provides an implicit channel for coordinating cache re-placement decisions.� Our Hierarchical GreedyDual replacement algorithm yields improved performance overthe GreedyDual local replacement algorithm especially when there are idle caches in thesystem.� A key challenge to coordinated placement algorithms is generating good predictions ofaccess patterns based on past accesses.The rest of this paper is organized as follows: First, we provide background on the coop-erative caching and coordinated placement. Then, in Section 3 we describe the algorithms westudy. Sections 4 and 5 detail our experimental results under synthetic and trace workloads,respectively. Section 6 surveys related work, and Section 7 summarizes our conclusions.2 BackgroundThe advantages of coordinated caching are two-fold. First, by avoiding unnecessary duplication,more objects can be stored closer to the clients. The potential gains of this e�ect become morepronounced as the degree of similarity of interest among nearby clients increases. Second, at anyinstant of time there may be several caches that are either idle or almost idle, and coordinationwould allow a busy cache to utilize a nearby idle cache [6, 8].As a simple example, consider a pair of nearby clients u and v that are accessing a pair ofshared objects A and B. Suppose that (i) each of u and v has a cache that is capable of holdingone object; (ii) a distant node w has copies of both objects A and B; (iii) distance(u; v) = 1and distance(u; w) = distance(v; w) = 10; and (iv) the access frequency for object A is 2 unitsand for object B is 1 unit at both the clients.Under a non-coordinated caching strategy, both the clients would typically end up keepingobject A in their caches, and the requests for B would have to go to w. Hence the overall accesscost would be 2 � 0 + 1 � 10 + 2 � 0 + 1 � 10 = 20 units. On the other hand, with coordination, ifone of them can store object A while the other stores object B, the overall cost would be just2 � 0 + 1 � 1 + 2 � 1 + 1 � 0 = 3 units. The above example illustrates that by avoiding unnecessaryduplication, more objects can be stored closer to the clients. A noteworthy point is that thecoordination improved not only the global access cost, but also the individual access costs.We remark that avoiding duplication altogether is not a good solution either, since duplica-tion is often essential for improving performance. For example, if the closest cached copy of anobject is su�ciently far, then keeping a duplicate nearby may be useful. Or even if there is areasonably nearby copy, if an object is frequently referenced, having an additional even closerduplicate could pay o�. 3



Thus, in trying to decide what to store in the various caches, a good coordination strategyshould balance the improved hit rates from reducing duplication against the improved hit timesfor increasing duplication of popular objects. Before attempting to design such coordinationstrategies, we �rst formulate a more precise problem statement. Subsection 2.1 de�nes thebasic placement and replacement problems for coordinated caching, assuming a generic distancefunction between the nodes. Subsection 2.2 then describes our distance model which is basedon the network-locality hierarchy. Note that though the problem formulation is a simpli�cationof true Internet, it seems to capture the salient features of the placement problem.2.1 The problem formulationConsider a set of N distributed machines connected by a network. Let dist be a function thatgives the the cost of communication, between any pair of machines, and suppose that thesemachines are accessing a set of M shared objects. (For simplicity, we assume that all objectshave the same size and are read-only.) For each machine i, let cachesize(i) denote the numberof objects that can be stored in the cache at machine i.We assume that all requests are satis�ed by the closest copy of the requested object. Inorder to account for the cost of accessing objects for which no copy exists in the collection ofcaches, we assume that we are given a miss penalty � that is at least the maximum value of thefunction dist . We now de�ne the cost of accessing an object � from a machine i. If there is atleast one copy of � in the network , then the access cost c(i; �) equals dist(i; i0), where i0 is theclosest machine that has a copy of �; otherwise c(i; �) equals �.A placement assigns copies of objects to machines subject to the cache size constraints. Forany machine i and object �, let f(i; �) denote the access frequency for object � at machine i.Given these frequencies, the aim of any coordinated placement strategy is to �ll the availablecache space such that overall access cost is minimized. The average access cost, or simply thecost, of a placement P is given by the sum over all machines i and objects � of f(i; �) � c(i; �).Thus, our placement problem is to �nd a placement with the minimum cost given the distancefunction, the cache sizes, and the frequency function.Compared with placement algorithms, replacement algorithms also attempt to minimize theaccess cost, but they proceed by selecting which objects to evict when a cache miss occurs ratherthan explicitly computing a placement based on access frequencies.We remark that even though our problem formulation does not explicitly minimize thenetwork load and the server load, these would typically reduce when the access cost is minimized.This is because the latter objective would encourage objects to be stored closer to the clients,which leads to reduced load on the network as well as the server.2.2 Hierarchical distance modelThe distance (or communication cost) function between machines in modern wide-area networksis not entirely arbitrary but is strongly guided by the fact that these networks have a naturalhierarchical structure. Moreover, for any pair of machines, the distance is essentially capturedby the \biggest" step or link between the two machines. As a simple example, the distancebetween a machine A in the University of Texas and a machine B in Berkeley University isessentially the same as that between A and the third machine C in Berkeley. This is essentiallythe cost of going over the link between Texas and Berkeley.Such a distance structure can be modeled by a \network-locality hierarchy" tree T � and adiameter function diam that satisfy the following properties: (i) the leaves of the tree are the4



machines of the network, (ii) if u is the parent of v in T �, then diam(u) is at least diam(v),and (iii) for any two machines i and i0, dist(i; i0) equals diam(u), where u is the least commonancestor of the leaves i and i0 in T �.The network-locality hierarchy models a system where each machine has a set of nearbyneighbors, all at about the same distance d1, and then a set of next-closest neighbors, all at thesame distance d2 and so on. We emphasize that our network locality hierarchy is distinct fromthe caching hierarchy used in Harvest [4] and other hierarchical caching systems. In the lattersystems, the hierarchy corresponds to the actual topology of the network and each internal nodeis a physical node with its own cache space. On the other hand, our network locality hierarchyis a logical tree whose main purpose is to capture the network distances between the machines,which exist only at the leaves of the tree.The above distance model captures a large class of distributed networks. For example, ifthe tree T � consists of exactly one internal node, then the associated cost function models alocal-area network of workstations. In fact, this is precisely the model used in [1, 15] in the studyof caching schemes for networks of workstations. On the other hand, a tree with several levelscaptures larger-scale networks such as intranets and the Internet. Similar hierarchical structuresfor wide-area networks are implicitly used in several previous studies [4, 11, 18, 20, 21, 22, 26].For the remainder of the paper, we assume that the network distances follow this hierarchicalmodel.3 AlgorithmsIn this section, we present three practical cooperative algorithms. One of them is a replacementalgorithm, called Hierarchical GreedyDual, while the other two are placement algorithms, calledGreedyPlace and AmortPlace. We compare these with several non-cooperative and cooperativealgorithms. On one side, we compare with the non-cooperative local algorithms such as LRU,GreedyDual, and MFU to estimate the bene�ts of cooperation. On the other side, we comparewith an optimal cooperative placement algorithm that gives us a limit on the best we can hopeto achieve. For simplicity, we assume that all objects have the same size.3.1 Purely local algorithmsTo serve as a baseline for comparing performance, we examine four algorithms that make alltheir placement or replacement decisions locally without consulting any other cache.MFUPlace. In this placement algorithm, if the size of the cache is k, then the cache storesthe k most frequently used objects. This strategy works best when the accesses are drawn froma �xed probability distribution and are uncorrelated.LRU Replacement. This is a well-known replacement algorithm which has been demon-strated to yield good performance in main memory caching of �le systems. When a cache missoccurs, this algorithm picks the least recently used object from the cache for eviction.LFU Replacement. This replacement algorithm maintains the (local) frequency of access toeach object. When a cache miss occurs, the object with the lowest (local) frequency of accessis chosen to be evicted from the cache. Unlike MFUPlace, this dynamic replacement decisioncould result in a less frequently used object displacing a more frequently used object. This5



strategy too works best when the accesses are drawn from a �xed probability distribution andare uncorrelated.GreedyDual Replacement. This is a generalization of the LRU algorithm to the case whereeach object has a di�erent but �xed miss cost [3, 25]. The motivation behind the GreedyDualalgorithm is that the objects with larger cost should stay in the cache for a longer time.The algorithm maintains a value for each object that is currently in the cache. When anobject is fetched into the cache, its value is set to its fetch cost. When a cache miss occurs, theobject with the minimum value is evicted from the cache, and the values of all the other objectsin the cache are reduced by this minimum value. And if an object in the cache is accessed (or`touched'), then its value is restored to its fetch cost.From an implementation point of view, it would be expensive to modify the value of eachcache object, upon each cache miss. However, this expense can be avoided by noting thatit is only the relative values, and not the absolute values, that matter [3]. In an e�cientimplementation, upon a cache miss, the minimum valued object is evicted from the cache andno other values are modi�ed. However, when an object is touched or added, its value is set toits fetch cost plus the value of the minimum-valued object in the cache.Our experiments show that, in a cooperative scenario, the GreedyDual algorithm performsmuch better than the other local replacement algorithms. This is because even though theGreedyDual algorithm makes entirely local decisions, its cost-value structure enables some im-plicit coordination with other caches. In particular, an object that was fetched from a nearbycache would have a smaller value than an object that was fetched from far. Hence the latter ob-ject would typically stay in the cache for a longer time, thereby reducing unnecessary replicationamong nearby caches.However, this limited degree of coordination does not exploit all the bene�ts of cooperation.For example, the idle caches are not exploited by the nearby busy caches.3.2 Cooperative placement algorithmsBelow, we �rst describe an optimal placement algorithm. The high running time and bandwidthrequirements of this algorithm make it impractical for use with large input instances, and henceour sole use for this algorithm is as a benchmark for evaluating other placement algorithms.This algorithm and its proof of optimality appear in an earlier paper [14]; we include a briefdiscussion here for completeness.The impracticality of the optimal algorithm motivates the search for a fast near-optimal al-gorithm that would admit e�cient distributed implementations. In subsection 3.2.2, we presenttwo candidate algorithms that compute a placement by a simple bottom-up pass through the net-work locality hierarchy. The original presentation of these algorithms in [14] involves two passesthrough the network locality hierarchy: a bottom-up pass that computes a pseudo-placement,and a top-down pass that re�nes this pseudo-placement to a placement. The additional notionof pseudo-placement was essential for proving the performance guarantees of these algorithms,but not for correctness. Here, we give an equivalent one-pass description of these algorithmsavoiding the notion of pseudo-placement and highlighting the ease of implementation.Recall that the tree T � is the network-locality hierarchy with caches/clients at the leaves,and that the frequency function f was de�ned for the clients (leaves) only. We extend thisde�nition to hold even for the internal nodes by de�ning f(u; �), for any internal node u andfor any object �, to be the aggregate frequency from T �u to � (i.e., the sum over all leaves i in6



T �u , of f(i; �)). We also de�ne the miss penalty miss(u) to be � if u is the root of T �, anddiam(parent(u)) otherwise.3.2.1 An optimal placement algorithmAn optimal algorithm for the placement problem was developed in [14], by a reduction to theminimum cost ow problem. This reduction generalizes the approach of Le�, Wolf, and Yu [15]who solved the problem for the special case of a single-level hierarchy.The instance of the minimum-cost ow problem constructed by this reduction has �(NM)nodes, where N is the number of machines in the system and M is the number of objects inthe system. Hence, the time complexity of this optimal algorithm will be at least quadraticin �(NM), even if we use the fastest known algorithms for computing the minimum cost ow.Moreover, because the algorithm is centralized, it requires prohibitive amounts of communicationfor transferring the access pattern information from all the clients to the central processor.Hence, although this algorithm may be applicable for small LANs, it is impractical for systemswith many caches and millions of objects.3.2.2 Simple near-optimal placement algorithmsThese algorithms follow a natural greedy improvement paradigm that is common to severaloptimization problems. They start with a placement in which each machine places in its cachethe locally most valuable set of objects. The algorithm then proceeds by iteratively improvingthe placement in a bottom-up manner, along the network-locality hierarchy, as the machinescooperate and share information about access frequencies across larger regions of the network.Notation and terminology. A placement P is represented as a set of items, where each itemis a triple of the form (objectId, cacheId, bene�t). The bene�t of an item roughly correspondsto the amount by which the cost of P would increase if this item were dropped from P . Notethat a placement P is legal if and only if for every cache i, the number of items in P that arelocated at i is at most cachesize(i). If there are no copies of � in P , then we say that the object� is P -missing.3.2.3 The greedy placement algorithmWe now present the bottom-up greedy algorithm, by giving separate descriptions of the compu-tations performed at the leaf and internal nodes. For an e�cient and scalable implementationwhere the internal nodes' computations are mapped to the leaves, the reader is referred to [14].GreedyPlace: Leaf Node u� Construct an optimal local placement Q for a leaf node u as follows. For each of thecachesize(u) objects � most frequently accessed by u, set the bene�t b of � to f(u; �) �(miss(u)� diam(u)), and add the item (u; �; b) to Q.GreedyPlace: Internal Node u� Merge. Let Qi be the placement previously computed for ui, the ith child of u. Initializethe placement Q to the union of the Qi's.� Adjust bene�ts. For each object � that has a copy in Q, pick its highest-bene�t copy(breaking ties arbitrarily), and designate it as the �-primary copy. All other copies of7



� are referred to as secondary copies. Increase the bene�t of the �-primary copy byf(u; �) � (miss(u)� diam(u)). The bene�ts of the secondary copies are not changed.� Value missing objects. Let X be the set of all Q-missing objects. For each object � inX, set its value to f(u; �) � (miss(u)� diam(u)).� Swapping. While the value of the highest valued object � in X is larger than the bene�tof the smallest bene�t item y in Q, perform the following swap operation: Remove theitem y from Q and add the item (i; �; value(�)) to Q. Remove � from X.For e�cient implementation, the set Q should be sorted in decreasing order of bene�ts andthe set X of Q-missing objects should be sorted in decreasing order of values. Then for theswap phase we have two pointers, one starting at the tail of Q and the other starting at thehead of the list of Q-missing objects. If the item and the object being pointed to satisfy theswap condition, we perform the swap and advance the pointers. Otherwise, the swap phaseterminates.The intuition for the above procedure for adjusting bene�ts is basically to ensure that thebene�t of each item roughly corresponds to the amount by which the cost of Q would increasewhen this item is dropped from Q.An interesting feature of the algorithm is implicit in the swapping step. Note that if k swapsare performed, then any assignment of the k incoming objects to the k vacated cache slotswould yield a legal placement Q, possibly with di�ering costs. However, for simplicity we do notoptimize the assignment of incoming objects to the set of available cache slots. Instead we pickan essentially arbitrary assignment. The intuition behind this simpli�cation is that, becausethe incoming objects were not chosen earlier by any subtree of T �u , no single subtree by itselfcan gain signi�cantly by keeping that object. An area for future work is to use this degree offreedom to further improve the quality of the resulting placement.It is shown in [14] that the above GreedyPlace algorithm can be arbitrarily far from theoptimal in the worst-case. The worst-case example used for this lower bound leads to a naturalre�nement of the greedy algorithm, called the amortized placement algorithm.3.2.4 The amortized placement algorithmThe amortized algorithm is similar to the greedy algorithm, except that additionally we use apotential function � to accelerate the removal of certain secondary copies in favor of taking themissing objects.AmortPlace: Leaf Node u� Same as in the greedy algorithm, except that we also set the potential � to zero.AmortPlace: Internal Node u� Merge. Same as in the greedy algorithm, except that we also initialize the potential � tothe sum of the potentials �1; : : : �k, computed by the children of u.� Adjust bene�ts. Same as in the greedy algorithm.� Value missing objects. Same as in the greedy algorithm.� Amortized swapping. This procedure is similar to the swapping procedure in the greedyalgorithm, except that the potential � is used to reduce the bene�ts of certain items.8



1. Let yp be the smallest-bene�t primary item in Q and let ys be the smallest-bene�tsecondary item in Q. Let � be the highest valued (Q-missing) object in X.2. If value(�) > min(bene�t(yp); bene�t(ys)��), then perform one of the following twoswap operations, depending on which of the two terms is smaller, and goto step (1).{ If bene�t(yp) < bene�t(ys) � �: Suppose yp = (i; �0; B), remove yp from Q, andadd the item (i; �; value(�)) to Q. Also set X to X ��+�0 and value(�0) to B.{ Otherwise, suppose ys = (i; �0; B), remove ys fromQ, and add the item (i; �; value(�))to Q. Also set X to X � �, and reset the potential � to 0 if � < bene�t(ys) andto �� bene�t(ys) otherwise.� Update potential. Add the values of all the (Q-missing) objects in X to �.It was proved in [14] that the above AmortPlace algorithm is always within a constantfactor of the optimal, for all hierarchal distance functions, for all cache sizes, and for all accesspatterns. The constant factor is less than 13:93. However, due to the simplicity of the algorithm,we believe that the performance would be much better in practice.3.3 A cooperative replacement algorithmThe Hierarchical GreedyDual is a cooperative replacement algorithm that not only preservesthe implicit coordination o�ered by GreedyDual but also enables busy caches to utilize thenearby idle caches. Our algorithm is a generalization of the GreedyDual algorithm and can beimplemented e�ciently even in a distributed setting.Each (leaf) cache runs the local GreedyDual algorithm, using the e�cient implementationdescribed in subsection 3.1. Recall that this algorithm maintains a value for each object in thecache, and upon a cache miss, it evicts the object with the minimum value. In our hierarchicalgeneralization, the evicted object is then \passed up" the network-locality hierarchy for possibleinclusion in a nearby cache. When an internal node u in the network-locality hierarchy receivesan evicted object � from one of its children, it �rst checks to see if a copy of � already existsin its subtree T �u . If not, it picks the minimum valued object � among all the objects cached inits subtree for possible eviction. A simple admission control test is then used to determine if �should replace �. If the copy of � was used more recently than the copy of �, then � replaces �and the new evicted object � is recursively passed on to the parent of u. Otherwise, the object� is recursively passed on to the parent of u.We remark that the particular admission control test mentioned above is crucial for obtaininggood performance. An important purpose of the admission control test is to prevent rarely-accessed objects from jumping from cache to cache without ever leaving the system. Suchobjects would typically have a high fetch cost since no other (nearby) cache would have storedthem, and hence any fetch-cost based admission control test would hold on to such objects evenafter they are evicted by individual caches. This would result in worse performance than eventhe local GreedyDual algorithm. We avoid this problem by maintaining a last-use timestamp onevery object in the cache. This timestamp is updated whenever the copy is accessed, either bythe local client or by a remote client. With our admission control strategy, rarely used objectsare eventually released from the system.Note that in practice rather than \passing up" evictions, this algorithm would use data-location directories [7, 9, 19, 20] to determine if other copies exist in the subtree, and would userandomized [6] or deterministic [8] strategies to approximate the selection of �.9



Parameter Meaning Default ValueL Number of levels 3D Degree of each internal node 3� Diameter growth factor 4C Cache size percentage 20% (synthetic workload) 1% (trace workload)m Number of objects local to each node 25 (synthetic only)r Sharing parameter 0.75 (synthetic only)PAT Access pattern Uniform (synthetic only)I Idle cache factor 0Table 1: Default system parameters.4 Performance evaluation on synthetic workloadsThis section explores the performance of the algorithms under a range of synthetic workloads.These workloads allow us to explore a broader range of system behavior than trace workloads.In addition, because the synthetic workloads are small enough be tractable under the Optimalalgorithm, we can compare our algorithms to Optimal placement.This section �rst describes our methodology in detail and then shows the results of ourexperiments. These results support four primary conclusions: (1) cooperative placement cansigni�cantly improve performance compared to local replacement particularly when the spaceof individual caches is limited compared to the universe of objects; (2) although the AmortizedPlacement algorithm is only guaranteed to be within 14 times the optimal, in practice it seemsto provide an excellent approximation of optimal; similarly, although the Greedy Placementalgorithm can, in principle, be arbitrarily worse than the Optimal, it also seems to providean excellent approximation in practice; (3) in a cooperative caching scenario, the GreedyDuallocal replacement algorithm performs much better than the other local replacement algorithmsstudied; �nally, (4) our Hierarchical GreedyDual local replacement algorithm yields improvedperformance over the GreedyDual replacement algorithm especially when there are idle cachesin the system.4.1 MethodologyWe simulate a collection of caches that include a directory system such as that provided by HintCache [20], Summary Cache [7], Cache Digests [19] or CRISP [9] so that caches can send eachlocal miss directly to the nearest cache with the data or directly to the server if no cache hasthe data. For the placement algorithms MFUPlace, GreedyPlace, AmortPlace, or Optimal, wecompute the initial data placement according to the algorithm under simulation, and the dataremain in their initial caches throughout the run. For the replacement algorithms LFU, LRU,GreedyDual, or HrcGreedyDual, we begin with empty caches, and for each request we modifythe cache contents as dictated by the replacement algorithm. In that case, we use an initialwarm-up stage to prime the caches before gathering statistics. Our simulator is event-based,but it does not model concurrency: it processes each client request completely before beginningthe next one.We parameterize the network architecture and workload along a number of axes. The pa-rameters are de�ned in detail in the following two subsections. Table 1 summarizes the defaultvalues for these parameters. 10



4.1.1 Network architectureRecall from subsection 2.2 that we model the distances between cache nodes using the hierarchi-cal network model. In particular, each node has a collection of level-1 neighbors all at distanced1 away from it, a collection of level-2 neighbors all at distance d2 away and so on. We createan L-level tree in which leaves represent cache nodes and subtrees rooted at internal nodes rep-resent collections of nodes that are near one another compared to nodes not in the subtree. Forsimplicity, we assume that all internal nodes have the same degree, D. The diameters of thesubtrees are captured by a single parameter �, called the diameter growth factor. The diameterfor a subtree at level i is �i. The level of the root is L, the level of a leaf is zero, and the miss-costfor the hierarchy is �L+1.For simplicity, we assume that all objects have the same size, and we express the size ofa cache in terms of the number of objects that it can hold. We also set all cache sizes to bethe same. The cache size percentage, C, is the percentage of the relevant objects that cansimultaneously �t into a cache. More speci�cally, we set the cache size to CM=100 where M�is de�ned di�erently for trace workloads and synthetic workloads. For a trace workload, M� isthe average number of objects that appear per day of the trace. For synthetic workloads, M� isthe maximum number of objects accessed by any node.4.1.2 WorkloadAs observed in section 2, an important parameter for the performance of cooperative strategiesis hierarchical similarity of interests. At one extreme, there is total similarity (all nodes accessthe same set of shared objects with the same frequencies) while at the other extreme there isabsolutely no similarity (each node accesses its own set of local objects).Our synthetic workload models such sharing by creating m objects for each subtree in thenetwork-locality hierarchy. This pattern could represent a hierarchical organization such as acorporation or university where some objects are local to an individual, some to a group, someto a department, and some of organization-wide interest. The sharing parameter, r, determinesthe mix of requests to the \private", \group," \department," and \organization" collections ofdata. The fraction of requests that a client sends to level-i data is proportional to ri. Note thatas r varies from 0 to in�nity, the degree of sharing increases: at r = 0, each client accesses itslocal objects only, and hence there is no sharing at all. As r increases, accesses to more widelyshared objects start to dominate.Within each subtree's collection of data, we select objects according to a pattern PAT thatis either \Zipf-like" or \Uniform." Thus, for a particular leaf cache v and object j that is localto subtree u and that is the kth-ranked object of the m objects local to subtree u, the fractionof node v's requests that go to object j (F (v; j)) is computed as follows:F (v; j) = 0 if u is not an ancestor of v,= ari if u is an ancestor of v and PAT is \Uniform"= arik if u is an ancestor of v and PAT is \Zipf-like"for an appropriate normalization constant a.The above workloads ensure that all clients are \almost equally active". However in reality,there may be several caches that will be idle for periods of time. We model this e�ect by usinganother parameter I (called the idle cache factor) and by adding a special leaf called the idleleaf for each level-1 node. The idle leaf makes no access requests at all, but it has a cache of size11
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Figure 2: Varying cache size (with PAT = \Zipf-like")I times that of the other leaves. As I is increased from 0 upwards, the amount of idle cache inthe system increases.4.2 ResultsFigure 1 plots the performance of the algorithms as the cache size percentage C is varied from1 to 100, with other parameters set to their default values shown in Table 1. The y-axis corre-sponds to the average cost per request, as a percentage of the base cost. The latter is the costthat is paid if there are no copies of the object in the hierarchy, and is given by the expression�L+1. The results for the case where the pattern within each category is Zipf-like, and notuniform, are similar and are presented in Figure 2. The primary conclusion from this data isthat increasing coordination can improve performance, particularly with small caches. Whencomparing the three categories of algorithms|local (MFUPlace, LFU, LRU, GreedyDual), hier-archical replacement (HrcGreedyDual), and hierarchical placement (AmortPlace, GreedyPlace,Optimal)|hierarchical replacement generally outperforms local and hierarchical placement gen-erally outperforms hierarchical replacement.Within each category, the e�ect of increasing coordination can also be seen. Although MFU-Place, LFU, LRU, and GreedyDual are all \local" algorithms, their performance di�ers markedly.12
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(a) No idle caches (b) One idle cache per level 1 nodeFigure 3: Varying degree of sharingMFUPlace performs poorly because all caches in a subtree contain exactly the same objects fromthe subtree, which wastes cache space with ine�cient replication. LFU and LRU do somewhatbetter because randomization has a similar e�ect to coordination|reducing the replication ofthe most frequently accessed objects while increasing the replication of less frequently accessedones. Finally, the miss-cost consideration in GreedyDual makes it expensive to throw awayobjects that are not cached by nearby neighbors, which induces signi�cant coordination acrosscaches. In fact, for the \no idle cache" case, GreedyDual matches the performance of Hrc-GreedyDual. HrcGreedyDual outperforms GreedyDual when there is idle cache space to exploitas Figure 1-b shows.As we increase cache size, the performance of all these algorithms improves. None of the algo-rithms perform well when caches are tiny, but for small to medium sized caches, the coordinatedalgorithms signi�cantly outperform traditional replacement algorithms.We also note that the AmortPlace and GreedyPlace algorithms e�ectively match Optimalacross a wide range of workloads.4.2.1 Sensitivity to other parametersFigure 3 shows performance as we vary the sharing parameter, r. Recall that for r < 1 clients aremore likely to access \local" objects, for r = 1 clients are equally likely to access objects sharedat all levels, and for r > 1 clients focus much of their attention on widely shared objects. For rbetween 0 and 1, smaller values improve performance for all of the algorithms because smallervalues result in clients sending more requests to their \local" collection of objects, of which alarge fraction will �t in their local caches under any of the algorithms studied. When r > 1,increasing r actually helps performance because sharing among caches becomes more e�ective.The performance spike for LFU at r = 1 occurs because a client is spreading its requestsacross all levels of objects evenly and it considers all objects equally likely to be referenced; allreplacement decisions are ties and are broken randomly, which results in most objects beingwidely cached. Conversely, if r is, say, slightly less than 1, each cache always favors local objectsover higher-level objects, which causes them to be too extensively replicated.We also note that the same general patterns emerge as for the earlier experiment: across awide range of sharing factors, algorithms with more coordination have better performance and13
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(a) Idle cache per level 1 node (b) Diameter growth factorFigure 4: Sensitivity to (a) varying the idle cache per level 1 node (I), and (b) varying the diametergrowth factor (�).GreedyPlace and AmortPlace closely track the performance of Optimal.Figure 4-a shows what happens as the amount of idle cache per group of three level-one cachesincreases. When load is not balanced, the \implicit" coordination of LRU and GreedyDual is notable to take advantage of the increasing imbalance. And as load becomes less balanced, the per-formance of the explicitly coordinated algorithms|HrcGreedyDual, AmortPlace, GreedyPlace,and Optimal|improves.Figure 4-b shows the impact of varying the diameter growth factor, �. For small �, all cachehits and misses have similar cost, and all algorithms have approximately the same performance.For large values of �, performance is dominated by the number of misses, so the coordinatedalgorithms perform well. The lines are at for large � because neither the number of objectsnor the total cache space changes with �, so the fraction of objects that are not stored in thecache system is constant. The average access cost, which is largely dominated by the accessesto these objects, increases at the same rate as the base cost. Therefore the average access costas a percentage of the base cost is almost constant.Figure 5-a shows the variation as L, the number of levels in the hierarchy, increases. Here thetotal cache space increases at a much faster rate than the total number of objects. (Note that(1) the number of leaves in the tree, say n, is DL; (2) total number of nodes in the tree is at most2n; and (3) each leaf accesses (L + 1)m objects and hence has a cache of size C(L + 1)m=100.Therefore the total cache space in the tree is nC(L+1)m=100 while the total number of objectsis at most 2nm.) Hence more objects can be cached in the system, thereby reducing the numberof accesses that need to pay the base cost. Hence the average access cost as a percentage of thebase cost keeps decreasing.The variations with increasingD are shown in Figure 5-b. Even though there is an increase inn, the number of leaves in the tree, the ratio of the total number of objects to the total availablecache space does not change. Therefore the fraction of accesses that have to pay the base costis almost �xed and hence there is not much variation in the performance of the algorithms withincreasing degree.
14
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(a) Number of levels (b) Degree of internal nodesFigure 5: Sensitivity to (a) varying the number of levels (L) and (b) varying the degree of each internalnode (D).5 Performance evaluation on trace workloadsIn this section our goal is to evaluate the performance of the various placement and replacementalgorithms on trace workloads. Whereas the synthetic workloads allow us to examine perfor-mance over a wide range of situations, the trace workloads allow us to quantify performancegains that may be available under a speci�c workload of broad interest.The main conclusions for the synthetic workload are also supported here. In addition, we�nd that a key challenge to coordinated placement algorithms is generating good predictions ofaccess patterns based on past accesses. As a result, it appears that hybrid placement-replacementalgorithms may o�er the best option.5.1 MethodologyOur simulations use the Digital web proxy trace [5], which was collected at a proxy servingabout 16; 000 clients over a period of 25 days from August 29th, 1996 to September 22nd, 1996.The number of events logged were about 24 million, using about 4.15 million distinct URLs.For our simulations we use only the cacheable read accesses (i.e., events with GET method,without involving CGI scripts etc.). Each such read access speci�es among other details, theclient making the request, the URL being requested, and the time at which the request wasmade.Because the trace does not provide any information regarding the architecture of the net-work connecting the clients, we use our standard synthetic architecture which was described insection 4.1. We map each trace client on to a random node in our synthetic network. We believethat such a random mapping will generally inhibit the performance of cooperative algorithms.This is because we expect the cooperative algorithms to perform better when there is goodsimilarity of interests among clients that are close to each other. However, a random mappingof clients onto the network nodes would not preserve any such similarity, thereby hurting theperformance of the cooperative algorithms.Also note that we map the 16,000 nodes in the trace to 27 virtual leaves following ourdefault mapping in Table 1. This may be a challenging mapping for coordination algorithmsfor a number of reasons: with about 600 random nodes multiplexed to each leaf cache, caches15



0

20

40

60

80

100

0 5 10 15 20 25

A
ve

ra
ge

 C
os

t P
er

 R
eq

ue
st

 (
%

 o
f b

as
e 

co
st

)

Size of Epoch

Trace: DECweek1; Future; CacheSize = 1%; IdleCacheFactor = 0; TotalCost

LFU

LRU

GreedyDual
HrcGreedyDual

MFUPlace
GreedyPlace

Overlaying

Static_Partition

0

20

40

60

80

100

0 5 10 15 20 25

A
ve

ra
ge

 C
os

t P
er

 R
eq

ue
st

 (
%

 o
f b

as
e 

co
st

)

Size of Epoch

Trace: DECweek1; Future; CacheSize = 1%; IdleCacheFactor = 0; SecondariesCost

LFU

LRU
GreedyDual
HrcGreedyDual

MFUPlace GreedyPlace Overlaying
Static_Partition(a) Cost of all requests included (b) Cost of secondary requests onlyFigure 6: Ideal Predictionare seldom idle and thus there are few chances to exploit idle cache memory. Also, the tree isrelatively shallow and has a relatively small degree, which also may reduce performance gains.As for the synthetic case, we set the cache size as CM=100, but because M is de�ned as theaverage number of objects seen in a day of the trace rather than the number of objects seen by asingle client as in the synthetic workload, we use a smaller value of C (C = 1%) as our default.Because the trace includes large numbers of objects and large numbers of cache slots, it isno longer feasible to run the Optimal placement algorithm. The experiments from the previoussection suggest that when the GreedyPlace algorithm is given good access-frequency predictions,its performance should closely approximate that of Optimal. Also, because the Amortizationstep does not appear to be necessary in practice, we omit discussion of the AmortPlace algorithmand focus on the simpler GreedyPlace algorithm.5.2 ResultsWe have seen that the placement algorithms yield signi�cant performance gains when the accesspatterns are stable and known, as was the case for the synthetic workloads. However, in realityaccess patterns change over time, and an e�ective placement strategy must be able to cope withthese changes. A natural way of coping with dynamically-changing access patterns is to runthe placement algorithms at regular intervals to reorganize the data more e�ectively. However,there are two crucial factors that a�ect the performance of such a strategy: (1) How frequentlyshould the placement algorithms be run? and (2) How do we predict the access frequencies foruse by the placement algorithm?The dynamic versions of our placement algorithms break the time into epochs and run theplacement algorithm at the beginning of every epoch. If the epoch size were too large, thenthe placement would get outdated and hence yield bad performance. On the other hand, if theepoch size were too small then the bandwidth cost of reorganizing the data would be prohibitive.For our experiments, the epoch size is a parameter which can be varied. The main focus of ourtrace-based study is to evaluate how the performance of the various algorithms changes as theepoch size is varied from one hour to one day.A key challenge for placement algorithms is to predict the future access frequencies based onpast accesses. Ideally, a sophisticated prediction technique would exploit the temporal, spatial,16
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Static_Partition(a) Cost of all requests included (b) Cost of secondary requests onlyFigure 7: Naive history-based predictionand geographical localities among requests to predict future requests.1 However we believethat a study of these techniques is orthogonal to our current focus which is the design of goodplacement and replacement strategies. Hence to avoid digression, we do not delve deeply intothis question.For the purposes of evaluating our placement strategies, we consider two extreme predictionstrategies. The �rst one is an idealized predictor based on future knowledge that looks aheadinto the next epoch to determine the access frequencies for each (client, object) pair. Thisunrealizable algorithm serves as a benchmark for the best any prediction technique can achieve.The second one is a naive predictor that computes the predicted access counts for the next epochusing the access counts from the earlier epochs, using a damping factor r: if the access count fora particular (client, object) pair was ci during the ith last epoch, then that epoch contributesci � ri�1 to the predicted access count for the coming epoch.Finally, to cope with the dynamic access patterns in these traces, we examine the perfor-mance of hybrid placement-replacement algorithms. These hybrid algorithms run a placementalgorithm at epoch boundaries and also run a replacement algorithm during the epoch. Weexamine two hybridization techniques. Static partition divides the cache space into two portionsand runs the placement algorithm on one portion and the dynamic replacement algorithm onthe other. In our experiments, we use half of the cache for each partition. The second technique,overlaying, reorganizes the entire cache using the placement algorithm at the start of each epochand then gives the replacement algorithm control of the entire cache during the epoch.Figure 6 shows performance with the ideal, future-knowledge-based predictor and Figure 7show performance with the simple history-based predictor. For both �gures, the x-axis showsthe epoch length in hours and the y-axis shows performance. Because signi�cant numbers ofweb objects are referenced only once, which can have a signi�cant e�ect on overall performance,we show both the overall performance (Figures 6-a and 7-a) and the performance for objectsafter their �rst reference (Figures 6-b and 7-b).Both epoch length and the prediction algorithm are important for placement algorithms.1Spatial locality refers to the fact that related objects such as objects from the same server or that arehyperlinked to each other tend to be accessed together. Geographical locality refers to the fact that clients thatare close to each other may have similar interests. 17
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(a) Cost of all requests included (b) Cost of secondary requests onlyFigure 8: Replacement algorithms with varying idle cache factor.For the idealized prediction algorithm, performance is excellent when epochs are short. Forlonger epochs, placement is coarser-grained and gains are more modest. Even with only dailyreorganization, however, performance gains can be signi�cant. Also, when predictions are good,the placement algorithms perform well and the hybrid algorithms hurt performance.When access frequency predictions are less precise, the placement algorithms are less e�ective.In Figure 7, the most e�ective algorithms combine coordinated placement and coordinatedreplacement. Even with this combination, under this set of parameters the performance gainsare modest. This result suggests that developing more accurate frequency predictors could be afertile area for future work.As was noted above, the cache architecture used for this system may be a challenging onefor placement algorithms. For example, we multiplex about 600 random clients per leaf cache,which severely limits the likelihood of locating idle cache space to exploit. Figure 8 shows thee�ect of adding idle cache to each L1-cluster. This change noticeably improves the performanceof the hierarchical GreedyDual algorithm.6 Related workA number of recent studies have examined the question of what to store in the caches. There areseveral studies and prototypes (e.g., [4, 3, 16, 23]) that employ purely local replacement strate-gies such as LRU or GreedyDual at each cache. The GreedyDual local replacement algorithmwhich considers the di�ering miss costs and di�ering object sizes while making replacementdecisions was presented and evaluated in [3, 12, 25]. However, none of these studies address thecache coordination issue.For local-area networks, some fundamental cooperative caching heuristics were experimen-tally evaluated and found to yield signi�cant bene�ts [6, 8]. An optimal algorithm for theplacement problem on local-area networks was presented in [15]. Recently, in [26], the questionof cache coordination has been studied, albeit under a simplistic model where all the networkdistances are assumed to be the same. In such a scenario, the simple strategy of avoiding dupli-cation altogether is obviously the best strategy, and hence the coordination problem is trivial.Moreover their simulation experiments involve only one client.For wide-area networks, the issue of server-initiated on-line replication has received a good18



deal of attention [11, 13, 17, 18, 24]. Two of these [13, 17] give analytical results while theremaining three [11, 18, 24] present heuristics with empirical evaluation. In all these studies,the concern is more with the issue of reducing server load when hot-spots occur (or when theload on server increases) and less with issue of reducing the latency when there are no hot spots.By adopting a communication model based on a �xed cost function, we endeavor to separatethe concerns of caching (a higher-level operation) from network routing (a lower-level operation).In contrast, some recent papers have incorporated routing issues into caching by either combiningthe two problems or making use of available routing information. For example, the algorithmsdeveloped in [11, 18, 24] tend to cache copies of an object in machines that either lie on orare close to the path along which the object is being transferred. We remark that �xed costfunctions, similar to ours, have also been adopted in local replacement algorithms such as theGreedyDual, to model scenarios where the fetch costs vary from one object to another [3, 12, 25].In push caching schemes [10, 20], the server keeps track of client access patterns and pushesdata towards the clients even before they ask for it. This reduces the client latency by avoidingcompulsory misses. There are two parts to these schemes: predicting future access patterns anddistributing the data according to these predictions. The above studies aim at evaluating thepotential bene�ts of push caching by focusing on the �rst part and assuming that the cachesizes are in�nite. Our placement problems address the second part of these schemes, under themore realistic assumption that the cache sizes are bounded.7 ConclusionsA current trend in large-scale cache systems is to generalize cooperation beyond traditional hi-erarchies. Much recent work has explored solutions to the general object-location problem. Inthis study, we examine the object-placement problem in this context. Based on our simulationstudies, we reach �ve primary conclusions: (1) cooperative placement can signi�cantly improveperformance compared to local replacement algorithms; (2) although the factor separating ourAmortized Placement andGreedy Placement algorithms from optimal placement can be relativelylarge in the worst case, in practice they seem to provide excellent approximations of optimal;(3) in a cooperative caching scenario, the GreedyDual local replacement algorithm performsmuch better than the other local replacement algorithms; (4) our Hierarchical GreedyDual re-placement algorithm yields further performance improvements over the GreedyDual algorithmespecially when there are idle caches in the system; and (5) a key challenge to coordinatedplacement algorithms is generating good predictions of access patterns based on past accesses.Hybrid placement-replacement algorithms appear to be one way to cope with inaccuracies insuch predictions.References[1] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Rosselli, and R. Wang. Serverless network �le systems.In Proceedings of the 15th Symposium on Operating Systems Principles, pages 109{126, 1995.[2] C. Bowman, P. Danzig, D. Hardy, U. Manber, and M. Schwartz. The Harvest information discovery andaccess system. In Proceedings of the 2nd International World Wide Web Conference, pages 763{771, October1994.[3] P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. In Proceedings of the 1997 USENIXSymposium on Internet Technology and Systems, pages 193{206, December 1997.[4] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and K. Worrell. A hierarchical internet objectcache. In Proceedings of the USENIX 1996 Technical Conference, pages 22{26, January 1996.[5] Digital Equipment Corporation. Web proxy traces, september 1996. Available via ftp fromftp://ftp.digital.com/pub/DEC/traces/proxy.webtraces.html.19
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