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Abstract

In a large-scale information system such as a digital library or the web, a set of dis-
tributed caches can improve their effectiveness by coordinating their data placement deci-
sions. In this paper, we examine the design space for cooperative placement and replace-
ment algorithms. Our main focus is on the placement algorithms, which attempt to solve
the following problem: given a set of caches, the network distances between caches, and
predictions of the access rates from each cache to a set of objects, determine where to
place each object in order to minimize the average access cost. Replacement algorithms
also attempt to minimize access cost, but they work by selecting which objects to evict
when a cache miss occurs.

Using simulation, we examine three practical cooperative placement algorithms includ-
ing one that is provably close to optimal, and we compare these algorithms to the optimal
placement algorithm and several cooperative and non-cooperative replacement algorithms.
We draw five primary conclusions from these experiments: (1) cooperative placement can
significantly improve performance compared to local replacement algorithms particularly
when the space of individual caches is limited compared to the universe of objects; (2)
although the Amortized Placement algorithm is only guaranteed to be within 14 times the
optimal, in practice it seems to provide an excellent approximation of the optimal; (3) in a
cooperative caching scenario, the recent GreedyDual local replacement algorithm performs
much better than the other local replacement algorithms because it implicitly coordinates
the replacement decisions of the caches; (4) our Hierarchical GreedyDual replacement algo-
rithm yields further performance improvements over the GreedyDual algorithm especially
when there are idle caches in the system; and (5) a key challenge to coordinated placement
algorithms is generating good predictions of access patterns based on past accesses.

1 Introduction

Consider a large-scale distributed information system, such as a digital library or the world wide
web, that provides access to shared objects. Caching popular objects close to the clients is a
fundamental technique for improving the performance and scalability of such a system. Caching
enables requests to be satisfied by a nearby copy and hence reduces not only the access latency
but also the burden on the network and server.
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A powerful paradigm to improve cache effectiveness is cooperation, where caches cooperate
both in serving each other’s requests and in making storage decisions. In the simplest caching
scheme caches never consult one another, and when a cache miss occurs, a cache contacts the
server directly. In the widely deployed and studied Harvest and Squid hierarchical caching
systems [4, 22], the caches are arranged in a hierarchy, and each cache cooperates with a few
sibling and parent caches to service requests. In a more general scenario, each cache would
cooperate with all other caches in a cooperative caching system. More general cooperation
such as this is particularly attractive in environments where machines trust one another such as
within an Internet service provider, cache service provider, or corporate intranet. In addition,
cooperation across such entities could be based on peering arrangements such as are now common
for Internet routing.

There are two orthogonal issues to cooperative caching: finding nearby copies of objects
(object location) and coordinating the caches while making storage decisions (object placement).
The object location problem has been widely studied [2, 4, 21]. Many recent studies on the
object location problem (e.g., Summary Cache [7], Cache Digest [19], Hint Cache [20], CRISP [9]
and Adaptive Web Caching [27]) generalize from hierarchies to more powerful cache-to-cache
cooperation scenarios. However, these algorithms do not address the object placement issue.

Efficient cache coordination algorithms would greatly improve the effectiveness of a given
amount of cache space and are hence crucial to the performance of a cooperative caching system.
We believe that the importance of such algorithms will increase in the future as the number of
shared objects continues to grow enormously and as the Internet becomes the home of more large
multimedia objects. Although the falling cost of disk storage allows caches to grow rapidly, it also
drives down the cost of server storage. Hence in the long run the universe of servers supplying
objects will have much more data than any individual cache can store.

In this paper we focus on the cache coordination issue and provide placement and replacement
algorithms that allow caches to coordinate storage decisions. The placement algorithms attempt
to solve the following problem: given a set of cooperating caches, the network distances between
caches, and predictions of the access rates from each cache to a set of objects, determine where to
place each object in order to minimize the average access cost. On the other hand, replacement
algorithms determine which objects are to be evicted when a cache miss occurs.

We examine an optimal placement algorithm and three practical placement algorithms and
compare them to several local, uncoordinated replacement algorithms and a new hierarchical
extension to the GreedyDual algorithm [3, 25]. We drive this comparison with simulation studies
based on both synthetic and trace workloads. The synthetic workloads allow us to examine
system behavior in a wide range of situations, and the trace allows us to examine performance
under a workload of widespread interest: web browsing.

Based on these experiments, we reach five primary conclusions.

e Cooperative placement can significantly improve performance compared to local replace-
ment algorithms particularly when the space of individual caches is limited compared to
the universe of objects.

e It was established in an earlier theoretical work by Korupolu, Plaxton and Rajaraman [14]
that, under the hierarchical model for distances, the Amortized Placement algorithm is
always within a constant factor (about 13.93) of the optimal. But for practical purposes,
this factor is still large. Based on our new experiments here, we infer that the Amortized
Placement algorithm yields an excellent approximation of the optimal for a wide range of



workloads. This is an important result for two reasons. First, in systems that can generate
good estimates of access frequencies, Amortized Placement is a practical algorithm that
can be expected to provide near-optimal performance. Second, for large-scale studies of
cache coordination, Amortized Placement can provide a practical “best case” baseline
against which to test other algorithms. In addition, we find that a simplified version of
the algorithm called Greedy Placement also provides an excellent approximation of optimal
even though in theory its performance can be arbitrarily worse than optimal.

e In a cooperative caching scenario, the GreedyDual local replacement algorithm performs
much better than the other local replacement algorithms because its inclusion of access
cost in its replacement decisions provides an implicit channel for coordinating cache re-
placement decisions.

e Our Hierarchical GreedyDual replacement algorithm yields improved performance over
the GreedyDual local replacement algorithm especially when there are idle caches in the
system.

e A key challenge to coordinated placement algorithms is generating good predictions of
access patterns based on past accesses.

The rest of this paper is organized as follows: First, we provide background on the coop-
erative caching and coordinated placement. Then, in Section 3 we describe the algorithms we
study. Sections 4 and 5 detail our experimental results under synthetic and trace workloads,
respectively. Section 6 surveys related work, and Section 7 summarizes our conclusions.

2 Background

The advantages of coordinated caching are two-fold. First, by avoiding unnecessary duplication,
more objects can be stored closer to the clients. The potential gains of this effect become more
pronounced as the degree of similarity of interest among nearby clients increases. Second, at any
instant of time there may be several caches that are either idle or almost idle, and coordination
would allow a busy cache to utilize a nearby idle cache [6, 8].

As a simple example, consider a pair of nearby clients v and v that are accessing a pair of
shared objects A and B. Suppose that (i) each of u and v has a cache that is capable of holding
one object; (ii) a distant node w has copies of both objects A and B; (iii) distance(u,v) = 1
and distance(u, w) = distance(v, w) = 10; and (iv) the access frequency for object A is 2 units
and for object B is 1 unit at both the clients.

Under a non-coordinated caching strategy, both the clients would typically end up keeping
object A in their caches, and the requests for B would have to go to w. Hence the overall access
cost would be 2-0+1-10+42-04 1-10 = 20 units. On the other hand, with coordination, if
one of them can store object A while the other stores object B, the overall cost would be just
2:041-142-1+1-0= 3 units. The above example illustrates that by avoiding unnecessary
duplication, more objects can be stored closer to the clients. A noteworthy point is that the
coordination improved not only the global access cost, but also the individual access costs.

We remark that avoiding duplication altogether is not a good solution either, since duplica-
tion is often essential for improving performance. For example, if the closest cached copy of an
object is sufficiently far, then keeping a duplicate nearby may be useful. Or even if there is a
reasonably nearby copy, if an object is frequently referenced, having an additional even closer
duplicate could pay off.



Thus, in trying to decide what to store in the various caches, a good coordination strategy
should balance the improved hit rates from reducing duplication against the improved hit times
for increasing duplication of popular objects. Before attempting to design such coordination
strategies, we first formulate a more precise problem statement. Subsection 2.1 defines the
basic placement and replacement problems for coordinated caching, assuming a generic distance
function between the nodes. Subsection 2.2 then describes our distance model which is based
on the network-locality hierarchy. Note that though the problem formulation is a simplification
of true Internet, it seems to capture the salient features of the placement problem.

2.1 The problem formulation

Consider a set of N distributed machines connected by a network. Let dist be a function that
gives the the cost of communication, between any pair of machines, and suppose that these
machines are accessing a set of M shared objects. (For simplicity, we assume that all objects
have the same size and are read-only.) For each machine ¢, let cachesize(i) denote the number
of objects that can be stored in the cache at machine 7.

We assume that all requests are satisfied by the closest copy of the requested object. In
order to account for the cost of accessing objects for which no copy exists in the collection of
caches, we assume that we are given a miss penalty A that is at least the maximum value of the
function dist. We now define the cost of accessing an object o from a machine ¢. If there is at
least one copy of « in the network , then the access cost ¢(i, @) equals dist(i, '), where 7' is the
closest machine that has a copy of «a; otherwise c(i, @) equals A.

A placement assigns copies of objects to machines subject to the cache size constraints. For
any machine i and object o, let f(i,a) denote the access frequency for object o at machine i.
Given these frequencies, the aim of any coordinated placement strategy is to fill the available
cache space such that overall access cost is minimized. The average access cost, or simply the
cost, of a placement P is given by the sum over all machines i and objects a of f(i, @) - (i, a).
Thus, our placement problem is to find a placement with the minimum cost given the distance
function, the cache sizes, and the frequency function.

Compared with placement algorithms, replacement algorithms also attempt to minimize the
access cost, but they proceed by selecting which objects to evict when a cache miss occurs rather
than explicitly computing a placement based on access frequencies.

We remark that even though our problem formulation does not explicitly minimize the
network load and the server load, these would typically reduce when the access cost is minimized.
This is because the latter objective would encourage objects to be stored closer to the clients,
which leads to reduced load on the network as well as the server.

2.2 Hierarchical distance model
The distance (or communication cost) function between machines in modern wide-area networks
is not entirely arbitrary but is strongly guided by the fact that these networks have a natural
hierarchical structure. Moreover, for any pair of machines, the distance is essentially captured
by the “biggest” step or link between the two machines. As a simple example, the distance
between a machine A in the University of Texas and a machine B in Berkeley University is
essentially the same as that between A and the third machine C' in Berkeley. This is essentially
the cost of going over the link between Texas and Berkeley.

Such a distance structure can be modeled by a “network-locality hierarchy” tree 7™ and a
diameter function diam that satisfy the following properties: (i) the leaves of the tree are the



machines of the network, (ii) if w is the parent of v in 7%, then diam(u) is at least diam(v),
and (iii) for any two machines i and ', dist(i,4') equals diam(u), where u is the least common
ancestor of the leaves i and ¢’ in T™*.

The network-locality hierarchy models a system where each machine has a set of nearby
neighbors, all at about the same distance d;, and then a set of next-closest neighbors, all at the
same distance dy and so on. We emphasize that our network locality hierarchy is distinct from
the caching hierarchy used in Harvest [4] and other hierarchical caching systems. In the latter
systems, the hierarchy corresponds to the actual topology of the network and each internal node
is a physical node with its own cache space. On the other hand, our network locality hierarchy
is a logical tree whose main purpose is to capture the network distances between the machines,
which exist only at the leaves of the tree.

The above distance model captures a large class of distributed networks. For example, if
the tree T™ consists of exactly one internal node, then the associated cost function models a
local-area network of workstations. In fact, this is precisely the model used in [1, 15] in the study
of caching schemes for networks of workstations. On the other hand, a tree with several levels
captures larger-scale networks such as intranets and the Internet. Similar hierarchical structures
for wide-area networks are implicitly used in several previous studies [4, 11, 18, 20, 21, 22, 26].

For the remainder of the paper, we assume that the network distances follow this hierarchical
model.

3 Algorithms

In this section, we present three practical cooperative algorithms. One of them is a replacement
algorithm, called Hierarchical GreedyDual, while the other two are placement algorithms, called
GreedyPlace and AmortPlace. We compare these with several non-cooperative and cooperative
algorithms. On one side, we compare with the non-cooperative local algorithms such as LRU,
GreedyDual, and MFU to estimate the benefits of cooperation. On the other side, we compare
with an optimal cooperative placement algorithm that gives us a limit on the best we can hope
to achieve. For simplicity, we assume that all objects have the same size.

3.1 Purely local algorithms
To serve as a baseline for comparing performance, we examine four algorithms that make all
their placement or replacement decisions locally without consulting any other cache.

MFUPlace. In this placement algorithm, if the size of the cache is k, then the cache stores
the k most frequently used objects. This strategy works best when the accesses are drawn from
a fixed probability distribution and are uncorrelated.

LRU Replacement. This is a well-known replacement algorithm which has been demon-
strated to yield good performance in main memory caching of file systems. When a cache miss
occurs, this algorithm picks the least recently used object from the cache for eviction.

LFU Replacement. This replacement algorithm maintains the (local) frequency of access to
each object. When a cache miss occurs, the object with the lowest (local) frequency of access
is chosen to be evicted from the cache. Unlike MFUPlace, this dynamic replacement decision
could result in a less frequently used object displacing a more frequently used object. This



strategy too works best when the accesses are drawn from a fixed probability distribution and
are uncorrelated.

GreedyDual Replacement. This is a generalization of the LRU algorithm to the case where
each object has a different but fixed miss cost [3, 25|. The motivation behind the GreedyDual
algorithm is that the objects with larger cost should stay in the cache for a longer time.

The algorithm maintains a value for each object that is currently in the cache. When an
object is fetched into the cache, its value is set to its fetch cost. When a cache miss occurs, the
object with the minimum value is evicted from the cache, and the values of all the other objects
in the cache are reduced by this minimum value. And if an object in the cache is accessed (or
‘touched’), then its value is restored to its fetch cost.

From an implementation point of view, it would be expensive to modify the value of each
cache object, upon each cache miss. However, this expense can be avoided by noting that
it is only the relative values, and not the absolute values, that matter [3]. In an efficient
implementation, upon a cache miss, the minimum valued object is evicted from the cache and
no other values are modified. However, when an object is touched or added, its value is set to
its fetch cost plus the value of the minimum-valued object in the cache.

Our experiments show that, in a cooperative scenario, the GreedyDual algorithm performs
much better than the other local replacement algorithms. This is because even though the
GreedyDual algorithm makes entirely local decisions, its cost-value structure enables some im-
plicit coordination with other caches. In particular, an object that was fetched from a nearby
cache would have a smaller value than an object that was fetched from far. Hence the latter ob-
ject would typically stay in the cache for a longer time, thereby reducing unnecessary replication
among nearby caches.

However, this limited degree of coordination does not exploit all the benefits of cooperation.
For example, the idle caches are not exploited by the nearby busy caches.

3.2 Cooperative placement algorithms

Below, we first describe an optimal placement algorithm. The high running time and bandwidth
requirements of this algorithm make it impractical for use with large input instances, and hence
our sole use for this algorithm is as a benchmark for evaluating other placement algorithms.
This algorithm and its proof of optimality appear in an earlier paper [14]; we include a brief
discussion here for completeness.

The impracticality of the optimal algorithm motivates the search for a fast near-optimal al-
gorithm that would admit efficient distributed implementations. In subsection 3.2.2, we present
two candidate algorithms that compute a placement by a simple bottom-up pass through the net-
work locality hierarchy. The original presentation of these algorithms in [14] involves two passes
through the network locality hierarchy: a bottom-up pass that computes a pseudo-placement,
and a top-down pass that refines this pseudo-placement to a placement. The additional notion
of pseudo-placement was essential for proving the performance guarantees of these algorithms,
but not for correctness. Here, we give an equivalent one-pass description of these algorithms
avoiding the notion of pseudo-placement and highlighting the ease of implementation.

Recall that the tree T* is the network-locality hierarchy with caches/clients at the leaves,
and that the frequency function f was defined for the clients (leaves) only. We extend this
definition to hold even for the internal nodes by defining f(u, a), for any internal node u and
for any object a, to be the aggregate frequency from T)f to « (i.e., the sum over all leaves ¢ in



Ty, of f(i,a)). We also define the miss penalty miss(u) to be A if u is the root of 7™, and
diam(parent(u)) otherwise.

3.2.1 An optimal placement algorithm

An optimal algorithm for the placement problem was developed in [14], by a reduction to the
minimum cost flow problem. This reduction generalizes the approach of Leff, Wolf, and Yu [15]
who solved the problem for the special case of a single-level hierarchy.

The instance of the minimum-cost flow problem constructed by this reduction has ©(NM)
nodes, where N is the number of machines in the system and M is the number of objects in
the system. Hence, the time complexity of this optimal algorithm will be at least quadratic
in ©(NM), even if we use the fastest known algorithms for computing the minimum cost flow.
Moreover, because the algorithm is centralized, it requires prohibitive amounts of communication
for transferring the access pattern information from all the clients to the central processor.
Hence, although this algorithm may be applicable for small LANS, it is impractical for systems
with many caches and millions of objects.

3.2.2 Simple near-optimal placement algorithms

These algorithms follow a natural greedy improvement paradigm that is common to several
optimization problems. They start with a placement in which each machine places in its cache
the locally most valuable set of objects. The algorithm then proceeds by iteratively improving
the placement in a bottom-up manner, along the network-locality hierarchy, as the machines
cooperate and share information about access frequencies across larger regions of the network.

Notation and terminology. A placement P is represented as a set of items, where each item
is a triple of the form (objectld, cacheld, benefit). The benefit of an item roughly corresponds
to the amount by which the cost of P would increase if this item were dropped from P. Note
that a placement P is legal if and only if for every cache i, the number of items in P that are
located at 7 is at most cachesize(i). If there are no copies of a in P, then we say that the object
a is P-missing.

3.2.3 The greedy placement algorithm

We now present the bottom-up greedy algorithm, by giving separate descriptions of the compu-
tations performed at the leaf and internal nodes. For an efficient and scalable implementation
where the internal nodes’ computations are mapped to the leaves, the reader is referred to [14].

‘GreedyPlace: Leaf Node u‘

e Construct an optimal local placement @) for a leaf node u as follows. For each of the
cachesize(u) objects a most frequently accessed by wu, set the benefit b of a to f(u, ) -
(miss(u) — diam(u)), and add the item (u, a,b) to Q.

‘GreedyPlace: Internal Node u‘

e Merge. Let Q; be the placement previously computed for u;, the ith child of u. Initialize
the placement () to the union of the Q;’s.

e Adjust benefits. For each object a that has a copy in @, pick its highest-benefit copy
(breaking ties arbitrarily), and designate it as the a-primary copy. All other copies of
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a are referred to as secondary copies. Increase the benefit of the a-primary copy by
f(u, @) - (miss(u) — diam(u)). The benefits of the secondary copies are not changed.

e Value missing objects. Let X be the set of all )-missing objects. For each object « in
X, set its value to f(u,a) - (miss(u) — diam(u)).

e Swapping. While the value of the highest valued object v in X is larger than the benefit
of the smallest benefit item y in @), perform the following swap operation: Remove the
item y from @ and add the item (7, a, value(a)) to Q. Remove a from X.

For efficient implementation, the set () should be sorted in decreasing order of benefits and
the set X of @)-missing objects should be sorted in decreasing order of values. Then for the
swap phase we have two pointers, one starting at the tail of () and the other starting at the
head of the list of Q-missing objects. If the item and the object being pointed to satisfy the
swap condition, we perform the swap and advance the pointers. Otherwise, the swap phase
terminates.

The intuition for the above procedure for adjusting benefits is basically to ensure that the
benefit of each item roughly corresponds to the amount by which the cost of ) would increase
when this item is dropped from Q.

An interesting feature of the algorithm is implicit in the swapping step. Note that if & swaps
are performed, then any assignment of the k& incoming objects to the k vacated cache slots
would yield a legal placement @), possibly with differing costs. However, for simplicity we do not
optimize the assignment of incoming objects to the set of available cache slots. Instead we pick
an essentially arbitrary assignment. The intuition behind this simplification is that, because
the incoming objects were not chosen earlier by any subtree of 77}, no single subtree by itself
can gain significantly by keeping that object. An area for future work is to use this degree of
freedom to further improve the quality of the resulting placement.

It is shown in [14] that the above GreedyPlace algorithm can be arbitrarily far from the
optimal in the worst-case. The worst-case example used for this lower bound leads to a natural
refinement of the greedy algorithm, called the amortized placement algorithm.

3.2.4 The amortized placement algorithm

The amortized algorithm is similar to the greedy algorithm, except that additionally we use a
potential function ¢ to accelerate the removal of certain secondary copies in favor of taking the
missing objects.

‘AmortPlace: Leaf Node u‘

e Same as in the greedy algorithm, except that we also set the potential ¢ to zero.

‘AmortPlace: Internal Node u‘

e Merge. Same as in the greedy algorithm, except that we also initialize the potential ¢ to
the sum of the potentials ¢1, ... ¢, computed by the children of u.

e Adjust benefits. Same as in the greedy algorithm.
e Value missing objects. Same as in the greedy algorithm.

e Amortized swapping. This procedure is similar to the swapping procedure in the greedy
algorithm, except that the potential ¢ is used to reduce the benefits of certain items.



1. Let y, be the smallest-benefit primary item in ) and let y, be the smallest-benefit
secondary item in Q). Let a be the highest valued (@Q-missing) object in X.

2. If value(a) > min(benefit(y,), benefit(ys) — ¢), then perform one of the following two
swap operations, depending on which of the two terms is smaller, and goto step (1).

— If benefit(y,) < benefit(ys) — ¢: Suppose y, = (4,0, B), remove y, from @, and
add the item (i, a, value(a)) to Q. Also set X to X —a+ o' and value(a') to B.

— Otherwise, suppose y; = (i, o/, B), remove y, from @, and add the item (i, a, value(a))
to Q. Also set X to X — «, and reset the potential ¢ to 0 if ¢ < benefit(ys) and
to ¢ — benefit(ys) otherwise.

e Update potential. Add the values of all the (Q-missing) objects in X to ¢.

It was proved in [14] that the above AmortPlace algorithm is always within a constant
factor of the optimal, for all hierarchal distance functions, for all cache sizes, and for all access
patterns. The constant factor is less than 13.93. However, due to the simplicity of the algorithm,
we believe that the performance would be much better in practice.

3.3 A cooperative replacement algorithm

The Hierarchical GreedyDual is a cooperative replacement algorithm that not only preserves
the implicit coordination offered by GreedyDual but also enables busy caches to utilize the
nearby idle caches. Our algorithm is a generalization of the GreedyDual algorithm and can be
implemented efficiently even in a distributed setting.

Each (leaf) cache runs the local GreedyDual algorithm, using the efficient implementation
described in subsection 3.1. Recall that this algorithm maintains a value for each object in the
cache, and upon a cache miss, it evicts the object with the minimum value. In our hierarchical
generalization, the evicted object is then “passed up” the network-locality hierarchy for possible
inclusion in a nearby cache. When an internal node u in the network-locality hierarchy receives
an evicted object « from one of its children, it first checks to see if a copy of a already exists
in its subtree 7. If not, it picks the minimum valued object 3 among all the objects cached in
its subtree for possible eviction. A simple admission control test is then used to determine if «
should replace B. If the copy of a was used more recently than the copy of 3, then a replaces 3
and the new evicted object [ is recursively passed on to the parent of u. Otherwise, the object
« is recursively passed on to the parent of w.

We remark that the particular admission control test mentioned above is crucial for obtaining
good performance. An important purpose of the admission control test is to prevent rarely-
accessed objects from jumping from cache to cache without ever leaving the system. Such
objects would typically have a high fetch cost since no other (nearby) cache would have stored
them, and hence any fetch-cost based admission control test would hold on to such objects even
after they are evicted by individual caches. This would result in worse performance than even
the local GreedyDual algorithm. We avoid this problem by maintaining a last-use timestamp on
every object in the cache. This timestamp is updated whenever the copy is accessed, either by
the local client or by a remote client. With our admission control strategy, rarely used objects
are eventually released from the system.

Note that in practice rather than “passing up” evictions, this algorithm would use data-
location directories [7, 9, 19, 20] to determine if other copies exist in the subtree, and would use
randomized [6] or deterministic [8] strategies to approximate the selection of £.



‘ Parameter ‘ Meaning Default Value

L Number of levels 3

D Degree of each internal node 3

A Diameter growth factor 4

c Cache size percentage 20% (synthetic workload) 1% (trace workload)
m Number of objects local to each node 25 (synthetic only)

r Sharing parameter 0.75 (synthetic only)

PAT Access pattern Uniform (synthetic only)

I Idle cache factor 0

Table 1: Default system parameters.

4 Performance evaluation on synthetic workloads

This section explores the performance of the algorithms under a range of synthetic workloads.
These workloads allow us to explore a broader range of system behavior than trace workloads.
In addition, because the synthetic workloads are small enough be tractable under the Optimal
algorithm, we can compare our algorithms to Optimal placement.

This section first describes our methodology in detail and then shows the results of our
experiments. These results support four primary conclusions: (1) cooperative placement can
significantly improve performance compared to local replacement particularly when the space
of individual caches is limited compared to the universe of objects; (2) although the Amortized
Placement algorithm is only guaranteed to be within 14 times the optimal, in practice it seems
to provide an excellent approximation of optimal; similarly, although the Greedy Placement
algorithm can, in principle, be arbitrarily worse than the Optimal, it also seems to provide
an excellent approximation in practice; (3) in a cooperative caching scenario, the GreedyDual
local replacement algorithm performs much better than the other local replacement algorithms
studied; finally, (4) our Hierarchical GreedyDual local replacement algorithm yields improved
performance over the GreedyDual replacement algorithm especially when there are idle caches
in the system.

4.1 Methodology
We simulate a collection of caches that include a directory system such as that provided by Hint
Cache [20], Summary Cache [7], Cache Digests [19] or CRISP [9] so that caches can send each
local miss directly to the nearest cache with the data or directly to the server if no cache has
the data. For the placement algorithms MFUPlace, GreedyPlace, AmortPlace, or Optimal, we
compute the initial data placement according to the algorithm under simulation, and the data
remain in their initial caches throughout the run. For the replacement algorithms LFU, LRU,
GreedyDual, or HrcGreedyDual, we begin with empty caches, and for each request we modify
the cache contents as dictated by the replacement algorithm. In that case, we use an initial
warm-up stage to prime the caches before gathering statistics. Our simulator is event-based,
but it does not model concurrency: it processes each client request completely before beginning
the next one.

We parameterize the network architecture and workload along a number of axes. The pa-
rameters are defined in detail in the following two subsections. Table 1 summarizes the default
values for these parameters.
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4.1.1 Network architecture

Recall from subsection 2.2 that we model the distances between cache nodes using the hierarchi-
cal network model. In particular, each node has a collection of level-1 neighbors all at distance
d, away from it, a collection of level-2 neighbors all at distance dy away and so on. We create
an L-level tree in which leaves represent cache nodes and subtrees rooted at internal nodes rep-
resent collections of nodes that are near one another compared to nodes not in the subtree. For
simplicity, we assume that all internal nodes have the same degree, D. The diameters of the
subtrees are captured by a single parameter A, called the diameter growth factor. The diameter
for a subtree at level i is A*. The level of the root is L, the level of a leaf is zero, and the miss-cost
for the hierarchy is AF+1,

For simplicity, we assume that all objects have the same size, and we express the size of
a cache in terms of the number of objects that it can hold. We also set all cache sizes to be
the same. The cache size percentage, C, is the percentage of the relevant objects that can
simultaneously fit into a cache. More specifically, we set the cache size to C M /100 where M*
is defined differently for trace workloads and synthetic workloads. For a trace workload, M* is
the average number of objects that appear per day of the trace. For synthetic workloads, M* is
the maximum number of objects accessed by any node.

4.1.2 Workload

As observed in section 2, an important parameter for the performance of cooperative strategies
is hierarchical similarity of interests. At one extreme, there is total similarity (all nodes access
the same set of shared objects with the same frequencies) while at the other extreme there is
absolutely no similarity (each node accesses its own set of local objects).

Our synthetic workload models such sharing by creating m objects for each subtree in the
network-locality hierarchy. This pattern could represent a hierarchical organization such as a
corporation or university where some objects are local to an individual, some to a group, some
to a department, and some of organization-wide interest. The sharing parameter, r, determines
the mix of requests to the “private”, “group,” “department,” and “organization” collections of
data. The fraction of requests that a client sends to level-i data is proportional to r¢. Note that
as r varies from 0 to infinity, the degree of sharing increases: at r = 0, each client accesses its
local objects only, and hence there is no sharing at all. As r increases, accesses to more widely
shared objects start to dominate.

Within each subtree’s collection of data, we select objects according to a pattern PAT that
is either “Zipf-like” or “Uniform.” Thus, for a particular leaf cache v and object j that is local
to subtree u and that is the kth-ranked object of the m objects local to subtree u, the fraction
of node v’s requests that go to object j (F'(v, 7)) is computed as follows:

F(v,j) = 0 if u is not an ancestor of v,

= ar' if uis an ancestor of v and PAT is “Uniform”
art
= 5 if u is an ancestor of v and PAT is “Zipf-like”
for an appropriate normalization constant a.
The above workloads ensure that all clients are “almost equally active”. However in reality,
there may be several caches that will be idle for periods of time. We model this effect by using
another parameter I (called the idle cache factor) and by adding a special leaf called the idle

leaf for each level-1 node. The idle leaf makes no access requests at all, but it has a cache of size
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Figure 2: Varying cache size (with PAT = “Zipf-like”)

I times that of the other leaves. As I is increased from 0 upwards, the amount of idle cache in
the system increases.

4.2 Results

Figure 1 plots the performance of the algorithms as the cache size percentage C' is varied from
1 to 100, with other parameters set to their default values shown in Table 1. The y-axis corre-
sponds to the average cost per request, as a percentage of the base cost. The latter is the cost
that is paid if there are no copies of the object in the hierarchy, and is given by the expression
A4 The results for the case where the pattern within each category is Zipf-like, and not
uniform, are similar and are presented in Figure 2. The primary conclusion from this data is
that increasing coordination can improve performance, particularly with small caches. When
comparing the three categories of algorithms—local (MFUPlace, LFU, LRU, GreedyDual), hier-
archical replacement (HrcGreedyDual), and hierarchical placement (AmortPlace, GreedyPlace,
Optimal)—hierarchical replacement generally outperforms local and hierarchical placement gen-
erally outperforms hierarchical replacement.

Within each category, the effect of increasing coordination can also be seen. Although MFU-
Place, LFU, LRU, and GreedyDual are all “local” algorithms, their performance differs markedly.
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MF UPlace performs poorly because all caches in a subtree contain exactly the same objects from
the subtree, which wastes cache space with inefficient replication. LFU and LRU do somewhat
better because randomization has a similar effect to coordination—reducing the replication of
the most frequently accessed objects while increasing the replication of less frequently accessed
ones. Finally, the miss-cost consideration in GreedyDual makes it expensive to throw away
objects that are not cached by nearby neighbors, which induces significant coordination across
caches. In fact, for the “no idle cache” case, GreedyDual matches the performance of Hrc-
GreedyDual. HrcGreedyDual outperforms GreedyDual when there is idle cache space to exploit
as Figure 1-b shows.

As we increase cache size, the performance of all these algorithms improves. None of the algo-
rithms perform well when caches are tiny, but for small to medium sized caches, the coordinated
algorithms significantly outperform traditional replacement algorithms.

We also note that the AmortPlace and GreedyPlace algorithms effectively match Optimal
across a wide range of workloads.

4.2.1
Figure 3 shows performance as we vary the sharing parameter, . Recall that for » < 1 clients are
more likely to access “local” objects, for » = 1 clients are equally likely to access objects shared
at all levels, and for r > 1 clients focus much of their attention on widely shared objects. For r
between 0 and 1, smaller values improve performance for all of the algorithms because smaller
values result in clients sending more requests to their “local” collection of objects, of which a
large fraction will fit in their local caches under any of the algorithms studied. When r > 1,
increasing r actually helps performance because sharing among caches becomes more effective.
The performance spike for LFU at r 1 occurs because a client is spreading its requests
across all levels of objects evenly and it considers all objects equally likely to be referenced; all
replacement decisions are ties and are broken randomly, which results in most objects being
widely cached. Conversely, if r is, say, slightly less than 1, each cache always favors local objects
over higher-level objects, which causes them to be too extensively replicated.

We also note that the same general patterns emerge as for the earlier experiment: across a
wide range of sharing factors, algorithms with more coordination have better performance and

Sensitivity to other parameters
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GreedyPlace and AmortPlace closely track the performance of Optimal.

Figure 4-a shows what happens as the amount of idle cache per group of three level-one caches
increases. When load is not balanced, the “implicit” coordination of LRU and GreedyDual is not
able to take advantage of the increasing imbalance. And as load becomes less balanced, the per-
formance of the explicitly coordinated algorithms—HrcGreedyDual, AmortPlace, GreedyPlace,
and Optimal—improves.

Figure 4-b shows the impact of varying the diameter growth factor, A\. For small A, all cache
hits and misses have similar cost, and all algorithms have approximately the same performance.
For large values of A, performance is dominated by the number of misses, so the coordinated
algorithms perform well. The lines are flat for large A\ because neither the number of objects
nor the total cache space changes with A, so the fraction of objects that are not stored in the
cache system is constant. The average access cost, which is largely dominated by the accesses
to these objects, increases at the same rate as the base cost. Therefore the average access cost
as a percentage of the base cost is almost constant.

Figure 5-a shows the variation as L, the number of levels in the hierarchy, increases. Here the
total cache space increases at a much faster rate than the total number of objects. (Note that
(1) the number of leaves in the tree, say n, is D¥; (2) total number of nodes in the tree is at most
2n; and (3) each leaf accesses (L + 1)m objects and hence has a cache of size C(L + 1)m/100.
Therefore the total cache space in the tree is nC'(L 4 1)m/100 while the total number of objects
is at most 2nm.) Hence more objects can be cached in the system, thereby reducing the number
of accesses that need to pay the base cost. Hence the average access cost as a percentage of the
base cost keeps decreasing.

The variations with increasing D are shown in Figure 5-b. Even though there is an increase in
n, the number of leaves in the tree, the ratio of the total number of objects to the total available
cache space does not change. Therefore the fraction of accesses that have to pay the base cost
is almost fixed and hence there is not much variation in the performance of the algorithms with
increasing degree.

14



Degree = 3, DiamF = 4, CacheSize = 20%, ShareF = 0.75, LocalPattern = Uniform; IdleCacheFactor = 0 Levels = 3, DiamF = 4, CacheSize = 20%, ShareF = 0.75, LocalPattern = Uniform; IdleCacheFactor = 0
100 T T T T T T T 100

MFUPlace

80 80

ost)
cost)

60 .. N
R

40

40

Average Cost Per Request (% of base ¢
Average Cost Per Request (% of base

20 20

Number of Levels Degree of each internal node

(a) Number of levels (b) Degree of internal nodes

Figure 5: Sensitivity to (a) varying the number of levels (L) and (b) varying the degree of each internal
node (D).

5 Performance evaluation on trace workloads

In this section our goal is to evaluate the performance of the various placement and replacement
algorithms on trace workloads. Whereas the synthetic workloads allow us to examine perfor-
mance over a wide range of situations, the trace workloads allow us to quantify performance
gains that may be available under a specific workload of broad interest.

The main conclusions for the synthetic workload are also supported here. In addition, we
find that a key challenge to coordinated placement algorithms is generating good predictions of
access patterns based on past accesses. As a result, it appears that hybrid placement-replacement
algorithms may offer the best option.

5.1 Methodology

Our simulations use the Digital web proxy trace [5], which was collected at a proxy serving
about 16, 000 clients over a period of 25 days from August 29th, 1996 to September 22nd, 1996.
The number of events logged were about 24 million, using about 4.15 million distinct URLs.
For our simulations we use only the cacheable read accesses (i.e., events with GET method,
without involving CGI scripts etc.). Each such read access specifies among other details, the
client making the request, the URL being requested, and the time at which the request was
made.

Because the trace does not provide any information regarding the architecture of the net-
work connecting the clients, we use our standard synthetic architecture which was described in
section 4.1. We map each trace client on to a random node in our synthetic network. We believe
that such a random mapping will generally inhibit the performance of cooperative algorithms.
This is because we expect the cooperative algorithms to perform better when there is good
similarity of interests among clients that are close to each other. However, a random mapping
of clients onto the network nodes would not preserve any such similarity, thereby hurting the
performance of the cooperative algorithms.

Also note that we map the 16,000 nodes in the trace to 27 virtual leaves following our
default mapping in Table 1. This may be a challenging mapping for coordination algorithms
for a number of reasons: with about 600 random nodes multiplexed to each leaf cache, caches
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Figure 6: Ideal Prediction

are seldom idle and thus there are few chances to exploit idle cache memory. Also, the tree is
relatively shallow and has a relatively small degree, which also may reduce performance gains.

As for the synthetic case, we set the cache size as C M /100, but because M is defined as the
average number of objects seen in a day of the trace rather than the number of objects seen by a
single client as in the synthetic workload, we use a smaller value of C' (C' = 1%) as our default.

Because the trace includes large numbers of objects and large numbers of cache slots, it is
no longer feasible to run the Optimal placement algorithm. The experiments from the previous
section suggest that when the GreedyPlace algorithm is given good access-frequency predictions,
its performance should closely approximate that of Optimal. Also, because the Amortization
step does not appear to be necessary in practice, we omit discussion of the AmortPlace algorithm
and focus on the simpler GreedyPlace algorithm.

5.2 Results

We have seen that the placement algorithms yield significant performance gains when the access
patterns are stable and known, as was the case for the synthetic workloads. However, in reality
access patterns change over time, and an effective placement strategy must be able to cope with
these changes. A natural way of coping with dynamically-changing access patterns is to run
the placement algorithms at regular intervals to reorganize the data more effectively. However,
there are two crucial factors that affect the performance of such a strategy: (1) How frequently
should the placement algorithms be run? and (2) How do we predict the access frequencies for
use by the placement algorithm?

The dynamic versions of our placement algorithms break the time into epochs and run the
placement algorithm at the beginning of every epoch. If the epoch size were too large, then
the placement would get outdated and hence yield bad performance. On the other hand, if the
epoch size were too small then the bandwidth cost of reorganizing the data would be prohibitive.
For our experiments, the epoch size is a parameter which can be varied. The main focus of our
trace-based study is to evaluate how the performance of the various algorithms changes as the
epoch size is varied from one hour to one day.

A key challenge for placement algorithms is to predict the future access frequencies based on
past accesses. Ideally, a sophisticated prediction technique would exploit the temporal, spatial,
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Figure 7: Naive history-based prediction

and geographical localities among requests to predict future requests.! However we believe
that a study of these techniques is orthogonal to our current focus which is the design of good
placement and replacement strategies. Hence to avoid digression, we do not delve deeply into
this question.

For the purposes of evaluating our placement strategies, we consider two extreme prediction
strategies. The first one is an idealized predictor based on future knowledge that looks ahead
into the next epoch to determine the access frequencies for each (client, object) pair. This
unrealizable algorithm serves as a benchmark for the best any prediction technique can achieve.
The second one is a naive predictor that computes the predicted access counts for the next epoch
using the access counts from the earlier epochs, using a damping factor r: if the access count for
a particular (client, object) pair was ¢; during the ith last epoch, then that epoch contributes
c; -1 to the predicted access count for the coming epoch.

Finally, to cope with the dynamic access patterns in these traces, we examine the perfor-
mance of hybrid placement-replacement algorithms. These hybrid algorithms run a placement
algorithm at epoch boundaries and also run a replacement algorithm during the epoch. We
examine two hybridization techniques. Static partition divides the cache space into two portions
and runs the placement algorithm on one portion and the dynamic replacement algorithm on
the other. In our experiments, we use half of the cache for each partition. The second technique,
overlaying, reorganizes the entire cache using the placement algorithm at the start of each epoch
and then gives the replacement algorithm control of the entire cache during the epoch.

Figure 6 shows performance with the ideal, future-knowledge-based predictor and Figure 7
show performance with the simple history-based predictor. For both figures, the x-axis shows
the epoch length in hours and the y-axis shows performance. Because significant numbers of
web objects are referenced only once, which can have a significant effect on overall performance,
we show both the overall performance (Figures 6-a and 7-a) and the performance for objects
after their first reference (Figures 6-b and 7-b).

Both epoch length and the prediction algorithm are important for placement algorithms.

1Spatial locality refers to the fact that related objects such as objects from the same server or that are
hyperlinked to each other tend to be accessed together. Geographical locality refers to the fact that clients that
are close to each other may have similar interests.
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Figure 8: Replacement algorithms with varying idle cache factor.

For the idealized prediction algorithm, performance is excellent when epochs are short. For
longer epochs, placement is coarser-grained and gains are more modest. Even with only daily
reorganization, however, performance gains can be significant. Also, when predictions are good,
the placement algorithms perform well and the hybrid algorithms hurt performance.

When access frequency predictions are less precise, the placement algorithms are less effective.
In Figure 7, the most effective algorithms combine coordinated placement and coordinated
replacement. Even with this combination, under this set of parameters the performance gains
are modest. This result suggests that developing more accurate frequency predictors could be a
fertile area for future work.

As was noted above, the cache architecture used for this system may be a challenging one
for placement algorithms. For example, we multiplex about 600 random clients per leaf cache,
which severely limits the likelihood of locating idle cache space to exploit. Figure 8 shows the
effect of adding idle cache to each L1-cluster. This change noticeably improves the performance
of the hierarchical GreedyDual algorithm.

6 Related work

A number of recent studies have examined the question of what to store in the caches. There are
several studies and prototypes (e.g., [4, 3, 16, 23]) that employ purely local replacement strate-
gies such as LRU or GreedyDual at each cache. The GreedyDual local replacement algorithm
which considers the differing miss costs and differing object sizes while making replacement
decisions was presented and evaluated in [3, 12, 25]. However, none of these studies address the
cache coordination issue.

For local-area networks, some fundamental cooperative caching heuristics were experimen-
tally evaluated and found to yield significant benefits [6, 8]. An optimal algorithm for the
placement problem on local-area networks was presented in [15]. Recently, in [26], the question
of cache coordination has been studied, albeit under a simplistic model where all the network
distances are assumed to be the same. In such a scenario, the simple strategy of avoiding dupli-
cation altogether is obviously the best strategy, and hence the coordination problem is trivial.
Moreover their simulation experiments involve only one client.

For wide-area networks, the issue of server-initiated on-line replication has received a good
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deal of attention [11, 13, 17, 18, 24]. Two of these [13, 17| give analytical results while the
remaining three [11, 18, 24] present heuristics with empirical evaluation. In all these studies,
the concern is more with the issue of reducing server load when hot-spots occur (or when the
load on server increases) and less with issue of reducing the latency when there are no hot spots.

By adopting a communication model based on a fixed cost function, we endeavor to separate
the concerns of caching (a higher-level operation) from network routing (a lower-level operation).
In contrast, some recent papers have incorporated routing issues into caching by either combining
the two problems or making use of available routing information. For example, the algorithms
developed in [11, 18, 24| tend to cache copies of an object in machines that either lie on or
are close to the path along which the object is being transferred. We remark that fixed cost
functions, similar to ours, have also been adopted in local replacement algorithms such as the
GreedyDual, to model scenarios where the fetch costs vary from one object to another [3, 12, 25].

In push caching schemes [10, 20|, the server keeps track of client access patterns and pushes
data towards the clients even before they ask for it. This reduces the client latency by avoiding
compulsory misses. There are two parts to these schemes: predicting future access patterns and
distributing the data according to these predictions. The above studies aim at evaluating the
potential benefits of push caching by focusing on the first part and assuming that the cache
sizes are infinite. Our placement problems address the second part of these schemes, under the
more realistic assumption that the cache sizes are bounded.

7 Conclusions

A current trend in large-scale cache systems is to generalize cooperation beyond traditional hi-
erarchies. Much recent work has explored solutions to the general object-location problem. In
this study, we examine the object-placement problem in this context. Based on our simulation
studies, we reach five primary conclusions: (1) cooperative placement can significantly improve
performance compared to local replacement algorithms; (2) although the factor separating our
Amortized Placement and Greedy Placement algorithms from optimal placement can be relatively
large in the worst case, in practice they seem to provide excellent approximations of optimal,
(3) in a cooperative caching scenario, the GreedyDual local replacement algorithm performs
much better than the other local replacement algorithms; (4) our Hierarchical GreedyDual re-
placement algorithm yields further performance improvements over the GreedyDual algorithm
especially when there are idle caches in the system; and (5) a key challenge to coordinated
placement algorithms is generating good predictions of access patterns based on past accesses.
Hybrid placement-replacement algorithms appear to be one way to cope with inaccuracies in
such predictions.
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