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Abstract—A novel model is presented to address the problem 

of semantic clustering of geo-objects in VHR panchromatic 

satellite images. The proposed model combines a probabilistic 

topic model with a multi-scale image representation into an 

automatic framework by embedding both document and scale 

selections. The probabilistic topic model is used to characterize 

the statistical distributions of both intra-class appearance and 

inter-class coherence of geo-objects within documents, i.e., 

squared sub-images. Because the bag-of-words assumption 

involved in the probabilistic topic models does not consider the 

spatial coherence between topic labels, the multi-scale image 

representation is designed to provide a self-adaptive spatial 

regularization for various geo-object categories. By introducing 

scale and document selections, the automatic framework 

integrates the probabilistic topic model and the multi-scale image 

representation to ensure that words on a site should be allocated 

the same topic label no matter what documents they reside in. 

Consequently, unlike the traditional method of applying topic 

models for analyzing satellite images, the process of explicitly 

generating a set of documents before modeling and then 

combining multiple labels for a word on a given site is 

unnecessary. Gibbs sampling is adopted for parameter 

estimation and image clustering. Extensive experimental 

evaluations are designed to first analyze the effect of parameters 

in the proposed model and then compare the results of our model 

with those of some state-of-the-art methods for three different 

types of images. The results indicate that the proposed algorithm 

consistently outperforms these exiting state-of-the-art methods in 

all of the experiments. 

Index Terms—Probabilistic topic models; object-oriented 

clustering; latent Dirichlet allocation; scale space theory.  
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I. INTRODUCTION 

MAGE clustering is a widely used technique for extracting 

geographic thematic information from remote sensing 

images when a training sample is not available [1-4]. A 

common statistical approach to the image clustering problem is 

to model the probability density function of individual pixel 

attributes (e.g., spectra, texture) using a finite mixture model 

(FMM) [5]. The clustering process is then alternatively 

converted to infer the most probable components (i.e., cluster 

labels) of the mixture model to generate pixels and estimate the 

parameters of the model. Although the statistical 

characteristics of pixel attributes might be well described in the 

mixture models, the cluster labels are spatially independent [6]. 

In other words, no spatial context information, e.g., local 

interactions or statistical characteristics among pixels, is 

considered in the models. Markov Random Field (MRF) 

models are often employed to embed a prior context constraint 

on the cluster labels to enhance the spatial consistency of the 

labels [7-14]. Instead of individual pixels, a set of squared 

sub-images are modeled using probabilistic topic models 

[15-18] to discover semantic patterns from Very High 

Resolution (VHR) satellite images in an unsupervised way [19, 

20]. 

In this paper, we address the problem of object-oriented 

semantic clustering of geo-objects in VHR panchromatic 

satellite images in an automatic framework. The term 

“object-oriented” includes two meanings. First, object-oriented 

indicates that the proposed method differs from the pixel-based 

image analysis methods, which are based on processing the 

entire scene pixel by pixel. Second, object-oriented also 

indicates that the proposed method is based on squared images 

with a preset size, rather than segments of geographic 

geo-objects. In an object-based image analysis, the basic 

processing units are image segments that are obtained through 

image segmentation [17]. The proposed model consists of three 

complementary components: (1) a probabilistic topic model 

component that allows modeling of the statistical distributions 

of both the inter-object coherency and the intra-class 

appearance of geo-objects within documents, (2) a multi-scale 

image representation component that provides a self-adaptive 
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spatial regularization for various geo-object categories, and (3) 

an automatic application framework component that integrates 

the other two components using both document and scale 

selections. Although the probabilistic topic model has been 

employed to extract thematic information from remote sensing 

images in previous studies, the main contribution of the 

proposed model is the novel application framework of 

combining a probabilistic topic model with a multi-scale image 

representation to achieve effective clustering for VHR 

panchromatic satellite images. 

The remainder of this paper is organized as follows. We first 

review related studies in section II. Then, we present the 

proposed model and algorithm for semantic clustering in 

section III. The experimental results and evaluation are 

presented in section IV, and we conclude with a discussion in 

section V. 

 

II.  RELATED WORK 

In this section, we first review probabilistic topic models in 

the text analysis community, and then describe their 

application for image analysis with a focus on both natural and 

satellite images. 

Probabilistic topic models originated as a suite of language 

models from a seminal work [18], whose goal was to discover 

the latent patterns or structures (i.e., topics) of words from a 

large collection of documents for effective clustering or 

retrieval [21, 22]. Hoffman (1999) developed the first 

probabilistic topic model for analyzing latent topics from a set 

of documents, i.e., the probabilistic latent semantic analysis 

(pLSA) [21]. Each document is assumed to be a bag of words 

and is represented as a mixture of topics within the pLSA. 

Meanwhile, each topic is also a mixture of words in the 

vocabulary. Blei et al. (2003) assumed that both mixtures are a 

Dirichlet distribution and developed a Bayesian probabilistic 

topic model, i.e., the latent Dirichlet allocation (LDA) [22]. 

The two probabilistic topic models and their analogues have 

been extensively applied to analyze a variety of data, such as 

images [23], videos [24] and music [25]. 

When probabilistic topic models are employed to solve 

vision problems, visual features of natural images are 

commonly quantized as visual words using K-means, and each 

individual image is considered to be a document [26]. 

Generally speaking, the application of probabilistic topic 

models for vision problems consists of three common steps, as 

shown in Fig. 1(a): (1) generation of visual words, (2) model 

inference and (3) allocation of topic labels. Each natural image 

is modeled as a mixture of topics, which can be viewed as 

elements of a scene [27]. For example, an image of a sunset 

scene might be represented as a mixture of some topics, e.g., 

sky, mountain, water and so on. However, the topic models 

originally assumed that the data are exchangeable, i.e., the 

spatial relationship between visual words is ignored. Various 

approaches have been proposed to enhance the spatial 

consistency of topic labels. Sivic et al. (2005) used ‘doublets’ to 

encode spatially co-occurring regions [28, 29]. Wang et al. 

(2007) proposed the encoding of spatial information using 

document design tricks [26]. Verbeek et al. (2007) combined a 

MRF with topic models to determine the local regularization of 

label allocation [30, 31]. Larlus et al. (2010) combined a 

bag-of-words recognition with spatial regularization based on a 

mixture of both an MRF and the Dirichlet process [27].  

Probabilistic topic models have also emerged as a possible 

solution for discovering semantic patterns from VHR satellite 

images because they can simultaneously model both the 

distributions of geo-object classes (i.e., topics) and the 

co-occurrence between geo-objects in continuous image 

regions (i.e., topic distributions within documents). Ackay et al. 

(2008) combined the pLSA with a multi-scale segmentation 

algorithm for detecting geo-objects from VHR remote sensing 

images using an unsupervised framework [19]. Yi et al. (2011) 

presented a novel semantic clustering algorithm for VHR 

satellite images using the pLSA [20]. The LDA is also used to 

model each geo-category in a supervised framework, and then 

for annotating satellite images [32]. As shown in Fig. 1 (b), 

unlike the application of topic models to natural images, one 

needs to design both documents and visual words before using 

the topic models because there are too many geo-objects of 

interest in a large satellite image [16, 19-21, 32]. The satellite 

image is often partitioned into a set of sub-images (e.g., 

segments [19] or squared image areas [20, 32]) that are 

regarded as documents. In addition, to enforce the spatial 

consistency of the topic labels, the documents are commonly 

generated with some extent of overlap [16, 19-21, 32]. 

Consequently, the same pixel in the original satellite image 

could be allocated to multiple topic labels when it lies in 

different documents. Therefore, an additional step is often 

required to combine multiple topic labels for the same pixel to 

obtain a final classification map. 

 

III. MULTI-SCALE LATENT DIRICHLET ALLOCATION 

In this section, we first discuss major problems of geo-object 

clustering in VHR satellite images. Then, a multi-scale latent 

Dirichlet allocation (msLDA) is presented to solve the 

problems. Finally, an algorithm of the model is outlined. 

A. Problem 

Given a satellite image I , let 

{ ( , ) |1 ,1 )}t i j i H j W       be the set of lattice 

sites in the image, where W and H are width and height of the 

image, respectively [33]. A random field indexed by the lattice 

system  is given by { | , }
t t t
X x x tX , where 

a random variable 
tX  at site t  takes a value 

tx  in its state 

space {1,2, , }d . The set { | }
t
x tx is a sample 

drawn from the state space  with the joint 
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probability ( )P X x . Given an observed sample x  of a pixel 

attribute (e.g., spectrum or texture) random fieldX , the goal of 

image clustering is to obtain a sample { | }
t
z tz  of a 

label random field Z  according to certain criterion, e.g. 

maximum a posterior ( | )Z XP . 

Along with the increase of spatial resolution, some problems 

in satellite image clustering become increasingly serious: (1) 

the same geo-object with different spectra, (2) different 

geo-objects with nearly identical spectra and (3) 

salt-and-pepper effects in the clustering results. As shown in 

Fig. 1 (c), the two components in the proposed framework are 

aimed to solve the above-mentioned problems, i.e., the 

probabilistic topic model (including both probabilistic topics 

and topic mixture) and the multi-scale image representation. 

In the proposed model, the statistical attribute of a geo-object 

is characterized by a probabilistic topic that is a multinomial 

mixture of words in the vocabulary. As shown in [22], the 

mixture could be used to describe the multimodal 

co-occurrence structures of words. Therefore, a geo-object with 

different spectra could be well characterized by a multimodal 

topic. Meanwhile, each document is represented as a mixture of 

topics. In other words, the co-occurrence relationship of 

geo-objects in a document can be characterized by the mixture 

of topics. Consequently, when different geo-objects with almost 

the same spectra frequently occur in a different scene, the 

mixture of topics could be employed to reflect the difference 

between them. In addition, a multi-scale image representation 

in the proposed framework provides a multi-scale viewpoint of 

each pixel because the grayscale value of a pixel in each image 

scale is used as a visual word, and a squared sub-image with a 

preset heighth  is regarded as a document covering the pixel. 

In the automatic framework, the clustering process is 

integrated into the model inference by both the document and 

scale selections to achieve the goal that multiple words on a 

lattice site are always allocated a unique topic label irrespective 

of the document in which they reside. Consequently, the 

salt-and-pepper effects are significantly reduced, and a 

self-adaptive spatial regularization effect for various geo-object 

categories could be achieved by maintaining a multi-scale 

spatial consistency. 

B. Model 

As shown in Fig. 1 (c), a multi-scale image representation of 

a panchromatic satellite image is derived by convoluting a 

given image with a variable-scale Gaussian [34] 

                   ( , , ) ( , , )* ( , )L x y s G x y s I x y                            (1) 

where * is the convolution operation in x and y, and the 

Gaussian 
2 2( )/2

2

1
( , , )

2 ( )
x y sG x y s e

s
 with scale s . 

Unlike Fig. 1 (b), it is not necessary to explicitly generate a 

collection of documents from a given satellite image because 

both the document and scale selections in the proposed 

framework are employed to ensure that multiple words on a 

lattice site are always allocated the same topic label irrespective 

of the document in which they reside. Therefore, we only need 

to implicitly know that there is a document with a preset size on 

each site. As shown in Fig. 2 (a), the msLDA assumes the 

following generative process for each site on the lattice 

system : 

1) Topic Sampling 

For each scales , K topics are sampled from a Dirichlet 

prior ( | )
s

p , where each topic characterizes the grayscale 

histogram of a geo-object class and is a multinomial mixture of 

words in the vocabulary. 

2) Topic Mixture Sampling: 

In the lattice system , a topic mixture vector for each site 

is sampled from a Dirichlet prior ( | )p , where the topic 

mixture reflects the co-occurrence relationship among the 

geo-objects in a given document. Note that the topic mixture is 

independent of the scale in the multi-scale image 

representation because multiple words on a site share the same 

topic label. 

3) Scale Index Sampling 

In the multi-scale image representation, a scale index ts  is 

sampled for site t  from a prior ( | )p s . The scale index states 

from which scale the probabilistic topics are used to allocate a 

topic label to site t  in the lattice system . 

4) Document Index Sampling 

In the lattice system , a document index 
td  is sampled for 

site t  from a normal distribution ( | )
t

p d , whose mean and 

variance are 0 and , respectively. The document index 

indicates the topic mixture vector would be employed for 

allocating a topic label to the site. Similar to the topic mixture 

vector, the document index is also independent of the 

image-representation scale. 

 
Fig. 1. Application framework of topic models for (a) Natural images, (b) 

Satellite images and (c) VHR panchromatic satellite images. 
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5) Topic Label Sampling 

In the lattice system , topic label 
tz  of site t  is sampled 

from a multinomial distribution ( | )p z , where the parameter 

vector  is the topic mixture vector of document
td . 

6) Word Sampling 

In the lattice system , the grayscale value 
tw  of site t  on 

s -th scale image is sampled from the sampled topic 
tz  with 

probability ( | )
t t

p w z . 

The key inferential problem in the msLDA is to compute the 

joint distribution of the observation and hidden variables on the 

lattice : 

    
( , , , | , , , , , , )

( | , , , , ) ( | , , , ) ( | , ) ( | )

P h

P P P h P

W Z D S

W Z D S Z D S D S
         (2) 

where W  is the multi-scale representation of the source image 

I ; latent variable fields Z , D and S  are matrixes of topic 

labels, document indices and scale indices, respectively. Unlike 

the LDA, we assume that any site on the lattice should be 

allocated the same topic label by the msLDA regardless of the 

document or scale to which it belongs. Therefore, the joint 

probability defined in Eq. (2) could be empirically 

approximated by a series of updating
t
z , 

t
d  and 

t
s  

( , , , ) { ( | , , , ) ( | , , , )

                             ( | , , , ) ( | , , , )}

W Z D S W Z D S Z W D S

D W Z S S W Z D
t t t tt

t t t t

P P w P z

P d P s
 

(3) 

C. Algorithm 

As shown in Fig. 2 (b), a Gibbs sampling algorithm is used to 

estimate the model parameters and approximate the posterior 

distribution of latent variables in the model. The algorithm 

includes four steps, as follows: 

1) Step #1: Initializing or re-estimating the model 

parameters. 

As shown in Fig. 2 (a), there are two types of parameters: (1) 

five scalars: number of scales S , number of topics K , height 

of sub-image (i.e., document) h , sigma  of zero-mean 

normal distribution ( | )p d  and mean of the uniformed prior 

( | )p s ; (2) 1S  vectors: a K-dimensional Dirichlet 

parameter  of ( | )p  and S  V-dimensional Dirichlet 

parameters 
s

 of ( | )
s

p  where V  is the size of the 

vocabulary. All of scalar parameters are initialized once. The 

1S vector parameters would be re-estimated based on the 

estimated mixtures of topics in documents ( | )p  and 

topics ( | )
s

p . 

In addition, three matrices with the same size as the source 

panchromatic satellite image I  are randomly initialized before 

they are updated as follows, i.e., matrix of the scale indexS , 

matrix of the document index D  , and matrix of the topic 

labelZ . 

2) Step #2: Sampling both the scale and document indices for 

each site. 

For each site t , we sample a new scale index 
t
s  by 

approximating its posterior 
( )

,

( )

1 ,

( | , , , ) ( | )
( )

t
s s
t t

t
s s

z

t w w

t t t N z

w t w w

n
P s P s

n
S D Z W          (4) 

where 
( )

,
t
s
t

z

t w
n  is the number of word w associated with topic 

t
z  

on the s -th scale, with the exception of the topic index on site 

t ; sw
is w-th element of the Dirichlet parameter vector 

s
. 

Meanwhile, for sitet , we sample a new document index 
t
d  

by approximating its posterior 

' ' '

( )2 2
,

( )

1 ,

( | , , , )

( ) ( )
exp[ ]*

( )

tt t

t

t t
dd d
t k kt t

K d

k t k k

P d

nx x y y

n

D Z S W

    (5) 

where ( , )
t t
x y  and ( , )t td dx y  are the coordinates of site t  and 

the center site of  document 
t
d , respectively; 

( )

,
td

t k
n  is the 

number of the k-th topic within document 
t
d ,  with the 

exception of the topic index on site t ; 
k

 is the k-th element of 

the Dirichlet parameter vector . 

For the detailed derivation of Eq. (4) and (5), please refer to 

the Appendix. 

3) Step #3: Sampling a topic label for each site. 

Given both the scale index, 
t
s  and the document index 

t
d  

for sitet , the posterior of topic label 
t
z  is same as in the LDA 

 

' ' '

( )( )
,,

( ) ( )

,1 1,

( | , , , )

*
( ) ( )

tt
s s
t t

t t
s

t t
zd
t w wt k k

K Nd z

t wk wt k k w

P z

nn

n n

Z D S W

            (6) 

4) Step #4: Checking the convergence and driving the 

clustering results. 

 
Fig. 2. The proposed model and algorithm. Some intuitional explanations of the 

model are shown at the end of red and dash arrows. 
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After the Gibbs sampling procedure is completed, the 

algorithm determines whether convergence has been achieved. 

If convergence has not been achieved, the algorithm returns to 

step 1 to re-estimate the hyper-parameters of the model, i.e.,  

and
s

. Otherwise, the clustering result is derived by 

maximizing the posterior distribution of the topic label for each 

pixel using the estimated parameters. 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this section, we first describe the experimental images and 

the quantitative evaluation methods for the experimental 

results. Then, we analyze the effect of parameters in the 

msLDA on the clustering results. Finally, we compare the 

performance of the msLDA with that of state-of-the-art 

methods for three typical of geographic scenes in terms of both 

qualitative and quantitative aspects. 

The proposed msLDA algorithm is coded and implemented 

in a MATLAB environment. The parameter configurations are 

determined based on the different experimental conditions. 

 

A. Experimental Images and Evaluation Methods 

1) Experimental Images 

As shown in Fig. 3 (a), (c) and (e), three 0.6-m resolution 

panchromatic satellite images are used in our experiments, i.e., 

a QUICKBIRD image of a suburban area with a size of 

900×900 pixels, a QUICKBIRD image of an urban area with a 

size of 500×500 pixels, and an EROS-B image of a rural area 

with a size of 800×800 pixels. In the suburban image, there are 

six types of major geo-objects: building, road, shadow, water, 

field and tree. Five geo-object classes (i.e., building, road, 

shadow, water and ground) are scattered in the urban image. 

However, in the rural image, two geo-object classes (i.e., field 

and tree) cover most of the image. In addition, there are some 

water, shadow and road in the rural image. Note that two types 

of geo-objects with almost the same grayscale values occur in 

all three images, i.e., water and shadow. 

2) Experimental Evaluation Methods 

In our experiments, two quantitative criteria are employed in 

addition to visual inspection to evaluate the clustering results, 

i.e., entropy and the Kappa coefficient [35]. The former is an 

information theoretical criterion that measures the uncertainty 

of clusters given a ground truth class and the uncertainty of 

classes given a cluster. However, the entropy is independent of 

whether a cluster correctly corresponds to a class. Therefore, 

the Kappa coefficient is also used to measure the consistency 

between clusters and classes. 

a) Entropy 

Let 
ckh  be the number of pixels assigned to the cluster 

k within a ground truth class c , 
1

K

c ckk
h h


  be the total 

number of pixels within a ground truth class c , 

and
1

C

k ckc
h h


 is denoted by the number of pixels assigned to 

cluster k ,where K  is the number of clusters and C  is the 

number of ground truth classes. 

The quality of a cluster is measured in terms of the 

homogeneity of the ground truth classes within the cluster, i.e., 

the cluster entropy. For the k-th cluster, the cluster entropy, 
kE  , 

is given by  

 
1

log
C

ck ck

k

c k k

h h
E

h h

   [35]                           (7) 

Therefore, the overall cluster entropy, 
clusterE , is given by a 

weighted sum of the individual cluster entropies as  

   
1

1

1 K

cluster k kK
k

kk

E h E
h 



 


[35]                       (8) 

The cluster entropy reflects the quality of the individual 

clusters in terms of the homogeneity of the pixels in a cluster. 

However, the cluster entropy continues to decrease as the 

number of clusters increases. To address this problem, another 

entropy measure could be defined that measures how the pixels 

of the same class are represented by the various clusters 

 
(a) Suburban 

 
(b) Curve of value : suburban image 

 
(c)  Urban 

 
(d) Curve of value for a urban image 

 
(e) Rural 

 
(f) Curve of value for a rural image 

Fig. 3. Experimental datasets. (a), (c) and (e) are QUICKBIRD image of a suburb 

area, a QUICKBIRD image of an urban area and an EROS-B image of a rural 

area, respectively. (b), (d) and (f) are corresponding plots of MDL criterion. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The proposed model and algorithm. Some intuitional explanations of the 

model are shown at the end of red and dash arrows. 
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created. 

Given a ground truth class c , the quality of a clustering 

result is measured in terms of the homogeneity of the cluster 

labels within the class, i.e., the class entropy 

 
1

log
K

ck ck

c

k c c

h h
E

h h

  [35]                             (9) 

Then, the overall class entropy 
classE  , is given by a weighted 

sum of individual class entropies as  

 
1

1

1 C

class c cC
c

cc

E h E
h 



 


[35]                       (10) 

The overall entropy could be defined as a linear combination 

of the class entropy 
classE , and the cluster entropy 

clusterE  

 (1 )class clusterE E E    [35]                    (11) 

where [0,1]  is a weight for balancing the two measures 

[19] and   is set to 0.5 in the experiments. Generally speaking, 

a smaller overall entropy value indicates higher homogeneity. 

b) Kappa Coefficient 

The Kappa coefficient (or Kappa statistic), which serves as a 

quantitative measurement of the agreement between the 

classification results and the ground truth maps, is one of the 

most commonly used statistics for evaluating the image 

classification accuracy. A Kappa of 1 indicates perfect 

agreement, whereas a Kappa of 0 indicates agreement that is 

equivalent to chance. In other words, the higher the value of 

Kappa, the higher the classification accuracy. To compute the 

Kappa coefficient, we use the minimum total number of 

misclassifications criterion to map the cluster labels to the 

ground truth labels [36]. 

B. Effect of Parameters in the msLDA on Experimental 

Results 

As shown in Fig. 2 (a), there are two types of parameters in 

the msLDA: (1) four scalars: number of topics K , number of 

scales S , height of sub-images (i.e., documents) h , and the  

sigma  of zero-mean normal distribution for document 

selection; (2) 1S  vectors: a K-dimensional Dirichlet 

parameter  of ( | )p  and S  V-dimensional Dirichlet 

parameters 
s

 of ( | )
s

p  where V  is the size of the 

vocabulary.  

Among these parameters, the Dirichlet priors are initialized 

as symmetric priors and re-estimated during the model 

inference, i.e., 50/K and 100  [37]. The number of 

topics K , is estimated using a minimum description length 

(MDL) criterion [20, 32, 38]. As shown in Fig. 3 (b), (d) and (f), 

the optimal K  corresponds to the minimal values in the MDL 

curves. For the detail of calculating the MDL value, please refer 

to [20, 32, 38]. In our experiments, the number of topics is set 

to 7.  

In this subsection, we analyze the influence of three 

parameters: height h  , of squared sub-images (i.e., size of 

documents), number of scalesS , and the sigma of zero-mean 

normal distribution for document selection using the suburban 

image. Two special cases of the msLDA are also discussed.  

1) Size of Documents 

Given a site t  in an image lattice, the size of documents 

determines two quantities: (1) the pixel that would be treated as 

the same document centered on site t ; (2) the document that 

might be selected to sample the word (i.e., grayscale value) on 

sitet . Fig. 4 shows the change in performance of the msLDA 

with varying sizes of documents. Both the entropy and the 

Kappa coefficient indicate that the performance of the msLDA 

increases with the size of documents at the beginning, then the 

performance becomes relatively stable when the size is larger 

than 17. Therefore, in the following experiments, the height of 

a sub-image is set to 17.  

2) Number of Scales 

The number of scales states how many times the original 

satellite images are convoluted. As shown in Fig. 5, the entropy 

is the lowest one, and the Kappa coefficient is the largest one 

when the number of the scales is equal to 7. In the following 

experiments, the number of scales is set to 7. 

 
(a) 

 
(b) 

 

Fig. 6. The quantitative performance evaluation of the clustering results. (a) 

Entropy versus the value of sigma. (b) The Kappa coefficient versus the value of 

sigma. 

 

 

 
(a) 

 
(b) 

 

Fig. 5. The quantitative performance evaluation of the clustering results. (a) 

Entropy versus the number of scales. (b) The Kappa coefficient versus the number 

of scales.  

 

 
(a) 

 

 
(b) 

 

Fig. 4. The quantitative performance evaluation of the clustering results. (a) 

Entropy versus sizes of documents. (b) The Kappa coefficient versus sizes of 

documents. The x-axes show the sizes of documents with h , which refers to the 

height of a square document. 
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(a) Ground-truth (b) case#1: sigma =0, s=1 (c) case#2: sigma=2, s=1 (d) The msLDA clustering result 

Fig. 7. Qualitative comparison of the multi-scale LDA clustering results with its two special cases. (a) Ground truth. (b) Case #1. (c) Case #2. (d) The msLDA. 

 

3) Sigma of Document Selection 

Given a site t  in an image lattice, the sigma  , of the 

normal distribution ( | )
t

p d  states the prior probabilistic 

distribution of documents, which is the probability that they 

might be used for sampling a latent topic label for site t . As 

shown in Fig. 6, there is not a significant variation in the trend 

of the model performance with the increase of the sigma . In 

the following experiments, we let  equal to 2. 

4) Special Cases of the msLDA 

In this subsection, we analyze two special cases of the 

msLDA for qualitatively and quantitatively revealing the 

characteristics of three complementary components by setting 

the model parameters: (1) case #1 topic model component: 

sigma = 0 and s  = 1; (2) case #2 topic model component 

coupled with document selection: sigma = 2 and s  = 1. In case 

#1, there is only one grayscale value on an image site t  

because s = 1, and its topic label is always sampled from the 

same document because of sigma = 0. Therefore, only the topic 

model component in the msLDA still works. In contrast, in case 

#2, although there is still one scale, all of the documents 

covering site t  might be selected to sample a topic label for the 

word on site t .  

For comparison, the clustering results of the two special 

cases coupled with that of the msLDA are shown in Fig. 7 (b), 

(c) and (d), respectively. As shown in Fig. 7 (b) and (c), there 

are two points worth noting: (1) the geo-object road is 

incorrectly clustered as the same label with almost all the 

instances of building in case #1; (2) part of building is 

successfully discriminated from road in case #2. Meanwhile, by 

comparing Fig. 7 (b), (c) and (d), we find that (1) almost all 

instances of building are correctly discriminated from road by 

the msLDA; and (2) the spatial consistency of cluster labels in 

the msLDA is significantly better than that of the two spatial 

cases.  

As shown in Table I, the quantitative evaluations also 

indicate that the performance improves with the addition of the 

model components from case #1 (topic model) to case #2 (topic 

model + the novel framework with document selection), and 

the msLDA (topic model + the novel framework + multi-scale 

image representation). 

C. Performance Evaluation over Satellite Images of Multiple 

Geographic Scenes 

In this subsection, we compare the performance of the 

msLDA with that of K-means, ISOdata, the LDA (the special 

case #1 mentioned in the subsection IV-B; for simplicity, it is 

termed as the LDA) and the LDA+MRF [31] for three typical 

geographic scenes. We first analyze the spatial consistency of 

the clustering results for the suburban image when the topic 

labels are assumed to be an MRF. Then, the performance of the 

msLDA is compared with other clustering algorithms for both 

the urban and rural images.  

1) Suburban Image 

Verbeek and Triggs (2007) introduced an MRF for topic 

labels to enhance the spatial consistency [31]. As shown in Fig. 

1, the proposed application framework is significantly different 

from that where the topic model is employed to analyze natural 

images. To reveal the different characteristics of the msLDA 

from existing work, we borrowed the idea of [31] to assume an 

MRF over topic labels, which is termed the MRF+LDA. The 

algorithm includes two steps: (1) the topic model is learned as 

the LDA and (2) the clustering result is obtained by 

maximizing the energy function 

    
d sE E E  ,                              (12) 

where   is a weight for balancing the a data energy 
dE  and a 

smoothness energy 
sE  [39].  

The ground truth of suburban image and clustering results 

are shown in Fig. 8, where a series of clustering results are 

obtained for the LDA+MRF by changing the values of the  

smoothing parameter  . On one hand, a small value of  (e.g. 

 = 1) does not exert a significant smoothing effect on the 

clustering result (as shown in Fig. 8 (f)). On the other hand, a 

large value of   (e.g.  = 10) yields an over-smoothed result.  

TABLE I 

 THE EVALUATION OF THE OVERALL ENTROPIES AND KAPPA COEFFICIENT OF 

DIFFERENT MODELS 

Clustering models The overall entropy The Kappa coefficient   

Case #1: sigma=0, s=1 1.07335 0.524058   

Case #2: sigma=2, s=1 1.04484 0.569025   

msLDA: sigma=2, s=7 0.98567 0.628443   
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(a) Ground-truth (b) The msLDA 

  
(c) K-means (d) ISOdata 

  
(e) The LDA (f) The LDA+MRF with  =1 

  
(g) The LDA+MRF with  =3 (h) The LDA+MRF with  =5 

  
(i) The LDA+MRF with  =7 (j) The LDA+MRF with  =10 

 

Fig. 8. Clustering results for a QUICKBIRD image of a suburban area. (a) Ground 

truth. (b) The msLDA. (c) K-means. (d) ISOdata. (e) The LDA. (f) - (j) are 

clustering results of the LDA+MRF with  =1,  =3,  =5,  =7 and  =10, 

respectively. 

As illustrated in Fig. 8 (j), the large-scale field area located at 

the upper left corner of the image is smoothed appropriately. 

However, the modality of road in fine scale located in 

approximately the upper right corner is blurred with the 

neighboring building.  The underlying reason is that the spatial 

smoothing of cluster labels is realized by the individual 

parameter  , which imposes an equal smoothing penalty 

towards all the geo-objects in an image. Unlike the MRF 

scheme, through a multi-scale image representation coupled 

with scale selection, the msLDA could realize a self-adaptive 

smoothing effect on clustering results according to different 

geo-object types at different scales. As shown in Fig. 8, the field 

in a homogeneous area is heavily smoothed, and the edge of 

road remains well preserved due to a small amount of 

smoothing. In addition, irrespective of the value of , the error 

of incorrectly clustering the geo-object road into the same label 

as part of building cannot be corrected by assuming an MRF 

over labels. However, as shown in Fig. 8 (b), the mistake in the 

msLDA can be corrected by combining the topic model with a 

multi-scale image representation in the framework embedded 

with both document and scale selections. 

From visual inspection, the spatial consistency of cluster 

labels in both the msLDA and the LDA+MRF clustering results 

(especially when  > 3) is obviously better than that of both 

K-means and ISOdata. Furthermore, it can be seen from Fig. 8 

(c) and (d) that in the clustering results of the K-means and 

ISOdata, almost all instances of shadow are incorrectly 

clustered into the same class as water because the grayscale 

values of both shadow and water are almost the same. In 

contrast, they are almost correctly separated into two different  

 
(a) 

 
(b) 

 

Fig. 9. Quantitative comparison of the clustering results for QUICKBIRD image 

of a suburban area. (a) Overall entropy for different methods. (b) The Kappa 

coefficient for different methods. 

 

 

 
         (a)                                                           (b) 

 

Fig. 10. Quantitative comparison of the clustering results for a QUICKBIRD 

image of urban area and an EROS-B image of a rural area. (a) Overall entropy for 

different methods. (b) The Kappa coefficient for different methods 
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(a) Ground-truth (b) The msLDA 

  
(c) K-means (d) ISOdata 

  
(e) The LDA (f) The LDA+MRF with  =3 

 

Fig. 11. Clustering results for a QUICKBIRD image of a urban area. (a) Ground 

truth. (b) The msLDA. (c) K-means. (d) ISOdata. (e) The LDA. (f) The 

LDA+MRF with  =3. 

 

clusters by the topic-related models (e.g., LDA, LDA+MRF, 

msLDA). It is known that the clustering process of both 

K-means and ISOdata are actually conducted through the 

grayscale segmentation because every grayscale scale is treated 

independently. However, a set of neighboring pixels are 

regarded as a document and are modeled in the topic-related 

models. In other words, both grayscale values of the individual 

pixel and the neighboring spatial information have been used 

in the models. 

For quantitative evaluation, on one hand, the msLDA is 

better than the other methods, as shown in Fig. 9 (a), in terms 

of the Kappa coefficient. On the other hand, the msLDA is not 

as good as that in the LDA+MRF (when  =3, 5, 7, 10) in terms 

of the overall entropy, although it is still better than both the 

K-means and ISOdata. As shown in Fig. 9 (b), the larger the 

smoothing parameter, the lower the entropy in the MRF+LDA. 

Even when  =10, the clustering result is obviously 

over-smoothed and not a desirable result. Nevertheless, the 

entropy in this clustering result becomes lower. Therefore, it 

might be necessary to resort to another performance measure.  

  
(a) Ground-truth (b) The msLDA 

  
(c) K-means (d) ISOdata 

  
(e) The LDA (f) The LDA+MRF with  =4 

  

Fig. 12. Clustering results for an EROS-B image of a rural area. (a) Ground truth. 

(b) The msLDA. (c) K-means. (d) ISOdata. (e) The LDA. (f) The LDA+MRF with  

 =4. 

 

This is one of reasons for using the Kappa coefficient to reflect 

a desirable clustering result. Generally speaking, the msLDA 

compares favorably with other methods, particularly in the 

aspects of classification accuracy and adaptive smoothing 

effect. 

2) Both Urban and Rural Images 

It is important to emphasize that in this experiment only the 

best result of the LDA+MRF with optimal smoothing 

parameter   is selected for comparison. As for the urban and 

rural images, the value of   is equal to 3 and 4, respectively. 

As shown in Fig. 10, the msLDA outperforms other 

clustering methods in terms of both overall entropy and Kappa 

coefficient. In addition, as shown in Figs. 11 and 12, although 

there are different geographic objects in the urban and rural 

scenes, the msLDA still distinguishes shadow from water very 

well; and the msLDA is significantly better than the K-means 

and ISOdata in terms of the spatial consistency of the cluster 

labels, and it is also better than the MRF+LDA. 
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V. CONCLUSIONS 

In this paper, a multi-scale latent Dirichlet allocation model 

is proposed to address the problem of semantic clustering of 

geo-objects in VHR satellite panchromatic images. Our major 

contribution is to propose an automatic framework that 

combines a probabilistic topic model with a multi-scale image 

representation of a panchromatic satellite image. However, it is 

also possible to apply the proposed model to multi-spectral 

satellite images. For example, one might treat each band in a 

multi-spectral satellite image as a panchromatic image and add 

another constraint in which multiple spectral values on the 

same site always correspond to the same topic label. In the 

future, we will extend the proposed model to analyze 

multi-spectral images in a supervised learning framework. 

 

APPENDIX INFERENCE USING GIBBS SAMPLING 

In this appendix, we derive the inference procedure in Gibbs 

sampling.  

A. Updating 
t
d  by Approximating  ( | , , , )

t t
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where
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. Following the derivation 

in [40],
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. In this paper, we 

assume the prior of document is a Gaussian distribution. 

Therefore, ( | , , , )
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where ( , )
t t
x y  and ( , )t td dx y  are coordinates of t-th pixel and 

the center pixel of the
t
d  sub-image, respectively. 

B. Updating 
t
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