
On-line Fingerprint Veri�cationAnil Jain and Lin HongPattern Recognition and Image Processing LaboratoryDepartment of Computer ScienceMichigan State UniversityEast Lansing, MI 48824fjain,hongling@cps.msu.eduRuud BolleExploratory Computer Vision GroupIBM T. J. Watson Research CenterYorktown Heights, NY 10598bolle@watson.ibm.comNovember 26, 1996AbstractFingerprint veri�cation is one of the most reliable personal identi�cation methods.However, manual �ngerprint veri�cation is so tedious, time-consuming, and expen-sive that it is incapable of meeting today's increasing performance requirements. Anautomatic �ngerprint identi�cation system (AFIS) is widely needed. It plays a very im-portant role in forensic and civilian applications such as criminal identi�cation, accesscontrol, and ATM card veri�cation. This paper describes the design and implementationof an on-line �ngerprint veri�cation system which operates in two stages: (i) minutiaextraction and (ii) minutia matching. An improved version of the minutia extractionalgorithm proposed by Ratha et al., which is much faster and more reliable, is imple-mented for extracting features from an input �ngerprint image captured with an on-line1



inkless scanner. For minutia matching, an alignment-based elastic matching algorithmhas been developed. This algorithm is capable of �nding the correspondences betweenminutiae in the input image and the stored template without resorting to exhaustivesearch and has the ability of adaptively compensating for the nonlinear deformationsand inexact pose transformations between �ngerprints. The system has been tested ontwo sets of �ngerprint images captured with inkless scanners. The veri�cation accuracyis found to be acceptable. Typically, a complete �ngerprint veri�cation procedure takes,on an average, about 8 seconds on a SPARC 20 workstation. These experimental re-sults show that our system meets the response time requirements of on-line veri�cationwith high accuracy.Keywords: biometrics, �ngerprints, matching, veri�cation, minutia, orientation �eld,ridge extraction.
1 IntroductionFingerprints are graphical 
ow-like ridges present on human �ngers. They have been widelyused in personal identi�cation for several centuries [11]. The validity of their use has beenwell established. Inherently, using current technology �ngerprint identi�cation is much morereliable than other kinds of popular personal identi�cation methods based on signature, face,and speech [11, 3, 15]. Although �ngerprint veri�cation is usually associated with criminalidenti�cation and police work, it has now become more popular in civilian applications suchas access control, �nancial security and veri�cation of �rearm purchasers and driver licenseapplicants [11, 3]. Usually, �ngerprint veri�cation is performed manually by professional2



�ngerprint experts. However, manual �ngerprint veri�cation is so tedious, time-consuming,and expensive that it does not meet the performance requirements of the new applications.As a result, automatic �ngerprint identi�cation systems (AFIS) are in great demand [11].Although signi�cant progress has been made in designing automatic �ngerprint identi�cationsystems over the past thirty years, a number of design factors (lack of reliable minutia ex-traction algorithms, di�culty in quantitatively de�ning a reliable match between �ngerprintimages, �ngerprint classi�cation, etc.) create bottlenecks in achieving the desired perfor-mance [11].

(a) (b)Figure 1: Inkless �ngerprint scanners: (a) manufactured by Identix; (b) manufactured byDigital Biometrics.An automatic �ngerprint identi�cation system is concerned with some or all of the fol-lowing issues:� Fingerprint acquisition. How to acquire �ngerprint images and how to represent themin a proper format?� Fingerprint veri�cation. To determine whether two �ngerprints are from the same�nger.� Fingerprint identi�cation. To search for a query �ngerprint in a database.3



� Fingerprint classi�cation. To assign a given �ngerprint to one of the pre-speci�edcategories according to its geometric appearance.A number of methods are used to acquire �ngerprints. Among them, the inked impressionmethod remains the most popular. It has been essentially a standard technique for �ngerprintacquisition for more than a hundred years [3]. The �rst step in capturing an inked impressionof a �ngerprint is to place a few dabs of ink on a slab and rolling it out smoothly with a rolleruntil the slab is covered with a thin, even layer of ink. Then the �nger is rolled from one side ofthe nail to the other side over the inked slab which inks the ridge patterns on top of the �ngercompletely. After that, the �nger is rolled on a piece of paper so that the inked impressionof the ridge pattern of the �nger appears on the paper. Obviously, this method is time-consuming and unsuitable for an on-line �ngerprint veri�cation system. Inkless �ngerprintscanners are now available which are capable of directly acquiring �ngerprints in digitalform. This method eliminates the intermediate digitization process of inked �ngerprintimpressions and makes it possible to build an on-line system. Figure 1 shows the two inkless�ngerprint scanners used in our veri�cation system. Fingerprint images captured with theinked impression method and the inkless impression method are shown in Figure 2.The goal of �ngerprint classi�cation is to assign a given �ngerprint to a speci�c categoryaccording to its geometric properties (Figure 3 shows a coarse-level �ngerprint classi�ca-tion). The main purpose of �ngerprint classi�cation is to facilitate the management of large�ngerprint databases and to speedup the process of �ngerprint matching. Generally, manual�ngerprint classi�cation is performed within a speci�c framework such as the well-knownHenry system [3]. Di�erent frameworks use di�erent sets of properties. However, no matter4



(a) (b)Figure 2: Comparison of �ngerprint images captured with (a) inked impression method (fromNIST database) and (b) inkless impression method (with a scanner manufactured by DigitalBiometrics).what type of framework is used, the classi�cation is based on ridge patterns, local ridge ori-entations and minutiae. Therefore, if these properties can be described quantitatively andextracted automatically from a �ngerprint image then �ngerprint classi�cation will becomean easier task. During the past several years, a number of researchers have attempted tosolve the �ngerprint classi�cation problem [11, 3, 9, 10, 26]. Unfortunately, their e�orts havenot resulted in the desired accuracy. Algorithms reported in the literature classify �nger-prints into 5 or 6 categories with about 90% classi�cation accuracy on a medium size testset (several thousand images) [9, 10, 26]. However, to achieve a higher recognition accuracywith a large number of categories still remains a di�cult problem.Fingerprint veri�cation determines whether two �ngerprints are from the same �ngeror not. It is widely believed that if two �ngerprints are from the same source, then theirlocal ridge structures (minutia details) match each other topologically [11, 3]. Eighteendi�erent types of local ridge descriptions have been identi�ed [11]. The two most prominentstructures are ridge endings and ridge bifurcations which are usually called minutiae. Figure 45



(a) (b) (c)
(d) (e) (f)Figure 3: A coarse-level �ngerprint classi�cation of six categories: (a) arch, (b) tented arch,(c) right loop, (d) left loop, (e) whorl, and (f) twin loop.

Ridge BifurcationRidge EndingFigure 4: Ridge ending and ridge bifurcation.shows examples of ridge endings and ridge bifurcations. Based on this observation and byrepresenting the minutiae as a point pattern, an automatic �ngerprint veri�cation problemmay be reduced to a point pattern matching (minutia matching) problem. In the idealcase, if (i) the correspondences between the template and input �ngerprint are known, (ii)there are no deformations such as translation, rotation and nonlinear deformations, etc.between them, and (iii) each minutia present in a �ngerprint image is exactly localized,then �ngerprint veri�cation consists of the trivial task of counting the number of spatially6



Figure 5: Two di�erent �ngerprint images from the same �nger. In order to know thecorrespondence between the minutiae of these two �ngerprint images, all the minutiae mustbe precisely localized and the deformations must be recovered.matching pairs between the two images. However, in practice (i) no correspondence isknown beforehand, (ii) there are relative translation, rotation and nonlinear deformationsbetween template minutiae and input minutiae, (iii) spurious minutiae are present in bothtemplates and inputs, and (iv) some minutiae are missed. Therefore, in order for a �ngerprintveri�cation algorithm to operate under such circumstances, it is necessary to automaticallyobtain minutia correspondences, to recover deformations, and to detect spurious minutiaefrom �ngerprint images. Unfortunately, this goal is quite di�cult to achieve. Figure 5illustrates the di�culty with an example of two �ngerprint images of the same �nger.Fingerprint identi�cation refers to the process of matching a query �ngerprint against agiven �ngerprint database to establish the identity of an individual. Its goal is to quicklydetermine whether a query �ngerprint is present in the database and to retrieve those whichare most similar to the query from the database. The critical issues here are both retrievalspeed and accuracy. In fact, this problem relates to a number of techniques studied underthe auspices of computer vision, pattern recognition, database, and parallel processing. Op-erational �ngerprint retrieval systems are being used by various law enforcement agencies[11]. 7



In this paper, we will introduce an on-line �ngerprint veri�cation system whose purposeis to capture �ngerprint images using an inkless scanner and to compare them with thosestored in the database in \real time". Such a system has great utility in a variety of personalidenti�cation and access control applications. The overall block diagram of our system isshown in Figure 6. It operates as follows: (i) o�-line phase: several impressions (dependingon the speci�cation of the system) of the �ngerprint of a person to be veri�ed are �rstcaptured and processed by a feature extraction module; the extracted features are stored astemplates in a database for later use; (ii) on-line phase: the individual to be veri�ed giveshis/her identity and places his/her �nger on the inkless �ngerprint scanner, minutia pointsare extracted from the captured �ngerprint image; these minutiae are then fed to a matchingmodule, which matches them against his/her own templates in the database.
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Figure 6: Overview of our on-line �ngerprint veri�cation system.The following two modules are the main components of our on-line �ngerprint veri�cationsystem:� Minutiae extraction. Minutiae are ridge endings or ridge bifurcations. Generally, ifa perfect segmentation can be obtained, then minutia extraction is just a trivial taskof extracting singular points in a thinned ridge map. However, in practice, it is notalways possible to obtain a perfect ridge map. Some global heuristics need to be used8



to overcome this limitation.� Minutia matching. Minutia matching, because of deformations in sensed �ngerprints,is an elastic matching of point patterns without knowing their correspondences before-hand. Generally, �nding the best match between two point patterns is intractable evenif minutiae are exactly located and no deformations exist between these two point pat-terns. The existence of deformations makes the minutia matching much more di�cult.For segmentation and minutia extraction, a modi�ed version of the minutia extractionalgorithm proposed in [18] is implemented which is much faster and more reliable for minutiaextraction. We propose a hierarchical approach to obtain a smooth orientation �eld estimateof the input �ngerprint image, which greatly improves the performance of minutia extraction.For minutia matching, we propose an alignment-based elastic matching algorithm. Thisalgorithm is capable of �nding the correspondences between minutiae without resorting to anexhaustive search and has the ability to adaptively compensate for the nonlinear deformationsand inexact pose transformations between di�erent �ngerprints. Experimental results showthat our system achieves excellent performance in a real environment.In the following sections we will describe in detail our on-line �ngerprint veri�cationsystem. Section 2 mainly discusses the �ngerprint feature extraction module. Section 3presents our minutia matching algorithm. Experimental results on two �ngerprint databasescaptured with two di�erent inkless scanners are described in section 4. Section 5 containsthe summary and discussion.
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2 Minutia ExtractionIt is widely known that a professional �ngerprint examiner relies on minute details of ridgestructures to make �ngerprint identi�cations [11, 3]. The topological structure of the minu-tiae of a �ngerprint is unique and invariant with aging and impression deformations [11, 3].This implies that �ngerprint identi�cation can be based on the topological structural match-ing of these minutiae. This reduces the complex �ngerprint veri�cation to minutia matchingprocess which, in fact, is a sort of point pattern matching with the capability of tolerating,to some restricted extent, deformations of the input point patterns. Therefore, the �rst stagein an automatic �ngerprint veri�cation procedure is to extract minutiae from �ngerprints.In our on-line �ngerprint veri�cation system, we have implemented a minutia extractionalgorithm which is an improved version of the method proposed by Ratha et al. [18]. Itsoverall 
owchart is depicted in Figure 7. We assume that the resolution of input �ngerprintimages is 500 dpi.
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2.1 Estimation of Orientation FieldA number of methods have been proposed to estimate the orientation �eld of 
ow-like pat-terns [17]. In our system, a new hierarchical implementation of Rao's algorithm [17] is used.10



Rao's algorithm consists of the following main steps:1. Divide the input �ngerprint image into blocks of size W �W .2. Compute the gradients Gx and Gy at each pixel in each block.3. Estimate the local orientation of each block using the following formula:�o = 12tan�1( PWi=1PWj=1 2Gx(i; j)Gy(i; j)PWi=1PWj=1(G2x(i; j)�G2y(i; j))); (1)where W is the size of the block, and Gx and Gy are the gradient magnitudes in x andy directions, respectively.The orientation �eld of a good quality �ngerprint image can be reasonably estimated withthis algorithm. However, the presence of high-curvature ridges, noise, smudges, and breaksin ridges leads to a poor estimate of the local orientation �eld. A post-processing procedureneeds to be applied to overcome this limitation. In our system, the following iterative stepsare added to improve an inconsistent orientation �eld:� Compute the consistency level of the orientation �eld in the local neighborhood of ablock (i; j) with the following formula:Co = 1Ns X(i0;j0)2D j�(i0; j 0)� �(i; j)j2; (2)j�0 � �j = 8>>><>>>: d if (d = (�0 � � + 360) mod 360) < 180;d� 180 otherwise; (3)where D represents the local neighborhood around the block (i; j) (in our system, thesize of D is 5 � 5); N is the number of blocks within D; �(i0; j 0) and �(i; j) are localridge orientations at blocks (i0; j 0) and (i; j), respectively.11



� If the consistency level (Eq.(2)) is above a certain threshold Tc, then the local orien-tations around this region are re-estimated at a lower resolution level until it is belowa certain level. With this post-smoothing scheme, a fairly smooth orientation �eldestimate can be obtained. Figure 8 shows the orientation �eld of a �ngerprint imageestimated with our new algorithm.

(a) Rao's method (b) Hierarchical methodFigure 8: Comparison of orientation �elds by Rao's method and the proposed hierarchicalmethod; the block size (W �W ) is 16� 16 and the size of D is 5� 5.After the orientation �eld of an input �ngerprint image is estimated, a segmentationalgorithm which is based on the local variance of grey level is used to locate the region ofinterest from the �ngerprint image. In our segmentation algorithm, we assume that there isonly one �ngerprint present in the image.2.2 Ridge DetectionAfter the orientation �eld of the input image is estimated and the �ngerprint region islocated, the next step of our minutia exaction algorithm is ridge detection. The most salientproperty corresponding to ridges in a �ngerprint image is the fact that grey level valueson ridges attain their local maxima along the normal directions of local ridges. Therefore,12



pixels can be identi�ed to be ridge pixels based on this property. In our minutia detectionalgorithm, a �ngerprint image is �rst convolved with the following two masks, ht(x; y; u; v)and hb(x; y; u; v), of size L � H (11 � 7 in our system), respectively. These two masks arecapable of adaptively accentuating the local maximum grey level values along the normaldirection of the local ridge direction:
ht(x; y; u; v) = 8>>>>>>>><>>>>>>>>: � 1p2��e� u�2 ; if u = (v tan(�(x; y))� H2 cos(�(x;y))); v 2 
1p2��e� u�2 ; if u = (v tan(�(x; y))); v 2 
0; otherwise, (4)
hb(x; y; u; v) = 8>>>>>>>><>>>>>>>>: � 1p2��e� u�2 ; if u = (v tan(�(x; y)) + H2 cos(�(x;y))); v 2 
1p2��e� u�2 ; if u = (v tan(�(x; y))); v 2 
0; otherwise, (5)


 = "� �����L sin(�(x; y))2 ����� ; �����L sin(�(x; y))2 �����# ; (6)where �(x; y) represents the local ridge direction at pixel (x; y). If both the grey level valuesat pixel (x; y) of the convolved images are larger than a certain threshold Tridge, then pixel(x; y) is labeled as a ridge. By adapting the mask width to the width of the local ridge, thisalgorithm can e�ciently locate the ridges in a �ngerprint image.However, due to the presence of noise, breaks, and smudges, etc. in the input image, theresulting binary ridge map often contains holes and speckles. When ridge skeletons are usedfor the detection of minutiae, the presence of such holes and speckles will severely handicapthe performance of our minutia extraction algorithm because these holes and speckles maydrastically change the skeleton of the ridges. Therefore, a hole and speckle removal procedureneeds to be applied before ridge thinning. 13



After the above steps are performed on an input �ngerprint image, a relatively smoothridge map of the �ngerprint is obtained. The next step of our minutia detection algorithmis to thin the ridge map and locate the minutiae.2.3 Minutia DetectionMinutia detection is a trivial task when an ideal thinned ridge map is obtained. Without aloss of generality, we assume that if a pixel is on a thinned ridge (8-connected), then it hasa value 1, and 0 otherwise. Let (x; y) denote a pixel on a thinned ridge, and N0; N1; :::; N7denote its 8 neighbors. A pixel (x; y) is a ridge ending if (P8i=0Ni) = 1 and a ridge bifurcationif (P8i=0Ni) > 2. However, the presence of undesired spikes and breaks present in a thinnedridge map may lead to many spurious minutiae being detected. Therefore, before the minutiadetection, a smoothing procedure is applied to remove spikes and to join broken ridges. Ourridge smoothing algorithm uses the following heuristics:� If a branch in a ridge map is roughly orthogonal to the local ridge directions and itslength is less than a speci�ed threshold Tb, then it will be removed.� If a break in a ridge is short enough and no other ridges pass through it, then it willbe connected.Although the above heuristics do delete a large percentage of spurious minutiae, many spu-rious minutiae still survive. The reason is that the above processing relies on local ridgeinformation. If this information itself is unreliable, then the above heuristics have no wayof di�erentiating false minutiae from true minutiae. Therefore, a re�nement which is based14



on structural information is necessary. Our re�nement algorithm eliminates the spuriousminutiae based on the following rules:� If several minutiae form a cluster in a small region, then remove all of them except forthe one nearest to the cluster center.� If two minutiae are located close enough, facing each other, but no ridges lie betweenthem, then remove both of them.After the above re�nement procedure is performed, the surviving minutiae are treated as trueminutiae. Although the above heuristics can not ensure a perfect location of each minutia,they are able to delete several spurious minutiae. For each surviving minutia, the followingparameters are recorded: (i) x-coordinate, (ii) y-coordinate, (iii) orientation which is de�nedas the local ridge orientation of the associated ridge, and (iv) the associated ridge. Therecorded ridges are represented as one-dimensional discrete signals which are normalizedby the average inter-ridge distance. These recorded ridges are used for alignment in theminutia matching phase. Figure 9 shows the results of our minutia extraction algorithm ona �ngerprint image captured with an inkless scanner.
3 Minutia MatchingGenerally, an automatic �ngerprint veri�cation/identi�cation is achieved with point patternmatching (minutiae matching) instead of a pixel-wise matching or a ridge pattern matchingof �ngerprint images. A number of point pattern matching algorithms have been proposedin the literature [23, 1, 21, 16]. Because a general point matching problem is essentially15



(a) input image (b) orientation �eld
(c) �ngerprint region (d) ridge map
(e) thinned ridge map (f) extracted minutiaeFigure 9: Results of our minutia extraction algorithm on a �ngerprint image (512 � 512)captured with an inkless scanner; (a) input image; (b) orientation �eld superimposed on theinput image; (c) �ngerprint region; (d) extracted ridges; (e) thinned ridge map; (f) extractedminutiae and their orientations superimposed on the input image.
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intractable, features associated with each point and their spatial properties such as therelative distances between points are often used in these algorithms to reduce the exponentialnumber of search paths.The relaxation approach [16] iteratively adjusts the con�dence level of each correspondingpair based on its consistency with other pairs until a certain criterion is satis�ed. Althougha number of modi�ed versions of this algorithm have been proposed to reduce the matchingcomplexity [23], these algorithms are inherently slow because of their iterative nature.The Hough transform-based approach proposed by Stockman et al. [22] converts pointpattern matching to a problem of detecting the highest peak in the Hough space of trans-formation parameters. It discretizes the transformation parameter space and accumulatesevidence in the discretized space by deriving transformation parameters that relate two pointpatterns using a substructure or feature matching technique. Karu and Jain [8] proposeda hierarchical Hough transform-based registration algorithm which greatly reduced the sizeof accumulator array by a multi-resolution approach. However, if the number of minutiapoint is less than 30, then it is very di�cult to accumulate enough evidence in the Houghtransform space for a reliable match.Another approach to point matching is based on energy minimization. This approachde�nes a cost function based on an initial set of possible correspondences and uses an appro-priate optimization algorithm such as genetic algorithm [1] and simulated annealing [21] to�nd a possible suboptimal match. These methods tend to be very slow and are unsuitablefor an on-line �ngerprint veri�cation system.In our system, an alignment-based matching algorithm is implemented. Recognition byalignment has received a great deal of attention during the past few years [12], because17



it is simple in theory, e�cient in discrimination, and fast in speed. Our alignment-basedmatching algorithm decomposes the minutia matching into two stages: (i) Alignment stage,where transformations such as translation, rotation and scaling between an input and atemplate in the database are estimated and the input minutiae are aligned with the templateminutiae according to the estimated parameters; and (ii) Matching stage, where both theinput minutiae and the template minutiae are converted to polygons in the polar coordinatesystem and an elastic string matching algorithm is used to match the resulting polygons.3.1 Alignment of Point PatternsIdeally, two sets of planar point patterns can be aligned completely by two correspondingpoint pairs. A true alignment between two point patterns can be obtained by testing allpossible corresponding point pairs and selecting the optimal one. However, due to thepresence of noise and deformations, the input minutiae cannot always be aligned exactlywith respect to those of the templates. In order to accurately recover pose transformationsbetween two point patterns, a relatively large number of corresponding point pairs needto be used. This leads to a prohibitively large number of possible correspondences to betested. Therefore, an alignment by corresponding point pairs is not practical even though itis feasible.It is well known that corresponding curve segments are capable of aligning two pointpatterns with a high accuracy in the presence of noise and deformations. Each minutia ina �ngerprint is associated with a ridge. It is clear that a true alignment can be achievedby aligning corresponding ridges (see Figure 10). During the minutiae detection stage,18
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Figure 10: Alignment of the input ridge and the template ridge.when a minutia is extracted and recorded, the ridge on which it resides is also recorded.This ridge is represented as a planar curve with its origin coincident with the minutia andits x-coordinate being in the same direction as the direction of the minutia. Also, thisplanar curve is normalized with the average inter-ridge distance. By matching these ridges,the relative pose transformation between the input �ngerprint and the template can beaccurately estimated. To be speci�c, let Rd and RD denote the sets of ridges associated withthe minutiae in input image and template, respectively. Our alignment algorithm can bedescribed in terms of the following steps:1. For each ridge d 2 Rd, represent it as an one-dimensional discrete signal and match itagainst each ridge, D 2 RD according to the following formula:S = PLi=0 diDiqPLi=0 d2iD2i ; (7)where L is the minimal length of the two ridges and di and Di represent the distancesfrom point i on the ridges d and D to the x-axis, respectively. The sampling interval ona ridge is set to the average inter-ridge distance. If the matching score S (0 � S � 1)is larger than a certain threshold Tr, then go to step 2, otherwise continue to matchthe next pair of ridges. 19



2. Estimate the pose transformation between the two ridges (Figure 10). Generally, aleast-square method can be used to estimate the pose transformation. However, inour system, we observe that the following method is capable of achieving the sameaccuracy with less computation. The translation vector (�x;�y)T between the twocorresponding ridges is computed by0BBB@ �x�y 1CCCA = 0BBB@ xdyd 1CCCA� 0BBB@ xDyD 1CCCA ; (8)where (xd; yd)T and (xD; yD)T are the x and y coordinates of the two minutiae, whichare called reference minutiae, associated with the ridges d and D, respectively. Therotation angle �� between the two ridges is computed by�� = 1L LXi=0(
i � �i); (9)where L is the minimal length of the two ridges d and D; 
i and �i are radial anglesof the ith point on the ridge with respect to the reference minutia associated with thetwo ridges d and D, respectively. The scaling factor between the input and templateimages is assumed to be 1. This is reasonable, because �ngerprint images are capturedwith the same device in both the o�-line processing phase and the on-line veri�cationphase.3. Denote the minutia (xd; yd; �d)T , based on which the pose transformation parametersare estimated, as the reference minutia. Translate and rotate all the N input minutiae
20



with respect to this reference minutia, according to the following formula:0BBBBBBBB@ xAiyAi�Ai
1CCCCCCCCA = 0BBBBBBBB@ �x�y��

1CCCCCCCCA+ 0BBBBBBBB@ cos�� sin�� 0sin�� � cos�� 00 0 1
1CCCCCCCCA
0BBBBBBBB@ xi � xdyi � yd�i � �d

1CCCCCCCCA ; (10)where (xi; yi; �i)T , (i = 1; 2; :::; N), represents an input minutia and (xAi ; yAi ; �Ai )T rep-resents the corresponding aligned minutia.3.2 Aligned Point Pattern MatchingIf two identical point patterns are exactly aligned with each other, each pair of correspondingpoints are completely coincident. In such a case, a point pattern matching can be simplyachieved by counting the number of overlapping pairs. However, in practice, such a situationis not encountered. On the one hand, the error in determining and localizing minutia hindersthe alignment algorithm to recover the relative pose transformation exactly, while on theother hand, our alignment scheme described above does not model the nonlinear deformationof �ngerprints which is an inherent property of �ngerprint impressions. With the existenceof such a nonlinear deformation, it is impossible to exactly recover the position of each inputminutia with respect to its corresponding minutia in the template. Therefore, the alignedpoint pattern matching algorithm needs to be elastic which means that it should be capableof tolerating, to some extent, the deformations due to inexact extraction of minutia positionsand nonlinear deformations. Usually, such an elastic matching can be achieved by placinga bounding box around each template minutia, which speci�es all the possible positions ofthe corresponding input minutia with respect to the template minutia, and restricting thecorresponding minutia in the input image to be within this box [18]. This method does21



not provide a satisfactory performance in practice, because local deformations may be smallwhile the accumulated global deformations can be quite large. We have implemented anadaptive elastic matching algorithm with the ability to compensate the minutia localizationerrors and nonlinear deformations.Let P = ((xP1 ; yP1 ; �P1 )T ; :::; (xPM ; yPM ; �PM)T ) denote the set of M minutiae in the templateand Q = ((xQ1 ; yQ1 ; �Q1 )T ; :::; (xQN ; yQN ; �QN)T ) denote the set of N minutiae in the input imagewhich is aligned with the above template with respect to a given reference minutia point.The steps in our elastic point pattern matching algorithm are given below:1. Convert each minutia point to the polar coordinate system with respect to the corre-sponding reference minutia on which the alignment is performed:0BBBBBBBB@ riei�i
1CCCCCCCCA = 0BBBBBBBB@ q(x�i � xr)2 + (y�i � yr)2tan�1( y�i�yrx�i�xr )��i � �r

1CCCCCCCCA ; (11)
where (x�i ; y�i ; ��i )T are the coordinates of a minutia, (xr; yr; �r)T are the coordinatesof the reference minutia, and (ri; ei; �i)T is the representation of the minutia in polarcoordinate system (ri represents the radial distance, ei represents the radial angle and�i represents the orientation of the minutia with respect to the reference minutia).2. Represent the template and the input minutiae in the polar coordinate system assymbolic strings by concatenating each minutia in the increasing order of radial angles:Pp = ((rP1 ; eP1 ; �P1 )T ; :::; (rPM ; ePM ; �PM)T ) (12)Qp = ((rQ1 ; eQ1 ; �Q1 )T ; :::; (rQN ; eQN ; �QN )T ); (13)22



where (rP� , eP� , �P� ) and (rQ� , eQ� , �Q� ) represent the corresponding radius, radial angle,and normalized minutia orientation with respect to the reference minutia, respectively.3. Match the resulting strings Pp and Qp with a dynamic-programming algorithm [4] to�nd the edit distance between Pp and Qp which is described below.4. Use the edit distance between Pp andQp to establish the correspondence of the minutiaebetween Pp and Qp. The matching score, Mpq, is then computed according to thefollowing formula: Mpq = 100NpairmaxfM;Ng ; (14)where Npair is the number of the minutiae which fall in the bounding boxes of templateminutiae. The maximum and minimum values of the matching score are 100 and 1,respectively. The former value indicates a perfect match, while the later value indicatesno match at all.Minutia matching in the polar coordinate has several advantages. We have observed that thenonlinear deformation of �ngerprints has a radial property. In other words, the nonlineardeformation in a �ngerprint impression usually starts from a certain point (region) andnonlinearly radiates outward. Therefore, it is bene�cial to model it in the polar space. Atthe same time, it is much easier to formulate rotation, which constitutes the main part ofthe alignment error between an input image and a template, in the polar space than in theCartesian space. The symbolic string generated by concatenating points in an increasingorder of radial angle in polar coordinate uniquely represents a point pattern. This revealsthat the point pattern matching can be achieved with a string matching algorithm.23



A number of string matching algorithms have been reported in the literature [4]. Here,we are interested in incorporating an elastic criteria into a string matching algorithm. Gen-erally, string matching can be thought of as the maximization/minimization of a certain costfunction such as the edit distance. Intuitively, including an elastic term in the cost functionof a string matching algorithm can achieve a certain amount of error tolerance. Given twostrings Pp and Qp of lengths M and N , respectively, the edit distance, C(M;N), in ouralgorithm is recursively de�ned with the following equations:
C(m;n) = 8>>>>>>>>>>>>><>>>>>>>>>>>>>:

0 if m = 0 or n = 0min8>>>>>>>><>>>>>>>>: C(m� 1; n) + 
C(m;n� 1) + 
C(m� 1; n� 1) + w(m;n)
9>>>>>>>>=>>>>>>>>; 0 < m �M and 0 < n � N; (15)

w(m;n) = 8>>><>>>: � ���rPm � rQn ���+ ��e + 
�� if ���rPm � rQn ��� < �, �e < � and �� < "
 otherwise; (16)
�e = 8>>><>>>: a if (a = (ePm � eQn + 360) mod 360) < 180a� 180 otherwise; (17)
�� = 8>>><>>>: a if (a = (�Pm � �Qn + 360) mod 360) < 180a� 180 otherwise; (18)where �, �, and 
 are the weights associated with each component, respectively; �, � and" specify the bounding box; and 
 is a pre-speci�ed penalty for a mismatch. Such an editdistance, to some extent, captures the elastic property of string matching. It represents acost of changing one polygon to the other. However, this scheme can only tolerate, butnot compensate for, the adverse e�ect on matching produced by the inexact localization of24



minutia and nonlinear deformations. Therefore, an adaptive mechanism is needed. Thisadaptive mechanism should be able to track the local nonlinear deformation and inexactalignment and try to alleviate them during the minimization process. However, we do notexpect that this adaptive mechanism can handle the \order 
ip" of minutiae, which, to someextent, can be solved by an exhaustive re-ordering and matching within a local angularwindow.In our matching algorithm, the adaptation is achieved by adjusting the bounding box(Figure 11) when an inexact match is found during the matching process. It can be repre-sented as follows:
w0(m;n) = 8>>>>>>>>>>>>><>>>>>>>>>>>>>: � ���rPm � rQn ���+ ��e+ 
�� if8>>>>>>>><>>>>>>>>: �l(m;n) < (rPm � rQn ) < �h(m;n)�l(m;n)) < �e < �h(m;n)�� < "
 otherwise; (19)
0BBB@ �ra�ea 1CCCA = 8>>>>>>>>>>>>><>>>>>>>>>>>>>:

0BBB@ rPm � rQn�e 1CCCA if8>>>>>>>><>>>>>>>>: �l(m;n) < (rPm � rQn ) < �h(m;n)�l(m;n)) < �e < �h(m;n)�� < "0 otherwise; (20)
�l(m+ 1; n+ 1) = �l(m;n) + ��ra; (21)�h(m+ 1; n+ 1) = �h(m;n) + ��ra; (22)�l(m+ 1; n+ 1) = �l(m;n) + ��ea; (23)�h(m+ 1; n+ 1) = �h(m;n) + ��ea; (24)where w0(m;n) represents the penalty for matching a pair of minutiae (rPm; ePm; �Pm)T and25
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Figure 11: Bounding box and its adjustment.(rQn ; eQn ; �Qn )T , �l(m;n), �h(m;n), �l(m;n), and �h(m;n) specify the adaptive bounding box inthe polar coordinate system (radius and radial angle); and � is the learning rate. This elasticstring matching algorithm has a number of parameters which are critical to its performance.We have empirically determined the values of these parameters as follows: �l(0; 0) = �8;�h(0; 0) = +8; �l(0; 0) = �7:5; �h(0; 0) = +7:5; " = 30; � = 1:0; � = 2:0; 
 = 0:1;
 = 200(�+ � + 
); � = 0.5. The values of �l(0; 0), �h(0; 0), �l(0; 0), and �h(0; 0) depend onthe resolution of �ngerprint images. Figure 12 shows the results of applying the matchingalgorithm to an input minutia set and a template.
4 Experimental ResultsWe have tested our on-line �ngerprint veri�cation system on two sets of �ngerprint imagescaptured with two di�erent inkless �ngerprint scanners. Set 1 contains 10 images per �ngerfrom 18 individuals for a total of 180 �ngerprint images, which were captured with a scannermanufactured by Identix. The size of these images is 380�380. Set 2 contains 10 images per26



(a) (b)
(c) (d)Figure 12: Results of applying the matching algorithm to an input minutia set and a tem-plate; (a) input minutia set; (b) template minutia set; (c) alignment result based on theminutiae marked with green circles; (d) matching result where template minutiae and theircorrespondences are connected by green lines.�nger from 61 individuals for a total of 610 �ngerprint images, which were captured with ascanner manufactured by Digital Biometrics. The size of these images is 640� 480. Whenthese �ngerprint images were captured, no restrictions on the position and orientation of�ngers were imposed. The captured �ngerprint images vary in quality. Figures 13 and 14show some of the �ngerprint images in our database. Approximately 90% of the �ngerprintimages in our database are of reasonable quality similar to those shown in Figures 13 and 14,while about 10% of the �ngerprint images in our database are not of good quality (Figure 15),which are mainly due to large creases and smudges in ridges and dryness of the impressed�nger. First, we report some initial results on �ngerprint matching, followed by �ngerprintveri�cation. The reasons why we did not use NIST-4 �ngerprint database [25] to test theperformance of our system are as follows: (i) we concentrate on live-scan veri�cation, and27



(ii) NIST-4 �ngerprint database is a very di�cult �ngerprint database which contains alarge number of �ngerprint images of poor quality and no result has been reported fromother on-line veri�cation systems for comparison.
Figure 13: Fingerprint images captured with a scanner manufactured by Identix; the size ofthese images is 380� 380; all the three images are from the same individual's �nger.

Figure 14: Fingerprint images captured with a scanner manufactured by Digital Biometrics;the size of these images is 640 � 480; all the three images are from the same individual's�nger.

Figure 15: Fingerprint images of poor quality.
28
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(b) Digital BiometricsFigure 16: Distributions of correct and incorrect matching scores; vertical axis representsdistribution of matching scores in percentage; (a) distribution of matching scores on test set1 (180 images); (b) distribution of matching scores on test set 2 (610 images).4.1 MatchingEach �ngerprint in the test set was matched with the other �ngerprints in the set. Amatching was labeled correct if the matched �ngerprint was among the 9 other �ngerprintsof the same individual, and incorrect otherwise. A total of 32,220 (180 � 179) matchingshave been performed on test set 1 and 371,490 (610 � 609) matchings on test set 2. Thedistributions of correct and incorrect matching scores are shown in Figure 16. It can beseen from this �gure that there exist two peaks in the distribution of matching scores. Onepronounced peak corresponds to the incorrect matching scores which is located at a valuearound 10, and the other peak which resides at a value of 40 is associated with the correctmatching scores. This indicates that our algorithm is capable of di�erentiating �ngerprintsat a high correct rate by setting an appropriate value of the threshold. Table 1 shows theveri�cation rates and reject rates with di�erent threshold values. The reject rate is de�nedas the percentage of correct �ngerprints with their matching scores below the thresholdvalue. As we have observed, both the incorrect matches and the high reject rates are due29



to �ngerprint images with poor quality such as those shown in Figure 15. We can improvethese matching results by ensuring that the database does not contain such poor quality�ngerprint images.Threshold Veri�cation RejectValue Rate Rate20 99.839% 11.23%22 99.947% 13.33%24 99.984% 16.48%26 99.994% 20.49%28 99.996% 25.19%30 100% 27.72%(a)
Threshold Veri�cation RejectValue Rate Rate20 99.426% 11.23%22 99.863% 14.55%24 99.899% 16.78%26 99.969% 20.20%28 99.989% 23.15%30 99.999% 27.45%(b)Table 1: The veri�cation rates and reject rates on test sets with di�erent threshold values;(a) using Identix system (180 images); (b) using Digital Biometrics system (610 images).

4.2 Veri�cationIn on-line veri�cation, a user indicates his/her identity. Therefore, the system matchesthe input �ngerprint image only to his/her stored templates. To determine the veri�cationaccuracy of our system, we used each one of our database images as an input �ngerprintwhich needs to be veri�ed. An input �ngerprint image was matched against all the 9 otherimages of the same �nger. If more than one half of the 9 matching scores exceeded thethreshold value of 25, then the input �ngerprint image is said to be from the same �nger asthe templates and a valid veri�cation is established. With this scheme, a 100% veri�cationrate can be achieved with a reject rate around 16% on both test sets. Again, this rejectrate can be reduced by preprocessing the database to remove the stored templates of poorquality. This demonstrates that, in practice, using a k-nearest neighbor type of matching30



is adequate for a successful veri�cation. Table 2 shows the matching rate which is de�nedas the percentage of the correct �ngerprints (of the same �nger) present among the best n(n = 1; :::9) matches.For an on-line �ngerprint veri�cation system to be acceptable in practice, its responsetime needs to be within a few seconds. Table 3 shows the CPU requirements of our sys-tem. The CPU time for one veri�cation, including �ngerprint image acquisition, minutiaextraction and minutia matching, is, on an average, approximately 8 seconds on a SPARC20 workstation. It indicates that our on-line �ngerprint veri�cation system does meet theresponse time requirement of on-line veri�cation.The number of tests done on an automatic �ngerprint identi�cation system is neverenough. Performance measures are as much a function of the algorithm as they are a func-tion of the database used for testing. The biometrics community is slow at establishingbenchmarks and the ultimate performance numbers of a �ngerprint veri�cation system arethose which you �nd in a deployed system. Therefore, one can carry out only a limitedamount of testing in a laboratory environment to show the anticipated system performance.Even in �eld testing, real performance numbers are not important - it's often the perceivedperformance which is crucial.
5 ConclusionsWe have designed and implemented an on-line �ngerprint veri�cation system which oper-ates in two stages: (i) minutia extraction, and (ii) minutia matching. A modi�ed versionof the minutia extraction algorithm proposed in [18] is used in our system which is much31



Number of Matchingbest matches Rate9 91.17%8 94.72%7 96.89%6 98.17%5 98.89%4 99.39%3 99.72%2 99.83%1 99.94%(a)

Number of Matchingbest matches Rate9 92.13%8 94.40%7 97.06%6 97.67%5 98.44%4 99.11%3 99.70%2 99.79%1 99.91%(b)Table 2: Matching rates on test sets using the leave-one-out method: (a) using Identixsystem (180 images); (b) using Digital Biometrics system (610 images).Minutia Extraction Minutia Matching Total(seconds) (seconds) (seconds)5.35 2.55 7.90Table 3: Average CPU time for minutia extraction and matching on a SPARC 20 worksta-tion.faster and more reliable. A new hierarchical orientation �eld estimation algorithm resultsin a smoother orientation �eld which greatly improves the performance of the minutia ex-traction. An alignment-based elastic matching algorithm is proposed for minutia matching.This algorithm is quite fast, because it is capable of �nding the correspondences betweenminutia points without resorting to an exhaustive search. At the same time, this matchingalgorithm has a good performance, because it has the ability to adaptively compensate forthe nonlinear deformations and inexact pose transformations between di�erent �ngerprints.Experimental results show that our system achieves excellent performance in a realistic op-erating environment. It also meets the response time requirement of on-line veri�cation.Based on the experimental results, we observe that the matching errors in our systemmainly result from (i) incorrect minutiae extraction, and (ii) inaccurate alignment. We32



observe that a number of factors are detrimental to the correct location of minutia. Amongthem, poor image quality is the most serious one. Therefore, in the future, our e�orts will befocused on global image enhancement schemes. Another issue related to minutia detectionis to incorporate a structural-based model in minutia detection which extracts minutiaebased on their local ridge formations. For elastic matching, an important aspect is to utilizeadditional information (e:g:, neighboring ridges) about a minutia to increase the accuracyof alignment.
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