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Abstract

Fingerprint verification is one of the most reliable personal identification methods.
However, manual fingerprint verification is so tedious, time-consuming, and expen-
swwe that it is incapable of meeting today’s increasing performance requirements. An
automatic fingerprint identification system (AFIS) is widely needed. It plays a very im-
portant role in forensic and civilian applications such as criminal identification, access
control, and ATM card verification. This paper describes the design and implementation
of an on-line fingerprint verification system which operates in two stages: (i) minutia
extraction and (i) minutia matching. An improved version of the minutia extraction
algorithm proposed by Ratha et al., which is much faster and more reliable, is imple-

mented for extracting features from an input fingerprint image captured with an on-line



inkless scanner. For minutia matching, an alignment-based elastic matching algorithm
has been developed. This algorithm s capable of finding the correspondences between
minutiae in the input image and the stored template without resorting to exhaustive
search and has the ability of adaptively compensating for the nonlinear deformations
and inexact pose transformations between fingerprints. The system has been tested on
two sets of fingerprint images captured with inkless scanners. The verification accuracy
15 found to be acceptable. Typically, a complete fingerprint verification procedure takes,
on an average, about 8 seconds on a SPARC 20 workstation. These erperimental re-
sults show that our system meets the response time requirements of on-line verification

with high accuracy.

Keywords: biometrics, fingerprints, matching, verification, minutia, orientation field,

ridge extraction.

1 Introduction

Fingerprints are graphical flow-like ridges present on human fingers. They have been widely
used in personal identification for several centuries [11]. The validity of their use has been
well established. Inherently, using current technology fingerprint identification is much more
reliable than other kinds of popular personal identification methods based on signature, face,
and speech [11, 3, 15]. Although fingerprint verification is usually associated with criminal
identification and police work, it has now become more popular in civilian applications such
as access control, financial security and verification of firearm purchasers and driver license

applicants [11, 3]. Usually, fingerprint verification is performed manually by professional



fingerprint experts. However, manual fingerprint verification is so tedious, time-consuming,
and expensive that it does not meet the performance requirements of the new applications.
As a result, automatic fingerprint identification systems (AFIS) are in great demand [11].
Although significant progress has been made in designing automatic fingerprint identification
systems over the past thirty years, a number of design factors (lack of reliable minutia ex-
traction algorithms, difficulty in quantitatively defining a reliable match between fingerprint

images, fingerprint classification, etc.) create bottlenecks in achieving the desired perfor-

mance [11].

(a) (b)

Figure 1: Inkless fingerprint scanners: (a) manufactured by Identiz; (b) manufactured by
Digital Biometrics.

An automatic fingerprint identification system is concerned with some or all of the fol-

lowing issues:

e Fingerprint acquisition. How to acquire fingerprint images and how to represent them

in a proper format?

e Fingerprint verification. To determine whether two fingerprints are from the same

finger.

e Fingerprint identification. To search for a query fingerprint in a database.



e Fingerprint classification. To assign a given fingerprint to one of the pre-specified

categories according to its geometric appearance.

A number of methods are used to acquire fingerprints. Among them, the inked impression
method remains the most popular. It has been essentially a standard technique for fingerprint
acquisition for more than a hundred years [3]. The first step in capturing an inked impression
of a fingerprint is to place a few dabs of ink on a slab and rolling it out smoothly with a roller
until the slab is covered with a thin, even layer of ink. Then the finger is rolled from one side of
the nail to the other side over the inked slab which inks the ridge patterns on top of the finger
completely. After that, the finger is rolled on a piece of paper so that the inked impression
of the ridge pattern of the finger appears on the paper. Obviously, this method is time-
consuming and unsuitable for an on-line fingerprint verification system. Inkless fingerprint
scanners are now available which are capable of directly acquiring fingerprints in digital
form. This method eliminates the intermediate digitization process of inked fingerprint
impressions and makes it possible to build an on-line system. Figure 1 shows the two inkless
fingerprint scanners used in our verification system. Fingerprint images captured with the
inked impression method and the inkless impression method are shown in Figure 2.

The goal of fingerprint classification is to assign a given fingerprint to a specific category
according to its geometric properties (Figure 3 shows a coarse-level fingerprint classifica-
tion). The main purpose of fingerprint classification is to facilitate the management of large
fingerprint databases and to speedup the process of fingerprint matching. Generally, manual
fingerprint classification is performed within a specific framework such as the well-known

Henry system [3]. Different frameworks use different sets of properties. However, no matter



Figure 2: Comparison of fingerprint images captured with (a) inked impression method (from
NIST database) and (b) inkless impression method (with a scanner manufactured by Digital
Biometrics).

what type of framework is used, the classification is based on ridge patterns, local ridge ori-
entations and minutiae. Therefore, if these properties can be described quantitatively and
extracted automatically from a fingerprint image then fingerprint classification will become
an easier task. During the past several years, a number of researchers have attempted to
solve the fingerprint classification problem [11, 3, 9, 10, 26]. Unfortunately, their efforts have
not resulted in the desired accuracy. Algorithms reported in the literature classify finger-
prints into 5 or 6 categories with about 90% classification accuracy on a medium size test
set (several thousand images) [9, 10, 26]. However, to achieve a higher recognition accuracy
with a large number of categories still remains a difficult problem.

Fingerprint verification determines whether two fingerprints are from the same finger
or not. It is widely believed that if two fingerprints are from the same source, then their
local ridge structures (minutia details) match each other topologically [11, 3]. Eighteen
different types of local ridge descriptions have been identified [11]. The two most prominent

structures are ridge endings and ridge bifurcations which are usually called minutiae. Figure 4



(F)
Figure 3: A coarse-level fingerprint classification of six categories: (a) arch, (b) tented arch,
(¢) right loop, (d) left loop, (e) whorl, and (f) twin loop.

Ridge Ending Ridge Bifurcation
Figure 4: Ridge ending and ridge bifurcation.
shows examples of ridge endings and ridge bifurcations. Based on this observation and by
representing the minutiae as a point pattern, an automatic fingerprint verification problem
may be reduced to a point pattern matching (minutia matching) problem. In the ideal
case, if (i) the correspondences between the template and input fingerprint are known, (ii)
there are no deformations such as translation, rotation and nonlinear deformations, etc.
between them, and (iii) each minutia present in a fingerprint image is exactly localized,

then fingerprint verification consists of the trivial task of counting the number of spatially



Figure 5: Two different fingerprint images from the same finger. In order to know the
correspondence between the minutiae of these two fingerprint images, all the minutiae must
be precisely localized and the deformations must be recovered.

matching pairs between the two images. However, in practice (i) no correspondence is
known beforehand, (ii) there are relative translation, rotation and nonlinear deformations
between template minutiae and input minutiae, (iii) spurious minutiae are present in both
templates and inputs, and (iv) some minutiae are missed. Therefore, in order for a fingerprint
verification algorithm to operate under such circumstances, it is necessary to automatically
obtain minutia correspondences, to recover deformations, and to detect spurious minutiae
from fingerprint images. Unfortunately, this goal is quite difficult to achieve. Figure 5
illustrates the difficulty with an example of two fingerprint images of the same finger.
Fingerprint identification refers to the process of matching a query fingerprint against a
given fingerprint database to establish the identity of an individual. Its goal is to quickly
determine whether a query fingerprint is present in the database and to retrieve those which
are most similar to the query from the database. The critical issues here are both retrieval
speed and accuracy. In fact, this problem relates to a number of techniques studied under
the auspices of computer vision, pattern recognition, database, and parallel processing. Op-
erational fingerprint retrieval systems are being used by various law enforcement agencies

[11].



In this paper, we will introduce an on-line fingerprint verification system whose purpose
is to capture fingerprint images using an inkless scanner and to compare them with those
stored in the database in “real time”. Such a system has great utility in a variety of personal
identification and access control applications. The overall block diagram of our system is
shown in Figure 6. It operates as follows: (i) off-line phase: several impressions (depending
on the specification of the system) of the fingerprint of a person to be verified are first
captured and processed by a feature extraction module; the extracted features are stored as
templates in a database for later use; (ii) on-line phase: the individual to be verified gives
his/her identity and places his/her finger on the inkless fingerprint scanner, minutia points
are extracted from the captured fingerprint image; these minutiae are then fed to a matching

module, which matches them against his/her own templates in the database.

Off-line processing
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Figure 6: Overview of our on-line fingerprint verification system.

The following two modules are the main components of our on-line fingerprint verification

system:

e Minutiae extraction. Minutiae are ridge endings or ridge bifurcations. Generally, if
a perfect segmentation can be obtained, then minutia extraction is just a trivial task
of extracting singular points in a thinned ridge map. However, in practice, it is not

always possible to obtain a perfect ridge map. Some global heuristics need to be used



to overcome this limitation.

e Minutia matching. Minutia matching, because of deformations in sensed fingerprints,
is an elastic matching of point patterns without knowing their correspondences before-
hand. Generally, finding the best match between two point patterns is intractable even
if minutiae are exactly located and no deformations exist between these two point pat-

terns. The existence of deformations makes the minutia matching much more difficult.

For segmentation and minutia extraction, a modified version of the minutia extraction
algorithm proposed in [18] is implemented which is much faster and more reliable for minutia
extraction. We propose a hierarchical approach to obtain a smooth orientation field estimate
of the input fingerprint image, which greatly improves the performance of minutia extraction.
For minutia matching, we propose an alignment-based elastic matching algorithm. This
algorithm is capable of finding the correspondences between minutiae without resorting to an
exhaustive search and has the ability to adaptively compensate for the nonlinear deformations
and inexact pose transformations between different fingerprints. Experimental results show
that our system achieves excellent performance in a real environment.

In the following sections we will describe in detail our on-line fingerprint verification
system. Section 2 mainly discusses the fingerprint feature extraction module. Section 3
presents our minutia matching algorithm. Experimental results on two fingerprint databases
captured with two different inkless scanners are described in section 4. Section 5 contains

the summary and discussion.



2 Minutia Extraction

It is widely known that a professional fingerprint examiner relies on minute details of ridge
structures to make fingerprint identifications [11, 3]. The topological structure of the minu-
tiae of a fingerprint is unique and invariant with aging and impression deformations [11, 3].
This implies that fingerprint identification can be based on the topological structural match-
ing of these minutiae. This reduces the complex fingerprint verification to minutia matching
process which, in fact, is a sort of point pattern matching with the capability of tolerating,
to some restricted extent, deformations of the input point patterns. Therefore, the first stage
in an automatic fingerprint verification procedure is to extract minutiae from fingerprints.
In our on-line fingerprint verification system, we have implemented a minutia extraction
algorithm which is an improved version of the method proposed by Ratha et al. [18]. Tts
overall flowchart is depicted in Figure 7. We assume that the resolution of input fingerprint

images is 500 dpi.
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Figure 7: Flowchart of the minutia extraction algorithm.

2.1 Estimation of Orientation Field

A number of methods have been proposed to estimate the orientation field of flow-like pat-
terns [17]. In our system, a new hierarchical implementation of Rao’s algorithm [17] is used.
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Rao’s algorithm consists of the following main steps:
1. Divide the input fingerprint image into blocks of size W x W.
2. Compute the gradients G, and G, at each pixel in each block.

3. Estimate the local orientation of each block using the following formula:

o1 2 2 2Ga (i )Gy (i )
2 DGR ) — G2(i, )

); (1)

where W is the size of the block, and G, and G, are the gradient magnitudes in z and

y directions, respectively.

The orientation field of a good quality fingerprint image can be reasonably estimated with
this algorithm. However, the presence of high-curvature ridges, noise, smudges, and breaks
in ridges leads to a poor estimate of the local orientation field. A post-processing procedure
needs to be applied to overcome this limitation. In our system, the following iterative steps

are added to improve an inconsistent orientation field:

e Compute the consistency level of the orientation field in the local neighborhood of a

block (i, 7) with the following formula:

Co = v [ 67— 0P )

(i.j")eD
/ d if (d = (#" — 6 + 360) mod 360) < 180,
o =6 = (3)
d — 180 otherwise,
where D represents the local neighborhood around the block (7, j) (in our system, the
size of D is 5 x 5); N is the number of blocks within D; 6(i', j') and 6(i, j) are local

ridge orientations at blocks (¢, j') and (i, j), respectively.
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e If the consistency level (Eq.(2)) is above a certain threshold T, then the local orien-
tations around this region are re-estimated at a lower resolution level until it is below
a certain level. With this post-smoothing scheme, a fairly smooth orientation field
estimate can be obtained. Figure 8 shows the orientation field of a fingerprint image

estimated with our new algorithm.

AN NREWER e L1 M N St
(a) Rao’s method (b) Hierarchical method

Figure 8 Comparison of orientation fields by Rao’s method and the proposed hierarchical
method; the block size (W x W) is 16 x 16 and the size of D is 5 x 5.

After the orientation field of an input fingerprint image is estimated, a segmentation
algorithm which is based on the local variance of grey level is used to locate the region of
interest from the fingerprint image. In our segmentation algorithm, we assume that there is

only one fingerprint present in the image.

2.2 Ridge Detection

After the orientation field of the input image is estimated and the fingerprint region is
located, the next step of our minutia exaction algorithm is ridge detection. The most salient
property corresponding to ridges in a fingerprint image is the fact that grey level values
on ridges attain their local maxima along the normal directions of local ridges. Therefore,

12



pixels can be identified to be ridge pixels based on this property. In our minutia detection
algorithm, a fingerprint image is first convolved with the following two masks, h(x,y;u,v)
and hy(z,y;u,v), of size L x H (11 x 7 in our system), respectively. These two masks are
capable of adaptively accentuating the local maximum grey level values along the normal

direction of the local ridge direction:

(

*\/2176676%, if u= (vtan(6(x,y)) — WH(WJ)))’U €N
he(@, y;u,0) = \/21—6675%, if u= (vtan(6(z,y))),v € Q (4)
0, otherwise,

L e’si?, if u= (vtan(f(z,y)) + 5—2—),v € Q

V2o 2cos(0(z,y))
hy(@, yiu,v) = \/21766*5%, if u= (vtan(6(z,y))),v € Q (5)
0, otherwise,
@ - [ [Lmew)| Lsin<92<x,y>>H’ 6

where 6(z,y) represents the local ridge direction at pixel (z,y). If both the grey level values
at pixel (z,y) of the convolved images are larger than a certain threshold 744, then pixel
(z,y) is labeled as a ridge. By adapting the mask width to the width of the local ridge, this
algorithm can efficiently locate the ridges in a fingerprint image.

However, due to the presence of noise, breaks, and smudges, etc. in the input image, the
resulting binary ridge map often contains holes and speckles. When ridge skeletons are used
for the detection of minutiae, the presence of such holes and speckles will severely handicap
the performance of our minutia extraction algorithm because these holes and speckles may
drastically change the skeleton of the ridges. Therefore, a hole and speckle removal procedure

needs to be applied before ridge thinning.
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After the above steps are performed on an input fingerprint image, a relatively smooth
ridge map of the fingerprint is obtained. The next step of our minutia detection algorithm

is to thin the ridge map and locate the minutiae.

2.3 Minutia Detection

Minutia detection is a trivial task when an ideal thinned ridge map is obtained. Without a
loss of generality, we assume that if a pixel is on a thinned ridge (8-connected), then it has
a value 1, and 0 otherwise. Let (z,y) denote a pixel on a thinned ridge, and Ny, Ny, ..., N7
denote its 8 neighbors. A pixel (z,y) is a ridge ending if (37_, N;) = 1 and a ridge bifurcation
if (3¢ Vi) > 2. However, the presence of undesired spikes and breaks present in a thinned
ridge map may lead to many spurious minutiae being detected. Therefore, before the minutia
detection, a smoothing procedure is applied to remove spikes and to join broken ridges. Our

ridge smoothing algorithm uses the following heuristics:

e [f a branch in a ridge map is roughly orthogonal to the local ridge directions and its

length is less than a specified threshold T}, then it will be removed.

e [f a break in a ridge is short enough and no other ridges pass through it, then it will

be connected.

Although the above heuristics do delete a large percentage of spurious minutiae, many spu-
rious minutiae still survive. The reason is that the above processing relies on local ridge
information. If this information itself is unreliable, then the above heuristics have no way

of differentiating false minutiae from true minutiae. Therefore, a refinement which is based
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on structural information is necessary. Our refinement algorithm eliminates the spurious

minutiae based on the following rules:

e [f several minutiae form a cluster in a small region, then remove all of them except for

the one nearest to the cluster center.

e If two minutiae are located close enough, facing each other, but no ridges lie between

them, then remove both of them.

After the above refinement procedure is performed, the surviving minutiae are treated as true
minutiae. Although the above heuristics can not ensure a perfect location of each minutia,
they are able to delete several spurious minutiae. For each surviving minutia, the following
parameters are recorded: (i) x-coordinate, (ii) y-coordinate, (iii) orientation which is defined
as the local ridge orientation of the associated ridge, and (iv) the associated ridge. The
recorded ridges are represented as one-dimensional discrete signals which are normalized
by the average inter-ridge distance. These recorded ridges are used for alignment in the
minutia matching phase. Figure 9 shows the results of our minutia extraction algorithm on

a fingerprint image captured with an inkless scanner.

3 Minutia Matching

Generally, an automatic fingerprint verification/identification is achieved with point pattern
matching (minutiae matching) instead of a pixel-wise matching or a ridge pattern matching
of fingerprint images. A number of point pattern matching algorithms have been proposed

in the literature [23, 1, 21, 16]. Because a general point matching problem is essentially
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(e) thinned ridge map
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Figure 9: Results of our minutia extraction algorithm on a fingerprint image (512 x 512)
captured with an inkless scanner; (a) input image; (b) orientation field superimposed on the
input image; (c) fingerprint region; (d) extracted ridges; (e) thinned ridge map; (f) extracted
minutiae and their orientations superimposed on the input image.
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intractable, features associated with each point and their spatial properties such as the
relative distances between points are often used in these algorithms to reduce the exponential
number of search paths.

The relaxation approach [16] iteratively adjusts the confidence level of each corresponding
pair based on its consistency with other pairs until a certain criterion is satisfied. Although
a number of modified versions of this algorithm have been proposed to reduce the matching
complexity [23], these algorithms are inherently slow because of their iterative nature.

The Hough transform-based approach proposed by Stockman et al. [22]| converts point
pattern matching to a problem of detecting the highest peak in the Hough space of trans-
formation parameters. It discretizes the transformation parameter space and accumulates
evidence in the discretized space by deriving transformation parameters that relate two point
patterns using a substructure or feature matching technique. Karu and Jain [8] proposed
a hierarchical Hough transform-based registration algorithm which greatly reduced the size
of accumulator array by a multi-resolution approach. However, if the number of minutia
point is less than 30, then it is very difficult to accumulate enough evidence in the Hough
transform space for a reliable match.

Another approach to point matching is based on energy minimization. This approach
defines a cost function based on an initial set of possible correspondences and uses an appro-
priate optimization algorithm such as genetic algorithm [1] and simulated annealing [21] to
find a possible suboptimal match. These methods tend to be very slow and are unsuitable
for an on-line fingerprint verification system.

In our system, an alignment-based matching algorithm is implemented. Recognition by
alignment has received a great deal of attention during the past few years [12], because
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it is simple in theory, efficient in discrimination, and fast in speed. Our alignment-based
matching algorithm decomposes the minutia matching into two stages: (i) Alignment stage,
where transformations such as translation, rotation and scaling between an input and a
template in the database are estimated and the input minutiae are aligned with the template
minutiae according to the estimated parameters; and (ii) Matching stage, where both the
input minutiae and the template minutiae are converted to polygons in the polar coordinate

system and an elastic string matching algorithm is used to match the resulting polygons.

3.1 Alignment of Point Patterns

Ideally, two sets of planar point patterns can be aligned completely by two corresponding
point pairs. A true alignment between two point patterns can be obtained by testing all
possible corresponding point pairs and selecting the optimal one. However, due to the
presence of noise and deformations, the input minutiae cannot always be aligned exactly
with respect to those of the templates. In order to accurately recover pose transformations
between two point patterns, a relatively large number of corresponding point pairs need
to be used. This leads to a prohibitively large number of possible correspondences to be
tested. Therefore, an alignment by corresponding point pairs is not practical even though it
is feasible.

It is well known that corresponding curve segments are capable of aligning two point
patterns with a high accuracy in the presence of noise and deformations. Each minutia in
a fingerprint is associated with a ridge. It is clear that a true alignment can be achieved

by aligning corresponding ridges (see Figure 10). During the minutiae detection stage,
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Figure 10: Alignment of the input ridge and the template ridge.
when a minutia is extracted and recorded, the ridge on which it resides is also recorded.
This ridge is represented as a planar curve with its origin coincident with the minutia and
its x-coordinate being in the same direction as the direction of the minutia. Also, this
planar curve is normalized with the average inter-ridge distance. By matching these ridges,
the relative pose transformation between the input fingerprint and the template can be
accurately estimated. To be specific, let R and RP denote the sets of ridges associated with
the minutiae in input image and template, respectively. Our alignment algorithm can be

described in terms of the following steps:

1. For each ridge d € R?, represent it as an one-dimensional discrete signal and match it

against each ridge, D € RP according to the following formula:

>k, diD;
V Z%:U dl2D12

where L is the minimal length of the two ridges and d; and D; represent the distances

S = (7)

from point ¢ on the ridges d and D to the x-axis, respectively. The sampling interval on
a ridge is set to the average inter-ridge distance. If the matching score S (0 < S < 1)
is larger than a certain threshold T,, then go to step 2, otherwise continue to match
the next pair of ridges.
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2. Estimate the pose transformation between the two ridges (Figure 10). Generally, a
least-square method can be used to estimate the pose transformation. However, in
our system, we observe that the following method is capable of achieving the same
accuracy with less computation. The translation vector (Az, Ay)” between the two

corresponding ridges is computed by

Azx x4 P
= - ) (8>
Ay y* y”
where (z¢,y?)" and (2”,y”)" are the x and y coordinates of the two minutiae, which

are called reference minutiae, associated with the ridges d and D, respectively. The

rotation angle Af between the two ridges is computed by

AG = EZ(%-—?Z-), (9)

where L is the minimal length of the two ridges d and D; v, and ?7; are radial angles
of the ith point on the ridge with respect to the reference minutia associated with the
two ridges d and D, respectively. The scaling factor between the input and template
images is assumed to be 1. This is reasonable, because fingerprint images are captured
with the same device in both the off-line processing phase and the on-line verification

phase.

3. Denote the minutia (z¢,y? 0%)7, based on which the pose transformation parameters

are estimated, as the reference minutia. Translate and rotate all the N input minutiae

20



with respect to this reference minutia, according to the following formula:

x Az cos A sinAf 0 x; — a¢
yt | = | Ay [t ]| sinAf —cosAf 0 yi —yt | (10)
oA Ab 0 0 1 0; — 07

where (z;,y;,0;)7, (i = 1,2,...,N), represents an input minutia and (z{', ', )T rep-

resents the corresponding aligned minutia.

3.2 Aligned Point Pattern Matching

If two identical point patterns are exactly aligned with each other, each pair of corresponding
points are completely coincident. In such a case, a point pattern matching can be simply
achieved by counting the number of overlapping pairs. However, in practice, such a situation
is not encountered. On the one hand, the error in determining and localizing minutia hinders
the alignment algorithm to recover the relative pose transformation exactly, while on the
other hand, our alignment scheme described above does not model the nonlinear deformation
of fingerprints which is an inherent property of fingerprint impressions. With the existence
of such a nonlinear deformation, it is impossible to exactly recover the position of each input
minutia with respect to its corresponding minutia in the template. Therefore, the aligned
point pattern matching algorithm needs to be elastic which means that it should be capable
of tolerating, to some extent, the deformations due to inexact extraction of minutia positions
and nonlinear deformations. Usually, such an elastic matching can be achieved by placing
a bounding box around each template minutia, which specifies all the possible positions of
the corresponding input minutia with respect to the template minutia, and restricting the
corresponding minutia in the input image to be within this box [18]. This method does
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not provide a satisfactory performance in practice, because local deformations may be small
while the accumulated global deformations can be quite large. We have implemented an
adaptive elastic matching algorithm with the ability to compensate the minutia localization
errors and nonlinear deformations.

Let P = ((zF,yF, 001, .., (x4, yt;, 04,)7) denote the set of M minutiae in the template
and Q = ((xl Yy ,HQ) (:rN, Y, HQ) ) denote the set of N minutiae in the input image
which is aligned with the above template with respect to a given reference minutia point.

The steps in our elastic point pattern matching algorithm are given below:

1. Convert each minutia point to the polar coordinate system with respect to the corre-

sponding reference minutia on which the alignment is performed:

ry V0@ —am)? + (g7 — )2
€; = tan’l(%) ) (11)
0; 0 — 0"

where (z},y7,07)! are the coordinates of a minutia, (z",y",0")! are the coordinates
of the reference minutia, and (r;,¢;,6;)" is the representation of the minutia in polar
coordinate system (r; represents the radial distance, e; represents the radial angle and

0; represents the orientation of the minutia with respect to the reference minutia).

2. Represent the template and the input minutiae in the polar coordinate system as

symbolic strings by concatenating each minutia in the increasing order of radial angles:

PP ((Tl 761 JHP) ) (Tﬁa 65\3/[7 Qﬁ>T) (12)

Qp = ((r7,ef,00)" ..., (r%, R, 0%)T), (13)
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where (r”) el 0F) and (r%, 2, 69) represent the corresponding radius, radial angle,

*

and normalized minutia orientation with respect to the reference minutia, respectively.

. Match the resulting strings P, and @), with a dynamic-programming algorithm [4] to

find the edit distance between P, and (), which is described below.

. Use the edit distance between P, and (), to establish the correspondence of the minutiae
between P, and (),. The matching score, M,,, is then computed according to the

following formula:

Y 100N, 4,

va max{M, N}’ (14)

where N4, is the number of the minutiae which fall in the bounding boxes of template
minutiae. The maximum and minimum values of the matching score are 100 and 1,
respectively. The former value indicates a perfect match, while the later value indicates

no match at all.

Minutia matching in the polar coordinate has several advantages. We have observed that the

nonlinear deformation of fingerprints has a radial property. In other words, the nonlinear

deformation in a fingerprint impression usually starts from a certain point (region) and

nonlinearly radiates outward. Therefore, it is beneficial to model it in the polar space. At

the same time, it is much easier to formulate rotation, which constitutes the main part of

the alignment error between an input image and a template, in the polar space than in the

Cartesian space. The symbolic string generated by concatenating points in an increasing

order of radial angle in polar coordinate uniquely represents a point pattern. This reveals

that the point pattern matching can be achieved with a string matching algorithm.
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A number of string matching algorithms have been reported in the literature [4]. Here,
we are interested in incorporating an elastic criteria into a string matching algorithm. Gen-
erally, string matching can be thought of as the maximization/minimization of a certain cost
function such as the edit distance. Intuitively, including an elastic term in the cost function
of a string matching algorithm can achieve a certain amount of error tolerance. Given two
strings P, and @), of lengths M and N, respectively, the edit distance, C'(M, N), in our

algorithm is recursively defined with the following equations:

(

0 itm=0orn=20
( )
C(m—1,n)+Q
C(m,n) = (15)
min C(m,n—1)+Q } O0<m<Mand0<n<N,
Cm—1,n—1)+w(m,n) J

(

a‘rf;—rg + BAe + yAl if‘rﬁ—rff <0,Ae<eand Af <e
w(m,n) = (16)
Q otherwise,
( .
a if (a = (e? — €2 +360) mod 360) < 180
Ae = (17)

| a- 180 otherwise,

a if (a = (O — 69 + 360) mod 360) < 180
A) = (18)

@ 180 otherwise,

where «, 3, and v are the weights associated with each component, respectively; 9, € and
e specify the bounding box; and €2 is a pre-specified penalty for a mismatch. Such an edit
distance, to some extent, captures the elastic property of string matching. It represents a
cost of changing one polygon to the other. However, this scheme can only tolerate, but

not compensate for, the adverse effect on matching produced by the inexact localization of
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minutia and nonlinear deformations. Therefore, an adaptive mechanism is needed. This
adaptive mechanism should be able to track the local nonlinear deformation and inexact
alignment and try to alleviate them during the minimization process. However, we do not
expect that this adaptive mechanism can handle the “order flip” of minutiae, which, to some
extent, can be solved by an exhaustive re-ordering and matching within a local angular
window.

In our matching algorithm, the adaptation is achieved by adjusting the bounding box
(Figure 11) when an inexact match is found during the matching process. It can be repre-

sented as follows:

( (
Silm,n) < (rP —r%@) < §,(m,n)

@ ‘7"51 — 3|+ BAe+yAf if a(m,n)) < Ae < ep(m,n)
w'(m,n) = (19)
L Af <e
Q otherwise,
r (
6l(m7 n) < (7"51 B ’I"T?) < 6h(m7 n)
rk @
Ar, if e(m,n)) < Ae < ex(m,n)
= Ae (20)
Ae, Af < e
0 otherwise,
d(m+1,n+1) = §(m,n)+nAr,, (21)
h(m+1,n+1) = op(m,n)+ nAr,, (22)
a(m+1n+1) = ea(m,n)+nle, (23)
en(m+1,n+1) = en(m, n)+nle, (24)

P el 6P and

m?m?’ ' m

where w'(m,n) represents the penalty for matching a pair of minutiae (r
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o= Reference minutia
Figure 11: Bounding box and its adjustment.
(r?,eQ,097T, 6;(m,n), p(m,n), (m,n), and €,(m, n) specify the adaptive bounding box in
the polar coordinate system (radius and radial angle); and 7 is the learning rate. This elastic
string matching algorithm has a number of parameters which are critical to its performance.
We have empirically determined the values of these parameters as follows: §,(0,0) = —8;
0,(0,0) = 48; ¢(0,0) = =7.5; €,(0,0) = +7.5; ¢ = 30; a = 1.0; f = 2.0; v = 0.1;
Q2 =200(a+ B +7); n =0.5. The values of §,(0,0), 6,(0,0), €(0,0), and €,(0,0) depend on
the resolution of fingerprint images. Figure 12 shows the results of applying the matching

algorithm to an input minutia set and a template.

4 Experimental Results

We have tested our on-line fingerprint verification system on two sets of fingerprint images
captured with two different inkless fingerprint scanners. Set 1 contains 10 images per finger
from 18 individuals for a total of 180 fingerprint images, which were captured with a scanner

manufactured by Identix. The size of these images is 380 x 380. Set 2 contains 10 images per
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Figure 12: Results of applying the matching algorithm to an input minutia set and a tem-
plate; (a) input minutia set; (b) template minutia set; (c¢) alignment result based on the
minutiae marked with green circles; (d) matching result where template minutiae and their
correspondences are connected by green lines.

finger from 61 individuals for a total of 610 fingerprint images, which were captured with a
scanner manufactured by Digital Biometrics. The size of these images is 640 x 480. When
these fingerprint images were captured, no restrictions on the position and orientation of
fingers were imposed. The captured fingerprint images vary in quality. Figures 13 and 14
show some of the fingerprint images in our database. Approximately 90% of the fingerprint
images in our database are of reasonable quality similar to those shown in Figures 13 and 14,
while about 10% of the fingerprint images in our database are not of good quality (Figure 15),
which are mainly due to large creases and smudges in ridges and dryness of the impressed
finger. First, we report some initial results on fingerprint matching, followed by fingerprint
verification. The reasons why we did not use NIST-4 fingerprint database [25] to test the

performance of our system are as follows: (i) we concentrate on live-scan verification, and
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(17) NIST-4 fingerprint database is a very difficult fingerprint database which contains a
large number of fingerprint images of poor quality and no result has been reported from

other on-line verification systems for comparison.

Figure 13: Fingerprint images captured with a scanner manufactured by Identix; the size of
these images is 380 x 380; all the three images are from the same individual’s finger.

Figure 14: Fingerprint images captured with a scanner manufactured by Digital Biometrics;
the size of these images is 640 x 480; all the three images are from the same individual’s
finger.

Figure 15: Fingerprint images of poor quality.
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Figure 16: Distributions of correct and incorrect matching scores; vertical axis represents
distribution of matching scores in percentage; (a) distribution of matching scores on test set
1 (180 images); (b) distribution of matching scores on test set 2 (610 images).

4.1 Matching

Each fingerprint in the test set was matched with the other fingerprints in the set. A
matching was labeled correct if the matched fingerprint was among the 9 other fingerprints
of the same individual, and incorrect otherwise. A total of 32,220 (180 x 179) matchings
have been performed on test set 1 and 371,490 (610 x 609) matchings on test set 2. The
distributions of correct and incorrect matching scores are shown in Figure 16. It can be
seen from this figure that there exist two peaks in the distribution of matching scores. One
pronounced peak corresponds to the incorrect matching scores which is located at a value
around 10, and the other peak which resides at a value of 40 is associated with the correct
matching scores. This indicates that our algorithm is capable of differentiating fingerprints
at a high correct rate by setting an appropriate value of the threshold. Table 1 shows the
verification rates and reject rates with different threshold values. The reject rate is defined
as the percentage of correct fingerprints with their matching scores below the threshold

value. As we have observed, both the incorrect matches and the high reject rates are due
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to fingerprint images with poor quality such as those shown in Figure 15. We can improve
these matching results by ensuring that the database does not contain such poor quality

fingerprint images.

Threshold | Verification | Reject Threshold | Verification | Reject
Value Rate Rate Value Rate Rate
20 99.839% 11.23% 20 99.426% 11.23%
22 99.947% 13.33% 22 99.863% 14.55%
24 99.984% 16.48% 24 99.899% 16.78%
26 99.994% | 20.49% 26 99.969% | 20.20%
28 99.996% | 25.19% 28 99.989% | 23.15%
30 100% 27.72% 30 99.999% | 27.45%

(a) (b)

Table 1: The verification rates and reject rates on test sets with different threshold values;
(a) using Identix system (180 images); (b) using Digital Biometrics system (610 images).

4.2 Verification

In on-line verification, a user indicates his/her identity. Therefore, the system matches
the input fingerprint image only to his/her stored templates. To determine the verification
accuracy of our system, we used each one of our database images as an input fingerprint
which needs to be verified. An input fingerprint image was matched against all the 9 other
images of the same finger. If more than one half of the 9 matching scores exceeded the
threshold value of 25, then the input fingerprint image is said to be from the same finger as
the templates and a valid verification is established. With this scheme, a 100% verification
rate can be achieved with a reject rate around 16% on both test sets. Again, this reject
rate can be reduced by preprocessing the database to remove the stored templates of poor

quality. This demonstrates that, in practice, using a k-nearest neighbor type of matching
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is adequate for a successful verification. Table 2 shows the matching rate which is defined
as the percentage of the correct fingerprints (of the same finger) present among the best n
(n =1,...9) matches.

For an on-line fingerprint verification system to be acceptable in practice, its response
time needs to be within a few seconds. Table 3 shows the CPU requirements of our sys-
tem. The CPU time for one verification, including fingerprint image acquisition, minutia
extraction and minutia matching, is, on an average, approximately 8 seconds on a SPARC
20 workstation. It indicates that our on-line fingerprint verification system does meet the
response time requirement of on-line verification.

The number of tests done on an automatic fingerprint identification system is never
enough. Performance measures are as much a function of the algorithm as they are a func-
tion of the database used for testing. The biometrics community is slow at establishing
benchmarks and the ultimate performance numbers of a fingerprint verification system are
those which you find in a deployed system. Therefore, one can carry out only a limited
amount, of testing in a laboratory environment to show the anticipated system performance.
Even in field testing, real performance numbers are not important - it’s often the perceived

performance which is crucial.

5 Conclusions

We have designed and implemented an on-line fingerprint verification system which oper-
ates in two stages: (i) minutia extraction, and (ii) minutia matching. A modified version

of the minutia extraction algorithm proposed in [18] is used in our system which is much
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Number of | Matching Number of | Matching
best matches Rate best matches Rate
9 91.17% 9 92.13%
8 94.72% 8 94.40%
7 96.89% 7 97.06%
6 98.17% 6 97.67%
5 98.89% 5 98.44%
4 99.39% 4 99.11%
3 99.72% 3 99.70%
2 99.83% 2 99.79%
1 99.94% 1 99.91%

(a) (b)

Table 2: Matching rates on test sets using the leave-one-out method: (a) using Identix
system (180 images); (b) using Digital Biometrics system (610 images).

Minutia Extraction | Minutia Matching Total
(seconds) (seconds) (seconds)
5.35 2.55 7.90

Table 3: Average CPU time for minutia extraction and matching on a SPARC 20 worksta-
tion.

faster and more reliable. A new hierarchical orientation field estimation algorithm results
in a smoother orientation field which greatly improves the performance of the minutia ex-
traction. An alignment-based elastic matching algorithm is proposed for minutia matching.
This algorithm is quite fast, because it is capable of finding the correspondences between
minutia points without resorting to an exhaustive search. At the same time, this matching
algorithm has a good performance, because it has the ability to adaptively compensate for
the nonlinear deformations and inexact pose transformations between different fingerprints.
Experimental results show that our system achieves excellent performance in a realistic op-
erating environment. It also meets the response time requirement of on-line verification.
Based on the experimental results, we observe that the matching errors in our system

mainly result from (i) incorrect minutiae extraction, and (ii) inaccurate alignment. We

32



observe that a number of factors are detrimental to the correct location of minutia. Among
them, poor image quality is the most serious one. Therefore, in the future, our efforts will be
focused on global image enhancement schemes. Another issue related to minutia detection
is to incorporate a structural-based model in minutia detection which extracts minutiae
based on their local ridge formations. For elastic matching, an important aspect is to utilize
additional information (e.g., neighboring ridges) about a minutia to increase the accuracy

of alignment.
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