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We show that the dynamics of spiking neurons can be interpreted as a
form of Bayesian inference in time. Neurons that optimally integrate ev-
idence about events in the external world exhibit properties similar to
leaky integrate-and-fire neurons with spike-dependent adaptation and
maximally respond to fluctuations of their input. Spikes signal the oc-
currence of new information—what cannot be predicted from the past
activity. As a result, firing statistics are close to Poisson, albeit providing
a deterministic representation of probabilities.

1 Introduction

Many perceptual and motor tasks performed by the central nervous system
are probabilistic in nature, and can be described in a Bayesian framework
(Kording & Wolpert, 2004; Knill & Richards, 1996). According to this theory,
one probability is assigned to all possible interpretations of the available
sensory and motor information on the basis of sensory or motor noise and
priors designating the most likely interpretation. The percept, or the motor
output, corresponds to the interpretation that is most probable or has the
most desirable outcome.

Thus, perception can be considered as an inference process extracting
the state of important sensory variables, such as direction of motion, ori-
entation of surfaces, object boundaries, and identities, from a noisy and
ambiguous sensory input. The most famous sensory ambiguities include
the ill-posed 2D-to-3D transform necessary to infer the 3D structure of
objects from their 2D projection on the retina and the aperture problem,
where the movement of an edge whose boundaries cannot be seen is com-
patible with many different directions of motion. The use of Bayesian in-
ference and priors in human perception recently has been shown to ac-
count for a wide range of perceptual phenomena (Knill & Richards, 1996;
Weiss & Freeman, 2001; Weiss & Fleet, 2002; Feldman, 2001; Geisler, Perry,
Super, & Gallogly, 2001; van Beers, Sittig, & Gon, 1999; Ernst & Banks,
2002). Similar to perception, sensorimotor integration and motor control re-
quire probabilistic computation: motor effectors are noisy, and motor goals
are ambiguous, since many different series of muscle contractions could

Neural Computation 20, 91–117 (2008) C© 2007 Massachusetts Institute of Technology



92 S. Deneve

reach the same goal (Ghahramani, Wolpert, & Jordan, 1995). Not surpris-
ingly, Bayesian inference and priors also seem to be used by humans in
these computations (Kording & Wolpert, 2004; Wolpert & Ghahramani,
2000).

Such probabilistic computations have to be performed as quickly and
accurately as possible in a perpetually changing world. This is particularly
striking in the motor domain, where the position of the motor effector and
the resulting sensory feedback are constantly modified, but it is also true in
the perceptual domain, where this temporal dimension is often neglected.
Objects move, appear, and disappear, unpredictably. The retinotopic visual
input and its interpretation change after each saccadic eye movement, which
occurs on average every 250 ms in humans (Ballard, Hayhoe, Salgian, &
Shinoda, 2000). Thus, the problem of perception and action is essentially
a form of Bayesian filtering: the state of sensory and motor variables has
to be estimated online from priors and a stream of noisy and ambiguous
observations.

It is essential to understand the neural basis of these computations—how
neurons or networks of neurons represent and compute with probabilities
and learn probabilistic models. In particular, as these computations have
to be performed on a temporal scale of the order of a single interspike
interval, we propose to take single spikes as the basic unit of representa-
tion and computations. An alternative would be to consider that proba-
bilities are represented by the average firing rate, defined over long peri-
ods of time or large population of neurons (Shadlen & Newsome, 1994).
This approach has been fruitful as a description of neural behavior in
static situations. Indeed we show that rate coding is a good approxima-
tion to neural behavior in our model when the world remains stable for
a long period of time. However, we believe it is insufficient to describe
online neural computation in an unstable, quickly varying, ambiguous
world.

Similarly, we will take single neurons, as opposed to a population of
them, as the basic units of computation, considering each neuron as com-
puting the probability of one particular hidden variable. This is in contrast
with most alternative approaches that consider populations of neurons as
representing probability distributions (Barber, Clark, & Anderson, 2003;
Zemel, Dayan, & Pouget, 1998, Sahani & Dayan, 2003; Wu & Amari, 2002)
in a cooperative fashion.

We parallel the real, explicit neural space, consisting of neurons, their
spike trains and connections, and an implicit probability space, consisting
of hidden variables and their statistical dependencies. We propose that the
basic meaning of a spike is the occurrence of new, unpredictable prob-
abilistic information and that propagation of spikes in cortical networks
corresponds to propagation of beliefs in a corresponding Bayesian network
(Frey, 1998; Jordan, 1974; Weiss & Freeman, 2001). We show that this reinter-
pretation of neural activity and computation provides a new way of looking
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at a well-known neural model, the leaky integrate-and-fire neuron, and im-
plies additional nonlinearities that are in accordance with known aspects
of cortical physiology.

The model neuron faithfully represents fluctuations in probability of
perceptual and motor interpretations of the sensory input. Consequently,
this accounts for both the irregularity and apparent noisy nature of neural
firing in the presence of static, unambiguous stimuli such as Gabors or optic
flow (Vogels, Spilleers, & Orban, 1989; Tolhurst, Movshon, & Dean, 1982),
and the much sparser and more precise firing behavior in the presence
of noisy, suboptimal, and quickly varying stimuli, such as noisy random
dot motion or movies (Bair, 1999; Reinagel & Reid, 2000; Vinje & Gallant,
2002).

In a companion letter in this issue (“Bayesian Spiking Neurons II: Learn-
ing”), we show that reinterpreting neural physiology as a form of Bayesian
inference allows us to propose a principled form of spike-dependent plas-
ticity where neurons learn to detect patterns of correlations in their synaptic
inputs and construct hierarchical causal models for the sensory input over
successive neural layers.

2 Bayesian Inference in Single Neurons

We consider that each neuron codes for a time-varying binary hidden vari-
able, xt . This variable could correspond to a property of the real world,
such as the presence or absence of an object in a limited portion of space
(the neuron’s receptive field) or whether motion goes in one particular di-
rection in the neuron’s receptive field. It could also be much more abstract
and represent statistical regularities of the sensory input and motor output.
Eventually this variable can be learned, in an unsupervised fashion, from
the statistics of the synaptic input (see the companion paper). This variable
is “hidden” from the neuron that tries to infer its state from its synaptic
input. As an illustrative example, we will consider that xt represents the
presence or absence of a horizontal bar at a certain position on the retina.

For clarity, we will distinguish the implicit probability space and its
implementation in the real, explicit neural space.

2.1 Implicit Space. By implicit space, we refer to a quantitative model
that describes the statistics of the hidden variable xt and how it evolves over
time, relates to other variables and influences the synaptic input received by
the neuron. This model is called generative because it defines the way that
observations (the sensory input) are assumed to be generated (or caused)
by the state of the hidden variable (Hinton & Ghahramani, 1997). Thus,
a generative model might describe how often a horizontal bar appears
or disappears at a given retinal location and how its presence result in a
particular pattern of light on the retina.
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Figure 1: (A) Generative model for the synaptic input received by a single
neuron. (B) An illustrative example corresponding to a horizontal bar detector,
or a V1 simple cell preferring horizontal orientations. (Top) Generative model in
the implicit probability space. xt = 1 corresponds to the presence of a horizontal
bar. (Bottom) Spiking neural network implementing Bayesian inference in the
explicit neural space. Light gray: inhibitory LGN neuron. Dark gray: Excitatory
LGN neurons. (C) Temporal evolution of the log probability ratio. Lt tends to
converge toward the prior Lo with a speed defined by ϕ′, depending on the
transition rates (see equation 2.2). Dark and light arrows signal the occurrence
of excitatory and inhibitory synaptic events.

We assume that the state of this hidden variable at time t, xt , depends on
the state of this variable at the preceding time step, xt−dt, and is conditionally
independent of other past states. This is the simplest form of a statistical
temporal dependency, corresponding to a Markov chain (see Figure 1A;
Hinton & Ghahramani, 1986). A horizontal bar is likely to be present or
absent for a certain length of time in the neuron’s receptive field. If it is
there at time t, it is more likely to be there at time t + dt, and vice versa.
We call ron and roff the rates at which the state switches on and off, which
corresponds to the rate at which bars appear and disappear in our example.
In other words, P(xt = 1|xt−dt = 0) = rondt and P(xt = 0|xt−dt = 1) = roffdt
describe the stability of the hidden variable and are sufficient to account for
its temporal statistics.

Second, we consider that the state of the hidden variable, which cannot
be observed directly by cortical neurons, causes (i.e., results in) a particular
sensory input, which, for a neuron, takes the form of synaptic events (spikes)
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received from a collection of N synapses. In our toy example, the presence
of a horizontal bar implies a particular distribution of local contrasts on the
retina and, thus, particular synapses coming from lateral goniculate nucleus
(LGN) neurons to receive action potentials at higher or lower rates.

We represent this synaptic input by a vector of binary variable st =
[si

t ]i=1,...,N, where si
t = 1 when the synapse number i is activated during

time t and t + dt. Each synapse is activated with a particular probability,
P(si

t = 1|xt = 1) = q i
ondt if the state is 1 and P(si

t = 1|xt = 0) = q i
offdt if the

state is 0. Since there is no direct temporal dependency between st and
st+dt , the synaptic input can be described as an inhomogeneous Poisson
process with rates q i

on when the state is 1 and q i
off when the state is 0. The

corresponding model is a hidden Markov chain (see Figure 1A), which
describes how the synaptic input was generated. This is the generative
model of the sensory input, st .

For example, we might consider that our horizontal bar–specific neuron
receives inputs from a set of center-surround LGN neurons, as in the clas-
sical Hubel and Wiesel (1970) model of a simple cell (see Figure 1B). The
synapses from LGN neurons in the center of the simple cell’s receptive field
(dark gray in Figure 1B) are more active when a bar is present in the center
of the receptive field, that is, when xt = 1, which corresponds to the fact
that q i

on > q i
off for these neurons. On the other hand, neurons with receptive

fields at the periphery (light gray neurons in Figure 1B) are less active when
the central bar is present—q i

on < q i
off.

Inference in this hidden Markov model can be performed by a recurrent
process. In particular, we can compute the log-odds ratio of the hidden state
at time t, Lt , given all synaptic inputs received in the past. Lt is defined as

Lt = log
(

P(xt = 1|s0→t)
P(xt = 0|s0→t)

)
, (2.1)

where s0→t corresponds to the synaptic input received from time 0 to time t.
If we take the limit of the temporal update equations as dt → 0, we get the
following differential equation (see appendix A):

L̇ = ron(1 + e−L ) − roff(1 + e L ) +
∑

i

wiδ
(
si

t − 1
) − θ

=−ϕ(Lt) + It. (2.2)

wi , the synaptic weights, describe how informative a synapse i is about
the state of the hidden variable, for example, wi = log( q i

on
q i

off
). Each synaptic

input (si
t = 1) gives an impulse to the log-odds ratio, which is positive if this

synapse is more active when xt = 1, that is, when q i
on > q i

off (as it increases
the neuron’s confidence that the state is 1). On the contrary, if the impulse
is negative, the neuron’s confidence is decreased if this synapse is more
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Figure 2: The log-odds ratio reflects a leaky integration of sensory evidence.
(A) An example with small transition rates and long effective integration time
constant (ron = 0.00005, roff = 0.0001). (B) An example with larger transition rates
and shorter effective time constant (ron = 0.01, roff = 0.02). Solid line: log-odds
ratio on a single trial. Dotted line: log-odds ratio averaged over 1000 trials.

active when xt = 0, that is, when q i
on < q i

off. Thus, synaptic inputs from
the light gray LGN neurons to the simple cell in the figure are inhibitory,
with negative weights, while inputs from the dark gray LGN neurons are
excitatory.

The term ϕ depends on the transition rates and implements a temporal
“leak” for Lt . The bias, θ , is determined by how informative it is not to
receive any spike, θ = ∑

i q i
on − q i

off. The synaptic drive, It = ∑
i wiδ(si

t −
1) − θ , is the total contribution of sensory observations.

2.2 Explicit, Neural Space. We propose that neural dynamics in the ex-
plicit neural space implements the inference and learning in the underlying
generative model described in Figure 1A. Thus, equation 2.2 corresponds
to a leaky synaptic integration process: the first part of the equation (ϕ(Lt))
depends on the temporal statistics of the hidden state (ron, roff) and on
the log probability ratio itself, Lt . The overall effect of this component is
to bring Lt back toward a prior level Lo = log( ron

roff
), which corresponds to

what is known about the hidden state in the absence of any observation (see
Figure 1C). This results in a gradual forgetting or fading of the neuron’s
certainty about its hidden state, which is faster when the world changes
rapidly, that is, when the transition rates are high. The second part of the
equation corresponds to the synaptic drive and is a weighted sum of the
contribution from all synapses. Its overall effect is to drive Lt away from its
prior.

In order to test the neural response in conditions similar to neurophysio-
logical studies, the state of xt was fixed at 1 when a stimulus was presented
in the neuron’s receptive field at time t and 0 otherwise (thus, the temporal
profile of xt is defined by the experimental protocol). The synaptic input
st was sampled from Poisson processes with rates q i

on when xt = 1 and q i
off

when xt = 0. The temporal profile of Lt during presentation of the preferred
stimulus is plotted in Figure 2.
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On a single trial, Lt fluctuates over time to reflect random arrivals of
excitatory and inhibitory synaptic inputs (see Figures 2A and 2B). On aver-
age, though, the log-posterior ratio reflects the leaky integration of synaptic
evidence, with an effective time constant that depends on the transition
probabilities ron, roff. If the state of xt is very stable (roff ∼ 0), synaptic evi-
dence is integrated over almost infinite time periods, the mean log posterior
ratio tending to increase or decrease linearly with time (see Figure 2A). In
the example in Figure 2B, however, the state is less stable, so “old” synaptic
evidence is discounted and Lt saturates.

This is reminiscent of the leaky integration of synaptic inputs in bio-
logical neurons. However, to understand the neural basis of probabilistic
computation, we need to define the rules according to which a neuron will
fire output spikes as a function of its synaptic inputs, that is, what relates its
output spike train Ot with the synaptic input st. In other words, what is the
neural code? This output spike train should provide a good representation
of Lt , since it is all that will be available for performing further probabilistic
computations.

2.2.1 Spike Generation. We use the same convention for Ot as for si
t , for

example, Ot = 1 when an output spike is fired between time t and t + dt,
and 0 otherwise.

Predictive coding. We propose that each spike deterministically reports
new information about the state xt that is not redundant with what was
already reported by the preceding spikes. In other words, the neuron per-
forms a form of predictive coding and fires only when it cannot predict
itself. This corresponds more or less to having spikes represent the tempo-
ral derivative of Lt .

Intuitively, this ensures that the model is self-consistent, in the sense
that the output of the Bayesian neuron can be used as an input for another
Bayesian neuron. If spikes represent only new information rather than an
integration of sensory evidence, they can be harmlessly integrated in later
processing stages without running into the problem of redundant succes-
sive integrations. The cost of this neural code is that exact inference can
be performed only in a limited family of generative models, where only
the objects highest in the hierarchy truly have a temporal dynamics (see
Figure 6B).

In order to fire only when new information is available, we propose that
a neuron implements a form of spike-dependent adaptation, increasing its
firing threshold after each spike. Thus, the neuron compares online the
odds for its hidden variable, Lt , with a prediction Gt computed from the
output spike train. A spike is emitted when the odds (a leaky integration
of the synaptic input st) exceeds the prediction (a leaky integration of the
output spike train Ot). We defined the prediction Gt as what another neuron
would obtain as estimates for Lt if it was integrating the output spikes,
with a synaptic weight of go and bias of 0 (as in equation 2.1, but applied
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to the output spike train rather than the synaptic inputs). In this way,
our neuron fires only when what it “believes” (Lt) would not match what
another neuron could learn from its previous spikes (Gt). This reasoning is
illustrated in Figure 3A.

Thus, the dynamical equations relating the input and the output spike
trains are:

L̇ = ron(1 + e−L ) − roff(1 + e L ) +
∑

i

wiδ
(
si

t − 1
) − θ

Ġ = ron(1 + e−G) − roff(1 + eG) + goδ(Ot − 1)

Ot = 1 if and only if Lt > Gt + go

2
. (2.3)

Here go , a positive constant, is the only free parameter, the other parameters
being constrained by the statistics of the synaptic input st .

Figure 3B plots a typical trial, showing the behavior of L , G, and O be-
fore, during, and after the presentation of the stimulus. As random synaptic
inputs are integrated, L fluctuates and eventually exceeds G, leading to an
output spike. Immediately after a spike, G jumps to G + go , which prevents
(except in very rare cases) a second spike from immediately following the
first. Thus, this “jump” implements a relative refractory period, or a spike
frequency adaptation mechanism. However, G decays as it tends to con-
verge back to its stable level (the prior) gs = log( ron

roff
). If new positive synaptic

evidence arrives in the form of spikes at excitatory synapses, L eventually
exceeds G again, leading to a new spike. This threshold crossing happens
more often during stimulation (xt = 1) as the net synaptic input alters to
create a higher overall level of certainty, Lt . As illustrated in Figure 3B,
the prediction Gt tracks the log odds and provides a rough approximation
when the log odds is above the prior Lo .

Similar mechanisms have been proposed to describe the effects of relative
refractory periods (Gerstner & Werner, 2002) and spike-dependent adapta-
tion (Liu & Wang, 2001). Our approach proposes a specific computational
role for these forms of adaptation. This firing mechanisms allow Bayesian
neurons to be self-consistent: another neuron, integrating the output spike
train Ot with equation 2.2, would recover an estimate of Gt and thus an
estimate of the log odds Lt , since G tracks L . The same operations can be
applied on the input and the output spike trains, which would not be the
case if the neuron’s firing rate represented Lt explicitly (see section 3).

In the companion letter in this issue, we show that the log odds can be
decoded even more accurately, including log odds that are below the prior
Lo = log( ron

roff
). Note also that an efferent neuron needs to know ron and roff to

decode the output spike train Ot . This information is not directly available
in the output spike train but can be learned by the efferent neuron (see the
companion letter).
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Figure 3: Predictive coding: Mechanism and prediction for firing statistics.
(A) Diagram illustrating the principle of predictive coding. Gt is both what
another neuron would know about the hidden variable xt by observing the out-
put spikes and the firing threshold. (B) An example trial. Solid line: Lt . Dotted
line: Gt . Thick black line: output spikes fired on this trial. Shaded area indicates
periods when xt = 1. Parameters were xt , dt = 0.1, ron = 0.001, roff = 0.01, go = 1.5,
N = 50, q i

on = 0.06, and q i
off = 0.03. (C) An example output spike raster plot (black

dots represent spikes, one trial on each line) and mean firing rate (solid line) of
the neuron. The mean input firing rate is obtained by averaging the number of
spikes fired in temporal window dt = 0.1 ms for 10,000 trials (D) Mean output
firing rate (number of spikes fired during one second, averaged over 1000 trials)
during presentation of the stimulus (xt = 1) as a function of the mean synaptic
drive for a random selection of parameters and for three different go . Top cir-
cles and line: go = 0.5; middle circles and line: go = 1; bottom circles and line:
go = 2. The lines represent the prediction of the model Ō = Ī

go
. Each data point

represents a random selection of parameter: ron and roff between 0.1 and 0.00001;
N = 20; dt = 0.1; q i

off between 0.005 and 0.05 for each i . q i
on = exp(wi )q i

off where
wi is randomly selected between −0.5 and 0.5. Because of sampling problems,
sets of parameters leading to firing rates bigger than 0.1

dt were excluded. (E) Inter-
spike interval distribution for the output spikes, computed during presentation
of the preferred stimulus (parameters as in Figure 3C). The light line indicates
the ISI distribution of a Poisson process with the same firing rate.
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The efficiency of this encoding depends directly on the variable go , which
defines how many spikes a neuron is willing to fire in order to represent the
odds. If go is very small, the decoding is more precise, but the encoding is
expensive, given that there are potentially as many or more output spikes
in Ot than there were input events in st . If go is large, the representation
is less accurate, since small fluctuations in log odds can lead to big jumps
in the prediction. However, there are many fewer output spikes than input
spikes, that is, the information is greatly compressed, for a very limited
information loss.

For the simulations presented in this letter, we chose go = 1.5 (except oth-
erwise stated). Thus, whenever neurons fire a spike, its predicted odds Gt

increases by 1.5. In other words, an output spike expresses a multiplication
of the odds ( P(xt=1)

P(xt=0) ) by e1.5.

2.2.2 Prediction for the Output Firing Statistics
Mean firing rate. The instantaneous firing rate Ōt of the Bayesian neuron

during presentation of its preferred stimulus (i.e., when xt switches from 0
to 1 and back to 0) is plotted in Figures 3C and 3D.

In contrast with the log-odds ratio (see Figure 2), the mean output firing
rate Ōt tracks the state of xt almost perfectly rather than exhibiting slow
rise and fall when the hidden state switches on or off (see Figure 3C). This
is because, as a form of predictive coding, the output spikes reflect the
new synaptic evidence, contained in the total input It = ∑

i wiδ(si
t − 1) − θ ,

rather than the log-odds ratio itself.
Moreover, the mean output firing rate is very close to a rectified linear

function of the mean input, Ō= 1
go

[̄I]+ = 1
go

[
∑

i wi q i
on(off) − θ ]+. This is illus-

trated in Figure 3D for random selections of parameters and three different
go . This relationship between Ō and the mean level of evidence Ī received
by the neuron is a direct consequence of the fact that G tracks L and follows
the same dynamics (see section 3 and appendix B).

Note that when xt = 1, the mean synaptic input is given by (before taking
the limit for small dt; see appendix A)

Īon = 1
dt

∑
i

q i
ondt log

(
q i

on

q i
off

)
+ (

1 − q i
ondt

)
log

(
1 − q i

ondt
1 − q i

offdt

)
. (2.4)

From this we can conclude that the mean input when xt = 1 is also the
Kullback-Leibler (KL) divergence between the probability of the instanta-
neous synaptic input when the state is 1 and 0, that is,

Īondt = KL(p(st|xt = 1)|p(st|xt = 0)), (2.5)

and, vice versa, when xt = 0, Īoffdt = −KL(p(st|xt = 0)|p(st|xt = 1)).
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Our model predicts neurons that respond as long as they receive evidence
that their preferred stimulus is present and stop responding when their
stimulus disappears, with rather sharp transitions rather than slow ramps
between active and inactive states. This is easy to understand intuitively:
as long as the stimulus is present, the new sensory inputs received since the
last output spike result in an increase of the log odds Lt . Meanwhile, the
predicted log odds Gt decreases as the neuron forgets the contribution of
its last output spike. This will lead to a new output spike when Lt crosses
Gt once again.

Note that this model neuron signals unpredictable changes of the prob-
ability of xt = 1, not unpredictable changes in the state xt itself. A neuron
using predictive coding for the state rather than the probability of xt would
signal changes in this state, for example, switches from xt = 0 to xt = 1.
Thus, this neuron would fire only at the time when the stimulus appears
and become silent during longer presentation of the stimulus. A large class
of sensory neurons may match this description, and we intend to explore
this alternative hypothesis in future work.

This is in contrast with neurons whose firing rate is proportional to
Lt . The firing rate of such neurons would increase linearly when their
stimulus is present and decrease linearly when their stimulus is absent
(but eventually saturate). There is evidence for this last form of coding
in sensorimotor areas during slow integration tasks (Mazurek, Roitman,
Ditterich, & Shadlen, 2003). However, in addition to the computational
problems posed by this kind of representation (see section 3), it seems that
sensory cortical neurons are more likely to fit the first description than the
second.

Poisson-like statistics. While the firing rate of the Bayesian neuron can
simply be described as a function of the hidden state, the structure of
the spike trains themselves looks very irregular and unpredictable from
trial to trial, as illustrated in Figures 3C and 3E. During periods when the
preferred stimulus is present (stimulus-driven response) or absent (rest),
the neuron’s firing appear to be memoryless and close to a Poisson process.
In particular, we found a Fano factor close to 1 and a quasi-exponential
interspike interval (ISI) distribution (see Figures 3D and 3F) for a wide
range of parameters. This prediction can appear surprising given that the
firing time is a deterministic function of the synaptic input. However, this
unpredictable firing is a direct consequence of the unpredictable arrival of
Poisson-distributed synaptic events, that is, of the input noise. Insights into
why this is the case can be obtained by comparing the Bayesian neuron
with a classical neural model, the leaky integrate-and-fire neuron.

2.3 Similarity with Leaky Integrate-and-Fire Neurons. In this section
we show the similarities of the Bayesian neuron with a leaky integrate-
and-fire (LIF) neuron. LIF neurons integrate their synaptic input linearly,
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Figure 4: Equivalence with leaky integrate-and-fire neuron: an example trial.
(A) Interpretation as an adapting integrate-and-fire neuron with time-varying
threshold. Solid line: membrane potential (Lt). Dotted line: threshold (Gt). Thick
solid lines: spikes (Ot). (B) Same neuron and same trial in A. Interpretation as a
leaky integrate-and-fire neuron with a reset. Solid line: membrane potential (Vt).
Dotted line: Constant threshold. Solid thick lines: Spikes Ot . The parameters in
this example are ron = 0.003, roff = 0.005, N = 100, q i

on = 0.4 + sign(i − 70) ∗ 0.1,
q i

off = 0.4 −sign(i − 70) ∗ 0.1, and xt = 1.

with a particular time constant τ , so that the temporal evolution of their
membrane potential between two spikes is expressed by

τ
δV
δt

= −(V − Vrest) + In(t), (2.6)

where In(t) is the average current resulting from presynaptic spiking. When
V reaches a particular threshold, a spike is fired and V is reset to a reset
potential Vreset.

Our goal is not to link arbitrarily different probabilistic messages with
their biophysical counterparts, such as the membrane potential. Actu-
ally the integrate-and-fire neuron, while being useful for its mathematical
tractability, is far from describing the dynamics of real neurons (Aguera y
Arcas, Fairhall, & Bialek, 2003). Rather, we would like to use the analogy
for making further predictions, explain why the firing of Bayesian neurons
is close to memoryless, and express deviation from linearity predicted by
the model.

As a first approximation, we could interpret Lt as the membrane poten-
tial of the neuron and Gt as a time-varying threshold for spike generation,
increasing after each spike (see Figure 4A). Threshold increasing after each
spike has been proposed to implement both refractory periods (Gerstner &
Werner, 2002) and spike-dependent adaptation (Liu & Wang, 2001). Interest-
ingly, our model suggests that such a mechanism might implement predic-
tive coding and ensure that the output spike trains are properly decoded by
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efferent neurons. Note that in contrast with previous models, the Bayesian
neuron has no reset, that is, the membrane potential does not go back to a
rest potential after each spike.

However, we can gain further insights into the computation performed
by this neuron by using a completely different interpretation of the mem-
brane potential. Let us consider that the membrane potential is not L di-
rectly but the difference between L and the prediction G. In other words,
the membrane potential of the neuron is the difference between what the
neuron believes about the hidden state (the current log odds that needs
to be conveyed to other neurons) and what the neurons have already told
using its previous spikes (the prediction G). This implies a certain temporal
independence between successive interspike intervals.

Here we reduced the analysis to prolonged, statistically stable periods
when the state is ON (xt = 1). We define the neutrally stable certainty, L̄, as
the value of L for which the derivative L̇ is zero on average. When L̄ ≈ Ḡ,
go and the input fluctuations can be considered small compared to L̄, we
can approximate the neural dynamics by the following equation for the
membrane potential Vt = Lt − Gt (see appendix B),

τL̄V̇t = −Vt + τL̄It

Vt >
go

2
⇒ Vt = − go

2
and Ot = 1, (2.7)

where τL̄ is the temporal constant of the membrane potential and It is
the synaptic drive to the neuron, as defined previously. Note that It is a
weighted sum of synaptic input minus the bias θ . From this equation, we
can also conclude that since V̄ = L̄ −Ḡ ≈ 0, we have Ō ≈ Ī

go
, in agreement

with simulation results (see Figure 3E).
Additional insights can be obtained if two other conditions are met (see

appendix B): go ≈ 2 eL̄+1
eL̄

and the probability of xt being 1 is relatively high,
for example, L̄ > Lo + 1. We can then approximate the neural dynamics by
the following equation (see appendix B),

τL̄V̇ = −
(

V − go

2

)
+ τL̄(It − Ī)

Vt >
go

2
⇒ Vt = − go

2
and Ot = 1 (2.8)

where Ī is the mean synaptic drive. The “rest” potential Vrest = go
2 is also the

the spike threshold.
This neuron is an integrate-and-fire neuron: it integrates the synaptic

input linearly with a temporal constant τL̄, fires a spike when this membrane
potential reaches a particular threshold ( go

2 in this case), at which time the
membrane potential is reset to − go

2 (see Figure 4B). Note, however, that
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two characteristics distinguish this neuron’s computation from a classical
integrate-and-fire neuron.

The first characteristic is an input-dependent time constant. The temporal
time constant of integration, τL̄, depends on the transition rates, ron and roff,
but also on the mean level of certainty Lt . More precisely, it is given by

τL̄ = 1
rone−L̄ + roffeL̄

. (2.9)

If the neuron receives stronger excitation than inhibition, that is, if Lt is
strongly positive, or if it receives stronger inhibition than excitation, that
is, if Lt is strongly negative, the neuron acts as a coincidence detector and
changes its level of certainty only when receiving several coincident inputs
of the same valence (either several excitatory inputs or several inhibitory
inputs).

If, on the other hand, the neuron’s log-odds ratio is small in terms of ab-
solute value, that is, if the neuron receives approximately the same amount
of positive or negative evidence, the time constant is longer. The neuron acts
like an integrator when it is uncertain of the state of the hidden variable,
taking into account each new piece of evidence that comes in. The temporal
constant is minimal for L = Lo

2 .
Interestingly, a time constant that depends of the level of activation is a

characteristic that distinguishes real neurons from the classical integrate-
and-fire model. When receiving strong excitatory or inhibitory currents,
biological neurons have a conductance that goes up (due to the openings
of ion channels) and thus a time constant that goes down. Cases when L̄ is
strongly positive or negative, and thus the time constant is short, correspond
to cases where neurons receive strongly dominant excitation or strongly
dominant inhibition.

A second interesting characteristic of our model neuron is that in stable
and highly informative regimes, when it can be described by equation 2.8,
it is driven by the synaptic inputs minus the mean input, that is, It − Ī
(see appendix B). A neuron is thus caused to spike not by the progressive
integration of synaptic spikes it receives but by fluctuation of this synaptic
drive around its mean, that is, a balanced input. In particular, the membrane
potential follows a random walk around the spike threshold.

Thus, we can predict that neural firing will be driven by input fluctua-
tions and close to memoryless, with the Fano factor around 1, as in the case
of integrate-and-fire neurons driven by noise (Shadlen & Newsome, 1994).
This is in contrast with classical integrate-and-fire neurons whose firing is
regular when uncorrelated excitatory input dominates (Zohary, Shadlen, &
Newsome, 1994).

It is easy to understand why it should be so. The model neuron im-
plements a form of predictive coding and fires only when the integrated
input exceeds a prediction from the past output spikes. Thus, in effect, it
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is canceling out from its current input the mean input received in the past.
Only unpredictable fluctuations lead to an output spike.

It has been proposed that the Poisson-like firing statistics observed in the
cortex result from neurons with balanced excitation and inhibition around
their threshold (Shadlen & Newsome, 1994). If excitation and inhibition
were not balanced around the firing threshold, neurons would behave as
integrators and generate much more regular spike trains. Indeed, a tight
balance between excitatory and inhibitory conductances has been found ex-
perimentally in neurons (Tao & Poo, 2005) and even in individual dendritic
branches (Liu, 2004). We propose a different, albeit closely related, idea,
where neurons will fire with Poisson statistics even if they do not receive
balanced synaptic input. However, because they use a form of predictive
coding and inhibit themselves through the adaptive mean input Ī, they
will respond to fluctuations of their input in the same fashion as balanced
integrate-and-fire neurons.

Note that while the Bayesian neuron balances itself in a statistically stable
regime, it is not the case in nonstable regimes, when xt rapidly switches
state. Thus, when xt switches ON, the neuron suddenly receives a strong
wave of excitation. This will result in a sharp rise of the log odds, tracked
by the prediction with a delay. The spikes in response to this transient will
be more delayed and more temporally precise than expected if the input
was perfectly balanced. In response to a quickly varying state, the behavior
of the neuron will significantly deviate from Poisson (see Figure 5).

2.4 Similarity with Rate Coding. The model neuron’s output firing
statistics, in response to a Poisson distributed input, is close to a Poisson
process (see Figures 3C and 3E). The mean output firing rate depends on the
hidden state and is conditionally independent of time. Moreover, the firing
rate can be described as a linear rectified function of the mean synaptic
drive or mean rate of evidence received by the neuron, Ī. In this condition,
one might wonder if it is really necessary to consider individual spikes:
the output is not qualitatively different from a rate code model, where the
firing rate provides information about xt .

However, obtaining this input-output function is a nonlinear transform
that requires Lt and Gt as intermediate stages. In effect, it consists of select-
ing among a bombardment of weakly informative synaptic input exactly
what is relevant for the hidden variable. This selective evidence is expressed
in the output spike train, with typically many fewer spikes than in the
synaptic input (this is quite important, given that cortical neurons receive
hundreds of active connections and can fire only a few tens of spikes in a
second). This computation conserves information rather than adds noise by
sampling spikes at random from a particular rate.

More importantly, the Poisson statistics of the output spike train is a
direct consequence of the noise in the synaptic input. If, rather than chang-
ing from trial to trial, the synaptic input was identical (frozen noise), the
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Figure 5: Interspike intervals faithfully reflect fluctuations in probability.
(A) Spike raster plot of a model MT neuron receiving constant motion stim-
ulus in its preferred direction. (B) Spike raster plot of a model MT neuron
receiving random dot motion stimulus with frozen noise. In both cases, the
neuron receives N = 100 synapses—two for each possible 50-dot location. At
each dot location, one synapse is excitatory (wi = 0.5) and fires at 30 spikes per
seconds (q i

on = 0.03) when a dot moves in the neuron’s preferred direction, and
18 spikes per seconds otherwise. Another synapse is inhibitory (wi = −0.5) and
fires with 30 spikes per seconds when a dot moves in the neuron’s antipreferred
direction and 18 spikes per seconds otherwise. The transition rates of the MT
neuron are set to ron = 0.005, roff = 0.01. In the constant motion condition, all the
dots are moving in the neuron’s preferred direction. In the random dot motion
condition, half of the dots (25) are moving in the preferred direction and the
other half in the antipreferred direction. Dots appear independently at each
location with probability p = 0.006 and stay on the screen for 100 ms. Time axis
is in ms.

output spikes would occur at exactly the same time. This also means that
fluctuations in interspike intervals are meaningful in our model: they carry
information about the precise temporal structure of the sensory input, cor-
responding to fluctuations of probability for the hidden variable.

As a consequence, the same model that predicts Poisson-distributed
spikes for noiseless stimuli predicts a more reproducible firing response to
noisy stimuli. It is illustrated as a toy example in Figures 5A and 5B. This
example reproduces an interesting result obtained by Bair (1999). Here an
example mediotemporal (MT) area neuron codes for a hidden variable cor-
responding to the presence or rightward motion in the scene, the stimulus
corresponding to a pattern of moving dots. For simplicity, we assumed that
the MT neuron receives inputs from a set of local V1 motion detector. These
V1 cells fire spikes according to an inhomogeneous Poisson process, with a
rate that depends on the presence in their receptive field of a dot moving in
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their preferred direction. As expected, the response of a rightward motion-
selective cell to constant rightward optic flow looks Poisson, fitting the
predictions of a rate model. In this case, the probability of rightward mo-
tion is constant and high, and fluctuations in this probability are due to
synaptic inputs arriving at unpredictable times from V1 motion detectors.
On the other hand, the response of the same cell to a repeated random dot
motion stimulus appears much more reproducible. The spikes signal peri-
ods of increase in the probability of the preferred motion due to spurious
correlations between the moving dots. These fluctuations in the stimulus
are relevant if the animal is trying to detect subtle and short events.

3 Discussion and Conclusion

We started from an interpretation of synaptic integration in single neurons
as a form of inference in a hidden Markov chain. We derived a model of
spiking neurons able to compute the marginal posterior probabilities of
sensory and motor variables given evidence received in the entire network.
In this view, the brain implements an underlying Bayesian network in a
neural architecture, with conditional probabilities represented by synaptic
weights. The model makes a rich set of predictions for the general properties
of neuron and synaptic dynamics, such as a time constant that depends on
the overall level of inputs, specific forms of frequency-dependent spike and
synaptic adaptation (not shown here), and balanced excitation and inhibi-
tion. However, it is still restricted to probabilistic computations involving
binary variables. In a related work, similar ideas are applied to population
encoding of log probability distribution for analog variables (Huys, Zemel,
Natarajan, & Dayan, 2007).

Despite nonlinear processing at the single cell level, the emerging picture
is relatively simple: the neuron acts as a leaky integrate-and-fire neuron
driven by noise. The output firing rate is a rectified weighted sum of the
input firing rates, and the firing statistics are Poisson. However, these output
spike trains are a deterministic function of the input spike trains. Spikes
report fluctuations in the level of certainty that could not be predicted from
the stability of its stimulus (contribution from Gt). Thus, firing will be, by
definition, unpredictable. This last observation leads us to suggest that the
irregular firing and Poisson statistics observed in cortical neurons (Britten,
Shadlen, Newsome, & Movshon, 1992) arise as a direct consequence of the
random fluctuations in the sensory inputs and the instability of the real
word, but are not due to unreliable or chaotic neural processing.

3.1 Neural Representation of Probability. What is the neural represen-
tation of probabilities? We propose that the probabilities of perceptual or
motor variables are not represented explicitly in the output firing rates of the
neurons. Rather, they correspond to an internal activation level of the neu-
ron, which is not directly observable except by integrating its output spike
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train. The parameters of this integration, and thus what a spike means, are
learned online by efferent neurons. Thus, we propose that neurons and neu-
ral networks are highly adaptive structures that continuously change their
dynamical properties in order to interpret their input as best as possible.

Our model neurons are responding as long as they receive evidence in
favor of their hypothesis, with a firing rate proportional to the strength of
the evidence. In contrast, previous models had proposed that firing rates ex-
plicitly represent probabilities (Mazurek et al., 2003; Rao, 2003; Zemel et al.,
1998; Sahani & Dayan, 2003). This predicts firing rates that increase during
stimulus presentation to reflect the accumulation of evidence. Such neu-
rons have been reported in experiments with monkeys trained to perform
slow-motion integration tasks (Mazurek et al., 2003; Shadlen & Newsome,
2001). In these experiments, the animals were required to signal with an
eye movement the perceived direction of motion of a noisy display. It was
found that cells in the lateral intraparietal cortex (LIP), an area linked to the
planning of eye movements, had firing rates that increased over the dura-
tion of motion integration, with a slope proportional to the strength of the
evidence (i.e., the motion coherence in the display). Thus, these cells acted
as integrators, whose response could be interpreted as a log probability
ratio. In contrast, cells in the MT had a firing rate that reflected the motion
coherence but did not increase or decrease during integration.

The Bayesian neuron described here would be a better description of the
MT cells rather than the LIP cells. In fact, the first type of responses is a
general feature of visual areas, while integrator-like responses are a feature
of sensorimotor area involved in triggering the behavioral output. As we
argue in the next paragraph, the integration stage needs to be reserved for
the last stage in a hierarchy of inference in time. Eventually the probabilities
will need to become explicit in order to be translated into behavioral choices.
However, we propose that they should not be explicit in the early stages
of sensory processing, even if all cortical neurons are involved in Bayesian
computations.

3.2 Why Not a Rate-Based Model? One alternative neural coding of
probability could be to fire spikes stochastically, with a probability that
is proportional to (or a function of) the log probability ratio Lt . Such a
rate-based rule has been proposed by Rao (2003) in a related model. More
generally, rate coding is, to our knowledge, the only form of probabilistic
encoding that has been considered so far (Zemel, Dayan, & Pouget, 1997;
Barber et al., 2003; Sahani & Dayan, 2003). It is compatible with some
neurophysiological data, since firing rates in the lateral parietal areas have
been reported to be proportional to the log probability ratio for appropriate
eye movement responses (Mazurek et al., 2003) or probability of reward
(Glimcher & Rustichini, 2004; Sugrue, Corrado, & Newsome, 2004).

This encoding is seductive in its simplicity. However, it has two ma-
jor drawbacks. First, being a stochastic spike generation rule, it adds
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Figure 6: Why rate coding is not a good solution. (A) Toy example where a
horizontal bar can be caused by stripes, which themselves can be caused by a
tiger. We illustrate here the consequence of transmitting directly Lt , in the form
of a firing rate, from neuron to neuron. Dotted arrows: two redundant paths of
integration. See the text. (B) The same toy example when predictive coding is
used. Here the temporal derivative of Lt is transmitted from neuron to neuron,
and the subsequent integration recovers Lt .

uncertainty, and thus noise, to an otherwise deterministic probability com-
putation. Second, and more importantly, the resulting model would not be
self-consistent since the input and output firing rates have different mean-
ings and different dynamics. The input spike rates q i

on,q i
off are constant and

a function of the state. The output firing rate is a leaky integration, growing
and decaying over time to reflect an accumulation of evidence about the
state (see the dotted line in Figure 2).

Figure 6A is a toy example showing the consequence of this inconsis-
tency. The output of the horizontal bar neuron is sent to a neuron coding for
the presence of horizontal stripes. In turn, the output of the stripe neuron
is sent to a neuron coding for the presence of a tiger. If we suppose that
the output firing rate from the horizontal bar neuron is proportional to the
log probability ratio, we can describe the input-output relationship of the
neuron as a leaky integration. Thus, the output firing rate of the horizontal
bar neuron will consist of a linear ramp, starting at the presentation of the
preferred stimulus, followed by a saturating plateau. Integrator neurons of
this type have been reported (Mazurek et al., 2003). However, the firing rate
of the stripe neuron reflects a double integration of sensory evidence, since
it integrates the output of the horizontal bar neuron and grows quadrati-
cally with time. The tiger neuron reflects a triple integration, and so on. As
a result, the firing rates grow far too much compared to the actual informa-
tion contained in the sensory input, while the delay in response due to the
slow rise of integration becomes increasingly long.
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This problem has its corresponding interpretation in the implicit proba-
bility space. In all logic, a tiger “causes” the presence of stripes, which them-
selves cause the presence of horizontal bars. The corresponding generative
model is a network of a coupled hidden Markov chain (see Figure 6A). The
“naive” form of inference by successive integration described above con-
sists in propagating directly evidence in time and between the variables,
bidirectionally along the paths of the solid arrows in Figure 6A, an algorithm
known as belief propagation (Frey, 1998). However, this is not proper in the
case of coupled hidden Markov chains, since there are loops, that is, mul-
tiple redundant paths of integration in space and time (e.g., the two paths
represented by the dotted arrows in Figure 6A). These redundancies lead to
a gross overcounting of evidence. In general, inference in coupled hidden
Markov chain cannot be performed by simply passing messages in pairwise
links between the hidden variables (Ghahramani & Jordan, 1997). One has
to consider the joint probabilities of all hidden variables in order to com-
pute exactly the probability of future states. This is absolutely intractable if
more than a few variables are involved because of combinatorial explosion.
Cortical neurons receive thousands of connections and cannot possibly take
into account all the possible joint states of all their synapses.

This is the reason why we chose an alternative form of coding, where
spikes signal an increase in Lt compared to what was conveyed by previous
spikes. There is a cost to using this neural code: in the corresponding gen-
erative models, exact inference can be performed only in a limited family
of generative models (see Figure 6B), where only the objects highest in the
hierarchy truly have a temporal dynamic. Thus, stripes and horizontal bars
are caused by the tiger (or other potential causes, such as zebras) but not
directly by their previous states. They are sensory cues that do not exist on
their own. As a consequence, each unit in the hierarchy transmits to the next
unit the evidence it receives (Ot representing the information rate about xt

contained in synaptic input st) without contaminating this evidence with
its own assumed temporal dynamics.

3.3 Bayesian Learning and Spike-Time-Dependent Plasticity. Finally,
it is crucial for the biological realism of the model to find adaptive neural
dynamics and synaptic plasticity rules able to learn the generative model.
In the companion letter, we show that single neurons can learn the synaptic
weights and neural dynamics using spike-dependent plasticity rules.

Appendix A: Differential Equation for Log-Odds Ratio

In this appendix we derive equation 2.1 for the time evolution of the log-
odds ratio, Lt , defined as

Lt = log
(

P (xt = 1|s0→t)
P (xt = 0|s0→t)

)
, (A.1)
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where P (xt = 1|s0→t) (P (xt = 0|s0→t)) is the probability of the hidden state
being 1(0) at time t, given the synaptic inputs received up to time t, s0→t . Let
dt be a suitably small time interval. The probability that the hidden state is
1 at time t + dt, given the synaptic inputs up to t + dt, reads

P (xt+dt = 1|s0→t+dt) = P (st→t+dt|xt+dt = 1)

× [P (xt+dt = 1|xt = 1) P (xt = 1|s0→t)

+ P (xt+dt = 1|xt = 0) P (xt = 0|s0→t)], (A.2)

where P (st→t+dt|xt+dt = 1) is the probability of a synaptic input be-
tween time t and t + dt given that the hidden state is 1 at time t + dt;
P (xt+dt = 1|xt = 1) is the probability that the hidden state stays on during
time interval dt, that is, 1 − roffdt, while P (xt+dt = 1|xt = 0) is the prob-
ability that the hidden state switches on in the time interval dt, that is,
rondt. According to the underlying generative model for synaptic inputs,
P (st→t+dt|xt+dt = 1) is given by

P (st→t+dt|xt+dt = 1) =
∏

i

(
q i

ondt
)si

t · (
1 − q i

ondt
)1−si

t , (A.3)

where q i
ondt is the probability that a spike is emitted by synapse i in [t, t + dt)

given that xt+dt = 1; Thus, equation A.2 becomes

P (xt+dt = 1|s0→t+dt) = pon(ŝdt)[(1 − roffdt)P (xt = 1|s0→t)

+ rondtP (xt = 0|s0→t)], (A.4)

where pon(ŝdt) is shorthand notation for P (st→t+dt|xt+dt = 1). Similarly, one
has

P (xt+dt = 0|s0→t+dt) = poff(ŝdt)[(roffdt)P (xt = 1|s0→t)

+ (1 − rondt)P (xt = 0|s0→t)]. (A.5)

poff(ŝdt) ≡ P (st→t+dt|xt+dt = 0) is given by

P (st→t+dt|xt+dt = 0) =
∏

i

(
q i

offdt
)si

t · (
1 − q i

offdt
)1−si

t , (A.6)

where q i
offdt is the probability that a spike is emitted by synapse i in [t, t +

dt) when xt+dt = 0. By computing the log-odds ratio at time t + dt from
equations A.4 and A.5 and using equations. A.3 and A.6, after some algebra,
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we obtain

Lt+dt − Lt = log
[

1 + dt ·
(

−roff + ron
P (xt = 0|s0→t)
P (xt = 1|s0→t)

)]

− log
[

1 + dt ·
(

−ron + roff
P (xt = 1|s0→t)
P (xt = 0|s0→t)

)]

+
∑

i

log




(
q i

on

q i
off

)si
t

·
(

1 − q i
ondt

1 − q i
offdt

)1−si
t

 . (A.7)

Dividing both sides of equation A.7 by dt, with dt going to zero, gives L̇ t on
the left-hand side. From the first term on the right-hand side, one obtains

lim
dt→0

1
dt log

[
1 + dt

(
−roff + ron

P (xt = 0|s0→t)
P (xt = 1|s0→t)

)]

= −roff + ron
P (xt = 0|s0→t)
P (xt = 1|s0→t)

= −roff + rone−Lt , (A.8)

and analogously from the second term,

lim
dt→0

1
dt

log
[

1 + dt ·
(

−ron + roff
P (xt = 1|s0→t)
P (xt = 0|s0→t)

)]
= −ron + roffe Lt . (A.9)

Some care must be taken in dealing with the last term on the right-hand
side of equation A.7. In fact, this term divided by dt diverges for dt → 0,
when any of the si

t ’s is different from zero. In other words, an arriving input
produces instantaneously a finite variation in the log-odds ratio, leading to
δ functions in the result of the limiting operation, which reads

lim
dt→0

1
dt

∑
i

log




(
q i

on

q i
off

)si
t

·
(

1 − q i
ondt

1 − q i
offdt

)1−si
t



=
∑

i

[
log

(
q i

on

q i
off

)
δ
(
si

t − 1
) − q i

on + q i
off

]
. (A.10)

Finally, from equations A.8 to A.10, one obtains

L̇ t = ron(1 + e−Lt ) − roff(1 + e Lt )

+
∑

i

log

(
q i

on

q i
off

)
δ
(
si

t − 1
) −

∑
i

(
q i

on − q i
off

)
. (A.11)
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Notice that for all practical purposes, the synaptic drive in equation A.11
can be rewritten as

∑
i

log

(
q i

on

q i
off

)
δ
(
si

t − 1
) →

∑
i

log

(
q i

on

q i
off

)
si

t .

Appendix B: Analogy with an Integrate-and-Fire Neuron

In this appendix, we consider the analogy between our model neuron and
the leaky integrate-and-fire neuron. From equation 2.3, we can rewrite the
dynamical equation of Vt = Lt − Gt as

V̇ = ron(e−L − e−G) − roff(e L − eG) + It − go Ot. (B.1)

Let us suppose that we are in a statistically stable regime, that is, xt = 0 or
xt = 1, for the entire time period considered, without transitions. Moreover,
suppose that the prediction G tracks L on average, that is, both L and G
fluctuate around the neutrally stable value of L ,L̄. Finally, we consider (quite
abusively) that the fluctuations in L and G are small compared to L̄. This
conditions will often not be met, and thus we cannot treat the derivations
as a quantitative description of the Bayesian neuron behavior. Rather, these
derivations provide a qualitative analogy.

Under these conditions, L̄ is approximately equal to the average value of
L , and we can linearize the equation. The dynamic of V can be described as

τL̄V̇ = −V + τL̄It (B.2)

Vt >
go

2
⇒ Vt = − go

2
and Ot = 1, (B.3)

where τL̄, the time constant, depends on the average level of certainty L̄,

τL̄ = 1

rone−L̄ + roffeL̄
. (B.4)

This describes the dynamic of a leaky integrate-and-fire neuron. To further
characterize the dynamics of this neuron, let us note that

ĪτL̄ = roff(1 + e L ) − ron(1 + e−L )
roffe L + rone−L

. (B.5)

In cases when e L 	 e−L , that is, when L̄ is large, we can conclude that
τL̄Ī ≈ e−L̄ + 1.
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Figure 7: Comparison between the Bayesian and the LIF neuron. (A) An ex-
ample trial (see the text). Solid line: Bayesian neuron’s membrane potential
Vt = Lt − Gt (bottom) and output spike train (plain vertical lines at the top).
Dotted line: Membrane potential of the linearized LIF neuron (bottom) and cor-
responding output spike train (dotted vertical lines at the top). (B) Firing rate of
the Bayesian neuron (observed) versus firing rate of the LIF neuron (predicted)
for random selections of the hidden Markov model’s parameters. The solid line
represents equality. (C) Interspike interval distributions for the Bayesian neuron
(solid line) and the linearized LIF neuron (dotted line) for one arbitrary set of
parameters.

The dynamics of V can be rewritten as

τL̄V̇ = −
(

V − go

2

)
+ τL̄

(
It − go

2τL̄

)
− Ot. (B.6)

From this, we can conclude that when go = 2 + 2e−L̄ , we have

τL̄V̇ = −
(

V − go

2

)
+ τL̄(It − Ī). (B.7)

This description is appropriate under a restrictive set of conditions,
namely, when xt = 1, the information contained in the input regarding xt is
high, and G tracks L successfully.

This approximation will necessarily be very rough, since the assumption
that fluctuations in Lt and Gt are small is not verified in practice. This is
why we refer to the similarity between the Bayesian neuron and the lin-
ear LIF neuron as “analogy” rather than “equivalence.” Figure 7 illustrates
the quality and the limits of this approximation. On Figure 7A, we plotted
an example trial, for xt = 1, ron = 0.01, roff = 0.02, go = 2, N = 30, q i

off = 0.4,
q i

on = q i
off + sign(i − 20) ∗ 0.2. The membrane potential of the Bayesian neu-

ron and the membrane potential of the linearized LIF neuron (see equa-
tion B.7) have similar profiles but also significant mismatches. As a result,
the output of the Bayesian neuron cannot be perfectly predicted by the LIF
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neuron on a spike-by-spike basis. However, the first-order (see Figure 7B)
and second-order (see Figure 7C) statistics of the spike train are very similar
in the two model neurons. Each data point in Figure 7B was obtained by
randomly selecting the parameters ron, roff, and q i

on and q i
off. Figure 7C uses

the same parameter as Figure 7A.
When xt = 0, interspike intervals are much longer than the dynamics of

Gt . Thus, we can neglect the dynamics of Gt , and the dynamics of Vt can be
approximated as a random walk to a fixed threshold (0).

In the low-information case, when L̄ ≈ Lo , the variance of the synaptic
drive It will be approximately equal to its mean. If the neuron receives a
large number of synapses (N is big), the standard deviation of the input will
strongly dominate its mean. Thus, we can still predict an almost balanced
input and a very irregular firing driven by fluctuations to threshold. This
is in contrast with classical IF, where the standard deviation of the synaptic
input becomes infinitely small for a large number of synapses, leading to
unrealistically regular firing behavior (Shadlen & Newsome, 1994). To see
this, let us consider the case when the synaptic drive is small and the number
of synapses is large. In this condition, we can rewrite q i

on = q i
off + εi , where

εi is small compared to q i
on. We get

Ī =
〈∑

i

wi si
t − θ

〉
=

∑
i

ε2
i (B.8)

var(I ) =
∑

i

ε2
i (1 + εi ) ≈ Ī. (B.9)
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