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Abstract— The problem of scheduling data for a DS-CDMA
downlink, over a fading channel is considered. We show that high
speed downlink data is most efficiently supported by time division
of the channel, by letting only one single user in each cell access
the channel at a time. For efficient resource utilization, some form
of scheduling is required to determine which user should transmit
at any given instant of time. Scheduling algorithms of different
adaptation rate are suggested and compared. To avoid unfair per-
formance, an algorithm that schedules a user to transmit when
its channel is the “relatively best” is analyzed. We show that this
algorithm asymptotically provides the same fairness as a round
robin scheduler, but the throughput is significantly improved. For
a Rayleigh fading channel, we show that the scheduling gain is in
fact equal to the gain of a selection diversity scheme.

I. INTRODUCTION

Forthcoming wireless systems are supposed to support a va-
riety of services, requiring different Quality of Service (QoS).
Unlike voice services, which exhibit a stable stream of data
flow, having tight delay requirements, packet data is more de-
lay tolerant and suitable for nonreal time services. Since these
services may require significantly larger amount of data to be
delivered, along with the low reliability and time varying ca-
pacity of the wireless channel, efficient bandwidth allocation is
a priority.

To satisfy increasing demands for high-speed packet data,
emerging standards for next-generation DS-CDMA systems are
currently extended to cope with higher data rates. Both the out-
lined HDR mode [1] and HSDPA [2] consider a time divided
downlink, in some cases offering peak rates around 10 Mbps.
Transmitting the users’ data in a one-by-one fashion can be
regarded as providing an average data rate, as opposed to the
continuous rate of voice. It has been shown that this multiple
access concept has merits in terms of substantially increased
capacity [3]. As the larger delay tolerance provides more free-
dom to adaptively plan the transmissions, it is anticipated that
the channel fading can be easier to cope with, or even be in fa-
vor. The concept of “water filling” in time is well known and
gives a possibility for unequal service and higher capacity for
users with favorable channel states. To reap the benefits of the
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asynchronous time variations, some form of channel estima-
tion is needed as input to the scheduler. Rapid estimation and
feedback of channel states have been suggested for HDR and
HSDPA [1, 2], for supporting fast scheduling, ARQ and link
adaptation. Given the estimated channel quality, a problem for
the scheduler is to determine which user gives the “best” uti-
lization.

Although always scheduling the user with the highest link
quality may maximize capacity, it can result in too unfair a per-
formance among the users. Such fairness issues have been stud-
ied for many type of systems, not only wireless. In [4], Kelly
extended the classical max-min fairness, where user through-
puts are made as equal as possible subject to channel capaci-
ties, to an alternative proportional fairness criterion, aiming to
maximize a sum of utilities. Other performance criteria can be
found in [5–8]. In [9–11], asymptotical analysis of schedul-
ing was studied. In [9, 10], the purpose was to schedule the
users to get access to the channel the same asymptotical frac-
tion of time but taking advantage of instantaneous channel vari-
ations. The algorithm was based on the criterion in [4]. It was
shown that the performance gain increased with the variance of
the channel fading. In [11], the objective was to maximize the
minimum long-run expected average throughput, subject to re-
quired throughput targets. In this work we will, similarly to [9,
10], consider an asymptotical analysis, where fairness accounts
for providing certain channel access time fractions among the
users. That is, equal expected throughput is not necessarily
guaranteed, rather the access to the channel.

We consider two classes of schedulers; slow (nonadaptive)
and fast (adaptive). The slow scheduler base its decisions on
slow channel variations, like attenuation and shadowing, or
does not adapt to the channel at all. Clearly, this form is robust
and requires small overhead, to the price of performance. A
simple type of channel nonadaptive scheduling, known to allo-
cate the access times fairly, is the Round Robin (RR) scheduler.
However, although the time allocation of RR is fair, the perfor-
mance is mostly not very encouraging in fading environments.
We suggest a channel adaptive scheduler, taking into account
the different channel conditions, where the user with the “Rel-
atively Best” (RB) channel state is scheduled. The underlying
principle is that a user which has a good quality relative to its



expected quality, transmits. The gain from this is that the same
asymptotical fairness as RR is maintained but all users will ex-
perience higher throughput. In particular for Rayleigh fading,
the scheduling gain of RB over RR is shown to be the same as
the gain of a selection diversity scheme.

In Section II, the assumptions and system model are given.
Two classes of schedulers are analyzed in Section III and nu-
merically verified in Section IV. The conclusions end the paper
in Section V.

II. SYSTEM MODEL

Consider a single cell in a DS-CDMA system with a spread-
ing bandwidth W . The required Eb/I0 is set to Γi for any user
1 ≤ i ≤ N . The data buffers are considered to be full all the
time and the downlink transmission power is fixed at P . With
Ii +νi denoting the intercell plus background interference level
and gi(t) the time variant link gain, we define the instantaneous
channel state as ξi(t) = gi(t)P/(Ii + νi). The instantaneous
transmission rate of user i is assumed to follow

ri(t) =
W

Γi

ξi(t)∆i

θi(1 − ∆i)ξi(t) + 1
(1)

where ∆i ∈ [0, 1] denotes the fraction of the transmission
power allocated to user i and θi ∈ (0, 1] denotes the orthog-
onality factor, which is assumed to be fixed.

If one-by-one transmission is employed, all the transmission
power in the cell can be given to the user when it transmits.
Consequently, ∆i = 1 and the instantaneous transmission rate
of a transmitting user becomes

ri(t) =
W

Γi
ξi(t). (2)

We assume that ξi(t) can be accurately estimated and and
that it is a wide sense stationary and ergodic stochastic pro-
cess for all users i. The channel state of each user has a mean
Eξi [ξi(t)] = ξ̄i for all t. From the these assumptions, we have
the asymptotical data rate

Ri
def= lim

T→∞

1
T

∫ T

0
ri(t)dt =

W

Γi
ξ̄i. (3)

where the limit denotes convergence almost surely. For the nu-
merical evaluation, the channel fading is assumed to follow the
noncentral χ2 distribution with two degrees of freedom,

fξi(x) =
K + 1
ξ̄i

e
−K− (K+1)x

ξ̄i I0

(√
4K(K + 1)x

ξ̄i

)
(4)

where K is the Rice factor [12]. The Rice factor is the ratio
of the power in the specular and scattered components. When
K = 0, the channel exhibits Rayleigh fading and when K →
∞ the channel is not fading at all.

III. ONE-BY-ONE SCHEDULING

In [3], it was shown by using snapshot analysis that one-by-
one scheduling outperforms simultaneous transmission in terms
of throughput for nonfading channels. The next proposition
shows that this property holds even if we let the link gains be
time varying and stochastic. This justifies our choice to focus
on scheduling one-by-one transmissions. Let φi be the fraction
of time user i transmits, where 0 ≤ φi ≤ 1 and

∑N
i=1 φi = 1.

Proposition 1. The total throughput
∑N

i=1 Ri of a one-by-one
transmission scheme is greater than that of simultaneous trans-
mission.

Proof. Consider the asymptotical fraction of time φi that is
required to obtain the same average data rate as using simulta-
neous transmission:

Ri = φi
W

Γi
ξ̄i =

W

Γi
Eξi

[
ξi(t)∆i

θi(1 − ∆i)ξi(t) + 1

]
(5)

Since the channel state ξi(t) is a stationary ergodic process, it
follows that the channel at certain time instant t is determined
by a density function fξi(x), which is independent of t. Further-
more, it is reasonable to assume that ξi(t) ≥ 0 and the proba-
bility that ξi = 0 is strictly less than one. That is, fξi(x) = 0
for all ξi < 0 and fξi(x) �= δ(ξi) where δ(x) denotes the Dirac
delta function. It follows for any i with ∆i < 1 that

Eξi

[
ξi(t)∆i

θi(1 − ∆i)ξi(t) + 1

]
=
∫ ∞

0

ξi∆i

θi(1 − ∆i)ξi + 1
fξi(ξi)dξi

<

∫ ∞

0
ξi∆ifξi(ξi)dξi = ∆iξ̄i.

Hence, we get

Ri = φi
W

Γi
ξ̄i <

W

Γi
∆iξ̄i.

Solving for the sum of φi yields

N∑
i=1

φi <
N∑

i=1

∆i = 1.

The excess time fraction 1 −
∑N

i=1 φi > 0 could be utilized
to transmit more data. Consequently, the throughput of a one-
by-one scheduling scheme is greater than that of simultaneous
transmission. �
Since (1) is concave in ξi, Jensen’s inequality provides a sim-
ple upper bound of the throughput, which alternatively proves
Proposition 1,

Ri ≤ W

Γi

ξ̄i∆i

θi(1 − ∆i)ξ̄i + 1
. (6)

The bound becomes an equality for ∆i = 1. Now, consider two
different classes of schedulers.



A. Slow Scheduling

A simple and robust type of scheduling is to ignore the in-
stantaneous channel variations and determine a transmission
schedule in advance. Thus, the input parameters to the sched-
uler are measured on long term basis and do not adapt to the
fast variations. As the time average of ξi(t) equals its ensemble
mean ξ̄i, the expected throughput of a user will asymptotically
be

Ri = φi
W

Γi
ξ̄i. (7)

A resource fair algorithm is round robin (RR), where

φi =
1
N

(8)

and the channel access is evenly allocated over all users. A
fully performance fair allocation would give the same through-
put rather than time fractions to all users. This can be achieved
by an equal throughput (ET) scheduler

φi =
Γi/ξ̄i∑N
j=1

Γj

ξ̄j

(9)

which gives each user a throughput of R0 = W/
∑N

i=1
Γi

ξ̄i
. The

next result shows that the resource fair strategy results in better
system throughput.

Proposition 2. The total throughput
∑N

i=1 Ri of RR is greater
than that of ET.

Proof. By observing that f(x) = x+ x−1 ≥ 2 for nonnegative
x, we can write

N∑
i=1

xi

N∑
i=1

1
xi

≥ N + 2
N∑

i=1

(N − i) = N2

which means that

N ≤
N∑

i=1

Γi

ξ̄i

1
W

N∑
i=1

1
N

W

Γi
ξ̄i

or equivalently

NR0 =
NW∑N
i=1

Γi

ξ̄i

≤
N∑

i=1

1
N

W

Γi
ξ̄i.

�

Another strategy for allocating the φi could be by normalized
expected channel states. Such a fractionally fair (FF) assign-
ment yields

φi =
ξ̄i/Γi∑N
j=1

ξ̄j

Γj

. (10)

This causes users which have ξ̄i

Γi
< 1

N

∑N
j=1

ξ̄j

Γj
to obtain lower

throughput than for RR, however the next result shows that the
total throughput in the cell will increase.

Proposition 3. The total throughput
∑N

i=1 Ri of FF is greater
than that of RR.

Proof. By using the Chebyshev sum inequality, we find that

N∑
i=1

1
N

W

Γi
ξ̄i

N∑
i=1

ξ̄i

Γi
≤

N∑
i=1

ξ̄i/Γi
W

Γi
ξ̄i

which can be rewritten as

N∑
i=1

1
N

W

Γi
ξ̄i ≤

N∑
i=1

ξ̄i/Γi∑N
j=1 ξ̄j/Γj

W

Γi
ξ̄i.

�

In Proposition 2 and 3, equality is achieved iff, for all i, ξ̄i/Γi =
C, whereC > 0 is an arbitrary constant. Hence, we have shown
that the resulting throughputs are related as ET ≤ RR ≤ FF .

B. Fast Scheduling

Now, consider a situation where for any time instant the sam-
ple ξi is perfectly available. The suggested relatively best (RB)
algorithm decides from a normalized channel state and gives an
instantaneous throughput of

ri(t) =

{
W
Γi
ξi(t), if ξi(t)−ξ̄i

ci
> maxj �=i

[
ξj(t)−ξ̄j

cj

]
0, otherwise.

(11)

Ties are broken with equal probability. The ci are positive con-
trol parameters, resulting in different time fractions φi. Thus,
the scheduling decision is made from a normalized state, re-
ferred to as the “relatively best”. The consequence is that
each user only transmits on good instants, but with a certain
asymptotical channel access, controlled by the ci. The expected
throughput is,

Ri =
W

Γi
Eξi

[
ξiPr

{
ξi − ξ̄i

ci
> max

j �=i

[
ξj − ξ̄j

cj

]}]

=
W

Γi
Eξi


ξi

∏
j �=i

Pr

{
ξi − ξ̄i

ci
>

ξj − ξ̄j

cj

} (12)

where the last equality follows from that the channels are as-
sumed to be mutually independent. If we consider a Rayleigh
fading channel, K = 0, the conditional probability that user i
has a relatively better channel than user j is given by:

Pr

{
ξj ≤ cj

ci
(ξi − ξ̄i) + ξ̄j |ξi

}
=






0, cj

ci
(ξi − ξ̄i) + ξ̄j < 0

1 − e
−

cj
ci

(ξi−ξ̄i)+ξ̄j

ξ̄j ,
cj

ci
(ξi − ξ̄i) + ξ̄j ≥ 0

If we let ξ0 = maxj �=i[0, ξ̄i − ci

cj
ξ̄j ], the resulting asymptotical

time fraction assignment can be written as

φi =
∫ ∞

ξ0

∏
j �=i

(1 − e
−

cj
ci

(ξi−ξ̄i)+ξ̄j

ξ̄j )
1
ξ̄ i

e
− ξi

ξ̄i dξi. (13)

The feasible time fractions cannot take any values. Consider an
example with N = 2, c1 = aξ̄1 and c2 = ξ̄2. Evaluating the
integral (13) we get

φ1 =

{
(1 − a

1+a)ea−1, 0 < a < 1
1 − a

1+ae
−(1−1/a), a ≥ 1.

(14)

Thus, the feasible time fraction is here limited to e−1 ≤ φi ≤
1 − e−1. For further generalization, consider two classes of
users where there are NA users with ci = aξ̄i and N − NA

users with cj = ξ̄j . For 0 < a < 1, the resulting time fractions
become for any of the NA users

φi =
NA−1∑
k=0

N−NA∑
l=0

(
NA − 1

k

)(
N − NA

l

)
(−1)k+l ×

e−(1−1/a)l−(k+1+l/a)(1−a)

k + 1 + l/a

and for a ≥ 1

φi =
NA−1∑
k=0

N−NA∑
l=0

(
NA − 1

k

)(
N − NA

l

)
(−1)k+l ×

e−(1−1/a)l

k + 1 + l/a

where a binomial expansion is performed in (13). In Fig. 1,
this is plotted for N = 10 and NA = 1, 2, . . . , N . The ar-
rows denote increasing values of NA. As expected, φi = 0.1
at a = 1. It should be pointed out that the characteristic of the
time fraction curves is very much dependent on the parameters
N and NA, compare, e.g., with the two dimensional case (14)
above. For fair comparison between scheduling algorithms,
their asymptotical time fractions should be the same. Impor-
tantly, it can easily be shown that when ci = ξ̄i, the integral
(13) reduces to φi = 1/N . Therefore, the RB algorithm can
provide the same asymptotical fairness as RR. This also holds
for K > 0.

IV. SCHEDULING GAIN FUNCTION

The expected throughput of RB can for the Rayleigh fading
channel, be evaluated by

Ri =
∫ ∞

ξ0

W

Γi
ξi

N∏
j=1
j �=i

(1 − e
−

cj
ci

(ξi−ξ̄i)+ξ̄j

ξ̄j )
1
ξ̄ i

e
− ξi

ξ̄i dξi. (15)
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Fig. 1. Feasible time fractions for different NA when N = 10.

To compare with RR, we let ci = ξ̄i, which, after some algebra,
results in that (15) equals

Ri =
W

Γi

ξ̄i

N

N∑
k=1

1
k
. (16)

This should be compared with Ri = W
Γi

ξ̄i

N , the expected
throughput for RR. Thus, we can define a scheduling gain

G =
N∑

k=1

1
k

≈ lnN + γ +
1

2N
(17)

where γ ≈ 0.577 is the Euler constant. The approximation be-
comes tight for large N [13]. Therefore the scheduling gain
from RB compared to RR increases with the load N . It can be
noted that (17) describes the total throughput gain in the cell
as well. Furthermore, this scheduling gain is exactly as that
for selection diversity on a Rayleigh fading channel [12] with
ξ̄i/N as the SNR in each branch. Although G is increasing in
N , the absolute throughput of an individual user decreases, and
asymptotically Ri = O(lnN/N) which is captured in Fig. 2.
There, the normalized throughputs of RB and RR, 1

N

∑N
k=1

1
k

and 1/N , are plotted, describing the relative loss by increasing
the number of users. For RR, the normalized throughput de-
creases by half when adding one more user to N = 1. For the
same degradation, the RB can support at least 3 more users.

The closed form expression (16) accounts for Rayleigh fad-
ing. If we consider general K factors, it can be shown that [14]

Pr[ξi ≤ x] = 1 − Q1

(
√

2K,

√
2(K + 1)

ξ̄i
x

)
(18)

where Q1(·, ·) is the Marcum Q-function. Generalizing (15)
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Fig. 2. The relative throughput loss as function of the number of users. The
asymptotical time fractions are set to φi = 1/N for both RB and RR.

and using (4) and (18),

Ri =
∫ ∞

ξ0

W

Γi
ξi

∏
j �=i

Pr[ξj ≤ cj

ci
(ξi − ξ̄i)+ ξ̄j ]fξi(ξi) dξi, (19)

the throughput can be found by numerical integration. In Fig.
3, we plot the scheduling gain for different values of Nand K.
The result of (17) corresponds to the curve of K = 0. The
results show that, the larger Rice factor, the less gain from the
proposed scheduler but the gain is still significant.

V. CONCLUDING REMARKS

From Proposition 1, one-by-one transmission was shown to
be superior to simultaneous transmission for downlink schedul-
ing in DS-CDMA over fading channels. This assumed a linear
relation between rate and signal-to-interference ratio. That as-
sumption may be less valid when adaptive modulation and cod-
ing are used. However, even if Proposition 1 would not hold
under a nonlinear relation, higher throughput may still be ob-
tained than simultaneous transmission, using the RB scheduler.
This is due to that the proof is based on averaging and does
not consider multiuser diversity aspects, captured by the addi-
tional scheduling gain. The fairness criteria was here to give
the users access to the channel the same fraction of time. Alter-
natively, users could be given different service in terms of in-
dividual asymptotical time fractions, controlled by the ci. Our
numerical results confirm those of [9, 10], where the throughput
increased with the channel variability. It should be noted that
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Fig. 3. The scheduling gain for RB over RR for different Ricean factors K .
The asymptotical time fractions are set to φi = 1/N for both RB and RR.

for the RB scheduler, the expected throughputs will not neces-
sarily be equal, but such requirements can be met by adjusting
the transmission power P .
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