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Abstract—The Compress-and-Forward (C&F) cooperative 
relaying strategy is known to outperform Decode-and-Forward 
(D&F) when the relay is close to the destination. In this paper, we 
derive achievable rates on Gaussian vector channels with 
cooperative C&F relaying. In order to extend previous 
information-theoretic results from the scalar to the vector 
Gaussian channel, we exploit recent results in distributed source 
coding. Like in source coding with side information at the 
decoder, the relay applies a Conditional Karhunen Loeve 
Transform (CKLT) to its observed signal, followed by a separate 
Wyner-Ziv encoding of each output stream with a different rate 
and under a sum-rate constraint. However, these Wyner-Ziv 
coding rates are such that the total mutual information between 
the source and destination is maximized. This differs from the 
conventional source coding approach in which the rates are 
selected to minimize the total squared distortion, leading to the 
well-known reverse-waterfilling algorithm. We show that the 
maximization of the C&F mutual information is also a convex 
problem. The optimum Wyner-Ziv coding rates have a simple 
analytical expression, and can be obtained by a waterfilling 
algorithm. Finally, we illustrate these results by simulations of 
MIMO-OFDM relaying in a system similar to IEEE802.16. 
 

Index Terms—cooperative, relaying, compress, forward 
 

I. INTRODUCTION 

In recent wireless standardization efforts, such as IEEE 
802.11n and 802.16e, the supported physical layer is able to 
operate close to capacity by combining the benefits of Coded 
Orthogonal Frequency Division Multiplexing (COFDM), 
multiple antenna transmission, powerful error-correcting codes 
(e.g. LDPC) and Adaptive Modulation and Coding (see e.g. 
[1] for an illustration in 802.11n context). Moreover, the 
addition of relaying features is also being discussed in 802.11s 
and 802.16j Task Groups, mostly at the MAC but also at the 
PHY level. This highlights the need for relay channel capacity 
bounds on Gaussian vector channels. 

This paper assumes a single relay for simplification. 
Moreover, the relay is assumed to operate in half-duplex 
mode, because this greatly simplifies practical implementation. 
We assume Time Division Duplex (TDD) operation in the rest 
of this paper, which allows us to divide the time into two slots 

 
 

where the relay receives during first slot of duration t  and 
transmits during second slot of duration 1 t−  with 0 1t≤ ≤ . 
We focus on cooperative relaying (see e.g. [3] for an 
overview), in which the destination combines the signals 
received from the source and the relay.   

The relay may be either regenerative or non-regenerative. 
An example of regenerative relaying strategy is D&F, in which 
the relay decodes all the information sent by the source before 
forwarding it to the destination. Non-regenerative relaying 
schemes include the Amplify-and-Forward (A&F) and C&F 
strategies. An A&F relay simply retransmits the signal 
received from the source after amplification. In [4] and [5] the 
A&F concept is extended to vector channels by allowing the 
relay to perform a linear processing on the received signal 
before transmitting it to the destination. The C&F approach 
was initially suggested in [10]. A C&F relay quantizes the 
signal observed during 1st slot and sends a compressed version 
of this signal in 2nd slot. The compression exploits the fact that 
the observations at the relay and destination during slot 1 are 
correlated. More precisely, the relay employs source coding 
with side information at the destination (a.k.a. Wyner-Ziv 
coding [9]). Recent work [2] shows that the achievable rate of 
D&F is higher when the relay is close to the source, but C&F 
approaches the max-flow min-cut upper-bound on capacity as 
the relay gets closer to the destination, while A&F capacity is 
severely limited by the time sharing parameter constrained to 

1/ 2t = . Note that A&F can however become attractive in 
systems where aggressive reuse of the 2nd slot is possible [16]. 

 In [6], Høst-Madsen and Zhang derive achievable rates for 
the TDD C&F scalar Gaussian relay channel. They show that 
with the C&F relaying strategy, the mutual information 
between the source and the destination depends on a 
“compression noise” which differs from the distortion in 
general. This compression noise was first introduced by Wyner 
[9], who derived the rate-distortion function for source coding 
with Gaussian source and Gaussian side information. In [8], 
we attempted to derive achievable C&F rates in Gaussian 
vector channel. However, we assumed that the distortion was 
equal to the compression noise, which is valid only in certain 
conditions clarified later in this paper. Besides, we also 
assumed that side information was available at the relay and 
destination, which prevented us from stating whether the rates 
were achievable or not. In [7], Gastpar et al. studied 
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distributed source coding and showed that the rate-distortion 
coding of a Gaussian vector source with side information at the 
decoder could be achieved by first applying a Conditional 
Karhunen-Loeve Transform (CKLT) to the source and then 
separately performing Wyner-Ziv encoding of each output 
stream. Gastpar focused on minimizing the total squared 
distortion. The rate at which each eigenmode is quantized is 
univocally related to the distortion on this eigenmode. The 
solution which minimizes total squared distortion is given by 
the so-called reverse-waterfilling algorithm [12] which 
attempts to spread the distortion uniformly over the 
eigenvalues of the conditional covariance matrix of the relay 
observation. In this paper, we build upon [9] and [7] to 
generalize the notion of “compression noise” to Gaussian 
vector channels in section II. Then in section III we derive the  
strategy which maximizes the achievable C&F rate on 
Gaussian vector channels. We show that the simple analytical 
solution to this convex problem has a waterfilling 
interpretation, and consists in granting more bits to the 
eigenmodes which are the largest contributors to C&F mutual 
information. Finally, in section IV we illustrate the gain 
provided by the maximum mutual information strategy 
compared to the minimum total distortion strategy by 
simulations in a MIMO-OFDM system similar to IEEE802.16. 
We also benchmark the performance of C&F with other 
strategies such as D&F and A&F. 

II. WYNER-ZIV CODING OF GAUSSIAN VECTOR SOURCE 

A. Signal Model 

We consider a Source S, a Relay R and a destination D. For 
simplification, we perform calculations assuming that only R 
transmits during the 2nd slot, but at the end of section III we 
will discuss how the results should be modified to account for 
simultaneous transmission of S and R during the 2nd slot. The 
signals received at R and D during the 1st slot are denoted by: 

 ,1  and  S R S R S R S D S D S D− − − −= + = +y H x n y H x n  (1) 

where S R−H and S D−H are channel matrices of respective 
dimensions R SN N× and D SN N× . In the following, we will 
denote the covariance matrix of a vector x by xR .  In equation 
(1), vectors Rn and ,1Dn are assumed complex and gaussian of 
respective covariance matrices

RnR and
DnR . The source 

transmit power is bounded by SP . Likewise, during the 2nd 
slot, the destination receives 

 ,2R D R D R D− −= +y H x n  (2) 

where ( )tr
R RP≤xR and ( ),2 0,

DD nn R� �N  

The vectors S R−y  and S D−y are complex Gaussian with 
respective covariance matrices : 

 
S R s R

H
S R S R− − −= +y x nR H R H R  (3) 

 
,1S D s D

H
S D S D− − −= +y x nR H R H R  (4) 

Their cross-correlation matrix equals: 

 ,S D S R s

H
S D S R− − − −=y y xR H R H  (5) 

During the 2nd phase, the relay sends a compressed version of 
its observations S R−y to the destination, which reconstructs an 

estimate ˆ S R−y  using side information S D−y . The mutual 

information between the relay and destination is: 

 ( ) 1; log
R R D

H
R D N R D R DI −

− −= + x nx y I H R H R  (6) 

The average rate at which the relay can encode its observation 
is constrained to be lower than the average mutual information 
between R and D. Each vector S R−y can thus be encoded on 

( )R t bits with:  

 ( )1( ) ;R D
tR t I

t
−≤ x y  (7) 

This rate limitation is going to give rise to distortion. In the 
following we denote by 2ˆ|| ||ˆ S R S RD − −= −y y the total 
squared distortion. In the next sections, we investigate the rate-
distortion trade-off and the impact on the mutual information 
of the cooperative C&F scheme. 

 

B. Source  coding of Gaussian vectors with side information 
at the decoder  

The characterization of the rate-distortion function for 
Gaussian scalar sources with Gaussian scalar side information 
at the decoder is performed by Wyner in [9]. In [6], Høst-
Madsen and Zhang show that the mutual information of 
cooperative C&F relaying depends on a “compression noise” 
introduced in Wyner’s landmark paper. The compression noise 
significantly differs from the distortion at low signal to 
distortion ratio. More recently, Gastpar et al. compute in [7] 
the rate-distortion function of Gaussian vector sources. In this 
section we build upon their work but further detail the coding 
scheme by defining a vector compression noise, which is used 
in the next section to compute the C&F mutual information. 

Let first define the Conditional Karhunen-Loeve Transform 
(CKLT) as in [7]. Given the knowledge of S D−y , the vector 

S R−y is Gaussian distributed [11] of mean  

 1
,S R S D S DS R S D S DE

− − −

−
− − −� � =� � y y yy y R R y  (8) 

and covariance matrix denoted by
S R S D− −y yR and equal to: 

 1
, ,S R S R S D S D S D S RS R S D − − − − − −− −

−= −y y y y y yy yR R R R R  (9) 

The CKLT is defined as the matrix HU such that: 

 ( )diag
S R S D

H

− −
=y yR U s U  (10) 

The columns of U  are the eigenvectors of the conditional 
covariance matrix, and the vector s contains the associated 
eigenvalues. We denote by eigN the number of non-zero 
eigenvalues.  
 

Having defined the CKLT, we can now introduce the 
notations used in the two coding schemes of Fig. 1 and Fig. 2. 
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On these figures, � is a “compression noise” vector of i.i.d. 
components of variance iη , i.e. ( )0,i iψ η� �N with  

   for  1i i
i eig

i i

s d
i N

s d
η = ≤ ≤

−
 (11)  

We also define matrix ( )diag=A a with ( ) /i i i ia s d s= − . 
These two schemes are equivalent, in the sense that they result 
in the same relation between the source S R−y  and the 
reconstructed signal ˆ S R−y , which is given by:  

 ˆ H
S R S R S D− − −= + +y UAU y UA� UKy  (12) 

where ( ) 1
,ˆ

S R S D S D

H

− − −

−= y y yK I - A U R R  

Before going into further considerations on the theoretical 
aspects, we can try to provide an intuitive understanding of the 
figures as follows: the coding scheme of Fig. 1 assumes that 
side information S D−y is available at both the source and the 
decoder. The encoder first removes the conditional expectation 

[ |S R S DE − − ]y y  from the source S R−y , and performs rate-
distortion coding of the remainder. The decoder adds back the 
conditional expectation to the reconstructed signal in order to 
obtain ˆ S R−y . The scheme on Fig. 2 only assumes side 
information at the decoder, which is the framework of this 
paper. 
Moreover, it can be checked that the ith component id of 

vector d  corresponds to the distortion on the ith component of 

the CKLT output H
S R−U y . Indeed, introducing (8) into (12) 

yields: 

( ) ( ) ( )ˆH H
S R S R S R S R S DE− − − − −− = − − � � +� �U y y A I U y y y A�  (13) 

and from the definition of conditional covariance: 

2 2 2

1 1

ˆ ( 1)
eig eigN N

S R S R S D i i i i i
i i

E a s a dη− − −
= =

� �− = − + =
� � � �y y y  (14) 

Denoting by 
1

eigN
ii

D d
=��  the total squared distortion, we 

can now state the following result: 
 
Proposition 1 
The source encoding of vector S R−y  with side 
information S D−y at the decoder can be performed at rates 
higher than:  

 
1 1

( ) log log 1
eig eigN N

i i

i ii i

s s
r

d η
∗

= =

� � � �
= = +� 	 � 	


 � 
 �
� �d  (15) 

where id is  the distortion on the ith component of H
S R−U y  

and satisfies 0 i id s≤ ≤  for 1 eigi N≤ ≤ . 

In particular, the rate-distortion function ( )r D∗  is achieved 

by the well-known reverse-waterfilling algorithm on the 

eigenvalues of the conditional covariance matrix, i.e.: 

     0
       

i
i

i

if s
d

s otherwise

λ λ≤ <�
= 

�

 with λ  s.t. 
1

eigN

i
i

d D
=

=�  (16) 

Before proving proposition 1, one can notice that it 
generalizes some results from rate-distortion theory. For 
instance, the compression noise introduced by [9] in the 
Gaussian scalar case is a special case of equation (11) in single 
dimension. This noise is approximately equal to the distortion 
when the latter is small, but goes up to infinity when the 
distortion approaches the source variance. This reflects the fact 
that a highly distorted signal cannot convey information 
anymore. Another well-known result (see e.g. [12]) is that the 
rate-distortion function of parallel Gaussian source is obtained 
by reverse-waterfilling on the eigenvalues of the source 
covariance matrix. Here, equation (16) is the same algorithm 
applied to the eigenvalues of the conditional covariance 
matrix. The latter reduces to the covariance matrix when the 
cross-correlation of equation (5) goes to zero or when the SNR 
at the destination is small. In these two cases, the side 
information at the destination cannot be exploited to reduce 
the rate required at the relay to encode its observation with a 
given distortion. 
 
Proof: 
Following similar notations as [9], we denote by *( )r d the 

rate with side information at the destination only and by 

| ( )
S R S D

r
− −y y d the rate with side information at both source and 

destination. We compute | ( )
S R S D

r
− −y y d  by minimizing the 

mutual information between S R−y  and ˆ S R−y  w.r.t. their joint 

distribution ( )ˆ,S R S R S Df − − −y y y under distortion constraint 

d . Let first compute this mutual information in the specific 

case of Fig. 1. From the well-known property of entropy: 

 ( ) ( ) logH H= +Ax x A  (17) 

we have that: 

( ) ( )ˆ ˆ; ;H H
S R S R S D S R S R S DI I− − − − − −=y y y U y U y y  

and from equation (12): 

( )
( ) ( )
( )
( )

- - -

ˆ;

ˆ ˆ ,

,

S R S R S D

H H
S R S D S R S D S R

H
S R S D S D

H
S R S D S R S D

I

H H

H

H

− − −

− − − − −

− − − −

= −

= +

− +

y y y

U y y U y y y

AU y + A� Ky y

AU y + A� Ky y y

 (18) 

From (17) and the fact that the entropy of a known variable is 
zero,  we can rewrite (18) as: 

( ) ( ) ( )ˆ; H
S R S R S D S R S DI H H− − − − −= + −y y y U y � y � (19) 

As stated in [7], by definition of the CKLT, the components of 
H

S R−U y  are conditionally independent given S D−y . 
Therefore, (19) is equivalent to: 
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( )
1

ˆ; log log
eig eigN N

i i i i
S R S R S D i

i ii i i i

s d s d
I s

s d s d− − −
=

� � � �= + −� 	 � 	− −
 � 
 �
� �y y y   

        
1

log
eigN

i

i i

s
d=

� �= � 	

 �

�          (20) 

Now for a general distribution ( )ˆ,S R S R s Df − − −y y y , it can 

be checked that: 

( ) ( ) ( )ˆ ˆ; ,S R S R S D S R S D S R S D S RI H H− − − − − − − −= −y y y y y y y y
              

( ) ( ) ˆ log 2 log 2R R

S R S D S R S R S D

N N
y y ye eπ π

− − − − −−≥ − y yR R

1

log
eigN

i

i i

s
d=

� �≥ � 	

 �

�   (21) 

Thus, from (20) and (21) we conclude that 

 | ( ) log
eig

S R S D

N
i

i i

s
r

d− −

� �= � 	

 �

�y y d  (22) 

The equality between the rates with and without side 
information at the source follows from section 3 of [9] and 
from the equivalence between Fig. 1 and Fig. 2, which leads 
to: 

 ( ) ( )ˆ; ;S R S D S R S R S DI I− − − − −=y v y y y y  (23) 

where v is defined on Fig. 2, and in this case: 

 *
|( ) ( )

S R S D
r r

− −
= y yd d  (24) 

Finally, the rate-distortion function ( )r D∗ is obtained by 
minimizing the rate under total squared distortion D . This 
constrained problem is convex and the solution (16) is given 
by the well-known reverse waterfilling algorithm [12]. This 
completes the proof. 
 

 
Figure 1: Rate-distortion coding of gaussian vector S R−y with side 

information S D−y at the encoder and decoder 

 
Figure 2: Rate-distortion coding of gaussian vector S R−y with side 

information S D−y at the decoder 

Note that in this paper, we do not address practical 
implementations of Wyner-Ziv coding. We refer the reader to 
e.g. [14] for an application of LDPC codes to Wyner-Ziv 
coding in C&F relaying on scalar Gaussian channel. Assuming 
that there exist codes which approach the rate-distortion trade-

off of Proposition 1, we now compute the mutual information 
that can be achieved by a C&F relay. 

 

III. ACHIEVABLE C&F RATES 

In the previous section, we clarified the signal model and 
the source coding scheme used by the relay. We now 
investigate how the compression noise introduced by Wyner-
Ziv coding affects the mutual information of the cooperative 
link. 

For notational simplicity, we now assume white noise at the 

relay (i.e. 2
,R Rn R Nσ=nR I ) and destination. This simplifies 

the expression of the achievable rate in the proposition below. 

 
Proposition 2 
The following rate is achievable by half-duplex cooperative 
C&F  relaying  on Gaussian vector channels: 

 ( )( )&
,

max ;C F R S S D
t

I t I I −= +
�

x y  (25) 

where: 

 2
1 ,

log
eigN

i i
R

i n R i

s
I

η
σ η=

� �+= � 	+
 �
�  (26) 

( ) 2
,

1
; log

D S

H
S S D N S D S D

n D

I
σ− − −= + xx y I H R H  (27) 

and the compression noise variance �satisfies Proposition 1, 
i.e.  

( )
1

1
log 1 ( ) ;ˆ

eigN
i

R D
i i

s t
R t I

tη=

� � −+ ≤ =� 	

 �

� x y  

 
As in previous section, we attempt an interpretation of the 

result before proving it. First it can be checked that in the 
single dimensional case, equation (25) boils down to Høst-
Madsen and Zhang’s achievable rates given in [6]. The term 

( );S S DtI −x y  corresponds to the mutual information that is 
transmitted by the source directly to the destination during the 
first slot. The other term RtI  corresponds to the additional 
information about the source that is brought by the compressed 
observation reconstructed by the destination. It is a sum over 
the eigN non-zero eigenmodes of the conditional covariance 
matrix. In equation (26), one can see that when the 
compression noise iη is negligible compared to the thermal 
noise variance 2

,n Rσ and the “useful signal power” is , then the 
contribution of this eigenmode to RI is maximized and 
approximately equal to ( )2

,log /i n Rs σ .  Of course when the 
compression noise is high, then the eigenmode cannot bring 
information. The highest achievable C&F rate is obtained not 
only by maximizing (25) over the time sharing t , but also by 
finding the optimum compression noise variance vector � that 
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maximizes RI for a given value of t . The solution to this 
second optimization problem is given by proposition 3 and 
leads to a solution that differs from the reverse-waterfilling of 
equation (16).  
 
Proof: 
Let first notice that the last term S D−UKy of (12) does not 
affect the mutual information: 

ˆ( ; , ) ( ; , )H
S S R S D S S R S DI I− − − −= +x y y x UAU y UA� y (28) 

Moreover, from property (17), the product by matrix 
1 H−UA U does not affect mutual information either: 

 ˆ( ; , ) ( ; , )S S R S D S S R S DI I− − − −= +x y y x y U� y  (29) 
Therefore, defining  

 ˆS R S R− −= +y y U��  (30) 

We have that: 
 ˆ( ; , ) ( ; , )S S R S D S S R S DI I− − − −=x y y x y y�  (31) 

The mutual information of the cooperative link is therefore 
that of a virtual ( )S R DN N N× + MIMO channel where the 
signal received at the RN “remote antennas” undergoes an 
additional compression noise as shown by (30). In order to 
prove proposition 2, we need to further simplify (31). From the 
chain rule we have: 

ˆ

( ; , ) ( ; ) ( ; | )
R

S S R S D S S D S S R S D

I

I I I− − − − −

=

= +x y y x y x y y� �
������� (32) 

While the computation of ( ; )S S DI −x y is straightforward, it 
turns out that a simple closed form expression can also be 
found for RI . From the definition of mutual information: 

,( | ) ( | )R S R S D S R S S DI H H− − − −= + − +y U� y y U� x y   (33) 

Since S D−y  is a noisy version of S D S−H x , (33) simplifies as: 

( ) ( )

( ) ( )

( ) ( )2
,1 1

log log

log diag log diag

log diag log diag

S R S D S R S

S R S D S R S

eig eig

R S R S D S R S

H H

H H
i i n R ii N i N

I H H

s η σ η

− − −

− − −

− − −

+ +

≤ ≤ ≤ ≤

= + − +

= −

= + − +

= + − +

y U� y y U� x

y y y x

y U� y y U� x

R R

R U � U R U � U

U U U U

2
1 ,

log
eigN

i i

i n R i

s η
σ η=

� �+= � 	+
 �
�                

 (34) 
  
This concludes the proof of proposition 2. 

 
Now that a set of C&F achievable rates has been derived, 

we are interested in the maximum rate within this set. It can be 
found by solving the following optimization problem: 

 
( )

2
1 ,

1

max  log  

log 1  
s.t. 

0  1

eig

eig

N
i i

i n R i

N
i

i i

i eig

s

s
R t

for i N

η
σ η

η
η

=

=

� �+
� 	+
 �

� � �+ ≤� � 	

 
 �
� ≥ ≤ ≤�

�

�

�

 (35) 

Unfortunately,  (35) is not a convex minimization problem in 
standard form, because although it can be checked that the 
constraints and objective are convex in � , the objective has to 
be maximized. Therefore, we introduce a change of 
optimization variable, by defining 

 log 1ˆ i
i

i

s
r

η
� �= +� 	

 �

 (36) 

The variable ir corresponds to the rate selected for the 
quantization of the ith component of the signal at the output of 
the CKLT. 
Inserting (36) into (35) leads to: 

 

( )

( )

2
1 ,

1

2
max  log  

2 1

 
s.t. 

0  1

eig i

i

eig

N r
i
r

i n R i

N

i
i

i eig

s
s

r R t

r for i N

σ=

=

� �
� 	
� 	− +
 �

�
≤�



� ≥ ≤ ≤�

�

�

r

 (37) 

This time, it can be checked that the objective is concave in r . 
Therefore, the problem (37) is convex and can be solved by 
writing the KKT conditions. This leads, after a few simple 
calculations, to the following proposition: 

 
Proposition 3 
Among the set of achievable C&F  rates defined by 
proposition 2, the highest rate is obtained when  

 
2 1i

i
i r

sη =
−

 (38) 

where 

 
2
,

log 1i
i

n R

s
r µ

σ

+
� �� �

= + −� �� 	
� �
 �� �

 (39) 

and µ is a constant such that the rate constraint is reached: 

 ( )
1

 
eigN

i
i

r R t
=

≤�  (40) 

 
We now try to highlight the differences between proposition 3 
and reverse-waterfilling of the distortion. In reverse 
waterfilling, the algorithm tries to spread the distortion 
uniformly, under the constraint that i id s≤ . Such a strategy 

would lead to ( )log /i ir s d=  with d  a constant 

corresponding to the distortion on the eigenmodes which are 
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worth quantizing (i.e. 0ir > ). Now the solution in proposition 

3 has a rate water-filling interpretation. The ratio 2
,/i n Rs σ  can 

be interpreted as a signal to thermal noise ratio per eigenmode. 
It can be checked, by definition of the CKLT, that this ratio is 
always greater than 1. From (26), we see that the eigenmodes 

which have a high 2
,/i n Rs σ  ratio are the largest contributors 

to the C&F mutual information provided their compression 

noise is low-enough. The term 2
,

log 1i

n R

s
σ
� �

−� 	

 �

 in equation 

(39) can thus be interpreted as a rate penalty for the 
eigenmodes which have a lower potential contribution to C&F 

mutual information. The penalty tends to −∞  when 2
,/i n Rs σ  

tends to 1, and in this case the eigenmode will not be 
quantized. In other words, the rate water-filling algorithm 
grants more bits (or equivalently less distortion) to eigenmodes 
which have a larger contribution to C&F mutual information. 
Finally, to come back to our simplifying assumption of 
orthogonal source and relay transmissions during the second 
slot, notice that if this constraint is relaxed, then S can send a 
new independent message at a rate constrained to lie within  
the MAC capacity region. The latter can be achieved by 
successive decoding. If the relayed message is decoded first, 
then the source signal during the 2nd slot shall be treated as 
noise, and equation (6) shall be modified accordingly.  

IV. SIMULATION RESULTS 

In the previous section, we derived achievable C&F rates 
and showed that the conventional source coding strategy which 
minimizes total distortion is outperformed by the strategy 
which maximizes the C&F mutual information. In order to 
assess the performance improvement, we simulate the 
achievable bit rate in the same simulation scenario as  in [8], 
which corresponds to the uplink of a cellular system similar to 
IEEE802.16. We consider a Base Station (BS) and a fixed 
Relay Station (RS), both equipped with 4 antennas. They are 
assumed in Line-Of-Sight propagation conditions, with a very 
good link budget ( RS BSSNR − =30 dB). The Mobile Station 
(MS) has 2 antennas and is in Non-Line Of Sight situation 
from both the BS and RS, with a bad link budget to the BS 
( MT BSSNR − =0dB). We assume a MIMO-OFDM physical 
layer with 10 MHz channel spacing, an FFT size of 256, a 
number of useful subcarriers equal to 192 and a cyclic prefix 
length representing 1/8 of the useful symbol. The propagation 
conditions correspond to an urban micro-cell channel model 
valid between 2GHz and 5GHz, as described in [13]. We also 
assume isotropic transmission at the Source and Relay. 
Although the optimization of transmit covariance matrices is 
an interesting problem, we prefer to defer it to a future paper 
for lack of space. On Figure 3, we plot the ergodic achievable 
rate with various transmission strategies when the quality of 
the MT to RS link ( MT RSSNR − ) varies from -5dB to 10dB.  
As expected and already observed in e.g. [2], C&F always 

outperforms direct link and also A&F because time sharing 
parameter can be optimized. Moreover, C&F is outperformed 
by D&F when the SNR on the S-R link exceeds a certain 
threshold (here, around 4dB). The two dashed curves 
correspond to the minimum distortion and maximum mutual 
information C&F strategies. It can be seen that the 
performance difference between the two strategies is not very 
large. This can be explained by the fact that reverse-
waterfilling, although not optimum, is not a bad strategy since 
it also tends to grant more bits to the eigenmodes associated to 
the largest eigenvalues is . Finally, the solid black curve is an  
upper-bound corresponding to infinite R-D link capacity, 
allowing virtual MIMO without any compression noise. The 
significant gap between this upper-bound and the C&F 
achievable rates highlights the need to increase the RS to BS 
link capacity by deploying for instance dedicated high-
capacity directional links between the RS and BS in order to 
fully exploit C&F relaying in real systems. 

 
Figure 3: Achievable rates with cooperative C&F relaying in a MIMO-
OFDM WMAN uplink scenario compared to alternative transmission 
strategies 

V. CONCLUSION 

We have derived in this paper a C&F coding strategy which 
maximizes the achievable rates on Gaussian vector channels, 
thus extending previous results valid for Gaussian scalar 
channel.  We have analyzed the specificity of this new strategy 
compared to the conventional source-coding approach which 
minimizes total squared distortion, and evaluated its 
performance by simulations in a practical scenario. Several 
extensions of the results published in this paper could be topics 
for further investigation, for instance the extension to multiple 
relays.  
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