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Abstract: Endothelin, a potent endogenous vasoconstrictor and mitogen that acts through the ET 5 and ETg receptors, has
been not only implicated in the regulation of cardiovascular homeostasis but also in inflammatory responses, including
that induced by infection and solid organ transplantation. Changes in capillary perfusion and leukocyte recruitment are
important features of inflammation. The concentrations of ET are elevated in many forms of inflammation and are
especially high in sepsis. The rise in plasma levels of ET during early stages of inflammation may initially have some
positive homeostatic effects that might help to maintain vascular tone and blood pressure. However, high levels of ET
compromise the appropriate matching of flow to tissue needs and contribute to the pathophysiology of microcirculatory
derangements. Attempts at regulating the effects of ET by the use of pharmacological antagonists are complicated by
important interactions between the ET 5 and ETg receptors. This review highlights findings of recent studies and patents in
this area showing that the ET system, apart from being a marker of vascular and tissue injury, is directly involved in the
pathophysiology of these disease processes as an immunomodulatory mediator.
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INTRODUCTION

In response to several infectious and non-infectious
stimuli, monocytes and macrophages release a number of
mediators including cytokines which are involved in the
inflammatory response [1]. These cytokines lead to further
expression of mediators and co-stimulatory molecules which
feed back into the inflammatory cascade [1, 2]. Endothelin is
among the mediators released during inflammatory activa-
tion and together with different proinflammatory molecules,
such as interleukin (IL)-1 and tumor necrosis factor (TNF)-
a, may play a role in the cascade of events leading to tissue
inflammation [3, 4]. Endothelin (ET) was initially charac-
terized as a potent smooth-muscle spasmogen [5, 6] and is
indeed a potent endogenous vasoconstrictor and mitogen [7].
Endothelin has been reported to have numerous biologic
properties within the cardiovascular, respiratory, renal,
endocrine, gastrointestinal, and neurologic systems [8-10]
and is produced by several cell types, including endothelial
cells, leukocytes, macrophages and monocytes [10-13].

ET-1, the predominant of three endothelin isoforms [14],
is a product of endopeptidasic cleavage of prepro-ET-1 to
big ET-1 which is later transformed by ET-converting
enzyme (ECE)-1 and/or ECE-2 into its active form (Fig. 1)
[9, 15] Regulation of ET production primarily occurs at the
transcriptional level which is achieved by controlling the
activity of the promoter and the stability of messenger RNA
[16]. In a variety of cells, ET expression is controlled by
autocrine and paracrine mechanisms [17] and induced by
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physiochemical factors such as blood flow, pulsatile stretch,
sheer stress, hypoxia, pH or by cytokines, hormones and
vasoactive agents [9, 15, 18-21] which also change the biolo-
gical responsiveness to ET [15, 22].

In mammals, two ET receptors have been identified: ET
receptor A (ET ) and B (ETg), which are members of the G-
protein-coupled superfamily [8, 9, 15]. ET receptors have
selective affinity for ET-1 and ET-2, whereas ETg receptors
have similar affinity for all ET isoforms (Fig. 1) [15, 23].
Both receptors stimulate phospholipase C which leads to
increased formation of diaceylglycerol and inositol-1,4,5-
triphosphate which activates protein kinase C pathway and
increases intracellular Ca®", respectively [24]. ETa receptors
are the predominant subtype mediating vasoconstriction and
cells in humans whereas ETg receptors are mainly expressed
in vascular endothelial cells, mediating vasodilatation via
release of nitric oxide (NO) and dilator prostanoids and
thereby inhibiting cell proliferation and inflammation [8, 9,
23].

In this review, we summarize the current understanding
of the mechanisms and signal transduction pathways
triggered by ET in inflammatory and immunomodulatory
processes and discuss the findings of previous studies
evaluating the use of selective and non-selective ET receptor
antagonists.

VASCULAR EFFECTS OF ENDOTHELIN

Experimental studies using molecular and pharmaco-
logical inhibition of the ET system have demonstrated that
ET-1 takes part in normal cardiovascular homeostasis [23,
25, 26]. Thus, ET-1 plays a major role in the functional and
structural changes observed in arterial and pulmonary
hypertension, glomerulosclerosis, atherosclerosis, mainly
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Fig. (1). Molecular components of the endothelin system. Processing of precursor peptides by furin-like peptidase results in formation of big-
ET-1, big-ET-2 and big-ET-3. These 38-amino acids (a.a.) peptides are further processed by ECE-1 and ECE-2, chymases and non-ECE
metalloprotease into vasoactive ET which activates tissue ET 5 and/or ETg receptors. a.a., amino acids; ECE, endothelin-converting enzyme;

ET, endothelin.

through pressure-independent mechanisms [15]. Under
experimentally induced pathological conditions (e.g. heart
failure), the expression of ET-1 and its receptors in
cardiomyocytes is increased, and treatment with ET receptor
antagonists improves survival and cardiac function [15].

ETa receptors are the predominant ET vasoconstrictor
receptors in arteries. ETo and ETg receptors on smooth
muscle mediate contraction, cell proliferation, and hyper-
trophy [27]. Vasoconstrictor ETg receptors are present in the
veins [28] and pulmonary vessels [29-31] in larger numbers
than in arteries, although ET, still predominate over ETg
receptors in these vessels. ETg receptors are also localized
on endothelial cells and act through the production of NO
and prostacyclin to exert vasodilator and antiinflammatory
effects [26]. Whether vasoconstriction or vasodilatation is
the most important effect of ET-1 under normal conditions
may depend on the vascular bed [32]. It has been reported
that in coronary arteries there are few endothelial vasodilator
ETg receptors [33]. As a result, ET-1 acts on coronary
vessels mainly as a vasoconstrictor. In other vascular beds,
however, ET-1 may even function as a vasodilator under
physiological conditions [34, 35].

ENDOTHELIN IN INFLAMMATORY AND IMMU-
NOMODULATORY PROCESSES

Increasing evidence supports a role for ET as a pro-
inflammatory cytokine and fibrotic factor which is released
in inflammatory and immune reactions [36, 37]. ET-1 acts as
a proinflammatory peptide via vascular and non-vascular
related mechanisms: ET-1 induces the release of pro-

inflammatory cytokines [13, 36], provokes local ischemia
[38] or alters the epithelial permeability allowing antigen
translocation [39].

Thus, ET-1 has been implicated in many diseases charac-
terized by inflammation and/or fibrotic remodeling, such as
atherosclerosis [40], ischemia—reperfusion injury [41], alveo-
litis [42], dermatitis [43], Crohn’s disease and ulcerative
colitis [38, 44, 45], systemic sclerosis [46, 47], dermato-
myositis/polymyositis [48], systemic lupus erythematodes
[49], rheumatoid arthritis [50], liver cirrhosis [51], and
glomeruloslerosis [52, 53] (Table 1).

Both ET, and ETg receptors appear to be involved in
these vascular and non-vascular related processes [54-56]. In
patients with Crohn’s diesease and ulcerative colitis, the
plasma levels of ET-1 are significantly higher than in healthy
controls and the density of ET positive cells as well as the
expression of ET, and ETg receptors is increased [8, 38].
ET-1 is involved in many cell signaling pathways that
include Ca?* mobilization and activation of proinflammatory
cytokines, extracellular signal-regulated kinases (ERK)1/2,
and cyclin D1 [10, 57]. ET-1 also increases vascular
permeability [58] as well as time- and dose-dependent
entrapment of circulating platelets [59].

Recently, the downstream intracellular signal trans-
duction pathways of ET-1 have been in part identified. In
this regard, a key role of mitogen-activated protein kinases
(MAPK) has been suggested, which operate via phosphory-
lation cascades responsible for regulation of several
substrates, mainly including transcription factors implicated
in inflammation, development, cell proliferation and
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Table 1.  Sites of Endothelin and Endothelin Receptors Expression During Inflammatory and Immune Reactions
Tissue Cell type Source

Brain Neurons [7-8, 71, 96]
Astrocytes [7-8, 71]
Microglia [7-8, 71]

Peripheral nerve [7-8]

Blood Macrophages [7-8, 11, 14, 161]
Monocytes [7-8, 12]
Leukocytes [7-8, 14, 57, 89, 92]

Vascular system Endothelial cells

[6-8, 14-19, 39, 48, 63, 70, 76, 79, 83, 97, 142]

Vascular smooth muscle cells

[7-8, 14, 74]

Heart Cardiomyocytes [7-8, 10, 14, 64, 78, 83, 85, 106, 136, 165-66, 179]
Liver Kupfer cells [7-8, 14, 149, 165]
Hepatocytes [7-8, 14, 50, 147, 163-65, 169]
Renal Peritubular cells [7-8, 14, 20, 51, 163-4]
Mesangial cells [7-8,52]
Pancreas Exocrine [7-8, 14, 164]
Endocrine [7-8, 117]
Gastro-intestinal Epithelial cells [7-8, 14, 37, 38, 43, 44, 81, 139, 144]
Lung Epithelial cells [3,7-8, 14, 41, 57, 102, 157, 165, 169]
Endothelial cells [3, 7-8, 14, 157]
Vascular smooth muscle cells [3, 7-8, 14, 102]
Prostate [7-8, 14]

apoptosis [60, 61]. Three major MAPK subgroups are
currently known, activated by dual phosphorylation on
tyrosine and threonine residues and named c-Jun N-terminal
kinases (JNK), p38, and ERKL1/2, respectively [62]. In
particular, ERK activation is frequently required for cell
growth and differentiation induced by various stimuli, also
including ET-1 [63, 64]. Important downstream targets of the
MAPKs and ET-1 pathways are cell cycle regulatory
molecules such as cyclins, cyclin-dependent kinases and
cyclin-dependent kinase inhibitors [65]. The cyclins are a
target of both ET-1 and the MAPK pathway [66].

EVIDENCE THAT ENDOTHELIN TRIGGERS
MEDIATORS OF INFLAMMATION AND CELL
ADHESION MOLECULES

ET-1 is known to stimulate neutrophils to release elastase
[67, 68] and to stimulate monocytes to produce various
cytokines, including IL-1 [36, 69], IL-6 [70, 71], IL-8 [72],
IL-10 [73], TNF-a [74], tumor growth factor (TGF)-b [42],
granulocyte-macrophage colony-stimulating factor (GCSF)
[75], monocyte chemoattractant protein (MCP)-1 [76, 77]
and nuclear factor (NF)-kB [13, 78] promoting the
inflammatory cascade (Table 2). Overexpression of ET-1

stimulates expression of TNF-a, interferon (IFN)-g, IL-1 and
IL-6 [79]. Conversely, TNF-a and IL-1 modulate the
expression of ET-1 in the inflammatory cascade [80, 81],
which may further amplify its deleterious effects. Akin to
ET-1, many of these mediators increase expression of cell
adhesion molecules [82, 83], which induce the adhesion of
circulating leucocytes to endothelial cells, an initial step in
the events leading to cellular infiltrate in an inflamed tissue.
Lopez-Farre et al. [84] demonstrated that ET-1 enhances
neutrophil accumulation, suggesting a direct link between
ET-1 and the inflammatory process. In cultured endothelial
cells, ET-1 promotes neutrophil aggregation [85] and
stimulates surface expression of CD11b/CD1 on human
neutrophils augmenting their adhesion to endothelial cells
[84] and myocytes [86]. Activated endothelial cells are an
important source of cytokines, adhesion molecules and
growth factors enhancing inflammatory cells to migrate and
accumulate in the extravascular tissue [87, 88]. In addition to
the neutrophil-activating properties of ET-1 it also acts as a
chemoattractant for monocytes [89], activator of mast cells
[90-92] and inductor of significant eosinophil migration
mediated by an increase in the local levels of eotaxin and IL-
5[93].
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Table 2. Stimulatory Effects of Endothelin During Inflamma-
tory and Immunomodulatory Reactions

Target/cell type Stimulatory effects Source
Neutrophils, endothelial cells Elastase [66, 67]
Pulmonary mast cells Eotaxin [91]
Monocytes E-Selectine [95]
Macrophages GCSF [74]
Monocytes ICAM-1 [95]
Monocytes IFN-g [78]
Monocytes, endothelial cells IL-1 [24, 68, 78]
Pulmonary mast cells IL-5 [91]
Monocytes, endothelial cells IL-6 [69, 70, 78]
Endothelial cells IL-8 [71]
Endothelial cells IL-10 [72]
Fibroblasts MCP-1 [75, 76]
Macrophages, endothelial cells NF-kB [12, 77]
TGF-b [41]
Neutrophils, monocytes TNF-a [73, 78]
Endothelial cells Angiogenesis [7-8,99]
Neutrophils, monocytes, Cell adhesion [7-8, 83-
macrophages 85]
Monocytes Chemotaxis [88-91]

Macrophage, monocytes and polymorphonuclear leuko-
cytes also secrete ET-1 [12, 13, 94]. In addition to its ability
to prime leukocytes for chemotaxis [95], ET-1 stimulates
also the expression of adhesion molecules which are key
players in the leukocyte-endothelial cell interaction [96].
Hayasaki et al. [86] documented that ET-1 induces intra-
cellular adhesion molecule (ICAM)-1 expression on cultured
cardiomyocytes and endothelial cells. Similarly, Zouki et al.
[97] reported that ET-1 increased the expression of E-
selectin and ICAM-1 on cultured human endothelial cells in
a concentration-dependent fashion. The production of MCP-
1, a potent chemoattractant for monocytes, can be also indu-
ced by ET-1 through ET A receptor activation in endothelial
cells. This effect is augmented by the proinflammatory
cytokines TNF-a and IL-1 [98].

Previous studies demonstrated that ET-1 and ET-3,
acting through the ETg receptor, have dose-dependent stimu-
latory, proliferative and migratory effects on endothelial
cells [99]. While ET-1 and ET-2 are reported to be equipo-
tent in promoting DNA synthesis, ET-3 is less active [100].
During the formation of new blood vessels, endothelial cells
are stimulated to migrate, proliferate and invade surrounding
tissue to form capillaries [101]. ET-1, similar to VEGF,
induces these angiogenic effects and, in concert with VEGF,
displayes a potent additive effect on the different stages of
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the angiogenic process. In this scenario, ET-1 signaling is
mediated mainly by the ETg receptor [102]. Recent studies
emphasize a key inflammatory role of the endothelial cells,
either by overexpression of inflammatory mediators or by
stimulating formation of new blood vessels, in the disease
process leading to the systemic organ involvement [103]. ET
released after activation and/or damage of endothelial cells,
might play an important role inflammatory processes and
vasculopathy in autoimmune diseases [48]. Increased plasma
ET levels have been found in various autoimmune diseases
such as systemic lupus erythematodes [49], systemic
sclerosis [47] or rheumatoid arthritis [50]. Moreover, raised
ET serum levels have been implicated in the pathophy-
siology of both fibrotic and vascular manifestations of
systemic sclerosis [47].

ET-1 exerts mitogenic activity on smooth muscle cells,
myocytes, and fibroblasts [15, 104, 105]. In epithelial cells,
ET-1 is known to induce gene expression and release of
fibronectin [106] which is an important extracellular matrix
component, as well as being chemoattractic factor for
fibroblasts [107]. There is increasing evidence that ET-1 can
function as a profibrotic cytokine by stimulating fibroblast
chemotaxis and proliferation [108-110] and procollagen
production [111, 112]. ET-1 may act in concert with several
other profibrogenic molecules, including TGF-b [113],
platelet-derived growth factor (PDGF) [114], epidermal
growth factor (EGF) [115], fibroblast growth factor (FGF)
[116], insulin-like growth factor (IGF)-1 [117, 118], IL-11
[119] and insulin [64, 120, 121] to potentiate cellular
transformation or replication. In particular, the synergistic
interactions involving these mediators are crucial for
implementing the tissue repair response leading to fibroblast
proliferation, myofibroblast differentiation and collagen
synthesis [117]. Within this context, a pivotal role is media-
ted by MAPKSs that participate in the cross-talk between ET-
1 and the other fibrogenic factors at several levels. Further-
more, rat cardiac fibroblasts have been shown to synthesize
ET-1 [122], which induces collagen synthesis via both ETp
and ETg receptors [123] as well as induces matrix
metalloproteinase-2 expression [124].

The role of ET-1 in the pathogenesis of infectious disea-
ses has only recently received attention. For example, ET-1
has been implicated in the etiology of vascular compromise
and multi-organ dysfunction in the setting of septic shock
[125, 126] and neuronal injury due to Streptococcus
pneumonia meningitis [127]. Investigators have reported that
circulating ET levels increase significantly in septic
individuals which may be a beneficial effect in maintaining
the blood pressure and organ perfusion during the early
phase of septic shock [22, 87] and which correlates with
mortality [128, 129]. Recent evidence also suggests that ET-
1 plays a significant role in vascular dysfunction and organ
failure associated with sepsis and septic shock [126]. It has
been shown hat endotoxin administration results in
upregulation of the ET system [130, 131] causing monocytes
to produce proinflammatory cytokines such as TNF-a [36].
Endotoxin stimulates the production of TNF-a in monocytes
and macrophages [13, 132]. Indeed, several reports have
illustrated that antagonism of ET in septic animals improves
metabolic acidosis as well as coronary, renal, splanchnic,
pulmonary and intestinal perfusion [133-135]. In particular,
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release of ET-1 is stimulated by endotoxin [136, 137].
Moreover, patients with Rickettsia conorii-induced vasculitis
exhibit increased plasma levels of ET-1 [138]. Rickettsia
share some important similarities with Trypanosoma cruzi
(Chagas’ disease) as both can reside within the endothelial
cell cytoplasm and cause perturbations of the host cell [139].
ET is expressed during Trypanosoma cruzi infection in mice
[65], and high plasma levels of immunoreactive ET were
found in patients with severe chagasic cardiomyopathy
[140].

EFFECTS OF ENDOTHELIN RECEPTOR BLOCK-
ADE ON INFLAMMATORY AND IMMUNE
PROCESSES

Cell Adhesion and Migration

Activated leukocyte adhesion is the initial and rate-
limiting step in the development of inflammatory cellular
infiltrate. Both ET, and ETg receptors are involved in the
ET-induced activation of leukocyte adhesion [86, 97, 141].
Based on these observations, selective and non-selective ET
receptor antagonists might be an effective treatment as
immunomodulatory agents blocking the recruitment of
leukocytes by reduction of leukocyte adhesion and preven-
ting the ET-1 dependent progression of the inflammatory
cascade.

Anthoni et al. [142] reported that bosentan, a non-
selective ET o/ETg receptor antagonist, prevents the adhesion
of leukocytes in colonic submucosal venules and reduces
inflammation in a mouse model of inflammatory bowel
disease. A comparable effect was also observed with the
non-selective ETA/ETg receptor antagonist LU420627. Pro-
phylactic oral administration of bosentan reduces inflam-
mation and myeloperoxidase activity in colonic tissue in
trinitrobenzene sulphonate-induced colitis in rats [143, 144].
The mechanisms of bosentan-induced reduction of leukocyte
firm adherence remain speculative, but may depend on the
blockade of ET-1 induced up-regulation of cell adhesion
molecules on the endothelium and leukocytes [84, 86, 97,
145-147]. In particular, the finding that anti-inflammatory
effects of ET-1 blockade are mediated by vascular cell
adhesion molecule (VCAM)-1 in isolated endothelial cells
suggests that these cell adhesion molecules may play a role
in the attenuation of sticking and the elevation of rolling
velocity [146]. This is supported by the observation that
treatment with an anti-VCAM-1 oligonucleotide exerts a
more potent protective effect on leucocyte endothelial
adhesion when compared to bosentan [148], which reduces
the infection-associated increase in nitrate/nitrite (NOX)
serum concentration [149]

Previous studies using cardiac myocytes have shown that
the selective ETg receptor antagonist BQ-788 inhibits
neutrophil-endothelial cell adhesion and ICAM-1 expression
on endothelial cells [86], whereas the selective ET 5 receptor
antagonist S-0139 promotes neutrophil-cardiac myocytes
adhesion and ICAM-1 production. This may be related to the
differences in ET and ETg receptor density on various cell
types. For example, ETa represents 90% of the receptors on
the surface of cardiac myocytes, while the ETg receptor is
the dominant receptor on endothelial cells and macrophages
which also predominantly express the ETg receptor [150,
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151]. However, different groups have reported varying
results. Zouki et al. [97] reported that the ET-selective
antagonist FR139317 markedly attenuated the ET-1
stimulated neutrophil adherence, suggesting a role of the
ETA receptor in neutrophil-endothelial attachment. This
discrepancy of the results may be due to the use of different
antagonists. It also remains possible that short- versus long-
term exposure of endothelial cell to ET-1 may affect
endothelial adhesiveness differently. The finding that the
ETA receptor-selective antagonist BQ610, but not the ETg
receptor-selective antagonist BQ788, decreased ET-1
induced MCP-1 expression implicates a role for the ETa
receptor in ET-1-mediated inflammation [98]. Recently, it
has been shown that aryl-alkane-sulfonamides and their
derivatives may ameliorate ET-1-mediated inflammation
[152, 153] as well as an ETa selective N-(5-isoxazolyl)
benzene-sulfonamide receptor antagonist that can be
modified in the 4-position with aryl and substituted aryl
groups to generate a ETg selective receptor antagonist [154,
155].

The mechanisms responsible for increased production of
TNF-a by ET-1 and inhibition of TNF-a production by ET-1
receptor antagonism remain unclear. It has been suggested
that ET-1 may play a potential proinflammatory role in
pathological conditions [156]. However, there have recently
been published a number of studies investigating this
question. Quehenberger et al. [157], for example, demons-
trated that the human ET-1 gene has NF-kB binding site and
reported that transcription of the ET-1 gene is controlled by
NF-kB. This group clearly demonstrated that binding of
advanced glycation end products (AGE’s) on the surface of
erythrocytes, which occurs during oxidative stress, results in
a NF-kB-dependent ET-1 induction in vitro [157]. It is likely
that inhibition of TNF-a production by ET receptor
antagonism is mediated by the NF-kB pathway. The effects
of NF-kB in inflammation are well known, e.g., induction of
synthesis of several proinflammatory cytokines including IL-
1 and IL-6 [158]. Browatzki et al. [159] recently demons-
trated that ET 5 receptor activation induces IL-6 synthesis via
NF-kB activation in human vascular smooth muscle cells,
extending recent observations that ET-1 is a potent stimulus
for activation of NF-kB in human hepatic stellate cells [160].
These mechanisms may be responsible for the synthesis of
most of proinflammatory cytokines including the autocrine
activation of ET-1 synthesis.

Allergic Inflammation

ET-1 has been reported to induce eosinophil migration
mediated by an increase in the local levels of eotaxin and IL-
5 [93, 161] This observation explains previous reports
showing the accumulation of eosinophils rather than
neurophils, as well we an increase in immunoreactive ET in
the broncho-alveolar fluid in experimental airway
inflammation [162-164], and in a murine model of allergic
pleurisy [165, 166]. Treatment of these animals with a
selective ET receptor antagonist significantly decreased the
production of proinflammatory mediators [42] and eosino-
philia [161].

In this context recent patents propose to use a novel class
of indole-based ECE inhibitors to diminish the production of
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ET-1 to inhibit bronchoconstriction and pulmonary vaso-
constriction in newborn mammals [167, 168].

Atherosclerosis and Fibrosis

Inflammation of the vessel wall is a characteristic feature
of atherosclerosis. ET-1 contributes to the pathogenesis of
atherosclerosis and its chronic complications [40]. Browatzki
et al. [78] investigated the effect of ET-1 on the proinflam-
matory transcription factor NF-kB in human monocytes
which are the major source of inflammatory mediators in
atheroma and are located in rupture-prone plaque areas. In
these monocytes, ET-1 caused NF-kB activation which was
blocked by inhibition of the I-kB-a-degrading proteasome
complex as well as the ET, receptor antagonist BQ123 but
not by the ETg receptor antagonist BQ788. ET-1 stimulated
expression of the proinflammatory molecule CD40 but not of
the cytokine IL-6 in a NF-kB-dependent manner. The data
demonstrate the ability of ET-1 to differently activate
inflammatory pathways in human monocytes [78].

Recently, Ammarguellat et al. [169, 170] reported that
myocardial inflammation and fibrosis in hearts of
deoxycorticosterone acetate hypertensive rats were, at least
in part, mediated by ET-1. In this model, the selective ETp
receptor antagonist A-127722 prevented cardiac fibrosis in
hearts by normalizing the levels of procollagen I and 11l and
TGF-b. A-127722 also abrogated the activation of the
inflammatory mediator NF-kB and the expression of
platelet-endothelial cell adhesion molecule (PECAM)-1 and
VCAM-1 [169, 170]. Hocher et al. [171] also demonstrated
that ET-1 plays an important role in the development of
cardiac fibrosis in a two-kidney, one-clip rat model of
renovascular hypertension. In this model, the use of the ETg-
selective antagonist IRL1038, but not the ETa-selective
antagonist BQ-123, attenuated cardiac fibrosis.

While benzo-1,3-dioxolyl- and ET benzofuranyl-substi-
tuted pyrrolidine derivatives could be useful for the
treatment of congestive heart failure [172-175], recent
patents reveal that pyrrolidine and piperidine derivates act as
selective ETA and ETg receptor antagonists and that novel
alkanesulfonamides may have beneficial effects in atherosc-
lerosis [176, 177].

Transplantation

In organ transplantation, several studies confirmed the
involvement of ET-1 in ischemia-reperfusion injury in heart,
lung, liver, and kidney allografts [178, 179]. Treatment with
the selective ET, receptor antagonist BSF208075 has also
protective effects on the microcirculation after ischemia/
reperfusion. Uhlmann et al. [180, 181] were able to show
that BSF208075 not only affects the expression of vasoactive
genes, but also decrease gene expression of proinflammatory
cytokines such as TNF-a, IL-1 and IL-6 in vitro. Ischemia/
reperfusion injury promotes a microcirculation-associated
inflammatory response, involving release of deleterious
mediators, such as reactive oxygen species, TNF-a, IL-1, the
upregulation of leucocytic and endothelial adhesion mole-
cules such as selectins, b-integrins, intracellular adhesion
molecule-1, and the interaction of platelets and leucocyte
with the microvascular endothelium [180-182]. Based on
these results selective antagonism of ET receptors may have
anti-inflammatory potential through suppression of the
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MRNA of the genes of proinflammatory cytokines such as
TNF-a, IL-1 and IL-6. Several other studies demonstrated
also a pathogenetic involvement of ET-1 in ischemia/
reperfusion injury of heart, lung, liver and kidney allografts
[178, 183].

Elevated levels of ET-1 have been associated with
inflammation and immune responses [15, 184, 185] as well
as with transplant-associated diseases [179]. High ET-1
expression in early posttransplant biopsy specimens was
related to poor long-term allograft function following renal
transplantation [186], and combined endothelial and
myocardial protection could be achieved by ET antagonism
enhanceing transplant allograft preservation [187]. Multiple
chemokines, cytokines, and proinflammatory mediators are
involved in the immune response following transplantation
[188]. ET-1 accumulates during cold storage of allografts
and can be detected in the effluent preservation solution
[189]. In addition, ET-1 is very likely to play a pivotal role
in the development of chronic allograft dysfunction [190]
which represents one of the major causes of late allograft
loss [191]. Increased expression of components of the ET
system has been reported in areas of neointimal proliferation,
a hallmark of chronic allograft vasculopathy [187, 189].

There is growing evidence that hemodynamic effects of
calcineurin inhibitors (CNI) may be caused by an altered
expression of ET-1 [37, 192]. Enhanced levels of ET-1 lead
to constriction of smooth muscle cells and cell proliferation,
as could be shown in cell culture experiments [193, 194] The
plasma levels of big ET-1 are dependent on CNI plasma
levels 1 year after successful heart transplantation in patients
[195]. Previous studies using ET 4 receptor antagonism have
used concomitant immunosuppressive therapy [15]; thus, the
potential immunomodulatory actions of ET-1 and the actual
contribution of ET-1 to chronic rejection were masked
because of the immunosuppressive agents. In a recent study
in the absence of immunosuppression, we found that
treatment with the ET receptor antagonist darusentan
following cardiac transplantation in the absence of immuno-
suppression changed circulating levels of IL-1 and TNF-a
tissue and gene expression of different interleukins in a
organ-specific fashion independent of graft atherosclerosis
[190]. These findings are compatible with a direct
immunomodulatory role for ET, receptors during allograft
rejection [190, 196]. Braun et al. [197] reported that ETa
receptor blockade with LU135252 prevented long-term
deleterious changes on renal allograft function and
morphology independently from systemic blood pressure and
did not lower proteinuria, strongly arguing against any effect
on glomerular hemodynamics and upregulation of renal ET-1
synthesis in a rat model of renal allograft rejection in which a
role for the ET 5 receptor has been demonstrated [198].

In this context a recent patent reports that tripeptide
derivatives [199, 200], as well as pyrimidine sulfamides deri-
vatives and benzo-fused heterocycles could show significant
benefit in the treatment of ischemia and proliferative
disorders associated with ET-1 [176, 201].

Infection

Ono et al. [202] have reported that myocardial and ET-1
plasma levels increased in mice with encephalomyocarditis
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virus-induced myocarditis. The observation that ET-1 levels
were higher in the myocardium than those in plasma
suggests that the heart is major source of endogenous ET-1
in myocarditis. The non-selective ET A/ ETg receptor antago-
nist bosentan improved survival in these mice and reduced
cellular infiltration and myocardial necrosis [202]. In addi-
tion, Pandey et al. [203] reported that another non-selective
ETA/ETg receptor antagonist, SB217242, improved cardiac
contractility and relaxation in these mice as well. ET-1
contributes to the pathogenesis of murine viral myocarditis
and treatment with the non-selec-tive ETA/ETg receptor
antagonists bosentan or SB217242 significantly improved
myocarditis [202, 203]. In another study, Albertini et al.
[128] reported that ET 5 receptor blockade in rats completely
prevented endotoxin-induced mortality and attenuated serum
indices of myocardial, renal, liver and lung injury. Previous
studies on experimental septic shock models evaluated the
effects of ET 4 receptor antagonists on injury and dysfunction
of a single organ and showed that ET-1 has strong
cardiodepressant effects in sepsis [135, 204].

We have recently reported that ET-1 contributes to the
pathogenesis of chagasic cardiomyopathy (Trypanosoma
cruzi) showing that interventions inhibiting the synthesis of
ET-1 and/or neutral endopeptidase might have either
deleterious or protective effects on myocardial structure and
function in chagasic cardiomyopathy [137, 149, 184, 205].
Trypanosoma cruzi infection induces ET-1 release from
endothelial cells [206], and the released ET-1 contracts
vascular smooth muscle via activation of ET, receptors
[207]. The mechanism by which ET-1 controls Trypanosoma
cruzi infection are not investigated yet, however, ET-1 acting
mainly on ET A receptors can activate macrophages to release
cytokines such as TNF-a [55]. As TNF-a-induced NO
production by macrophages plays an important role in the
acute phase of the infection [208], it is possible that the
ability of ET-1 to release TNF-a may account for the effects
observed. In this regard, we have shown that inflammatory
mediators such as platelet-activating factors and chemokines,
which like ET-1 act on G-protein-coupled receptors, activate
macrophages to produce NO and kill Trypanosoma cruzi
[209].

CURRENT AND FUTURE DEVELOPMENTS

Endothelin (ET), a naturally occurring polypeptide with a
broad range of activities including vasospastic, proinflam-
matory and profibrotic properties, has been implicated in
inflammatory and immunomodulatory processes. These are
characterized by vascular damage, inflammatory infiltrates
and progressive fibrosis of the skin and internal organs.
Plasma concentrations of ET-1 may be elevated in certain
inflammatory reactions and may favor the inflammatory
cascade by facilitating the recruitment of leukocytes, the
expression of cell adhesion molecules and cytokines. ET-1
also induces fibrosis by stimulating fibrotic factors, collagen
synthesis, and fibroblast proliferation. Although there is
growing evidence to suggest that ET-1 may act as a
proinflammatory, profibrotic, and mitogenic factor, it is not
clear whether activation of the ET system under these
conditions is adaptive or pathogenic. While the relative
importance of the receptors mediating these effects remains
uncertain, both ET, and ETg receptors appear to be
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involved. In this context, the ET represents a novel target for
immunomodulation. Recent studies with selective ETx, ETg
or non-selective ETA/ETg receptor antagonists indicate that
ET-receptors blockade, indeed, holds the potential to mar-
kedly improve consequences of local or systemic inflamma-
tory processes improving symptoms and prognosis of the
underlying disease. Clinical trials — in part under way [210,
211, 212] are now required to test this hypothesis in patients.
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