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Abstract The paper considers the problems of scheduling
n jobs that are released over time on a machine in order to
optimize one or more objectives. The problems are dynamic
single-machine scheduling problems (DSMSPs) with job
release dates and needed to be solved urgently because they
exist widely in practical production environment. Gene
expression programming-based scheduling rules construc-
tor (GEPSRC) was proposed to construct effective sched-
uling rules (SRs) for DSMSPs with job release dates
automatically. In GEPSRC, Gene Expression Programming
(GEP) worked as a heuristic search to search the space of
SRs. Many experiments were conducted, and comparisons
were made between GEPSRC and some previous methods.
The results showed that GEPSRC achieved significant
improvement.

Keywords Single machine scheduling . Dynamic
scheduling . Release dates . Scheduling rules . Gene
expression programming

1 Introduction

Scheduling plays an important role in a shop floor control
system, which has a significant impact on the performance

of the shop floor. Scheduling is to allocate scarce resources
(usually are machines) to activities (usually are jobs) with
the objective of optimizing one or more performance
criteria (for instance, minimizing makespan, flow time,
lateness, or tardiness) [1]. In recent years, more and more
effective scheduling methods for shop floor control have
emerged with the developments in scheduling methodolo-
gies (in research and in practice) as well as technological
advances in computing.

Scheduling problems investigated by researchers for
several decades may be categorized roughly into two types,
static scheduling problems and dynamic scheduling prob-
lems. In static scheduling problems, it is usually assumed
that the attributes of all jobs to be scheduled are available
simultaneously at the start of the planning horizon and
unchanged during the planning horizon. The assumption is
made mainly for the sake of convenience to model the
system considered and solve the scheduling problems that
exist. However, the assumption does not always accord
with the practical production environment, since there are
always all kinds of random and unpredictable events that
occur. For example, jobs arrive continuously over time,
machines break down and are repaired, and the due dates of
jobs are changed during processing. It is rarely possible that
the attributes of all jobs to be scheduled are available at the
start of planning horizon and unchanged during the horizon.
Most scheduling problems that exist in such environment
are called dynamic scheduling problems [2]. Dynamic
scheduling problems have attracted more and more atten-
tion. For example, Kianfar et al. [3] studied a flexible flow
shop system considering dynamic arrival of jobs; Wang et
al. [4] considered the single-machine scheduling problem
with a deteriorating function, which means that the actual
job processing time is a function of jobs already processed;
Ham and Fowler [5] considered the scheduling of batching
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operations with job release dates in wafer fabrication
facilities. Although some of static scheduling problems
are often solvable exactly in polynomial time, most of them
are NP-hard. Dynamic scheduling problems are usually
more difficult to solve than static ones.

The paper considers the problems of scheduling n jobs
that are released over time on a machine in order to
optimize one or more objectives, which are dynamic single-
machine scheduling problems (DSMSPs) with job release
dates. The problems are considered for the following
reasons: First, dynamic scheduling problems exist widely
in practice and need to be solved urgently, although they
pose bigger challenges than static scheduling problems.
Secondly, single-machine scheduling problems often form
components of solutions for more complex scheduling
environments. For example, a job shop scheduling problem
may be decomposed into single-machine sub-problems [6].

Static scheduling problems have been studied for almost
half of a century, and many effective methods have been
proposed. At the beginning, many enumerative-based
techniques have been developed. Although enumerative
methods such as branch and bound usually provide optimal
solutions, the cost of computation time is huge even for a
moderate size problem [7]. In the last decades, therefore,
many heuristic methods, including dispatching rules [8] and
search-based methods, such as simulated annealing [9],
tabu search [10], and genetic algorithms (GAs) [11] have
been developed to solve larger problems in a reasonable
time. Search-based methods usually offer high-quality
solutions. However, neither enumerative-based techniques
nor search-based methods are appropriate in dynamic
conditions, because once the schedule is prepared, the
processing sequence of all jobs is determined, and it is
inevitable to modify the schedule frequently to respond to
the change of the system.

Over the last two decades, much effort has been made to
propose new strategies or approaches to solve dynamic
scheduling problems. Aytug et al. [12] categorized roughly
existing strategies into three classes: completely reactive
approaches, robust scheduling approaches, and predictive–
reactive approaches. Completely reactive approaches have
been widely employed in a large number of scheduling
systems and formed the backbone of much industrial
scheduling practice. The approaches are characterized by
least commitment strategies such as real-time dispatching
that create partial schedules according to the current state of
the shop floor and the production objectives. Many
heuristics, also called dispatching rules, are frequently used
to examine the jobs waiting in processing at the given
machine or those that arrive in the immediate future, at each
time t when the machine is idle and to compute a priority
value for each job. The next job to be processed is selected
from them by sorting and filtering them according to the

priority values assigned to them and selecting the job at the
head of the resulting list. The priority function which is
encapsulated in the heuristic and assigns values to jobs is
usually called with the term scheduling rules (SRs) [1].

Several important achievements on DSMSPs with job
release dates are reviewed below. An online algorithm to
minimize makespan problem, now commonly called list
scheduling, was firstly investigated by Graham [13]. It is a
simple greedy algorithm and does not use the information
about processing times of jobs. Similar to the work of
Graham, other researchers made other research on the
online heuristics and achieved many results. As for the total
completion time problem, if all jobs are released at the
same time, Smith showed that the problem can be solved
optimally by the well-known shortest processing time
(SPT) rule [14]. For the preemptive version, Baker’s work
showed that it is easy to construct an optimal schedule
online by always running the job with shortest remaining
processing time (SRPT) [15]. In the case of single-machine
non-preemptive scheduling for minimizing the total com-
pletion time, Hoogeveen and Vestjens [16] gave online 2-
approximation algorithms, called delayed SPT rule, and
proved that the lower bound on online scheduling is 2.
Phillips et al. [17] gave a different 2-competitive algorithm
called PSW algorithm, which converts preemptive sched-
ules to non-preemptive schedules while only increasing the
total completion time by a small constant factor. It is
noticeable that it was not the average flow time of a set of
jobs that was studied in the literature. Although average
flow time is equivalent to average completion time at
optimality, Kellerer et al. [18] have shown that the
approximability of these two criteria can be quite different.
Guo et al. [19] modified the PSW algorithm to solve
minimizing total flow time on a single machine with job
release dates and proved that this new algorithm yields
good solutions for the problem on average. Other objective
functions were rarely considered under the model of the
dynamic single-machine scheduling with job release dates.
For a review on online scheduling results, the comprehen-
sive reviews of [20, 21] are referred. Apart from these
simple online heuristics, other classical scheduling rules
were also reported in literatures, which are the results of
decades of research [22].

The general conclusion on scheduling rules is that no
rule performs consistently better than all other rules under a
variety of shop configurations, operating conditions, and
performance objectives, because the rules have all been
developed to address a specific class of system config-
urations relative to a particular set of performance criterion
and generally do not perform well in another environment
or for other criteria. Therefore, many researchers made
effort to exploit several methods based on artificial
intelligence to learn to select rules dynamically according
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to the change of the system’s state from a number of
candidates. For example, Jeong and Kim [23] and Yin and
Rau [24] used simulation approach; Chen and Yih [25] and
El-Bouri and Shah [26] used neural network; Aytug et al.
[27] used genetic learning approach; Trappey et al. [28]
used expert systems; Singh et al. [29] used the approach of
identifying the worst performing criterion; and Yang and
Yan [30] used adaptive approach. These methods are
mainly based on learning to select a given rule from among
a number of candidates rather than identifying new and
potentially more effective rules. However, significant
breakthrough beyond current applications of artificial
intelligence to production scheduling have been made by
other researchers who made it possible to automatically
construct effective rules for a given scheduling environ-
ments. One of the typical works was the learning system
SCRUPLES proposed by Geiger et al. [31]. The system
combined an evolutionary learning mechanism, i.e., Genet-
ic Programming (GP) [32], with a simulation model of the
industrial facility under study, which automates the tedious
process of developing new scheduling rules for a given
environment which involves implementing different rules
in a simulation model of the facility under study and
evaluates the rules through extensive simulation experi-
ments. Other existing similar researches include: Dimopoulos
and Zalzala [33] evolved rules with GP for single-machine
tardiness problem; Yin et al. [34] evolved rules with GP for
single-machine scheduling subject to breakdowns; Jakobovic
and Budin [1] evolved rules with GP for dynamic single
machine and job shop problem; Atlan et al.[35] and
Miyashita [36] applied GP mainly to classic job shop
tardiness scheduling; and Tay and Ho [37-39] focused on
evolving rules with GP for flexible job shop problem.
The characteristic shared by these works is that it is the
space of algorithms but not that of potential scheduling
solutions is searched with an evolutionary learning mech-
anism. The point in the space of potential scheduling
solutions presents only a solution to the specific scheduling
instance, which means that a new solution must be found
for different initial conditions. While the point in the space
of algorithms represents a solution for all of the problems,
instances in a scheduling environment with an algorithm
can be used to generate a schedule [1]. However, these GP-
based approaches mentioned above have a huge cost on
computation time, and the constructed rules are usually
formulized complexly.

In this research, gene expression programming-based SR
constructor (GEPSRC) was proposed to automatically
discover effective SRs for DSMSPs with job release dates.
Gene Expression Programming (GEP), one of the evolu-
tionary algorithms, worked as a heuristic search to search
the space of algorithms but not that of potential scheduling
solutions. The proposed approach was evaluated in a

variety of single-machine environment where the jobs
arrive over time. GEP was usually possible to discover
rules that are competitive with those evolved by GP and the
classical heuristics selected from literature. In addition, the
computation requirement for training GEP to discover high
performing rules is much less than that of GP.

The remainder of the paper is organized as follows.
Section 2 gives the statement of the DSMSPs with job
release dates. Section 3 describes the heuristic for the
scheduling problems. Section 4 proposes the framework
and mechanism of the GEPSRC and describes the applica-
tion of GEPSRC on the scheduling problems. An extensive
computational study is conducted within the single-machine
environment to assess the efficiency and robustness of the
autonomous SRs constructing approach. The experiments
and results are provided in Section 5. Section 6 is the
conclusion and future work.

2 Statement of dynamic single-machine scheduling
problems

The DSMSPs with job release dates is described as follows.
The shop floor consists of one machine and n jobs, which
are released over time and are processed once on the
machine without preemption. Each job can be identified
with several attributes, such as processing time pi, release
date ri, due date di, and weight wi, which denotes the
relative importance of job i, i=1,…, n. The attributes of a
job are unknown in advance unless the job is currently
available at the machine or arrive in the immediate future. It
is also assumed that the machine cannot process more than
one job simultaneously. The scheduling objective is to
determine a sequence of jobs on the machine in order to
minimize one or more optimization criteria, in our case,
makespan, total flow time, maximum lateness, and total
tardiness, respectively. For the sake of convenience, we
assume all jobs relatively equal, i.e., wj=1. Then, the four
performance criteria considered are defined below.

Cmax ¼ max ci; i ¼ 1; :::; nð Þ ð1Þ

F ¼
Xn
i¼1

ci � rið Þ ð2Þ

Lmax ¼ max ci � di; i ¼ 1; :::; nð Þ ð3Þ

T ¼
Xn
i¼1

max ci � di; 0ð Þ ð4Þ
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where ci denotes the finishing time of job i. Cmax, F, Lmax,
and T denote makespan, total flow time, maximum lateness,
and total tardiness of a problem instance, respectively.

Since GEP is used to search the space of algorithms but
not that of potential scheduling solutions in the paper; the
scheduling algorithms are evaluated on a large number of
training sets or test sets of problem instances, which
represent different operating conditions relative to different
performance criteria, respectively. In order for all the
training sets or test sets to have a similar influence to the
overall performance estimation of an algorithm, average
criterion value over the training set or test set of problem
instances are defined as below.

Cmaxj j ¼ 1

t

Xt

j¼1

Cmax;j

nj � pj
¼ 1

t

Xt

j¼1

max cij; i ¼ 1; :::; nj
� �

nj � pj
ð5Þ

Fj j ¼ 1

t

Xt

j¼1

Fj

nj � pj
¼ 1

t

Xt

j¼1

Pnj
i¼1

cij � rij
� �

nj � pj
ð6Þ

Lmaxj j ¼ 1
t

Pt
j¼1

Lmax;j

nj�pj ¼
1
t

Pt
j¼1

max cij�dij;i¼1;:::;njð Þ
nj�pj ð7Þ

Tj j ¼ 1

t

Xt

j¼1

Tj
nj � pj

¼ 1

t

Xt

j¼1

Pnj
i¼1

max cij � dij; 0
� �

nj � pj
ð8Þ

where Cmax,j, Fj, Lmax,j, and Tj denote the makespan, total
flow time, maximum lateness, and total tardiness of
problem instance j, respectively; nj denotes the number of
job in problem instance j; pj denotes the mean processing
time of all jobs in problem instance j; cij, rij, and dij denote
completion time, release date, and due date of job i in
problem instance j, respectively; t denotes the number of
instances in a training set or test set; and |Cmax|, |F|, |Lmax|,
and |T| represent the average value of makespan, flow time,
maximum lateness, and tardiness over the training set or
test set of problem instances. It is obvious that algorithms
with less objective values of |Cmax|, |F|, |Lmax|, and |T| are
better.

3 Heuristic for DSMSPs with job release dates

In static circumstance, since the attributes of all jobs to be
scheduled are available at the beginning of planning
horizon (referred to be time 0) and unchanged during the
planning horizon, the whole schedules usually can be made
at the beginning. However, it is not convenient in dynamic
conditions where jobs arrive over time and the release dates
cannot be known in advance. At any time, some jobs have
arrived and others may arrive in some future moment. In
this section, we describe a heuristic for the scheduling
problems on a single machine with job release dates, and
the release dates are unknown in advance unless the jobs
will arrive in the immediate future. This heuristic was
proposed firstly by Jakobovic and Budin [1].

Heuristic for DSMSPs with job release dates: 
Initialize t = 0, where the machine is idle at time t; 

While there are unscheduled jobs do 

JSs(t) = {all jobs satisfied with wtj < Pmin(t) }; 

Calculate priority values for all the jobs in JSs(t) according to a SR; 

Schedule the job with the best priority on the machine, and denote the job with J*;

Update the machine’s idle time, i.e. t = the completion time of J*; 

End while. 

Where JSs(t) represents the set of the jobs to be taken
into consideration for scheduling at time t; wtj denotes the
waiting time for the arrival of the job j, i.e., wtj=max{rj − t, 0};
Pmin(t)denotes the shortest processing time of the jobs that
already arrived but are unscheduled at time t.

It is obvious that the JSs(t) consists of two types of jobs:
the jobs that already arrived but are unscheduled at time t

(denoted with AType) and those that are expected to arrived
soon and satisfy wtj<Pmin(t) at time t (denoted with BType).
It is the SR encapsulated in the heuristic that is responsible
for evaluating the priority value for each AType job or
BType job.

It is noticeable that the “best priority” may be defined as
the one with the greatest or the lowest value. In the paper,
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we define that the job with a lower priority value has better
priority.

The heuristic for DSMSPs with job release dates is
employed in the paper for the reasons as below. First, both
the arrived jobs (AType job) and the jobs that are expected to
arrive soon (BType jobs) are taken into consideration for
scheduling, which contributes to make a more reasonable
scheduling decision. In practical scheduling environments, a
job can be identified if it arrives in the immediate future. To
take jobs that are expected to arrive in the immediate future
(BType jobs) into consideration provides a more global
perspective for scheduling manager. Second, it dramatically
decreases the computation cost for estimating priority values
to exclude the jobs with wtj≥Pmin(t) from the set of JSs(t).
For any regular scheduling criterion, such as minimizing
makespan, flow time, maximum lateness, and tardiness, the
jobs with wtj≥Pmin(t) should not be scheduled next. As for
the jobs with wtj≥Pmin(t), the earliest possible starting time
of processing are not earlier than Pmin(t)+t, which is the
earliest possible completion time of the jobs that are
currently available. If one of the jobs with wtj≥Pmin(t) is
selected as the next job to be loaded on the machine at time t,
the arrived job whose processing time is Pmin(t) could be
loaded before the selected job without deteriorating the
performance criterion value. In other words, it makes no
improvement on the performance criterion value and
increases the computation time consumed to take the jobs
with wtj≥Pmin(t) into consideration for scheduling.

In the heuristic, the SR is the important component, and
its behavior makes a significant effect on the performance
of the scheduling [1]. In the following section, we describe
the method of using GEP to automatically construct SRs
which would yield good results considering given heuristic
for DSMSPs with job release dates and given performance
criterion.

4 GEPSRC

We propose here GEPSRC which discovers effective SRs
for DSMSPs with job release dates automatically. As one of
the evolutionary algorithms, GEP works as a heuristic
search technique to search the space of algorithms or space
of SRs for a given scheduling environment but not that of
potential scheduling solutions for a specific problem
instance. In this section, the framework of GEPSRC is
proposed first, and then the application of GEPSRC on the
scheduling problems is described in detail.

4.1 Framework of GEPSRC

GEPSRC integrates a learning module with a simulation
module of the industrial facility under study in order to

automate the process of implementing different rules and
evaluating their performance using the simulation experi-
ments. The simulation module works as a performance
evaluator, and the learning module uses GEP as its
reasoning mechanism to evolve SRs based on the evaluat-
ing results passed back from the simulation module. The
framework of GEPSRC is shown in Fig. 1.

GEPSRC starts with an initial population which consists of
a number of candidate scheduling rules that are randomly
generated. These rules are passed to the simulation module
that describes the production environment and assessed using
one or more quantitative measures of performance. Then, the
values of the performance measures for all candidate rules are
passed back to the learningmodule, where the next population
of rules is reproduced and modified from the current high-
performing rules using evolutionary search operators such as
selection with elitism strategy, replication, mutation, and
transposition (see Section 4.2.3). This next set of rules is
then passed to the simulation module so that the performance
of the new rules can be evaluated. This cycle is repeated until
the termination condition is satisfied.

4.2 Application of GEPSRC on DSMSPs with job release
dates

The reasoning mechanism to explore the space of possible
SRs in GEPSRC is GEP. GEP is a new technique of creating
computer programs based on principle of evolution, firstly
proposed by Ferreira [40]. Like GAs [11] and GP [32], it is
also an evolutionary algorithm as it uses populations of
individuals, selects them according to fitness, and introduces
genetic variation using one or more genetic operators [40].
GEP is a genome/phenome evolutionary algorithm, which
combines the simplicity of GAs and the abilities of GP [40].
In a sense, GEP is a generalization of GAs and GP [41].
GEP uses fixed length, linear strings of chromosomes
(genome) to represent expression trees (ETs) of different
shapes and sizes (phenome), which makes GEP more
versatile than other evolutionary algorithms [40]. Each
chromosome is composed of elements from functions set
(FS) and terminal set (TS) relevant to a particular problem
domain. The set of available elements is defined a priori. All
of the chromosomes that can be constructed using the
element set compose the search space.

The remainder of the section presents the design of FS
and TS, mapping mechanism between GEP chromosomes
and SRs, and operation of evolutionary search operators of
GEP and fitness function.

4.2.1 Designing of FS and TS

Each chromosome of GEP is generated randomly at the
beginning of the search and modified during evolutionary
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progress with the elements from FS and TS. In other words,
GEP uses this predefined set of elements to discover
possible solutions for the problem at hand. Therefore, the
choice of proper elements for FS and TS is a crucial step in
the implementation of optimization process.

The FS and TS used to construct SRs in GEPSRC are
defined as follows:

Function Set: including functions such as “+,” “−,”
“*,” which express the corresponding arithmetic
functions, respectively, and “/” which expresses the
protected division which returns 1 when the denomi-
nator is equal to 0.
Terminal Set: including elements that denote the
current status and attributes of the candidate jobs for
scheduling, such as:

p job’s processing time;
r job’s release date;
d job’s due date;
sl job’s positive slack, max {d − p − max{t, r}, 0},

where t denotes the idle time of the machine;
st job’s stay time, max {t – r, 0}, where t is defined as

above;
wt job’s wait time, max {r – t, 0}, where t is defined as

above.

As for any job, st and wt cannot be positive number
simultaneously; st is always 0 for BType jobs, while wt is
always 0 for AType jobs. It is obvious that selecting these
two elements to construct SRs is beneficial to make a
difference between AType jobs and BType jobs.

Many researchers incorporate wait time wt into process-
ing time p of a job, i.e., the original processing time of a job
is changed to p + wt, which make many SRs designed for
static scheduling environment valid to evaluate BType jobs
in dynamic scheduling environment [1]. However, the
method is based on the hypothesis that the wait time

information only has an effect on the job’s processing time.
But it is not always true. Maybe it includes implicitly some
information that contributes to make a better decision for
the optimization of scheduling process. Therefore, wait
time wt is used as one of the potential elements to construct
SRs in our work to test GEPSRC’s ability to learn and
discover new and interesting relationships relative to
waiting time which may not be obvious.

It is noticeable that the several elements such as d and sl
are important for performance measure of lateness and
tardiness but irrelevant to the performance criterion of
makespan and flow time. They should be excluded from TS
when GEPSRC run for scheduling objective of makespan
and flow time. However, as for a scheduling problem in a
specific environment relative to a certain criterion, it is
usually unknown in advance which attributes of the system
might be relative to the objective of scheduling. The aim of
including irrelevant elements into the TS in the paper is to
examine the ability of GEPSRC to exclude the irrelevant
elements in the construction of SRs.

4.2.2 Mapping mechanism between GEP chromosomes
and SRs

A SR is actually a mathematic formula which can be
encoding into a chromosome of GEP, which typically
comprises one or more genes.

A gene in GEP is a fixed length symbolic string with a
head and a tail. Each symbol is selected from FS or TS. The
symbols which come from FS mean perform a certain
operation on arguments. For example, “+” adds two
arguments and returns the sum of them. The symbols come
from TS have no arguments. For example, “a” directly
returns the value of the variable a. It is stipulated that the
head of gene may contain symbols from both the FS and
the TS, whereas the tail consists only of symbols come
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Fig. 1 Framework of GEPSRC
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from TS. Suppose the symbolic string has h symbols in the
head, and t symbols in the tail, then the length of the tail is
determined by the equation t=h * (n−1)+1, where n is the
maximum number of arguments for all operations in FS,
which ensure the correctness of gene, in other words,
ensure the validity of the computer program’s output [41].
Suppose we use h=6 and n=2 for arithmetic operations.
Thus, the tail length must be t=7. So the total gene length is
13.

Consider the FS={+, −, *, /} and the TS={p, r, d, sl, st,
wt} (defined in section 4.2.1); a randomly generated GEP
gene with size 13 is shown in Fig. 2a. The tail is
underlined. The gene can be mapped into an ET shown in
Fig. 2b following a depth-first fashion [41]. Specifically,
first element in gene corresponds to the root of the ET.
Then, below each function is attached as many branches as
there are arguments to that function. A branch of the ET
stops growing when the last node in this branch is a
terminal. The ET shown in Fig. 2b can be further
interpreted in a mathematical form as Fig. 2c. It is
noticeable that there exist a number of redundant symbols
in genes, which are not useful for the gene-ET mapping
(genome–phenome mapping). In the example gene, only
the first nine symbols are used to construct the ET. The first
nine symbols form its valid K-expression. The rest are
called its non-coding region. It is the non-coding region
that makes the GEP paramount different from GAs and GP,
which always guarantee to product valid new chromo-
somes, even if any genetic operators are applied on it
without restrictions [40].

A typical GEP chromosome which comprises three
genes with size of 13 (shown in Fig. 3a) is shown in
Fig. 3b, where “|” is used to separate individual genes and
underlines are used to indicate the tails. Each gene codes
for a sub-ET and the sub-ETs interact with each other in a
way of addition to form a more complex multi-subunit ET
shown in Fig. 3c. The multi-subunit ET can be explained
in a mathematical form as shown in Fig. 3d. It is
noticeable that the lengths of K-expression of the three
genes are 9, 9, and 5, respectively, and the lengths of non-
coding region of the three genes are 4, 4, and 8,
respectively.

4.2.3 Evolutionary search operators

A variety of evolutionary search operators were designed to
introduce genetic diversity in GEP population [40].

Selection with elitism strategy Individuals are selected
according to fitness by roulette wheel sampling coupled
with the cloning of the best individual (simple elitism).

Replication The chromosome is unchanged and enters the
next generation directly. The selected individuals are copied
as many times as the outcome of the roulette wheel. The
roulette is spun as many times as there are individuals in the
population in order to maintain the population size
unchanged.

Mutation Randomly change symbols in a chromosome. In
order to maintain the structural organization of chromo-
somes, in the head, any symbol can change into any other
function or terminals, while symbols in the tail can only
change into terminals.

Transposition Randomly choose a fragment of a chromo-
some and insert it in the head of a gene. The fragment
usually consists of several successive symbols in a
chromosome. In order not to affect the tail of the gene,
symbols are removed from the end of the head to make
room for the inserted string. In GEP, there are three kinds of
transposition: (1) IS transposition, i.e., randomly choose a
fragment begins with a function or terminal (called IS
elements) and transpose it to the head of genes, except for
the root of genes; (2) RIS transposition, i.e., randomly
choose a fragment begins with a function (called RIS
elements) and transpose it to the root of genes; (3) gene
transposition, i.e., one entire gene in a chromosome is
randomly chosen to be the first gene. All other genes in the
chromosome are shifted downwards to make place for the
chosen gene. Consider the three-genic chromosome in
Fig. 4 (the tail is underlined): (a) suppose the fragment
“p./.−.” in gene 2 is chosen to be an IS element and inserted
in the bond 2 in gene 1, then a cut is made in bond 2 and
the fragment “p./.−.” is copied into the site; the last three

*

rpd

/+

*

*. *. +. d. p. /. r. wt. sl. p. st. wt. sl

(a) gene/genome (b)  ET/phenome

K-expression Non-coding region

wt

sl

( )* *
r

d p sl
wt

(c)  mathematical formula

Fig. 2 Mapping between gene and ET in GEP
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symbols in the head are deleted. (b) Suppose the fragment
“/.+.d.” in gene 0 is chosen to be an RIS element. Then, a
copy of the fragment “/.+.d.” is made into the root of the
gene. The last three symbols in the head are removed. (c)
Suppose gene 2 was chosen to undergo gene transposition
and moved to the beginning of the chromosome.

Recombination Exchange some material between two
randomly chosen parent chromosomes. There are three
kinds of recombination: (1) one-point recombination, i.e.,
split the chromosomes into halves and swap the
corresponding sections; (2) two-point recombination, i.e.,
split the chromosomes into three portions and swap the
middle one; (3) gene recombination, i.e., choose one entire
gene and swap it between chromosomes.

These genetic operators not only always produce
syntactically correct offspring but also are good at creating
genetic variation. Mutation and transposition have a
tremendous transforming power and usually drastically
reshape the ETs. Recombination is excellent for preserving
the promising fragment of the sequence of a chromosome
to offspring without any constraints.

4.2.4 Fitness function

The fitness function used to evaluate the chromosome of
GEP is defined below:

fi ¼ Omax � Oi

Omax � Omin
ð9Þ

fi denotes the fitness of the chromosome i, Oi represents the
average criterion value over the training set or test set of
problem instances obtained with the SR correspondent to
chromosome i. Omax and Omin denote the maximal and
minimal average criterion value over the same training set
or test set of problem instances obtained with the
chromosomes of the population, respectively. Since the
scheduling objection is minimization, the better chromo-
some is assigned the bigger fitness.

5 Experiments and results

5.1 Control parameter settings

The reasonable settings for the parameters in GEPSRC are
determined through extensive experiments, including: pop-
ulation size, termination condition, number of gene in a
chromosome, the length of the head of a gene, mutation rate,
IS transposition rate, RIS transposition rate, gene transposi-
tion rate, one-point recombination rate, two-point recombi-
nation rate, and gene recombination rate. In addition, in the
transposition, three transpositions with lengths 1, 2, and 3
were used. Based on these results, the control parameter
settings shown in Table 1, column 1 is used in GEPSRC.

5.2 Benchmark heuristics

In order to evaluate the effectiveness of GEPSRC, eight
frequently used classical online heuristics and scheduling
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Table 1 Control parameters settings in GEPSRC and GPSRC

GEPSRC GPSRC

Parameters Value Parameters Value

Population size 200 Population size 200

Termination condition The best solution has not been
improved for consecutive 100
evolutionary iterations

Termination condition The best solution has not been improved
for consecutive 100 evolutionary iterations

Maximum length of
chromosome

10 for head, 21 for each gene, 3 gene Maximum length of tree 63

Initialization Randomly Initialization Ramped half-and-half, max. depth of 15

Mutation and transposition 0.03 probability for mutation, and 0.3,
0.1, 0.1 probability for IS, RIS and
Gene transposition, respectively.

Mutation 0.05 probability

IS elements length is 1, 2, 3, RIS elements
length is 1, 2, 3.

Recombination 0.2, 0.5, 0.1 probability for One-point, Two-
point and Gene recombination, respectively

Crossover 0.80 probability

0 1 2 3 4 5 6 7 8 9 0 1 2 0 1 2 3 4 5 6 7 8 9

-. *. p. +. d. -. p. sl. r. wt. d. st. r. /. +. p. r. d. /. sl. wt. p. d.
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d. d. r. *. -. *. r. *. -. p. r. d. sl. wt. d. p.
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0 1 2 0 1 2 3 4 5 6 7 8 9 0 1 2
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Fig. 4 Transposition of GEP
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rules are selected as benchmarks to which the rules
constructed with GEPSRC are compared.

List (list scheduling) Given a set of jobs with release dates,
the jobs are ordered in arbitrary list (sequence). Whenever
the machine is idle, the first job on the list which is
available is scheduled on the machine [13]. This algorithm
works in the model with release dates since it does not use
the information about processing times of jobs [20].

Modified PSW algorithm The algorithm produces non-
preemptive schedules from preemptive ones. Given a set
of jobs with release dates and processing times, a
preemptive schedule is first formed using the SRPT rule.
Under this rule, the machine always picks jobs with the
shortest remaining processing time among those already
released at the current time and processes these first. Each
job will have a (preemptive) completion time Cj. Next, an
ordered list L of jobs is formed based on their preemptive
completion time Cj using a simple sort. A non-preemptive
schedule is then obtained if the first job in L is continued to
be assigned to the machine when it is freed and delete it
from L. The algorithm yields good solutions for the
problem on average [19].

Earliest due date rule All jobs currently waiting processing
in the queue of the machine are listed in ascending order of
their due dates di. The first job in the list is processed next
at the machine. This rule is the most popular due-date-
based rule. It is known to be used as a benchmark for
reducing maximum tardiness and variance of tardiness [42].

Montagne rule Montagne rule (MON) sequences jobs
currently waiting processing in ascending order of the
following ratio pi/(P–di), where P denotes the sum of the
processing time of all jobs [43]. The first job in the list is
processed next at the machine. This means that a job with a
due date close to the sum of the processing time of all jobs
is likely to be scheduled on a later stage. Conversely, jobs
with early due dates are given extra priority. MON performs
well on different types of single-machine tardiness prob-
lems [33].

Minimum slack time rule Minimum slack time rule (MST)
lists jobs currently waiting for processing in ascending
order of their slack sli, where slack for a job is computed by
subtracting its processing time at the machine pi and the
current time t from its due date di, i.e., sli=di– t–pi. The
first job in the list is processed next at the machine. This
rule is also used to reduce total tardiness of jobs [44].

Modified due date rule The jobs are listed in ascending
order of their modified due date mdi, where the modified

due date of a job is the maximum of its due date and its
remaining processing time, i.e., mdi=max (t+pi, di). This
means that once a job becomes critical, its due date
becomes its earliest completion time. The first job in the
list is processed next at the machine. This rule is aimed to
minimize total tardiness of jobs [45].

Cost over time rule When a job is projected to be tardy
(i.e., its slack is 0), its priority value reduces to 1/pi. On the
other hand, if a job is expected to be very early where the
slack exceeds an estimation of the delay cost, the priority
value for the job increases linearly with decreases in slack.
Cost over time rule (COVERT) uses a worst-case estimate
of delay as the job processing times multiplied by a look-
ahead parameter k. In other words, the priority value of job
i is computed as 1

pi
� 1� di�t�pið Þþ

k�pi

� �þ
, where (X)

+
=max(0, X)

[46]. Thus, the priority value of a job increases linearly
from 0 when slack is very high to 1/pi when the status of
job becomes tardy. The job with the largest COVERT
priority value is processed next at the machine.

Apparent tardiness cost rule Apparent tardiness cost rule
(ATC), a modification of COVERT, estimates the delay
penalty using an exponential discounting formulation, i.e.,

priority value of job i is computed with 1
pi
� e�

di�t�pið Þþ
k�pi [47].

If a job is tardy, ATC reduces to 1/pi. If the job experiences
very high slack, ATC reduces to the MST. It must be noted
that if the estimated delay is extremely large, ATC again
reduces to 1/pi, which is different from COVERT. The job
with the largest priority value is processed next at the
machine.

In both COVERT and ATC, the look-ahead factor k
can significantly affect performance; k is varied from 0.5
to 4.5 in increments of 0.5, and the objective function
value where COVERT and ATC each performs best is
recorded.

GPRules GP-based scheduling approaches which automat-
ically construct effective rules for a given scheduling
environment have been investigated recently, and they have
achieved good performance [1, 31, 33-39]. Therefore,
besides the classical online heuristics and scheduling rules
mentioned above, the rules evolved by GP are also used to
evaluate the efficiency of GEPSRC. In the paper, GP-based
scheduling rules constructor (GPSRC) is also implemented
in which GP is used as the reasoning mechanism to search
the SRs space. The description of GPSRC is provided in the
Appendix. The control parameters settings for GPSRC are
summarized in Table 1, column 2. It is noticeable that an
individual of GP is represented as a rooted tree, while an
individual of GEP map into several sub-trees which are
connected with each other to form a bigger tree as describe
in Section 4.2.2. It is unique character of GEP that an
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individual may consist of more than one gene, which
significantly improve the expression ability of the geno-
type/phenotype. But a maximum program size of 63 was
used in both GP and GEP so that comparisons could be
made between all the experiments (to be more precise, for
GEP with three genes with head length 10, maximum
program size of GEP equals 63).

The measure used for heuristic comparison is the
percent-relative error computed as

%Error ¼ Ok � Ol

Ol

Where Ok is the average objective value over the test set of
problem instances obtain by heuristic k, and Ol is the
average objective value over the test set of problem
instances obtain by heuristic l. A negative value indicates
that heuristic k performs better than heuristic l.

5.3 Design of experiments

In this section, we generate a series of training sets and test
sets that represent a set of problem instances of varying
operating conditions to evolve rules with GEPSRC and
evaluate them.

Problem instances are randomly generated with the
instance generation approach used by Jakobovic and Budi
[1]. Each scheduling problem instance is defined with the
following parameters:

n the number of jobs. Its value is 10, 50, or 100;
pj processing time of job j, j=1,…, n. The values of

processing time are assumed as integers and drawn out
of U[1,100], U[100, 200], or U[200, 300], where U
refers to the uniform distribution;

rj release date of job j, j=1,…, n. Release dates are
integers chosen randomly from U[0, 1/2 * P], where U
refers to the uniform distribution and P denotes the
sum of the processing time of all jobs;

dj due date of job j, j=1,…, n. Due dates are integers and
drawn out of U rj þ P � rj

� �
» 1� T � R=2ð Þ; rjþ

�
P � rj
� �

» 1� T þ R=2ð Þ�, where U refers to the
uniform distribution, P denotes the sum of the
processing time of all jobs, T is due date tightness
factor which represents the expected percentage of late
jobs, and R is due date range factor which defines the
dispersion of the due dates values. T and R are
assigned values of 0.1, 0.5, or 0.9.

wj weight of job j, j=1,…, n. We assume all jobs
relatively equal, i.e., wj=1.

Table 2 summarizes the different values of the parame-
ters used to generate problem instances of varying
operating conditions.

Eighteen training sets are generated to construct rules for
a given performance measure. In the first nine training sets,
the value of n and p of each training set was fixed, whereas
T and R assume values of 0.1, 0.5, and 0.9 in various
combinations (3×3=9). In the remaining nine training sets,
the value of T and R in each training set was fixed, whereas
n and p assume value of 10, 50, 100 and U[1,100], U[100,
200], or U[200, 300] in various combinations (3×3=9).
The number of the instances generated for each of nine
combinations of parameter in each training set (called
sample size) is noticeable because the composition of the
training sets can significantly influence the generality of the
evolved SRs. Extensive experiments were conducted to
investigate the impact of sample size on the success of
learning. The most appropriate sample size for this research
was determined to be three, and results showed that a large
sample size was unbeneficial to construct effective SRs that
generalize well to unseen scheduling instances in test sets.
Therefore, a training set that consisted of 27 problem
instances is used to construct SRs in each individual
GEPSRC run. Five runs were conducted in total for each
training set. In addition, 18 different test sets of the similar
composition using the same parameters are generated for
evaluation purposes.

5.4 Analysis of results

Various experiments are conducted to evaluate the efficien-
cy of the proposed GEP-based scheduling approach
GEPSRC in the comparison with the benchmark heuristics
listed in Section 5.2.

5.4.1 Minimizing makespan

Table 3 shows the makespan results of benchmark
heuristics presented in Section 5.2 and rules evolved

Table 2 Simulation parameters setting

Parameter Levels Values

Number of jobs (n) Small (S) 10

Moderate (M) 50

Large (L) 100

Processing time of jobs (p) Small (S) U[1,100]

Moderate (M) U[100,200]

Large (L) U[200,300]

Due date tightness (T) Loose (L) 0.1

Moderate (M) 0.5

Tight (T) 0.9

Due date range (R) Small (S) 0.1

Moderate (M) 0.5

Large (L) 0.9
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by GEPSRC (GEPRules) on different test sets. “Ave”
column is the average performance of the GEPRules or
GPRules over the test set from the five run. The “best”
and “worst” columns summarize the performance of the
best and the worst performing rules over the five runs,
respectively.

The results indicate that the list scheduling emerges as
the best among the benchmark heuristics in minimizing
makespan objective in all cases regardless of the
changing the number and processing time of jobs.
Modified PSW (MPSW) algorithm also exhibits notable
performance when jobs’ processing times are moderate
or large, but its performance degrades when jobs’
processing times are small. Among the heuristics, the
Covert and ATC perform the worst in minimizing
makespan. This is because these two rules concentrate
significantly on due dates. The obtained scheduling
minimizes the objectives related to due date, such as
tardiness, but the completion time of the whole schedule
is ignored.

For all cases, GEPRules exhibit the best performance as
list scheduling. GPRules perform slightly worse than
GEPRules in several cases. The average percent error of
GPRules relative to List scheduling ranged from 0.001% to
0.068% and worst percent error of GPRules relative to list
scheduling ranged from 0.007% to 0.338%.

The best rule learned by GEPSRC for test set #1 is
formulized as r, i.e., it contains only the release date
information, which indicates that the release dates informa-
tion is valuable and that the due dates information is
irrelevant to minimizing makespan problem. The phenom-
enon also exists in other GEPRules discovered for other
scenarios. Therefore, it is inferred that the release date
information contributes mainly in reducing makespan
objective and that GEPSRC is capable of identifying the
significance of job release dates for the performance
measure, although other attributes of jobs are also provided
to it. On the other hand, the rules discovered by GP are
more complex and cannot explicitly interpret the relation-
ship among the attributes of job.

Table 3 Comparison of benchmark heuristics and GEPRules relative to List for minimizing makespan problem on test sets #1–9

Test
set #

n p List %
Error

MPSW
%Error

EDD
%Error

MON
%Error

MST
%Error

MDD
%Error

COVERT
%Error

ATC
%Error

GPRules GEPRules

Ave %
Error

Best %
Error

Worst
%Error

Ave %
Error

Best %
Error

Worst
%Error

1 S S 0.000 7.375 5.347 7.003 5.331 6.445 26.450 26.450 0.000 0.000 0.000 0.000 0.000 0.000

2 S M 0.000 0.713 5.535 2.177 6.202 5.139 12.968 12.968 0.068 0.000 0.338 0.000 0.000 0.000

3 S L 0.000 0.401 4.970 3.435 6.206 4.166 12.975 12.975 0.000 0.000 0.000 0.000 0.000 0.000

4 M S 0.000 8.120 2.217 5.346 1.765 2.187 25.085 32.006 0.001 0.000 0.007 0.000 0.000 0.000

5 M M 0.000 0.493 3.780 2.277 3.658 3.376 9.217 9.682 0.000 0.000 0.000 0.000 0.000 0.000

6 M L 0.000 0.170 4.036 1.782 4.276 3.650 9.012 9.464 0.000 0.000 0.000 0.000 0.000 0.000

7 L S 0.000 7.026 1.049 4.586 0.949 1.038 9.568 11.354 0.000 0.000 0.000 0.000 0.000 0.000

8 L M 0.000 0.423 3.149 1.613 2.890 2.707 30.798 31.668 0.000 0.000 0.000 0.000 0.000 0.000

9 L L 0.000 0.112 3.686 1.704 3.326 3.134 16.392 16.392 0.000 0.000 0.000 0.000 0.000 0.000

Table 4 Comparison of benchmark heuristics and GEPRules relative to MPSW for minimizing flow time problem on test sets #1–9

Test
set #

n p List %
Error

MPSW
%Error

EDD
%
Error

MON
%
Error

MST
%
Error

MDD
%
Error

COVERT
%Error

ATC
%
Error

GPRules GEPRules

Ave %
Error

Best %
Error

Worst
%Error

Ave %
Error

Best %
Error

Worst
%Error

1 S S 22.981 0.000 34.606 10.451 46.505 21.057 43.954 42.795 −8.004 −8.643 −7.566 −8.759 −8.802 −8.744
2 S M 9.477 0.000 24.680 8.804 29.589 19.705 37.622 40.290 −0.713 −0.852 −0.546 −0.759 −0.878 −0.714
3 S L 5.145 0.000 18.082 11.471 22.341 13.371 34.593 39.501 −0.529 −0.576 −0.493 −0.552 −0.576 −0.499
4 M S 29.951 0.000 40.434 6.357 45.162 24.656 30.319 31.706 −18.160 −18.184 −18.113 −18.202 −18.218 −18.186
5 M M 15.976 0.000 29.769 15.585 29.985 23.171 29.781 30.392 −1.122 −1.144 −1.103 −1.128 −1.144 −1.109
6 M L 9.624 0.000 23.736 12.495 24.853 19.504 25.082 26.380 −0.412 −0.414 −0.411 −0.412 −0.414 −0.411
7 L S 35.573 0.000 37.362 7.349 41.237 24.841 27.313 26.374 −17.399 −17.414 −17.377 −17.356 −17.408 −17.278
8 L M 17.287 0.000 28.827 14.484 28.208 22.176 24.846 27.561 −1.068 −1.083 −1.063 −1.057 −1.065 −1.054
9 L L 10.167 0.000 22.641 12.696 21.578 17.751 20.695 21.898 −0.246 −0.265 −0.197 −0.255 −0.255 −0.255
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5.4.2 Minimizing flow time

Table 4 shows the flow time results of benchmark heuristics
and GEPRules on different test sets. Since MPSW
algorithm produces good solutions for the flow time
problem, the average objective function values obtained
from the other heuristics, including the rules that are
discovered by GEPSRC and GPSRC, are compared to
those values form MPSW. The second rank goes to MON
rule, but MON performs worse than list scheduling in the
cases where the jobs’ processing time is large. List
scheduling exhibits better performance than modified due
date rule (MDD) expect for the cases where the jobs’
processing time is small. The results in Table 4 indicate that
MST obtains the worst result when jobs’ processing times
are small, however, its performance increase as the
processing time increase.

Table 4 also shows that the rules constructed by
GEPSRC and GPSRC outperform MPSW algorithm in all
cases, especially in the cases where the jobs’ processing
time is small. In the comparison with GPRules, GEPRules
shows better performance when the number of jobs are
small or moderate. The improvement over MPSW obtained
from GEPSRC is more than that obtained from GPSRC by
0.755% for the average percent error, 0.159% for the best
percent error, and 1.178% for the worst percent error.
However, GEPSRC’s performance degrades when the
number of jobs becomes large, but these result in small
degradation in average objective function value. The
improvement over MPSW obtained from GEPSRC is less
than that obtained from GPSRC by 0.043% for the average
percent error, 0.018% for the best percent error, and 0.099%
for the worst percent error.

GEPSRC exhibits the ability to intelligently select the
useful attributes from candidate ones to automatically
construct effective SRs. Take the best rules constructed by

GEPSRC for test set #4 and #9 (Rule-F4 and Rule-F9) for
example.

pþ wt2 þ r � wt� wt2

p
ðRule� F4Þ

pþ 2wtþ r

wt
ðRule� F9Þ

From Rule-F4 and Rule-F9, it is easy to find that the
specific due date parameters of due date d and slack sl is
not relevant to the criterion of minimizing flow time,
regardless of the variation of due dates of the jobs to be
scheduled, whereas release date r and processing time p
help to reduce the flow time of the jobs (recall that from the
definition of waiting time wt in Section 4.2.1; waiting time
wt and release date r are correlated). Moreover, when all
jobs are available simultaneously, the rule above may be
reduced into p, i.e., SPT rule, which produces optimal
solution for the special case [14].

As for the rules discovered by GPSRC, the relationship
among the attributes of jobs cannot be explicitly explained
from their expressions since they are usually quite complex.

5.4.3 Minimizing maximum lateness

Table 5 shows the performance of the heuristics for the
criterion of maximum lateness. Earliest due date rule (EDD)
performs well in these test sets. For this reason, the average
objective function values obtained from the other heuristics
are compared to those values from EDD. The results show
that MON performs better than MST when jobs’ processing
times are moderate or large, but its performance degrades
when jobs’ processing times are small. List scheduling and
MPSW algorithm obtain good results in minimizing make-
span and flow time problems, respectively (see Sections 5.4.1

Table 5 Comparison of benchmark heuristics and GEPRules to EDD for minimizing maximum lateness problem on test sets #1–9

Test
set #

n p List %
Error

MPSW
%Error

EDD
%Error

MON
%Error

MST
%Error

MDD
%Error

COVERT
%Error

ATC %
Error

GPRules GEPRules

Ave %
Error

Best %
Error

Worst
%Error

Ave %
Error

Best %
Error

Worst
%Error

1 S S 27.873 87.440 0.000 39.645 18.138 49.521 164.447 164.447 −16.164 −16.909 −14.655 −16.583 −16.909 −15.315
2 S M 20.665 55.784 0.000 9.999 23.108 35.034 108.054 108.054 −18.806 −18.936 −18.700 −18.825 −18.936 −18.798
3 S L 29.528 83.658 0.000 9.870 25.317 47.507 148.285 148.306 −12.396 −14.581 −6.573 −14.487 −14.641 −14.052
4 M S 86.639 231.442 0.000 69.127 38.879 68.811 232.310 266.956 −10.468 −10.570 −10.371 −10.437 −10.570 −10.252
5 M M 81.048 183.409 0.000 34.855 47.752 77.370 205.405 209.058 −17.272 −17.311 −17.211 −17.285 −17.315 −17.268
6 M L 73.449 187.331 0.000 20.858 46.203 84.471 175.690 183.151 −19.864 −20.011 −19.619 −20.011 −20.011 −20.011
7 L S 111.014 288.834 0.000 77.912 46.460 102.376 191.295 199.247 −5.526 −5.526 −5.526 −5.524 −5.526 −5.516
8 L M 97.332 221.867 0.000 34.879 46.868 105.913 262.961 286.395 −16.257 −16.315 −16.216 −16.215 −16.275 −16.153

9 L L 84.010 202.549 0.000 22.617 43.973 102.620 251.479 253.637 −18.917 −18.943 −18.892 −18.923 −18.929 −18.900

Int J Adv Manuf Technol (2010) 50:729–747 741



and 5.4.2). However, they perform poorly in minimizing
maximum lateness in comparison with EDD. This is because
the due dates of jobs are ignored by the two algorithms.
COVERT and ATC perform worst among the heuristics for
the due-date-related objective, although they are also due-
date-based rules. The reason is that they try to minimize the
deviation between the completion time and due date for each
job, which may degrade the objective of minimizing
maximum lateness.

From the results, it is also easy to found that both
GEPRules and GPRules exhibit much better behave than
EDD. When the number of jobs is small and moderate,
GEPSRC exhibits better performance than GPSRC, except
on the test case #4. However, the performance of GEPSRC
is slightly worse than GPSRC when the number of jobs is
large. The improvement on average performance obtained
from GEPSRC over EDD is less than that obtained from
GPSRC by 0.042%, the improvement on best learned rule
performance obtained from GEPSRC is less than that
obtained from GPSRC by 0.04%, and the improvement
on worst learned rule performance obtained from GEPSRC
is less than that obtained from GPSRC by 0.119%.

Take a closer look at the best rules constructed by
GEPSRC for test set #5 and #9 (Rule-L5 and Rule-L9).

d þ p � wt2 þ r

wt
ðRule� L5Þ

d þ slþ r � wt ðRule� L9Þ
The learned rules show the visible role of due date-

related attribute d and sl. This seems logical, as the
objective function is due-date-related and is aligned with
the general conclusions of the scheduling research commu-
nity. Moreover, when all jobs are available simultaneously,
the rules above may be reduced into d, i.e., EDD rule or the
combination rule of EDD and MST. The rules discovered
by GPSRC can not explicitly explain the relationship
among the attributes of jobs.

Further experiments are conducted on test sets #10–18 to
evaluate the performance of heuristics under a variety of
level of due date tightness factor and range factor. The
results are summarized in Table 6. Since EDD performs
well in these test sets, the average objective function values
obtained from the other rules are compared to those values
from EDD. However, EDD does not guarantee the best
solutions for the maximum lateness problem, shown by
other rules receiving a negative percent error score.

All rules seem to perform better under the small due date
range conditions than under the large due date range
conditions. Under the small due date range conditions, list
scheduling performs better EDD in minimizing maximum
lateness. However, its performance degrades significantly T

ab
le

6
C
om

pa
ri
so
n
of

be
nc
hm

ar
k
he
ur
is
tic
s
an
d
G
E
P
R
ul
es

re
la
tiv

e
to

E
D
D

fo
r
m
in
im

iz
in
g
m
ax
im

um
la
te
ne
ss

on
te
st
se
t
#1

0–
18

T
es
t
se
t

#
T

R
L
is
t
%

E
rr
or

M
P
S
W

%
E
rr
or

E
D
D

%
E
rr
or

M
O
N

%
E
rr
or

M
S
T
%

E
rr
or

M
D
D

%
E
rr
or

C
O
V
E
R
T
%

E
rr
or

A
T
C

%
E
rr
or

G
P
R
ul
es

G
E
P
R
ul
es

A
ve

%
E
rr
or

B
es
t
%

E
rr
or

W
or
st
%

E
rr
or

A
ve

%
E
rr
or

B
es
t
%

E
rr
or

W
or
st
%

E
rr
or

10
L

S
−1

9.
65

6
28

.1
43

0.
00

0
−1

3.
84

9
32

.7
30

6.
10

5
13

9.
82

6
19

7.
56

2
−3

9.
31

3
−3

9.
31

3
−3

9.
31

3
−3

9.
31

3
−3

9.
31

3
−3

9.
31

3

11
L

M
59

0.
54

7
79

7.
81

9
0.
00

0
42

5.
49

4
10

7.
26

1
5.
23

3
89

2.
13

1
96

3.
85

5
−1

29
.8
71

−1
32

.8
84

−1
24

.3
51

−1
31

.4
43

−1
32

.8
84

−1
27

.8
62

12
L

L
25

4.
36

8
36

4.
45

2
0.
00

0
21

3.
81

8
7.
54

3
0.
00

0
33

2.
25

6
30

9.
48

8
−2

8.
50

3
−2

9.
08

3
−2

6.
83

9
−2

8.
07

9
−2

8.
49

3
−2

7.
47

4

13
M

S
−2

.2
75

57
.9
07

0.
00

0
10

.5
49

8.
83

1
20

.1
71

87
.6
23

87
.6
23

−5
.2
36

−5
.2
36

−5
.2
36

−5
.1
50

−5
.2
36

−4
.8
05

14
M

M
42

.8
19

12
6.
78

5
0.
00

0
3.
61

9
42

.9
71

43
.7
99

14
6.
85

2
14

5.
05

0
−1

4.
48

4
−1

4.
48

4
−1

4.
48

4
− 1

4.
48

4
−1

4.
48

4
−1

4.
48

4

15
M

L
17

3.
71

3
28

7.
08

0
0.
00

0
9.
69

9
10

8.
39

9
88

.7
77

22
5.
49

2
22

5.
49

2
−1

8.
79

5
−1

8.
98

5
−1

8.
05

8
−1

9.
79

1
−2

3.
04

7
−1

8.
96

3

16
T

S
−0

.4
41

62
.2
85

0.
00

0
14

.2
19

2.
10

2
54

.2
08

75
.4
35

75
.4
35

−2
.0
27

−2
.0
27

−2
.0
27

−1
.9
79

−2
.0
27

−1
.7
99

17
T

M
18

.0
70

82
.0
71

0.
00

0
15

.2
40

21
.8
44

73
.5
79

90
.2
33

90
.2
33

−6
.4
49

−6
.5
32

−6
.2
41

−6
.4
83

−6
.5
32

−6
.4
10

18
T

L
59

.4
55

14
8.
06

1
0.
00

0
25

.1
40

61
.4
07

12
5.
24

5
15

0.
43

3
14

8.
40

9
−6

.2
57

−6
.2
66

−6
.2
32

−6
.2
50

−6
.2
62

−6
.2
32

742 Int J Adv Manuf Technol (2010) 50:729–747



with the increase of due date range. Both MON and MDD
outperforms MPSW under all cases. As expected, COVERT
and ATC perform well when due date are tight, but they
still perform poor compared with other heuristics.

Under all conditions, GEPRules and GPRules perform
much better than all the benchmark heuristics. In most
cases, GEPRules perform the best or tie for best. However,
under larger due date range condition, the performance of
GEPRules degrades slightly, but it results in small
degradation in the average objection values obtained by
GEPRule. In the cases where the GEPRules perform worse
than GPRules, the percent error improvement relative to
EDD obtained by GEPRule is less than that obtained by
GPRule by 0.424% for average percent error, 0.59% for
best percent error, and 0.431% for worst percent error. On
the cases where the GEPRules perform better than
GPRules, the percent error improvement relative to EDD
obtained by GEPRules is more than that obtained by
GPRules by 1.572% for average percent error, 4.062% for
best percent error, and 3.511% for worst percent error.

Take a closer look at the best rules constructed byGEPSRC
for test set 11# and 17# (Rule-L11 and Rule-L17).

2d þ slþ pþ r � wt ðRule� L11Þ

d þ d2 � wtþ wt ðRule� L17Þ
The learned rules show that under the loose due date

tightness and moderate due date range condition, i.e., on the
test set 11#, in order to minimize the maximum lateness, the
parameters of d, sl, p, r, and wt all contribute to the success
of the scheduling. Whereas, under the tight due date
tightness and moderate due date range condition, i.e., on
the test set 17#, the d and wt play dominating rule on the

scheduling decision in order to minimizing the maximum
lateness. It means that the GEPSRC can identify the
characteristics of the operation conditions and construct
appropriate rules.

5.4.4 Minimizing tardiness

Table 7 summarizes the performance of the heuristics and
rules discovered by GEPSRC and GPSRC relative to the
minimizing the tardiness problem. MDD produces good
approximate solutions for the scheduling problem and,
hence, is used as a benchmark in this experiment. MON
also produces good approximate solutions and ranks the
second, except in several cases MON performs worse than
COVERT and ATC. Although COVERT and ATC behave
poor when the number and processing time of jobs are
small, the performance of COVERT and ATC increase
significantly in the cases where the number and processing
time of jobs become large for minimizing the total of
tardiness problem. Table 7 also shows that list scheduling,
MPSW algorithm, and EDD rule exhibit similar perfor-
mance, with MPSW outperforming list scheduling and
EDD for the cases where the number of jobs is small and
EDD outperforming list scheduling and MPSW for the
cases where the number of jobs is moderate or large.

Both GEPRules and GPRules perform better than all
the benchmark algorithms in all the test sets. From the
average percent error, best percent error, and worst
percent error, it is easy to infer that GEPSRC performs
distinctly more effectively and steadily than GPSRC with
regard to the criterion of minimizing tardiness. There are
just a few cases where the discovered rule by GEPSRC
performs worse than that of GPSRC with the slight
performance degradation.

Table 7 Comparison of benchmark heuristics and GEPRules to MDD for minimizing tardiness problem on test sets #1–9

Test
set #

n p List %
Error

MPSW
%Error

EDD
%
Error

MON
%
Error

MST
%
Error

MDD
%
Error

COVERT
%Error

ATC
%
Error

GPRules GEPRules

Ave %
Error

Best %
Error

Worst
%
Error

Ave %
Error

Best %
Error

Worst
%Error

1 S S 32.905 21.195 32.596 15.579 38.458 0.000 47.613 47.427 −11.068 −11.836 −8.687 −11.760 −11.836 −11.604
2 S M 8.261 2.427 12.349 −0.316 16.878 0.000 36.301 37.037 −10.926 −12.094 −7.038 −11.951 −12.094 −11.791
3 S L 10.613 8.596 13.142 2.090 10.978 0.000 45.246 48.701 −7.320 −7.853 −5.191 −7.853 −7.853 −7.853
4 M S 78.086 60.877 57.193 31.009 55.637 0.000 15.351 18.593 −7.951 −8.183 −7.693 −8.029 −8.034 −8.012
5 M M 28.703 26.888 20.247 6.646 16.441 0.000 13.957 14.244 −8.767 −8.829 −8.694 −8.797 −8.944 −8.574
6 M L 21.236 26.891 13.058 1.871 11.303 0.000 12.297 13.241 −9.060 −9.074 −9.038 −9.039 −9.071 −9.031
7 L S 82.816 66.504 48.147 36.350 50.712 0.000 4.262 4.210 −3.891 −3.995 −3.475 −3.974 −3.995 −3.889
8 L M 33.564 35.504 21.794 6.445 17.071 0.000 7.478 12.713 −6.774 −6.859 −6.639 −6.742 −6.859 −6.634
9 L L 24.347 31.903 15.712 2.238 9.697 0.000 7.394 8.393 −7.156 −7.168 −7.139 −7.157 −7.185 −7.113
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The best rule evolved by GEPSRC for test sets 3# and
7# (Rule-T3 and Rule-T7) is shown below.

slþ 2pþ r � wt � p ðRule� T3Þ

slþ pþ wtþ wt2 ðRule� T7Þ
From the formula of Rule-T3 and Rule-T7, it is found

that the GEPSRC picks the sl as an indispensable element
to construct SRs for the scheduling decision relative to the
criterion of tardiness. Essentially, the first term of sl works
as MST rule, which performs well under the performance
measure of tardiness. Besides sl, it is noticeable that p and r
also play an important role for the scheduling decision. The
rules discovered by GPSRC cannot explicitly explain the
relationship among the attributes of jobs.

Further experiments are conducted on test sets 10–18# to
evaluate the performance of the heuristics under a variety of
level of due date tightness factor and range factor. The
results are summarized in Table 8. MDD performs well in
these test sets, and the average objective function values
obtained from the other heuristics are compared to those
values from MDD.

As expected, under tight due date conditions, COVERT
and ATC perform well. But their performance degrades as
due date loosen. In most cases, MON performs better than
EDD and MST. EDD and MST exhibit similar perfor-
mance, with EDD outperforming MST for the cases where
the due date tight is loose and moderate. The results in
Table 8 also indicates that the performance of list
scheduling and MPSW algorithm degrades as the due date
range become large. This is because list scheduling and
MPSW focus only on the release date and processing time
of jobs and ignore the due date information so as not to be
sensitive to the variability of due date.

The GEPRules and GPRules perform better than all the
benchmark algorithms in all the test sets. On all test sets,
GEPSRC consistently find more high-performing rules than
GPSRC regardless of the variety of due date tight and
range. What is more, GEPSRC exhibits the ability to
recognize the different operating conditions and to employ
the appropriate elements to construct rules in appropriate
algebraic combination. Take a closer look at the best rules
constructed by GEPSRC for test sets 16# and 18# (Rule-
L16 and Rule-L18).

slþ 3pþ d � wt ðRule� L16Þ

slþ pþ 2wt2 ðRule� L18Þ
From the learned rules, it is found that although the two

rules employ similar elements, they are constructed in T
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different algebraic combinations of these elements accord-
ing to the operation conditions.

5.4.5 Computational requirement

GEPSRC and GPSRC are both implemented in C++. The
experiments perform on a PC (Windows XP, CPU
2.00 GHz, Memory 2.00 GB). Table 9 summarized the
CPU times required to train the GEP and GP on each
training set of 27 randomly generated problem instances for
the minimizing tardiness problem. It is easy to find that
there is significant difference between the CPU times
required to construct the SRs for the performance criterion.
The CPU time required to train GP is 1–10 times more than
that required to train GEP. Relative to other performance
measures, there is also significant difference between the
CPU time required to train GEP and GP.

6 Conclusion and future work

This paper considered the DSMSPs with job release dates
and proposed the GEPSRC to automatically evolve SRs for
the problems. GEP works as heuristic search to search the
space of algorithm. For minimizing makespan, total flow
time, maximum lateness, and total tardiness problem, the
performance of GEPSRC was evaluated on extensive
randomly generated test cases. SRs obtained from GEPSRC
performed more effectively and steadily than those obtained
from GPSRC and prominent heuristics selected for litera-
ture. Moreover, SRs obtained from GEPSRC can be
expressed simply and explicable in some way.

A traditional GEP framework was used in this paper.
Since GEP was proposed in 2001, the research on GEP has
been developing promptly. Many exciting fruits have been
reported in literature recently, which may contribute to
improving the ability for GEP to construct more effective
SRs. Promising research work may include: (1) introduce
other mechanisms or techniques such as immunity mech-
anism or transfer gene technique into GEP’s framework to

increase its speed of convergence; (2) add other potential
functions, such as relational functions, logical functions, or
conditional functions, into function set to express the SRs
more effectively; (3) design a special analyzer embodied in
GEP to evolve SRs which are easier to analyze the effect of
various attributes of jobs on the scheduling decision
qualitatively and quantitatively. To extend the work on
dynamic single-machine scheduling problems to job shop
environment is also part of the future work.
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Appendix

The framework of GPSRC is similar with that of GEPSRC
which is described in Section 4.1. However, the difference
between them is that the former uses GP as the evolutionary
learning mechanism. Genetic Programming belongs to the
family of evolutionary computation methods, invented by
Cramer [48] and further developed by Koza [49]. GP
combines efficiently the concepts of evolutionary compu-
tation and automatic programming [33].

A potential solution of an optimization problem is
appropriately coded with elements from FS and TS into
an individual, i.e., a rooted tree, and a population of these
tree structures is employed for the evolution of optimal or
near optimal solutions through successive generations.

The general procedure of GP algorithm can be viewed as
a four-step cycle [31]:

Step 1: An initial population of individuals is created with
the method of ramped half-and-half

Step 2: Each individual in the population is then decoded
so that its performance (fitness) can be evaluated

Step 3: A selection mechanism is used to choose a subset
of individuals according with these fitness values

Table 9 Average CPU time per individual run for training GEP and GP on each training set relative to minimizing tardiness problem

Test set # Average CPU time (s) Test set # Average CPU time (s) Test set # Average CPU time (s)

GEP GP GEP GP GEP GP

1 8.8876 51.7092 7 342.791 1465.93 13 152.888 1012.12

2 5.9658 31.884 8 565.29 1026.51 14 142.794 437.81

3 4.6534 24.3876 9 556.853 1089.98 15 172.003 825.988

4 79.3 461.497 10 101.166 599.157 16 179.55 1081.51

5 98.6372 458.712 11 123.472 224.425 17 166.528 1892.66

6 88.7002 311.706 12 105.019 293.075 18 193.603 553.297
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Step 4: These individuals either survive intact to the new
population, or they are genetically modified
through a number of operators. If the terminal
condition is satisfied, the procedure is finished,
those individuals who perform the best (i.e., are
the most fit) are the solution of the optimization
problem; otherwise, turn to Step 2.

Crossover and mutation are the two major operators that
are applied for the genetic modification of individuals.

Crossover Crossover begins by choosing two trees from
the current population according to their fitness probabilis-
tically. A sub-tree in each parent individual is selected at
random. The randomly chosen sub-trees are then swapped,
creating two new individual trees.

Mutation The mutation operation involves randomly select-
ing a sub-tree within a parent individual that has been
selected from the population based on its fitness and
replacing it with a randomly generated sub-tree. The
generated sub-tree is created by randomly selecting ele-
ments from FS and TS.

The brief descriptions serve only to provide background
information. For more detailed discussions of GP, the
reader in encouraged to refer to [31, 48, 49].
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