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Localisation in Mobile Anchor Networks

Tom Parker∗ Koen Langendoen
{T.E.V.Parker, K.G.Langendoen}@ewi.tudelft.nl

Abstract

Localisation is required for many ad-hoc sensor network
applications. Therefore, much work has been done re-
garding techniques for localisation, mainly using anchors
(nodes with known locations). However, there has been
little study of how anchors are likely to be distributed in
applications, and how to perform localisation with more
realistic anchor distributions.

In this paper we look at the limitations of many of the
existing proposed localisation techniques with regards to
coping with non-uniform anchor distributions and errors
in ranging information. We present a refined approach us-
ing mobile anchor scenarios for anchor information distri-
bution, combined with statistical techniques for perform-
ing localisation with inaccurate range data. We also show
methods for dealing with motion in nodes using related
techniques, including an anchor-less solution to ensure
that we can always detect motion.

Simulations with our refined approach have shown sig-
nificant reductions (in the order of magnitude range) to the
required processing for performing statistical localisation
over previous attempts, as well as improving the gener-
ated location information in situations with non-total an-
chor information coverage, making possible a wider range
of applications.

1 Introduction

Many possible applications have now been thought of
for Wireless Sensor Networks (WSNs), and a significant
number of them rely on location information in order to
perform their designated function. This is mainly because
the main purpose of a WSN is information gathering, and
gathered data is only useful if you know what it applies to.
For example, the data “the temperature has gone up by 10
degrees” is not very useful, but the information “the tem-
perature has gone up by 10 degrees in room 3C” is a lot
more interesting. Location information gives us a context,

∗ Supported by the Dutch Organisation for Applied Scientific Re-
search (TNO), Physics and Electronics Laboratory.

which allows us to actually use our gathered data. For ex-
ample, monitoring room temperature can be used to con-
trol when to switch air-conditioning systems on and off.
When detailed location information is present, it might
even be possible to personalise working conditions within
a shared office (i.e. individual settings per cubicle).

Location information is important in many domains,
hence various approaches have been proposed, of which
some were even constructed and deployed on a large scale
(e.g. GPS). Within the WSN community, specialised lo-
calisation algorithms have been developed that address the
problems associated with little to no infrastructure (i.e. ac-
cess to GPS satellites) and limited resources leading to in-
complete and inaccurate information. A survey of initial
approaches is presented in [5]; recent work includes [1],
[8], [11], [12] and [14].

With WSN localisation, some nodes are referred to as
“anchor” nodes i.e. they have a reliable source of infor-
mation about their location. Many localisation techniques
rely on anchors, and on the assumption that anchor nodes
are uniformly distributed among a uniform distribution of
non-anchor nodes. Given the small percentage (<10% in
most scenarios currently postulated) of anchors within a
large collection of non-anchors, and the aim that sensor
networks are eventually intended to be easy to distribute
for non-computer scientists, this assumption can not be
relied on for many application scenarios. Instead, in this
paper we look at mobile anchors to provide usable anchor
distributions. Mobile anchors require a minimum of ad-
ditional effort on the part of the individuals setting up the
sensor network, and also reduce the hardware costs for a
sensor network compared to static anchor networks.

Another major problem within WSN localisation tech-
niques is acquiring accurate range information between
pairs of sensor nodes. This can be done in a variety of
ways, ranging from simple techniques like Radio Signal
Strength Indication (RSSI), time of flight data for vari-
ous sensor types (e.g. ultrasound), to more complex ideas
like time of flight difference (which measures the differ-
ence between two incoming signals travelling at different
speeds). In each case, there is generally some error in the
ranging information, which localisation algorithms must
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be aware of and be able to work with.
In this paper we will look at a number of the limita-

tions with many of the existing proposed localisation tech-
niques, show how they are unlikely to work well when
the uniform anchor distribution assumption breaks down,
and present a refined approach. This approach uses mo-
bile anchor scenarios, along with statistical techniques for
performing localisation with inaccurate range data. Sim-
ulations with our improved approach have shown signif-
icant reductions (in the order of magnitude range) to the
required processing for performing statistic-based local-
isation over previous attempts, as well as improving the
generated location information in situations with non-total
anchor information coverage, making possible a wider
range of applications. We also look at what can be done
to cope with the possibility of non-anchor nodes moving.

2 Mobile anchors

In this section we look at how anchor information can be
distributed across an ad-hoc sensor network, and how mo-
bile anchor scenarios have several advantages over other
methods.

2.1 Anchor distribution

Most methods for providing location information to a sen-
sor network start with adding additional localisation hard-
ware (e.g. GPS) to a small percentage of the nodes in the
target area. These anchor nodes will initially gather ac-
curate location information on their own, and then trans-
mit this information to their neighbouring nodes. This ap-
proach has a number of major faults:

• Most localisation algorithms based on “spread an-
chor” scenarios rely on the anchors being uniformly
distributed across the sensor network. Unless spe-
cial care is taken to make sure of this, or a very large
percentage of the nodes are anchors, then this is un-
likely. Given a small anchor percentage (as in most
proposed applications), there is a high probability
that there will be regions of the sensor grid that have
insufficient anchors, leading to problems in attempt-
ing to localise any nodes in that region.

• Anchor nodes are generally more expensive (because
of the additional hardware requirements), which cre-
ates a difficult decision regarding the balancing of the
application requirements between having improved
accuracy (lots of anchors) and reducing the overall
cost of the network (few anchors).

Figure 1: Example mobile anchor scenario

• The additional anchor hardware is often only useful
during the initial phase of the network setup, and is
then mostly surplus to requirements. An anchor node
may also have a reduced operational lifespan due to
the power drains of the localisation hardware.

• There have been some attempts to fix these problems
(Adaptive Beacon Placement [1] for example), and
there are partial fixes, but a better approach is to look
at other ways that location information can be dis-
tributed rather than the use of static anchor nodes.

2.2 Mobile anchor scenarios

Mobile anchors [14] are an alternate approach, resolving
a number of the problems with the spread anchor scenar-
ios. This approach uses a single, large anchor capable of
moving along a path. This large anchor could be carried
by a car or a person for example. The intention is that
this larger anchor will have effectively unlimited power
(i.e. can transmit as many messages as needed) because it
is intended to be more easily accessible than the individ-
ual sensors, and so replacing the anchor node’s batteries
is less of a problem than replacing batteries in the sensor
nodes.

As the mobile anchor moves, it broadcasts its location
at regular intervals (either every few seconds, or after it
has moved a short distance from its last broadcast loca-
tion), thus creating a series of “virtual” anchors, as in Fig-
ure 1. Each circle represents a position where the mobile
anchor broadcasted its location. This creates a very dense
anchor distribution, but only in limited areas.
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2.3 Real-world applications

To see how mobile anchor scenarios would work for var-
ious applications, we looked at the structure of these ap-
plications, and saw how we could better utilise the already
available resources. The main area of interest regards the
method for the distribution of the sensors. A number of
different methods have been proposed, varying from the
manual placing of individual nodes, through to the drop-
ping of nodes from a plane. These can be grouped into
two main categories depending on the distance from the
object that is placing the nodes to the location that the
node is being placed at.

The simplest scenarios are when the distance is less
than the node’s radio range (ideally much less). In this
case, the placing object itself (be it a person or a car) is
the mobile anchor. This can be achieved by combining an
anchor node with the placing object (either carried by the
person, or attached to the car). It can then broadcast its
location information as it places the nodes, thus providing
a path that passes near all of the nodes.

More complicated are the situations where the nodes
are far away from the placing object, for example when
dropping nodes from a plane (especially from a high alti-
tude, or when trees or other obstacles are likely to block
radio signals from the placing object). One solution to this
problem is that the plane could drop one or more small
robots fitted with localisation equipment, in addition to
the sensor nodes. These robots could travel along a semi-
random path around the sensor grid (with constraints to
keep them near the grid), and provide location informa-
tion to the sensor nodes as they move around.

Additionally, there will also be scenarios where nodes
are initially placed far away from any mobile anchors, but
mobile anchors later come in contact with part of the net-
work. One example would be of a mine field with attached
nodes. Groups of soldiers moving near to the mine field
could act as mobile anchors, but would not be able to go
across the mine field, resulting in a mobile anchor sce-
nario with a path along one side of the network. In these
scenarios, the anchor information distribution in the net-
work improves over time, resulting in increasingly accu-
rate location data for the sensor nodes.

2.4 Advantages

There are several advantages of the mobile anchor ap-
proach

• Instead of many anchor nodes (and having to make
the trade-offs regarding how many) we have effec-
tively many anchor nodes, but for the cost of only

a few anchor nodes (one per placing object). The
anchor infrastructure is therefore “there when you
need it, not when you don’t”. All of the sensor nodes
should have similar lifetimes, without the additional
power drains that would occur if some of them were
also anchors for the network.

• In the complicated scenario with the use of mobile
anchor robots, the cost of the scenario does go up
from what would be possible with more simple sce-
narios. However, the robots could also be fitted with
additional sensors (above and beyond what would
be fitted to normal nodes), so that once they have
finished providing location information to the net-
work, they can be moved to locations where events
are happening to gather more detailed information.
The possibility of very simple (and cheap!) sensor
nodes coupled with larger robot-mounted sensor ar-
rays would provide a cost-effective methodology for
detailed data gathering without requiring every node
to have a large sensor array.

• In the event that the initial anchor path is not suffi-
cient to provide good location information for all of
the sensor nodes, we may (depending on the appli-
cation) be able to do on-the-fly improvements in bad
areas. The equivalent solution [1] for standard an-
chor scenarios would involve placing additional an-
chor nodes, at additional cost, but with mobile an-
chors we can simply move the mobile anchor near
the inaccurately located nodes. As we do not cur-
rently know where the inaccurate nodes are, we have
to search for them, but this can be done by starting
from their neighbouring nodes (as discovered from
the radio topology) and searching a circle with a ra-
dius equal to the radio range.

3 Existing localisation methods

In this section we have a brief look at existing localisation
algorithms, with an emphasis on their capabilities regard-
ing the handling of inaccurate distance information, and
their ability to handle the non-uniform anchor distribu-
tions which occur in many mobile anchor scenarios.

3.1 Deterministic methods

Langendoen and Reijers [7] studied three localisation al-
gorithms (Euclidean, Hop-Terrain, Multilateration) that
can handle low numbers of anchors, and identified a com-
mon three-phase structure. First, information about the
anchors is flooded through the network to determine the
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(multi-hop) distances between anchors and nodes. Sec-
ond, each node calculates its position using the known
positions and estimated distances of the anchors, for ex-
ample, by performing a lateration procedure (as with GPS
systems). Third, nodes refine their positions by exchang-
ing their position estimates and using the one-hop inter-
node distances. After these three stages, a subset of the
nodes have location information that is considered “good”
(i.e. reliable).

Euclidean [8] uses basic geometric reasoning (trian-
gles) to progress distance information from the anchors
to the nodes in the network, and uses lateration to calcu-
late the position estimates; no refinement is included in
the algorithm. Euclidean’s basic safety measure against
inaccurate range information is to discard “impossible”
triangles generated in phase 1. Unfortunately, this hap-
pens quite often, leaving many nodes in phase 2 without
enough information to calculate their position (distances
to at least 3 anchors are required). The end result is that
Euclidean is only able to derive an accurate position for a
small fraction of the nodes in the network.

Hop-Terrain [8, 11] avoids the range error problem
to a large extent by using only topological information
in phase 1. The distance to an anchor is determined by
counting the number of hops to it, and multiplying that by
an average-hop distance (calculated by the anchor nodes
during an initial anchor information flood). Next, the node
positions are estimated by means of a lateration proce-
dure. In the refinement phase, Hop-Terrain switches to
using the measured (inaccurate) ranges to neighbouring
nodes. To avoid erroneous position estimates affecting
neighbours too much, the refinement phase uses confi-
dence values derived from the lateration procedure (dilu-
tion of precision and residue). Hop-terrain works reason-
ably well for a regular network topology in which nodes
are evenly distributed. This however is not the case for
a significant number of WSN scenarios, resulting in the
algorithm becoming increasingly less accurate as the reg-
ularity assumption starts to break down.

Multilateration [12] starts by summing the distances
along each multi-hop path in phase 1. To account for
the accumulated inaccuracies it does not perform a later-
ation procedure, but instead uses each distance to specify
a bounding box centred around the associated anchor, in
which the node may be located. In phase 2, these bound-
ing boxes are simply intersected and the position estimate
is set to the centre of the intersection box, followed by a
refinement procedure in phase 3. Multilateration’s effec-
tiveness with varying errors in range measurements will
depend on the exact nature of the errors. If many of
the measured distances are larger than the true distances,

then Multilateration should be able to cope with the prob-
lem (as the true distance will still fall within the bound-
ing box). However, in general, ranges are likely to be
both under- and over-estimated (our current experimental
model treats both as equally likely), and Multilateration is
less likely to be able to cope with under-estimation, and
so will result in possible location information being dis-
carded due to contradictions between ranges with varying
errors.

3.2 Statistic-based Localisation

One technique that attempts to do more with inaccurate
ranging information is Statistic-based Localisation. The
initial work on this was performed by Sichitiu and Ra-
madurai [14]. It assumes that while the incoming range
data has errors, these errors can be modelled with a proba-
bility distribution based on the incoming data - either from
a sensor or the Radio Signal Strength Information (RSSI)
from the radio. This model can be worked out either from
manufacturer-supplied data for the sensor providing range
data, or from experimental data [18]. Sichitiu and Ra-
madurai focused on RSSI, but other sensors could be used
if there are error models for them - it would not be neces-
sary to re-write the algorithm to do this.

Given that a node has a series of distances to anchors,
and that for each distance you have an error model, these
models can be combined to calculate a “map” of the most
likely locations for this node, by calculating probabili-
ties for each location at discrete intervals across the sen-
sor grid. Figure 2 shows a visualisation of an example
map, and Algorithm 1 provides more details about how
the maps are generated.
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Figure 2: Visualisation of a node’s localisation probability
map

Sichitiu and Ramadurai’s technique has two major
problems however. Firstly, the large quantities of calcu-
lations required to create the maps and secondly, the re-
quirement for the nodes to be at one-hop distances from
the anchors (achieved in [14] by using a mobile anchor
with a very dense path) - this is required because they do
not have a method for distributing anchor information re-
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ceived by one node to another, and so only anchor nodes
could send their distance information.

4 Refined Statistic-based Localisa-
tion (RSL)

Given the problems with existing algorithms, we propose
a set of refinements to the earlier statistic-based locali-
sation algorithm. We have chosen this because a com-
bination of statistic-based localisation and mobile anchor
scenarios works well together, as the dense topologies of
mobile anchors can be exploited for significant accuracy
increases. This is a different approach to most other lo-
calisation algorithms, which are designed towards sparse
anchor topologies.

In this section, and in Algorithm 2 we explain Refined
Statistic-based Localisation (RSL). In this improved al-
gorithm, we can use dense topologies in limited regions
of the network (as generated by mobile anchors) to cre-
ate “pseudo-anchors” which will be able to spread the an-
chor information further into the network. Additionally,
we have made changes to reduce the computation load on
individual nodes, creating a more useful algorithm for ap-
plications with limited resources (i.e. most proposed sen-
sor node applications). We also look at some additional
future improvements that could be made to further im-
prove on our algorithm.

4.1 Bounding boxes

If a node has received a position estimate from an anchor
then it knows it is in radio contact with that anchor, and so
therefore it must be within radio range of that anchor. So,
we can limit the space of possible locations for that node
to a circle centred on the anchor’s location with radius
equal to the radio range. For practical purposes (signifi-
cant speed improvements) we use a bounding box rather
than a circle, with each side equal to 2*radio range, and
the anchor in the centre (Figure 3a). (The basic concept of
bounding boxes has previously been analysed in [15], but
not in combination with any form of statistic-based local-
isation.) This results in a larger region, but we still have
the guarantee that all feasible locations for the node are lo-
cated within the box, while keeping the box size to a min-
imum. For radios with non-circular transmission spaces,
we can also similarly calculate the minimum box that con-
tains the entire possible transmission space.

When a node receives location information from an ad-
ditional anchor, it knows that it must be within the bound-
ing boxes for both anchors. Therefore, we can reduce

the bounding box for the node to the intersection of both
of these boxes (Figure 3b, and Algorithm 2, step 2). A
bounding box is defined by two points, its Top-Left and
Bottom-Right corners. Note that the probability visuali-
sation in Figure 4 on page 7 only shows a partial grid (as
opposed to Figure 2 which shows basic Statistic-based lo-
calisation, and uses a complete grid) - this partial grid is
the section of the complete sensor grid corresponding to
the bounding box for this particular node.

Experimental results for testing the reduction in the
size of the calculated sensor grid, show an average re-
duction in the number of required calculations by a fac-
tor of 8 when we use bounding boxes. Also, with the
additional optimisation of not doing calculations for the
nodes with the largest bounding boxes and simply as-
suming they have an unknown location, we could im-
prove this result further. For example, by not perform-
ing any calculation for nodes with bounding boxes where
width∗height > 0.75∗ (2∗RadioRange)2, we reduce the
overall calculation load by an additional factor of 3. This
does reduce the overall accuracy, but nodes with large
bounding boxes would have had high error values if we
did attempt to localise them, and so getting rid of the most
hopeless cases saves significant amount of computational
time, while only resulting in a small difference in the over-
all average accuracy.

Anchor

Radio Range

Bounding Box

Anchors

Intersection
bounding box

(a) Anchor bounding box

(b) Union of two bounding boxes

Bounding box

Radio Range

(c) Non-anchor bounding box example

Figure 3: Bounding Boxes

4.2 Limited broadcast

To get around the problem of needing anchors within one-
hop of the sensor nodes, we perform a limited broadcast
of calculated node location information - limited by only

5



Algorithm 1 Statistic-based localisation [14]
1. Initially, the local probability “map” is set to a constant value across the entire sensor grid, as all locations are

considered to be equally likely at the start of the algorithm.
PosEst(x,y) = c ∀(x,y) ∈ [(xmin,xmax)× (ymin,ymax)]

2. Incoming anchor information is processed as follows:

(a) The incoming anchor location is used to create a refinement function on the possible locations of the node
PDFrssi = N ∼ (EstimatedDistanceanchor,RadioRangingVariance)
Re f ine(x,y) = PDFrssi(distance((x,y),(xanchor,yanchor))) ∀(x,y) ∈ [(xmin,xmax)× (ymin,ymax)]

(b) The node applies Bayesian inference to its current map to generate an improved map
NewPosEst(x,y) = OldPosEst(x,y)×Re f ine(x,y)

∑xmax
xmin ∑ymax

ymin OldPosEst(x,y)×Re f ine(x,y)
∀(x,y) ∈ [(xmin,xmax)× (ymin,ymax)]

3. Finally, the weighted average of all of the data in the map is used to calculate the estimated position of this node
(x̂, ŷ) = (∑xmax

xmin ∑ymax
ymin

x×PosEst(x,y),∑xmax
xmin ∑ymax

ymin
y×PosEst(x,y))

Algorithm 2 Refined Statistic-based Localisation (RSL)
Abbreviations used here:
TL = Top-Left corner of a bounding box, BR = Bottom-Right corner of a bounding box, R = Radio Range of the nodes

1. Initially, the bounding box for a node is set to [(−∞,∞)× (−∞,∞)].

2. As (pseudo-)anchor information comes in, the bounding box for this node is intersected with the existing bound-
ing box (see Figure 3 for examples of bounding boxes, including a diagram of this step in Figure 3b)

NewBox(T L,BR) = [(Max(AnchorT Lx −R,OldBoxT Lx), Max(AnchorT Ly −R,OldBoxT Ly))×
(Min(AnchorBRx +R,OldBoxBRx), Min(AnchorBRy +R,OldBoxBRy))]

3. Once information from at least two (pseudo-)anchors have been received, and the minimum waiting period since
the last incoming anchor has passed, then we initialise the local map to a constant value

PosEst(x,y) = c ∀(x,y) ∈ BoundingBox
and then each of the incoming (pseudo-)anchors that we have received so far is processed as follows:

(a) The incoming anchor information is used to create a refinement function on the possible locations of the
node

PDFrssi = N ∼ (EstimatedDistanceanchor,RadioRangingVariance/ConfidenceAnchor)
Re f ine(x,y) = PDFRSSI(distance((x,y),(xanchor,yanchor))) ∀(x,y) ∈ BoundingBox

(b) The node then multiplies each value in the map by the refinement function to generate an improved map
NewPosEst(x,y) = OldPosEst(x,y)×Re f ine(x,y) ∀(x,y) ∈ BoundingBox

4. The location on the map with the highest probability is determined (this is the most-likely location for this node)
(x̂, ŷ) = maxarg{PosEst(x,y) |(x,y) ∈ BoundingBox}

5. Finally, the map is normalised to provide an externally-usable probability value

NormConstant = ∑BoundingBoxBRx
BoundingBoxTLx

∑
BoundingBoxBRy
BoundingBoxTLy

PosEst(x,y)

FinalPosEst(x,y) = PosEst(x,y)/NormConstant ∀(x,y) ∈ BoundingBox
(this works because the bounding box always has the property that the probability that the current node is within
the bounding box is 1, and so therefore we can normalise the data)
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broadcasting if we exceed a minimum probability thresh-
old for the quality of our location information (currently
set in our implementation to 0.003). The node effec-
tively acts as an additional “pseudo” anchor, but with two
changes from normal anchors.

Firstly, the location information is broadcast with a
confidence value (gained from the local probability map),
and the error model used by nodes receiving this informa-
tion will be scaled accordingly, as shown in Algorithm 2,
step 3a with the use of Confidenceanchor in the generation
of PDFrssi. This confidence value is a weighting value
used in building the statistical models i.e. a node with con-
fidence 1.0 (an anchor node) will have twice the effect of
a node with confidence 0.5.

Secondly, the bounding box for this node is broadcast
as well, and the box used by receiving nodes is not just
a square centred on the node (as for anchors), but a rect-
angle equal to the bounding box size, plus radio range in
each direction (Figure 3c). This is because the bounding
box contains all locations the node could possibly be in,
and so increasing it by the radio range creates a box in
which nodes that can hear this node could possibly be lo-
cated. This box will be larger than a box generated from
an anchor node, because the location information is less
accurate. However, this larger box may still be useful to
other nodes in reducing their bounding boxes, and hence
reducing the amount of computation that they need to per-
form.

Nodes that have position information, but do not exceed
the probability threshold are considered “bad”. These
nodes have some position information, but either the in-
formation is insufficient, or it is of too low a quality to be
fully usable. These do not broadcast their location infor-
mation to other nodes.

One additional scenario that uses pseudo-anchors is
when we have location information from another system
(e.g. GPS) and this data is inaccurate. We can then treat
this inaccurate anchor as a pseudo-anchor, with an appro-
priate confidence value and bounding box depending on
the incoming data. RSL does not actually specifically re-
quire accurate anchors, but simply some sources of initial
localisation data to initialise the algorithm.

In our experiments comparing performance with and
without the limited broadcast method, we see a similar
average error in the locations of the good nodes, but a
38% average increase in the number of good nodes when
limited broadcast is used.

4.3 Symmetry problem

There are a number of situations where we will have mul-
tiple points that have equally high probabilities (or cer-

tainly very similar, and within the bounds of statistical
error). One of the most likely instances of this problem
is when the mobile anchor is travelling in a straight line.
As the distributions of the broadcast anchors cross over
equally on both sides of the line, a pair of possible good
points will be created, each one equally far away from the
line, but on opposite sides. Figure 4 is an example of this,
showing the local probability map for a node with this
particular problem.
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Figure 4: Equal points

The broadcasting of pseudo-anchor data from nodes
with good location data reduces the symmetry problem,
as this allows the possible locations for the node to be
“pulled” in the direction of the correct point. However,
in the event that the mobile anchor’s path is a straight
line, or that there are insufficient nodes in the local area
to broadcast pseudo-anchor information, then the prob-
lem still occurs. A solution to this is to avoid choosing
straight paths for the mobile anchor - simple possibilities
include curved paths, or using a “wobbly” path rather than
a perfect straight line. Corners and curved sections on the
mobile anchor’s path reduces the chances of the symmetry
problem considerably.

To attempt to combat the symmetry problem, we have
devised the equal pairs heuristic to test for and compen-
sate against this problem. A node can determine whether
or not there is likely to be multiple possible positions,
based on its local probability map, by calculating the av-
erage of all of the anchor locations the node knows about
(weighted according to their confidence values), and see-
ing how much each anchor’s location differs from their
average location in each separate axis. This tests to see
whether the known anchors are mostly arranged along a
straight line, or whether they have a more varied path. If
there is a significantly greater total difference from the av-
erage point in one axis than another (indicating a mostly
straight path), then the node will also test the other pos-
sible good points. These can be found by taking the av-
eraged anchor location, then looking at the points that are
on the opposite side of the average point from the cal-

7



culated most-likely location for this node. An average
of the most-likely location and the other possible points
(weighted according to their individual confidences) will
become the node’s estimate of its true location.

If the sum of the confidences for the most-likely point
and the best of the other candidate points, divided by
a scaling factor, is above the standard threshold for
transmission of the calculated location, then we transmit
both locations. The scaling factor varies according to the
degree of difference between the two confidences i.e. how
good the second confidence is compared to the first.

ScalingFactor = 2× confidence(Best)+confidence(SecondBest)
confidence(Best)

If the second point is similarly confident to the first,
then the scaling factor will be proportionally greater, but
it always satisfies the condition 2≤ ScalingFactor ≤ 4.

If the node decides to transmit its current guesses, then
the confidences for both points are transmitted, and the
node is treated as two separate nodes by its neighbours,
one at each of the two possible points, but each with a re-
duced confidence (compared to the calculated confidence
for the point).

In our experiments testing the use of the equal pairs
heuristic on a typical path using straight lines (a square),
we saw up to a 30% decrease in the average error com-
pared to tests without the heuristic.

4.4 Heavy data-processing

One downside of statistic-based methods is the amount of
data processing required to calculate the local maps. The
bounding boxes reduce this significantly (a factor of 8), by
eliminating many regions that this node can not be located
at. For best results, there should be a waiting period for a
short amount of time (e.g. 5 seconds) after the last piece of
anchor information has been received, before calculating
the local map, in order to work with the smallest possi-
ble bounding box. This will slow down the calculation of
this node’s location, but given that it is necessary to re-
calculate the data if we receive more anchor information,
this can reduce the amount of redundant calculations sig-
nificantly. The waiting period should be calibrated such
that if we have not seen a new anchor for that amount of
time, then we are unlikely to receive more anchor infor-
mation in the near future. Good values for this would be
at least as large as the interval between broadcasts of the
mobile anchor.

The energy costs associated with RSL are higher than
for most localisation techniques, due to the large num-
ber of probability calculations required (Lateration being

a notable exception, due to the use of least-squares cal-
culations), but this additional cost is in most cases a one-
off initialisation cost. Simulation results show an increase
in processing time for RSL over deterministic techniques
([8, 11, 12]) by approximately a factor of 2. For a typ-
ical node CPU [16] and an average bounding box taken
from experimental testing, this increases the localisation
runtime from ~5 to ~10 seconds. This order of process-
ing time is not an unacceptable start-up cost for a long
running application, given the significant improvements
in the derived location information. This can also be per-
formed by many nodes at the same time without additional
costs, as opposed to other localisation techniques requir-
ing large numbers of radio messages (which would exhibit
increased numbers of packet collisions if several nodes are
transmitting radio messages at the same time). RSL has
been deliberately optimised towards reduced radio mes-
sages with this aim in mind.

An additional optimisation that could reduce the data
processing cost is the alteration of the grid size of the
calculations. When the probabilities for a region are cal-
culated, this is done at discrete intervals, resulting in a
grid of probabilities for a region. The distance between
points in the current implementation is fixed in size, but
this could be varied on a per-node basis, depending on the
size of the bounding box. Larger bounding boxes would
increase the point distance, and smaller boxes would de-
crease it, creating an approximately equal point count
(and therefore processing time) for all nodes, while al-
lowing nodes with small bounding boxes to have more
accurate estimates than they achieve currently. The point
count could also be varied at the application level, to allow
for application-specific accuracy requirements.

RSL could also be further improved by the limiting of
Step 5 in Algorithm 2. Currently, we generate the nor-
malised map for all locations in a node’s bounding box.
However, we then only use a small subset of this data. An
additional reduction in processing time could be gained
by only calculating normalised probabilities for the most-
likely location and for the additional possible locations
needed for the solving of the symmetry problem (Section
4.3).

5 Results

Using the Positif simulation framework for localisation al-
gorithm testing [7], we have performed a series of com-
parison tests between RSL, and three deterministic local-
isation techniques (Euclidean [8], Hop-Terrain [11] and
Multilateration [12]), using a mobile anchor scenario in
all cases, and with a variety of ranging errors between
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nodes. In each case, all of the algorithms have been tested
with the same set of data, and each result is the average
of 20 runs of the simulation with varying random-number
seeds.

The ranging error is modelled as a Gaussian distribu-
tion, with the mean as the actual range, and the range
variance as a percentage of the radio range. The internal
model of RSL in all cases is set to a Gaussian distribution
with the mean as the incoming range information, and the
estimated range variance set to 20% of the radio range. In
all scenarios, there are 226 sensor nodes randomly placed,
with a uniform distribution, within a square area. The mo-
bile anchor is modelled as a formation of 111 “virtual”
anchors within this sensor grid. The grid has a size of
100x100, and the radio range is set to 14 providing the
nodes with an average connectivity of 19 including the
anchors, or 12 with only the sensor nodes.

There are three different mobile anchor scenarios being
considered here. The first is a “square” formation, with
a mobile anchor moving along a square path situated ap-
proximately 1/5th of the sensor grid width from the edge
of the grid at all times. The second is a “cross” formation,
testing what might happen with two separate mobile an-
chors, one moving from the the top-left to bottom-right,
and the other moving from bottom-left to top-right. In
both cases, the start points are situated 1/5th of the sen-
sor grid width from the edges of the grid. The straight
lines of these two topologies have been deliberately cho-
sen to cause difficulties to RSL. The third topology is a
“wobbly” square, taking the square formation locations
as a base, and then moving the anchors by a random
amount (maximum distance of 2, uniformly distributed)
away from the initial location to provide a less straight-
line path.

Figures 5 (square), 6 (cross) and 7 (wobbly) are visu-
alisations of the individual node locations for a set of ex-
ample experiments that we have performed using RSL.
The nodes marked with a “•” are anchor nodes, the oth-
ers are sensor nodes; the ones marked with a “*” are good
nodes, nodes marked with a “+” are bad nodes, and the
“4” nodes have no position data at all. Lines attached
to nodes show the path from a node’s true position to
where it thinks it is. The longer the line, the less accu-
rate the estimated position. Note that, in general, RSL
does a good job of classifying the nodes into good and bad
ones, but occasionally generates both false positives (good
nodes with long lines) and false negatives (bad nodes with
short lines). These anomalies generally occur outside the
area directly covered by the mobile anchor. Since the
node classification is largely correct, applications should
be able to exploit that knowledge to their advantage.

In figures 8, 9 and 10, we show the average accuracy
of the good nodes for all of the algorithms. For RSL,
we also have bad nodes, so we also show the accuracy
for a weighted average of both good and bad nodes. Fig-
ures 11, 12 and 13 show the average percentages of posi-
tioned nodes in each of these cases. Note the poor cover-
age (generally less than 50% of the nodes obtain a posi-
tion estimate) for the square and cross topologies, which
shows the problems induced by non-uniform anchor dis-
tributions in combination with the symmetry problem for
straight line topologies.

In most cases RSL has the lowest percentage error in
its ”good” positions. Euclidean only outperforms it un-
der ideal circumstances (i.e. no range errors); in all other
cases (error variance > 5%) RSL provides (much) more
accurate position estimates. In general, localisation al-
gorithms can trade-off accuracy for coverage [7]. RSL,
however, combines high accuracy with reasonable cover-
age. For low error variances, RSL has similar numbers of
good nodes as the Hop-Terrain and Multilateration algo-
rithms, only at higher values RSL starts to classify more
nodes as being bad. The combination of the RSL good
and bad nodes however, gives a comparable level of error
to the other algorithms, but with up to a doubled number
of positioned nodes.

The “square” topology was chosen as a typical exam-
ple of a simple mobile anchor scenario, which could have
been implemented by for example a mobile node attached
to a car driving around a square-shaped building. These
x/y-axis aligned paths can be detected by the equal pairs
heuristic (Section 4.3) in some cases and compensated for
accordingly. Despite the problems still occurring due to
the straight paths, RSL is still capable of getting reason-
able results.

The “cross” topology was designed to attempt to break
the current implementation of RSL, as the equal pairs
heuristic does not work as well with diagonal paths. How-
ever, although RSL has less accurate results for the cross
topology, all of the other algorithms also do badly as well.
We would therefore not recommend the use of the “cross”
topology for use in mobile anchor applications.

The “wobbly” square topology is an example of a topol-
ogy that should be easier for the localisation algorithms,
as the significantly lower errors for this topology shows.
One example case where we would expect to see this sort
of topology is where the mobile anchor is attached to a
soldier patrolling the perimeter of a base. The signifi-
cantly better results with this topology over the straight-
line topologies is why it is recommended to avoid straight
lines with the mobile anchor paths.

In all of the experiments the internal model of RSL has
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Figure 5: Square topology, 20% range error variance
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Figure 6: Cross topology, 20% range error variance
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Figure 7: ”Wobbly” square topology, 20% range error
variance
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Figure 8: Square topology accuracy
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Figure 9: Cross topology accuracy
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Figure 10: “Wobbly” square topology accuracy
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Figure 11: Square topology coverage
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Figure 12: Cross topology coverage
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Figure 13: “Wobbly” square topology coverage

been set to a Gaussian distribution with variance as 20%
of the radio range. The results for that particular vari-
ance of the actual errors are not much better than for other
variances of that magnitude. Note therefore, that we can
get good results even when the actual ranging information
model is significantly different from the internal model of
the algorithm. It is important to try and get the internal
model as similar as possible to the actual model, but as
these results show, good data can be acquired even when
the internal model is inaccurate.

6 NODES IN MOTION

So far, we have considered networks consisting of static
non-anchor nodes. If a node has been localised, and then
moves without being aware of its movement, then the
node will be somewhere other than where it thinks it is. If
it then broadcasts its old location data, while being at the
new location, then other nodes in the network will have in-
consistent information. This is only a problem with non-
anchor nodes, as when anchor nodes move to a new loca-
tion, they will have new location data, and in both cases
their true and calculated locations are the same (to within
a known degree of accuracy).

In this part, we look at the problem of how to deal with
moving non-anchor nodes. Firstly, we will examine what
can be done with RSL, and how we can use the bounding
box information to detect motion. Secondly, in the event
that a node currently has not received any anchor infor-
mation from the network, because of a current local lack
of anchors, then we need to be able to find alternate ways
to do localisation. We need to be able to do this because
there may be data that the sensors need to gather before
anchor information is available, and so we need to be able
to work out where they were when the data was gathered.
This is a likely scenario in the early stages of some mo-
bile anchor scenarios, especially when the placing object
is far away from the locations where the nodes are being
placed.

As we can not work out where the node is actually lo-
cated (due to the lack of anchor information), we will con-
centrate instead on detecting motion of the non-anchor
nodes, so that when anchor information is acquired, we
can work out where the node was based on the motion
information.

Unfortunately, most methods for detecting movement
of nodes can not tell the difference between moving nodes
and malicious nodes (nodes that are sending bad data).
Malicious nodes are hard to deal with - with a large
enough amount of effort and/or nodes, a malicious in-
truder can potentially break an entire network. How-
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ever, for most non-military sensor network scenarios, the
chances of a malicious intruder are very low, whereas mo-
tion is likely. We are therefore going to concentrate our ef-
forts on detecting motion, and leave the problem of deal-
ing with malicious intruders for more advanced systems.

7 Motion with bounding boxes

Bounding boxes in RSL assume a sanity condition - that
the current bounding box of a node and a new box that it
has just received, and therefore wishes to intersect with,
will always have a non-empty union.

Figure 14: Motion example

Figure 14 is an example of how motion of a node can
break bounding box sanity. A1 and A2 are the locations of
a moving node A before and after it moves, and B is a sta-
tionary node. The inner and outer boxes around the nodes
represent their bounding boxes and bounding boxes ex-
panded by radio range, respectively. If A talks to B when
it is at A2, and A thinks it is still located at position A1,
then there will be an inconsistency between A’s bounding
box and the bounding box of B.

In a number of cases (especially with large bounding
boxes) we will not be able to detect motion, but in these
cases we do maintain bounding box consistency, so we
can still perform statistical calculations, although with a
slightly reduced accuracy. When we do detect bound-
ing box inconsistencies, we can work to correct the prob-
lem. If a node N receives a new bounding box from a
neighbour M that would create an inconsistent situation
(BoxN ∩BoxM =�) , then this tells us that either that N or
M has a problem.

Both nodes then check how many of their neighbours
currently consider them inconsistent. If another neighbour
(not including either N or M) considers one of N or M
currently inconsistent, then that node should recalculate
its bounding box information. This is done by discarding
all current bounding box data (i.e. returning the node to
Step 1 of Algorithm 2), and sending a control packet to
all of the neighbouring nodes saying that any currently

used bounding box information from that node should be
discarded, and requesting their current bounding boxes.

Figure 15: Inconsistency

Figure 15 shows how this could work for a node A mov-
ing from A1 to A2. It starts to communicate with nodes B
and C, and there is an inconsistency between the box A1
and the boxes for B and C, so there is an inconsistency
“link” from A↔ B and from A↔C. As two of A’s neigh-
bours consider it inconsistent, it resets its bounding box
data back to the startup configuration, and sends a control
packet to B and C invalidating any bounding box data they
have gained from A, and requesting their bounding boxes.
This would then result in a new and valid bounding box
for A.

In many of the possible scenarios for bounding box in-
consistency, the problems will now be resolved, and the
node will have a new bounding box. If however, this
fails, then the node should send a message to its neigh-
bours declaring that it currently considers them inconsis-
tent, and remain in an inconsistent state. The inconsistent
node should now stay in that state until there is a change
in any of its neighbours bounding boxes, in which case
the bounding box for this node should be re-evaluated to
check for the resumption of consistency.

One problem here is that B and C may have previously
integrated A’s information into their bounding box con-
figurations, and if A’s information is later found to be in-
valid, then B and C need to be able to work out what parts
of their bounding boxes are due to A and what are due to
other nodes. In order to counter this, each node keeps a
record of the bounding box for each other node, in order
to be able to rebuild an accurate bounding box when one
node’s information is found to be invalid. Note that this
information is only from the node’s 1-hop neighbours, and
so the storage requirements will be kept to a minimum ir-
regardless of the size of the network. In the event that a
node recieves a bounding box from another node N, and
then later another box from N, then the intersection of
these two boxes is stored as the recorded bounding box
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from N. This removes the problem of otherwise requiring
large amounts of storage for the series of bounding boxes
received from mobile nodes. If a node resets its bound-
ing box information due to detected inaccuracies, then the
node also discards the list of bounding boxes that it had
stored as well.

8 Anchor-free motion

For the problematic case where we have not yet received
any information from anchors, localisation becomes much
more difficult. We can however use anchor-free localisa-
tion to build a local co-ordinate system, which can be used
to detect moving non-anchor nodes and record their rela-
tive motion. The motion information can later be trans-
lated from the local co-ordinate system to a global system
once anchor information is available.

For motion detection to be possible however, we need
a way to build local co-ordinate systems in the absence
of accurate range information. We cannot use RSL, be-
cause we cannot build bounding boxes due to the lack of
anchors to initialise the algorithm, and so we turn to mass-
spring models (Appendix A.1) for the node locations in-
stead. Mass-spring models generally require more calcu-
lations than RSL, but in the absence of anchors, mass-
spring models become a better option.

8.1 Motion detection

This is a simplified overview of our motion detection al-
gorithm, for full details see Appendix A. The node that
is running this algorithm is referred to as the “root” node.
In order to do motion detection, we first need a method to
build local co-ordinate systems:

1. Gather range data (estimated values and variances
from the radio model) from the root node to its neigh-
bours, and also query the root’s neighbours for range
data to their neighbours, giving us a topological map
for all of the root’s 1- and 2-hop neighbours. We can
then place the root node, and one of the root node’s
neighbours (Appendix A.3).

2. Working from these initial two nodes, we can now
start to find initial locations for the other nodes. We
can place all nodes that have two neighbours in the
already placed set of nodes, using those two neigh-
bours (A and B, referred to as the “parent” nodes of
our new node) and the ranges between them to place
our new node C (Appendix A.4).
In some cases, we will have chosen parent nodes that
are unsuitable for placing C, and in these cases the

algorithm will fail certain sanity tests. If this is the
case, we then proceed to check other possible par-
ent node pairs for suitability. If we cannot locate
a suitable parent pair for a node, then so we resort
to various alternative strategies (Appendix A.5) to
place some of the remaining nodes before repeating
the parent node testing.

3. The locations for the nodes are now further refined
(Appendix A.6). Refinement is necessary because
our initial configuration may well not be the most
likely configuration of the nodes, as we do not take
into account all of the links (Appendix A.2) between
nodes when we are placing them.

Now that we can build a local co-ordinate system, motion
detection is possible by comparing a local co-ordinate sys-
tem generated at one moment in time (LCS1) by a node,
to another generated system by the same node at a later
point in time (LCS2). We require at least 2 nodes common
to both systems (which may or may not be neighbours),
in order to be able to use this information, otherwise we
cannot work out which way we moved.

For each pair of nodes which we will designate A and
B, and using the LCS1 system co-ordinates for A,B and
our root node (marked as I), as well as range data from
LCS2 for our root node relative to A and B we can calculate
the set of possibilities for the location of the LCS2 root in
LCS1 (Appendix A.7, Figure 16).

Figure 16: Calculating values for K

We now have a set of up to 4 possible locations for K
which are checked against the known RK,A and RK,B val-
ues. The values that have correct ranges (at most 2 of
them, by standard geometrical theory regarding the in-
tersection of two circles [17]) are valid locations for K,
and we choose the closest to the existing root node, as the
movement between separate invocations of this algorithm
should be minimal.

Each of the locations represents a “motion vector”
(MV ) for our root node. We can calculate MV from the
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location of K (as in the event of no changes, K = I, and
I is at (0,0) by the definition of I being the origin of the
local co-ordinate system) as the vector between I and K.
The average of the values for MV is the assumed motion,
and the maximum K values in each direction gives us a
bounding box whose area is proportional to the inaccu-
racy in our K measurement.

8.2 Results

We performed a series of experiments to test anchor-free
mass-spring localisation, starting from a randomly gen-
erated set of “true” node locations, using 226 nodes in a
100x100m area, with a radio range of 14m, giving an av-
erage connectivity of approximately 12.

Our initial experiments tested our algorithm with two
independent sets of “noisy” ranges, both generated from
the “true” ranges. This generated range changes between
the configurations up to twice the tested maximum error,
as potentially the errors in each set could overshoot for
one set and undershoot for the other set. Experimental
tests [10] have shown that the change in the error between
consecutive measurements for the range between a pair
of static nodes, will be significantly smaller than the er-
ror between the measured ranges and the true range. This
is because many of the sources of range inaccuracy (re-
flections, batteries running down, low-quality radios, etc)
should be relatively stable between one range measure-
ment and the next. We therefore adapted our experimental
setup to mimic this.

We then took the topology and ranging information
from the “true” locations, and added some gaussian dis-
tributed noise to the ranging data (mean equal to the “true”
range, variance at different levels for different experi-
ments). This “noisy” ranging information was then used
to generate a local co-ordinate system (Appendices A.3-
A.6). We then moved the root node by a random amount
(uniformly random direction, distance depending on the
experiment). For all the links not connected to the root
node, we changed their distances by a small random value
(mean equal to the original “noisy” range, variance at dif-
ferent levels for different experiments), and for the links
connected to the root node, we re-generated new “noisy”
ranges according to the true ranges for the new root node
location (noise generated with the same parameters as the
first local co-ordinate system). This second set of “noisy”
data was then used to generate another local co-ordinate
system, and the two were compared as per Appendix A.7.

For all of the experiments, values are specified as per-
centages of the radio range, and are averages of 20 runs
of a particular set of parameters, using a different random
seed each time. Figures 17, 18 and 19 show the results
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Figure 17: 0% second measurement inaccuracy
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Figure 18: 5% second measurement inaccuracy
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Figure 19: 10% second measurement inaccuracy
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with inaccuracy for the non-moved links set to 0%, 5%
and 10% of the original variance. The 6 lines on each of
the graphs represent a variety of movements of the root
node between the first and second sets of data. At 10%
and 20% motion, neither altering the original error nor
the second measurement inaccuracy significantly changes
the results, and the percieved motion is reasonably accu-
rate (±3%). However with greater motion (>20%), the
percieved motion becomes increasingly inaccurate. Note
that this is the motion between successive tests of the mo-
tion detector, and so if we run the algorithm frequently
enough (depending on the average rate of motion of the
root node) these more difficult cases can be avoided.

The curves in all cases are relatively flat - a first guess
at expected results for these experiments would assume an
upwards curve in perceived motion as the error between
true and measured distances increases. However, the mo-
tion detection algorithm that we are using here works with
the differences between two measured distances, and as
the errors for each of the two measured distances are sim-
ilar, increasing the error from true distances does not sig-
nificantly alter the algorithm’s results.

Increasing the change in the error between the two mea-
sured distances does not change the results that much ei-
ther, and this also applies with additional tests that we
have done for higher values of the error change. The val-
ues that we have used here are similar to values shown in
experimental testing ([10]).

9 Related Work

As previously mentioned, [14] was the initial work with
statistic-based localisation and mobile beacons. They
however required an order of magnitude more processing
time, plus a far higher anchor coverage density to achieve
similar results to RSL, and their system did not consider
motion at all.

[4] did some earlier work using bounding boxes, with
additional optimisations in the area of “negative informa-
tion” i.e. if two nodes can not communicate with each
other, they are assumed to be out of range with each other.
Bounding boxes have the assumption that a node is cer-
tain to be somewhere within them, but given the signifi-
cant likelihood of bad links (two nodes that are in radio
range but cannot communicate) in the real world due to a
variety of possible problems (e.g. objects in the way), this
will cease to be the case if we use negative information.
Results from [19, 20] indicate that even without such ob-
stacles, bad links still occur in a significant percentage of
cases.

[15] also looked at bounding boxes, but they relied on

a very dense anchor distribution at all times, with only
anchor nodes being allowed to transmit their bounding
boxes.

[3] proposed a method for constraint-based localisa-
tion, including work with bounding regions. However,
their techniques required several orders of magnitude
more processing power than the methods proposed here
and so they used centralised computation of their algo-
rithm - rendering it unsuitable for large sensor networks
due to the overheads of exchanging information with a
central node. Their solution to the centralisation prob-
lem using a hierarchical distribution of the problem would
still require much larger energy/computing resources than
present on current node hardware, but now the additional
capacity would have to be evenly spread across the net-
work, reducing the feasibility of this technique even fur-
ther. They also did not achieve significantly better results
than the distributed algorithms demonstrated in this paper.

[2] created an algorithm to create local coordinate sys-
tems, and a method for translating from one system to
another. They then proceeded to attempt to use a network
of co-operating nodes to build a Network Coordinate sys-
tem (a form of local co-ordinate system where all of the
nodes in a network use the same local co-ordinate sys-
tem), using a Location Reference Group (LRG) of semi-
stable (i.e. minimal movement) nodes as a centre for the
topology. We have used an LRG-like system here, but us-
ing information from a local neighbourhood rather than
the entire network. Network Coordinate systems result
in a significantly increased amount of traffic required to
setup and maintain the system over local coordinate sys-
tems, and that cost rises with the size of the network. The
benefits gained via the use of this are minimal, and in most
mobile anchor scenarios the situation where you have no
anchor information is for a limited time only, and so cross-
network protocols that could utilise a network coordinate
system (e.g. node→sink message routing) would be better
off storing data locally and waiting for anchor information
before transmitting.

[9] and [13] both also looked at anchor-free localisa-
tion, but using global rather than local knowledge, with
the accompanying increases in network traffic and storage
required for that class of solution.

10 Conclusions and Future Work

We presented here an approach that can provide good lo-
cation information, even with non-uniform anchor dis-
tributions and considerable inaccuracies in the incoming
ranging data. RSL provides a good solution to the prob-
lem of localisation even in small, resource-limited sensor
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networks. We showed that we can calculate accurate po-
sition data for a high percentage of the sensor nodes in a
network. We have improved both the quality and quantity
of positioned nodes in sensor networks, both versus the
earlier statistic-based method and deterministic localisa-
tion methods.

We have also shown that even in difficult localisa-
tion scenarios (such as the anchor-less scenarios for early
stages of mobile anchor applications), even very limited
information can be used, and that motion can be detected
without knowing exactly where you are without additional
hardware.

All of this has been tested using mobile anchor scenar-
ios, which we have shown to be a realistic and usable
method for the distribution of anchor data, as well as a
cost-effective one - both in terms of energy costs for the
sensor nodes of the network, and in terms of the neces-
sary hardware required to create the sensor network. Get-
ting rid of the errors in sensor measurements is hard to
do well, but that is the price of gathering data from the
real world. With statistical approaches, we have shown
that it is possible to work around these errors, and de-
rive good location information. Statistical approaches are
somewhat more computationally expensive, but given the
significant improvements in the location information, and
that the computational expense results in a reduced level
of required radio traffic during the localisation process
(which increases the capability of other nearby nodes to
do radio-dependent work efficiently during the localisa-
tion process), we believe that the trade-offs are worth it.

One of the long running problems in wireless sensor
networks is how tightly integrated the different layers of
the software should be - whether they should be heav-
ily inter-dependent, or separate and modular. RSL, as
shown here, is designed for a combination of these two
approaches, allowing different layers of the application
to communicate with each other to determine what is the
best approach for the current application. To help achieve
this, RSL provides a confidence value to its location in-
formation allowing applications to change their use of the
location information depending on its accuracy.

In the future, we hope to expand on our work here to
attempt to further improve the location information that
can be gathered, by integrating more accurate models of
various ranging sensors, and also testing to see whether a
combined model from several sensors may improve accu-
racy.
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A Motion detection algorithm

When we refer to radio range in this appendix, we are us-
ing the maximum possible radio range between a pair of

nodes, including any “gray area” [19] effects. The tech-
niques here have been influenced by [6].

A.1 Mass-spring model

In our mass-spring model, the range between a pair of
nodes is modelled as a spring, with a known relaxation
state and a spring constant. For a pair of nodes A and
B, with a range ∼ N(m,v), the relaxation state is equal
to m and the spring constant is v multiplied by a scaling
constant k. The energy UA,B of the spring between a pair
of nodes is given by

UA,B =
|RA,B−m|

kv
(1)

A.2 Links

A link between a pair of nodes is defined as one of two
possibilities, either

1. A and B can communicate directly i.e. A and B have
a known value for the measured radio range between
them. A is therefore a neighbour of B and vice versa.

2. RA,B < radio range, but A and B are not connected
using the previous rule. In this case the link dis-
tance is defined as the radio range, and the UA,B

result is scaled by the probability of a broken link
(i.e. Ubrokenlink

A,B = UA,B∗BrokenLinkProbability) as
given from experimental data. Values for the broken
link probability will be approximately in the 0.1-0.2
range. A and B in this case are not neighbours, but
they are linked.

A link creates a “force” that pushes the node towards a
more accurate location. For a given node A, we can cal-
culate the force FA on that node using

FA = ∑
B

FA,B =−∑
B

ˆ(A→ B)UA,B (2)

where ˆA→ B is the unit vector from A to B and A and B
are linked.

A.3 Reference node placement

In order to define a local co-ordinate system, we need ref-
erence points. The root node is declared as being located
at (0,0), and we also require a second “reference” node to
define the x-axis for this system.

We can arbitrarily pick any of the non-root nodes as the
reference node (2-hop neighbours could be used if we so
wished), but ideally we need a node that is highly con-
nected to the root node’s immediate neighbours, which
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Figure 20: Placing C

will reduce the amount of calculations we need to do later
on in many cases. Therefore, the selected reference node
will be one of the 1-hop neighbours of the root node, and
we select it using the following rules in order

1. Highest number of transitive links (i.e. for a given
node, the number of its neighbours that are also
neighbours of the root node).

2. Highest number of neighbours.

3. If we still have >1 possible nodes, pick one randomly
(lowest node id is a suggested method).

We now also declare this selected neighbour as being ini-
tially located at (m,0) where m is the measured distance to
the neighbour. As this always makes URoot,Neighbour = 0,
this is currently a minimum energy configuration of the
positioned nodes.

Once we have the reference node and root node placed,
we then move onto the other nodes.

A.4 Initial placement

For a node C with already placed neighbour nodes A and
B, and A and B are neighbours of one another, we may be
able to calculate an inital location. Using the measured
values for all of the inter-node distances, we start by cal-
culating 6 BAC from the law of cosines.

v =
R2

A,C+R2
A,B−R2

B,C
2RA,CRA,B

, 6 BAC = cos−1(v)

Sanity assumption: |v| ≤ 1

Using a line D, parallel to the x-axis but through A, we
then calculate the angle of

−→
AB to D

n = Ax−Bx
RA,B

, z = sin−1(n) where z is the angle of
−→
AB to D
Sanity assumption: |n| ≤ 1

We can now calculate two possible values of θ (= angle of
−→
AC to D), using θ = z± 6 BAC. We then have two possi-
bilities for C’s co-ordinates using the two values of θ and

C = (Ax +RA,Ccos(θ),AY +RA,Csin(θ)). These are shown
on Figure 20 as C and C′. We choose the initial location
of a node with the minimum amount of force (as defined
in A.2) given the current set of placed nodes.

In some cases we will fail the sanity assumptions, and
have to test with other pairs of neighbour nodes. Once
we have placed all of the nodes that have a valid pair of
placed neighbours, we then work on the remaining nodes.

A.5 Placing remaining nodes

If we have remaining unplaced 1-hop neighbours of the
root that do not have 2 neighbours in the set of already
placed nodes, then we can repeat the process for select-
ing a reference node (A.3, but using only non-positioned
nodes as possibilities), and place this newly selected

neighbour at (−∑placed
p px

n ,−∑placed
p py

n ) i.e. an averaged lo-
cation directly opposite the current set of placed nodes,
which is the most likely location for this remaining un-
placed node. We now return to the process of placing
additional nodes that have two neighbours in the “al-
ready placed” set, and if necessary keep repeating this se-
quence of processes until all the 1-hop neighbour nodes
are placed.

After placing all of the 1-hop neighbours, if we still
have unplaced 2-hop nodes with 2 placed neighbours, but
for all possible pairs of placed neighbours A and B, A and
B are not neighbours of each other, then we use the cal-
culated locations for a pair of neighbours to work out the
distance between them. The calculated distance is then
used temporarily for the placement steps in Appendix A.4.
This is less accurate, but will still give us a reasonable first
guess for the location.

If there are still unplaced 2-hop nodes, without at least
2 placed neighbours then these 2-hop nodes must have 1
placed 1-hop neighbour (by the definition of a 2-hop node
as being connected to a 1-hop node, all of which have now
been placed), then we place the 2-hop neighbour at

(
px

1(r1+r2)
r1

,
py

1(r1+r2)
r1

) where r{1,2} is the root→1-
hop and 1-hop→2-hop measured ranges respec-

tively, and p{x,y}1 is the x- and y-coordinates of
the 1-hop neighbour.

Placing the 2-hop neighbour further along the line of the
1-hop neighbour provides a reasonably likely initial po-
sition, without the need for extensive calculations on the
full set of placed nodes.
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A.6 Topology optimsation

The total energy of the system in a particular configuration
is

Energy = ∑A,B UA,B A,B ∈ placed nodes
and there exists a link between A and B

An optimal topology for a mass-spring system is when the
total energy of the system reaches a pre-defined minimum
value (ideally zero, but in practice this will often not be
possible to achieve). We may not be in this state after the
inital placing, as we did not take all of the link information
into consideration initially. We therefore need to further
refine our location data.

The location of each node A is refined, starting with the
child nodes of the root node, then their child nodes and so
on. This makes sure that a node’s parents will always be
evaluated before the node itself. A is refined as follows:

1. If A has an ancestor node (parent, parent of parents,
etc) that switched to its alternate location during this
round of the algorithm, then recalculate A’s location
and alternate location according to the previously
specified initial placing algorithm.

2. Otherwise

(a) Calculate A’s current force FA, with Equation
2.

(b) If A has an alternate location, which is a valid
location given the communication links to this
node i.e. all direct links to A are within ra-
dio range of the alternate location, calculate
the force for the alternate location as well, and
if the magnitude of that force is smaller, A is
moved to the alternate location.

(c) Update A’s current estimated location
A← A+FAT
where T is an arbitrary constant controlling the
rate of convergence.

These steps are repeated until a minimum energy state is
reached, or until the reduction in energy from one state
to the next drops below a pre-defined limit (or the energy
increases!). One possibility for improving the speed and
accuracy of this process is to choose a value for T that
is proportional to Energy, allowing for rapid reductions
initially, reducing the motion as we progress towards the
minimum energy state.

A.7 Motion detection

Using anchor-free co-ordinate systems, motion detection
is possible by comparing a generated local co-ordinate
system at one moment in time (LCS1) to another generated
system by the same node at a later point in time (LCS2).

For each pair of nodes which we will designate A and
B, using the LCS1 system co-ordinates for A,B and our
root node (marked as I), as well as range data from LCS2

for our root node relative to A and B, we can calculate
the possibilities for the location of the LCS2 root in LCS1

(designated as K) using

(Kx−Ax)
2 +(Ky−Ay)

2 = R2
K,A (3)

(Kx−Bx)
2 +(Ky−By)

2 = R2
K,B (4)

Solving for Kx in terms of Ky, A and B, gives us

e = R2
K,A−A2

y−A2
x (5)

m =
e− (B2

y +B2
x−R2

K,B)

2(Bx−Ax)
(6)

n =
2(By−Ay)Ky

2(Bx−Ax)
(7)

Kx = m−nKy (8)

Using Equations 3 and 5-8 we can then solve for Ky

o = (Axn−Ay−mn)2(m2 +2Axm− e) (9)

Ky =
−2(Axn−Ay−mn)±2

√

o(n2 +1)

2n2 +1
(10)

Equation 10 gives us two values for Ky which we can
then substitute back into Equation 4 to get values for Kx.

h = R2
K,B−B2

y−B2
x (11)

Kx = −Bx±
√

2ByKy +h−B2
x−K2

y (12)

This gives us up to 4 (Kx,Ky) pairs that represent poten-
tial values for K. Results involving imaginary numbers
are discarded, as they do not represent valid solutions.
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