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Introduction

The fundamental questions of theoretical computer science ask what are the most
efficient methods to compute a given function. A variety of computational models are used
including the Chomsky hierarchy, time and/or space bounded Turing machines, alternating
Turing machines, array processors and many others. The functions or decision problems
considered by computer scientists are almost always combinatorial or numerical in nature.

Mathematical logic has also long studied problems in computability theory. However
the aims and scope of mathematical logic and computational complexity have been quite
different. Classically, mathematical logic has considered general recursive functions as its
principal model for computability, whereas computer science likes to deal with functions which
are actually computable in the real world. Mathematical logic has rarely considered classes of
functions simpler than the primitive recursive functions, while computer science seldom treats
problems which are not elementary recursive in the sense of Kalmar.

However, the problems of theoretical computer science can often be stated in terms
familiar to mathematical logic. For concreteness, suppose we are given a function f. Frequently
we can, without loss of generality, reduce f to a decision problem. By suitably encoding
instances of the decision problem we can reduce the problem of computing f to the problem of
recognizing a formal language A;. Now we can show that f is computable (relative to a given
model of computation) if and only if the language A, is definable in a certain formal way (which
obviously depends on the model of computation). Thus we have restated a question about the
computability of f as a question about the definability of A,.

Questions about the most efficient or simplest means of defining an object have long
been considered by mathematical logic. For instance, quantifier elimination has been
investigated for many formal systems. Thus the problem of how the formal language A; can be
defined may legitimately be considered part of mathematical logic.

This dissertation uses methods from mathematical logic to examine issues related to
computational complexity. The kind of question dealt with is as follows: Given a formal theory
R, what functions can R define? Or, what function symbols may be introduced in R?

We say that R can define a function f when R proves (Vz)(3'y)A(z,y) and f is defined
to satisfy A(z,f(z)) for all z. In other words, a proof of (Vz)(3!y)A(z,y) provides an implicit
definition of the function y=f(z).

A constructive proof of (Vz)(Jy)A(z,y) by definition contains an algorithm for
computing f. Thus a constructive proof gives us an effective way (at least in principle) to

compute f; that is to say, a constructive proof specifies a recursive algorithm to compute y from
z.
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However, a recursive function may be computable only in a theoretical sense: the time
required to compute it may be far larger than the lifespan of the universe. We are more
interested in feasibly computable functions, which can be calculated by today’s (or tomorrow’s)
computers. It is generally accepted that the correct formal definition for a feasible function is
that the function be computable in polynomial time; i.e., that the runtime of some Turing
machine computing the function be bounded by a polynomial in the length of the input.

Accordingly, we are interested in the question of when the existence of a proof of
(Vz)(Jy)A(z,y) implies the existence of a feasible algorithm which, given z, computes y. A
natural condition to put on a proof is that it be a valid proof of a certain formal theory (indeed
this is unavoidable). We can also put conditions on the formula A. The main results of this
dissertation show that certain restrictions of these types on a proof of (Vz)(3y)A(z,y) imply the
existence of a function f such that (Vz)A(z,f(z)) and such that f has a certain computational
complexity. In particular, we may be able to deduce that f is polynomial time computable, f is
at a certain level of the polynomial hierarchy, f is polynomial space computable, or f is
exponential time computable.

We shall discuss exclusively a family of formal theories called Bounded Arithmetic,
which are weak fragments of Peano arithmetic. The language of Bounded Arithmetic includes
the following function and predicate symbols:

0 zero constant symbol
S successor
addition
multiplication
[iz] “shift right” function, i.e., divide by two and round down
|2 = [loga(z+1)], the length of the binary representation of z
z#y = 20211l the “smash” function

IA

less than or equal to

(The notations | a} and [a] denote the greatest integer <a and the least integer >a.)

In Bounded Arithmetic, quantifiers of the form (Vz) or (3z) are called unbounded
quantifiers. We also use bounded quantifiers which are of the form (Vz<t) or (3z<t) where ¢ is
any term not involving z. The meanings of (V2<t)A and (Jz<t)A are (Vz)(z<tDA) and
(Fz)(z<trA), respectively. A formula is bounded if and only if it contains no unbounded
quantifiers. The principal difference between Bounded Arithmetic and Peano arithmetic is that
in theories of Bounded Arithmetic the induction axioms are restricted to bounded formulae.

A special kind of bounded quantifiers are the sharply bounded quantifiers, which are
those of the form (Vz<|t]) or (Jz<]t|), where ¢ is a term not involving z. We classify the
bounded formulae in a hierarchy ¢, £, I?, 2, I -+ by counting alternations of
bounded quantifiers, ignoring the sharply bounded quantifiers. This is analogous to the
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definition of the arithmetic hierarchy since formulae are classified in the arithmetic hierarchy by
counting alternations of unbounded quantifiers, ignoring bounded quantifiers. Hence, in
Bounded Arithmetic, the roles of bounded and sharply bounded quantifiers are analogous to the
roles of unbounded and bounded quantifiers, respectively, in Peano arithmetic.

The most important axioms for Bounded Arithmetic are the induction axioms. The
induction axioms are restricted to certain subsets of the bounded formulae. We are most
interested in a modified induction axiom called T,)~PIND. The £ -PIND axioms are the

formulae
A0 (Vz)(A(L22])oA(2))>(V2)A(2)

where A is a £ -formula. We define in Chapter 2 a hierarchy of theories S 8}, S2,... so
that S5 is a theory of Bounded Arithmetic axiomatized by a few simple open axioms and by
E2-PIND.

If R is a theory of Bounded Arithmetic we say that the function f is ¥ -definable in R
iff there is a ©,*formula A(z,y) such that

(a) For all z, A(z,f(z)) is true.
(b) R(Vz)(3y)A(z,y)
(c) R-(Va)(Vy)V2)(A(z,y)AA(2,2) D y=2)

We shall be mostly interested in functions which are X,*-definable in Sg.

The Meyer-Stockmeyer polynomial hierarchy is a hierarchy of predicates on the
nonnegative integers which can be computed in polynomial time by a generalized version of a
Turing machine. The smallest class of the polynomial hierarchy is P, the set of predicates
computable in polynomial time by some Turing machine. One step up is the class £, or NP,
the set of predicates computable by a non-deterministic polynomial time Turing machine. It is
an important open question whether P=/NP. The classes in the polynomial hierarchy are P,
Ly Op 24,114, ...

We can extend the polynomial hierarchy to a hierarchy of functions by defining
04, = PTC(E?), the Polynomial-Time Closure of £F, to be the set of functions which can be
computed by a polynomial time Turing machine (i.e. a transducer) with an oracle for a
predicate in £f.

It is well known (and we prove it again in Chapter 1) that the predicates in ¥/ are
precisely the predicates which can be expressed by a E‘-"—formula. This fact provides a link
between computational complexity and the quantifier structure of formulae.

The principal theorem of this dissertation states that any function which is
T ~definable in S4 is a O2-function, and conversely that every O2—function is £;>~definable in
Sg’.. (See Theorem 5.6 for the strongest version of this theorem.) This provides a characterization
of the functions which are £ '~definable in Sy in terms of computational complexity.
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The hardest part of this theorem is showing that every ¥, ~definable function is in 07.
An extremely brief outline of the proof is as follows: Let A be a E;b—formula and suppose S;
proves (Vz)(3y)A(z,y). By Gentzen’s cut elimination theorem there is a free cut free proof of
(Vz2)(Ay)A(z,y). By examining the allowable inferences of natural deduction we discover that
this free cut free proof contains an explicit 07-algorithm for computing y from z. This method
of proof is reminiscent of Kreisel [18] and Goad [14], in that one of the important ideas is that a
free cut free proof can be “unwound” to yield an algorithm. The proof is carried out in detail in
Chapter 5.

A corollary to the main theorem is that S5 can X,’-define precisely the polynomial
time functions and S# can £,’—define precisely the functions in PTC(INP).

The import of this theorem is twofold. On one hand, it provides a characterization of
the Of—functions in terms of their definability by the formal theory S:j of ari'thmetic. On the
other hand, it states that the proof-theoretic strength of the formal theory S3 is closely linked
to the computational complexity of 07-functions.

Another way to state the main theorem is as follows: if A€X;? and Bell} and if
Si+ A+ B, then the predicate defined by A and B is in PTC(X2,). In particular, any predicate
which S5 can prove is equivalent to both a £~ and a II’-formula is in P; in other words,
since £~ and IT,’~formulae represent NP and co- NP predicates, the class of predicates which
Sy proves are in NPnco-NP is the class P of polynomial time predicates. (It is an open
question whether INPnco- NP is equal to P.)

In Chapters 9 and 10 we discuss second-order theories of Bounded Arithmetic. We
define two theories U and Vg of second-order Bounded Arithmetic which have the property
that the functions X"’~definable in U (respectively, V3!) are precisely the functions which are
computable by some polynomial space Turing machine (respectively, by some exponential time
Turing machine). This provides a characterization of the PSPACE and EXPTIME functions in
terms of definability in second-order Bounded Arithmetic.

Chapter 7 discusses improved versions of Godel incompleteness theorems for Bounded
Arithmetic. It is shown that the theory Sq is strong enough to carry out the arithmetization of
metamathematics. Thus there is a formula FCFCon(Ss) which asserts that there is no free cut
free S4—proof of a contradiction. Also, there is a formula BDCon(Ss) which asserts that there
is no Sg"—proof P of a contradiction such that every formula in P is bounded. We show that,
for i>1, S5 can not prove either FCFCon(S5) or BDCon(Sy5).

One of our most important open questions is whether the hierarchy of theories Sy, 522,
S5, ... is proper. Of course this is analogous to the open problem of whether the polynomial
hierarchy is proper. In Chapter 7 we make an unsuccessful attempt to prove that this hierarchy
of theories is proper.

Chapter 8 builds upon the work of Chapter 7; the main theorem of Chapter 8 is a
restatement of the INP=2% co-INP problem in proof-theoretic terms. It turns out that NP is

equal to co-/NP iff there is a bounded theory R of arithmetic satisfying a certain “anti-
reflection” property. See Theorem 8.6 for the precise statement.
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The prerequisites for reading this dissertation are some knowledge of computational
complexity and of first order logic. Garey & Johnson [12] is a good introduction to
computational complexity; in addition, the polynomial hierarchy is defined in detail in Chapter
1 below. Takeuti [28] is the best source for the proof theory that we use; in particular, our
treatment of the cut elimination theorem is taken directly from Takeuti. For the reader who
has studied first order logic but not proof theory, Chapter 4 has an introduction to proof theory
and the cut elimination theorem.



Chapter 1

The Polynomial Hierarchy

This first chapter defines the polynomial hierarchy and explains the link between the
computer science definition and the mathematical logic definition. We begin by defining the
polynomial hierarchy by using limited iteration and we prove that this definition is equivalent to
the usual definition in terms of Turing machines. We then discuss how the polynomial hierar-
chy can be defined without using limited iteration. The main result of interest to us is Theorem
8 which states that the polynomial hierarchy corresponds to a hierarchy of bounded formulae of
Bounded Arithmetic.

The results of this chapter are equivalent to the original work of Cobham [5], Stock-
meyer [26] and Wrathall [33], but they are stated and proved in a different form. Some of the
results are due originally to Kent-Hodgson [17].

1.1. Limited Iteration.

An important class of functions is the class of functions which can be computed in
polynomial time. By polynomial time, we mean that the number of steps in some program
which computes the function is bounded by a polynomial of the length of the input. The con-
cept of polynomial time is invariant for Turing machines and modern day sequential program-
ming languages, as well as for other models of computation such as Random Access Machines
(RAM’s). For example, if a RAM program runs in time p(n) on inputs of length 7, a multitape
Turing machine can simulate the action of the RAM program in time O((p(n))?), (see [1)).
Hence if p(n) is bounded by a polynomial, so is the running time of the Turing machine.

Instead of defining polynomial time computations directly in terms of Turing
machines, we will define an operation called limited iteration for obtaining new functions. By
starting with a base set of functions and taking its closure under composition and limited itera-
tion, we can construct all polynomial time computable functions.

We adopt the convention that all functions have domain N* and codomain N for the
rest of this dissertation where N denotes the natural numbers. Another approach which is
often used is that functions have domain and range the set of strings of symbols from a finite
alphabet. These two approaches are essentially equivalent; indeed, an integer can be considered
as a string of zeros and ones, namely as its binary representation. However we find it advanta-
geous to use integers since it allows us to relate the polynomial hierarchy to formal theories of
arithmetic (in later chapters).
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Definition: B is the following set of functions from NFf to N:

(1)0,  (the constant zero function)

(2) z+—> Sz,  (the successor function)
(3) z—>|1z],  (the shift right function)
(4) 2> 2-2,  (the shift left function)

1 if z<y

(5) (f",y)iexﬁy = 0 if 2>y
. y if >0
(6) (z,y,2)—> Choice(z,y,2) = . if 2=0

B will be the base set of functions from which we will obtain the polynomial time func-
tions. The first operation we can use to obtain new functions is composition. Composition is
best defined by a few examples:

Examples:
(1) Logical operations. We will use the conventions that if >0 then z represents True and if
z=0 then z represents False.

Negation: (-z) = <0 = Choice(z,0,1)
And: (zAy) = Choice(z,y,0)

Or: (zvy) = Choice(z,1,y)

Xor: (z@y) = (—zAy)v(zA-y)

It is important to note that for the time being -, A, v and @ are numerical opera-
tions. Later we will use -, A and v extensively as logical operators.

(2) Equality and Inequality:

(z<y)My<z)

)
1

&
[

(2<y) = (z<y)r~(z=y)
(8) Arithmetic modulo 2:
(2%2) = ~(a=23z))
(2%?2) is equal to zero if z is even and one if z is odd.

We also need to define functions for handling finite sequences of numbers. We will
code our sequences by values called Godel numbers. The Godel number for the sequence
a4,89, . . . ,a; 1s constructed as follows. First write the a;’s in binary notation so we have a
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string of 0’s, 1’s and commas. Then write the string in reverse order and replace each 0 by
“10”, each 1 by “11” and each comma by “00”. The resulting string of zeros and ones is the
binary representation of the Gddel number <aj,...,a;>. For example the Godel number of
3,4,5 is (11101100101011001111), or 969,423. The empty sequence has Godel number <>=0.

Definition: BT is the set of functions which contains all the functions in B plus the following
functions:

. n if =0
(1) B(t,<ay, .- ,8.>) =\ o, if 0<i<n

The value of B may be defined arbitrarily when the second argument is not a valid
Godel number for a sequence or if ¢>n.

(2) Truncate(<ayay, ...,8,>) = <ag, ...,a,>
(3) a0*<a1, N ,an>=<(10,(11, . e ,(1">

Again, the values of the functions Truncate and * have not been specified for argu-
ments which are not Godel numbers of sequences; it makes no difference how they are defined

for arguments other than those above,

Definition: We define the unary function |z| to be [logy(z+1)], or the length of the binary
representation of z. Note that |0]=0.

If Z is a vector of numbers z,, . .. ,z, then |Z| denotes the vector |z,], . . .,|z,]|-
Definstion: p is a suitable polynomial iff p has nonnegative integer coefficients.
Definition: Let k>0 and let ¢:N*—> N and h:N**2.N be arbitrary functions and let p and q

be suitable polynomials. We say that N*—N is defined by limited iteration from g and h
with time bound p and space bound q iff the following holds:

Let 7:N**14N be defined as

T(zy, .. ,25,0) = g(z1, ... ,2y)

7(zy, ..., zpn+1) = hlzy, ... ,zp,n,7(zy, . .. ,2,0)).
Then we must have

(Va<p(IZD)I7(@,n)l < q(I2])

and f(Z) is defined by
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@ = (@p(2)

Our definition for limited iteration is very similar to what Grzegorczyk {15] and Cob-
ham [5] call “limited recursion”.

Definition: A function f:N*=N has polynomial growth rate iff there is a suitable polynomial p
such that for all Z, we have |f(Z)|<p(|Z]). Let C be a set of functions of polynomial growth
rate. The Polynomial-time closure of C, PTC(C), is the smallest class of functions which (1)
contains C and B and (2) is closed under composition and definition by limited iteration.

Theorem 1: PTC($)DB™.
Proof: This is a technical result and the proof is in the appendix to this chapter. O

As an illustration of how limited recursion is used, we show that addition is in PTC(8).
We first define f;(z,y) by limited recursion from ¢, and h; with bounds p, and ¢,, where

g1(z,y) = 1x0xz*xyx0 = <1,0,2,y>

hi(z,y,m,w) = SM(B(1,v),0(2,w),8(3,w)%2,0(4,w)%2)*
+CARRY(B(2,w),8(3,w)%2,8(4,w)%2)+
*| 18(3,w) % 15(4,w) |*0

pi(n,m) = n+m

gi(n,m) = 2n+2m+14
and where

SM(z,a,b,c) = Choice(a®bD¢,5(2-2),2 1)
CARRY(a,b,c) = (anb)v(anc)v(bac).

Note that in the definition of ¢;, the formula 1*0%z*y*0 means 1%(0%(z*(y*0))) which is
<1,0,z,y>. Similar considerations apply to the definition of h, and for the rest of Chapter 1
we follow the convention that * associates from right to left.

Intuitively, fy(z,y)=<FlippedSum(z,y),0,0,0>, where FlippedSum(z,y) is a number
whose binary expansion contains the binary expansion of z+y in reverse order immediately fol-
lowing the high order bit. For example, f,(4,8)=<(10011000),,0,0,0>. Since g, and h, are
defined by composition from functions in B*, Theorem 1 says that g,, h€PTC(#). Hence
[1EPTC(9).

Secondly, we define fy(z) by limited iteration from g, and h, with bounds p, and gy,
where
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go(x) = 0%zx0 = <0,2>
hoz,mw) = Choice(B(2,w)%2,5(2-8(1,w)),2-8(1,w))*| 18(2,w) |*0

pyn) = n
qo(n) = 2n+6.

We now define Flip(z) using composition by
Flip(z) = A(1,foz))
and finally we can define addition as

+y = L%Flip(ﬂ(lrfl(x:y))).l'

1.2. Polynomial-time Computations.

In this section, we show that the operation of limited iteration can be used to define
the concept of polynomial time computation.

Theorem 2: Let C be a set of functions with polynomial growth rate. Then fEPTC(C) iff there
is a finite set {hy,...,h;}CC and a Turing machine M; with oracles for h,, ... ,h; so that
M; computes f in polynomial time.

Note that we are allowing M, to use oracles for functions h;. In order to be defined
properly it is required that when the oracle is consulted, the elapsed time reflect the length of
the input to and/or the output from the oracle. Garey and Johnson [12] define this concept as
Oracle Turing machines with a correction to the definition at the end of their book (the first
edition). Another way to define function oracles is to count an oracle invocation as a simple
time unit and to put an a priori restriction on the amount of space used by the Turing machine.
Thus if we limit both the time and the space we get a correct definition of a Turing machine
which uses function oracles.

Definition: P is the set of functions computable by polynomial time Turing machines.

Corollary 3: PTC(9) = P.

Proof: of Theorem 2.

== First we show that fEPTC(C) implies that the desired M, exists. The proof is by induc-
tion on the complexity of the definition of f. To start the proof by induction we note that if f

is in BUC the result is obvious. If f is defined by composition from functions in PTC(C) the
induction step is easy.
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Suppose f is defined by limited iteration from g and A with time bound p and space
bound ¢g. The induction hypothesis is that there are Turing machines M, and M, which com-
pute ¢ and h and have runtimes bounded by suitable polynomials p, and p, respectively. Let
M; be the Turing machine which uses M, and M, as “subprograms” to compute f in a straight-
forward manner. Then the runtime of M, is approximately bounded by

p(IZ)+p(1Z])-pa(1Z],p(1Z]),9(|2])).

This bound is approximate since it does not provide for the overhead of M, invoking M, and
M,; however, clearly M, is polynomial time.

<— Let M be a polynomial-time Turing machine with oracles hy,...,h€C and runtime
bounded by the polynomial p. Let ¢(n) be a polynomial bounding the total amount of tape
space used by M on inputs of length n. We want to show that the function M computes is in
PTC(C). Let the states of M be qo, ... ,qn4t Where gq is the initial state and gn.; is the oracle
state for h;. We assume without loss of generality that M has two tapes with alphabet
by, . . . ,b; where J>2 and b, is the blank symbol. An ID (instantaneous description) of M is
given by the following items:

(1) The contents of the work tape (current head position is at b, ):

bt tte bt—l b‘o b'tl T bt,'

—~l

(2) The contents of the oracle tape (current head position is at b, ):

b, ---b, b, b, ---b,

-m 5y "8 T8 2

(3) The current state g,.

We assume that the input and output of M are coded as a binary string with b, coding
0 and b, coding 1. M is presumed to start with the worktape positioned on the leftmost bit of
the input and to halt on the leftmost bit of the output. The inputs and outputs for the oracles
are coded similarly. The convention for invoking an oracle is that upon entering state gy, the

oracle for h; is invoked with input value coded by the string by, - * - b, ; the value output by
the oracle is coded as a binary string and written on the oracle tape as the string by, " by
After invoking an oracle the next state M enters is ¢ p.

We will code an ID of M by (the Godel number of) the sequence
<u, <ty ..., 0>, <y, . 4, >,<8 1, . 8y >, <8, - - - S8 >

We define f by the following procedure: we first define functions Init, Nexzt , and Decode, then
define f3 by limited iteration from Init and Nezt, and finally define f(z) = Decode(B(3,f5(z))).
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Init is the function computing the initial state of M with input z. We first define fy(z)
by limited iteration from g, and k; with bound p; and g;, where

g:(z) = <0,z>
hy(z,m,w) = [S(B(2,w)%2)+A(1,w)]*[35(2,w)]+0

py(n)=n
q,(n)=4n-+6.

Then define Encode(z)=p3(1,f1(z)) and Init(z)=0+0xEncode(z)*0+0*0.

We define Decode to be the inverse of Encode as follows: define f, by limited iteration
from g, and hy with bounds p; and gg, where

go(z) = zx0%0 = <z,0>

ko(w) = Truncate(B(1,w))* Choice(8(1,6(1,w))=1,2-6(2,w),5(2-6(2,w)))*0
holz,mu) = Choice(B(1,w) kx(w),w)

pAn) = n

gs(n) = 2n+44.

Then define Decode(z)=0(2,fo2)).

Nezt is the function which maps the Goédel number of an ID of M to the Gdédel
number of the next ID of M. We sketch how Nezt is defined using composition only (no
further use of limited iteration). First note that £y, 8 and u are given by

Tﬂ(z) = Cho{ce(ﬂ(?’)z):ﬂ(1):3(3!3:))10)
So(z) = Choice(B(5,2),8(1,8(5,)),0)
Ulz) = B(1,2).

The oracle queries are given by (for i=1,2, . .. k):

H{z) = Encode(hyDecode(B(5,z)))).

It should now be clear that Nezt can be defined by the use of many Choice functions and sim-
ple composition from the above functions and the functions in B*.

We finally define f3 by limited iteration from Init and Nexzt with time bound p and
space bound g¢3. Recall p is the bound on the runtime of M. g3 is the polynomial

g3(n) = 8-(|[N+k+J+2|)-(¢(n)+1). So g3 bounds the length of the Godel numbers of ID’s of M.
Now define
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f(z) = Decode(B(3,15(2))),

and f is the function M computes and by construction f is in PTC(C).

QED. D

1.3. Bounded Quantifiers.

Quantification is a construction which forms an n-ary predicate from an (n-+1)-ary
predicate. For this chapter only we adopt the convention that a predicate is a function with
range {0,1} where O denotes False and 1 denotes True.

Definition: Let C be a set of functions. Then PRED(C) is the set of predicates in C, i.e., the
functions in C with range {0,1}.

Definition: Let @ and R be functions. Then (Vy<Q(Z))R(Z,y) is the predicate (i.e., function of
7) which has value 1 iff for all y<Q(Z) the value of R(Z,y) is nonzero. Similarly,
(3y<Q(Z))R(Z,y) is the predicate which has value 1 iff for some y<Q(%) the value of R(Z,y)
is nonzero. (Note that this definition applies even if K is not a predicate.)

We will be interested only in bounded quantification, that is to say, in quantifiers of
the form (Vz<t) or (3z<t). Indeed, if we used unbounded quantification the construction below
would just give the arithmetic hierarchy since the class A{ defined below includes a version of
the Kleene T predicate.

We define two kinds of bounded quantification which are distinguished by the size of
the bound. Polynomially Bounded Quantification allows bounds of the form 2"(“]), where p is a
polynomial; whereas Logarithmically Bounded Quantification allows only bounds of the form

p(t]).

Definstion: Let C be a set of functions closed under composition. Then PBJ(C) is the set of
predicates @ such that

(1) @:N*=N for some i€N;
(2) There is an REPRED(C) and a suitable polynomial p such that for all Z,

QF) = Fy<2?*NR(z,y).

PBY is defined similarly with a universal quantifier replacing the existential quantifier in (2).
Note that PBY(C) and PB3(C) always contain PRED(C).
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Definition: Let C be a set of functions closed under composition. Then LB3(C) is the set of
predicates @ such that

(1) @:N'—N for some i€N;
(2) There is an REPRED(C) and a suitable polynomial p such that for all Z,

Q@) = (Cy<p(Z))RE.y).

LBY is defined similarly with a universal quantifier replacing the existential quantifier in (2).
Note that LBY(C) and LB3(C) always contain PRED(C).

In later chapters we will define bounded quantification in a different setting. Loga-
rithmically bounded quantification corresponds to what we later call sharply bounded
quantification. Our definition of logarithmically bounded quantification is closely related to
what Bennet [3] called “part of” quantification and polynomially bounded quantification
corresponds to what he called “finite” quantification.

1.4. The Polynomial Hierarchy.

We are now in a position to define the polynomial hierarchy. We will differ from the
usual definitions in that we define a hierarchy of functions as well as a hierarchy of predicates.

Definition: (by induction on k)

(1) Of is the smallest set of functions containing B and closed under composition, LB3 and
LBY.

(2) Af = 5§ = If = PRED(OJ).
(3) ka+1 = PTC(ZP).

(4) Ay = PRED(Q/,).

(5) £4 = PBI(AL.).

(6) Hk‘"+1 PBY(ALy).

(7) P LLJE’? :

The sets of predicates A, ¥ and IIf are well known to computer scientists and are

called P, NP and co- NP respectively. Figure 1 shows a diagram of the hierarchy of predicates
Af, TP and ITY.
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The Polynomial Hierarchy
Figure 1

Proposition 4: 02, = PTC(I17) for all k>0.
Proof: This is easy and is left as an exercise for the reader. O

There are many open problems concerning the polynomial hierarchy. We say the
hierarchy collapses if there is a k such that ¥/=X/, ;. Otherwise we say that the hierarchy is
proper. Things which we do not know include:

(1) Does P = NP?

(2) Does NP = co-NP?

(3) Does the polynomial hierarchy collapse?

(4) Does Af = Z2NIIZ? In particular, does P=NPnco-NP?

Most computer scientists are of the opinion that all these questions have negative answers, espe-
cially the first two. However, over a decade of determined efforts has failed to resolve these
questions.
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One question we can answer is whether Af = A:
Proposition 5: Af # Af.
Proof: Let Parity :N—> N be the function defined as

Numones(z) = # of ones in the binary representation of z

Parity (z) = Numones(z)%?2.

Clearly, Parity eAP=DP. So it suffices to show that Parity ¢A{.

It is easy to show that if fEA{ then f has polynomial size, unbounded fan-in circuits of
constant depth. This is proved by induction on the complexity of the definition of f: the only
two cases are composition and logarithmically bounded quantification and both are straightfor-
ward. But Furst, Saxe and Sipser {11] have shown that Parity does not have constant depth,
polynomial size circuits. O

Proposition 5 is somewhat unsatisfactory as it depends on the fact that the initial
functions in B all have constant depth polynomial size circuits. Indeed if multiplication had
been included in B it would no longer be true that all functions in B have constant depth poly-
nomial size circuits. It would be desirable to establish a more general version of Proposition 5
(if, in fact, a more general version is true.)

1.5. Eliminating PTC.

In defining the polynomial hierarchy we alternately applied PTC (polynomial time clo-
sure) and PB3 (polynomially bounded quantification). It turns out that the use of PTC is
unnecessary and that the classes £/ and II7 can be defined without using PTC and hence
without using either Turing machines or limited iteration.

Lemma 6:

(a) For all k>0, A/ is closed under logarithmically bounded quantification (LBY and LB3),
conjunction, disjunction and negation.
(b) For all £>0, I1? and ¢ are closed under L B3, LBY, conjunction and disjunction.

Proof:

(a) This is immediate from the definition of A except for showing closure under LBY
and LB when k>1. Suppose that REAP and Q is defined by

Q) = (Vz<p([Z|)R(z,7).

We can define Q(Z) by limited iteration from g and k with bounds p and ¢, where



81.5 Eliminating PTC 17

9(z) = R(Z,0)
h(Z,m,y) = yAR(z,Sm)
g(n) = 1

Since g and h are in AZ, so is Q. This shows A/ is closed under LBY and a similar argument
shows it is closed under LB3.

(b) Since X =TI = Ag, (b) is just a special case of (a) when k=0. So suppose k>1.
The closure of II? and £ under conjunction and disjunction follows easily from (a). To show
that £ 2 is closed under LBY it suffices to show that if REAL, and if p and ¢ are suitable poly-
nomials, then

82) = (Yz<p(E))3y<2P)R(Z,y,2)
isin ¥¢. But S(7) is equivalent to
(Fy<2"PV)Y(Vz<p(12))) [R(Z,8(S2,¥),2)AB(Sz,y)<29(71)

where r(7) = 2-(¢(%,p(R))+2)-(p(7%)+1). Thus S(Z)is in Xf. A similar argument shows II# is
closed under LB3.

QED. O

The next theorem shows how PTC can be eliminated from the definition of the polyno-
mial hierarchy.

Theorem 7: (Meyer-Stockmeyer-Wrathall).
(a) For all k>1, ¥f,, = PB3(I17) and 112, = PBY(X}).
(b) Let B* be the smallest set containing B* which is closed under LBY, LB3, and composi-
tion. Then ¥,'=PB3(B*) and I1)=PBY(B*).

Proof: In order to prove (a) and (b) simultaneously, we define D, to be II2,; and E,_, to be

2.1, and Dy = E; to be B*. The theorem asserts that £, ; = PB3(D,) and I, = PBY(E})
for all k>0. It suffices to show that & ; = PB3(D,) since I1Q,, = PBY(E,) is an immediate
consequence of this.

Let k¥ be a fixed nonnegative integer. Directly from the definitions we have
L2112 PB3(Dy). We need to show the reverse inclusion also holds. Let Cy be Dy. Define C;* to
be the set of functions definable by a single use of limited iteration from functions in C;. Set
Ci.1 equal to the closure of C;* under composition.

We will show that for all ¢, PB3(D;)DPB3(C;). Since UC;=0¢,,, this suffices to
prove the theorem. We will show by induction on 7 that for any Q€C;,
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S@) = (Fz<22@)(Vy<¢(12)Q(7,v,2)

is in PB3(D;). (This may seem like an unusual definition for S but it makes the induction
argument work well.) This is easily seen to be true when =0 since Cy is D, and by Lemma 6(b)
D, is closed under PBY. So assume :>0. Without loss of generality we may assume @ has the
form

Q(Ts') = G(TS',FI(._S'), te :Fn(?))'

where G is in D and each F; is in C*;. (If this is not the case we can find a formula equivalent
to Q in this form. For example, Q(3)=G(Fi(Fy3))) is equivalent to the formula
(Fv<29)v=Fy(|3])A G(Fy(v))), where g is a suitable polynomial which bounds the function
F,. The extra existential quantifier introduced by this may be eliminated from S by first inter-
changing it with the logarithmically bounded quantifier in S by using the trick of the proof of
Lemma 6(b), and then combining it with the original existential quantifier of S by using the
pairing function. Note that the 3 function is always in D; and hence it is permissible for G to
involve the pairing function.)

Let each F; be defined by limited iteration from G; and H; with time bound p; and
space bound ¢;, where G; and H; are in C;_;.
We informally define ValidComp (w,3) to be True iff

(1) w is a sequence <wy,...,w,> and
(2) Each w; codes a sequence <w,p, .. . »Wj,n > Which codes the computation of F43).

A precise definition is:

k
ValidComp (w,3) = B(0,w)=nA _Al(wj,lEGj(Ts'))/\
=
k
AN (BO ) =p ()1
k
AJ&(va |w|) [Sv<B(0,w;)> w; y o =H{3,0,w; , )|

where we used the abbreviations w; for B(j,w) and w; ,, for B(m,8(j,w)).

Now we can easily find a suitable polynomial r large enough so that Q(3) is equivalent
to

(awszr(M))[Vathomp (w’?)/\ G(Ts'rwl,ﬂ(o,w]): s rwn,ﬂ(O,w,))] .

The only quantifiers in ValidComp are logarithmically bounded quantifiers, so we may rewrite
this last equation as
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(Fw<2" @) Vo<|w|)R(3,v,w)
where R€C;_;. So S(Z) is equivalent to
(F2<2?F)(Vy < g([2])Fw<2 FHD) Vo <|w))R(Z,3,2,0,0).

Now we can use the method of the proof of Lemma 6(b) to interchange the order of the second
and third quantifiers. We then can use the 8 function as a pairing function to contract adjacent
like quantifiers (since the 8 function is in D). Hence S(Z) is equivalent to

(3* <2 Fl)(vy* <e([2)))R*(2,2",y")

where ¢ and ¢ are suitable polynomials and R*cC, ;. By the induction hypothesis, S(Z) is in
PB3(D;), which completes the induction step and the proof.

QED. O

The point of Theorem 7 is that we now can characterize the classes £f and IT# of the
polynomial hierarchy in a purely syntactic way. We start with the initial set B* of functions
and take its closure under composition and logarithmically bounded quantification to obtain B*.
We apply polynomially bounded quantification repeatedly to obtain £ and II?. (A somewhat
stronger result is obtained by Kent-Hodgson [17].)

Hence the question of whether the polynomial hierarchy collapses is the question of
whether there is a “quantifier elimination” theorem for polynomially bounded quantifiers.

1.6. Bounded Arithmetic Formulae.

An arithmetic formula is a formula of first order logic which may contain the logical
symbols A, v, =, 3, ¥, D, and = and the non-logical symbols 0, S, +, -, #, |z, |1z], and <.
The non-logical symbols have the following meanings:

0 zero constant symbol
S successor
+ addition
multiplication
| iz] “shift right” function

|z| = [logs(z+1)], the length of the binary representation of z
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zH#y = 2lzl'Wl the “smash” function

< less than or equal to

A bounded quantifier is one of the form (Vz<t) or (J2<t) where ¢t can be any term. A sharply
bounded quantifier is one of the form (Vz<|t]) or (2<]|t]). Note that if p is any suitable poly-
nomial then the #, -, and [%xj functions can be used to form a term equal to 2r(7) Thys
bounded and sharply bounded quantifiers correspond precisely to the polynomially and loga-
rithmically bounded quantifiers, respectively.

An unbounded quantifier is a regular quantifier of the form (Vz) or (3z). An arithmetic
formula is bounded iff it contains no unbounded quantifiers.

We define a hierarchy of bounded arithmetic formulae as follows:

Definition: The following sets of formulae are defined by induction on the complexity of formu-
lae:

(1) I = £¢ = Ay is the set of formulae all of whose quantifiers are sharply bounded.

(2) 2., is defined inductively by:
(2) z"It:‘l)+12Hch
(b) If A is in $2,, then so are (3z<¢)A and (Vz<|t|)A.
(c) If A,BEX ., then AAB and AVB are in £2,,.
(d) If A€T2,, and Bell},, then =B and B A are in £7};.

(3) 12, , is defined inductively by:
(a) M, 2%
(b) If A is in I, then so are (Vz<t)A and (Fz<|¢|)A.
(c) If A,BEIT?,; then AAB and AVB are in I13,;.
(d) If A€ll?,; and BeZ?, | then =B and B> A are in I1., ;.

(4) ., and T, are the smallest sets which satisfy (1)-(3).

This hierarchy of bounded formulae is in many respects analogous to the arithmetic
hierarchy. The classes £ and IT{ are defined by counting alternations of bounded quantifiers,
ignoring the sharply bounded quantifiers. The arithmetic hierarchy is defined by counting alter-
nations of unbounded quantifiers, ignoring the bounded quantifiers. We are using bounded and
sharply bounded quantifiers in a manner analogous to the use of unbounded and bounded
quantifiers (respectively) in the arithmetic hierarchy.

Theorem 8: Let k>1. X} (respectively, II7) is the class of predicates which are defined by for-
mulae in 2 (respectively, I12).

Proof: By Theorem 7, Lemma 6, and the definition of the bounded arithmetic hierarchy, it
suflices to prove the theorem for the case k=1.
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First we show L contains all predicates defined by Z‘ll’ formulae. All the nonlogical
symbols of bounded arithmetic can be computed in polynomial time and hence are in 0. Since
07 is closed under composition and since L/ is closed under conjunction, disjunction and loga-
rithmically bounded quantification, the desired result is established. The same argument also
shows that II contains all predicates defined by II,’ predicates.

For the reverse inclusion, let R be an arbitrary predicate in £{’. By Theorem 7, R can
be written in the form

R(z) = (y<2r)5(z,y)

with S€D,, where, as in the proof of Theorem 7, D is the smallest set of functions containing
B* and closed under composition and logarithmically bounded quantification. In other words, S
is expressible by a formula which uses functions from B* and logarithmically bounded
quantification.

So to show R is definable by a X~formula, it will suffice to show that S is definable
by a ©-formula. To show that, we have to show that every occurrence of Choice, Truncate, *
and B can be replaced by an equivalent arithmetic formula.

The simplest case is eliminating Choice from S. Suppose S is F(Choice(a,b,c)). Then
S is equivalent to

(F(b)A—~a=0)v(F(c)ra=0).

By repeated transformations of this type, all occurrences of Choice can be eliminated from S.

Eliminating Truncate, B, and * is a little more difficult. We shall show in great detail
in Chapter 2 that S is in fact equivalent to a Elb—formula. In particular, see Theorem 2.2 in §2.3
and also see §2.4 and §2.5. So we omit the proof here.

Since the IT# predicates are the negations of the Lf predicates and the IT/—formulae
are equivalent to the negations of the Z,,"—formulae, we have immediately from the above that
the II? predicates are precisely the predicates definable by H,,b—formulae (when k>1).

QED. O

1.7. Relativization of the Polynomial Hierarchy.

The polynomial hierarchy can be relativized by allowing Turing machines to query ora-
cles. Recall that we already defined in §1.2 what it means for a Turing machine to use a funec-
tion oracle.
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Definition: A function oracle Q is a function of polynomial growth rate whose domain is N¥ for
some k>1 and range is N. A predicate oracle is a function oracle which has range {0,1}.

Definition: Let €2y, . . . 2; be a sequence of function oracles. The following classes of functions

and predicates are defined inductively on 1:

1) 0(Qy, ...,Q%) = PTC(Q, ... %)
2.(Qy, ...,Q) = PRED(QZ,(Qy, ... Q)

)

) A
3) ZA1(Q .. Q) = PBI(AL(Q, ... )
(4) IA(Qy, ... ) = PBY(AL)(Qy, ... Q)
(5) 02g(Qy, - - Q) = PTC(EL(Qy, - - (h))
(6) PH (2, ..., Q%) = 23’(91: )

The definition above gives us a relativization of the polynomial hierarchy for each fixed
sequence of oracles €2, ...,2;. We shall also need a more general concept of relativizing with
respect to an arbitrary set of oracles. We do this by the definitions below.

Definition: Let j be a positive integer and let p(z, . . . ,%;) be a suitable polynomial. Then wf is
equal to the set of all j-ary function oracles 2 satisfying [Q(#)|<p(|7|) for all REN,

Definition: A functional f is a function with domain
k :
N°><w::l><"-><w,£‘

and range N where ¢>0 and each k;>1 and each p; is a suitable polynomial. Thus a func-
tional maps a tuple of ky integers and ¢ function oracles to a nonnegative integer. Such a

functional is called kg-ary.
The functional f has polynomial growth rate iff there is a suitable polynomial r(Z)

such that for all #eN*® and all function oracles Qy,...,Q; with Q_,-Ew:;_" for 1<j<¢ we have
17(7@3)| < r([7)).

We next need to relativize the definitions of PT'C, PRED, PBY and PBA3.

Definition: Let C be a set of functionals. Then PRED(C) is the set of members of C' which
have range {0,1}.
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Definition: Let g and h be functionals such that the domain of g 1s

kaw:llx xw:'_"
and the domain of h is
N&+2 w:l‘ X - X w,ﬁ_“

Let p and ¢ be k-ary suitable polynomials. Then f is defined by limited iteration from g and
h with time bound p and space bound ¢ iff the following holds:

Let 7 be the functional with domain
P »,
Nk"}'l X wnll X P x w"i
so that for all oracles Q,, ... ,Q; with Q_,-Ew:;" for 1<j<i and for all ZEN*, r is defined by
T(l’l, e ,:1:,,,0,91, e )Qi) = g(.’l:l, e )xk’ﬂll . ,Q,’)

(zq, .., 2en+1,Qy, .. Q) = h(zy, ... zpnr(zy, - zn, QL 0),0, Q).
And we must have that for all Z, n and §} as above
[7(@,n,8)| < q(12])

and

flzy, o zyn,Qy, ) = 12y, ., 2,0(7]),0 . ).

Definstion: Let C be a set of functionals. We say that C is uniform iff there exists w,:‘, . ,w:‘
such that every functional f€C has domain

ky

N Xw:l'X e X w,!

for some k; which depends on f.

Definition: Let C be a uniform set of functionals of polynomial growth rate. The domain of
each functional in C is of the form
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Nk X W:II X o X (A):‘_‘.
for some fixed w:l‘, ce ,w:"'. The Polynomial-time closure, PTC(C), of C is the smallest uni-

form set of functionals containing C such the following hold:

(1) For each n-ary function f€B, there is an n-ary functional gePTC(C) such that
for all 7 and all G,

(2) For each 1<j<i, the functional P; defined by
Piz,, ... Ty, - ) = Qizy, ... ,z,,].)
isin C.
(3) C is closed under composition and under definition by limited iteration.

Definition: Let C be a set of functionals. Then PB3(C) is the set of functionals @ such that @
has range {0,1} and domain

NEX wil X -0 X wy

and such that there exists a suitable polynomial p and an REPRED(C) with domain
4 ‘
NET S wet X X w,)
such that for all 4, ... ,Q; with QjEw,:.’ for 1<j5<1, we have

Qzq, ..., 280y, ... 0) = (3y§2’(|?]))R(x1, R TN 2 TR O )

PBY(C) is defined similarly except that a bounded universal quantifier (Vy<2?(®)) is used
instead of the bounded existential quantifier.

We next define a polynomial hierarchy of functionals:

.- » .
Definition: Let w, |, . .. ,w:" be a sequence of function oracles. The classes defined below are

uniform sets of functionals which have domains of the form

N"Xw,fllx e X ow,
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The definition is by induction on j:

(1) Of(@n), - . . way) = PTC(D)
(2) Af(wn, . . . we') = PRED(Qfy(wn, - - - wy)))
(3) Zfalwnss - - wa) = PBIBL(wn), - wn)
7w 7 = PBY(AZ (wy ! ’)
(4) J+l(wn1; s ;wn,») J+1\Wnys - o »Wn,
(5) Qfawnl, - . . wa') = PTC(S(wnl, . - - wa)

(6) PH (w,:l, e ,w,,p:) = UEJP(w:II, W)
j

Proposition 10: Let w,fl‘, . .,w,f'." be a sequence of function oracles and let £, . . . ,{); be oracles

so that Qjew:jf for all 1<j<i. Let k>1. Then for all functions f, f€E0L(Qy, . . . ,8;) iff there

exists a functional gel:lk"(w::, - ,w,,p',‘) such that for all Z,

f(?) = g(i’:ﬂb s )Qi)'
Similar statements hold for AZ(Qy, ... ,8;), TF(Qy, .. . ,Q;) and TI2(Q,, . . . ,82,).

The proof of Proposition 10 is not too difficult and we omit it.

1.8. Appendix.
We prove Theorem 1 in this appendix.
Theorem 1: PTC(8)DB™.

Proof: We define the functions of B* by limited iteration from functions in B.

(1) Define Bit:N2—>N by limited iteration from g; and k; with bounds p, and ¢, where

gl(ilz) =2
hy(i,z,m,v) = Choice(m<i,|1v],v%2)
pin,m) = m

gi(n,m) = m

So if the binary representation of z is z,,_; - - - z, then Bit(4,z) is equal to z;.
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Define fo:N?—N by limited iteration from g, and hy with bounds p, and g, where

gola,w) = 22w

hyo(a,w,m,v) = Choice(Bit(m,a),S(2(5(2v))),2(5(2v)))
pfn,m) = n

go(n,m) = m+2n+2

Set axw = Choice(a=0,2(5(2:2:2-w)),fo(a,w)).

Define f3:IN—N by limited iteration from g3 and k3 with bounds p3 and ¢35, where

g3(w) =

h3(w,m,v) = Choice(4-|v/4l=v,v,|v/4]))
pym) = m

g3(m) = m

Set Truncate(w) = |fa(w)/4].
Define TR (i,w):N?-N by limited iteration from ¢, and h, with bounds P4 and ¢4, where

g4(irw) = w
hy(¢,w,m,v) = Choice(Sm<i, Truncate(v),v)
pyn,m) =

gg(n,m) = m
So TR (¢,w) is Truncate applied =1 times to w.

Define f5:N2—-N by limited iteration from g; and hs with bounds ps and g5, where

hg z,w,m,v) = vv(ﬂBit(2m,w)/\ﬂBit(S(2m),w)Am<i)
p5('n, )
q5(n7 )

| Lo (A<
So fs(i,w) = { 0 otherwise
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(6) Define fzIN—N by limited iteration from gg and hg with bounds pg and ¢g, where

gs(w) = 0
hg(w,m,v) = Choice(fs(m,w),Choice(Bit(2m,w),S(2v),2v),v)
ps(n) = n
gs(n) = n

So fe(w) = B(1,w), the value of the first element in the sequence w.

(7) Define f:N—N by limited iteration from g7 and h; with bounds p; and g7, where

gr(w) = 0
ho(w,m,v) = Choice(TR (m,w)A~TR (Sm,w),m,v)
py(n) = n
g7(n) = n
So f7(w) = pB(0,w), the number of elements in the sequence w.

(8) Define 3:N2—N by

QED. O

B(i,w) = Choice(i,fo( TR (i,w)),f7(w)).



Chapter 2

Foundations of Bounded Arithmetic

Bounded Arithmetic is a weak fragment of Peano arithmetic and is of interest to us
because of its connections to the polynomial hierarchy. It will take us a fair amount of work to
establish the relationship between Bounded Arithmetic and the polynomial hierarchy. This
chapter is devoted to establishing the foundations of Bounded Arithmetic; in particular, we
define some useful axiomatizations of fragments of Bounded Arithmetic.

2.1. The Language of Bounded Arithmetic.

The first order language of Bounded Arithmetic contains all the usual logical symbols
A, V, 7, D, =, 3, V and parentheses and the nonlogical function symbols S, 0, +, -, |z|, [1z],
and # and the nonlogical predicate symbol <. These nonlogical symbols are intended to be
applied to nonnegative integers; from now on, we use “integer” or “number” to mean nonnega-
tive integer. S, 0, +, -, and < are the successor function, the zero constant, addition, multipli-
cation, and the less-than-or-equal-to relation. |z| denotes the length of the binary representa-
tion of z; i.e. |z| = [logy(z+1)]. For example, |0} = 0. |lz] denotes the greatest integer less

than or equal to z/2. z#y is defined to be olal'lul.

We will frequently abbreviate z-y as zy. Also A— B is an abbreviation for the for-
mula (ADB)A(BDA). So « is not a symbol in our first order logic.

We are using a larger set of non-logical symbols than is usually used for Peano arith-
metic. This is partly to make it easy to define axiomatizations of fragments of Bounded Arith-
metic. However, the # function (pronounced “smash”, see Nelson [19]) has a more important
role. The growth rate of # is exactly what we need to define functions in the polynomial
hierarchy. Since 1#z=2/* and [Li(z#y)]|=|2|-ly|, we can use #, |1z], and - to write the term
2r(2) where p is any polynomial with non-negative coefficients. As we saw in Chapter 1, this is
important for defining the polynomial hierarchy. Conversely, the value of any term of Bounded
Arithmetic is bounded above by 2#(#) for some suitable polynomial p.

We could generalize # as follows (see Hook [16]). Define #, = #. For i>2, define
#,,1 to be the binary function satisfying

sy — 2FH

We could now add #; to the language of arithmetic. Clearly, doing so would give us functions
which have a larger than polynomial growth rate. In fact we could replace # by #; everywhere

in this dissertation and obtain analogous results ezcept that instead of using polynomial time

28
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Turing machines, we would use Turing machines with runtime bounded by terms involving #;.
However we will not do this and we do not include #j5, #,, ... in the language of Bounded
Arithmetic.

Using 0, S, +, and - we can construct terms to denote natural numbers. For example,
both 5550 and (SS0)4+(S0) are terms which denote the number 3. There are two canonical for-
mats for terms which denote numbers. First, S(¥)0 is the term with k applications of the succes-
sor function to O; this term has value k. Second, I, is a term with value k defined inductively
by

Io =0
Lygyy = I9+(50)
I2(I:+1) = (550)(1g4.1)

Note that the length of the term I, is proportional to the length |k| of the binary representation
of k; this is not true of SMo. This will be important later when we arithmetize the syntax of
Bounded Arithmetic in Chapter 8.

We shall frequently use integers in formulae. The integer is intended to be replaced by
any closed term with value equal to the integer. Usually it makes no difference which term is
used.

Definition: Quantifiers of the form (Vz) and (3Jz) are called unbounded quantifiers. A bounded
quantifier is one of the form (Vz<t) or (3z<t) where ¢ is any term not involving z. A sharply
bounded quantifier is a bounded quantifier of the form (Vz<|t|) or (3z<|¢t|) where again ¢ is
any term not involving .

For the time being we will implicitly enlarge the syntax of first order logic to incor-
porate bounded quantifiers. In Chapter 4 we shall give an explicit and precise description of
how bounded quantifiers are treated in first order logic. We shall do this by defining a natural
deduction system with inferences for bounded quantifiers. The main result of Chapter 4 will be
a cut elimination theorem which allows us to eliminate unbounded quantifiers from proofs of
bounded formulae. Thus our main interest will be in first order logic without unbounded
quantifiers.

A bounded formula is a formula with no unbounded quantifiers. We define a hierarchy
of bounded formulae as follows:

Definstion: The following sets of formulae are defined by induction on the complexity of formu-
lae:

(1) I = & = A is the set of formulae all of whose quantifiers are sharply bounded.

(2) 2, is defined inductively by:
(a) Ekb+lgnkb
(b) If A is in £, then so are (32<¢)A and (Vz<|t|)A.
(c) If A,BEL},, then AAB and AVB are in T}, ;.
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(d) If AeSd,, and B€IlY, ;| then =B and BDA are in T, ;.

(3) I, is defined inductively by:
(a) Hkb+1:_)2kb
(b) If A is in I, then so are (Vz<t)A and (Jz<|¢t|)A.
(c) If A,BellY,; then AAB and AVB are in I1J,;.
(d) If A€Il},; and BELY,, then =B and BOA are in 11/, ;.

(4) 2., and T}, are the smallest sets which satisfy (1)-(3).

Thus £ and I1 are defined analogously to the arithmetic hierarchy 2 and M2 with
bounded and sharply bounded quantifiers playing the roles of unbounded and bounded
quantifiers respectively. That is, we count the alternations of bounded quantifiers ignoring the
sharply bounded quantifiers. Bounded quantifiers have the following quantifier exchange pro-
perty: let A be any formula, then

(Vz<|s)Fy<t)A(z,y) == Fw<(2s+1)#(A(2t+1)))Vz <|s| (A (2, B(z+1, w))AB(z+1,w)< ).

Essentially, w is a sequence which codes the values of y for each value of z. We have not yet
defined the B function in Bounded Arithmetic and obviously the quantifier bound for w depends
on the precise definition of 3; however, the use of the # function is unavoidable. The # func-
tion has precisely the growth rate necessary to make this quantifier exchange property hold; this
is part of the reason we feel that using the # function in Bounded Arithmetic is natural and
elegant.

2.2. Axiomatizations of Bounded Arithmetic.

Peano arithmetic is normally axiomatized by a small number of open axioms and an
induction schema. We shall form the axioms for Bounded Arithmetic by increasing the number
of open axioms and severely restricting the induction axioms.

Definstion: BASIC is a finite set of true open formulae of arithmetic which are sufficient to
define the simple properties relating the function and predicate symbols of Bounded Arith-
metic. BASIC consists of the following 32 formulae:

(1) y<zDy<Se
(2) 2#Sz

(3) 0<z

(4) z<yAzFy+— Sz<y
(5) z£0>2-2540

(6) y<zve<y

(7) z<yAy<zDz=Yy
(8) z<yry<zDz<2
(9) |0]=0
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(10) z#02(2-2|=5(|z|)A| S(2-z)|=5(|=])

(11) |S0}=50

(12) z<y>|z|<|yl

(13) [z y1=S(]=} 19])

(14) O4ty=S0

(15) 2740 D 14(2-z)=2(1#z) A 1#(S(2-2))=2(1#z)

(16) z#ty=y#=

(17) |z|=|y| D2 z=y#=

(18) |z|=|ul+|v| > z#y=(u#y)-(v#v)

(19) z<z+y

(20) z<yAz#y D S(2-2)<2-yAS(2-z)#2-y

(21) z4+y=y+z

(22) z+0=2

(23) z+Sy=5S(z+y)

(24) (z+y)+z=z+(y+2)

(25) z+y<z+zey<z

(26) z:0=0

(27) z(Sy)=(z-y)+=

(28) z-y=y =

(29) z(y+2)=(z-y)+(z2)

(30) 2>S0>(z-y<z 2> y<2)

(31) 27405]z|=5(|L 3]

(32) 2=[3y)+ (2-2=yvS(2-2)=y)
(We are using 1 and 2 as abbreviations for the terms SO and S$S0.) Except for the results of
Chapter 6, the precise definition of BASIC is not too important; any sufficiently large set of
true open formulae would suffice. However, for the sake of definiteness, BASIC is defined to

be the above 32 axioms. It will be important in Chapters 7 and 8 that BASIC is a finite set
(or at least a polynomial time recognizable set).

In addition to the axioms in BASIC , we have various types of induction axioms.

Definition: Let ¥ be a set of formulae. The V-IND axioms are:
AOA(Vz)(A(2)DA(S2))o(Ve)A(2)

where A is any formula in V.
The ¥-PIND axioms are:

A(0)A(Vz)(A(L32])0A(2)) >(V2)A(=)
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where A is any formula in V.
The W-LIND axioms are:

A(OA(Vz)(A(2)>A(S2)>(V2)A(|2])
where A is any formula in V.

A little reflection yields the intuitive feeling that W-IND is stronger than W-PIND.
For example, suppose we know A(0) is true and we wish to deduce that A(100) is true. If we
use V-IND we will deduce A(1) from A(0), then A(2) from A(1), and so on for 100 steps. On
the other hand, Y-PIND deduces A(1), then A(3), A(6), A(12), A(25), A(50), and finally
A(100). Thus the ¥—IND axiom “automated” 100 inferences, whereas the ¥—PIND automated
only 7 inferences. Since the conclusions of ¥-IND and W-PIND are the same we conclude that
the hypothesis of YW-PIND is stronger than the hypothesis of ¥—IND and hence we feel that
the W-PIND axioms are weaker than the W-IND axioms. We shall prove this properly below.

This is a good place to mention explicitly that we do not have the function z—> 2% in
Bounded Arithmetic. Hence the conclusion (Vz)A(|z]) of W-~LIND is weaker than (Vz)A(z).
Indeed, in a nonstandard model for Bounded Arithmetic the function z—> 2* may not be total
and hence z—> |z| may not be onto.

Definition: The following theories are fragments of Bounded Arithmetic. Each theory has the
language of arithmetic defined in §2.1.

(1) S5 has axioms:
(a) BASIC axioms
(b) ZL-PIND axioms.
(2) T, has axioms:
(a) BASIC axioms
(b) T -IND axioms.

(m&mug.
(@nmun.

(5) S~V is the theory with only the BASIC axioms. T4 is the same theory.

Later we shall show that T2‘}— 52‘ and 52‘1— T2H where 1>>0. The theories we are most
interested in are Sy, as these fragments of Bounded Arithmetic have the nicest properties. Most
of this dissertation is concerned with the theories S2i. The subscript “2” denotes the presence of
the # function. In general, for k>1, S} is defined like S but with the function symbols #; for
all 2<j<k and with their defining axioms.
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Proposition 1: V-IND =—> WV-LIND.

Proof: The hypotheses of ¥W—IND and W-LIND are the same and the conclusion of W-IND is
stronger than the conclusion of ¥-LIND. O

2.3. Introducing Function and Predicate Symbols.

Bounded Arithmetic is powerful enough to define many functions besides the six func-
tions in the formal language. It is generally true that whenever a theory can define a function,
a conservative extension is obtained by augmenting the language to include a new function sym-
bol for the defined function. We shall be especially interested in introducing function symbols
which can be used in formulae in induction axioms.

Definition: Let R be a fragment of Bounded Arithmetic. Suppose A is a X;*~formula and that

R+ (VZ)(Ay<t)A(Z,y)
and

R+ (V2)(Vy)(V2)(A(2,9)AA(Z,2) D y=2).

Then we say that R can X,'-define the function f such that (VZ)A(Z,f(2)) is satisfied. (It
should be noted that the above definition makes sense only if 7 and y are all the free vari-
ables of A; if not, enlarge 7 to include the rest of them.)

Definition: Let f be a new function symbol. We define Ag(f), £.5(f) and (/) to be sets of
bounded formulae in the language of Bounded Arithmetic plus the symbol f. These sets of
formulae are defined by counting alternations of bounded quantifiers, ignoring the sharply
bounded quantifiers, exactly as in the definition of Ay, £.,* and 1,

If p is a new predicate symbol we define Ag’(p), £,*(p) and I1,’(p) similarly.

Theorem 2: Let R be a fragment of Bounded Arithmetic. Suppose R can Elb—deﬁne the func-

tion f. Let R* be the theory obtained from R by adding f as a new function symbol and
adding the defining axiom for f. Then, if >0 and B is a $,*(f)- (or a IL}(f)- ) formula, there
isa B* € X, (or I, respectively) such that R*- B*—B.

Proof: The defining axiom for f is

where A is a T '~formula. Let B be a bounded formula containing the symbol f. We first
define the formula B, as follows: suppose f occurs in a term which bounds a quantifier, say
(Qz<s)D is a subformula of B where the term s involves f. Replace each occurrence of f(7) in
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s by the term #(7). (¢ is the bound in the £’-definition of f, see the definition above.) This
yields a term s’. Now, (3z<s)D is provably equivalent to (3z<s’)(z<sAD) and (Vz<s)D is
provably equivalent to (Vz<s’)(z<s>D). By repeating this procedure, we can form B, so that
(1) R*-B+~ B,, and
(2) B, does not contain f appearing in any term which bounds a quantifier.
We next obtain a formula B, in prenex normal form by applying prenex operations to B; so

that R* By~ B,. Furthermore, if B is a £~ (or a II*-) formula, then so are B, and B,.
Let the mantissa of B, be D; that is to say, suppose

B2 = (lelssl) o (annssn)D

where D is an open formula. Let f(¥) be a term appearing in D. Obtain D’ by replacing f(¥)
everywhere in D by a new variable 2. Define

Dy = (Vz<t(@))A(F,2)oD)
and
D = (Fz<t(F)NA(F,2)AD).

Let DY and D3 be their respective prenex normal forms. Then DY is a I} (f)-formula and D3 is
a £ (f)-formula, and
R*(D+ DY)\ (D+ D3).

Define B3 from B, by replacing the mantissa D by either DV or Da, whichever is
appropriate. We can do this so that B; has the same alternation of (non-sharply) bounded
quantifiers as B,. Also,

R*}—Bs*—’ BQ.
Bj was formed from B, so that all occurrences of the term f(¥) were eliminated. By iterating

this procedure, we obtain B, from Bj, By from B,, and so on, until all occurrences of f have
been eliminated. We let B* be the B; such that i>2 and f does not appear in B;.

QED. O
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Corollary 8: Let R be one of the theories S§ or T4 (where i>1). Suppose f;, . .. f; are func-
tions X,’—definable by R. Let R be the theory obtained from R by including new function
symbols f;,...,f; and their defining axioms and including all Lf)-PIND axioms or
L ()-IND axioms (respectively). Then R is a conservative extension of R.

Proof: Form R* by adjoining f}, . . . ,f; and adding their defining axioms. It is well known that
R* is a conservative extension of R. Now, by Theorem 2, each E;b(T)—formula is provably (in
R*) equivalent to a I —formula. Thus R*|- S ()-PIND (or E(/)-IND respectively). Hence
R=R*. D

The upshot of the last theorem is that we may freely adjoin Elb—deﬁna,ble functions to
any fragment of Bounded Arithmetic and use these function symbols without restriction in
induction formulae,

We can also define a similar condition for introducing new relation symbols:

Theorem 4: Let R be a fragment of Bounded Arithmetic. Suppose A and B are £, and I, for-

mulae, respectively. Also suppose Ri- A« B. Let R* be the theory obtained from R by
adjoining a new predicate symbol p and the defining axiom

p(Z) — A(2).

(Z must include all the free variables of A.)

Then R* is a conservative extension of R and if ¢>1 and C is any E}(p)- or
I (p)-formula then there is a £~ or II’-formula C* (respectively) such that R*r C+ C*.

Proof: Similar to the proof of Theorem 2. O

It is convenient to have a name for predicates which satisfy the conditions of Theorem
4:

Definition: Let R be a theory and A be any formula. We say that A is A;> with respect to the
theory R iff there are formulae BEX® and C€II? such that R-A— B and R- A« C.

When it is clear which theory R is being discussed, we shall merely say A is A}
when we mean A is A;> with respect to R.

It follows immediately from Theorem 4 that if A is a A~formula, then a new predi-
cate symbol p can be introduced with the defining axiom p(Z)— A(Z) and that p can be used
freely in formulae in induction axioms. Thus we have established conditions for introducing

new function and predicate symbols into a fragment of Bounded Arithmetic, so that the new
symbols can be used in induction axioms.
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Ezample: We define the binary subtraction function = as
T-y=z < yt+z=zV(z=0A2<y)
We show that = can be &;’~defined in T3. To do this we have to show that T4' can prove

(Vz)(Vy)(Fz<2)M(z,y,2)
and

M(z,y,2)AM(z,y,2")Dz=2"
where M(z,y,z) is the formula on the righthand side of the defining axiom for .

The second formula to be proved is the uniqueness condition. This follows directly
from the BASIC axioms without the use of any induction axioms.

To prove the existence condition, we will need to use the induction axioms. It is not
hard to prove the following formulae in T3:

(F2<0)M(0,y,2)

(F2<2)M(2,y,2)D(J2< S2)M(S2,y,2).
From these two formulae we use ,)~-IND to derive
(V2)(Vy)(d2<2)M(z,y,2).
Thus the subtraction function can be defined in T

We will later show by a much more complicated argument that the = function can be
T —defined in S as well.

As an application of the above example, we show that the theory T; can derive the
TII'-IND axioms.

Theorem 5: The II2-IND axioms are theorems of T4 if i>1.
Proof: Let A be a II>formula. We want to show
T3 A(0)A(Vz)(A(z) D A(S2))>(V2)A(2).

Let B(z,y) be the £ ;> formula —A(y=z). Then
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T4+ B(0,y)A(V2)(B(z,9)> B(S2,y))> B(y,y)
or, equivalently,

TS —A(y)A(Yz)(~A(y=2)>-A(y= S2)) >~ A(0).
From this we can readily derive
TS A(0)A(V2)(A(2)D A(S2))D>A(y).

Taking the universal closure of this last formula proves the desired induction axiom.

QED. O

2.4. Bootstrapping S; - Phase 1.

The term “bootstrapping” is a computer term which describes the process of starting
the operations of a computer. It used to be common to power up a computer with only a small
amount of software loaded, say about 80 bytes, the amount of data which fits on a Hollerith
card. This small amount of software would be responsible for reading from tape or cards the
entire operating system, thus making the computer fully operational. This process was called
“bootstrapping” from the analogy of “lifting oneself by the bootstraps.”

Similarly we need to bootstrap Sg. That is, we shall have to do a lot of work to define
some simple functions and predicates in Sy (for example, subtraction). Once we have completed
the bootstrapping it will be easy to show that Sy is actually a fairly strong system which can
define a variety of functions and predicates.

To a certain extent, our bootstrapping of Sg is recapitulating the work of Ed Nelson
[19], Wilkie-Paris (31} and Wilmers [32]. However, [19] and [31] work in the theory S, not Sy,
and they are consequently only concerned about defining functions and predicates with arbi-
trary bounded formulae. For us, it is very important that functions be T '~defined and predi-
cates be A/~defined. Wilmers [32] does use a very weak fragment of S, but his work does not
seem to apply to Sg.

Before we begin the bootstrapping of S5 we show that the ©,’~LIND axioms can be
derived in SJ.

Theorem 6: Let i>0. The S -LIND axioms are theorems of Sj.

Proof: Let A be a ,>~formula. We want to show that

Si- A(0)A(Vz)(A(2)>A(S2))>(V2)A(|z]).
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Let B(z) be the formula A(|z|). Then

S4+ A(0)>B(0)
and
Sy (Vz)(A(2)>A(S7))o(V2)(B(L32]) > B(2)).

But B is a ©;>formula so by the use of the £, -PIND axiom for B we get
S+ AOA(Vz)(A(x)DA(Sz))>(V2)B(z)

which is what we wanted to show.

QED. O

We bootstrap So by showing that the following functions and predicates are
El"-deﬁnable in S and are A’ with respect to Sg, respectively.

(a) We introduce one predicate and two functions by:
a<b == a<bAaa#b
c=max(a,b) < (c>aArc=b)v(c>bArc=a)
c=min(a,b) < (c<arc=b)v(c<bArc=a)
The uniqueness and existence conditions for these functions follow easily from

the BASIC axioms without any use of induction. Since the defining formula for a<<b is
open it is trivially A}.

(b) The predecessor function is an inverse to the successor function defined by
b=P(a) <= (a=0Ab=0)vSb=a.

The uniqueness condition for this definition follows easily from the BASIC axioms
without any use of induction axioms. For existence, let M(a,b) be the defining equation
for P(a)=b; then we can prove

(F2<0)M(0,2)
and

(3z<[32)M(L32),2)>(Fz<2)M(z,2)

from the BASIC axioms again without any use of induction axioms. Finally, X,'~PIND
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yields
St (Vz)(Fe<z)M(z,2).

(c) Power2(e) <= S(|P(a)l)=|a]|

This predicate symbol is clearly A with respect to Sg. Moreover, Sg can prove many
nice properties of Power2. In particular, 521 can prove the following formulae:

Power2(a)>a#0

Power2(a)D> Power2(a+a)
Power2(a)A|a|<|c|Da<e
Power2(a)APower2(b)A|a|=|b|D>a=b
Power2(a)Aa#1> Power2(|1a})

For example, the fourth formula follows from the open formula
a=ScAb=S5dA|a|=S(|c|)A|b|=S(|d])A|a|=|b| D a=b

which in turn can be proved in S (without the use of any induction axioms.) We leave

to the reader the verification of our claim that the other four formulae are also theorems
of S

(d) We can define an exponentiation function with restricted range by:
c=FEzp(a,b) < Power2(c)A|c|=1+min(]b],a)

or informally, Ezp(a,b) = gmin(|3],a),

Let M(a,b,c) be the formula on the righthand side of the definition of Ezp.
Then, by the properties of Power2 discussed above,

S+ M(z,y,2)AM(z,y,u)D>z=u.
Also,

S} M(z,y,2)Az <|y|>M(Sz,y,22)
S3+M(z,y,2)Az>|y|DM(Sz,y,2)
SiM(z,y,2)>2<2y+1

From this we get
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S} (Fz<2y+1)M(z,y,2)>(J2<2y+1)M(S2,y,2).
Hence,
Sak (Vz<|y)3z<2y+1)(z<uDM(z,y,2))2(Va<|y|)(F2<2y+1)(2<SuDM(z,y,2)).

On the other hand, S3+(Vy)M(0,y,1) so by B ~-LIND with respect to the variable u
(remember, we don’t count sharply bounded quantifiers):

S (Vz<|y))(Fz<2y+1)(z < |y| D M(=,y,2))
and hence
SA-(Vr<|y)(Fz<2y+1)M(2,y,2).

And since S3+z>|y|AM(|y],y,2)>M(z,y,2), we have
S3(Vz)(Fz<2y+1)M(z,y,2).

This is what we needed to demonstrate that Ezp is properly defined in Sg.

It is important to note that we have not defined exponentiation, but only a res-
tricted exponentiation. Indeed, in the formula

z=FExp( i,y)=2mi“("|”])

the argument y is a “dummy variable” whose sole purpose is to restrict the range of the
function. Frequently we shall simplify our notation and write 2° as a function when it is
provably well defined; for instance, we would write (Vi<|z|)B(2°) instead of the more
correct (Vi<|z|)B(2™™12),

() b=Mod2(a) <> b+2-|la|=a

Mod2(a) is either zero or one depending on whether @ is even or odd, respec-

tively. We can easily prove the necessary uniqueness and existence conditions from the
BASIC axioms,

(f) We define functions for obtaining the “less significant part” and the “more significant part”
by defining the following predicate and functions:
Decomp(a,b,c,d) < |c|<bad-2min(eld) =4
¢=LSP(a,b) <=> (Jd<a)Decomp(a,b,c,d)
d=MSP(a,b) <> (3c<a)Decomp(a,b,c,d)
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Clearly, Decomp is Al-defined. Also, is not difficult to see that
Sd+ Decomp(a,b,c,d)ADecomp(a,b,e,f)Dc=erd=f.

This establishes the uniqueness conditions for both MSP and LSP.
It remains to show that the existence conditions hold; namely, that

S} +(3c<a)Id<a)Decomp(a,b,c,d).
Since Sg+ Decomp(a,0,0,a), we know that
Si-(Vz<0)3c<a)(Id<a)Decomp(a,z,c,d).
Also, the following are provable in 521:

z<|alADecomp(a,z,c,d) D Decomp(a,Sz,c+2*-Mod2(d),| 1d])
and

Decomp(a,b,c,d)Dc<and<a.
It follows readily that

S3+(Vz<|a|)(3c<a)Td<a)z<u>dDecomp(a,z,c,d))>
o(Vz<|a|)(Fc <a)Id<a)(z<Sud Decomp(a,z,c,d)).

From this, by use of £,'~LIND

Sq+(Vz<|a|)(Fe<a)(Fd<a)Decomp(a,z,c,d).
Since Sg+z>|a|>Decomp(a,z,a,0), this suffices to prove the existence condition.
c=Bit(b,a) <= c=Mod2(MSP(a,b))

So Bit(b,a) is the value of the bit in the 2° position of the binary representation
of a. Since Bit is defined as the composition of functions already introduced in So it is
clear that Bit is ¥,*—defined.

An important property which is provable in Sy is:

Jal 2 |blA(Vy <lalXBit(y,a)=Bit(y,b))> a=b.

That is, it is provable that the binary representation of a number uniquely determines
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the number. This can be proved in S; by using Elb—LIND with respect to the variable
u on the formula

(Vy <u)(Bit(y,a)=Bit(y,b))DLSP(a,u)=LSP(b,u).

The details are left to the reader.
Further note that 521 can prove all the simple relationships between Bit, MSP
and LSP; for example,

S+ Bit(b,a)=MSP(LSP(a,Sb),b)
S Bit(b,a)=LSP(MSP(a,b),1)

SAt Bit(b-+c,a)=Bit(c,MSP(a,b)).

(h) Before we can define the subtraction function, we need a restricted version of subtraction:
¢=LENMINUS(a,b) <> (b<|a|ac+b=|a|)v(b>|a]rc=0)

So LENMINUS(a,b) is equal to |a]+b, or in other words, LENMINUS is a subtraction
function with domain restricted to very small numbers. The uniqueness condition is easy
to prove from the BASIC axioms. Because the function is restricted we are able to
prove the existence condition with induction on Aob—formula.e. It will suffice to show that

S+ (Vz<|al)3y<|a|)(z+y=]a]).
Now,
Syt z<|a|az+y=|a|>S(z)+P(y)=|a|.

So,
Sy +(Vz<fal)(Fy<|al)(z<udz+y=|a[)o(Vz<|a|)(Fy<|al)(z < Sudz+y=]a|).
By ©’-LIND we obtain the desired result.

(i) Finally, we show that subtraction can be £ ’~defined in Sj.
c=a+b < a+b=cv(c=0na<b)

The uniqueness condition for subtraction is immediate from the BASIC axioms.
The existence condition is not too hard now that we have defined MSP and LENMINUS,
we will use £,*~LIND on the formula M(a,b,u) defined as
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b<a>(3zr<a)(z+MSP(b,|a|-u)=MSP(a,|a|-u)).
Here we are using |a|~ u as an abbreviation for LENMINUS(a,u). Now,
S3+b]<|al> MSP(b | a])=0.

So Szli—M(a,b,O). Also, S+ M(a,b,u)>M(a,b,Su) can be proved without too much
difficulty; this follows from the fact that S4 can prove all of the following:

(i) b<a>MSP(b,z)<MSP(a,z)v(MSP(b,2)=MSP(a,2)ALSP(b,z)<LSP(a,z))

(i) b<arz+MSP(b,S2)=MSP(a,Sz)ABit(z,a)=Bit(z,b)>
>2z+MSP(b,z)=MSP(a,z)

(i) b<anz+MSP(b,Sz )=MSP(a,Sz)ABit(z,a)>Bit(z,b)3
O(2z2+1)+MSP(b,2)=MSP(a,z)

(iv) b<aaz+MSP(b,Sz )=MSP(a,Sz)ABit(z,a)<Bit(z,b)>
O(2z+1)+MSP(b,z)=MSP(a,z)

By Z/-LIND, S}+M(a,b,|a|), which is equivalent to the existence condition for the
definition of subtraction since Sy MSP(z,0)=z.

(3) QuoRem(a,b,c,d) <= (b=0Ac=0Ad=0)v(d<<bAaa=c b+d)
c=la/b] <= (Id<b)QuoRem(a,b,c,d)

d=Rem(a,b) <= (Jc<a)QuoRem(a,b,c,d)

The uniqueness conditions are easily proved. The existence conditions can be
proved by induction on the length of a; we leave this as an exercise for the reader. (Hint:

how do you compute the quotient and remainder for % if you know them for [1a] /b ?)
(k) b|a <= Rem(a,b)=0nb7#0

() Even(a) <> Mod2(a)=0

Odd(a) <= Mod2(a)=1
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Comma(b,a) <=> Even(b)ABit(b,a)=1ABit(Sb,a)=0

c=Digit(b,a) <= [Even(b)ABit(Sb,a)=1ABit(b,a)=c]v[(Odd(b)vBit(Sb,a)=0)Ac=2]

Comma and Digit are immediately seen to be Al-definable and *-definable
by S3. They will be useful for defining an encoding for sequences. It is important to note
that we will not be using the same encodings for sequences as we used in Chapter 1.

PSqSL(a,b,c) <= |a|+2=2-¢-SbA(Vy<|a])((206+2) | (y+2)> Comma(y,a))A
AV y<|a])(Even(y)A—(2b+2) | (y+2) D Digit(y,a)#2)

b=ProtoSize(a) <= 2-b<|a|A(2:b=|a|vComma(2-b,a))A(Vz<b)(-~Comma(2-z,a))

c=ProtoLen(a) <<= c=|(la|+2)/(2-ProtoSize(a)+2)]
ProtoSeq(a) <= PSqSL(a,ProtoSize(a),ProtoLen(a))

These functions and relations define protosequences, and give us a primitive
method of encoding sequences. Protosequences have the restriction that each element of
the protosequence is coded by a fixed length code; if necessary, leading zeros are added to
the element to pad it out to the required length. PSgSL(a,b,c) asserts that a encodes a
protosequence of ¢ numbers, each of which is coded as a b-bit number and is preceded by
a comma. The fact that a is such a protosequence can be verified by checking the posi-
tions of the “commas” in a. Note that there is no protosequence for the empty sequence.

We leave it to the reader to prove that ProtoLen and ProtoSize can be
T —defined in S3' and that PSqSL and ProtoSeq are A,® with respect to S

c=ProtoB(b,a) <=> (~ProtoSeq(a)rc=0)v[ProtoSeq(a)A|c|<ProtoSize(a)A
NYy < ProtoSize(a)) Bit(y,c)=Digit(2-(y+(ProtoSize(a)+1)-(b~1)),a))]

So if a=<ay,...,ap> then Protof(i,a)=a;. Note that (unlike the sequences
used in Chapter 1) the numbers are not coded in bit-reversed order. The sequence is
coded with ay coded by the low order bits of the binary representation of a and with a
coded by the high order bits.

The uniqueness condition for Protof is a consequence of the fact that the binary
representation of a number uniquely determines the number, which as we noted earlier is
provable in 5.

It is important to note that since Sg'\- ProtoSize(a)<|a|, the quantifier
(Vy<ProtoSize(a)) can be replaced by a sharply bounded quantifier. This makes it pos-
sible to prove the existence condition for ProtoB by using X'~-LIND with respect to the
variable u on the formula
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ProtoSeq(a)Au < ProtoSize(a)D
S(3e<a)||c|<ua(Vy<u)(Bit(y,c)=Digit(2-(y+(ProtoSize(a)+1)-(b=1)),a))].

So also proves that protosequences exist. Indeed, it can be shown by induction
on the length of a that

St b<|d|ala|<b>(Fz<4-d)(PSqSL(2,b,1)AProtof(1,z)=a).

(p)  ¢=ProtoStar(a,b) <=> (—ProtoSeq(a)Ac=0)v[ProtoSeq(c)AProtoSeq(a)A
AProtoSize(c)=ProtoSize(a)AProtoLen(c)=1+ProtoLen(a)A
A(Vz < ProtoLen(a))(ProtoB(2-+1,a)=ProtoB(z+1,c))A
AProtoB(ProtoLen(a)+1,¢)=LSP(b,ProtoSize(a))]

ProtoStar(a,b) is the Gédel number for the protosequence obtained by adding &
as an additional element to the end of the protosequence coded by a. If b is too large to
fit into the protosequence, only the less significant part of b is used.

We omit the proofs of the uniqueness and existence conditions for ProtoStar.
The reader may supply them if desired.

2.5. Bootstrapping S; - Phase 2.

For the second phase of bootstrapping .5'21 we wish to define sequences with variable
length elements; these sequences will supercede the protosequences defined above. Some of the
functions and predicates we wish to define are:

Seq(w)  true iff w is a valid sequence
Size(w) the maximum of the lengths of entries of w
Len(w)  the number of elements in w
B(i,w)  the value of the i-th value of w
* a function which adds a new element to the end of a sequence

*k a function which concatenates two sequences

It is not difficult to define Seq, Size, * and ** since each of these can be defined by “local”
operations. However, Len(w) and B are harder to define. Computing Len(w) involves counting
the number of Comma’s in w and hence is a “global” operation. Likewise, to calculate B(i,w), it
is necessary to locate the i-th entry of w and this again requires counting.
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Hence we are led to the following:

Definition: Let A(z,y,%) be any formula. The function f(y,2) is defined by length bounded count-
ing from A iff f satisfies

fw®) = (#2<|y)A(29.7)
where (#2<t)( - - - ) means “the number of 2<¢ such that - --”.

Of course, we can define bounded counting in a similar way, except that the bound ¢
need not be a length. Bounded counting has been investigated by Valiant [29] and it is an open
problem whether functions defined by bounded counting are always in the polynomial hierarchy.
Of course, any function which is definable by a bounded formula is in the polynomial hierarchy
and thus we are not able to use bounded counting in Sg' (at least at our present state of
knowledge). However, functions defined by bounded counting are computable by polynomial-
space bounded Turing machines and in §10.2 we discuss how bounded counting may be defined
in a second-order theory of Bounded Arithmetic.

Theorem 7: Let A(z,y,%) be Al" with respect to Sy. Let f be the function defined by length
bounded counting from A. Then f can be I'~defined in Sy

Proof: We introduce a new (k+1)-ary function symbol g defined by
c=g(b,3) <= |c|<|b|H+1IA(V2<|b[)(Bit(z,c)=1< A(z,b,3)).

The existence and uniqueness conditions from g are readily proved in 521. For the existence
condition we use £,*~LIND with respect to  on the formula

(Fc<2b6+1)(Va<|b|+1) [z<uD(Bit(z,c)=1~ A(z,b,3))] .

Note that we needed the fact that A is A,® in order to ¥ '~define g.

We define the function Numones, which computes the number of ones in the binary
representation of a number a, by

b=Numones(a) <=> (Jw<2@Nl+2(as+1yPSeSL(w ||al],|a|+1)A
AProtoB(1,w)=0Ab=ProtoS(|al+1,w)A
AVi<|a|)(ProtoB(i+1,w)+Bit(i,a)=Proto f(i+2,w))] .

The uniqueness and existence conditions for Numones are provable in S5 by induction on the
length of a - we omit the details. Note that the use of the # function is required to express the
bound on w in the defining equation of Numones; this is the first time we have used the #
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function for bootstrapping 521.

We can now define f as
f(b,d) = Numones(g(b,a)).

QED. O

Theorem 8: Sy proves the following:

Numones(z)+ Numones(y)=Numones(x-2|”|+ y).

Proof: It is not hard to prove this using ¥ '~LIND. This depends on the fact that Sg can prove
simple properties about Bit, MSP and LSP; see §2.4(g). O

Theorem 9: The following functions are L)-definable in S and hence can be introduced as
defined function symbols.

(i) /1(2) = min{e(y):y<|s[}

(ii) fo(2) = max{e(y):y<|s[}

(iii) f5(Z) = (ny<ls))A(y)
where s and ¢ are terms and A is a A)~formula. The free variables of s are the Z; the free
variables of ¢ and of A may include y and Z. The terms s and ¢ may involve Elb—deﬁned

function symbols.

Proof: The existence and uniqueness conditions for f, and f, can be proved easily by using
Y2-LIND on the length of s. We can define f5 in terms of Numones by

[3(Z) = (#y<|s])(Vz<|s|)(2<yDA(2)).
O

Lemma 10: Let f,, f,, and f3 be the function symbols introduced in Theorem 9. Then S,
proves the following:
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(i) Qu<lsh@)=t(v. 2N (Vy<[s)((Z)<t(y,2)
(ii) Gy <|s/@)=t(y, DAYy < |s|)(/o(2) > E(y,7))

(iii) (Vo <f3(@)~A(AS5(F)<|s|DA(f2))AS3(Z) <]+

Proof: This is actually what we proved in Theorem 9. Note we have defined f3 so that if
(Vy<|s])=A(y) then [§(@)=]s|+1.0

We are now ready to introduce function and predicate symbols in S4 for handling gen-

eral sequences. We leave the provability of the necessary uniqueness and existence conditions to
the reader.

(a)

b==Substring(a,i,j) <= b=MSP(LSP(a,j),)

So the binary representation of b is that portion of a’s binary representation
starting with the 27! bit and ending with the 2* bit. For example, if a=13,4=1101, then
Substring(a,0,3)=101,=>53 and Substring(a,1,3)=10,=24.

Seq(w) <= (Vz<|w|)[Even(i)D> Comma(i,w)vDigit(i,w)<1]A(Comma(0,w)vw=0)

So a sequence is any number whose binary representation codes a string of 0’s,
1’s and commas, provided that the two low order bits code a comma (also, the number 0
codes a sequence). We are requiring that the two lowest order bits code a comma so that
we can treat the empty and non-empty sequences uniformly.

a=Len(w) <> (—Seq(w)ra=0)v(Seq(w)ra=(#i<|w|)Comma(i,w))
b=Decode(a) <=> (b=0A—ProtoSeq(a))V(ProtoSeq(a)rb=ProtoB(1,a))
b=FEncode(a) <= PSqSL(b,|a|,1)Aa=Protop(1,b)

The existence condition for Encode follows from the remark made in §2.4(0)
above.
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(e)  a=Startf(i,w) <= (a=0n-Seq(w))v(Seq(w)A
ra=(pz<|w|+1)[Len(Substring(w,0,z))=iAEven(z))])

b=FEndf(i,w) <= (a=0n—Seq(w))v(Seq(w)A
Ab=(pz<|w|){Len(Substring(w,Startf(i,w),z+2))70r Even(z)])

a=PB(i,w) <= (i=0na=Len(w))v
v(a=Decode(Substring(w,Start3(z,w), EndB(1,w)))A170)

Note the 3 function is defined so that 5(0,w)=Len(w).

(N Size(w) = max{|(EndB(i,w )= Startf(i,w))] : i<Len(w)}
(g) axxb = b,2[a|+Mad2(|a])+a
(h)  axb = axx(4-Encode(b)+1)

Note that unlike the conventions in Chapter 1, <ay,...,a,>*a,.; is
<ay,...,0,41>. Also, from now on, * associates from left to right.

(i) Subseq(w,i,j) = Substring(w,Endp(i=1,w),EndB(;+1,w))
So Subseq(w,i,7) is the subsequence <f(i,w), ... ,8(j-1,w)> of w.

() UnigSeq(w) <> Seq(w)ADigit(|w|+2,w)70nA
A-(Fi<|w|)(Digit(i,w)=0A Comma(i+2,w))
UnigSeq(w) asserts that w is a sequence and that all entries in w are coded

without any extraneous leading zeros. The reason we are interested in UnigSeq is that
S proves

) UnigSeq(a)r UnigSeq(b)A(Vi< Len(a))(B8(i,a)=8(i,b))Da=b

Seq(a)>(Jw)(UnigSeq(w)A(Vi< Len(a))(B(i,a)=P5(i,w))).

(k)  SgBd(a,b) = (2b+1)#(4:(2-a+1)?)
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SqBd is useful since

S} UnigSeq(w)ALen(w)<|b|-+1A(Vi< Len(w))(B(Si,w)< a)Dw < SqBd(a,b).

2.6. Bootstrapping T; .

Now that we have completed the bootstrapping of Sg', we want to bootstrap T4. For-
tunately we will need to do much less work to bootstrap T;. Indeed, once we have defined a
few simple functions, we will be able to show that T proves all the ©'~PIND axioms. Hence
T41DS7 and all the functions defined in the last two sections can be introduced into TS

We begin by showing that the following functions may be introduced in TS
(a) a<b <=> a<baa#b
c=max(a,b) <> (c>arc=b)v(c>bArc=a)

c=min(a,b) <> (c<anc=b)v(c<bAac=a)

(b) b=P(a) = (a=0Ab=0)vSb=a

We showed in an example earlier that subtraction is £,'~definable in T4!. So we
can define P(a)=a+1.

(¢) Power2(a) <= S(|P(a)|)=|a|
When we introduced Power?2 as a defined predicate symbol of Sg we showed

that S;' can prove many basic properties of the Power2 predicate. The same comments
apply to T4.

(d) c¢=Ezp(a,b) <= Power2(c)A|c|=14+min(|b|,a)

ie., Ea:p(a,b)=2miﬂ(|b|,4)_

Let M(a,b,c) be the righthand side of the defining equation for Ezp. Then,

T3+ M(z,y,2)A(z<|y|V|Sy|=|y|) D M(z,Sy,2)
and
T+ M(z,y,2)Az> |y|A|Sy|> |y|>M(z,Sy,22).

Hence,
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T+ (J2<2y+1)M(z,y,2)>(F2<2-Sy+1)M(z,5y,2).
Since T4+ M(2,0,1), we can use Y-IND to obtain
T+ (Vz)(Vy)(3z <2y+1)M(z,y,2)
which is the existence condition for the definition of Ezxp.

(¢)  Decomp(a,b,c,d) <= |e|<bA(d-2mnebb)y c=—q)
¢=LSP(a,b) <=>(3d<a)Decomp(a,b,c,d)

d=MSP(a,b) <=>(3c<a)Decomp(a,b,c,d)

It is easy to see that Decomp may be introduced as a AP-defined predicate
symbol of T21. Also, the uniqueness conditions for LSP and MSP follow from the
BASIC axioms. It will suffice therefore to show that

T+ (3z<a)3y<a)Decomp(a,b,2,y).
But
T+ Decomp(a,b,c,d)Ac+1 <2mi"("’|“|):)Decomp(a+1,b,c+1,d)
and

T} Decomp(a,b,c,d)Ac+122mi"("’l"l):)Dccomp(a+l,b,O,d+1).

Hence we can use X'—IND to prove the existence condition.

Definition: When ¢ and R are theories, we write Q@+ R to mean that every theorem of R is a
theorem of Q.

Theorem 11: Let i>1. T4 proves the £ >~PIND axioms. Hence T4 Szi.
Proof: Let A be any X ~formula. We want to show that

Ti+AQN(V2)(A(l2])>A(2))>A(a)

(where a is a free variable which appears only as indicated.) Let B(a,u) be the formula
A(MSP(a,|a|+u)). Then
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T§+A(0)>B(a,0)

T3+ (Vz)(A(L32])2A(2))>(Vz)(B(a,2)> B(a,Sz)).
Now, from £-LIND on B, we have

T3+ B(O)A(Vz)(B(2)>B(Sx))>B(|al).
But,
T+ B(la[)>A(a).

QED. O

If we examine the proof of Theorem 11, we note that only L '~-LIND is used, not
©2-IND. Hence what we have proved is:

Theorem 12: Let R; be the theory So plus the £ )~LIND axioms. Then R; is equivalent to Sy.
Proof: R;- S5 is proved by the proof of Theorem 11. Theorem 6 implies that SR,
QED. O

Theorem 13: Let 1>0. Then
(a) S@+E -LIND is equivalent to Si+X,*~PIND.
(b) S{4+E2-IND is equivalent to S+ —IND.
(c) SA+E-LIND is equivalent to Si+I1,~LIND.
(d) SA+E-PIND is equivalent to S+I1.'-PIND.

Proof: The inclusion of Sy means that we can use all of the X *~defined function symbols of Syt

freely.

(a) By Theorem 12.

(b) One half of this is Theorem 5. The other direction is proved by exactly the same idea of
“reversing” the direction of the induction.

(¢) This is proved by an argument similar to the proof of (b).

(d) By (a) and (c) it suffices to show that S¢+II~LIND is equivalent to Sq-+II1-PIND.
SF+I~PIND —> II-LIND follows from the proof of Theorem 6 modified so that
A€II? instead of £}, Likewise, the proof of Theorem 11 modified so that A€l shows
that SS+T12-LIND —> I1,*-PIND.

QED. D
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2.7. Replacement Axioms.

An important property of the natural numbers is the replacement axiom, also called
the collection axiom. This axiom is (Vz<a)(Jy)A«~ (Jt)(Vz<a)(Jy<t)A. One of the reasons
this axiom is useful is that it shows that unbounded quantifiers may be moved outside the scope
of bounded quantifiers. In the classical setting, it is the unbounded quantifiers which are most
important and the bounded quantifiers are generally ignored, and the replacement axioms state
that the order of bounded and unbounded quantifiers may be exchanged.

In our setting, however, bounded quantifiers are important and the sharply bounded
quantifiers are generally ignored. A natural question is whether there is a version of the replace-
ment axiom for our setting. The answer is partly yes, in that bounded quantifiers may be
moved outside sharply bounded quantifiers.

Definition: The T ;’-replacement axioms are the formulae of the form
(Vz<|t))(Jy<s)A(z,y)— (Tw< SqBd(s,t))(Vz< |t]|)(A(2,8(Sz,w))AB(Sz,w)<5s)

where s and ¢t are arbitrary terms and A is any X,'~formula, and other free variables may
appear in A.

Theorem 14: Let i>1. Then the I;’-replacement axioms are theorems of Sy
Proof: Let A be any ¥;>—formula. Let Y and Z be the formulae

Y = (Vz<|t))(Fy<s)A(z,9)

Z(u) = (Fw<SqBd(s,t))(Vz<|t|)(z<uDA(z,8(Sz,w))AB(Sz,w)<s).
We want to show S5t Y Z(Jt[). Now, SF+ Z(|t|)DY is obvious. Also,

Ss+ Y>2(0)
and
S3t YAZ(u)Au<|t|>Z(Su).

Thus, by T-LIND , S5+ Y> Z([t)).
QE.D. O
Definition: The sets £,*(AS) and I1,’(AS) are defined inductively by:

(1) £J(AS) is the set of II,>~formulae which are Ay with respect to the theory Sg. Similarly,
IIJ(AS) is the set of £ *~formulae which are A with respect to the theory .
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(2) £.51(AS) is the smallest set satisfying:

(a) £41(AS)DI1(AS) and

(b) If AET ), (AS) then (3z<t)A is in £},(AS).
(3) I1%1(AS) is the smallest set satisfying:

(a) I, (AS) 2T, }(AS) and

(b) If A€ILY, (AS) then (Vz<t)A is in I1},(AS).

The (AS) means alternative sense. Note that T is a proper subset of X(AS) and that
T2 (AS) is a proper subset of T} ;.

Let R, be the theory S3' plus the ¥ b-replacement axioms.

Corollary 15: If A is a - or a [I-formula, then there is a £,/(4S)- or a II}(AS)-formula B
(respectively) which is provably equivalent to A in the theory R;.

Corollary 15 is easily proved by induction on the complexity of A. Note that we are
using the fact that the function g is ¥ P-definable. Theorem 14 asserts that S5+ R;. Although
we don’t know if the converse is true, we do have the following theorem:

Theorem 16: R, - S3.

Proof: by induction on ¢. For ¢=1 it is obvious. So assume ¢>2 and R; S571. By Theorem
13 it suffices to show that R;,, proves every L '~LIND axiom.

Let A be any X’*~formula. We want to show
R - A(0)A(V2)(A(2)>A(S2))>(V2)A(|2]).
By Corollary 15, there is a ©,/(4S)-formula B such that R;- A(z)« B(z). Let B have the form
B(z) = (Qy1<ty) - (Qua<tn)Clzyy, - - - ,¥0)

where C€Il;. We assume without loss of generality that the terms ¢; do not include the vari-
ables yy, .. .,y,. Of course z will generally appear in {;. For notational simplicity we assume
that n=1 for the rest of the proof and write ¢(z) instead of ¢,(z).

Let D be the formula

D(z,y) = Clz,y)ny<i(z).

Let u be a new variable. Then, by prenex operations,
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Ry (V2)(B(z)o B(Sz))o (Ve <|u|)(Jy< t(Sz))(V2<t(z)((D(=,2) > D(S,y)).
By I ,-replacement,

Riy1 (Va)(B(z)> B(Sz))o(Fw)(Vz <|u|{(Vz< t{z))((D(2,2) >D(S7,5(S=,w))).
Let f be the ¥ '—definable function satis{ying

b ifa=0
flewb) =\ Bla,w) if >0

Thus,

R+ D(0,0)A(Y2)(B(2)>B(S2))>(Fw)(Vz < |u|)(D(z.f(z,w,b))> D(Sz,8(Sz,0))).
So,
Ryu1 BO)A(V2)(B(z)>B(Sz))>
O(3w) [D(0,8(1,w)A(Vz <|u|)(D(2,8(z+1,w)) DD(Sz,8(z+2,w)))] .

Since Del’[,-fl, we can use H,-fl—-LIND , to get
R 1+ B(O)A(Vz)(B(2)>B(52)) >(3w)D(|u],8(|u|+1,w)).

Note that we are justified in using II,};~LIND by our induction hypothesis and by Theorem 13.
Finally,

R,y B(O)A(Vz)(B(z) > B(S2))> B(|ul).
QED. O

2.8. Minimization Axioms.

We next introduce two new axiom schemas which can be used to axiomatize Bounded
Arithmetic.
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Definition: Let ¥ be a set of formulae. The ¥-MIN axiom schema consists of the axioms
(Fz)A(2)>(F=) [A(2)N(Vy<z)(y7#2>-A(y))]

where A is any formula in V.
The W-LMIN axioms are given by the schema

(F)A(2)>A(0)v(I=2) [A(2)A(Ty<| ;2 ])(~A(y))]

where again A€W,

Theorem 17: Let ¢+>1. In the theory .5‘21,
(a) BL-MIN is equivalent to IT;>~IND , and
(b) £ -LMIN is equivalent to II1,>~PIND.

Proof: The proofs of (a) and (b) are almost identical, so we will prove only (b).
First, we show that ¥*~LMIN =>TI)-PIND. Let A€II. Then by Z,'~-LMIN

~(Vz)A(2)>-A(0)v(Iz)(~A(2)A(Vy<[12])A(y))
and thus
~(Yz)A(z)AA(0)> () (A(L32])A-A(2))

which is what we needed to show.
Secondly, we show I1)~PIND == £ >~ LMIN. Let A(z) be a £;*~formula. Let B(z) be
the formula (Vy<z)(—A(y)). Now, by II-PIND ,

~B(u)>=B(0)v(Iz<u)(B(|3z])A~B(z))

and since A(u)>—B(u), we have

A(u)>A0NV(Fz<u)[(Vz<[ 2 N(~A()A(TFy<2)A(y)]-
Since the BASIC axioms imply y<z>|[ly]<|iz| we get
A(u)D AO)V(Fy<u)(Vz<[2y])(—A(2)AA(y)).

The LMIN axiom for A is an immediate consequence of this.
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QED. O

By the previous theorem, we can use the minimization axioms instead of induction
axioms to axiomatize Bounded Arithmetic. In a more classical setting, Paris and Kirby [21]
have studied how minimization axioms can be used to axiomatize fragments of Peano arith-
metic. Paris and Kirby have shown that £5~MIN and II>-MIN are equivalent with respect to
a simple open theory P~. However in Bounded Arithmetic we have a different situation.

Theorem 18: Let i>1. S}+II'-MIN is equivalent to Sg+X.% —~MIN.
Proof: Since I CL ), one direction is trivial. We need to show that II}-MIN = £ 8 -MIN

in the presence of S5'. We begin by showing that SJA+II-MIN proves the E;il(AS)—MIN
axioms.

Let AcE}(AS). So A(z) has the form
(aylstl(z)) U (ayng—tn(z))B(xiyly v ;yn)

where BeIl (since 1>1). We can assume without loss of generality that the terms ¢; do not
include the variables y;. Let B*(z,yy, - - . ,¥,) be the formula

B(Zyylr e ;yn)/\ylstl(z)/\ e Aynstn(z)'
Let C(w,a) be the formula
PS¢SL(w,a,n+1)AB*(ProtoB(n+1,w),ProtoB(n,w), . . . ,ProtoS(1,w)).

By Theorem 2, C is Sg—provably equivalent to a H,-b—formula. C asserts that w is a protose-
quence coding values for z and y; which witness that (3z)A(z) is true. Now,

g+ (3z)A(z)aa=max{|z,[ty(2)], . . . ,[ta(2)} D (Fw) C(w,a).
Since protosequences code entries as fixed length codes,
S2ll—PSqSL(w,a,n+1)APSqSL(v,a,n+1)Awzv3Proto,8(n+l,w)ZProtoﬂ(n—H,v).

So by applying M)-MIN , we get a minimum value for w which satisfies C(w,a) (a is held con-
stant). But now Protof(n+1,w) gives a minimum value for z satisfying A(z). This completes
the proof that Sy+II,>~-MIN proves the £.%,(AS)-MIN axioms.

To finish the proof of our current theorem, we must show that S3+X.2 (AS)-MIN
proves the L ,-MIN axioms. It will suffice to show that S3+E21(AS)-MIN proves the
Eiil—replacement axioms, since by Corollary 15 a Eiil—formula is equivalent to a



58 Foundations of Bounded Arithmetic

T2 (AS)formula via I -replacement. The proof of Theorem 17(a) shows that
S (AS)-MIN =TI, (AS)-IND. Also, SF+I1}, (AS)-IND => £}, ,(AS)-IND can be shown
by using the proof of Theorem 5 (this depends on the fact that the defining equation for sub-
traction (=) does not contain any sharply bounded quantifiers.) Clearly,
2 1(AS)-IND => £}, (AS)-LIND. Hence it suffices to prove the following lemma.

Lemma 19: Let i>0. S3+3%,(AS)-LIND => ¥, .—replacement.

Proof: For 1=0, this lemma is a consequence of Theorem 14. For i>1, by Theorems 14 and
13(a) it suffices to show that S&+%.5,(AS)-LIND proves that every v} ~formula is equivalent
to a Eiﬂ_l(AS)—formula. The proof of this lemma is a more complicated version of the proof of
Corollary 15 which we omitted earlier.

Suppose, for the sake of contradiction, that 2<j<i+1 and that j is the least value for
which there exists a Ejb—formula which is not provably equivalent to a Zjb(AS)—formula by
S}+Z2 (AS)-LIND.

We shall now show that if BEEJ-" then B is provably equivalent to a Ejb(AS)—formula.
It suffices to assume that

B = (Vz<|t))(Fy<s)A(z,y)

where Aeﬂjfl, as multiple adjacent existential quantifiers in B can be combined by use of the £
function and multiple sharply bounded universal quantifiers can be handled by iterating this
argument below.

We prove that B is equivalent to the formula Z(|¢|) where Z(u) is the formula
(Bus<SeBd(s,O)(Vz<|H)(<u>A(2,8(S57,w)AH(Sz,w)<s).

We use the proof of Theorem 14 to prove this. The crucial point of the proof of Theorem 14
used Ejb—LIND on the formula Z(u). But how can we use LIND on Z? Well, by our choice of
j and since A€IL?,, S}+T) (AS)-LIND proves that Z is equivalent to a E}AS)formula.
Hence we are justified in using LIND on the formula Z.

This completes the proof of the lemma and of Theorem 18.

QE.D. O

(Remark: In the original version of this dissertation we erroneously claimed to have
proved Theorems 18 and 20 for >0 instead of 1>1.)

An important theorem about the minimization axioms is the following.

Theorem 20: Let i>1. The T -MIN axioms are theorems of S5*1.



§2.8 Minimization Axioms 59

Proof: Let A(z) be any X,’>formula. Let B(a,b,c) be
(Vz<|a|)(z<|a|= b Bit(z,c)=0A(Vy<c)(~A(y))A(Fy <2’ ) A(c+y).

Clearly,

Si+ A(a)> B(a,0,0)va=0.
So,
Si A(a)ra#0>(Iz<a)B(a,0,z)

We also claim that
Sa+ A(a)Aa7#0Ab <|a|A(Fz<a)B(a,b,2)>(Iz<a)B(a,Sb,z).

This is true because

Sk b<[alaB(a,b,c)ABy <24+ V) 4 (c+y)>B(a,Sb,c)
and

S#+ b<|a|aB(a,b,c)A(Vy <2lel* V)= A(c+y)) > B(a,Sb,c-+2101 ¢+1),

These last two results follow from the bit manipulation techniques developed while bootstrap-
ping S¢. Finally, from the definition of B we have

S#+A(a)AB(a,b,c)Dc<a.
Putting the above results together proves the claim.

Since B is a 5.} -formula, we can use £;%,~LIND on the formula (3z<a)B(a,b,z) to
get

S3+A(a)re7#0>(3z<a)B(a,|a},z)
From this the ;5 ,-MIN axiom for A is immediate.
QED. O
Corollary 21: If i>0, S{*1- T

Proof: For i>1, this follows from Theorems 20, 17(a) and 13(b). For i=0, this is a corollary to
the next theorem. [J
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The next theorem provides a direct proof of the previous corollary; in fact it is some-
what stronger. Furthermore, the proof does not depend on any of the earlier theorems in this
section. Recall that the A} formulae are those provably equivalent to both a 2~ and a
12 —formula.

Theorem 22: Let i>1. The AS-IND axioms are theorems of S,. (A means with respect to
S5

Proof: (according to M. Dowd [8], the case i=1 is independently due to R. Statman)

Let A be a formula such that there are formulae AT in £,* and AT in I1;> such that
Sit A+ AT and Si- A« A" Let B(z,2) be the formula

(Vy<Sz)(A(z+ y)>A(2))
so B is provably equivalent to a IT;>—formula. We claim that
Sy (Vo< c)B(z,[1d])>(Vz<c)B(z,d)

where ¢ and d are new free variables. This is because A(z-y)>A(z) follows from
A(z+y)>A(z=|2y]) and A(z=|1y])DA(z). So by IIP-PIND

Si(Vz<e)B(2,0)o(Vz<c)B(z,c).

But clearly, (Vz<c)B(z,c)>(A(0)>A(c)) and (Vz)(A(z)>A(Sz))>(Vz<c)B(2,0) are provable in
S;l. Hence, S3 proves

(Vz)(A(2)DA(Sz))D(A(0)>A(c))

and the desired induction axiom for A follows immediately by a V-introduction, since ¢ is a free
variable which occurs only as indicated in the last formula.

QED. O

2.9. Summary of Axiomatizations of Bounded Arithmetic.

We briefly summarize some of the results of this chapter.
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Theorem 23: For all 1>0, T§t'=> S and S/ l—> T,

Proof: by Theorem 11 and Corollary 21. O

Theorem 24: Let i>0. In the presence of Sy, we have the following implications:

(a) ETA-IND <=> NS -IND <= I} ,-MIN

2,-PIND <=> N},-PIND <= I} ,-LIND <=> I} ,-LIND

¥ -LMIN

Y -IND
(b) Tho-MIN <= T} -MIN
(c) XIf,-replacement => I-PIND =—> X}-replacement.

Proof: By Theorems 5, 6, 11, 13, 14, 16, 17, and 18 and Corollary 21. D



Chapter 8

Definability of Polynomial Hierarchy Functions

The previous chapter investigated several different ways to axiomatize Bounded Arith-
metic. We will now be concerned exclusively with the fragments of Bounded Arithmetic
axiomatized by PIND axioms, that is to say, with the theories Sy

It turns out that using PIND is a very natural way to define Bounded Arithmetic.
Indeed, there is a very close relationship between the theories Sg and the polynomial hierarchy.
We discuss part of the relationship in this chapter. The rest is established in Chapter 5.

In Chapter 1, we defined a polynomial hierarchy of both predicates and functions. The
classes of predicates were £F, TI# and A7, where = is NP and Af is P. In Chapter 1, we
considered a predicate to be a function with range {0,1} with the value 0 denoting “false” and 1
denoting “true”. We will no longer follow this convention; instead, we think of a predicate in
the usual sense as a property of natural numbers.

The classes OF formed the polynomial hierarchy of functions. The functions in 07 are
the functions which are computable in polynomial time by a Turing machine (for computer
scientists, a transducer) with an oracle for a predicate in £2,. For example, 0, is the set of
functions computable in polynomial time.

Theorem 1: Let k>1. Let f be an m-ary Of-function. Let {(Z) be a term (in the language of
Bounded Arithmetic) so that for all ZEN™, f(Z)<t(Z). Then there is a E—formula A such
that

(1) SF-(VE)Iy<n)A(Z,y)
(2) S£(Y2)(Vy)(V2)(A(Z,9)AA(Z,2)Dy=2)
(3) For all ZEN™, A(Z,f(Z)) is true.

Theorem 1 says that the theory Sif can ¥ —define all of the functions which are poly-
nomial time computable relative to the ¥ #; predicates. We will prove the converse of this in
Chapter 5.

Proof: First we examine the condition of the term ¢ bounding f. Suppose that (1)-(3) hold and
that s(Z) is another term such that for all ZEN™, f(Z)<s(Z). Let B be the formula

B(Z,y) = (d2<t)(A(7,2)Ay=min(s,z)).

62
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Then,

S£H(V2)(Jy<s)B(Z,y)

S+ (V2)(Yy)(Yw)(B(Z,¥)AB(Z,w)>y=w)

and for all ZEN™, B(Z,f(Z)) is true.

Thus it will suffice to prove that if f€07 then there exists some term ¢ such that (1)-(3)
hold. We prove this by induction on the complexity of the definition of f. To begin the induc-
tion argument we consider functions f in the set B defined in Chapter 1. In the induction step
we will consider separate cases for f defined by composition, limited iteration, or bounded
quantification from previously defined functions.

Case (1): Suppose feB. Clearly f can be X-defined by S3.

Case (2): Suppose [ is defined by composition as f(Z)=g(h,(Z), ... ,h.(Z)) where g,
hy, ... ,h, are functions in 0 and that S# can X 2-define g, hy, . .. ,h, with the formulae

S-(Fz<s(yy - - Y )AgY1 - Ymi?)
S (Az<ri@)A(Z,2)
respectively. Let A(Z,z) be the formula
Qui<ri(@)) - - - Qua<ra@Ag(y1, - - - ¥n,2AAUZ YDA - - AAL(Z,y,)).
Then A€Ey and for all z,€N, A(Z,f(2)) is true. Let £(Z) be the term 8(ry,...,r,)- Then con-

ditions (1)-(3) of the theorem hold.

Case (8): Suppose f is defined from g by bounded existential quantification (i.e. PB3).
That is to say,

2) = { 1 if (Ju<s)(g(u,2)70)

0 otherwise
Suppose also that g is £, ,—definable by S¢f~! with the defining condition
S (Vu) (V2N Ay <r(5,2)A 4(8,7,9)
where A, is a £ —formula. Let A(Z,2) be

|o=1A(3u<s)By<r)(y40nA (u,2,9))]V [e=O0A(Vu < s Yy < r)(y7405A (u Z,9))).
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Then for all values of Z, A(Z,f(2)) is true. Also A is clearly Af. Let t(Z) be the constant term
1. Then conditions (1)-(3) are satisfied.

Case (4): Suppose f is defined by limited iteration from g and h with time bound p
and space bound g. Also suppose g and h are ¥ -defined by 52 by the defining conditions

SE-(VZ)(T12<5)A ,(7,2)
SF- (VY Vu)(Vo)(32<r(Z,u,v))A4(F,u,v,2).
Define B(w,u) to be the formula

Seq(w)ALen(w)=u+1A,3(1,w)=min(2"('?|),g(?))A
AV i <u)(B(5+2,w)=min(2/®) p(2,i,B(i-+1,w)))).

So B(w,u) asserts that w codes the first u steps of the computation of f from g and A, where we
are adopting the convention that if the next iteration step would violate the space bound g,
then the computation of f is aborted. It is not hard to see that

S#+(Bw<SgBd(29™,| 1a ]))B(w,||3a]1)>(Fws SeBd(2™),a))B(w,|al).

Note that B is a L —formula since the quantifier (Vi< u) is equivalent to a sharply bounded
quantifier. So by L-PIND ,

S£F (3w< SeBd(2907) 20 (P))) B(w,p(2])).

Also, S proves that this sequence w is unique by the use of £2~LIND on the length of w. So
let A(Z,y) be the formula

(Jw<SeBd(29 22 ) (B(w,p(|Z))Ay=B(p(|[)+1,w)).

Let £(2) be 2¢(*). Then conditions (1)-(3) hold.

QED. O

We have a similar theorem regarding the definability of A? predicates in Sy,

Theorem 2: Let k>1. Let @ be an m-ary Ap predicate. Then there are formulae A and B in
Ekb and I'l,cb, respectively, so that
(1) 55+ (VZ)(A(2)~ B(2))
(2) For all BEN™, A(7)<=> B(7#)<=> Q(7).
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Proof: Let f be the Of function defined by

1 if Q@)
/@) = { 0 if ~Q()

Let #(Z) be the constant term 1. Let A; be a Y {formula satisfying (1)-(3) of Theorem 1.
Define A and B to be

A(@) = Afz,1)
B(Z) = —A/z)0).
Then A€T and Bell! and the theorem is proved.
QED. O
If we consider the case k=1, we get
Corollary 3: Every polynomial time computable function and polynomial time computable predi-
cate can be introduced in S5 with a defined function or predicate symbol and used freely in

induction formulae (if ¢>1).

Proof: By Theorems 1 and 2 above and Theorems 2.2 and 2.4. O



Chapter 4

First-Order Natural Deduction Systems

This chapter introduces the use of natural deduction systems for first-order Bounded
Arithmetic. Up to now we have not been specific about the syntax for our framework of first-
order logic; but in order to obtain further results we shall have to make a precise definition of
our first-order syntax and rules of deduction. The system we adopt is a modified version of
Gentzen’s natural deduction calculus LK [13]. An excellent reference for this system is the first
half of Takeuti [28]. Several of our proofs will refer to details of proofs in Takeuti [28].

Natural deduction systems provide a very elegant framework for proof-theoretic argu-
ments; they are especially advantageous for proofs which utilize Gentzen’s cut elimination
theorem.

4.1. Syntax and Rules of Natural Deduction.

Natural deduction uses the following types of symbols:

1) Constants; for example, O.

2) Relations; for example, < and =.

3) Functions; for example, S,+,",#,|1z], and |z|.
4) Free variables; denoted by a,b,c, . .

6) Propositional connectives; A,V,D, and —.
7) Bounded quantifiers; V< and 3<.

8) Unbounded quantifiers; ¥V and 3.

9) Parentheses.

10) Sequent connective; —>

(11) Comma.

(
(
(
(
(5) Bound variables; denoted by z,y,z, . ..
(
(
(
(
(

Terms are built up from constants, free variables and functions. Formulae are defined
as usual. An atomic formula is a formula which contains no quantifiers or propositional connec-

tives. An open formula is one which contains no quantifiers. A term or formula is closed iff it
contains no free variables.

66
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A series of formulae separated by commas is called a cedent. If ' and A are cedents
then I'—> A is a sequent. The antecedent and succedent of '—> A are T' and A respectively.
The intended meaning of I'—> A is that the conjunction of the formulae in I' implies the dis-
junction of the formulae in A. Although their meanings are similar, > and —> have very
different syntactic roles.

It should be noted there is a distinction between bound and free variables. The set of
variables which may appear free in a formula is disjoint from the set of variables which may
appear bound in a formula. This is different from the usual conventions of first-order logic, but
it does make the syntax more elegant. We use a,b,c,... and z,y,z,... both as variables and
as metavariables.

An inference is the deduction of a sequent from a set of sequents. An inference is
denoted pictorially by

B or B C
A A

which means that A is deduced from B or from B and C (each of A, B and C is a sequent).
The rules of natural deduction are listed below. T', II, A and A are used to denote

(parts of) cedents, A and B are arbitrary formulae and s and ¢ are arbitrary terms.
(1) (Weak:left)

'—=A
Al'——> A

(2) (Weak:right)
—A
r-—>AA

(3) (Contraction:left)
AAT-—>A
Al'—>A

(4) (Contraction:right)
I'—>AAA
—>AA
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(5) (Exchange:left)

[ A,BII—>A
TBAI—>A
(6) (Exchange:right)
I—>AABI
'-—>ABAI
(7) (—:left)
r—>AA
SA'—>A
(8) (—:right)
Al—>A
Ir—>A-A
(9) (A:left)
Al'—>A
AABT—>A
and
AT—>A
BAAT —> A
(10) (A:right)
'—>AA I'>AB
T—>A AAB
(11) (v:left)
AT—>A BT—>A
AVBI—>A
(12) (v:right)
r—-AA
'>AAvB
and
'—>AA

I'—>ABvA
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(13) (:left)
'—>AA BIl—A
A>BIII—>AA

(14) (>:right)

Al'>AB
'—>A,ADB
(15) (V:left)
A —=A
(Vz)A(z),— A
(16) (V:right)
I'—> A A(a)
'— A(Vz)A(2)
where a is a free variable which may not appear in the lower sequent of the infer-
ence.
(17) (3:left)
A(a)T—A
Ga)A(2) T —A
where a is a free variable which may not appear in the lower sequent of the infer-
ence.
(18) (3:right)
I'— A A(t)
I'— A,(J2)A(2)
(19) (V<:left)
A(t)f—>A

t<s,(Vz<s)A(z) —A

(20) (V<:right)
a<tlI'—>A A(a)
I'—>A,(Vz<t)A(2)

where a is a free variable which may not appear in the lower sequent of the infer-
ence.
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(21) (3<:left)
a<t,A(a)—A
(Fz<t)A(z)T— A

where a is a free variable which may not appear in the lower sequent of the infer-

ence.

(22) (3<:right)
I'— AA(t)
t<s,I—> A, (Jz<s)A(z)

(23) (Cut)
'—>AA All—A
Ni—AaA

The inferences (1)-(6) are called structural inferences. Rules (7)-(22) are the logical
inferences: (7)-(14) are the propositional inferences and (15)-(22) are the quantifier inferences.
The formula A in the cut inference is called the cut formula. The variable a in inferences (186),
(17), (20) and (21) is the eigenvariable of the inference. The eigenvariable of an inference must
appear only as indicated, or equivalently, must not appear in the conclusion of the inference.

In inferences (7)-(22), the lower sequent contains a newly formed formula which did not
appear in the upper sequent. This new formula is called the principal formula of the inference.
The principal formula of an inference is always formed by using one or more formulae from the
upper sequent(s) and by using either a logical symbol or a quantifier. The formula(e) in the
upper sequent(s) from which the principal formula is constructed is (are) called the auziliary
formula(e). For example, A and (Jz<s)A(z) are the principal formulae of inferences (7) and
(22) respectively and their auxiliary formulae are A and A(¢) respectively.

A logical aziom is a sequent of the form A—> A where A must be an atomic formula.
An equality aziom is a sequent of the form —> t;=t,,

tl=31) e ,tn=3"%f(t1, .. ,t,,)=f(sl, e ,s"),
or

t1=81, .. ta=8,p(ty, - - ., ty)—>p(s1, - - -,84)

where the ¢;’s and s;’s are arbitrary terms and f or p is any n-ary function or predicate symbol.

A proof is a tree of sequents written so that the root of the tree is at the bottom. The
leaves of the tree are called nitial sequents and must be either equality axioms or logical
axioms. Every other sequent in the tree together with the sequents immediately above it must
form a valid inference. The root of the tree is called the endsequent and it is the formula
proved by the proof.



§4.1 Syntax and Rules of Natural Deduction 71

Definition: The natural deduction described above is called LKB. (Gentzen’s original system
LK was defined similarly to LKB except without equality axioms and without bounded
quantifiers.)

Definition: A bounded formula is one which contains no unbounded quantifiers. A bounded
sequent is a sequent which contains only bounded formulae. A bounded proof is a proof which
contains only bounded sequents.

Proposition 1: LKB is consistent, sound and complete.

Proof: The soundness and consistency are obvious. We know that LK is complete so it will
suffice to show that all properties of bounded quantifiers are theorems of LKB.

It is easy to show that for all formulae A, LKB proves A—>A. So consider the fol-
lowing two LKB —proofs:

A(a)—> A(a)

a<t (Vz<t)A(z)—9 )
(Vz<t)A(z)—>

(Vz<0)A(z)—>

and

a<t—>a<t A(a)—> A(a)
a<t,a<toA(a)—>A(a)
a<t(Vz)z<toA(z))—> A(a)
(Vz)(z<tDA(2))—> (V< t)A(2)

So LKB proves (Vz)(z<tD>A(z))«+(Vz<t)A(z). By similar proofs, LKB proves that
(Jz<t)A(2) is equivalent to (Iz)(z<tAA(z)). But now since LK is complete, so is LKB.

QED. O

4.2. Bounded Arithmetic.

We next define how systems of Bounded Arithmetic are handled by natural deduction.
We must specify how axioms are treated and we must define additional rules of inference.
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Definition: The induction inferences are:

(1) Z2-IND inference.
I,A(a)—> A(Sa),A
IA(0)—> A(t),A
where A is any L~formula, ¢ is any term and a is the esgenvariable and must not
appear in the lower sequent.

(2) £*~-PIND inference.

ILA([la))—> A(a),A
['LA(0)—> A(t),A

with the same provisos as above.

(3) £,~LIND inference.
T A(a)—> A(Sa),A
I,A(0)—> A(|t]),A

where, again, the same provisos apply.

If ¥ is any set of formulae, we define the W-IND , ¥-PIND and ¥-LIND inference rules in
the same manner.

Definition: Let A(a,, ... ,a;) be a formula with all of A’s free variables as indicated. We say B
is a substitution instance of A iff B=A({y,...,t;) for some terms ¢,, ..., ;.

Definition: When working in a theory with axioms, we enlarge the notion of proof to allow ini-
tial sequents of the form —> A where A is any substitution instance of an axiom.

Definition:
(a) Sg is the natural deduction theory with the BASIC axioms and the L )~PIND induction
inferences.
(b) T4 is the natural deduction theory with the BASIC axioms and the $;'~IND induction
inferences.

Theorem 2: (i>0). The L -IND (respectively, £,2~PIND , £ -LIND ) rule is equivalent to the
LS -IND (respectively, £,'~PIND , £,*~-LIND ) axioms. Hence the new definitions of Sy and
T4 agree with the definitions given earlier in Chapter 2.

Proof: 1t suffices to show that the induction axioms are consequences of the corresponding
induction rule (the converse is obvious). We show that the L ~IND rule can derive the
L -IND axiom and leave the other cases to the reader.
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Let A be any £;>~formula, and let a and b be any free variables not appearing in A.
Then we can derive the IND axiom for A by:

A(a)—> A(a) A(Sa)—> A(Sa)
A(a)>A(Sa),A(a)—>A(Sa)

(Vz)(A(z)>A(Sz)),A(a)—> A(Sa)

(Vz)(A(z)DA(Sz)),A(0)—> A(b)

(Vz)(A(z)> A(Sz)),A(0)—> (Vz)A(z)
A(0)A(V2)(A(2)>A(S2)),A(0)—> (V2)A(2)
A(0),A(0)A(Vz)(A(2)>A(Sz))—> (Vz)A(z)

A(0)A(Vz)(A(2)>A(Sz)),A(0A(VE)(A(2)DA(S2))—>(Vz)A(2)

A(0)A(Vz)(A(2)D>A(S2))—>(V2)A(2)

—> A(0)A(V2)(A(2)DA(S2))D(V2)A(2)

QED. O

As the above proof shows, natural deduction proofs often can be quite awkward to
write out in complete detail. Generally, we shall find it easier to argue informally when we wish
to show that a statement is provable.

However, the advantage of natural deduction is that it provides an elegant framework
for proof by induction on the complexity of proofs. Generally speaking, natural deduction sys-
tems are not a good system with which to prove a theorem; but they are very good for showing
that certain things are not provable.

One extremely useful property of natural deduction systems is that proofs can always
be put in a normal form. The most important normal form is Gentzen’s Hauptsatz, the cut-
elimination theorem, which is discussed in the next section.

4.3. Cut Elimination.

The cut elimination theorem is the most fundamental property of natural deduction
systems. The cut elimination theorem was first proved by Gentzen [13] and is sometimes
referred to as Gentzen’s Hauptsatz.

Before we can state the cut elimination theorem in its most general form, we need
some more definitions:

Definition: Suppose C is a formula which appears in a given sequent in a proof. The successor
of C is a formula in the sequent directly below the sequent C appears in. The successor of C
is defined according to the following cases:

(1) If € is in the endsequent of the proof or if € is the cut formula of a cut inference, then
C has no successor.




74 First-Order Natural Deduction Systems

(2) If C is the auxiliary formula of an inference, then the principal formula of the inference
is the successor of C.

(3) If C is one of the formulae A or B in an exchange inference, the successor of C' is the
formula denoted by the same letter in the lower sequent of the inference.

(4) If C is the k-th formula in a sub-cedent I', A, IT or A of the upper sequent of an infer-
ence, then the successor of C is the k-th formula in the corresponding sub-cedent of
the lower sequent of the inference.

(5) If C is the auxiliary formula on the right or left side of an induction inference, then the
successor of C is the principal formula on the right or left side respectively.

Definition: Let C and D be occurrences of formulae appearing in a proof. Then C is an ances-
tor of D if there are occurrences Cy, .. .,C, of formulae in the proof such that C, is C, each
C41 is the successor of C; and D is the successor of C,.

We say that C is the direct ancestor of D iff C is an ancestor of D and C and D are

occurrences of the same formula. This means that in the sequence of successors linking C to
D, the formulae are never modified by an inference.

If C is an ancestor of D, then we call D a descendant of C. If C is a direct ancestor
of D then D is a direct descendant of C.

Definition: A formula C appearing in a proof is free iff it is not the case that C has a direct
ancestor which either is a principal formula of an induction inference or is in an initial
sequent.

A cut inference is free iff both of the cut formulae in the upper sequents are free.

Remark: We have defined “free cut” somewhat differently from the way Takeuti [28] does.
However, the effect of our definition is the same since we required the logical axioms to be
atomic. The advantage of our definition is that it allows us to discuss theories which have
non-logical axioms which are not open. We shall discuss such theories briefly in Chapter 8.

We are now ready to state the cut elimination theorem:

Theorem 3: (Gentzen) Suppose I—> A is provable in S5 or T4 by a proof P. Then there is a
proof P* of '—> A in the same theory such that P* does not have any free cuts. Further-

more each principal formula of an induction inference in P* is a substitution instance of a
principal formula of an induction inference in P,

Proof: This is proved by exactly the same proof as in Takeuti [28], pp. 22-29, 111-112. All that
is needed is to add additional cases for the bounded quantifier inferences. This is straightfor-
ward and we omit it. O
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Corollary 4: (Gentzen) Suppose '—> A is provable in LKB. Then I'—> A is provable by a
proof P such that every cut formula in P is atomic.

Definition: A proof is cut free iff no cut inferences appear in the proof. A proof is free cut free
iff it has no free cuts.

The proof of Theorem 3 is constructive and gives an effective method of finding P*

from P. In fact, the algorithm which accepts P as input and constructs P* is primitive recur-
sive. However, it is not elementary recursive.

Corollary 5: Let {>0. Let I' and A be cedents of - and l'[,-"——formqlae anq suppose '—> A is
provable in S5 or T§. Then there is a proof P of '—>A in S3 or Ty (respectively) such
that every formula in P is in UM .

Proof: We pick P to be a free cut free proof of '—> A. Suppose C is a formula in P and that
C¢XUME. Then C can not have been either the principal formula of an induction inference or
a direct descendant of a formula in an initial segment. Hence C is free and all of the descen-
dants of C must be free. Since P is free cut free, some descendant of C must appear in the
endsequent. However no descendant of C can be in £ UL and this contradicts the hypotheses
of the theorem. Thus all formulae in P must be in Z,2UI%. O

Definition: A cut inference is inessential iff its cut formula is atomic.

We shall sometimes use an inessential cut in the construction of a free cut free proof.
This is always permissible since the cut formula is atomic and any atomic formula in a proof
must be introduced either by an axiom or by a (Weak:left) or a (Weak:right) inference. In the
first case the inessential cut is a free cut. In the second case the inessential cut is superfluous in
that the proof can be simplified by removing the inessential cut; this is done by deleting the
Weak inferences which introduced the cut formula and then replacing the inessential cut by
Weak inferences.

Hence we can, without loss of generality, allow arbitrary inessential cuts to appear in
free cut free proofs.

4.4. Further Normal Forms for Proofs.

We define some more syntactic properties of proofs.

Definstion: Let P be a proof with endsequent '—> A. The free variables in '—> A are called
the parameter variables of P.

We say that P is in weak free variable normal form iff for each free variable a in P
there is an elimination inference such that

(1) a is in the upper sequent(s) of its elimination inference,
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(2) a appears in P only above its elimination inference, and

(3) if a appears in a sequent S of P, then a appears in every sequent between S and a’s
elimination inference,

with the exception that if a is a parameter variable, then we think of the elimination infer-
ence for a as being an imaginary inference directly below the endsequent of P.

An alternative, equivalent definition is that P is in weak free variable normal form iff
for each free variable a in P, the inferences of P which contain @ in an upper sequent form a
connected subtree of P.

Proposition 6: Let P be a proof in weak free variable normal form and let a be a free variable in
P which is not a parameter variable. Then the elimination inference of @ must be a (V:right),

(V<:right), (F:left), (3<:left), (V:left), (3:right), or Cut inference.
Proof: This is immediate from the syntax of the inferences for Bounded Arithmetic. O

In fact, we can further require that the elimination inference is not a (V:left), (3:right),
or Cut inference:

Proposition 7: Let P be a proof in weak free variable normal form. Suppose a is a free variable
in P and the elimination inference for a is a Cut, (V:left) or (J:right) inference. Then if we
replace every occurrence of the free variable a in P by the constant symbol 0 (zero), we still
have a valid proof of the same endsequent.

Proof: Examination of the syntax of the inference rules shows that when we carry out the
replacement of a by O, the altered proof is still a valid proof. O

Definstion: A proof P is in free variable normal form iff P is in weak free variable normal form
and for every free variable a appearing in P, the elimination inference for a is not a Cut,
(V:left) or (3:right) inference.

Proposition 8:

(a) Suppose P is a proof of '—> A. Then there is a proof P* of '—> A such that P* is in
free variable normal form.

(a) Suppose P is a proof of '—>A. Then there is a proof P* of '—> A such that P* is in
free variable normal form and P* is free cut free.

Proof:

(a) P can be transformed to the desired P* by renaming free variables and using Proposition
7

(b) First use the cut elimination theorem to obtain a free cut free proof @ of I—>A. Then
obtain P* by renaming free variables and using Proposition 7.

QED. o
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4.5. Restricting by Parameter Variables.

The results of this section are somewhat technical in nature. They will be used only in
the two sections of Chapter 4 immediately following.

Definition: Let P be a proof. We say that an induction inference in P is restricted by parameter
variables iff it has the form

TA(2e])—> A(e),A
T,A(0)—> A(t),A

or

', A(a)—> A(Sa),A
[,A(0)—> A(t),A

where the only free variables in the term ¢ are parameter variables of P.

We say P is restricted by parameter variables Mf every induction inference in P is
restricted by parameter variables.

Theorem 9: Let '—> A be a bounded sequent which is provable in one of the theories 5, or T,.
Then there is a bounded proof of '—> A in the same theory which has no free cuts, is in free
variable normal form and is restricted by parameter variables.

Before proving Theorem 9, we introduce a new metafunction ¢ which lets the proof
apply to slightly more general theories. As a bonus, the use of & may make the proof somewhat
easier to understand.

Let R be any theory of arithmetic. We define a metafunction ¢ which maps terms of
the language of R to terms. Suppose t;,...,t; are terms with variables a,,...,a,. Then
olty, ... ,t;] is a term with the same variables. Furthermore, if 1<i<k,

8

b1<ay, ... b,<a,—> by, ... b)<alty, ..t (ay, - - - ,a,)

must be provable from the axioms of R without the use of any induction inferences.

Obviously the metafunction o depends on the theory R, and indeed, for a given theory
R there are many o’s satisfying the above conditions. The exact choice for o is not too impor-
tant, but o should be as simple and as constructive as possible.

If R is one of the theories S, or Ty, we have a particularly simple definition for o.
Define
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oft)] =t

olty, ...t = HH+ -+t

This definition works since each function symbol of Bounded Arithmetic is nondecreasing in
each of its variables.

If we enlarge S; or T4 to include function symbols for polynomial hierarchy functions,
we can still define . The defining equation for a function of the polynomial hierarchy must
include an explicit bound on the size of the function. These bounds can be used to define o.

Theorem 9 is stated only for Sy and Ty, however our use of the o metafunction means
the proof holds for theories with a larger language.

Proof: of Theorem 9.

We shall give the proof for the theory S,. Minor modifications are all that is needed to
handle T, and we leave them to the reader.

By Proposition 8, there is a proof P of I'—> A with no free cuts and in free variable
normal form. We shall modify P to be restricted by parameter variables.

Let the parameter variables of P be ¢, ...,c,. Let by, ...,b, be the other free vari-
ables in P. Since P is in free variable normal form, each b; has a unique elimination inference;
we assume without loss of generality that if the elimination inference for b; is below the elimina-
tion inference for b; then #<j (if not, reorder the b;’s). Note that two variables can not have
the same elimination inference since we are assuming P is in free variable normal form,

We define u,,...,u, to be terms so that the free variables of u; are the parameter
variables ¢. We define u; by induction on ¢ according to the following two cases.

(1) Suppose the elimination inference J; of b; is (V<:right) or (3<:left). That is, J; is either

bi<siby, ... ,bi 1) [i—>Aby),A
Fi—= (Va<si(by, . .. ,0;1))A ()4

or
b;<si(by, ... ,b;4),Ab)i—> A
(Jz<si(by, - - - b)) A (2) Ti—> A
where the term s; may contain the free variables b;,...,b; ; and may also contain the

parameter variables ¢y, ... ,c,. Then define u; = o[s;](uy, . . . ,u;,).
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(2) Suppose the elimination inference J; of b; is an induction inference. So J; is

LA (LL6:))— Adbi). A
T, A0)—> Ai(si(by, .. .,bi1)), A

Again, define u; = o[sg](uy, - . . ,u;).

P will be modified to obtain a proof P* with the same endsequent which is restricted
by parameter variables. We will do this in two steps: first we form P’ by changing each sequent

in P; however, P’ may not be a valid proof so we fix up the illegal inferences in P’ to get P*.

P’ will have exactly the same structure as P and each sequent in P’ is built from the
corresponding sequent in P. Let II—> A be a sequent in P. Let b;,...,b; be the free vari-
ables of P which have elimination inference below [I—>A. Let E be the cedent

b,-ISu,-l, caeby <up

The sequent in P’ corresponding to II-—>A is EII-—>A. So P’ is formed from P by adding
b;<u; to every sequent above the elimination inference of b;, for t=1,...,m. Thus the endse-
quent of P’ is the same as the endsequent of P.

We now modify P’ to obtain a valid proof P*. It is easy to verify that there are
exactly five ways in which P’ fails to be a proof:

(1*) The initial sequents of P’ are not valid initial sequents. An initial sequent of P’ has the
form

b,-ISu,-l, Ce ,b,-mgu,-m,H—>A

where [I—> A is a valid initial sequent. In P*, this initial sequent is replaced by the ini-
tial sequent II—> A and m (Weak:left) inferences.
(2*) Let I be a cut inference in P. The corresponding inference I' in P! will be of the form

ET—>AA E,A,I—>A
ENEIN—>AA

Unless E is the empty cedent, this is not a valid inference. In P* this inference is
replaced by I*:
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El-—>AA EAT—>A
STEM>AA
SrI-—>AA

where the double bar denotes a sequence of (Exchange:left) and (Contraction:left) infer-
ences.

(3*) Let b; be a free variable in P with a (V<:right) elimination inference J;. The correspond-

ing inference J; in P’ is

bi<u,By,bi<s;, Ti—> Ay(5:),4;
E,-,I‘,-% (VISS")A ,’(I),A"

where E; is the cedent containing the formulae b;<u; for all b; with elimination inference

below J; in P. Clearly, J{ is not a valid inference. In P* we replace J; by J;:

1]

ibi<si—>b;<u; bi<u;,Bybi<s;,T'i—> Ay(by),A;
B bi<si,Eibi<sil'i—> Ay(by),A;
Bibi<s;'i—> A(b)),A;
Bili—> (Vz<s)A(2),4;

The first inference is a Cut inference. The sequent E;,b;<s;—> b;<u; is provable by the
definition of the ¢ metafunction. The double bar between the second and third sequents
indicates a sequence of inferences; in this case, a sequence of contraction and exchange
inferences.

Since the cut inference is inessential it may be assumed without loss of general-
ity to be free (since if not, it could be eliminated from the proof).

(4%) Suppose b; is a free variable in P with a (3<:left) inference as its elimination inference J;.

We construct J; as the corresponding inference in P* by a construction similar to Case

(3%).

(5*) Let b; be a free variable in P with an induction inference J; as its elimination inference.
The corresponding inference J; in P’ is:

b;<u Bl A[26:]))— A(b,),4;
B, ;A (0)— A(s)),0

Clearly this is not a valid inference and in P* we replace it by J}:
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bi<ui—>|1b;/<u; bi<uy BT AL 16:))—> A(b)),4
bi<u;bi<uy BTy 1b;]<uDA(|56;])—> Ai(b:),A;
bi<u,Bl|1b;]<u;DA([1b;] Afby),A;
8.0 [20:]<u;DA([Lb:])—> bi<u;DA (b,),A

)—>
)—>
)
) ST woA ()bt AdE) 5,
B Tibi<d; (Vo<1 ) z<u;DA(2)—> b;<u;DA(b;),A;
Eiln(Vz<|djz<u;DA(2))—> (V2<d,)(2<u;DA (2)),4;
() E;Ti,(Vz<0)(z<u;0A () —> (Vz<u;)(2<u;DA(2)),A
() E;l,Ai(0)—> (Vz<u,)z<u;0A(2)) A,

B;, 8T 5A{0)—> Ais)),4;
Eir 0 A4(0)—> A(s;),A;

where d; is a new free variable and the sequents (), (), and (8) used in the Cut infer-

(B) = bi<di—>[3b]<|1di]
() = A{0)—(V2<0)(z<u;DA(z))
(6)

Note that these cuts are free since the cut formula is a direct descendent of an induction
inference or of a formula appearing in an initial sequent. Also note that the PIND

induction in P* is restricted by parameter variables since the only free variables in u; are

u
n

W(Vz<u)(z<u;DA(z))—>A(s))

Cyy v - ,Cp.

This completes the construction of the desired proof P*.

QED. O

It is not at all obvious that Theorem 9 holds for the theories Si and T instead of Sy
and T. In fact, it almost certainly does not hold for SP and TJ. However, it does hold for S
and T4 when ¢>1. The author surmises (without proof) that it holds for Sy and T4, but to
prove this seems to require a more careful treatment of the foundations of Bounded Arithmetic
than we gave in Chapter 2. At any rate, Theorem 9 as stated above suffices for our purposes in
Chapter 7.
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4.6. Polynomial Size, Induction Free Proofs.

This section establishes the following result: Suppose A(d) is a bounded formula prov-
able in S, where @ indicates all the free variables of A. Then there is a deterministic polyno-
mial time algorithm P such that for all #EN?, P(#) is the Godel number of a proof of
A(l,, . ..,I,,P), where the proof P(#) is bounded and contains no induction inferences. To
restate this informally, we can say that if A is bounded and if Sy(VZ)A(Z) then for each n
there is a “short,” bounded, induction free proof of A(#).

The results of this section are interesting in their own right; however, we wish to apply
them in Chapter 7 to Gédel incompleteness theorems. Accordingly, it is important to note that
all the proof theoretic arguments below are constructive and part of these arguments can be for-
malized in Sg.

Theorem 10: Let I'—> A be a bounded sequent provable in S,. Let a,, ...,a, be the free vari-
ables in T—> A. Then there is a p-ary polynomial time function f such that for all TEN?,
f(R) is the Godel number of an Sp-proof of F(I,,l,...,I,,P)—>A(I,,l,...,1,,’) which is

bounded, does not contain any induction inferences and is in free variable normal form.

Recall that I, is a term with value n such that the length of I, is proportional to |n|.
The theorem would certainly be false if S0 were used instead of I, since the length of S0 is
exponential in the length of n.

Proof: By Theorem 9 there is a bounded proof P of I'—> A which is restricted by parameter

variables and is in free variable normal form. The idea behind the theorem is that given values

ny, ...,n, for ay, ... ,a,, we can expand each induction inference in P into a series of cuts.
The proof of Theorem 10 is by induction on the number of inferences of P. The only

interesting case to consider is when the final inference of P is an induction inference; so let the
final inference in P have the form

TA(LL6])—> A(b),A
T,A(0)—> A(t(d)),0

where the only free variables in ¢ are the @. We eliminate the induction inference by replacing
it with 2-|¢(%)|~1 Cut inferences. Specifically, if m is the value of ¢(7), form the |m|+1 terms
Iy, . . ., IMsp(mys), - - - »Im- By the induction hypothesis, there is a deterministic polynomial time
function A(@,b) which computes the Gédel number for an induction free, bounded proof in free
variable normal form of I',A (|11, |)—> A(l;),A. By invoking h repeatedly we can obtain proofs
of each of the sequents

T A(LH mspim 5)1)—> AT msp(m, i) A

It is also easy to construct a proof of A(Ipsp(m,i+1)—> A(Lt{Msp(m,i)]) for all i. Then we join
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these sequents together with 2:/m|=1 cuts (and a lot of exchanges and contractions) to obtain a
proof of T',A(0)—> A([,,),A. Since for every term ¢ there is a polynomial p, such that
p{|7])>|t(#)| for all B, this procedure is a polynomial time procedure.

It is also important to see that if ¢ is any term, then there is a deterministic polyno-
mial time function g, such that g¢,(@) is the Godel number of an induction free proof of
Ly=t(I,, ... ,I,,P). We shall prove this last sentence as part of Lemma 7.5. Thus there is a

polynomial time procedure which produces an induction free proof of
A(ln)— A, - . ,I,,P)).

We combine this with the proof of I',A(0)—> A(I,,),A obtained above. This yields an induction
free, bounded proof of I',A(0)—> A(t(1,, - . . ,I,,’)),A. By renaming free variables we can ensure

that the proof is in free variable normal form.

QED. O

4.7. Parikh’s Theorem.

The next theorem is originally due to Parikh [20]. Parikh gave a proof-theoretic proof
and, later, a simpler model-theoretic proof was found. However, we present a proof theoretic
proof here since we have already developed most of the necessary machinery anyway.

If a theory proves (Vz)(3y)A(z,y) we regard this as a proof that there is a total func-
tion f such that for all z, A(z,f(z)) holds. Parikh’s theorem states that a function defined in
this way can be bounded by a term of Bounded Arithmetic, provided that A is a bounded for-
mula.

Theorem 11: (Parikh) Let {>0. Suppose that A is a bounded formula and that Sy or T

proves (VZ)(dy)A(Z,y). Then there is a term r(Z) such that the same theory proves
(V2)(3y<r(2))A(Z,y).

Proof: By Proposition 8 there must be a free cut free proof P in free variable normal form of
the sequent —> (Jy)A(?,y). It is easily seen that every formula in P is either (Jy)A(<,y) or is
bounded. Furthermore, every occurrence of (dy)A(7,y) is in the antecedent. Thus the only
inferences in P involving unbounded quantifiers are (J:right) inferences which introduce the for-
mula (Jy)A(2,y).

We modify the proof P as follows:

Step (1): First, we will mimic the proof of Theorem 9 to obtain a proof P”. Let all notation be
as in the proof of Theorem 9. The construction of P’ can be carried out on P since the
only unbounded quantifier inferences of P are (J:right) inferences and since P is in free

variable normal form. P’ is obtained from P’ in much the same way as P* is. Recall that
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P* was defined by the Cases (1*)-(5*). P’ is defined from P’ by Cases (1”)-(5"). Cases
(17)~(4") are the same as (1*)—(4%). The fifth case is:
(5”") Suppose the inference J; in P’ is:

bi<un BT A Lb:])—> Ai(bs).4
8\l A{0)—> Ai(s),A;

Clearly this is not a valid inference and in P”” we replace it by J;™

bi<u;—> [ 16 <u; bi<upBi T A(L40:])—> Ai(by),4;
bi<uybi<unBily 10 <u D A([£6:])—> Ay(b),A
bi<uy BT 10:]<u;DA([16;])—> Ay(5)),4;
Bl 40 ]<u;DA([20;])—> b;<u;DA(5:),4;
() BTl 20)<u;DA{([30))—> si<uDA(s:),A;
(8) EiliAi0)—> s;<u;DA(s)),A;
BBl A0)—> A (s;),4
B3, A{0)—> A (s:),A;

where (v) is the sequent A (0)—> |10]<u;D>A(|10]) and (8) represents

$;<u; As;)—>A(s)
$8:<u;DA(s:)—> Als))

i1l

1] \L

It is easy to verify that P is free cut free and in free variable normal form and that the
endsequent of P”’ is the same as the endsequent of P.

Step (2): Wherever a (d:right) inference occurs in P”, of the form

gl —> A A(2,t(D))
El— A,(Jy)AC,y)

We replace this inference with:

ET—> AA(2,HD))
E—> i(8) <o [¢](4) t(6)<o [t)(M),EL—> A,(Fy<o[t](@)A(C,y)
EET—>A,(Jy<a]t](@)A(C,y)
ET— A(Jy<o[t](R)A(,y)
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We also replace all the descendants of (Iy)A(2,y) in P by (Sy<o[t}(¥))A(Z,y) as far down
as possible: which means all the descendants either down to the end of P” or down to a
contraction inference with (3y)A(<,y) as principal formula.

Step (8): After doing Step (2) as often as possible, we handle contractions. Suppose the
modified proof contains

Er— A,(Jy<t)A(Cy),(3y<s)A(Cy)
ETr— A(dy)A(C,y)

We replace this by first deriving

and

We now use two cuts and a contraction to get:

Bl — A,(Jy<t)A(?,y),(Fy<s)A(C,y)

Er— A,Jy<as,t)A(C,y).(Jy<s)A(C,y)

Bl —> A,(Jy<as,t]))A(C,y),(Iy<a(s,t))A(C,y)
Er— A (Jy<ols,t])A(C,y

We now replace the descendants of the original formula (3y)A(<,y) as far down as possible
in the proof, just as we did in Step (2).
We iterate Step (3) as often as possible.

The end result of the above construction is a proof of (Jy<r)A(<,y) for some term r.

QED. o

The restriction in Parikh’s theorem that A be a bounded formula is necessary as the
following counterexample shows. Let A be the formula

A(z,y) = (V2)(|z[=2D]y|=2)

Then LKB proves (Vz)(dy)A(z,y). But there is no term r of Bounded Arithmetic such that
(V) Qy<r)A(z,y) is true.



Chapter 5

Computational Complexity of Definable Functions

This chapter is concerned with establishing the converse to Theorem 3.1, which stated
that any function in 0P=PTC(X?,) can be £ ~defined in SF. Theorem 3.1 was proved by a
straightforward construction of the X,’~formula from the definition of a 07-function. The con-
verse is a deeper result and its proof depends strongly on the cut-elimination theorem.

This chapter deals only with first order theories of arithmetic. Second order theories of
arithmetic are treated in Chapters 9 and 10.

Theorem 1: (The Main Theorem). Let i>1. Suppose Sg(VZ)(Iy)A(Z,y) where A(Z,y) is a
T formula and 7 and y are the only free variables of A. Then there is a term #(Z), a

¥ —formula B and a function g in 07 so that

(1) 53+ (V2)(Vy)(B(Z,y)>A(Z,v))

(2) S5+ (V2)(Yy)(V2)(B(Z,y)AB(Z,2)>y=2)
(3) S (va)3y<0)B@,v)

(4) For all 7, N = B(#,¢(7)).

Corollary 2: Suppose f is a function £;>~definable by .5’2". Then f is a 0/-function.

Corollary 2 is an immediate consequence of Theorem 1. The proof of Theorem 1 is the
rest of this chapter.

5.1. Witnessing a Bounded Formula.

Before we can prove Theorem 1, we need some preliminary definitions.
Definition: Suppose i>1 and A is a E,-"—formula and @ is a vector of free variables which

includes all the variables free in A. We define below a formula Witncss}'?(w,ﬂ) which is A
with respect to S5. The definition is by induction on the complexity of A.

(1) If A isa £2,- or a TI,},—formula, then we define

Witness ,{"W(w,ﬁ') <> A(d)

86
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Proposition 8: Let i>1. Let A be any X;*~formula with free variables among @. Then:

Witnessing a Bounded Formula

(2) If A is BAC, then we define

Witness ,{"_’.(w,ﬂ) <= Witness E’?(ﬂ(l,w),'d')A Witness é?(ﬁ(2,w),ﬂ)

(3) If A is BvC, then we define

Witnessj’?(w,'d') = Witnessé’?(ﬂ(l,w),?[)v Witness é"_’.(ﬂ(2,w),ﬂ)

(4) If A is not in £2,UMY, and A(@) is (V2<|s(d)|)B(d,2), then we define

Witness i*(w,d) <= Seq(w)ALen(w)=|s(d)|+1A
A(Vz<|s(@))) Witne.ssé'(%’,z)(ﬂ(z-l—l,w),ﬂ,:z:)

Thus w witnesses A (@) iff w=<1w,, ..., w},|> and each w; witnesses B(d,1).

(5) If A is not in T2,UTL2, and A is (32<(d))B(d,z), then we define

Witness 1%(w,d) <=> Seq(w)ALen(w)=2A8(1,w)<¢(@)A
A Witnessé’(%';)(ﬂ(z w),d,6(1,w))

So w witnesses A iff w=<n,v> where n<t and v witnesses B(d,n).
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(6) If A is not in T2,UM}, and A is B, then we define Witnessj’? by using logical
prenex operations to transform A so that it can be handled by cases (1)-(5).
Specifically, if A is 7(-B), ~(BAC), ~(BvC), ~(Vz<t)B or ~(3z<t)B then let A* be

B, (-B)V(=C), (~BA(—0), (Fz<t)(—B) or (Vz<t)(—B) respectively. Then

Witness j.’_“'(w,f[) <=> Wilness ‘;’.'_'.(w,ﬂ)

The idea behind defining Witness,{’? is that having a w such that Wz'tnessj'_".(w,ﬂ) is a

canonical way of verifying that A(@) is true. It is not difficult to see that (Jw) Witnessj’?(w,?i)
is equivalent to A(@) when A€X ). Indeed, this is provable by S3:

(a) S+ Witness i%(w,d@)>A(a)

(b) There is a term ¢4 such that
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S A(@)D(Fw<t,(a)) Witness 4%(w, a).
(c) Furthermore, there is a O—function g4 which is ¥ —definable in S5 such that

S} Witness f%(w,8)> Witness 4%(g 4(w),d)Ag 4(w)<t4().

Proof:

(a) This is easy to show by induction on the complexity of A.

(b) This is also proved by induction on the complexity of A. Cases (1)-(3) and (6) of the
definition of Witnessj’z are easily handled. The other two cases are as follows:

Case (5). A¢L,UMY, and A is (3z<t)B(d,z). We argue informally in Sg. Suppose
B(d,z) holds with z<t. By the induction hypothesis, we know that there exists a

-

v such that Witnessé’&i)(v,ﬂ,z). So let w=<z,v>. Then Witness {*(w,a) holds.
We can define

ta(d) = SqBd(max(tp(d,4(d)),4(@)),2)
and we are guaranteed that w<t,(@).
Case (4): A¢R UMY, and A is (Vz<|s()|)B(?,z). The induction hypothesis is that
Si+ B(@,b)>(Jw< t5(a,b)) Witness 2% (w,d,b).

Since the £'~replacement axioms are theorems of Sg (by Theorem 2.14), it follows
that

S§+ A(@)>(Qw< SqBd(o[tg)(a,s]),s)) Witness 2%(w,a).

(c) This is easily proved by induction on the complexity of A. The essential idea is that
sequences can be coded efficiently.

QED. O

énother crucial property of Witness is that it is relatively easy to tell whether
Witness 4°(w,€) holds for arbitrary w and . This is formalized by the next proposition.

Proposition §: Let i>1 and A(C)€X;?. Let p be the predicate defined by

p(we) <= Wz'tnessj”?(w,‘c')
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Then p is a Af—predicate (of the polynomial hierarchy).

Proof: This is easily proved by induction on the complexity of A. O

In particular, when i=1 p(w,Z) is a polynomial time predicate. This should not be
surprising since if A is a fixed T —formula it is certainly reasonable that a polynomial time algo-
rithm can check whether w and Z code an instantiation for A which satisfies A. Of course, this
polynomial time algorithm depends on A.

If T is a cedent we write /AT (respectively, YT) to denote the conjunction (respectively,

disjunction) of the formulae in I'. We adopt the convention that conjunction and disjunction
associate from right to left. Thus, if ' is A,B,C then AT means AA(BAC). We use the nota-
tion

<ay,...,0,>>

to denote <ay,<ag,...,<8,1,8,> " >>.

These conventions allow us to conveniently discuss witnessing a cedent. For example,
suppose T' is Ay, ...,A, and that w=<w,,...,w,>>. Then Witnesspi(w,d) holds iff
Witness,{}“(wj,ﬁ) holds for each positive j<n.

5.2. The Main Proof.

We shall prove Theorem 1 by proving a more general theorem:

Theorem 5: Let i>1. Suppose SjT' JI—>A,A and that each formula in TUA is a Tl formula
and each formula in ITUA is a II~formula. Let €y, --.,¢, be the free variables in
[,II—>A,A. Let G and H be the £,)~formulae

G = (ADAA{=C : CeA}
and
H = (VAWV{~cC : cell}.

Then there is a function f which is £,>~definable in Sy such that

(1) f is a O~function, and

—

(2) S3+ Witness C',.J?(w,'c'):) Witness j(f(w,?),2).



90 Computational Complexity of Definable Functions

Proof: of Theorem 1 from 5:

The hypothesis of Theorem 1 is that S5+ (3y)A(<,y). Hence, by Theorem 4.11 there is
a term t(¢) such that Sj+(Jy<t)A(,y). We now apply Theorem 5 by letting A be
(Jy<t)A(Z,y) and letting I=IT=A=§. Theorem 5 asserts that there is an f satisfying (1) and
(2). Furthermore this f is ¥ -definable in S5 by f(¢)=d <=> A(7,d) for some A€ex} such
that

S5+ (V2)(Ay) A =,y).
We need to find B and g satisfying (1)-(4) of Theorem 1. We define

9(@) = BA(L,1(@))

B(Zy) <= y=p(1.1()).

and

It now follows immediately from the definition of Witness and Proposition 3 that g
and B satisfy the conclusions of Theorem 1. Note that g is a O/—function since f is.

QED. O

Proof: of Theorem 5.

By Proposition 4.8, there is an Sj—proof P of I',lT—>A,A such that P is free cut free
and in free variable normal form. In particular, since every formula in the endsequent of P is in
Z;”UH,—I’, so is every formula appearing anywhere in P. Since all induction inferences in P are
L -PIND inferences, the principal formula of each cut inference in P is a ¥,'~formula.

To simplify notation and terminology we shall henceforth assume that IT and A are the
empty cedent. We can always fulfill this requirement by using (—:left) and (—:right) inferences
to move formulae from side to side. Furthermore, no essential cases are ignored under this
assumption since each inference has a dual; for example, (I<:left) is dual to (V<:right) and
(A:right) is dual to (v:left).

The proof of Theorem 5 is by induction on the number of inferences in the proof P of
I'—> A where P is assumed to be free cut free and in free variable normal form.

To begin, consider the case where P has no inferences and consists of a single sequent.
Then I'—> A must be either a BASIC axiom, a logical axiom or an equality axiom. In either
case every formula in '—> A is open. The definition of Witness was that

Witness {° <> A(d)

whenever A is open. Thus, conditions (1) and (2) of Theorem 5 are satisfied if we choose f to be
the constant zero function.
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The argument for the induction step splits into thirteen cases depending on what the
last inference of P is:

Case (1): Suppose the last inference of P is (—:left) or (—:right). These are “cosmetic” infer-
ences: see the discussion above about assuming that Il and A are empty.

Case (2): (r:left). Suppose the last inference of P is

BI*—>A
BACT*—A

Let D be the formula BA(AT*) and let E be (BAC)A(AT'*). The induction hypothesis is
that there is a O7—function g such that g is £,'~definable by S and

S3+ Witness 13"?(11),?):) Witness "‘z(g(w,?),_c').
Let h be the function defined by
h(w) = <B(1,8(1,w)),A(2,w)>.
Then A€l and

S#+ Witness 5%(w,2)> Witness Fo(h(w),?)

follows immediately from the definition of Witness. So define f(w,?) to be g(h(w),€). Then
feny, f is Tl-definable and

S+ Witness 1;4?( w,C)D Witness\;'z( f(w,¢),e)
which is what we needed to show.
Case (8): (v:left). Suppose the last inference of P is

BI*—>A CI*—=A
BvCI*—A

Let D be the formula BA(AT*), let E be CA(AT*) and let F be (BvC)A(AT*). By
the induction hypothesis, there are £;>~definable functions g and A in O/ such that
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S§+ Witness I;’?(w,?)j Witness\"/i( 9(w,©),?)
and 3 [ e d e
Sgt+ Witnessg*(w,@)D Witnessy;, (h(w,?),T).
We define f as

g(<ﬁ(1:ﬁ(1’w))vﬂ(2:w)>’?) lf Wztnessl;’?(ﬂ(l,ﬂ(l,W)),E’)
f(we) = h(< B(2,8(1,v)),8(2,w)>,¢) otherwise

The idea is that if w witnesses (BVC)A(AT™) then either B(1,8(1,w)) witnesses B or
B(2,8(1,w)) witnesses C. In the former case, g is used to find a witness for VA; in the
latter case, h is used. This can easily be formalized in S, so

. —
c

Si+ Witness j“(w,¢)> Witneaa\;'i( f(w,?),¢).

Now [ is a O2-function since g and k are and by Proposition 4. Also, f is X;’~definable by
S since g and h are and since Witnessg® is a Al -predicate.

Case (4) (3<:left). Suppose the last inference of P is

a<t,B(a)T*—>A
(3z<t)B(z),*—>A

Of course, @ is an eigenvariable and must not appear in the lower sequent. Let D be the
formula a<tA(B(a)A(AI'*)), and let E be (Fz<t)B(z)A(Ar'*). By the induction hypothesis,
there is a X ;>~definable function g€/ such that

Si+ Witnesslg'a‘(w,?,a)j Witness\;’z(g(w,?,a),'é’).

(Note that we can omit the variable ¢ from the superscript on the righthand side of the
implication since a does not appear free in A.)

First consider the case where (3z<t)B is not in X2,. Define the function & by

h(w) = <0,8(2,8(1,w)),B(2,w)>.

By the definition of Witness we have
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SSr Witness 2%(w,8)> Witness y>%(h(w),2,0(1,6(1,w))).
So define f by
flw?e) = g(h(w)e,B(1,6(1,w))).
Thus f is a Df-function, f is % -definable by S5 and
S5+ Witness #%(w,2)> Witness < (f(,2),2).
The case where (3z<t)BEX?, is even easier. We now let

h(w) = <0,0,8(2,w)>

f(w?) = g(h(w),, (pz<t)B(2) ).

and
Note feOf since (uz<t)B(z) can be computed either by using a binary search or, when
(3z<t) is a sharply bounded quantifier, by an exhaustive search.

Case (5). (V<:left). Suppose the last inference of P is

B(s)I*—>A
s<t,(Vz<t)B(z)[*—> A

We shall assume that s<t is in I" (a similar argument works for s<t in I1.) Let D
be the formula B(s)A(AI'*), and let E be s<tA(Vz<t)B(z)A(AT*). The induction
hypothesis is that there is a L,’~definable function ¢ in 07 such that

Si+ Witness 5’?(w,?)3 Witness\;’i(g(w,_c'),'c’).

First consider the case where (Vz<¢)B(z) is not in £2,UM},. Then (Vz<t) must
be a sharply bounded quantifier with ¢t=|r| for some term r. Define the function A by

h(w,©) = <B(s(c)+1,8(1,8(2,w))),5(2,8(2,w))>.
By the definition of Witness, we have
Si+ Witness 5(w,€)> Witness °(h( w,©),7).

So define f(w,¢)=g(h(w,¢),¢). It is straightforward to see that f satisfies the desired condi-
tions of Theorem 3.
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The case where (Vz<t)B(z)eZ UM}, is easier. We now set h(w,©) equal to
<0,3(2,8(2,w))> and otherwise proceed as before.

Case (6): (D:left) and (D:right). We omit these cases: see (v:left) and (v:right).

Case (7): (v:right). Suppose the last inference of P is

I'— B,A*
I—> By C,A*

Let D be the formula Bv(VA*). By the induction hypothesis, there is a
¥ )—~definable function g in 07 such that

Sk Witness;'\’;'f‘(w,'c’):) Witnesslg’?(g(w,'c*),_c’).
Define A& by
h(w) = <<B(1,w),0>,6(2,w)>
and let f(w,€)=h(g(w,c)). Then it is easy to see that f satisfies all the desired conditions.

Case (8): (A:right). Suppose the last inference of P is

I'— B,A* r-— c,A*
I'—> BAC,A*

Let D be the formula Bv(VA*), let E be Cv(VA*) and let F be (BAC)W(VA*).

The induction hypothesis is that there are 0f-functions g and h which are T ~definable by
Ss such that

SS+ Witness ;;’I_‘f‘(w,'c’):) Witness 2%(g(w,©),%)
and . g
Syt Witness y(w, ) Witness g (h(w,2),2).

We define the function k as

v if Witness\}’z.(v,?)
k(v,we) =

w otherwise
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By Proposition 4, k is a 0—function; also, k is ¥;>~definable by S since Wz'tness\;’z. is a
A-formula. Now define f by

flwe) = <<B(1,9(w,2)),A(1,h(w,c))>,k(B(2,9(w,c)),B(2,h(w,€)),c)>.

Clearly f is E,—b—deﬁnable by S2i and is in O/, since g, h, and k are. Also, it is easy to see
that

S¢+ Witness l;\[_f.(w ,C)D Witness p':’?(f(w,?),_c’).
Case (9): (3<:right). Suppose the last inference of P is

I*—> B(s),A*
s<t,I*—> (Jz<t)B(z),A*

We shall assume that s<t is in T' (a similar argument works for s<¢ in IT). Let D
be the formula B(s)v(VA*), let E be s<tA(/Al'*) and let F be (3z<t)B(z)v(VA*). The
induction hypothesis is that there is a O—function g which is X;*~definable in S5 such that

S4+ Witness /'\’f.( w,C)D Witness 5’?( 9(w,©),0).

By the definition of Witness,

—

St~ Witness £°(0,2)> s <th Witness i5.(8(2,w),2).
So define f to be |
flwe) = <<s(2),8(1,9(B(2,0),€)>,8(2,9(A(2,0),€))>.
Then f is £,'~definable by SJ, f is a Of~function and
Si+ Witness }}?( w,C)> Witness F"?( f(w,?),2).
Case (10): (V<:right). Suppose the last inference of P is

a<t,'—> B(a),A*
—(Vz<t)B(z),A*

where a is the eigenvariable and does not appear free in the lower sequent. Let D be the
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formula a<tA(AT), let E be B(a)v(VA*) and let F(¢,d) be (Vz<d)B(z)v(VA*). The
induction hypothesis is that there is a 0—function g such that

Si Witness ’“(w,c,a)D WztnessEc *(g(w,c,a),¢,a).

First, consider the case where (Vz<¢)B(z) is not in I.;UMlY,. So (Vz<t) is shar-
ply bounded with ¢=|r| for some term r. We define the function k by

v if Wztnesst.(v 7)
k(v’w ,?) =

w otherwise

We define f by the following limited iteration scheme:

p(w,e,0) = <<B(1,9(w,c,0))>,8(2,9(w,70)>

p(w,e,m+1) = <B(1,p(w,E,m))*B(1,9(w,¢,m+1)),
k(8(2,p(w,¢,m)),0(2,9(w,c,m+1)),e)>

f(we) = p(<O,w>7)|r|)
By Proposition 4, k€0 and hence fe0/. It is straightforward to see that

Si+ Witness D"?(w,'c*):) Witness }’?'d( p(w,2,0),2,0)
and .
Si+ Witness i'*(w,2)A Witness c “p(w,¢,d),¢,d)>

> Witness d( (w,2,d+1),2,d+1).
It follows by £-LIND that
SiH Witness;\f(w,c)j Witness 2%(f(w,2),2,t).
Hence,

Sir Witness,\r w,C)D thnessF(? y(f(w,2),7)

which is what we needed to show.

Second, consider the case where (Vz<¢)B(z) is in B}, UH If A(%,a) is any one
of the formulae a<t, B(a) or (Vz<t)B(z) then thness'”(wc a) is defined to be
equivalent to A(Z,a) itself. Let h(w,©) be the Of-function (pz<t)B(z) and let
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f(w,?)=9¢(<0,w>,h(w,¢)). Then f satisfies the desired conditions.

Case (11): (Cut). Suppose the last inference of P is

' BA BI'—>A
r—-A

Since P is free cut free, B must be a £;'~formula. Let D be the formula Bv(VA) and let E
be BA(AT'). The induction hypothesis is that there are O0F—functions ¢ and h which are
¥ ~defined by S5 such that

Sik Witness;.\’r_'f‘(w,_c')a WitnessD"'?(g(w,_c'),E')
and

S,ﬁ— Witnessé’?(w,?:')D Witness\",’i(h(w,?),?).

We define the function f as

3(2,9(,”,73)) if Witness\}’Z(ﬂ(2,g(w,?)),?)
h(<B(1,9(w,@)),w>,c) otherwise

By Proposition 4, fe0/, and since Witness\",’z is A;> with respect to S5, f is = *~defined by
S4. Also, it is easy to see that

S5+ Witness I'.\’I?(w,_c')D Witness\;’g( f(w,©),9).
Case (12): (E3-PIND ). Suppose the last inference of P is

B(|1a])T*—> B(a),A*
B(0),T*—> B(¢),A*

where a is an eigenvariable and must not appear in the lower sequent. We shall only con-
sider the case where B(0) is in I' and B(t) is in A. (If this is not the case, then
Bex b UMY, and the argument is much simpler.)

The general idea of the argument for Case (12) is to treat the X,*~PIND inference
as if it were [t|=1 cuts. So, in effect, Case (12) is handled by iterating the method of Case

(11).
Let D be the formula B([1a]JA(AT™), let E be B(a)v(VA*), let F be B(O)A(AT*)
and let A(<,d) be B(d)v(VA*). The induction hypothesis is that there is a Of~function ¢
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such that
S Witnesslg'?’“(w,?,a)j WitnessE"-’_c.’“(g(w,E',a),‘c’,a).
We define Of—functions k¥ and A by

v if Witness\i o(v,2)

k(v,w,c) = w otherwise

h(v,w,_C',a) = g(<,3(1,1)),ﬂ(2,tl))> y?:a)'

By Proposition 3(c) there is a term t4 and a Of-function ¢ which is ¥ J-definable in S
such that

Sir Witness $%%(w,¢,d)> Witnessj’ad(q(w),?:’, dAg(w)<t4(2,d).
Now define f* by the following limited iteration scheme:

p(w,e0) = ¢(<p(1,w)0>)
p(w,e,m+1) = ¢(<B(1,h(p(w,c,m),w, ¢ MSP(t,|t|-(m-+1)))),
k(B8(2,p(w,T,m)),B(2,h(p(w,¢,m),w, e, MSP(t,|t|+(m+1)))),c)>)

f*(w}_c”u) = p(w}?7|ul)'

This is a valid limited iteration definition since the use of the function ¢ gives a provable

polynomial space bound on p; namely, p(w,e,m)<o(t4](c,t). Thus f* is a Of-function
which is X;~definable in S .

Now it is easy to see that

Sit Witness #%(w,)> Witness 4594 f*(w,2,0),2,0)
and

S§1 Witness #*(w,@)A Witness {%%(f* (w,@,| 2u]), 8, MSP(t,|t|~ | 2u}[)) >

> Witness #5(f*(w,2,u,),€, MSP(t,|t| = |u]).

So by E,-”—PIND with respect to u,
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Ss+ Witness }?( w,€)> Witness ,{"?’d( *(w,2,8),2,t).

So define f(w,¢)=f*(w,?,t) and we are done.

Case (13): (Structural inference). The cases where the last inference of P is a weak inference,
an exchange inference or a contraction inference are all trivial and we omit their proofs.

QED. O

5.3. The Main Theorem for First Order Bounded Arithmetic.

Combining Theorem 1 with Theorem 3.1 we get:

Theorem 6: Let i>1. Suppose A is a £;}~formula and that S/ (V2)(3y)A(Z,y). Then there is a
term ¢, a £;*~formula B and a function f€07 such that

(1) S+ (Y2)Fy<t)B(Z.y)

(2) SF+(Y2)(Vy)(B(Z,y) DA y))

(3) S5+ (VE)(Vy)(V2)(B(Z,y)AB(Z,2) D y=2)
(4) For all ®#, N = B(7,f(7))

Conversely, if fe(7, then there is a term ¢ and a ¥,'~formula B such that (1), (3) and (4)
hold.

Corollary 7: Let i>1. A function f is £;'~definable in S4 iff fe07.
For the special case 1=1, we have

Corollary 8: The T,)-definable functions of S4 are precisely the polynomial time computable
functions.

We can restate Theorem 6 in terms of predicates instead of functions as follows:

Thcqrcm 9: Let i>1. Suppose A is a Xl formula, B is a [T ~formula and that
Sg+- A(d)« B(@). Then there is a predicate Q€A such that for all 7,

Q@) <> NEA(R) <= N=B(®).
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Conversely, if QEAP, then there are formulae A and B so that all of the above
holds. :

Proof: This is an immediate consequence of Theorem 6. It is proved by noting that the function

0 if A(@

1 otherwise
is ©)~definable in Sy by the equation
@)=y = [y=0AA(@)]v[y=1A-B(2)].
Thus f€0f and hence A represents a predicate in P.o

Recall that in Chapter 1 we characterized the NP predicates as those expressible by

Zlb—formula,e and the co—/NP predicates as those expressible by Hlb—formula,e. Hence in the
case 1=1, Theorem 9 becomes:

Corollary 10: Let A(d) be a formula such that S} proves A is equivalent to a £~ and to a
M~formula (i.e., So proves that A€ NPnco-INP). Then A(@) is a polynomial time predi-
cate (ie., A is in P).

So any predicate which is Sg-provably in NPnco-INP is in P.

5.4. Relativization.

The results proved above can be relativized by introducing oracles. For this two things
must be done: firstly, enlarge the language of Bounded Arithmetic to include new function sym-
bols for oracles, and secondly, use oracle Turing machines for computations.

We relativize the theories Sy in the following way:

Definition: Let k>1 and let p(ny,...,n;) be a suitable polynomial. For each j>O0, 0 is a k-
ary function symbol. The bounding aziom for 5/} is

I'ljf’k(al) . ':ak)l < p('al') v )Iakl)'
Definition: Let "jf,lkp - ,nj::‘k” be a sequence of function symbols. We write 7 as an abbrevia-

tion for that sequence. The theory Sj(7) is defined to be the theory with the language of

Bounded Arithmetic plus the symbols 'Ij:,lk,: - ,r,ji:'k" and with the following axioms:
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(1) the BASIC axioms
(2) for each 1<t<n, the bounding axiom: |nj':"k‘(ﬂ)|§p,(|3|)
(3) the £(7)-PIND axioms.

Recall that in Chapter 1 wf? was defined to be the set of k-ary functions with growth
rate bounded by the polynomial p.

Definition: If n/, is a function symbol then the function space associated with 0k is wf.

We can relativize Theorem 1 as follows:

Theorem 11: Let 77 be a vector of function symbols and let 63=w:l‘, c ,wkp"‘ be the vector of
function spaces associated with the n’s. Let ¢>1 be fixed.

Suppose S7(7)(V2)(3y)A(Z,y) where A is a X;}(7)-formula and Z and y are the
only free variables in A(Z,y). Then there is a term ¢(2), a £;*(7})-formula B and a functional
g in 07(®) so that

(1) Sg()-(V2)(Vy)(B(2 ¥)2A(Z,y))
(2) S2(@) - (V2)(Vy)(Vy)(B(Z,9)AB(Z,2) Dy=2)
(3) S#()+ (V2)(3y<t()B(Z.y)

(4) For all %eN" and all oracles €y, . .. 2, with Q6w for all 1<i<n,

(N )= B(7,g(7 51)).

Proof: The entire proof of Theorem 1 including Theorem 5 can be relativized. This yields a
proof of Theorem 11. O

Corollary 12: Suppose A and B are A-formulae with respect to 83, q is a suitable polynomial
and that

S+ (V2)(3y <2700 B(z,5) 5(V2)(3y)A(2,).
Then there is a functional g€0’(w,?) such that whenever flew,’,

(N Q)= (V2)B(2,£)(2)) >(Vz)A(z,9(2,02)).
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Recall that the condition that g€0f(w,’) means that g can be computed by a deter-
ministic, polynomial-time, oracle Turing machine M, where the function oracle (2 used by M, is
required to satisfy |Q(z)|<¢(|z]) for all 2.

Proof: By the hypothesis of the corollary,
So(nf) - (V2)B(z,m(2))o(Vz)(3y)A(z,y).
So,

S (mf) - (V2)3y) [A (2, 9)v-B(y.ny(v))] -

Then, by Theorem 11 there is a g€0f(w)!) such that, for all z and all Qew/, g(z,Q) is equal to
either a y such that A(z,y) holds or a y such that B(y,Q(y)) fails.

QED. O

Definition: Let f be a unary function symbol. Then PHP(f) is an abbreviation for the formula
a#Z0A(Vy<2a)(f(y)<a)D(Fy<2a )(F2<2a )f(y)=/(z)ry#2).

So PHP(f) expresses a pigeon hole principle stating that 2-a pigeons can not sit in a holes.
Note that a appears as a free variable in PHP(f).

Corollary 18: S}(f)+ PHP(f).

Of course, S7(f) means the theory extending Sg' with the new function symbol f and
the 2(f)-PIND axioms.

Proof: Suppose the corollary is false, then let ¢ be the polynomial ¢(n)=n. Then

521(711?1)F—PHP(’71?1)-

Hence,

S3(nfy)F a7#0>(Fy <2a }(I2<2a) [n4(y)> av(n(v)=nfa(2)Ay7#2)).

So by Theorem 11 there is an fe(f(w,’) such that for all a€N and all oracles Qcw),
f(a,Q)=<y,z> where y and z satisfy the above condition.

But this is absurd. [ is computed by a polynomial time, oracle Turing machine My, so
M(2,Q2) has run time <p(|z|) for all z and some polynomial p. Choose z, large enough so that
29> p(|zo/)+2. Then define 4 so that the following conditions hold:
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If My(z0,Q) first queries its oracle for the value of {2g(m) on the n-th step where
m<2-zy, then set Qy(m) to be equal to the greatest number j<min(m,zy-3)
such that no earlier oracle query of M/(z,()o) yielded the answer j. Such a j
will always exist.

If M{(20,92%)=<yo,20> and if Qo(yo) and/or Qy(2o) have not yet been defined, set
Qo(yo)=20-1 and/or set Qg(z0)=2¢-2.
For all other values of m, set {ly(m)=0.

QED. O

Corollary 13 states that Sy(f) can not prove the pigeon hole principle PHP(f). On the
other hand, Alex Wilkie [30] showed that Sy(f) can prove PHP(f). Examining Wilkie’s proof
closely yields the following theorem:

Theorem 14: (Wilkie [30]). TJ2(f)- PHP(Y).
Combining Wilkie’s theorem and Corollary 13 gives

Corallary 15: T(f) is not equivalent to Sg(f).

It is an open question whether S3' is equivalent to T or even if Sy is equivalent to S,.



Chapter 6

Cook’s Equational Theory PV

PV is an equational theory of polynomial time functions introduced by Cook [6]. PV
contains a schema which allows function symbols to be introduced for each polynomial time
function and an induction schema which is essentially equivalent to the PIND axioms applied
to open formulae of PV.

Qur earlier results have shown that 5'21 can Zlb—deﬁne precisely the polynomial time
functions. Thus it is not too surprising that S5 and PV are closely related. We shall see below
that, after making allowances for the fact that they have different languages, Sy and PV have
the same £, —formulae as theorems.

6.1. Preliminaries for PV and PV1.

Like S5, the universe of PV is the nonnegative integers. PV codes integers by dyadic
coding, as used by Smullyan [25]. An integer n is represented by the string dydy_; - - - dy where
E

n=.§02"-d,- and each d; is either 1 or 2.
13
PV has two unary functions s; and s, which are helpful for handling dyadic notation.
They are defined by
sildpdpy - - - do) = dpdyy - - - dot

Le., s;(z)=2z+1.

PV has other initial function symbols in addition to s; and sy, see [6] for details. PV
can also introduce new function symbols by a schema which Cook calls limited recursion on
notation, but in the terminology of this dissertation is more appropriately called limited stera-
tion on notation. Suppose g, hy, hg, k; and k, have already been introduced as PV-function
symbols. Then we can define a new PV-function symbol f by

f(0,9) = g¢(¥)
f(s,-(a:),?) = h,-(a:,ﬂ,f(a:,ij))

provided that PV proves

104
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|hi(2,9,2)la < |2la + |kdz,9)l4

for 1=1,2. Here we are introducing |z|; as a function whose value is equal to the length of the
dyadic code for z, namely |z|;=|logy(z+1)]. The fact that this inequality is expressible in PV is
proved by Cook (6].

It is clear that limited iteration on notation as defined above is similar to the limited
iteration defined in Chapter 1. Hence, by Cobham [5], a function symbol for each polynomial
time function can be introduced in PV.

PV has only one predicate symbol, namely = (equality). However, we shall follow the
convention that a function symbol can be interpreted as a predicate by letting a nonzero value
denote True and a zero value denote False. For example, Cook [6] defines the function
PROOF so that

1 if m is the Gédel number of an equation and
PROOF (m,n) = n is the Godel number of a PV—proof of m.
0 otherwise

In [6] it is asserted that many function symbols can be introduced in PV. In addition
to the function symbols defined there, PV has symbols for the functions S, +, -, #, |z| and |1z]

as well as functions for handling sequences; namely, B(¢,w), the pairing function
(wiw) > <wywy>
and the sequence extension function *
<@y, ... ,ap>%a = <Gy, ...,08p01>.

(Our definition for * conflicts with the notation in [6]. Our function * is completely distinct

from Cook’s.) Furthermore, PV can prove all the simple properties of these functions; in partic-
ular, PV can prove all the BASIC axioms.

The syntax of PV can be expanded to allow quantifier free logical formulae instead of
just equations. Cook [6] gives a detailed description of how this may be done and he calls the
enlarged theory PV 1. We shall not distinguish between PV and PV 1 notationally and we
shall continue to refer to the enlarged system as PV.

We also enlarge the syntax of PV to allow the predicate symbol <. Of course this is
just an extension by definitions: z<y denotes the formula LE(z,y)#0 where LE is the
PV—function symbol defined in [6] so that LE(z,y)=1 if <y and otherwise LE(z,y)=0.

In addition to the binary length function |z|, PV can define the dyadic length function
|z|4 by limited iteration on notation:
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loj, = O
|s1(2)|la = lsa(2)la = |2|at+1

PV can prove the simple properties of length functions including the formulae |z|>|z|g,
|z|<|z|4+1, and |z+1|=|2|4+1.
PV defines function symbols corresponding to the logical operators:

0 if 270
NOT(z) = 1 if 2=0

0 if =0 or y=0
AND(z,y) = 1 otherwise

OR(z,y) = NOT(AND(NOT(z),NOT(y)))

We can, in effect, use sharply bounded quantifiers in PV by introducing new function
symbols which have a similar effect:

Definition: Let P(z,Z) and F(Z) be PV-function symbols. Then
Q@) = (V2<|F@))P(2,7)

is a PV -function symbol so that

Q@) = { ! if (V2<|F(2)))(0#P(,2))

0 otherwise

Q(7) is defined by the following limited iteration on notation scheme:
f(0,2,z) = NOT(NOT(P(0,%)))
f(si(y)ﬁ!)z) = AND(f(y,?,Z),OR(P(ISl(y)“,?),LE(Z,ly'd)))

Q@) = f(s1(F(2))2,|F(Z))

Also,  (3z<|F(2)|)P(z2) is defned to be the PV-function  symbol
NOT((V2<|F(2)|)NOT(P(z2,2))).
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Proposition 1: Let G(Z,y) be any PV-function symbol. Then there is a PV—function symbol
F(Z,y) so that

PV B(0,F(Z,y))=|y|[+1n0A4(Vz<|y|)(G(2,2)=A(z+1,F(,y))-

Proposition 1 states that PV satisfies an analogue of the A-replacement property, in
that the value of F(Z,y) is <G(Z)0),...,G@,|y|)>.

Proof: Let H(Z,y,z) be the PV—function symbol defined by the following limited iteration on
notation:

H(?,y,O) = <G(3’,0)>
H(Z,y,w}G@ |w|+1)  if |w]i<|y]
H(i’,y,s,-(w)) = H(i',y,w) otherwise

Now set F(Z,y)=H(Z,y,5,(y)).O

8.2. S; and the Language of PV,

In order to state the conservation results concerning Sg and PV, we must enlarge the
language of Sg to include the language of PV. First we note:

Proposition 2: S can X,’—define all the functions of PV.

Proof: This is proved just like Theorem 3.1. Indeed, there is no substantive difference between
limited iteration and limited iteration on notation. O

Definition: Lpy is the set of non-logical symbols of PV. Let S3(Lpy) be the theory containing
Sy and the language Lpy. In addition, for each function symbol F in Lpy, S¢(Lpy) has a
¥ *~defining axiom for F which defines F in terms of its limited iteration definition.

In other words, S{Lpy) is S3 plus symbols for the X,’~defined functions of PV.
Proposition 2 guarantees that Sy(L py) can be so defined.

It is immediately obvious that S(L py) is a stronger theory than PV. This is because
the axioms of PV are all theorems of S3(Lpy). In particular, the induction on notation axioms
of PV are AY~PIND axioms of So(L py).

We shall need the following axiomatization of Sg3(L py):
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Definition: S3(PV) is the theory with the same language as S)(Lpy) and with the following
axioms:

(1) The open BASIC axioms of S,
(2) The (L py)-PIND axioms,

(3) The following axioms defining the initial function symbols of PV (compare with
(6]):
sy(z)=2z+1
so(2)=22+2
TR(0)=0
TR(s(z))=z
rze0=2
zes(y)=s{zey)
z®0=0
1Qsy)=ze(zQy)
LESS (z,0)=z
LESS (z,3(y))=TR(LESS (z,y))

where 1=1,2 and where we are using @ to denote Cook’s function * since *
has already been used for other purposes.

(4) Whenever f is a defined function symbol of PV, introduced by equations (2.2)-
(2.4) of Cook [6], S(PV) includes the axioms

f(0,9)=¢(¥)
J(5:(2),9)=hi(2,9./(2,9))

Proposition 8: S3(Lpy) and S, (PV) are equivalent theories.

Proof: It is clear that SJ(Lpy) is stronger than SJ(PV). For the converse, it is necessary to
show that S7(PV) proves that every f€L py satisfies the £,*~defining axiom f(Z)=y<=>A/(Z,y)
by which f is defined in S(Lpy). This is easily shown as follows: we can introduce a new func-
tion f” in S (PV) by defining f* to satisfy the T, -defining axiom [ @)=y<=>A[Zy). Then
this theory SJ(PV,f’) is a conservative extension of S3(PV). It is now easy to prove by PIND
that (VZ)(f(Z)=/"(F)), and hence f satisfies the defining equation for f*. O

We next state the main theorem of this chapter. (This theorem was independently
conjectured by Stephen Cook.)
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Theorem 4: Let t=u be any equation of PV. Then SJ(PV)|-t=u iff PV} t=u.

One direction of this theorem is immediate from our remark above that S3(Lpy) is
stronger than PV. To prove the converse we shall show below that the results of Chapter 5 can
be partially formalized in PV.

6.3. Witnessing a E:’-Formula.

For the sake of avoiding excessive subscripts, we use L(PV) and I}(PV) as
synonyms for ©}(L py) and I;*(L py) from now on.

In order to handle £(PV)-formulae in the theory PV, we need a way for PV to
assert that a given I(PV)-formula is true.

Definition: Let A be a £ (PV)-formula and @ be a vector of k free variables containing all the

free variables of A. WITNESS,{_’. is a (k+1)-ary function symbol of PV defined by induction
on the complexity of A as follows:

(1) If A is atomic,

1 if A(@)

0 otherwise

WITNESS {(w,8) = {

(2) If A is BAC,

WITNESS §(w,8) = AND(WITNESSE(8(1,0),3), WITNESS &(8(2,w),3))
(3)If A is BvC,

WITNESS {(w,@8) = OR(WITNESSS(8(1,w),a), WITNESS &(8(2,w),2))
(4) If A is (Vz<|t|)B(z,d) where B(b,2)cL(PV), then

WITNESS (w,d) = (Vz<|t|) WITNESS}*(8(z+1,w),2,3)

(5) If A is (3z<t)B(z,d) where BEXL}(PV), then

WITNESS }(w,@) = WITNESSE*(8(2,0),8(1,w),@)AB(1,w)<t
(6) If A is =B then we transform A by logical operations so that Cases (1)-(5) apply.

Specifically, if A is —~(=B), ~(BvC), =(BAC), ~(Vz<t)B or =(3z<¢)B, then let
A* be B, (-B)A(—0), (=B)V(~C), (3z<t)(=B) or (Vz<t)(~B) respectively.
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Then
WITNESS f(w,d) = WITNESS %(w,73).

Definition: Let A(@) be a T }(PV)-formula. We say that PV essentially proves (VZ)A(Z) iff
there is a PV—function symbol F such that

PV WITNESS §(F(@),8)70.

We shall see below that if A€X(PV) and SJ(PV)i-(V2)A(Z) then PV essentially
proves (VZ)A(Z).

Proposition 5: Let A(b,d) be a (PV)-formula and let B(@) be A(¢(d),@) for some term ¢.
Then PV proves

WITNESS §(w,2)#0 > WITNESS }*(w,t(@),d)50.

Proof: by induction on the complexity of A. O

Proposition 6: Let A be a £,)(PV)-formula and let @ be a vector of free variables containing all
the free variables of A. Then there are functions MINWIT § and WITSIZE § definable by
PV such that

PV MINWIT (v)< WITSIZE (@)
and
PV WITNESS £(w,3)#0 > WITNESS {(MINWIT §(w),@)70.

So MINWIT ? maps any witness for A(@) to a minimal witness; the Godel number of

-

the minimal witness is bounded uniformly by WITSIZE }(@).

The proof of Proposition 6 is by induction on the complexity of A. The crucial point
of the proof is to show that sequences can be coded efficiently. For example, any sequence
<ny,...,mup> has some Go&del number less than t,(n,,...,n,) for some fixed term ¢,,.
Although we have not specified the details of PV’s 8 function, for any reasonable definition of
the 8 function Proposition 6 is valid.
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6.4. The Main Proof, revisited.

We next state and prove a slightly stronger version of Theorem 5.5. All the conven-
tions of §5.2 apply here; in particular, SHPV) is a natural deduction theory.

Theorem 7: Suppose Sg(PV) proves the sequent I',TI—>A,A and that each formula in TUA is a
2 (PV)formula and each formula in TTUA is a M} (PV)formula. Let cy,...,c, be the free
variables in I')JT—>A,A. Let X and Y be the formulae

X = (AP)AA{=C : CeA}

Y = (VaWV{=C : cell}.
Then there is a PV-function symbol F such that

PV - WITNESS{w,?)#0 > WITNESS {(F(w,),2)70.

It is immediately obvious that Theorem 4 follows from Theorem 7, since when A is
atomic,

PV - WITNESS }(w,8)#0 A(3).

Proof: of Theorem 7.

By Proposition 4.8, there is a free cut free S{(PV)-proof P of I',TI—>A,A which is in
free variable normal form. Every formula of P is in £ (PV)UII(PV) and each cut formula of
Pisa Zlb(PV)—formula. As in the proof of Theorem 5.5, we assume without loss of generality
that IT and A are empty. The proof is by induction on the number of inferences in P.

To begin the proof, suppose P has no inferences. Then P contains a single sequent
which must be either (a) an equality axiom, (b) a BASIC axiom, or (c) one of the axioms of
S(PV) defining an initial or defined function symbol of PV. Since all of these axioms are open
and are theorems of PV, it is easy to see that the theorem holds in this case.

Now suppose that Theorem 7 holds for proofs with <= inferences and that P has n-+1
inferences. The argument splits into many cases depending on the last inference of P. We shall

number the cases as in the proof of Theorem 5.5. Since the proof parallels closely the proof of
Theorem 5.5 we shall omit a lot of the cases.

Case (1). (—:left) and (—:right). These are “cosmetic” inferences.
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Case (2): (A:left). Suppose the last inference of P is:

BI'*—>A
BAOT*— A

Let D be the formula BA(AT*) and let E be (BAC)A(AT*). The induction
hypothesis is that for some PV—function symbol G,

-

PV WITNESS §(w,2)#0> WITNESS\j ,( G(w,?),8)40.

Let H be the PV-function symbol defined so that H(w)=<p(1,8(1,w)),A(2,w)> and let
F(w,¢)=G(H(w),¢). Then

PV WITNESSE(w,¢)0> WITNESS §(H(w),2)70

and
PV WITNESSg(w,¢)7#0> WIT NESS\;A(F(w,€),E’)7éO

which is what we wanted to show.
Cases (8)-(7): Omitted.

Case (8): (A:right). Suppose the last inference of P is:

I'—> B,A* I— C,A*
I'—> BAC,A*

Let D be the formula Bv(VA*), let E be Cv(VA*) and let F be (BAC)v(VAY).
The induction hypothesis is that there are PV-functions G and H such that

PV~ WITNESS f(,¢)70> WITNESS £(G(w,€),5)#0
and
PV WITNESS f (0,2)70> WITNESS £(H(w,?),)70.

Define the PV—function K so that

v if WITNESS],.(v,€)#0

K(v,w7©) = w otherwise
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and F so that

It is easy to see that
PV WITNESS £ (w,2)70> WITNESSE(F(w,%),€)740.
Case (9). (3<:right). Omitted.
Case (10): (V<:right). Suppose the last inference of P is:

a<|r|,l—> B(a),A*
I'— (Vz<|r])B(z),A*

where a is the eigenvariable and must not appear in the lower sequent. Let D be the for-
mula a<|r|A(AT), let E be B(a)v(VA*) and let C be (Vz<|r|)B(z)v(VA*). By the induc-
tion hypothesis there is a PV-function G so that

PV WITNESS§*(w,,a)#0> WITNESS £*(G(w,,a),¢,a)50.

By Proposition 1, there is a PV-function H such that PV proves
B(0,H(w,2))=Ir|+1A0A4(Vz<|r|)(B(z+1,H(w,))=B(1, G(w,2,2)).

We define the PV—function symbol J as follows by limited iteration on notation:

J(w,2,0) = B(2,G(w,?,0))

J(w,€,z) if WITNESS\,(J(w,é,2),€)#0

Hwsd2) =) go,Glwzsia)l)  otherwise

Then define F(w,¢)=<H(w,?),J(w,¢,5,(r(¢)))>. PV can use an induction on notation
argument to prove

WITNESS f(,2)70> WITNESS {(F(<0,w>>,7),€)70.
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Case (11): (Cut). Omitted.
Case (12): (£-PIND ). Suppose the last inference of P is

B(|1a])I*—> B(a),A*
B(0),I*—> B(t),A*

where the eigenvariable ¢ must not appear in the lower sequent. We only consider the case
where B(0) is in T and B(¢) is in A.

Let D be the formula B([1a|)A(AT*), let E be B(a)v(VA*), let C be B(0O)A(AT™)

and let A be B(t)v(VA*). By the induction hypothesis, there is a PV—function G such
that

PV WITNESS 5%(w,?,a)#0> WITNESS&*(G(w,?,4),Z,a)50.

Le¢ TRM be the PV-function satisfying TRM(z,i)=MSP(z,|z|~i).  Let
J(v,w)=<p(1,w),B(2,v)>. Let H be the PV-function defined by the following limited
iteration on notation:

H(w,2,0) = MINWITS%(G(w,2,0))

H(w,?,z) if WITNESSy,,J(6(2,H(w,%,2)),¢)#0
or if |z|4>|¢(F))
MINWIT§*(G(J(w,H(w,%,2)),¢, TRM(t(2) |s (z)|)))

otherwise

H(w,C,84(2)) =

This is a valid limited iteration on notation definition since
PV H(w,2,z)< WITSIZE 5%, a)

because MINWITI.‘_;’.'“ was used in the definition of H. By using induction on notation, PV
can prove

—

|2|4<|¢(€)|A WITNESS &(w,€)70> WITNESS £*(H(w 2 )¢, TRM(4(Z), || 4))0.
So define F(w,¢)=H(w,¢,s,(¢(<))) and then

PV WITNESS (w,2)70> WITNESS {(F(w,?),2)70.
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QED. O

Corollary 8: Let A(@) be a L(PV)-formula. If S}(PV)r(VYZ)A(Z) then PV essentially proves
(V2)A(D).

Proof: This is immediate from the definition of “essentially proves” and Theorem 7. O



Chapter 7

Godel Incompleteness Theorems

We next take up the subject of Godel incompleteness results. We shall see that the
first and second incompleteness theorems hold for S;'. We shall also prove strengthened versions
of the incompleteness theorems which apply to the consistency of bounded proofs and of free
cut free proofs.

Before proving incompleteness results, we must show that the syntax of
metamathematics can be coded in Sy'. Of course, it is well known that the syntax of first-order
logic can be recognized and manipulated by polynomial time algorithms and as we showed ear-
lier, So! can Elb—deﬁne any polynomial time algorithm. This might appear to be an a priori
argument that the arithmetization of metamathematics can be carried out in Sy!. However, as
Feferman [9] emphasizes, the arithmetization of metamathematics must be carried out in an
intensional manner and this does not follow from our a priori argument.

We begin by giving a general framework for making inductive definitions in Sg' and
using this framework to outline how the arithmetization of metamathematics in S;' can be car-
ried out intensionally.

7.1. Trees.

As a preliminary we need to give a method for coding trees in S3'. Trees will be coded
by sequences. An example of a tree and its coding are given in Figure 2. A tree is coded by a
sequence with two special symbols “[> and “])” for denoting the structure of the tree.

Following the notations and conventions of §2.4-2.5 we define the following

¥ 2—definable functions and A —predicates of Sq.

(a) RBracket = 0
LBracket = 1
Node(z) <= z>2

(b) Balanced (w) <
<= [(#/<Len(w))(LBracket=p(Sj,w)) = (#j <Len(w))(RBracket=8(Sj,w))] A
A (Yi<Len(w)) [(#5<i)(RBracket=p(Sj,w)) < (#j<i)(LBracket=p(Sj,w))]

Note that the counting operations are all equivalent to length bounded count-
ing and hence by Theorem 2.7, Balanced is a Alb—deﬁnable predicate. We shall use
length bounded counting freely without comment from now on.

116



§7.1 Trees 117
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A tree is coded by a sequence which enumerates the tree in depth first
order. Two special symbols, “[” and “|” are used to denote movement down and

up the tree. The tree shown has two roots, labeled a and b.

Figure 2

(c) Depth(i,w) = (#j<i)(LBracket=B(Sj,w)) ~ (#j<i)(RBracket=p(Sj,w))

(d) MultiTree(w) <= Seq(w)ALen(w)7#0ABalanced (w)ALBracket*p(1,w)A
AV i< Len(w))(LBracket=p(i+1,w)> Node(B(i+2,w)))

MultiTree(w) is true iff w codes a tree, which may have more than one root.
(e) Tree(w) <= MultiTree(w)A—~(3i<Len(w))(i>0ANode(B(S7,w))ADepth(Sj,w)=0)

(f) Leaf(i,w) <= MultiTree(w)rNode(S(1,w))ALBracket#p(Si,w)

So Leaf(i,w) is true iff 5(1,w) codes a leaf of the tree w. The father of a node
is the node directly above it; the sons of a node are the nodes directly below it. We
define Father and Son so that if Father(i,w)=k then the node B(k,w) is the father of
the node B(#,w), and so that Son(n,j,w)=1 iffl 3({,w) is the n-th son of the node B(j,w).

' (uj<i)Balanced (Subseq(w,j+2,1)) i Node(i,w)
(g) Father(i,w) = Len(w)+1 otherwise

We use Len(w)+1 as the alternative value for the function Father since Len(w)+1 is
never a node and hence never a valid father.

0 if Father(i,w)#j

(h) SonPos(ij,w) = { (#2<i=j)[Father(j+z,w)=j] otherwise
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Son(k,j,w) = (ui<Len(w))(SonPos(i,j,w)=k)

Note that the father of a root of a multitree is O and that the roots of a multitree are
the sons of an imaginary node at the zeroth position of the sequence coding the multi-
tree.

(i) Valence (j,w) = (#z2<Len(w))(Father(z,w)=j)
(i) SonpB(k.j,w) = PB(Son(k;,w)w)=2
Fatherf(i,w) = P(Father(i,w),w)=2
Rootp(w) = p(1,w)-2
Nodef(i,w) = B(i,w)-2

We subtract 2 so that the values of the node labels are distinct from the codes for
brackets, namely 0 and 1 for “{” and “]”.

(k) We also define a function for extracting subtrees of trees:

SubTree(i,w) = Subseq(i,max{j<Len(w)+1 : Tree(Subseq(s,j,w))},w).

The above encoding of trees is intensional in the sense of Feferman [9]. The skeptical
reader may verify that, for instance, 5’21 can prove

MultiTree(w)A Node(B(j,w))>(Leaf(j,w)« Valence (j,w)=0)
MultiTree(w)A Node(B(i,w))> Depth(Father(i,w),w)=Depth(i,w)~1

MultiTree(w)A Node(i,w)D Tree(SubTree(i,w)).

7.2. Inductive Definitions.

We show in this section that Sg' is capable of defining predicates and functions by
inductive definitions, provided that the inductive definitions give a straightforward deterministic
polynomial time algorithm for expanding the inductive definition. Theorem 2 shows that such
an inductive definition is intensional and allows proofs in Sg to be carried out by induction on
the complexity of an inductive definition. We later use the constructions of this section to
argue that Sy can arithmetize metamathematics.
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Definition: The n predicates Py, ... ,P,; are defined by a p-tnductive definition iff they are
defined by the following:

(a) k is a non-negative integer,

(b) For each s<k there is a number {,>0 and a formula Q,:
Qa(z) < Ra,o(fe,o(z))/\ e ARa,i,(fs,i,(z))

where the following conditions hold:
(i) each R, ; is P; or -P; for some 1<n,
(i1) each f,jisa 3 ~definable function of S,
(iii) for each j<i,, Sq+ z#0D|f, (z)I<|z],
(iv) S oo(z)+ - - - Hfei (D) <2

(¢) For each i<n there is a function g; which is ¥ -definable in Sg such that
S3+(Vz)(gi(z)<k).

(d) For each i<n, either P;(0) or =P;(0) is true by explicit definition.

(e) For each i<n, P;is inductively defined by
P,‘(I) <> Qy,-(z)(z)‘

Because of the decreasing length condition of (b.iii) above, a p-inductive definition
uniquely defines the value of Pyz) for all ¢ and z. In fact, a p-inductive definition gives a poly-
nomial time deterministic algorithm for checking whether Pyz) holds. That this algorithm can
be formalized in S4 is the content of the next theorem.

Theorem 1: Let Py, ...,P, , be defined as in the p-inductive definition above. Then each
predicate P; is A’~definable in Sy

Proof: In order to A-define the predicates P; in S3 we must (at least implicitly) specify an
algorithm for determining when Pz) holds. This is done by constructing a tree which demon-
strates that either Py(z) or ~P{z) holds. Each node of the tree will be labeled as <P,,,y> or
<-P,,y> which denote the assertions that P,(y) or =P, (y) holds, respectively. The sons of
such a node must provide evidence that P,(y) or =P ,(y) (respectively) is valid. For example, if
9m(y)=s, then the sons of <P,,y> must be 1+i, nodes labeled <R, ;,f, {y)> for j<i,. The
leaves of the tree must be labeled either <P,,0> or <-P_,,0> as allowed by clause (c) of the
p-inductive definition. The root of the tree will be labeled either <P;z> or <-P;z>.

We begin by writing out a formal definition for a “demonstration tree” for Pz). Let
B, ;, and D; be fixed terms defined by:

I, if R,;is P,
Coi =\ I, it R, is P,

Cv,jr Ca,j;
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C’»j = { Ii+n if RleSP,

B,; = I; where R, ; is =P, or P;
I; if Py0)

bi =\ 5. it —P,(0)

(Recall that [; is a term with value j.) The leaves of a “demonstration tree” must satisfy the
leaf condition:

n-1

DTLC(u,w) = (Xoﬂ(l,Nodeﬂ( u,w))=D;)AB(2,NodeS(u,w))=0

or, in words, a leaf must be labeled <D;0> for some . The non-leaf nodes of the “demonstra-
tion tree” must satisfy the following condition:

DTNC2(u,w) <> PB(1,Nodef(u,w))<2nApB(2,Nodep(u,w))>0A
£k n-1

AA /=\o [Rem(B(1,Nodef(u,w)),n)=iAg{B(2,NodeB(u,w)))=s >

> Valence (u,w)=4,+1A !_l\of,_j(ﬂ(2,Node,3(u,w)))=,3(2,Sonﬂ(Sj,u,w))A
j
A(B(1,NodeB(u,w))<n>D /__I\OC,J=,3(1,Sonﬂ(Sj,u,w)))A
j

A(B(1,Node S u,w))> nDjY05,j=ﬂ(l,Sonﬂ(Sj,u,w)))] .

We combine both these requirements in
DTNC1(u,w) < (Leaf(u,w)D>DTLC(u,w))A(-Leaf(u,w)> DTNC2(u,w)).

So a “demonstration tree” which proves Py(z) or =P (z) must satisfy

DemoTree (w,z) <= Tree(w)A(Vu<Len(w))(Node(Su,w)>DTNCI(Su,w))A

MRootB(w)=<i,z>VRootf(w)=<i+n,z>).
We will introduce P; in S5 as a A -defined predicate symbol by:

Piz) == (Jw)(DemoTree,w,z)AB(1,Ro0tB(w))=1)
<= —(Jw)(DemoTree(w,z)AB(1,Ro0tB(w))=4+n)
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Thus it will suffice to establish that S4 proves

(Vz)(Fw)DemoTree,(w,x)
and
DemoTree(w,z)ADemo Tree (v,2)2B(1,RootB(w))=PF(1,Ro0tB(v)).

Since it is easier, we first show that SJ proves the uniqueness condition. We argue
informally inside the theory Sg. Suppose w and v are DemoTree’s for Py(z) and/or —P(z).
Let A(w,v,b) be the formula

(Vu< b)[(—Node(Su,w)>8(Su,w)=p(Su,v))A
A(Node(Su,w)>B(2,NodeS(Su,w))=p(2,NodeS(Su,v)))].

It follows from the definition of DemoTree that A(w,v,b)>A(w,v,5b). Hence, by X}-LIND,
A(w,v,Len(v)) and A(w,v,Len(w)) and hence Len(w)=Len(v). Now let B(w,v,b) be the formula

(Vu< Len(w))[u>Len(w)= bANode(Su,w)>B(1,Node B(Su,w))=p(1,Node 5(Su,v))].

Now it follows that B(w,v,b)>B(w,v,Sb) so by L ~LIND , B(w,v,Len(w)). But this immedi-
ately tells us that

B(1,Ro0tB(w))=p(1,Ro0t[(v)).

This completes the Sg—proof of the uniqueness condition.

The rest of the proof of Theorem 1 is devoted to establishing the existence condition
for DemoTree;. It is tempting to just argue by induction on the length of z that a DemoTree;
exists. Unfortunately, this argument would use II~PIND and we can not carry this out in 5.
Instead we must use a more sophisticated argument to construct the DemoTree. What we will

do is formalize a breadth first algorithm which constructs the demonstration tree and then
labels the nodes appropriately. We first define:

PDTNC2(u,w) <= pf(1,Nodef(u,w))<<nAB(2,NodefS(u,w))7#O0A
k n-1
AN A IB(1,Nodep(u,w))=ing,(B(2, Nodef(u,w)))=s>
D> Valence (u,w)=1,+1A éof,J(ﬂ(2,Nodeﬂ(u,w)))=ﬂ(2,Sonﬂ(Sj,u,w))/\
]

AJ@OB,J=IB(LS‘)"6(S].)“rw))]

PDTLC(u,w) <= p(1,Nodep(u,w))<nAB(2,Nodep(u,w))=0
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PDTNC1(u,w) <=> (Leaf(u,w)>PDTLC(u,w))AM(—~Leaf(u,w)>PDTNC2(u,w))

PDT(w,z,b) <> Tree(w)ARootf(w)=<i,z>A
A(Vu < Len(w))(Node(Su,w)ADepth(Su,w)<b>PDTNCI1(Su,w))A
A(Vu < Len(w))(Node(Su,w)>|8(2, NodeB(Su,w))|<|z|= Depth(Su,w))A
A(SizeBounds)

where we explain SizeBounds below. So PDT{w,z,b) asserts that w is a tree containing the
first b+1 levels of the construction of a demonstration tree. The SizeBounds is a formula
which bounds the size of w. What we wish to show is

S (Fw<t(z,0))(PDT{(w,z,b))>(Jw< t(2,50))(PD T (w,z,Sb))

for some term t; the SizeBounds formula must contain enough information to do this. We
argue informally how ¢(z,b) may be found. First, we count the non-leaf nodes u, which are
labeled <<¢,y> with y#0. The number of bits used to code such a node can be required to be
not more than 2(2-|7]4+2:|y}+4)+2 which is <4-|n|+4-|y|+10. We add on an adjustment allow-
ing for the bits needed to code two brackets and conclude that each node can be coded by
<4-|n|+18+4-|y| bits. Consider the non-leaf nodes which are of depth c¢<b; there are at most
|z| of them and their total length is <|z|. Hence the total number of bits used to code the
nodes at depth ¢ is bounded by

> (4yl+4(n|+18) < 435(|ly]) + |z|-(4-|n]|+18)
Depth(<i,y>)=¢c

< |z|-(4+4:|n]|+18) < |z|-(4-|n]+22).
Since the tree has depth b, the total number of bits required to code the non-leaf nodes of the
tree is <(b+1)-|z|-(4:|n|+22).
We must also consider the nodes labeled <7,0>. Let 4,,, be max{i,: s=0, ... k}.
There are <b-|z| non-leaf nodes on the first b levels of the tree and below them are

<14b|2|(#axt1) leaf nodes. (The extra 1 is for the case z=0). Since a label <#,0> and its

surrounding brackets can be coded by <4:|n|+18 bits, the total number of bits used to code
these nodes is bounded by

(146 |z| (144 pan) J(4: | 0] +18).
So the length |w| of w is bounded by
8(z,b) = (1+|z|-(140(24+1 ) (4| n|+22).

Since b will be restricted to be <|z| we can define the term (z,b) to be equal to 2°*)  This is
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the desired bound on w.

The formula SizeBounds should be a formula containing all of the information used
above in establishing the bound on |w|. It is rather complicated to actually write out
SizeBounds, so we leave it as an exercise for the skeptical reader. Given that SizeBounds is
properly formulated, it is now straightforward for Sy to prove

(Aw< t(z,6))PD T w,z,b)>(Iz<t(2,56))PDT {w,z,5b).
So by L-LIND , S3+ (3w<t(z,|z|))PDT(w,z,|z|). Finally, we need to show that
S} + (Aw)PDT(w,z,|z])>(Fw)DemoTree (w,z).
So let C(w,v,b) be the formula

Len(w)=Len(v)A(Vu< Len(w))[(uv <Len(w)=b>A(Su,w)=4(Su,v))A
A(u>Len(w)= bA-Node(Su,w)>(S u,w)=F(Su,v))A
A(u>Len(w)= bANode(Su,w)>DTNC1(Su,v)A

AB(2,Node B(Su,w))=pB(2,Node B(Su,v))A
AB(1,NodeB(Su,w))=Rem(B(1,Node 3(Su,v)),n))].

It is quite easy to see that S PDTy(w,z,|z])>(Fv< w)C(w,v,0) and
St PDT (w,z,|z))A(Fv< w2218 C(w,v,0) > (Fz < w-22 M O+D)) O(w,v,b+1).
Hence, by £,-LIND ,
S+ PDT(w,z,z])>(Fv< w22 1" Len(®)) O(w, v, Len(w))
from which Sg+ (Jv)DemoTree(v,z) is immediate.

QED. O

Theorem 1 states that S5 can A-define predicates which have p-inductive definitions.
We also want S to be able to prove theorems involving p-inductively defined predicates.
Accordingly we need to know that certain kinds of inductive proofs can be formalized in Sg.

Definstion: Let Py, . .. ,P,_; be defined p-inductively as above. We say that the 2n formulae
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(V2)(P{z)>By(z))

(Vz)(~Py(2)>C(2))

have a p-inductive proof iff the following hold:

(a) Each B; and C; is A with respect to Sy

(b) For 0<s<k, 0<j<i,, R,; is as in clause (b) of the p-inductive definition for
Py, ...,P,_;. Let Q,; be the formula B; if R, ;=FP; or the formula C; if R, ;=—P;.
Define @, ; dually to be B; if R, ;=—P; and to be C;if R, ;=P;.

(¢) For =0, ... ,n-1, and 0<s<k, S} proves
(o) ARALe AN Quilf o)) > Bila)

3a)=on(V R oo Mo ) > Cie)

Theorem 2: Given (a), (b), (c) as above, Sg proves
(V2) [(P{2)>B{2))M~P(z)> Ci(2))]

for 0<i<n.

Proof: Let A(w,a,b) be the formula

DemoTreelw,a)>(Vu<Len(w))(u>Len(w)+ bANode(Su,w)>
n-1

Di\o [B(1,NodeB(Su,w))=i>B(A(2,Node (S u,w)))]| A

n-1

A‘_@o [B(1,NodeB(Su,w))=i+n> C{B(2,Node B(Su,w)))]).

Clearly, S3+ A(w,a,0). Also, because of clause (c) of the p-inductive proof, S4 proves
A(w,a,b)>A(w,a,5b). Hence, by XP-LIND, S}+A(w,a,Len(w)). By Theorem 1,
S+ (Jw)Demo Tree,(w,a) and since the root node of such a demonstration tree must be <i,a>
or <i+n,a> we have the desired result.

QED. O
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Definition: The function F is defined by a p-inductive definition iff F is defined by the following:

(a) k is a fixed nonnegative integer.
(b) For each s<k there is an i,-ary function G, and ¢, unary functions f, 1, . . . ,f,, satisfy-
ing
(i) G, and each f, ; are ¥ P-definable functions of Sy
(ii) S+ z#00lf, (z)|<|z| for all j<i,.
(iii) St [fea(@)+ - - - Hfoi (2)<]a].
(¢) There is a function g ¥ 'definable by S5 so that SJ+ (Vz)(g(z)<k).

(d) F(z) is defined inductively by
F(I) = Gy(z)(F(fy(z),l(z)): v ;F(fg(z),il(,)(z)))'

(e) There is a term t(z) (which will bound F(z)) so that for all s<k,
i
St [J@lajgt(f,_j(z))] DG(ay,...,a;)<t(z).

Theorem 3: Let F be defined by the p-inductive definition above. Then F is Zlb—deﬁna.ble in
Sg3. Furthermore, the definition of F in S4 is intensionally correct in that properties of F' can
be proved in S3 by the use of induction.

Proof: This is proved in a manner very similar to the proofs of Theorems 1 and 2, and we omit
the proof. O

7.3. The Arithmetization of Metamathematics.

In order to establish the Godel incompleteness theorems for Bounded Arithmetic, we
need to introduce Elb—deﬁned function symbols and Alb—deﬁned predicate symbols for handling
Godel numberings for metamathematical concepts such as “formula”, “proof”, etc. With the aid
of p-inductive definitions we demonstrate such an arithmetization below.

We begin by introducing Godel numbers for all the syntactic symbols of Bounded

Arithmetic. Each symbol is assigned a number as listed below.
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Logical Symbols

V-0 v -5
4-1 ( -6
- -2 ) -7
> -3 , -8
A -4 —> -9
Non-logical symbols
Constants: 0 - 16
Unary Functions: S - 20, |z| - 24, [iz] - 28
Binary Functions: 4+ - 32, - - 36, # - 40
Binary Relations: = - 18, < - 22
Free Variables Bound Variables
ay - 19 x - 17
ag - 23 2, - 21

as - 27 X3 - 25

Corresponding to this assignment of GSdel numbers we introduce the following predi-
cate symbols in Syt

AQuant(z) <> z= Zero(z) <= z=16
EQuant(z) <> z=1 Succ(z) <> 2=20
Not(z) = z= Log2(z) <= z=24
Implies(z) <> z=3 Div2(z) <= 2=28
And(z) <> 7= Plus(z) <= 2=32
Or(2) <> =5 Times(z) <> z=36
LParen(z) <> =6 Smash(z) <> z=40
RParen(z) <= 2z~ Fquals(z) <> 2=18
Separ(z) <> z= LE(z) = =22
Arrow(z) <> 2=

Quant(z) <=> AQuant(z)vEQuant(z)
Conn 2(z) <> Implies(z)vAnd(z)vOr(z)
Funcl(z) <=> Succ(z)vLog2(z)vDiv2(z)
Func2(z) <=> Plus(z)v Times(z)vSmash(z)
Rel2(z) <=> Equals(z)VLE(z)

FVar(z) <> z>16ARem(z,4)=3
BVar(z) <=> z>16ARem(z4)=1

Var(z) <=> FVar(z)vBVar(z)

(Note that we used “Separ’ since “Comma’ has already been used.) We will abbreviate con-

stants by using a bar over the name of the constant. For example, AQuant denotes the
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constant 0, LParen denotes 6, and LE denotes 22.

Definition: Semiterm and Term are unary predicates which are Ap-defined in Sy by the follow-
ing inductive definition:

(a) ~Semiterm(0)
(b) If Seg(w) and Len(w)=1 and Var(B(1,w))vZero(B(1,w)) then Semiterm(w).

(c) If Semiterm(w) and Funcl(z) then Semiterm((0*LParen*z)«x(w*RParen)).
(d) If Semiterm(w), Semiterm(v) and Func2(z) then

Semiterm((0«LParen)«+(w*z)++(v*RParen)).

(e) Anything which is not required to be a semiterm by the above conditions is not a
semiterm.

It is easy to see that the definition of semiterm can be formulated as a p-inductive
definition.

A term is defined to be a semiterm without any bound variables:

Term(w) <> Semiterm(w)A(Vz<Len(w))(—BVar(B(Sz,w)))

We next define semiformulae and formulae. We shall adopt conventions on free and
bound variables which are slightly unusual but which make the inductive definitions more
manageable. We first define atomic formulae and atomic semiformulae by:

ASemiFmla(w) <=> LParen(B(1,w))ARParen(B(Len(w),w))A(Jz<Len(w))[Rel2(B(z,w))A
ASemiterm(Subseq(w,2,z))ASemiterm(Subseq(w,z+1,Len(w))))

AFmla(w) <= ASemiFmla(w)A(Vz<Len(w))(~BVar(B(Sz,w)))
We also define what it means for a bound variable to appear bound in a semiformula:

Free(z,w) <= BVar(z)ASeq(w)A(Vi<Len(w)=1)(Quant(8(Si,w))>z+48(i1+2,w))
Bound(z,w) <=> BVar(z)ASeq(w)A—Free(z,w)
Compat(w,v) <= Seq(v)ASeq(w)A(Vz <Len(v))(—~Bound(B(Sz,v),w))A

MVz < Len(w))(—Bound(B(Sz,w),v))

Because of the way we have defined Bound and Free we will not allow semiformulae in which a
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bound variable is both bound and free. For example, (Vz)(2#0)>27#0 is not a valid semifor-
mula.

We define SemiFmla (w) by the following inductive definition:

(a) If ASemiFmla(w) then SemiFmla (w).

(b) If SemiFmla (v) then SemiFmla ((0xLParen+Not)«*(v+REParen)).
(c) If SemiFmla (v,), SemiFmla (v2) and Conn 2(z) and if Compat(v,v,) then

SemiFmla ((0xLParen)**(v *z)+*(v sxRParen)).

(d) If SemiFmla (v,), Quant(z), BVar(y), Semiterm(vy), Free(y,v;) and Compat(v,,v,)
and (Vu<Len(v,y))(B(Su,va)7y) then

SemiFmla ((0+LParen+LParen*zxy*LE)x*(vyxRParen)*x(v,xRParen))

and
SemiFmla ((0xLParen*LParen+z*y+*RParen)xx(v,*EParen)).

(e) SemiFmla (w) is true only as required by the above clauses.

We define Fmla(w) to mean that w codes a formula; that is to say, w is a semiformula and no
bound variable appears free in w:

Fmla(w) <> SemiFmla (w)A(Vu<Len(w))(BVar(B(Su,w))D>Bound(B(Su ,w),w))

We next define how to count the alternation of bounded quantifiers in a formula. This
allows S, to recognize }Jib—formula,e. We first must be able to distinguish sharply bounded

from non-sharply bounded quantifiers. We define LTerm (z) to be true iff z codes a term of the
form |¢|:

LTerm (z) <=> Semiterm(z)ALen(z)>1ALog2(B(2,2)).

QCount(w) is a function classifying the formula w by its alternation of quantifiers.
QCount(w)=<0,i> means weL;, QCount(w)=<1,i> means well;®, and QCount(w)=<2,i>
means wGE,-br]l'I,-b. QCount is defined by the following p-inductive definition:

(a) If ~SemiFmla (w) then QCount(w)=0.

(b) If ASemiFmia(w) then QCount(w)=<2,0>.

(c) If w=(0xLParen*Not)**(vxRParen) then
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<0,5> if QCount(v)=<1,i>
<1,i> if QCount(v)=<0,i>
<2,i> if QCount(v)=<2,i>
0 otherwise

QCount(w) =

(d) Suppose w=(0xLParen)s*(v *z)*+(voxRParen), where Conn 2(z), SemiFmla (v,),
SemiFmla (vy) and Compat(vy,vg). I QCount(vy)=0 or QCount(vy)=0 then
QCount(w)=0. Otherwise, define

QCount(v,) if —Implies(z)vB(1,QCount(v,))=2

QImp(vy) = <1+ B(1,QCount(v,)),8(2,Q Count(v,))>

otherwise

\

and let 1.1,].1,1‘2,].2 be so that QImp(v1)=<i1,j1> and QOount(vg)=<i2,j2>.

Then
r . . . . . . . -
<ipJ> if jo<s1V(i2=2Aj1=72)
<igje> if jo>71V(11=2Aj1=1J)
= 9 .. e e e .
QCount(w) <11,]1> lf ]2=]1A11=12
<2,4;+1> otherwise
\

(e) Suppose SemiF'mla (w), Semiterm(vy), SemiFmla (v;), Quant(z) and BVar(y) where
w=(0+LParen*LParen*z+y*LE)s+(vyxRParen)s*(v *RParen). If QCount(v,)=0
then QCount(w)=0. Otherwise define

( QCount(v,) if LTerm (vg)vB(1,QCount(v,))=QType(z)

< QType(2),5(2,@Count(v))>
if =LTerm (vy)AB(1,QCount(v,))=2
< QType(z),1+5(2,@Count(v,))>

L otherwise

QCount(w) = ﬁ

0 if z=FEQuant
where QType(z) = 1

otherwise

(f) If w=(0*LParen*LParen*z*y+*RParen)*+(viRParen) where Quant(z), BVar(y), and
SemiFmla (v), then QCount(w)=0.

That completes the definition of QCount.
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Another important operation we need to ¥ )~define in Sy is the substitution of a term
into a formula or term. First define

SubOK(w,z,v) <> (FVar(z)v(BVar(z)AFree(z,w)))A
A(SemiFmla (w)vSemiterm(w))ASemiterm(v)A
A(Vi< Len(v))(—Bound(8(Si,v),w))

We define Sub(w,z,v) to be the function satislying:

z=Sub(w,r,v) < (~SubOK(w,z,v)Az=0)V
v(UnigSeq(2)ASubOK(w,z,v)A
ALen(z)=Len(w)+(Len(v)=1)-((#i < Len(w))(8(Si,w)=7))A
A(Vj < Len(w))(3k < Len(2))[k=j+(Len(v)=1)-((#i<s)B(Si,w)=zx))A
MB(S7,w)7#z>B(S5,w)=P(Sk,v))A
A(B(S7,w)=z>(Vu< Len(v))(B(u+k+1,2)=F(u+1,v)))])

so Sub(w,z,v) is the result of substituting the term v for the variable z in w. We leave to the
reader the proof that Sub is a Elb—deﬁned function of S5 (the existence and uniqueness condi-
tions for the above defining equation must be proved in S3'.) We also claim that

S+ Fmla(w)A Term(v)ASubOK(w,z,v)D
> Fmia(Sub(w,z,v))A QCount(w)=Q Count(Sub(w,z,v)).

This is proved by a p-inductive proof.
In addition to the Sub function, we need a function for performing the simultaneous
substitution of a vector of terms for a vector of variables. We define

VSubOK(w,z,v) <> Seq(z)ASeq(v)ALen(z)=Len(v)A
A(Vi<Len(z))[SubOK(w,B(i+1,z),8(i+1,v))A
AVj<Len(z))5#i20(j+1,2)7#B(i+1,z))A
A(Vi<Len(v))(Vk <Len(B(;+1,v)))(B(i+1,2)#B(k+1,8(7+1,v)))].

So VSubOK(w,z,v) is true iff z is a vector of distinct variables, v is a vector of semiterms, no
variable in z appears in any of the semiterms in v and if there are no bound variable conflicts
which arise when the semiterms of v are substituted for the variables of z in w. We can now
define VSub by:
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z=VSub(w,z,v) <= (~VSubOK(w,z,0)Az=0)V
V(VSubOK (w,z,v)A Unigseq (2)A
AM3y< SqBd(w#v,z)) [Seq(y)ALen(y)=Len(z)+1A
A(Vi < Len(z))(B(i+2,y)=Sub(B(i+1,y),8(i+1,2),8(i+1,v)))A
AB(L,y)=wAz=p(Len(z)+1,y)})

We will omit proving the existence and uniqueness conditions for VSub, since the proof is
straightforward with the machinery developed above and in Chapter 2.

We define cedents by the following p-inductive definition:

(a) Cedent(0) (this is the empty cedent).

(b) If Fmla(w) then Cedent(w).

(c) If Fmla(v,), Cedent(v,) and v,70 then Cedent((v *Separ)+*v,).
(

d) Cedent(w) holds only as required by clauses (a)-(c).

Next we define a couple of functions for manipulating cedents:

0 if Len(w)=0
CedentLen(w) = 1+(#i < Len(w))Separ(B(Si,w))  otherwise

Cedentf(a,w)=v <=> (v=CedentLen(w)A(a=0v-Cedent(w)))v(a70ACedent(w)A
A(Jz <Len(w))(3y< Len(w)) [z=(pi < Len(w))(a=1+(#j <1)Separ(B(Sj,w)))A
Ay=(i< Len(w))(a=(#j <)Separ(B(S] w))A
Av=_Subseq(w,Sz,Sy))

So Cedentf(a,w) is equal to the a-th formula of the cedent w, unless a=0 in which case it is
equal to the number of formulae in w. Sequents are defined by

Sequent(w) <= (Ju<Len(w))(Arrow(B(Su,w))ACedent(Subseq(w,1,Su))A
A Cedent(Subseq(w,u+2,Len(w)+1)))
Arrowptr(w) = 1+(pi<Len(w))Arrow(B(i+1,w))

0 if —Sequent(w)

Antecedent(w) = { Subseq(w,1,Arrowptr(w)) otherwise

0 if —Sequent(w)

Succedent(w) = { Subseq(w,1+Arrowptr(w),14+-Len(w)) otherwise
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We define QClass and QBded as a function and predicate which count the number of
alternations of quantifiers in sequents (and later in proofs). They are defined p-inductively by:

(a) If Fmla(w) then
QClass(w) = B(2,QCount(w))

@Bded(w) <=> QCount(w)#0
(b) If Cedent(w) and w=(v *Separ)**v,, then

QClass(w) = max(QClass(v;),QClass(v,))

QBded(w) <= QBded(v\)AQBded(v,)
(¢) If Sequent(w) then

QClass(w) = max(QClass(Antecedent(w)),QClass(Succedent(w)))

QBded(w) <= QBded(Antecedent(w))AQBded(Succedent(w))

So QBded(w) is true iff w includes no unbounded quantifiers. QClass(w) is equal to the least ¢
such that every formula in w is either a - or a [1;*-formula.

We are now ready to metamathematically define what a proof is. A Gddel number of a
proof codes a tree of sequents labeled precisely as to how the rules of inference are applied.
Each node of the tree is labeled by an ordered pair <z,w> where w is a formula and z codes
the rule of inference used to deduce w from the sons of w (the sons of w are the sequents
directly above w in the proof tree).

First, we define what the initial sequents of a proof may be. Let LAziom(v) be a predi-
cate defined to be true iff v=<0,w> where w is a logical axiom of one of the following forms:

(a) A—> A where A is an atomic formula.

(b) —>t=t where t is any term.

(c) t=s—> f(t)=/f(s) where s and ¢ are terms and f is one of the functions S, [1z], or
|2].

(d) t;=s1,t5=80—> f(t;,t2)=f(s1,82) where each s; and ¢; is a term and f is one of the
functions +, -, or #.

(€) ty=sy,t5=s9,p(t;,t2)—> p(8,,82) where each s; and ¢; is a term and p is one of the
relations < or =.

Let @ be any unary ©,-definable function of S;. We use « to enumerate a list of non-logical
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axioms and define NLAziom (v) to be true iff (1) v=< <wg,v},v9,v3>,v4>, (2) either vy is the
Godel number of one of the finite number of BASIC axioms or ofvg)=v3 and (3) the following
four conditions hold: (a) vg=<z,,...,z,> and v;=<y;,...,y,>, (b) for 1<i<n, BVar(z,)
and Term(y;), (c) vg=VSub(vs,vev,), and (d) Fmla(vy). Thus the non-logical axioms are
instances of formulae from BASIC axioms or formulae in the range of a. Note there is no
conflict of variables in (c) since all variables in y; are free variables and each z; is a bound vari-
able.

We are using o for additional generality; since every recursively enumerable set is the
range of a polynomial time function, we can have any recursively enumerable set which includes
the BASIC axioms as the set of axioms.

We now informally describe how proofs are arithmetized. A proof P is coded by a tree
w. The root of w corresponds to the endsequent of P. The leaves of w correspond to the initial
sequents of P. Each node of w corresponds to a sequent I'y—> A, of P. The sons of a node n
of w correspond to the upper sequents of the inference in P which yielded I')—> A,. Accord-
ingly, the valence of each node of w is not greater than two. The label on each node of w is
<Z,,v,> where v, is a Godel number of the sequent I'y—> A, and z, is a code detailing the
inference used to derive that sequent. We already explained in detail what z, is for initial
sequents. For non-initial sequents, it suffices to take r,<23 to be equal to the number of the
inference as described in Chapter 4 or z,=24 for a PIND inference.

To define proofs as metamathematical objects in S21, we shall of course use a p-
inductive definition. This is done by simultaneously defining the following predicates p-
inductively.

Proof (w) <=> “w codes a proof with non-logical axioms specified by NLAziom,
and all inductions in w are A~PIND ’s.”

ProofFCF ,(w) <=> “Proof,(w) and there are no free cuts in w.”
QBded(w) <=> “All quantifiers in w are bounded.”
QClass(w) <=> “iis the least number such that all formulae in w are in LUI}.”

FreeForm(w,0,§) <=> “the i-th formula of the antecedent of the endsequent of w is
a free formula.”

FreeForm(w,1,§) <=> “the i-th formula of the succedent of the endsequent of w is a
free formula.”

1=INDType(w) <=> “4>1 is the least number such that all induction inferences in
w are X;,-PIND inferences, or i=0 and there are no
induction inferences in w.”

These can all be defined in a long but straightforward way by a p-inductive definition. Since it
would not be very interesting to write out the definitions precisely, we omit them.
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Some further useful predicates are:

ProofBQ* <= Proofy(w)rQClass(w)<iAIND Type(w)<i+1
ProofBQ. <= Proof,(w)AQClass(w)<iAIND Type(w)<i+1
ProofBDY(w) <= Proofy(w)AQBded(w)AIND Type(w)<i+1
ProofBD J(w) <=> Proof,(w)A QBded(w)AIND Type(w)<i+1
ProofFCF (w) <=> ProofFCFy(w)AIND Type(w)<i+1
ProofFCF (w) <=> ProofF CF o(w)AIND Type(w)<i+1

When we use @ as a subscript, it denotes any function with range contained in the set of Godel
numbers of BASIC axioms. Thus ProofBDY(w), ProofBQ*(w) and ProofFCF*(w) each imply
that w is a proof in the theory S§. Also, ProofBD"™w), ProofBQ"™(w) and ProofFCF™)(w)
mean that w has no induction inferences at all. The difference between ProofBD* and ProofBQ*
is that ProofBD*(w) means that w codes a bounded Sj—proof whereas ProofBQ*(w) means that
w codes a bounded S¢—proof and that all the formulae in w are B or I —formulae.

Define the function EndSequent (w) to be 8(2,RootB(w)). Also define Prf as
Prf(w,a) <= a=EndSequent (w)v(0xArrow)sxa=FEndSequent (w).

So Prf(w,a) is true iff a is the Godel number of the sequent or formula proved by the proof w.
We further define:

Prf i(w,v) <= Proof (w)APrf(w,v)AIND Type(w)<i+1
PrfFCF (w,v) <= ProofFCF ,(w)APrf(w,v)

PrfFCF (w,v) <=> ProofF CF (w)APrf(w,v)
PrfFCF(w,v) <=> ProofFCF*(w)APrf(w,v)

PrfBQS(w,v) <=> ProofBQ (w)APrf(w,v)

PrfBQ'(w,v) <=> ProofBQ'(w)APrf(w,v)

PrfBD (w,v) <=> ProofBD (w)APrf(w,v)

PrfBD j(w,v) <= ProofBD j(w)APrf(w,v)

PrfBD'(w,v) <=> ProofBD*(w)APrf(w,v)

Thm j(v) <= (Ju)Prfi(w,v)

ThmFCF o(v) <> (3w)PrfFCF 4(w,v)
ThmFCF j(v) <= (3w)PrfFCOF (w,v)
ThmFCFY(v) <= (3w)PrfFCF(w,v)
ThmBQ4(v) <=> (Jw)PrfBQj(w,v)
ThmBQ'(v) <==> (Jw)PrfBQ'(w,v)
ThmBD ,(v) <=> (Jw)PrfBD,(w,v)
ThmBD j(v) <=> (3w)PrfBD j(w,v)
ThmBD(v) <=> (Jw)PrfBD¥(w,v)

The last nine predicates are definitely not A,® with respect to S because of the unbounded
quantifier (3w). Hence they can not be used in principal formulae of induction inferences.
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7.4. When Truth Implies Provability.

The main point of this section is to establish a crucial lemma for the Godel incomplete-
ness theorems.

Definition: Num(z) is a function T,*-defined in S7' so that Num(z) is the Godel number of the
term I,. We know that Num(z) can be S{'-defined in Sy' since it is easy to give a p-inductive
definition for Num.

From now on we will use [ y | to denote the Gédel number of a term, formula, sequent,
or proof x. If n€EN then [ 1 denotes [ 1, ] or Num(n).

We will write FSub(rA_],ra_],t) to mean Sub([A 1[4l Num(t)); in other words,

FSub([_A_\,ra_l,t) is the formula obtained by replacing all occurrences of the free variable a in
the formula A by the term I;,. If @ is an n-tuple of free variables and ¥ is an n-tuple of terms
then we write

FSub([A1[313)

as an abbreviation for
FSub( - - - (FSub(T A1l ay1,81) - - <), [ ey 1,8,).

To improve readability, we shall frequently use F'Sub implicitly in the following way.
Let A(a;,...,a;) be a formula. Then I_A(I,l, R ,I,k)_] is an abbreviation for
F§ub(rA(?1')_|,rﬂ_|,?). For example, we shall write

S+ ThmBDY([ AL, , ... I,)])
as an abbreviation for
S+ ThmBD(FSub([A(ay, . . . ,ap) 1,[@ 1,7)).

The next theorem is very important for establishing the Godel incompleteness
theorems.

Theorem §:

(a) Let A be any Zlb—formula in the language of Bounded Arithmetic. Let a, ... ,ap be all
the free variables of A. Then there is a term ¢4(@) such that

St A(@)>(Qw<t, ) PrfFCFY(w, FSub([ A 1[4 ,2)).
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(b) Let A be of the form (3z)B(d@,z) where B is a ¥ )-formula in the language of Bounded
Arithmetic. Let @y, ...,a, be all the free variables of A. Then

S A(@)> ThmFCF ) (w,FSub([ A 1,/ 1,2)).

So Theorem 4 asserts that for any & —formula A(@), S5 proves that for all values @
such that A(7) is true there is an induction free, free cut free proof of A(fy,, ... ,Iy,)-

The proof of Theorem 4 is, of course, by induction on the complexity of A. The single
hardest part to prove is Lemma 5:

Lemma 5: Let t be any term with free variables a,, ... ,a;. Then

S ThmFCFN 11, , . . T )=Iay, ... 0y )

Proof: by induction on the complexity of ¢.

(a) Suppose t is the constant term 0. Then S+ ThmFCF('l)(r0=07) is immediate from the
equality axioms.

(b) Suppose ¢ is a variable symbol a. Then Si+ ThmFCFtY(1,=1I,1) is immediate from the
equality axioms.

(c) Suppose t is S(r). By the induction hypothesis, Sg' proves that for all 7 there exists a proof
that (I, .. . ,I5,)=I,s) So it suffices to show that

SA+ ThmFCF[S(1,)=1Ig, 1).

This is proved by £ ~PIND with respect to b. Since there is a proof of S(Io)=1I,, it is

clearly true for 5=0. To deal with the induction step, we argue informally inside S;!. The

induction hypothesis is that there is a free cut free 52(‘1)—proof of S(I[lbj)=IS(|_lbj)~ We
2 2

divide the argument into two cases. First, suppose b is even. Then .5’2(‘1) proves immedi-
ately that S(I;)=1,+50 and since I;450 is identical to Iy, this case is done. Second, sup-
pose b is odd. Then S§™ proves immediately that S(1y)=2-1)13+2=2-(S(1 1;))) and by
2 2
combining that proof with the proof of S(IL%,,J)=ISL_1,,J we obtain, by an inessential cut, a
2
proof of S(Ib)=ISb’

To apply ©/-PIND we must find a uniform bound tg so that the proof of
S(Iy)=Igy is coded by a Gdodel number <tg(b). This is readily done, since in either case of
the argument for the induction step, the difference in size of the proof of S(I;)=Ig; over the
size of the proof of S(Il%bJ)=15(l%=J) is bounded by an amount proportional to the size |6| of

b. Thus the size of the free cut free S{™)-proof of S(I3)=Ig,; is quadratic in the size of b.



§7.4 When Truth Implies Provability 137

(d) Suppose t is r+s. As in (c), it will suffice to show that
St ThmFCF Y[ T+1,=1I,, . ).

Let b, and c, abbreviate MSP(b,u) and MSP(c,u) respectively. Let D(u) be the Gddel
number of the formula

Ib.+Ic.=Ib.+c.'
We will show that

St ThmFCFCY(D(min(|b],|¢l)))
and
St ThmFCFY(D(u))> ThmFCF)(D(u=1)).

Then S can use T-LIND to conclude ThmFCF('l)(D(O)), which is what we need to
show, as by=0 and co=c.

We argue informally inside S;. Let v=min(|c|,|b]); we want to show that S§Y
proves D(v). Suppose without loss of generality that v=|c|. Then ¢,=0, so D(0) is
rIbv+0=I,,v+o_], and this is easily proved in S2(’1) by an equality axiom as I; and I} ,, are
the same term. We next argue the induction step. The induction hypothesis is that there
is a free cut free S}'l)—proof of Iy +1, =I; ., and that ©u>0. We want to show that there
is an S§~D-proof of Ly +l. =I) .. Notethat b,=|1b,,]and ¢,=|ic,;]. There are
two cases to consider. First suppose that one of b,_; and c,_; is even and thus there is no
carry from the rightmost bit position when they are added together. Then it is easy to add
a small amount to the proof of Iy +I,=I, ,. to get a proof of I +I. =I; ;. .
Second, suppose that both &, ; and ¢,_; are odd. Then Sg(‘l) can prove immediately from
the BASIC axioms that I; +I, =2:(I; +I;+1). We combine that with the 52(‘1)—proof
of Iy +I, =I, .., using an inessential cut to get an S§-proof of I+, =21, ;. +1).
By (c), there is an S4™-proof of Iy 4o +1=1Iy 4 1. From this we can use another inessen-
tial cut to obtain an Sé'l)—proof of Ib,_,+1c,_,=2'fb,+c.+1- Now we are done, since
21y 4o 41and Iy .  are the same term.

To apply £,'~-LIND to conclude that ThmFCF('l)(D(O)) we must find a term ¢,
which bounds the size of the S§'-proofs constructed above. Because of the size bound
established in (c), we know that the increase in size of the proof of D(u=1) over the size of
the proof of D(u) is bounded by an amount quadratic in the size of b,+c,. Hence the size

of the free cut free Sf~V-proof of I,+1.=I,_, is bounded by a cubic polynomial of the sizes
|6] and |¢| of b and ¢.
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(e) Suppose t is r-s. As before, it suffices to show that Sg proves
ThmFCFN(1,-1,=14., 1).

We shall prove this by using ©,’~PIND with respect to the variable b.

We argue informally inside Si. First we consider the case b=0; we want to show
that S{™1) proves Iy-I,=I,. This is easily proved in SZ,(‘I) from the BASIC axioms, with a
free cut free proof with size proportional to the size |[c| of ¢. We next do the induction
step. The induction hypothesis is that there is an Sg('l)—proof of II_%H'IC=I|.%5]'° and we

want to show that there is an 52('1) proof of Ij-I,=I,... There are two cases. First, if b is
even then I, is 12.%” and I,., is I2‘l%bJ'°' Hence the proof of I[%bj’1c=I[%bJ-c 1s easily
extended to a proof of I}-I,=I;... Second, if b is odd then 2-|1b]|+1=b and 54 can prove
from the BASIC axioms that Ib'Ic=2'I|_%bJ'1c+Ic- We combine this with the proof of
Il_%b]‘lc:IL.%vac using an inessential cut to get an S§!-proof of 12-[%bj'c+1c=1b'1c- By (d),
there is a free cut free 52(’1)—proof of IQ.L%bJ.c+IC=Ib.c and we can use this and an inessen-

tial cut to get the desired S{”—proof of Iy 1,=1;.,, which completes the induction step.

Since we used (d) in the induction step argument, the size of the free cut free
S{_proof of I,-I,=I,., constructed above is bounded by a quartic polynomial of the sizes
|6| and |c| of b and c.

(f) Suppose t is r#s. It suffices to show that 8'21 proves
ThmFCF ([Tt =14, ).

First, it is clear that if b=0 there is an S{D—proof of this using the BASIC' axioms. We
shall prove the case b>>0 in two parts. First, we show by S ~PIND with respect to ¢ that
there is a free cut free Sg(‘l)—proof of I1#I,=I,4, for all ¢; second, we use Y ~-PIND with
respect to b to prove that there is a free cut free Sz,(‘l)—proof of Iy#I,=Iy4, for all b and c.
We shall argue informally inside Sg'. )

First, it is clear that there is an S{™)—proof of Li#I,=1I, (since 1#1=2). So sup-
pose there is a free cut free 52('1)—proof of I)#I|1,=I 141,y where ¢>1. From the BASIC
2 2

axioms, Si,(‘l) proves 11#1c=2'11#|_%cj: thus there is a free cut free S{V-proof of
11#1c=2'11#|_%cj- But 2-11#%,,] is the same term as I;4, and we are done.

Second, suppose there is a free cut free Sz(‘l)—proof of I[%b]#lczll_%bj#c and b>2.
From the BASIC axioms, S{™ proves Ib#Ic=(IL%bJ#Ic)'(1#Ic). Thus S{™V proves
Ib#1c=1[%bj#c'11#c' Hence, by (e), there is a free cut free S§~V-proof of Lyl =Iy4,.

The size of the free cut free S:‘,(‘l)—proof constructed above is bounded by a fifth-
order polynomial of the lengths |6] and |c| of & and c.
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(g) Suppose t is [1s] or t is |s[. It suffices to show that

ThmF CFY I_IL%U:I.%II:J B

and
ThmFCF[ 1y =I5 1).

These are easily proved by using Zlb—PIND with respect to b. We omit the details.

QED. O

We are now prepared to prove Theorem 4.

Proof: of Theorem 4 is by induction on the complexity of the formula A. We use separate cases
depending on the outermost connective of A.

(a) Suppose A is an atomic formula or the negation of an atomic formula. A must be t=s,
~t=s, t<s, or —t<s. By Lemma 5, S; proves that tay - s )=Iia,, ... a) and

s(I 1,)=I

mulae:

a;)- So it will suffice to show that S} proves the following four for-

ap a(ay, ...,

b=c> ThmFCF ([ T,=I_])
—b=c> ThmFCFY(=1,=1.1)
b<c> ThmFCFEY[T,<1.))

—b<e> ThmFCF)([=1,<1. )

These are readily proved by induction on the lengths of & and ¢. The sizes of the free cut
free S{V—proofs are bounded by a quadratic polynomial of the lengths |6] and |¢c| of & and
c.

(b) Suppose A is B(@)vC(d) and that Theorem 4 has already been established for B and C.
Thus,

Sd+ B(d)>(Jw< tg)PriFCFYw FSub([ B 1,14 1,7))
and
St C(@)>(Fv<t )PrfFCF ) (v FSub([ ¢ [ @ 1,)).

But it is easy for S5 to prove that, given such a proof v or w, adding an (v:right) inference
gives a S{~V-proof of A(l,, ... ,1,,). The bounding term t, is easily obtained from ¢g and

te.
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(c) Suppose A is BAC. The argument for this case is similar to the argument for (b).
(d) Suppose A is (Vz<|s|)B(@,z). By the induction hypothesis, S;' proves

B(@,6)>(3w<tg(@,b))PrfFCF Y w FSub([ B(@,b) [ a1,/ 513,0)).
We let ¢(@)=c[tp](,[3]). Then by use of £*~LIND with respect to u, S¢' proves
Aru<|s|>(Bw<r(@,u))PriFCF ) w,FSub([ b<u—> B(@,6) 1,13 1,[ « 1,3,u))

where r(@,u)=2"#(y't), where v is a suitable constant. This is because the proofs of
B(l,, . ..,I,,1I;) for b<u can be put together via inessential cut inferences to obtain a free

cut free S{™-proof of b<I,—>B(I,,, ... I,,b).

By Lemma 5, S3 proves
Bost @)PrFCF o[, q=ls(L,,, . . . L) D).

By using a (V<:right) inference and another inessential cut, we can combine the proofs of
Ly=Is(U,, .. ..1,)| and of b<I—>B(I,, ...,I,,b) to get a free cut free S ™V-proof of
A(l,, ...,1,,). The bounding term ¢4 is easily obtained from r and ¢,.

(e) Suppose A is (3z<s)B(d,z). By the induction hypothesis, S3 proves

B(d,b)>(Bw<tg)PriFCF-Y(FSub(( B 1[4 1[5 1,4,5)).

Thus Sg proves
A(@)>(Fz<s)Fw< tg)Pr/FCFYFSub([ B 1,[@ 1,5 ),3,1)).

We argue informally in So. Suppose A(@). Then we have just shown that there are an
£<s and a w so that w codes a free cut free S§—proof of B(l,, ... ,I,,I;). By Case (a),

there is a free cut free S§~D—proof of I,<s(l,, ...,1,). We can combine these two proofs
using an inessential cut and a (I<:right) inference to get a free cut free S2('1)—proof of

(Fz<s(l,y, - . 1. ))BU,, . . . 1,,7)

*) ak’

which is what we needed to show.

(f) Suppose A is (3z)B(d,x). The proof for this case is similar to and slightly simpler than the
proof for (e).

QED. O
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It is important to recall that all formulae we are using in our arithmetization of
metamathematics only use the original seven nonlogical symbols of Bounded Arithmetic; they do
not contain any new ¥ -defined functions or Alb——deﬁned predicates. But of course any
Al—formula A which may include T '~defined function symbols and A,’-defined predicate sym-
bols is equivalent, provably in Sg, to two formulae AT and A" where AT and A™ are in £, and
I1} respectively and contain only the original seven nonlogical symbols of Bounded Arithmetic.
This gives the following corollary to Theorem 4:

Corollary 6:

(a) Let A be any Al—formula of S&. That is, there are ©,'—formulae A; and A, such that
St-Ae A, and S+ A~ —A, Then,

St A(@)> ThmFCFEV(FSub([A [ ]9))

SA—A(@)> ThmFCF)(FSub([-A, ,[d 7).
(b) Let A be any A~formula of S3. Then

S3 A(@)> ThmBDN(FSub([ A],[d 1,3))

Si+—=A(@)> ThmBDY(FSub([~A'1,[d 1,7)).

Note that in (b), ThmBD' is used instead of ThmFCF®Y. Unlike Theorem 4 and
Lemma 5, Corollary 6(b) would still hold if we enlarged the syntax of our metamathematics to
include symbols for £,’~defined functions and Alb—deﬁned predicates.

Corollary 7: Let A(b) be one of the formulae Thm,(b), ThmBQi(b), ThmBDY(b), ThmBD(b),
etc. Then

S+ (Vz)[A(2)> ThmBDY(FSub(TA 1[5 2))].

7.5. Godel Incompleteness Theorems.

Now that we have arithmetized the syntax of Bounded Arithmetic and, in particular,
have proved Corollary 7, it will be straightforward to establish the Godel incompleteness
theorem. What we prove is somewhat stronger than the usual statements of the incompleteness
results since we use ThmFCF instead of Thm; that is, we shall consider the consistency of free
cut free proofs only, rather than of general proofs.
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Lemma 8: (Godel Diagonalization Lemma). Let 4{a) be any formula with one free variable a.
Then there is a sentence ¢ such that

Sl o1).

Furthermore, if ¥ is a II°~formula, then so is ¢. If ¢ is provably equivalent to a ¥ -formula
(resp. II'~formula) then so is ¢.

Proof: Since Sub and Num are L-defined function symbols of S3', Theorem 2.2 states that
there is a formula x(a) which is Sg~provably equivalent to ¥{Sub(a,[ a |, Num(a))) such that if ¥
is a £ (respectively, IT;’~ ) formula then so is x. Define ¢ to be the sentence x(I;,7). So

S3+ ¢ W Sub(Ir,[ a |,Num(I7)).

By the definition of ¢ and the results of §7.4, we certainly have
S+ Irp=Sub(Ir,[ a1, Num(Ir;0))

which shows that S+ ¢ ([ 6 ]).

The fact that the quantifier structure of ¢ is the same as that of ¥ is immediate from
the fact that ¢ is a substitution instance of 3 and from Theorem 2.2. O

For added generality, we will work in theories stronger than Sy.

Definition: Let o be a unary X-defined function of Sit. We define Sz‘:a to be the theory such
that

(a) The language of Sz';a is the language of Bounded Arithmetic.

(b) The axioms of Scj’a are the BASIC axioms plus all formulae with Godel number
in the range of a.

(¢) S has all the £—PIND inference rules.

Ezample: Let PA be Peano arithmetic. Define 8 by

[a=al if nis not a Gddel number of a PA —proof
m if n codes a PA~proof of the sequent with Gddel number m

Bn) =

Then S; 4 is equivalent to PA.
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Definition: Let a be as above and fix #>1. Since PrfFCF} is Al_" with respect to Sy, we can
choose some formula A€Il such that Sg+ A(w,a)——PrfFCF j(w,a). Now let 1 be the for-
mula (Vw)A(w,a). Define ¢} to be the formula whose existence is guaranteed by Lemma 8
such that

3t gaer vl 61).

Note that ¢/ is a IT’formula of the form (Vw)B where B is a I*~formula which is
A with respect to S3'. Also,

S} ¢ b~ ThmFCF ([ 651).

Theorem 9: (Godel’s First Incompleteness Theorem). Let o, Sg':a and ¢; be as above, with 1>1.
Suppose S;, is consistent. Then,

S 4t ba-
Proof: (by contradiction).

Suppose S2':a|—.¢>a". Then by the cut elimination theorem (Theorem 4.3), there is a free
cut free Sy ,—proof of ¢,. Hence, by Corollary 7,

S+ ThmFCFi([651).

From the assumption that S5, ¢4 and the definition of ¢,
S3at~ThmFCF ([ ¢0),

and since S2';a2521, this contradicts the consistency of S2‘;a.

QED. O

Definition: The following predicates assert the consistency of various natural deduction proof
systems:

Con/} => ~Thm}([—)

ConBQ) <= -~ThmBQN[— )
ConBQi S o —‘ThmBQ'.(r—>—|)
ConBD} <=> -ThmBD i([—)
ConBD, <=> —ThmBD ([— 1)
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ConBD' <= —ThmBD ([ — )

ConFCF} <=> —(3v)[ThmFCF i(v)A ThmFCF j((0xLParenxNot)s+(v+RParen))|
ConFCF, <=> —(3v){ThmFCF ,(v)A ThmFCF ,((0+LParenxNot)xx(v+RParen))|
ConFCF' <= —(3v)|ThmFCF*(v)A ThmFCF"*((0xLParen*Not)*(v+RParen))|

For example, ConFCF! asserts that there is no formula A such that both A and -A
have free cut free Szl—proofs. It is necessary for our purposes that we define ConFCF in this
way; since Gentzen’s cut elimination theorem can not be proved by Bounded Arithmetic, the
fact that A and —~A have free cut free proofs does not provably imply that there is a free cut
free proof of the empty sequent. Of course, a proof of the empty sequent is a proof of a con-
tradiction, since the (Weak:right) inference may be used to infer anything from the empty
sequent.

Definition: Let R be any axiomatizable theory of arithmetic. We write Con(R), BDCon(R),
BQCon(R) and FCFCon(R) to denote formulae expressing various consistency properties of
R. Thus, for example, we have:

Con(S;) <= Con’
Con(S34) <= Con}
BQCon(S{) <> ConBQ'
BDCon(S;,) <= ConBD,
BDCon(S4) <==> ConBD*
FCFCon(S;,) <> ConFCF,
FCFCon(S}) <=> ConFCF*

More generally, when R is any axiomatizable theory such that RDSg, let o be a
¥ -defined function of Sg' such that the range of @ is equal to the set of Godel numbers of
theorems of R. Then Con(R), BDCon(R) and FCFCon(R) are defined to be Con(S3,),
BDCon(Sg,) and FCFCon(S3,), respectively.

In addition, the formulae Prfg, Thmpg, PrfBDg and PrfFCF g will be used as alter-
native names for the formulae Prf., ThmJ, PrfBD} and PrfFCF }, respectively.

Theorem 10: (Gddel’s Second Incompleteness Theorem). Let o, ¢cf and 52':(, be as above, with
1>1. Then,

S¢+—¢a>—FCFCon(S4,)
and hence, if S2';a is consistent,

Sgott FCFCon(S3,).
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Proof: Because ¢ is a I1>formula of the form (Vw)A where A is a I1,'~formula which is A}
with respect to Sg, we have by Theorem 4 that

S —¢i> ThmFCF([—g i 1).
Also, by the definition of ¢/,
St-—¢i> ThmFCF i ¢5]).
It is also immediate from the definitions that
St ThmFCOF ([ ~¢ i) > ThmFCF ([ =41 )).
Putting these three formulae together, we get, from the definition of FCFCon(S'g';a), that

S&-—¢4>~FCFCon(S3.,).
Thus,
S FCFCon(S34)>¢4.

By the First Incompleteness Theorem, 52’10}% ¢S, and hence

Sgatt FCFCon(S3,).

QED. O

In Theorem 10 we only proved that Sj- ConFCFJD:ﬁaf; we did not prove that
S} ¢ > ConFCF}. In the standard treatments of Godel’s incompleteness theorem, Con, is
used instead of ConFQFa. Then if 5; is defined using Thm/ in the same way that $s was
defined from ThmFCF ], we have

Si+ $,;4—+ Con}
(see Theorem 5.6 of Feferman [9]). However, the author doubts that it is true that
S} ¢i> ConFCF}

since we are only considering free cut free proofs.
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Since a free cut free proof with bounded initial sequents and bounded endsequent is a
bounded proof, we have the following immediate corollary to the Second Incompleteness
theorem.

Corollary 11: (i>1).
(a) S3t+ FCFCon(S5)
(b) SF1 BDCon(S3)
(c) Siatt Con(S34) _ ' _
(d) If all axioms of Sg, are bounded, then Sg i+ BQCon(Ss,)
() If all axioms of S3, are bounded, then S3,i# BDCon(Ss,)

Corollary 12: (Godel).
(a) Let PA be Peano arithmetic. Then PA+ Con(PA).
(b) If R is an axiomatizable theory which is stronger than Sy', then R Con(R).

Proof: First note (b) implies (a). Let a be a unary function £-definable in Sg' such that the
range of @ is equal to the set of Godel numbers of theorems of R. Then S3, is equivalent to R.
Thus (b) follows immediately from Corollary 11. O

7.6. Further Incompleteness Results.

In the author’s opinion, the most important open question concerning Bounded Arith-
metic is whether the hierarchy Sg,S2, ... of theories is proper. The results of this section were
motivated by a desire to answer this question.

Let PA; denote the subsystem for Peano arithmetic (PA) obtained by restricting
induction to £ 2~ and II°~formulae. It is a classical result that PA,,,+ Con(PA,). This can be
proved by showing that PA; can formalize the proof of the cut elimination theorem and that
PA,,, can define a truth valuation on £ /- and IT)-formulae. Consequently, PA,, - Con(PA}).
From this, it follows immediately that PAg,, is strictly stronger that PA, since by the Gddel
incompleteness theorem, PA i+ Con(PA}).

One way we might prove that 5'2" is not equivalent to S;*! would be to adapt the
proof that PAj is not equivalent to PA,,,. Now it is certainly false that Sy Con(Sy);
indeed, Syt Con(Q), where @ is Robinson’s open, induction free subtheory of PA, (this is shown
by Nelson [19] and Wilkie-Paris [31].) But instead, we might try to show that
S;+t1- BDCon(S4) or Si+t-FCFCon(Ss). This would certainly suffice, since by Corollary 11,
S$ does not prove either of these. However, as we show below, it is not true that for all i>1,
St BDCon(S4). The author does not know whether Sy+!- FCFCon(S,), but he conjectures
that it is not the case.
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Definition: In order to improve readability, we shall use the symbols E to denote “proves by
bounded proof”. This symbol will only be used metamathematically. For example, if ¥ is a
bounded formula,

Sq.PP¥
denotes the formula

(Jw)PrfBD i(w,] W)

which is a formula that asserts that there is a bounded S'fj;a—proof of V.

If ¥ is not a bounded formula, we can still sometimes define a formula S5 V.
Namely, if ¥ is (Vz)A(z), let @ be a new free variable. Then S3,(Vz)A(z) is defined to be
the formula

S5 42 A(a)

where a is a new free variable not appearing in A. If ¥ is (dy)A(y) and A is a bounded for-
mula then S5,V is defined to be the formula

(3w)(3v) [Term(v)APrfBD i(w,Sub(l Fy<b)A 1,16 |,v))]

where & is a new free variable not appearing in A. In particular, we shall frequently have
W=(Vz)(Iy)A(z,y) and in this case S5,V is the formula which asserts that there is a term
t and a bounded Sj,~proof P such that P is a proof of (3y<t(a))A(a,y), where a is a new
free variable.

Proposition 14: Let ¥(a) be any bounded formula. Suppose So+(Vz)¥(z). Then

S3  (Vz) [SFVERW(T,)).

By our conventions for abbreviating formulae, the conclusion of Proposition 14 is an
abbreviation for

S (Vz)(3w)PrBD N w,FSub({ W1, a |,2)).

From now on, we shall use such abbreviation without comment and let the reader supply the
translations.
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Proof: This is proved by formalizing the proof of Theorem 4.10 inside Si. We start with a
bounded proof P with endsequent —> W¥(a). By Theorem 4.9, P may be assumed to be res-
tricted by parameter variables. S, can prove that, for any given value n for a, the induction
inferences of P may be expanded to give an induction free proof of ¥(I,).

One subtle point to notice is that this procedure is not provably uniform. That is, Sq
does not prove “Given a proof P of (Vz)¥(z) and given a number n, there is an induction free
proof of W(I,).” Instead, given a proof P of (Vz)¥(z), S5 proves “given a number n, there is
an induction free proof of ¥(I,).”

QED. O
Definition: Sj+BDCon(S{™) is the theory S3 plus the bounded axiom —~Pr/BD(a,[—> ).
Since SJ+BDCon(S5Y) is axiomatized by bounded formulae, it makes sense to discuss
bounded proofs of that theory. We define
BDCon(S4+BDCon(S4{™))
to be the formula expressing the bounded consistency of Syl+BDCon(S5™).

Theorem 15: If A(ay, . .. ,a;) is a [I*formula and if Sy A then S21+BDCon(S2('1))|—A.

Proof: We assume without loss of generality that k=1. Since A(a) is a IlI;’-formula and
Sy A(a), Proposition 14 implies that

S+ (V) [SSIR A(L)].
On the other hand, by Theorem 4,
S3'+ [~A(a)o(SFVEP-A(LL))).
Hence,

S#+BDCon(S{V)- (Vx)A(z).

QED. O
Corollary 16: S,1+ BD Con(S3+BDCon(S§™V)).
Proof: By Godel’s Second Incompleteness Theorem, S;4+BDCon(S{™") does not prove its own

bounded conmsistency. Since BDCO"(521+BDCO7I(S~2(_1))) is Sj-provably equivalent to a
I1~formula, Corollary 16 is an immediate consequence of Theorem 15.

QED. O
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Corollary 17: Either So'tt BDCon(S§™Y) or S, BDCon(S3).
Proof: Suppose S+ BDCon(S§™). Then S, [S{E°BDCon(S§™)], and thus
S, BD Con(S )~ BDCon(S3+BDCon(S4™)).
So by Corollary 16, Satt BDCon(S3). 0
Corollary 18: Let j be the least number (if any) such that S§+ BD Con(S{™")). Then
(a) S4t+ BDCon(Ss), for all i<j and all k.
(b) S¢tt BDCon(S4), for all i>j.
Proof: (a) is obvious. (b) is proved in the same way as Corollary 17. O

Corollary 19: There is at most one §>0 such that S§ BDCon(S5™).

As we remarked at the outset of this section, these results were motivated by a desire
to show that S§ and S5*! are distinct theories. From this viewpoint, Corollary 19 is a negative
result in that it states that the formula BDCon(S4) can not be used to separate the theories 5'2"
and Sg*1.

There are weaker formulae we could attempt to use to separate Sy and Ss*!. For
example, it is an open question whether S5*! can prove BQCon(S4) or FCFCon(Sy). The
author conjectures that neither of BQCon(S2('1)) and FCFCon(S2('1)) is provable by S,.



Chapter 8

A Proof-Theoretic Statement Equivalent to NP=co-NP

This chapter presents a reformulation of the INNP=co-INP question in a proof-
theoretic setting. It turns out that NP=co-NP is equivalent to the existence of a theory of
Bounded Arithmetic satisfying a certain “anti-reflection” property.

Definition: Let ¢(a,b,c) be the formula

(Vy<e)(Vz< a)—-PrfBDl(z,FSub(b,l_v—Ly)).

Note that ¢ is a l'llb—formula, hence ¢ represents a co—INP predicate. It is not difficult
to see that ¢ is co-/NP complete.

Definition: Suppose NP=co—INP. Let 1 denote some fixed ¥ ~formula so that

N = ¢(a,b,c)+ {a,b,c).

Definition: Suppose NP=co-NP. Let ¢ and v be as above. Then W is the theory with the
same language as 5’21 and all the axioms of S21 plus the additional axioms:

(1) ¢(a,b,c)>(a,b,c)
(2) ¥(a,b,c)>(a,b,c)
(3) =Pr/BDY(d,[ —> 1)

Strictly speaking, W depends on the choice of 1 and a better notation for this theory
might be W,. However, we shall keep v fixed and suppress the subscript.

Definition: Let d be a vector ay, .. .,a,. Then I denotes the vector I, , ... ], .

n

The next proposition formalizes the claim that ¢ is co-INP complete.

150
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Proposition 1: Suppose NP=co-INP. Let W be as above. Then

(a) W is a consistent extension of Sg'.

(b) For every bounded formula A(2), there is a £,’~formula Ay and a II’-formula
Ap such that

W [A(Z)— Ag(Z)]A [A(2)~ AR(Z)]-
Proof:

(a) Since all axioms of W are true (under the assumption that NP=co-INFP) W must be con-
sistent.

(b) Begin by supposing AcIl. Since the Z'-replacement axioms are theorems of S and by
Corollary 2.15, there is a formula B which is A? with respect to Sy and a term s(Z) such
that

S3+A(2) (Vy<s(2))B(Zy).
By Corollary 7.6(b), there are terms r,(@,b) and ro(d,b) such that

S¢+ B(@,b)>(3z<r,)Pr/BDY(2,[ B(I, ,I) )
and

83+ =B(a,b)>(3z<ry) PrfBDY (2, =B(I, ,I;) 1).
Since W has an axiom asserting BDCon(Sg), we have
Wt B(@,b)>(V2)~PrfBDY(z,[ ~B(I, 1;) ).
Let ¢(@,b) be the term o|ry]. Then
Wi A(Z) (Vy<s@)(V2<4Z,5(2))~PrfBDY(z,[ ~B(I, ,1,) ).
In other words,
Wi A(2)- 8(t(Z,8(2)), ~B(I, ,v) ],5(2)).

Let C(Z) be the formula y(¢(Z,5(2)),[ ~B(I,,v)],5(Z)). Then CeS} and Wi A C. This
establishes (b) for the case A€Il.
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If AEEII’, apply the above construction to —A to find CEZlb such that
Wi A+—C. So (b) holds for AEE .

It is now easy to prove (b) for all bounded formulae A by induction on the
quantifier complexity of A.

QED. o

Corollary 2: Suppose NP=co-NP and let W be as above. Then for every bounded formula A4,

W [A@)> WERA(L,).

Proof: Let Ay be as in Proposition 1. Then
W [WIR(A(@)~ A(d))].
Also, since AEGEIb and by Theorem 7.4,

Wi [Ag(d) > WP Ag(3)].
Hence,

Wi [A(3) > WIRA(L,)).

QED. O

Proposition 3: Suppose R is a consistent theory extending S3. Let A(@) be any bounded for-
mula in the language of Sy If RI-(VZ)A(Z) then N = (VZ)A(2).

Proof: Suppose R|-(VZ)A(Z) but NE=-A(#) for some fixed vector of integers 7. Then
S+ —A(7) since ~A(7) is a closed, bounded, true formula. But since R is an extension of S,

R must be inconsistent and we have arrived at a contradiction! O

Corollary 4: Suppose R is a consistent extension of 53 and R is axiomatized by bounded formu-
lae. Then every theorem of R is true for N.

Definstion: R is a bounded theory iff R is axiomatized by bounded formulae. The axioms of R
may contain free variables.

So by Corollary 4, every bounded, consistent extension of Szl has only true theorems.
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Definition: Let R be a theory such that the language of R includes the language of Bounded
Arithmetic. Then R is of polynomial growth rate iff whenever A is a bounded formula and

R+ (V2)(3y)A(Z,y) there is a term ¢(Z) such that
R\~ (VZ)(Fy<t(Z)A(Z,y)
and such that ¢ is a term in the language of Bounded Arithmetic.
Proposition 5: Let R be a bounded extension of Sy. Then R is of polynomial growth rate.

Proof: This is an immediate consequence of Parikh’s theorem. O

We are now ready to state and prove the main theorem of this chapter.

Theorem 6: The following are equivalent:
(a) NP=co-NP.
(b) There is a bounded extension R of S4 such that R is consistent and finitely axiomatized
and such that for every bounded formula A,
R+ (V2)[A(Z) > R A(L,)).

(c) There is a consistent, axiomatizable extension R of Sg' which is of polynomial growth rate
such that for every A€II®,

R-(V2)[A(Z) > R+-A(L)].

(d) There is a consistent extension R of Sj' such that for some polynomial p(n,,n,,n,),

N = [¢(a,b,c)>(Fz<2? UMDy Prrp (2 T o(1,,05,1,)1)].

Proof:
(a)=>(b): Let R be the theory W as in Corollary 2.

(b)==> (¢): This is immediate from Proposition 5.

(c)==>(d): This is easily proved by noting that ¢€II;’, using the definition of polynomial growth
rate and applying Proposition 3.

(d)==>(a): Suppose (d) holds. Since ¢(a,b,c) is co-INP complete, it will suffice to show that
¢(a,b,c) is in NP. By Proposition 3, if R ¢(n;,ng,n3) then N = ¢(n;,nyn3). Hence
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N = [#(a,b,c) Tz 2?Uebleblel)prgp(z [ (1,13, 1,) 1))

The righthand side of this equivalence is a Elb formula and hence represents an NP predi-
cate. Thus ¢(a,b,c) is in NP.

QED. O

The importance of Theorem 6 is that it gives a reformulation of the NP=co-NP
question in purely proof theoretic terms. The most striking equivalence is that of (a) and (b).
The property expressed in (b) is a kind of “anti-reflection” property. So NP=co-NP is
equivalent to the existence of a bounded theory with a certain “anti-reflection” property.

Trying to prove or disprove the statement (b) is a possible approach to resolving the
NP vs. co-INP question. This approach does not suffer from the relativization results of
Baker-Gill-Solovay [2] for the following reason: Consider a function f of polynomial growth rate

such that NP/=co-INP!. If we have f as a new function symbol in R it may not be possible to
axiomatize R so that there is a polynomial p such that

N &= [f(a)=b > (Fe<2?ebtD)Prfo(z,[ f(1,)=1}1)].

Theorem 6 inspires us to try some sort of self-referential formula A(z) such that A(z)
is bounded and such that the theory R does not prove the existence of a proof or a disproof of
A(z). A natural choice for A is the formula Cong(z) which is defined as follows:

Definition: Let R be any axiomatizable theory. Then Conpg(z) is defined to be the formula
(Vy<a)(~Prfr(y[ —>1)).

If R is furthermore a bounded theory, then ConBD g(z) is defined to be

(Vy<z)(~PrfBDg(y,[ —>)).

The question is whether there are “short” R-proofs of Cong(z) or ConBD p(z) for some
bounded theory RB. For example, if we could show that for all bounded, consistent, axiomatiz-
able extensions R of Sg there is no term #(z) such that

N &= (Vz)(Jy<t)Pr/BD p(y,[ Cong(1,)1)

then we would have shown that NPsco-INP. Unfortunately, we have the following result:
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Proposition 7: Let R be any bounded, consistent, axiomatizable extension of Sg. Then there is a
bounded, consistent, axiomatizable extension @ of R such that

Q- (Vz) [QFF Cong(L,)].

Proposition 7 soundly destroys any hope of proving NPstco-NP with the formula
Con g since it is immediate that

Q- (V) [Cong(z) > (@ Cong(L,)-
Proof: Let Q4,Q,,Q5, - . . be the following theories:

(a) Qois R
(b) @, is Qg+Con(Qy)
(¢) Qit1is Q;+Con(Q;)

Let @ be the theory J@;.
)

It is important to analyze exactly how Qg,Q,,@, . .. are axiomatized. The theory Q;
is defined in a straightforward manner to have the axioms of R plus ¢ additional axioms. Each
axiom Con(Q;) is a formula with Gddel number G; such that 2¥'< G,-§226V' for each 4 and some
constant 6. For each >0, So! can metamathematically discuss @; and Sy can define formulae
such as Con(Q,).

Sg can also metamathetically define the theory @ in a straightforward manner. In
particular, there is a A—predicate of Sg' which recognizes the axioms of Q.

Since each theory Q,Q0,Q;, ... contains R, they each admit £,’~PIND inferences.

Now suppose we wish to find a @-proof of Con g(I,) for some n€N. Let j, be equal
to the length of the length of n, ie., j,=|(|n[)|. Then for all m>j,, the axiom Con(Q,) has
Godel number G,,>n. Hence, no axioms Con(Q,,) where m>j, can appear in a Q—proof with
Goédel number <n. Thus, a @-proof with Gddel number < is in fact a Q; —proof. S can for-

malize this argument and hence
S Con(an)D Con g(n).

But now QDS54 and Q has Con(Q; ) as an axiom, so @ Cong(n). The size of the Sg-—proof of
Con(Q;,)>Cong(n) is proportional to the length |n| of n and the size |G; | of the axiom
Con(Q; ) is 526.j‘§(1+|n|)5. Hence there is a polynomial, independent of n, such that the
Godel number of the @-proof of Cong(n) is less than 2#(In),
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Furthermore, Sg and hence @ can formalize the reasoning of the above paragraph.

Thus

So'+(Vz)[QFF Cong(1,)].
So,

Q- (Vz)[QF Cong(l,)].
QED. O

Regarding Proposition 7 it should be noted (see Pudlak {23]) that

S (V2) [+ Con gy(T,).

However, the author doubts that

3+ (V) S5 1 Congy(I,)].
What Proposition 7 asserts is that for some bounded extension R of Sq,

R-(Vz)[R{Z Cong(I,)].

There are lower bounds known for the length of any R—proof of Cong(z). They were
originally proved by H. Friedman [10] and later by Pudlak [23]. Their techniques can be
extended to give a lower bound on the size of bounded R—proofs of ConBD p(z). Namely, we
have:

Proposition 8: Let R be a bounded, consistent extension of So'. Then for any term r there is a
term ¢ of the language of Bounded Arithmetic such that for all €N there is no bounded
R—proof of ConBD g(¢(I,)) with Gédel number less than r(n).

Proof: by the method of H. Friedman [10] and Pudlak [23]. O

Unfortunately, the lower bound of Proposition 8 is not good enough to show that
NPsco-NP and by Proposition 7 there is no way it can be improved significantly.

Proposition 7 destroyed our hope of using A(z)=Cong(z) to prove NP+#co-NP. So
what else can we try? Well, one possibility is to pick A(z) to be some co-/NP complete predi-
cate. However, this is somewhat unsatisfactory; it would be preferable to find an A(z) which is
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true for all z, since such a formula might be easier to manipulate.

Let PA and ZF denote the theories of Peano Arithmetic and Zermelo-Fraenkel set
theory. H. Friedman has asked whether there are short PA—proofs of Conzp(z). In an attempt
to generalize his question, consider the following definition:

Definition: Let R be a consistent, bounded theory of arithmetic. Then the theory R', called the
jump of R is defined so that

(1) The language of R’ is the language of B plus a new predicate symbol T
(2) All the axioms of R are axioms of R'.

(3) For every formula A(@,b) in the language of R, the following is an axiom of R':
T(TA(@,I;)]) « (V3)A(3,D).
(4) In addition, R’ has the axiom
Thm g((0*Arrow)**a) > T(a).
It is clear that R’ is an axiomatizable extension of R. The intended interpretation of

the predicate T(a) is “a is the Godel number of a valid R—formula.” As every axiom of R' is
true for this interpretation, R/ must be consistent.

We now consider the possibility of using A(z)=Cong(z) to prove NPs#co-NP. In
this case we do not have the difficulties that arose in Proposition 7; namely, it is not the case
that

R (V)[R Conp(l,)].
Indeed, it is not the case that
R'+(Vz)[Rt Conpll,)|.
This is because R'\- [(R+ Cong(l,))> Conpg(a)] and by Godel’s second incompleteness theorem

R'it (Vz)Conp(z).

This inspires us to make the following conjecture:

Conjecture: For every bounded, consistent, axiomatized extension R of S,

Rit (Vz)[Conp(z) D R Congl(l,)).
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It should be difficult to prove this conjecture as an affirmative resolution of the conjec-
ture would be a proof that NPsco-NP.



Chapter 9

Foundations of Second Order Bounded Arithmetic

Second order arithmetic is an extension of the first order theories discussed so far. In
second order logic, we enlarge the formal system of logic to allow discussing functions and predi-
cates directly. New second order variables refer to functions and predicates and allow
quantification over functions and predicates.

Second order Bounded Arithmetic is different from the usual systems of second order
arithmetic. There are restrictions on the functions used by second order Bounded Arithmetic;
namely, the functions must have a polynomial growth rate. Also, the axioms of second order
Bounded Arithmetic are much weaker that those of the usual second order theories of arith-
metic. In particular, second order Bounded Arithmetic is not stronger than Peano arithmetic.

So why are we interested in such weak theories of Bounded Arithmetic? The classical
second order theories have been motivated partially by a desire to develop mathematics on a
logical basis more secure than set theory. Likewise, it is an interesting question how much of
mathematics can be developed in second order Bounded Arithmetic; Nelson [19] and Hook [16]
have worked on a closely related problem. However, we are interested in second order Bounded
Arithmetic because we will establish results about the definability of functions which are analo-
gous to our earlier theorems for first order Bounded Arithmetic. We shall define second order
theories V3 and Uj such that a function f is Ell'b—deﬁnable in U} iff f is computable by a
polynomial space bounded Turing machine (i.e., fEPSPACE); similarly, f is X,"*~definable in
V4 iff f is computable by an exponential time Turing machine (i.e., fEEXPTIME).

This chapter defines the syntax and axioms of second order Bounded Arithmetic. We
examine the question of using predicates versus functions as second order objects. Comprehen-
sion axioms and new induction axioms are introduced. Finally, the cut-elimination theorem is
extended to second order theories of arithmetic. For cut-elimination, we must use natural
deduction systems and accordingly we will define comprehension and induction rules as well as
axioms.

In Chapter 10, the results relating second order Bounded Arithmetic to PSPACE and
EXPTIME are obtained.

9.1. The Syntax of Second Order Bounded Arithmetic.

Although the reader should be somewhat familiar with second order logic, we shall
review all the necessary syntax and terminology. For the most part, we follow the conventions
of Chapter 3 of Takeuti [28].

159
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The language of second order Bounded Arithmetic includes the first order language
defined in Chapters 2 and 4. In addition, there are the following second order variables:

(1) Free and bound second order variables for predicates. For all 1,jEN, o/ is a free j-ary
second order predicate symbol and #/ is a bound j-ary second order predicate symbol.
We shall use «,8,7,... and ¢,x,%¥, ... as metavariables for free and bound predicate
variables, respectively.

(2) Free and bound second order variables for functions with polynomial growth rate. For
every term ¢ of the first order theory S, and for all i,jEN, g,fj is a free second order j-
ary function variable and )\ ; is a bound second order j-ary function variable. We use
a6t ... and Mot L. a.s metavariables for free and bound second order function
variables, respectively. These symbols range over functions f such that f is bounded
by t; i.e., for all ZEN’, f(2)<t(2).

Second order quantifiers are of the form (V¢), (3¢), (VA*) and (IN). First order
quantifiers are the same as before. The adjectives sharply bounded, bounded and unbounded are
used to describe first order quantifiers only. We shall occasionally not adhere precisely to the
distinction between bound and free variables.

Definition: A first order formula is one with no second order quantifiers. Second order free vari-
ables may appear in a first order formula.

We classify second order formulae in a hierarchy of sets £;'*, II.1® of formulae:

Definition: A second order formula is bounded iff it contains no unbounded, first order
quantifiers. The following sets of bounded second order formulae are defined inductively by:

(1) g% = N* = Ag"® is the set of formulae which contain no second order quantifiers and
no unbounded quantifiers (i.e., the set of bounded, first order formulae).

(2) ;1% is the set of formulae such that
(a) M C B
(b)If A is in £,43, so are (V2<t)A, (Jz<t)A, (34)A and (INHA
(c) If A and B are in T}, so are AAB and AVB.
(d) If AeS S and Bellt}, then =B and BoA are in I

]

(8) TIL} is the set of formulae such that

()t cntd

(b) If A is in TI%, so are (Vz<t)A, (Jz<t)A, (V4)A and (VAHA.
(c)If A and B are in TI,}%, so are AAB and AvB.
(d

) If A€t} and BeX k8, then =B and BoA are in ) B
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(4) =, and T1;* are the smallest sets satisfying (1)-(3).

So To® is the set of bounded first order formulae which may contain second order free
variables but no second order quantifiers. 2% and M;%* are defined by counting alternations of
second order quantifiers ignoring first order bounded quantifiers.

It will be convenient to sometimes work in a theory which does not contain second
order function variables. Accordingly, we define 501"’, f],-l"’ and ﬁ,-l"’ to be the subsets of Aol’b,
E,-l'b and H,-l’b, respectively, containing just the formulae which contain no free or bound second
order function variables.

In order to manipulate the second order variables and quantifiers in a natural deduc-
tion system we need additional inference rules:

(1) (second order V:left):

Ala)l—>A
(V4)A(¢)T—>A

and

A I—A
(VAT — A

(2) (second order V:right):

I'—> A A(a)
T— A(V4)A(4)

and

r—A4,4(s"
F— A(VN)A

where o and ¢ are the eigenvariables of the inferences and must not appear in the
lower sequent.

(3) (second order :left):

A(a)T—A
(34)A(4)T—>A
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and

A(HTr—A
AN)AOHT—A

where o and ¢! are the eigenvariables of the inferences and must not appear in the
lower sequent.

(4) (second order J:right):

I'—AA(a)
I'—> A,(34)A(4)

and

r— AA(¢)
T—>A,@HA(N)

Definition: Let A be a formula, b, ...,b, be free first order variables and y;,...,y, be
bounded first order variables. Then {y,...,yn}A(Y1, --.,¥,s) IS a meta-expression called
the abstract of A(b,,...,b,). It is important to note that {F}A(Y) is a meta-expression, so
“{” and “}” are not symbols in the syntax of second order logic.

The idea of an abstract is that {J}A(¥) specifies a predicate which is true for those ¥
such that A(¥) holds. If F(e) is a formula containing the free second order predicate variable «,
we use F({¥}A(Y)) to denote the formula obtained by replacing every o(s) in F by A(3). We
will use metavariables V,U, ... to denote abstracts. The formal definition of what F(V) means
is as follows:

Definition: If o is an n-ary predicate variable, F(a) is a formula and
V={yy, ..., ¥:}A(yy, . . . ,¥,) is an abstract, then F(V) is the formula obtained by substitut-
ing V into F for a. F(V) is defined by induction on the complexity of F:

(1) If « does not appear in F then F(V)is F.

(2) If F(a)=a(3), then F(V) is A(3).

(3) If F is =B, BAC, BVC or BSC. Then F(V) is =B(V), B(V)AC(V), B(VC(V) or
B(V)> C(V) respectively.

(4) Suppose F(a) is (Vz)B(a) or (3z)B(a). If z appears in A, we obtain A" by renaming
the variable z in A to avoid conflict of variables. Then F(V) is (Vz)B({¥}A’(¥)) or
(32)B({¥}A"(¥)), respectively.

(5) Suppose F(c) is (V4)B(a) or (34)B(a). If ¢ appears in A, we obtain A" by renaming
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the variable ¢ in A to avoid conflict of variables. Then F(V) is (V¢)B({7}A"(¥)) or
BHB{T}A (7)), respectively.

Proposition 1: Let F be a formula and U and V be abstracts. Any second order theory of arith-
metic proves the sequent

(Va)(U(z)— V(2)),F(U)—> F(V).

Proof: This is Proposition 15.13 of Takeuti [28] and is easily proved by induction on the com-
plexity of the formula F. O

Definition: Let V={7}A(¥) be an abstract. V is atomic iff A is atomic.

9.2. Comprehension Axioms and Rules.

The comprehension axiom of second order logic is fundamentally different from the
axioms we used for first order Bounded Arithmetic. We define below comprehension rules as
well as comprehension axioms.

Definition: Let ® be a set of formulae. A $-abstract is one of the form {F}A(¥) where A is in

®. @ is closed under substitution iff for every formula A in @ and every ®-abstract V, A(V)
is a formula in .

We first define the comprehension axiom and rule for second order predicate symbols.

Definition: Let ® be a set of formulae closed under substitution. The & comprehension azioms,
®-CA, are given by the axiom scheme:

YA (VXY Ix)(¥D) [x(T)~ A(FZ,X")]

where A must be in &.

Definition: Let ® be a set of formulae closed under substitution. The & comprehension rules,
®_CR, are inferences of the forms:

(1) ($-CR;3:right)

I'— AF(V)
I'— A,(3¢)F(¢)
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(2) (9-CR;V:left)

F(V)T—>A
(Vo)F(¢)I—> A

where in both (1) and (2), V must be a ®-abstract. V is called the principal abstract of the
inference.

Ezample: Let F(a) be the formula (3y<a)(y-y=a)~ a(a). Then if A is (3y<a)(y-y=a), F(A)is
the formula

(Fy<a)(y-y=a)~(Iy<a)(y y=a).

Since A€E M, we can use £g'*~CR to infer:

—> (V1) [(Gy<z)(y-y=2 )= (By<2z)(y-y=1)]
—>(3)(V2)[(Fy<z)(y-y=2) ()]

That is to say, Zol’l'—comprehension implies that there is a predicate ¢ which is true precisely
for the perfect squares.

Proposition £: Let ® be a set of formulae closed under substitution. Then the comprehension
axioms ®-CA are equivalent to the comprehension rules -CR.

Proof: This is Theorem 15.16 of Takeuti [28]. One direction is easy. The example above pro-
vides the hint on how to prove the other direction, which is also easy. O

We next define the comprehension axiom and rules for function symbols.

Definition: Let ® be a set of formulae closed under substitution. The ® function comprehension
azioms, ®-F'CA, are given by the following axiom scheme:

(V)Y )EN) YY) [AN@),7.2,8.7)~ Fz<)A(2,9,2,8,7°)]

where A is any formula in ® and ¢ is any term.

Definition: Let @ be a set of formulae closed under substitution. The ® function comprehension
rules, ®-FCR, are inferences of the form:
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(1) (#-FCR 3:right)

'—>A,F(U)
I— A,(ONYF(V)

(2) ®-FCR;V:left)

FU) r-Aa
(YNYF(V)I—> A

where for both (1) and (2), ¢ is any term, U must be an abstract of the form {y}(3z<t)A(=,9)
and V must be the abstract {F}A(N(Y),¥), and A is required to be a formula in ®. V is
called the principal abstract of the inference.

Proposition 3: Let & be a set of formulae closed under substitution. The ®-FCR rules are
equivalent to the ®-FCA axioms.

Proof:
== . First we show that ®~-FCR—=> ®-FCA. Let Ac®. Using (®-FCR;J:right) we can infer

—> (Fz<t)A(z,b) (32<t)A(2,5)

—> (V9)(Bz<t)A(z,9)> (F2< )A(2,7)]
—> ANV [AN(@),9)~ Fz<t)A(2,9)]

From this, the first and second order (V:right) inferences give the #-FCA axiom for A.

<. The reverse implication is even easier.

QED. O

9.3. Axiomatizations of Second Order Bounded Arithmetic.

The weakest second order theories of Bounded Arithmetic are obtained by enlarging
the first order theories S4 and T3 to include second order variables.

Definition: We define a hierarchy, £}(a,¢) and I} (a,q) of the second order formulae which con-
tain no second order quantifiers. The definition of £ (a,¢) and I1,%(c,¢) is completely analo-
gous to the definition of ¥} and II;? in §2.1, the only difference being that free second order
variables may appear without restriction in the formulae. The sets £;}(a) and I1’(a) contain
those formulae of £(a,¢) and T}(a,g), respectively, which have no second order function
variables.
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Definition: S2‘(a,§) is the second order theory with second order function and predicate variables
and the following axioms:

(1) BASIC axioms,
(2) For each function variable ¢/, the axiom (VZ)(¢{(Z)< (%)),
(3) The £} (a,¢)-PIND axioms.

S5(a) is the second order theory with only second order predicate variables (but no
second order function variables). The axioms for S3(a) are:

(1) BASIC axioms,
(2) The £}(a)-PIND axioms.

Sq(a) is the union of the theories S§(a) and Sy(a,g) is the union of the theories S3(a).

T ax), THa), Toa,) and Tya) are defined similarly using the IND axioms
instead of the PIND axioms.

All of our earlier work on SJ can be relativized to Scj(a,g). For example, the relativiza-
tion of Theorem 2.6 holds and, for all i>1, Sf(a,¢) proves the £ (a,¢)-LIND axioms. Another
result which carries over is Theorem 2.7: by essentially the same proof as before we can show
that Syi(@) can T *(a)-define the function

f(a) = (#2<]a|)(a(2)).

Also Sg(a¢) is an extension of the theories we used to discuss the relativized polynomial hierar-
chy in §5.4. In fact, it is now clear the function symbols 5/, of §5.4 were syntactically
equivalent to second order function variables. Thus the theories Sj(a) and Sj(a,q) satisfy a
relativized version of the Main Theorem 5.6.

Definition: U, is the second order theory of Bounded Arithmetic which has second order predi-
cate variables and function variables and which has the following axioms:

(1) All axioms of Sy(e¢),
(2) E4*—comprehension axioms, (£4°-CA and Z*-FCA),
(3) £M*~PIND axioms.

U, is the theory UU.;

Definition: (72' is a second order theory of Bounded Arithmetic with predicate variables but no
function variables. The axioms of U are
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(1) All axioms of Sy(a),
(2) E#*—comprehension axioms (E¢"*-CA),
(3) EM-PIND axioms.

U, is the theory U(72‘.
;

Definition: V5, VS, Vyand V, are defined exactly like Uj, U, U, and U, (respectively) except
that IND axioms are used instead of PIND axioms.

Proposition §: (i>1). V§Uj and Vz'l— (72".

Proof: $;Y*~IND = £ M-LIND is trivial. £;%*~-LIND == £/*-PIND is readily established
by using the method of the proof of Theorem 2.11. These implications show that V3 Us.
‘72"|— (72‘ is proved by the same argument. O

The next theorem states that we can dispense with second order function variables if
desired and just work with second order predicate variables.

Theorem 5: U, is a conservative extension of Uy. V5 is a conservative extension of V3.

Theorem 5 is proved by a series of lemmas. The most important one is Lemma 6:

Lemma 6: Let A be a T’ —formula with no free second order function variables. Then there is
a 3" —formula A* such that

U - A= A

Proof: The idea is that function variables in A can be replaced by predicate variables which
encode the value of the function variables. We define a metaformula G such that (V§)G(¢,a)
asserts that the predicate a encodes the values of the function ¢. When ¢’ is k-ary, & must be
(k+1)-ary and we define G(¢,a) to be the formula

(V2 <[t(@)[)(elz,)+ Bit(z,¢'(§)=1).

So (V9)G(¢',a) says that for all z<<|¢(F)|, ofz,¥) is true iffl the z-th bit of the binary expression
for ¢(¥) is 1. Since ¢(¥)<t(¥) for all 7, a does indeed code the values of ¢. G is a metaformula
rather than a formula since the definition of G(¢!,a) depends on the term ¢ and on the arity of

¢.

Note that G(¢,@) is a Eg**-formula (in fact, G(¢',a) is a Alb(a,g)—-formula.) The
Lg"’~CA axioms prove
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(VXY 3e)(Vz)(VT)($(z,7)« Bit(z, M (¥))=1),
hence, U (YA)(38)(VT) G (N, 8).

Conversely, since S5{(a,¢)C U5, we can introduce a new ¥ (e,¢)-defined function sym-
bol f} in Uy satisfying

(YD) @Dz <[ (@) Bit(z .1 5(@)) =1+ &(z,9))].
By the £"*~FCA axioms, U{ can prove
(Vo) IN)VY) (B2 < () (z=min(t(F).S4(@))) = N (@)=min(¢(¥).S (D))
Let H(¢',a) be the metaformula ¢/(¥)=min(¢(¥)./(¥)). It is now immediate that
U2+ (Vo) ENNVRH (N 9)
and since U2+ G(¢',a)o H(¢ ),

UL (V') (36)H(N, ¢).

We are now ready to construct the desired formula A* equivalent to A. For every

. . ¢ . . .
second order function variable X\;" in A we use a new second order predicate variable ¢;;. We

replace each (V)\j") or (3)\;') by (V4;;) or (3¢;;), respectively. Let h;; be the ¥ (a)-defined
function such that

hi @) = min(t(3)./4: (3)).

Wherever )\j“(?) appears in A we replace it by h;j(3). After all these replacements have been
carried out we have the formula A*. The ,%(a)-defined function symbols h;; can be removed
by replacing them by their defining formulae.

It is clear that A* is a f),-l’b—formula and that UQO}—AHA*.

Q.ED. O

Definition: (}gi is the theory (72' extended to include second order function variables and
T *—comprehension. (However, Uy does not include all the ,"*~PIND axioms.)

172‘ is the theory V, extended to include second order function variables and
Y¢"’—comprehension (but not all the ,"*~IND axioms.)
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Lemma 7:
(a) Uy is a conservative extension of Uy.

(b) V3 is a conservative extension of V3.

Proof: By the proof of Lemma 6, for every formula A there is a formula A* such that
UQ- A A* (even if A is not bounded). Furthermore, if AL then A*€X;"?. We claim that

for all formulae A, if (‘J\gil—A then (72‘|-A*. This will suffice to prove Lemma 7 as A* is equal to
A when A contains no second order function variables.

The claim is proved by induction on the number of inferences in a (}2‘—proof of A. The

only nontrivial case to consider is the ,"*~FCR comprehension rules. However, (72' can emu-
late £;"*~FCR by using the L-CR comprehension rule. We leave the details to the reader. O

Lemma 8:
(a) The £,*-PIND axioms are theorems of Uy.

(b) The ,/"*~IND axioms are theorems of ‘72".

Proof:
(a) This is immediate from Lemma 6 and the fact that U; has the SLE_PIND axioms.
(b) is proved by the same argument. O

Proof: of Theorem 5:

By Lemma 8, Us=U4 and Vy=V,. Hence, by Lemma 7, Uj is a conservative exten-
sion of Us and V4 is a conservative extension of V5,

QED. o

In addition to the theories defined above, there are two more theories, 82‘ and 92‘,
which are in some respects more natural choices for second order Bounded Arithmetic.

Definition: Let R be a second order theory of Bounded Arithmetic and let A be any formula.
Then A is AM* with respect to the theory R iff there are formulae BELM and Cell® such
that R~ A<~ B and R-A+«C.

When it is clear what theory is being discussed we shall merely say A is Al? to
mean that A is A"* with respect to R.

Definition: 82‘ is a second order theory of Bounded Arithmetic with second order predicate vari-

ables but no function variables. The axioms of ﬁ{ are

(1) All axioms of Ué
(2) A**—comprehension axioms (A["~CA).
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82 is the theory Uﬁ{.
%

Definition: 92" and 92 are defined analogously to 82" and 82. So &2" and ?72 are the theories ‘72’
and V, (respectively) plus the Ell'b—CA axioms.

It is an immediate consequence of Lemma 6 that second order function variables may

be added to the syntax of ﬁz’ or &; to obtain a conservative extension. Of course when we add
second order function variables we may also use the A**~CA axioms and the X,"*~PIND or
the E,-l"’-IND (respectively) axioms. However, for our purposes in §10.5 and §10.6, it is more

convenient to work with the theories 8’- and 9’. without second order function variables.
2 2

9.4. The Cut Elimination Theorem for Second Order Logic.

We next prove that Gentzen’s cut elimination theorem holds for (72 and V,. We will

show in §9.7 that 82 and 8’2 also satisfy a version of Gentzen’s cut elimination theorem.

Definition: Let A(a,, ... ,a,0,...,a,) be a formula with all free variables as indicated. We
say that B is a substitution instance of A iff B is A(ty,...,t,Vy,...,V,) where each ¢; is an
arbitrary term and each V;is a £q"’-abstract.

Lemma 9: (1>0.)

(a) If A is a B0 (TI1,*3-) formula then every substitution instance of A is a "'~ (respec-
tively, I1;*-) formula.

(b) Suppose P is a Us—proof (respectively, a V';—proof) of '~—> A and that every principal
formula of a free cut inference in P is a first order formula. Then there is a free cut free
Uj-proof (respectively, Vyi—proof) P* of I'—> A.

(c) Suppose P is a free cut free 02‘~proof (respectively, ‘72‘—proof) of '—>A and that o is a
free variable appearing in '~—>A. Further suppose V is a Lj*~abstract. Let I'(V) and
A(V) denote the cedents obtained by substituting V for every occurrence of « in the for-
mulae in T and A. Then I'(V)—> A(V) has a free cut free ﬁ2‘~proof (respectively,
Vj—proof).

Proof:
(a) is easily proved by induction of the complexity of A.

(b) is proved by exactly the same proof as the free cut elimination theorem for first
order logic. We omit the proof here, the reader may refer to Takeuti [28], pp. 22-29, 112.

To prove (c), we may assume without loss of generality that P is in free variable nor-
mal form and that V has no bound variables in common with P. Let P(V) denote the proof
obtained from P by substituting V for every occurrence of a in formulae in P. It is easy to see

by examining the allowable inferences that every inference in P(V) is a valid inference of ﬁ;
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(respectively, V). In particular, (a) guarantees that £/*~PIND or L}M-IND , and T4"*-CR
inferences are still valid after the substitution of V for a.

However, P(V) may fail to be a proof in that there may be initial sequents of P(V) of
the form

81=ty, ..., 8, =t A(Sy,...,8,)—>A(ty, ... ,¢t,)

where V={Z}A(Z). However, sequents of this form are easy to prove without free cuts. So we
merely tack onto P(V') free cut free proofs of these initial sequents and thus obtain a proof @ of
T(V)— A(V).

@ is not necessarily free cut free, as @ may contain free cuts with principal formula
A(S). But since V is a first order abstract, every free cut inference in @ has a first order princi-
pal formula. Hence, by (b), there is a free cut free proof of I'(V)—> A(V). O

Theorem 10: (Cut Elimination Theorem). Let P be a ﬁg—proof or a Vg—proof. Then there is a
proof P* in the same theory such that P* has the same endsequent as P and there are no free

cuts in P*. Furthermore, each principal formula of an induction inference in P* is a substitu-
tion instance of a principal formula of an induction inference in P and each principal abstract

of a comprehension inference in P* is a substitution instance of a principal abstract of a
comprehension inference in P. Hence, for all i>0, if P is a Uj- (or Vi-) proof then so is P*.

Proof: We shall modify Takeuti’s exposition on pages 22-29, 112, 143-144 of [28]. The reader
should have [28] available as he reads the proof.

Following (28], we define the grade of a formula A to be the number of logical symbols
in A. The level of A is the number of second order quantifiers in A.

A maz inference with principal formula A is of the form

'-—>A IN—>A
[JI*—A*A

where IT* and A* are obtained from IT and A by removing all occurrences of A. A mix infer-
ence is free iff all of the occurrences of A in A and II are free. Since a mix inference and a cut
inference are so similar, it suffices to prove Theorem 10 for proofs which use mix inferences
instead of cut inferences.

Suppose P is a proof whose last inference is a mix with principal formula 4 as shown
above. Define the distance of a sequent in P to be the number of inferences separating it from
the endsequent of P. The right rank of P is defined to be the maximum distance of a sequent
containing a direct ancestor of an occurrence of A in the cedent II. The left rank of P is the
maximum distance of a sequent containing a direct ancestor of an occurrence of A in the cedent



172 Foundations of Second Order Bounded Arithmetic

A. The rank of P is the sum of the right rank and left rank.

It suffices to consider P with a single mix inference as the last inference. The proof is
by ordinal induction on

ord(P) = w”level(P)+w -grade(P)+rank(P)

where level(P) and grade(P) are the level and grade of the principal formula of the final mix of
P, and w is the first infinite ordinal.

Thus it suffices to show that if P is a proof with no free mixes except for the final
inference of P and if Theorem 10 is satisfied for all proofs P! with ord(P' )<ord(P), then P
satisfies Theorem 10. We modify the proof of Lemma 5.4 of Takeuti [28]:

Case (1): rank(P)=2.
Cases (1.1)-(1.5.ii): Similar to pages 24-27 of [28].
Case (1.5.iii). Suppose A=(V¢)B(¢) and the last inferences of P are
I'—> A, B(a) B(V)II—A

I'— A,(Y¢)B(¢) (V4)B(¢)1—> A
FII-——>AA

where V is a $¢"’-abstract, and since rank(P)=2 the indicated occurrences of (V¢)B(¢)
are the only ones. By Lemma 9(c), we can obtain a free mix free proof of '—> A, B(V)
from the free mix free proof of '—> A B(a). Thus we have a proof @ such that the
only free mix in @ is its last inference:

'—>A,B(V) B(V)II—A
II#—A* A

where IT1# and A# are IT and A minus all occurrences of B(V).

By the induction hypothesis, there is a free mix free proof Q* of
II#—> A% A since ord(Q)<ord(P). By adding weak inferences to the end of Q* we
obtain the desired proof P*.

Case (1.5.iv). Suppose A=(14)B(4). This case is very similar to Case (1.5.ii).
Case (2). rank(P)>2.
Case (2.1): The right rank of P is >1.

Cases (2.1.1)-(2.1.8.4). Similar to [28].
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Case (2.1.8.i11): Suppose A=(V$)B(¢), V is a Eg"’-abstract and the last inferences of P
are:

I'-—->A (Ve)B(¢),[1—>A
I[I*—A*A

where now A and II, but not I', may contain occurrences of (V¢)B(¢). The cedents IT*

and A* are I1 and A minus all occurrences of (V¢)B(¢). Modify the end of P to obtain
a proof P, which ends as

r-A B(V)I1—A
I,B(V)II*—> A* A

The right rank of P, is one less than the right rank of P so by the induction
hypothesis there is a free mix free proof P of the endsequent of P,. Now consider the
proof which ends

B(V)I,IT*—> A* A
r—>A  (V4)B(¢)I,I*—>A*A
I TI*—> A% A%A

The right rank of this is one, so by the induction hypothesis and some exchanges and
contractions we obtain a free mix free proof of I',JI* —> A* A.

The rest of the cases are similar.

QED. O

9.5. Ei’b-Deﬁned Functions and A}’b-Deﬁned Predicates.

The second order theories of Bounded Arithmetic are in many respects analogous to
the first order theories S§ and T. One of the most fundamental properties of second order
Bounded Arithmetic is that new function and predicate symbols may be introduced into the
language of Bounded Arithmetic; under certain conditions, these new function and predicate
symbols may be used freely in the principal formulae of induction axioms and comprehension
axioms.
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Definition: Let R be a second order theory of Bounded Arithmetic. Suppose A(Z,y) is a
T, —formula with all free variables indicated and that

(1) R+-(V2)(Ty<t)A(Z,y)
(2) R-(Y2)(Vy)(V2)(A(Z,9)AA(Z,2) Dy=2).

Then we say that R can I,"’~define the function f such that N = (V2)A(Z,1(2)).

The £,*-defined function symbols and the Aj"*—defined predicate symbols play the
same role in the second order theories of Bounded Arithmetic as the ¥,’~defined function sym-
bols and the A —defined predicate symbols do in the first order theories S5 and T4. In particu-
lar, the analogues of Theorems 2.2, 2.3 and 2.4 hold for second order Bounded Arithmetic.

Definition: Let [ and 7 be new function and predicate symbols. The sets 2,-1"’(7,7)’) and
H,-l'b(f,i)') are sets of bounded formulae in the language of second order Bounded Arithmetic
plus the symbols 7 and 7. These sets are defined by counting alternations of second order
quantifiers ignoring the first order, bounded quantifiers.

Theorem 11: Let B be a second order theory of Bounded Arithmetic. Suppose R can
Ell'l’—deﬁne each of the functions 7 and can All’b—deﬁne each of the predicates . Let R* be
the theory obtained from R by adjoining the new symbols 7 and P and their defining axioms.
Then, if :>0 and B is a Z%%(7,7)- (or a I;"*(/,7)-) formula, then there is a formula B*eL M
(or TI®, respectively) such that R*- B*« B.

The proof of Theorem 11 is similar to the proofs of Theorems 2.2 and 2.4.

Definition: Let R be a theory of Bounded Arithmetic and let 7 be a vector of defined function
symbols of B and P be a vector of defined predicate symbols. Then R(T,i)’) is the conservative
extension of R obtained by enlarging the language to include 7 and P and including the
defining axioms for these symbols.

Corollary 12: (i>1):
(a) Let f be a vector of Z,"*~defined function symbols of U (respectively, V) and let 7 be a
vector of A;"’~defined predicate symbols of Uy (respectively, V$). Then US(fP) (respec-

tively, VJS(/,F)) has as theorems the 2 (f F)-PIND axioms (respectively, the
S, F)-IND axioms).

(b) Let f be a vector of X;""*~defined function symbols of fJ;’l (respectively, Vgi) and let 7 be a
vector of A"*—defined predicate symbols of Uy (respectively, 172"). Then ﬁg‘(?,i)’) (respec-
tively, 172‘(7,?) ) has as theorems the f],-l’b(f,ﬁ)—PIND axioms (respectively, the
f),-l"’(f,i)’)—IND axioms).

(c) Let f be a vector of £;"*~defined function symbols of ﬁ; (respectively, 82") and let 7 be a
vector of A"’_defined predicate symbols of ﬁz" (respectively, 92"). Then 32‘(7',?)
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(respectively, 92’.(7,5’)) has as theorems the £;"*~PIND (f,;B) axioms (respectively, the
$.L5_IND (7 ) axioms) and the A{"*(/,F)-CA axioms.

Corollary 12 tells us that T;"*-defined function symbols and A*-defined predicate
symbols may be used freely in the principal formulae of induction inferences. Furthermore, if

we are working in the theory 8{ or %2" we may use such function and predicate symbols freely
in principal abstracts of comprehension inferences.

The next two theorems give an application of All"’—comprehension to show that 821

and 921 can define the iteration of A,"*~defined predicates. It is an open question whether these
theorems hold for the theories Uy and V.

Theorem 18: Let A(a,‘c’,Ty') and B(a,b,"c’,all,Ty’) be A'*-formulae of 821, where a' is a unary
predicate variable. Let ¢(5,¢) be a term which contains only the free variables b and ¢. Then
the predicate K(a,b,2,7) which satisfies

A(a,e7) if 5=0 and a<t(b,?)

K(a,be) <= { 0=1 if a>t(b,7)
B(a,b,2 {z}K(z,[1b],¢,7)) otherwise

is A" -definable by U.

Proof: The idea, of course, is to define K(a,b,‘c’,Ty’) by induction on the length of b. Let
B*(a,b,?,alz,—';) be the formula

B(a,b,—c',{z'} [alz(I,L%bJ)AZSt('_%b_l,?)] ”_7’)
and let D(u,$) be the formula

(Vy<2*)(Vz<t(y,2)) [8(z,y) (B*(z,4,2,6 A y#O)V(A(z,2,7)Ay=0))].

It is easy to see that

2 +-(34)D(0,4)

and

2 +(34)D({1u},6)>(34)D(u,9).

Hence, by £,"*-PIND , Uj'+-(V2)(34)D(2,4). 1t is also not difficult to use £ *-PIND to prove
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that
2+ D(u,)AD (u,9)>(Vy <2)(Vz < £(y,2))(W2,y) (2,)).
Hence, U} can A -define K by
K(a,b,¢y) <= a<t(b;E)A(34)(D(b,4)Ad(a,b))

and by the provably equivalent

K(a,b,27) <= (V$)[D(b,6)>¢(a,b)|.

QED. O

Note that it is important to the proof of Theorem 13 that the support of K was
bounded by the requirement that a<¢(5,?); otherwise the formula D(u,¢) could not be bounded.
Theorem 13 is false without this restriction.

A similar use of A"*~comprehension can be made by 921:

Theorem 14: Let A(a,'t?,:y') and B(a,b,‘c’,all,:;) be All'b—formulae of 921 where all is a unary
predicate variable. Let ¢(5,¢) be a term with the free variables indicated. Then the predicate
K(a,b,2,7) which satisfies

A(a,27) if =0 and a<t(b,?)
K(a,b2q) <= { 0=1 if a>t(b,2)
B(a,b,2,{z}K(z,b-1,2/),7) otherwise

is A_definable in V.

The A"*—formulae are in some respects more akin to the Ag’~formulae than to the
%~ and M"**formulae. For example, we have the following theorem:

Theorem 15:
(2) The A**~IND axioms and the A"*~MIN axioms are theorems of U and V.

(b) The A"*-IND axioms and the A"*~MIN axioms are theorems of Uy and V.
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Proof: 1t is obvious that the A"*~-IND axioms are theorems of V. The fact that the
AM-IND axioms are theorems of UJ is proved just like Theorem 2.22.

Now we claim that the AM*-MIN axioms follow from the AM_IND axioms. Indeed,
the minimization axiom for a All"’—formula A can be proved by using induction on the
A*—formula (Vy<z)(—~A(y)). This proves (a).

(b) is proved similarly.

QED. O

9.8. 1'*-Replacement.

The E;*-replacement axioms of second order Bounded Arithmetic are analogous to
the ¥,'-replacement axioms of first order Bounded Arithmetic. The £ replacement axioms
provide us with the ability to interchange the order of second order quantifiers and first order
bounded quantifiers.

To state the definition of the L }’—replacement axioms, we need first to define an
analogue of the Gddel beta function which operates on predicates.

Definition: Let o be a second order unary predicate variable. We write f#(b,a) as an abbrevia-
tion for the atomic abstract {z}a(<<b,z>).

The motivation behind this definition of /B is that it can be used as a Godel beta func-
tion operating on predicate variables. One simple application of B is as a pairing function.
Thus, we can think of the predicate variable o coding the two predicates ﬂ=ﬂ(l,a) and

'y=ﬂ(2,a). Conversely, given two unary predicates variables # and ~, the Zol’b—comprehension
axioms guarantee the existence of a predicate & such that

A(y) if z=<1,y>
oz) = { Ay) if z=<2,y>
0=1 otherwise

and thus f={3(1,a) and v=[3(2,a).

Definstion: We write < 8,7> to denote the predicate a defined as above. More precisely,
< Y1,Ye > is an abbreviation for the abstract

{2} [(Fz<a)((z=<1,2>An(2))V(2=<2,2> A7y 2)))].
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As Theorem 16 below shows, f# can be used for more sophisticated purposes than just
as a pairing function.

Definstion: The E;l"’—replacement axioms are the formulae of the form
(Vz<t)(34)A(z,8)~ (TS (Vz<t)A(2,B(z+1,8))

where t is any term, ¢ is a unary predicate variable, and A is any Eil'b—formula. Other first
and second order free variables may appear in A as parameters.

Theorem 16: Let i>1. Then T;4*—replacement axioms are theorems of both UZ‘ and V;.

Proof: Let A(b,a) be a £,1*—formula. Since V., is a stronger theory than U; (by Proposition 4),
it will suffice to show that Uy proves the replacement axiom for A.

One direction is easy:
Ut (38)(Vz<t)A(z,B(z+1,8))0(Vz<t)(IP)A(z,6).

The other direction is more tricky. Let D be the formula (Vz<t)(34)A(z,4). Let B(c) be the
formula

(Vy<2|t(Lc)(3¢)(vz<2min(lt|,c)) [y.2min([¢l,c)+zstDA(y_2min(|¢|,c)+z,ﬂ(z+l’¢))] .

Then it is obvious that Uf-D>B(0). Also it is straightforward to prove that
Ui+ DAB(c)>B(c+1) by use of the Eg"*~comprehension axioms.

Since B is a £**—formula, U+ D> B(|t]) follows from T M-LIND. Finally, it is clear
that

Us+ B(|t|)~ (3o)(Vz< ) A(z,B(z+1,8)).

Hence the theorem is proved.

QED. O

Two more meta-predicates which are useful when used in conjunction with [ are
ARY and DEARY .

Definition: Let o be a second order unary predicate variable. We write ARY(a) as an abbrevi-
ation for the abstract {z, ... 5 }a(<z,, ... ,2;>).

Let v be a k-ary predicate variable. We write DEARY(y) for the abstract

{z}AB(L,2), . .. ,B(k,z)).
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Hence ARY (DEARY (7)) is the same predicate as 4. However, DEARY (ARY (a)) is
not in general the same as a.

As an example of how ARY}; and DEARY; can be used, consider the following more
general form of the B _replacement:

(Vz<t)(3dH)A (2,8~ (T ) (Vz<t)A(z,ARY (B(z+1,41")))

where ¢11 and d)l" are unary and k-ary, respectively. Of course this more general form of the
¥l _replacement axiom is a consequence of the less general form presented above.

Corollary 17: Let i>1. If A is a ;%*—formula then there is a formula B of the form (3¢)C such
that C is a I, —formula and such that U and V prove that A is equivalent to B.

Proof: By Lemma 6 we may assume without loss of generality that A is a i,-l'b—formula. Now
we may use prenex operations and the E,—l’b—replacement axioms to transform A into the prov-
ably equivalent form

(3¢1) U (3¢n)D(¢l) v )¢n)

with DGH,{’I". The n second order existential quantifiers may be combined by use of the [
function, giving B equal to

(39)D(B(1,9), . . . ,B(n,4)).

QED. D

8.7. Cut Elimination in the Presence of A}'b-Comprehension.

In this section we investigate cut elimination theorems for 8{ and 92". Although
Gentzen’s free cut elimination theorem holds for these theories, the proof is quite difficult and
non-constructive. For our purposes, it will be sufficient to show that certain conservative exten-

sions of ﬁ; and 92" satisfy cut elimination.
One difficulty with proving the cut elimination theorem for ﬁ; and 9{ is that it is pos-
sible for A(a) to be a T—formula and U to be a A*-abstract and yet A(U) is not a

Bl formula. Thus Lemma 9(c) is not readily provable for lc}2' and 92" when V is a
A*_abstract.

A second and more serious difficulty arises when we try to prove the cut elimination
theorem by induction on ord(P) as in the proof of Theorem 10. In Case (1.5.iii) we transformed
a mix inference with principal formula (V¢)B(¢) to one with principal formula B(V). Now if V
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is merely a A,'*-abstract it is quite likely that the level of B(V) is not less than the level of
(V¢)B(¢). However, without decreasing the level of the mix inference we can not apply the
induction hypothesis in the proof by induction on ord(P).

To circumvent these difficulties we shall define below theories 8{(5) and %2’(5) by
enlarging the languages of 82‘ and &2". It will turn out that the constructive proof of the cut
elimination used above in §9.4 can be extended to these expanded theories 82’(5) and 82'(5)

Definition: A relational 6 is a predicate which acts on integers and predicates. More precisely, a
kg-ary relational 6 is a subset of

k 1 1
Noxwklx xwk,,

where n>0 and each k;>1 and wj denotes the set of all k-ary predicates on the natural
numbers.

Definition: Let R be a second order theory of Bounded Arithmetic. A relational § is introduced
by a AM'—definition in R iff the following hold:

(1) A(@,a) is a "’ formula, B(?,8) is a I1;"*formula and @ and @ indicate all of the
free variables in A and B.

(2) R+ A(2,3) B(d,3).
(3) The defining equation for & is

§(d,3) == A@@3).

We will say that § is A"*-defined by R if the above holds and we write R; to denote the
theory R enlarged to include the new symbol § and its two defining equations:

(a) 8(a,3)—> A(@,3)
(b) A(3,3)—>6(3,3)

These two defining equations are valid initial sequents of the natural deduction system for R;.

Definition: The theory 82‘(5) is the following natural deduction system:

(1) The BASIC axioms are initial sequents of 82‘(5). Also, logical axioms and equality

axioms are valid initial sequents of 62'(5)

(2) £,1%(8) and M(6) are the sets of formulae of the language of 82‘(5) defined in the
usual way by counting alternations of bounded quantifiers, ignoring sharply bounded
quantifiers.
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(3) If A€X,M¥(6) and BellM*(8) and Rt A(d, @)+~ B(@,a), then the relational & defined by
§(@,a) <= A(ad0)

is a symbol of the language of 82‘(6). The two defining equations for § are initial

sequents of the natural deduction system for ﬁ2"(6).
(4) The £4%(8)-PIND inferences are valid inferences of &;(6)
(5) The £4-%(6)-CR comprehension inferences are valid inferences of 82’(6)

82(6) is the theory Uﬁg(é)

Definition: 8'2"(6) and 92(5) are defined similarly to 82'(6) and ﬁz(é) except using Z;%(8)-IND
instead of X;1*(8)-PIND.

Definition: Let R be one of the theories ﬁ;(é), 62(5), 92"(5) or 92(6) A formula A is All"’(é)
with respect to R iff there is a X,"’(§)-formula B and a II;"%(8)-formula C such that
R+-A—Band R-A-~C.

So, in effect, 82’(6) and &2"(5) are the same as the theories 82,- and 92' except that all
the A%(8)-defined relationals are included in the language and only X4"*(6)-CR comprehension
is allowed.

Proposition 18:
(a) 82"(5) is a conservative extension of 62‘

(b) %2"(5) is a conservative extension of 92".

Proof:

(a) We begin by showing that &;(5) is an extension of 8{. For this it suffices to show
that AM—comprehension is a derived rule of &;(5) So suppose A€X !t Belllt and
U(8)- A+ B. Let V be the abstract {Z}A(2,5,a) where Z, § and @ indicate all the free vari-
ables of A and suppose that &}(5) proves the sequent

I'—AF(V).

Let & be the relational of ﬁz"(é) which is A,"*~defined by
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§(db,a) == A(d,b,3)

Let V; be the abstract {#}6(%,5,3@). Then there is a &j(&)—proof which ends

T—>AFV)  F(V)—>F(V))
T—>AF(Vy)
I'—>A,(34)F ()

since Vjis a Bg}(6)-abstract (in fact, it is an atomic abstract).

Hence lc}2'(5) is an extension of 8{. The fact that ﬁ{(&) is conservative over 82' is
proved just like Corollary 12(c).

(b) is proved similarly to (a).

QED. O

Because of the way we have defined the languages of ﬁg"(é) and 92'(6) there will exist
formulae F(a) such that F(V) is not defined for V an arbitrary abstract. In particular, if F is
5(c) for some relational §, then §(V) is not a formula and F(V) is not defined. Thus we only
allow 201'5(6)—0}2 comprehension to be applied in those cases of the form

T—>A,F(V)
I'—A(3¢)F(¢)

where F(a) is a formula such that F(V) is defined. Of course, F(V) is defined iff a is not an
argument to any A;"*-defined relational in F(a).

We shall also need the capability to substitute a All’b—a.bstra.ct V for a in an arbitrary
formula F(a). Accordingly, we make the following definition:

Definition: Let R be one of the theories 8{(5) or 92'(5) Let o be an n-ary predicate variable,
F(a) be a formula in the language of R, and V be the abstract {y;, ...,y,}A(7,5,08) where A
is a Lg"*(6)-formula of R. Then F[V] is defined by induction on the complexity of F:

(1) If & does not appear in F, then F[V] is F.
(2) If F(e) is o(3), then F[V] is A(3,5,8).

(3) If F(a) is 64(2,a,7) where C is a A"*(6)-formula of the theory R and 8¢ 1s the rela-
tional with defining axiom

6 C(-ara):;) <> 0(?,0,:;)

then F[V] is 6(¢,7) where § is the relational defined by
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§27) < C[V]EA)-

Here C[V] is the result of substituting V' for o in C. Notice that since A is a
Td¥(8)-formula and C is A#*(8) with respect to R, so is C[V].

(4) Suppose F is —B, BAC, BvC or BoC. Then F[V] is -B[V], B[V|AC[V],
B[V]vC[V] or B[V|D>C|[V], respectively.

(5) Suppose F(a) is (Vz)B(a) or (32)B(c). If z appears in A, we obtain A" by renaming
the variable z in A to avoid conflict of variables. Then F[V] is (V2)B[{¥}A’ (V)] or
(Fz)B[{y}A’(¥)], respectively.

(6) Suppose F(c) is (V¢)B(c) or (3¢)B(a). Since A has no second order quantifiers, the
bound variable ¢ does not appear in A. So F[V] is (V@)B[{¥}A(¥) or
(34)B {7} A(¥)], respectively.

Definition: Let A(ay, . .. ,a,,8y, . . .,8,) be a formula where the o’s and a’s indicate all of the
free variables in A. B is a substitution instance of A if B is of the form
AV, ...,V (¢4, ... ,t,) where each V; is a To%(8)-abstract and is substituted in for a;
and each ¢; is a term substituted in for a;.

The next lemma is analogous to Lemma 9. It will be exactly what we need to carry
out the proof of the cut elimination theorem for ﬁ{(ﬁ) and 92"(6).

Lemma 19: Let i>0 and let R be one of the theories 8{(5) or V3(6).

(a) If B is a Zb%(8)-formula (respectively, a II'(6)-formula), then every substitution
instance of B is a £;%%(8)-formula (respectively, a IT,"%(6)-formula).

(b) Suppose P is an R—proof of '—> A and that every free cut in P has a first order formula
as its principal formula. Then there is a free cut free R—proof of I'— A.

(c) Suppose P is a free cut free R—proof of I''—> A and that o is a free variable appearing in
I'—>A. Further suppose V is a Ig"’(6)-abstract. Let T'[V] and A[V] denote the
cedents obtained by substituting V for every occurrence of « in the formulae in ' and A.
Then I'{V]-—> A[V] has a free cut free R—proof.

Proaof:
(a) is easily proved by induction on the complexity of A.

(b) is proved exactly like the free cut elimination theorem for first order logic (Theorem
4.3). Refer to Takeuti [28], pp. 22-29, 112 for details.

To prove (c), we may assume without loss of generality that P is in free variable nor-
mal form and that V' has no bound variables in common with P. Let P[V] denote the proof
obtained from P by substituting V for every occurrence of o in formulae in P. It is easy to see

by examining the allowable inferences that every inference in P[V] is a valid inference of 8{(5)

(respectively, ‘0/'2"(6)). In particular, (a) guarantees that X,%*(8)-PIND or T,“%(6)-IND and
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To%(6)-CR inferences are still valid after the substitution of V for a.

If P contains any initial sequents which are defining axioms for some relational 4, say
§(e,2,8)—> C(a,a,P)
then in P[V] this initial sequent becomes

§*(a,f)—> C[V](@,5)

where 6* is §[V]. This is a defining axiom for 6* and hence is a valid initial sequent.

However, P[V]| may fail to be a proof in that there may be initial sequents of P[V] of
the form

81=ty, .. ., =t A8y, ... ,8,)—=A(ty, ... ,¢t,)

where A is not atomic. However, sequents of this form are easy to prove without free cuts. So
we merely tack onto P[V] free cut free proofs of these initial sequents and thus obtain a proof
Q of T [V]—=>A[V].

Q is not necessarily free cut free since @ may contain free cuts with principal formulae
of the form B[V] where B is atomic. But each B[V] is first order and so by (b) there is a free
cut free R—proof of I'|V]—> A[V]. O

Theorem 20: Let R be one of the theories &2’.(5) or 92'-(6) where {>0. Let P be an R—proof.
Then there is an R-proof P* such that P* has the same endsequent as P and there are no
free cuts in P*. Furthermore, each principal formula of an induction inference in P* is a sub-
stitution instance of a principal formula of an induction inference in P and each principal

. . . X . . . . .
abstract of a comprehension inference in P* is a substitution instance of a principal abstract
of a comprehension inference in P.

Proof: The proof follows the proof of Theorem 10 (and Takeuti [28]) almost exactly. We define
the order ord(P) of P as before and proceed by induction on the ord(P). The only difference is
that in Case (1.5.iii)) we use Lemma 19(c) instead of Lemma 9(c).

QED. O

Corollary 21: Let R be one of the theories &;(5) or 92‘(6) where 1>1. Suppose R proves the
sequent '—> A and that every formula in TUA is a ;"%(§)-formula or a II**(6)-formula.

Then there is an R-proof P of '—>A such that every formula in P is in £}(6) or in
H,‘l’b((S).
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Proof: By Theorem 20 there is a free cut free proof P of '—>A. If A is the principal formula
of a cut in P, then A must be a direct descendant of either a principal formula of an induction
inference or of a formula in an initial sequent. In the first case, A must be a £}*(8)-formula
since only T;*(8)-PIND (or £;%(8)~IND ) inferences are allowed. In the second case, we claim
that A is in $,"%(6). This is because each initial sequent must either (a) be an equality or
BASIC axiom and contain only atomic formulae or (b) be a defining equation for a relational.

Now it is clear that every formula in P must be in Z,"*(8) or II;"%(6) since a formula
can only be removed via a cut inference and no other kind of inference can reduce the alterna-
tions of second order quantifiers in a formula. In particular, note that since only Xq"%(6)-CR
comprehension inferences are allowed, any comprehension inference of the form

'— A A(V)
I'— A,(3¢)A(¢)

will have A€X(6) if (3p)A(d)EXME(6).
QED. o

Corollary 21 is exactly what we need to prove the main theorems of Chapter 10.



Chapter 10

Definable Functions

of
Second Order Bounded Arithmetic

This chapter investigates the question of what functions are ¥ ,b%_definable in the
second order theories Uyt and Vg of Bounded Arithmetic. It turns out that a function f with

polynomial growth rate is Ell’b—deﬁnable in U (or in 621) iff f is computable by a polynomial
space bounded Turing machine, i.e., iff f is in PSPACE. In addition, f is Ell'b—deﬁnable in vV}

(or in 19'21) iff f is computable by an exponential time bounded Turing machine, i.e., iff f is in
EXPTIME.

10.1. EXPTIME functions are Ei’b-deﬁnable in V;.

Definition: EXPTIME is the set of functions f of polynomial growth rate which can be com-
puted by a Turing machine M, such that there is a polynomial p(7) so that the runtime of
M, on input 7 is always less than 2r(Zl),

Our definition of EXPTIME differs from the usual definition used by computer scien-
tists. Usually EXPTIME is taken to be a set of predicates; however, we are using it as a set of
functions with polynomial growth rate. We shall also talk about predicates being in EXPTIME:
if P is a predicate, then we define P is in EXPTIME to mean that the characteristic function of
P is in EXPTIME.

We shall also need the concept of exponential time functionals, which are defined
analogously to the polynomial hierarchy of functionals of Chapter 1. Recall that w,} is equal to
the set of n-ary predicates on the natural numbers.

Definstion: Let ¢,,...,0, be predicate variables of a second order theory of Bounded Arith-
metic, where each ¢; is k-ary. Then EXPTIME(¢,, . . . ,4,) is the uniform set of functionals f
such that the following hold:

(1) f has polynomial growth rate.

(2) For some k;>1, f has domain

k 1 1
N/kalx ka’_

186
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(3) There is an oracle Turing machine M; with r oracles such that for 1<i<r, the -
th oracle is k;-ary and such that for all 24, . .. (2, with Q,-Ew,,l',,

f(?,ﬂl, PR ,Qr) = M/-(':'t’,ﬂl, e ,Qr)

where M7}, . .. ,1,) denotes the value output by M, on input 7 with oracles
Q,,...,0,

(4) For some polynomial p(#), the runtime of M/(Z,Q, ... ,Q,) is less than 2r() for
all # and all Q,, ... ,Q,.

(5) For all Z and y, . . . ,f2,, M{(Z,£,, ... ,Q,) uses no more than p([Z|) tape squares
on each of its oracle tapes. Or equivalently, M{Z,, ...,Q,) only queries its
oracles about () for ¥<2? (7)),

We will also denote EXPTIME(4,, . . . ,¢,) by EXPTIME(wj, . . . ,w;5).

Condition (5) in the definition above is somewhat unusual in that it bounds the size of
the oracle queries of M,. This is, however, actually a very natural condition since it means that
if QEEXPTIME and M(z,$)cEXPTIME(4) then M(z,Q)cEXPTIME. Without condition (5) this
would not necessarily be true.

Theorem 1: Let f be a function of polynomial growth rate in EXPTIME. Then f is
¥,"’—definable in V.

Proof: Let us assume without loss of generality that f is a unary function and M is a single tape
Turing machine which runs in time less that 2% for each input z, where g is a suitable poly-
nomial. Let the alphabet of M be I' where the cardinality |[I'| of T' is at least 3, and suppose
that the symbols “b” , ‘0O” and “1” are included in I'. Let the states of M be qq, . ..,qn with
¢o the initial state. We let § be a new symbol not in I'.  We assign arbitrarily Godel numbers to
the states ¢,, the symbols in I' and to “4¢” ; we denote these Godel numbers by I_qn-, I—b—|, |_$—|,
etc. Let n be the maximum number used as a Godel number.

An ID (instantaneous description) is an encoding of a state of M and is a sequence
r$—l;|'_’7l_]) cee ;r7k_]|rqn;r’7k+l—l) v ;r7u—l)r$—'

where each 7; is in I' and g¢; is the current state of M, the current tape head position is at v,
and the $’s denote the immovable ends of the tape. To encode ID’s of M in the theory V', we
shall use a second order function symbol ¢" with values less than or equal to n.

Let Nextpfaq,aq,a3,a4,b) be a predicate which is true when a;,a,a3,a4 codes four con-
secutive values of an ID for M and b is the value which replaces a, in the next ID of M. For
example, b must equal a, unless a;, ag, or a3 is a Godel number of a state of M. When
aj,aq,a3,a4 do not code valid consecutive values for an ID of M then Neztyfa,,aq,a3,a4,b) is true
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iff b=[$1. It is easy to see that Nezt, is T, —definable in V] (in fact, Nexty, is easily seen to
be ¥, -definable in SJ'.)

Define r(z) to be equal to 24(12)4|2|+2; then r(z) is expressible by a term of Bounded
Arithmetic. We can assume without loss of generality that on input z, each ID of M is of
length exactly r(z). We code the run of M on input z by the function ¢" so that for all
j<r(z)-2902) A7) is equal to the (Rem(j,r(z))+1)-th number in the (|j/r(z)}+1)-th ID of the
run of M on input z.

Accordingly, we define a predicate Init,, as:

Inity(g,z) <> (Vi<r(2))[(i=1544)=go A
A(i=0vi=r(z)=1>{i)=[$ A
A > 182055 (4)=] 5 T)A
A(i> r(z)=|2|= 2ai <r(2z)= IA1=Bit(r(z) = i=2,2) >¢(s)=[1])A
N> r(z)=)2|= 208 <r(z)= 1A0=Bit(r(z)= i - 2,2) >¢(s)=0 )]

Thus Inity{¢",z) asserts that the values of ¢" for i<r(z) code the ID
$qobb - - bbap., - a$

where a; is equal to O or 1 depending on the i-th bit of the binary representation of z.

(Without loss of generality, we may assume the input to M conforms to the format expressed by
Im'tM.)

We define Runys,1,7) to mean that ¢ codes i steps of the running of M(z):

Runyf¢i,2) <= Initp(¢,2)A
AV5 <i)(Vk<r(z)=2) [Nexztp(s r(z)+k),(G-r(2)+k+1),
(5 r(z)+k+2),0(7 r(2)+k+3),((74+1) r(2)+k+1))] A
A< [ r(@)=[$ IAd(j+1)-r(2)= 1)=T$T].

It is easy to see, by use of $g"*~FCA, that

V- (AN")Run (A" 0,2)

V- (ON")Run (A", a,2) >(IN")Runp(\",Sa,z).
Then, by an application of Ell"’—IND ,

V- @) Run py(\",2402) 7).
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Furthermore, the uniqueness condition is also provable, so
V3 Runp(¢" i,z)ARunp(0",3,2)>(Vy <(i+1)-r(2))(¢"(y)=0"(y)).

We can easily X’-define the functional Value, such that if ¢* satisfies
RunM(g",W("D,z), then Value p(¢",z) is equal to the output of M which is coded in the last ID
coded by ¢*. Value p is in fact polynomial time (relative to a function oracle for ¢") and can be
2 (¢)~defined.

We are now ready to give the desired formula A ,{z,y) which defines the function f
computed by M. The formula A y(z,y) is defined by

Ap(z,y) <> (ON")(Runp(Z" 29020 2)Ay=Value y(\",z)).

Because Value s is polynomial time, we can assume without loss of generality that there is a
term ¢,/{z) such that Vg proves that (YA")(Value p(\",2)<¢)(z)). Then,

Vi (V2)Qy <ty A dz.y).
We can now ;"*~define f with the defining axiom

J(z)=y <= Aplz)y).

QED. o

10.2. PSPACE functions are E}’b-deﬁnable in U;.

Definition: PSPACE is the set of functions f of polynomial growth rate which can be computed
by a Turing machine M, such that there is a polynomial p(%) so that the total number of
tape squares used by M, on input 7 is always less than p(|Z}).

Definition: Let ¢,, . .. ,4, be predicate variables of a second order theory of Bounded Arithmetic

where each ¢; is ki-ary. Then PSPACE(¢,, .. .,4,) is the uniform set of functionals f such
that the following hold:

(17)-(3"): Conditions (1)-(3) of the definition of EXPTIME(¢,, . . . ,¢,) hold, and

(4") For some polynomial p(7), the total tape space used by M (ZQy, ... ,Q,) is less
than p(|Z|) for all Z and all Q,, . . . 02,.

PSPACE(wkll, o ,wkl') is another name for PSPACE(¢,, . . . ,4,).
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There is no condition (5°) in the definition above since condition (4°) implies the condi-
tion (5) of the definition of EXPTIME(g).

Before proving the assertion made by the title of this section we will give an illuminat-
ing example. Recall that Theorem 2.7 showed that length bounded counting is £,*~definable in
Sg. A more general concept is that of bounded counting: a function f is defined by bounded
counting from A if f(y)=(#2<y)A(z). Clearly, if A is a PSPACE predicate, then f is a
PSPACE function and thus bounded counting should be definable in UJ.

We shall use the following scheme to express bounded counting: 8 will be a function
variable satisfying

8(2z,y)+0(2z+1,y) if z<2ll
O(z,y) = {1 if A(z-2W)and 2W<z<olilty
otherwise

Then 6(1,y) is equal to the number of z<y such that A(z) holds.
Proposition 2: Let A be a Xg"*~formula and let £(z) be any term. Then the function
fly) = (#2<t(y))A(y,2)
is X,""*~definable in U

Proof: First we define RDEF(¢,z,y) to be the formula asserting that (z,y) satisfies a condition
similar to the definition of § above; namely, RDEF(¢,z,y) is

(z<2M>((z,y)=(22,y)+q22 +1,y)Al{z,¥)= 1| <1+]|¢|= |z|)A
Az 22¥nz <215z y) <IN(A(z= 2} 2,5)=1))n
Az >24tve=0>¢(z,y)=0).

Define B(i,z) to be the formula
(3")(V2<2Y) 12| > (1+]¢])+ i S RDEF(&" 2,2))..

An easy application of £¢"*~FCR shows that U}t B(0,z). Similarly, U+ B(i,2)>B(Si,z). By
L,M-LIND ,

Udt+ B(|t|+1,z2).
Thus,
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St (Vy)(Bv<2th(3 32" ) v =& I(1 yIA(Vz <21 I'ZDE‘F(<;2I'| z,y)]

This partially proves Proposition 2. We leave it for the reader to show that Ug can prove that
the y is unique, and that the bound 2l on y can be sharpened to ¢.

QED. D

The general idea of the proof of Proposition 2 is a “divide and conquer” strategy. In
order to compute (1), the problem is divided into the two subproblems of computing ((2) and
«3). These subproblems are further divided into subproblems, etc. Thus to find (#y<t)A(y)
we first find (#y<2|'| HA(y) and (F#y<t- 211 A (y+2/*1) and compute the sum. This divide

and conquer strategy can be generalized to the concept of limited recursion.

Definition: Let g and h be functions with polynomial growth rate and let p and ¢ be suitable
polynomials. We say that f is defined by limited recursion from g and h with time bound p

and space bound q iff the following holds. Let f* be defined inductively by

0 if |y|>p([Z|)vy=
['@y) = | 9@9) it [yl=p(2)
h(Z,y,/%(2,2y)./*(Z,2y+1)) otherwise

Then, for all y and #, we must have |f*(Z,y)|< ¢(|Z]) and f must satisfly the defining equation

@) = f@@1.

The definition of limited recursion is somewhat similar to that of limited iteration,
however, the two concepts are substantially different. The time bound p of limited recursion
does not correspond to the runtime of a conventional Turing machine. Instead, p is a measure
of the maximum depth of recursion. It will be seen that limited recursion is similar to the
action of an alternating Turing machine (ATM) and that p is a measure similar to the runtime
of an ATM.

The next theorem states that limited recursion is definable in Uj.

Theorem 8: Suppose that g and h are Tg"*—definable in U} and that p and ¢ are suitable poly-

nomials. Further suppose that f is defined by limited recursion from g and A with bounds p
and ¢. Then [ is £'"*~definable in U

Proof: The proof is similar to the proof of Proposition 2. We first define RDEF2(¢,Z,y) to be
the formula
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[ly1>p([Z)Vy=0>¢Z,y)=0]A lly|=p([Z])>¢(Z,y)=min(g(Z,y),27F)] A
Alyl<p([Z])>4(Z,y)=min(h(Z,y,4Z,29),4F,2y +1)),2707)].

So (Vy<2”(l?|))RDEF2(§,3!,y) asserts that the ¢ function is equal to the f* function of the
definition of limited recursion. Note that the min function is used in the definition of RDEF2
to explicitly prevent the possibility of an overflow; that is to say, the possibility that some value

of f*(Z,y) is too large.

We used ¢ and h as function variables in the definition of RDEF2; since g and h are
TP _definable, RDEF? is a E¢'*~formula. Let s(@) be the term 240 and define B(i,Z,¢) to be
the formula

(Vy <2200+ (|y|>p(|2)) - i> RDEF2(s;2,9))
It is easy to see using Yq'’~comprehension that

U2+ (INY)B(0,2,)°)
and
U+ (3N)B(a, 2,2\ )>(3N)B(a+1,Z )*).
So by £*-PIND , U+ (3N)B(p(|Z]),Z,)°).

We also need to show that Ug proves that the A\’ is unique; that is, we need to show
that

U+ B(p(1]),2.¢)AB(p(1Z]),2,6°)>(Vy <2*)(6*(2,9)=¢"(2,v))-
For this purpose, let C({,Z,¢",60°) be the formula
(Vy<2? ) [jy|>p(|Z])+ iD6°(Z,9)=¢"(Z,v)]
and let D(Z,¢,6°) be the formula
B(p(|Z)),2,¢)AB(p(12]),2,6°).

Then it 1s clear that

Ut D(Z,¢,6°)>C(0,2,¢,6°)

and
U+ D(Z¢,0°)AC(a,Z,¢",6°) > C(a+1,Z,¢",6°)

from which the desired uniqueness condition is obtained by an application of Xo'*~PIND.
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Let A(Z,y) be the formula
(AN [B(p(1Z]), 2\ )Ay=X"(Z,1)].

So U (VZ)(Iy<s(2))A(Z,y). Also, for all Z, A(Z,f(7)) is true. Since A is a T;"*~formula, f is
by definition T ,"*~definable.

QED. O

We are now ready to prove that all PSPACE functions can be X'"*~defined in Uy

Theorem 4: Let f be a function with polynomial growth rate in PSPACE. Then f is
¥ "*—definable in UJ'.

Proof: Chandra, Kozen and Stockmeyer [4] show that the PSPACE predicates are precisely the
predicates which can be recognized by polynomial time alternating Turing machines. This is
also true for PSPACE functions with polynomial growth rate: if f is of polynomial growth rate
then fEPSPACE iff there is a polynomial time alternating Turing machine (i.e., a transducer)
which computes f.

But polynomial time alternating Turing machines are easily defined by limited recur-
sion from polynomial time functions ¢ and A. By Theorem 3.1, g and h are Eol’b—deﬁnable in

Ug. Theorem 3 thus implies that every PSPACE function of polynomial growth rate can be
Y _defined in Ug.

QED. O

10.3. Deterministic PSPACE Turing machines.

Theorem 4 established that Ug can T,"’-define the PSPACE functions; however, the
proof of Theorem 4 used Chandra, Kozen and Stockmeyer’s [4] representation of PSPACE func-
tions by alternating polynomial time Turing machines. An interesting question is whether U,
can prove directly that any polynomial space bounded, deterministic Turing machine will run to
completion.

That is, let M be a PSPACE Turing machine for which there is a term r(z)=|t(z)|
with r(z)>|z|+3 for all z so that M is constrained by tape markers to run in space r(z) on
input 2. Let Runj; be defined exactly as in §10.1. Then our question is whether

Ui+ (EI)\")RunM(X"ﬂq(l”l),:r)

where ¢ is any polynomial. The answer to this question is affirmative:
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Theorem 5: Let M be a deterministic Turing machine constrained by tape markers to run in
space r(z)=|t(z)| on input z, as above. Then

Us H(V9)EAN")Runpy(X",y,a).

Proof: Let Runy and Inity be defined as in §10.1. We need the ability to code a state by an
integer, so we introduce the following functional:

STATE (¢"i,a)=b <= |b|<|n||t(a)|A
AV v<|t(a))(LSP(MSP(b,v:|n|),|n]}=¢"(i-r(a)+v)).

(Recall that n bounds the Go&del numbers of symbols used to code states.) Thus
STATE {(s",i,a) is equal to a number which codes the i-th state of the run coded by ¢".

Let PRunj; be the formula
PRunp(si,0) <= (V5<i)(Vk<r(a)=2)[Nextpls(s r(a)+k),s(j-r(a)+k+1),

(G-r(a)+k+2),dG-r(a)+k+3),((F+1)-r(a)+k+1))] A
AY5<9) oG r(a)=$ IA(F+1)-r(a)= 1)=[$ ).

So PRun(¢,i,a) asserts that ¢ codes i+1 states of a run of M except that no conditions are put
on the initial state coded by ¢. Compare the definition of PRun,, with the definition of Run,.

Let Dyfc,a) be the formula

Dyfc,a) <= (Vz<2rMO)LSP(z,|n))=$AMSP(z,r(a)~ | n )=[$1>
(AN (z=STATE (7\",0,a)APRunp{)\",c,a))].
D,/ c,a) asserts that for all possible initial states there is a ¢" which codes ¢+1 states of a run of

M beginning with that state. Note that because M is polynomially space bounded, a first order
bounded quantifier can be used to quantify over all possible initial states z. It is clear that

U+ D0, a).
Also, we claim that
Uzll—DM(L%c_j,a)DDM(c,a).
To prove the claim we argue informally in U,l. Suppose D | 1c]) is true and that z < 2lnllt(a)l

codes a state for M. Then there exists a X" such that z=STATE(),",0,a) and such that
PRunp(M"|icl,a). So let z,=STATEp(M\"|lc],a) and let X be such that




§10.3 Deterministic PSPACE Turing machines 195

2,=STATEp(),0,a) and such that PRunp()\;",|ic],a). Define A" by putting X" and Xg’
together so that 2=STATE(\",0,a) and PRunp(\",2-|1c],a). If ¢ is even, we are done. If c is
odd we easily add one more state to the end of the run coded by A" to get the desired result.
This proves the claim.

Since Dy is a ¥, —formula, we can use ,*~PIND to deduce that

Us'+(Vy)D py,a).

From this Theorem 5 follows easily.

QED. O

10.4. Witnessing a L'*-Formula.

Our next main goal is to prove the converses of Theorems 1 and 4; this will be accom-
plished by a proof similar to the proof of Theorem 5.5. This section establishes some prelim-
inary definitions and propositions needed for the proofs in §10.5 and §10.6.

For the next three sections, we shall work exclusively in the theories 82‘(5) and 9{(5).

We define Witness?2 below analogously to the way Witness was defined in §5.1. When
A is a ZM%(8)-formula with free first order variables @ and with free second order variables @,

we define Witncss2f’a(7,ﬁ',a') to be a Tg*(6)-formula which asserts that v is a predicate which
“witnesses” the truth of A(@,a).

Although Witness2, could readily be defined for arbitrary bounded formulae A, we
shall forsake the added generality and restrict A to be a X,"*(§)—-formula.

Definition: Suppose A is a Z,"%(6)-formula. Let the free first order variables of A be among d
and the free second order (predicate) variables of A be among @ The Zg%(6)-formula

Witness?}’a(q,ﬁ,a') is defined below, where 7 is a unary predicate variable. The definition is
by induction on the complexity of A.

(1) If A is a Z¢"*(6)-formula, then define

Witness2{%(,d,8) <= A(d,d)

(2) If A is BAC, define

Witncss2}’a('7,?i,&') = Witness2g’a(ﬂ(1,7),ﬁ,a)/\
AWitness2&%(B(2,7),d,8)
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(3)If A is BvC, define

Witness&f’a(’y,ﬁ,a) = Witness2g'a(ﬂ(1,7),ﬂ,a)v
v Witness2 5% (B(2,7),d,3)

(4) If A is (Vz<t)B(z), then define

Witness2}a(7,ﬂ,a) = (Vzgt)Witness?ﬁ'"a(ﬂ(x-%—l,’y),ﬂ,z,a')

(5) If A is (Hz<t)B(z), then define
Witness2{ (v d,3) <= (Ja<t)Witness2y*%(~,d,z,0)
(6) If A is (¢¥)B(¢*) where ¢* is a k-ary predicate variable, then define
Witness?f’a('y,ﬂ,a') = Witn3332g’3'¢b(ﬂ(2,'y),H,&',ARYk(ﬂ(l,'y)))

(7) If A is B and A¢Eg"%(6), then define Witness?f’aby using prenex operations to
transform A so that it can be handled by Cases (1)-(6). Specifically, if A is —(-B),
—=(BAC), =(BvC), ~(Vz<t)B, —=(32<t)B or ~(V¢)B; let A* be B, (~B)v(~C), (~B)A(=0C),
(Fz<t)(-B), (Vz<t)(—B) or (¢)(—B). Then define

Witness?}‘_'.('y,ﬂ,a’) = Witness?‘_’.&a(fy,ﬂ,a’).

Proposition 6: Let A(@,3) be any £,%(6)-formula. Then 821(5) and 821(6) prove

A(d,@)e () Witness2 2%y, d,3).

Proof: by induction on the complexity of A. The only nontrivial cases are (4) and (6) in the
definition of Witness2.

Case (4): Suppose A is (Vz<t)B(z). The induction hypothesis is that 821(5) and 821(5)
prove

B(z,d,a)~ (Jy) Witness2j ’7‘.'&'( ¥,2,4,3).

By £"*-replacement (Theorem 9.16), 821(6) and &21(6) prove
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(Vz < t)(Tp) Witness 22 >%(¢,z,a,5)
o () (Vz<t) Witness2E*(B(z+1,¢),2,d,3)

from which the desired result is immediate.
Case (6): Suppose A is (3¢)B(¢) and that 821(5) and 821(5) prove
B(d,3,6) (39) Witness2g **(1,d,5,4)

where ¢ is a k-ary predicate variable. From the definition of B and ARY,, we
have immediately that U(6) and V;(6) prove

(3¢)(3) Witnesseg *%(4,d,8,)
o (39) Witness2d %4 B(2,4),3,8,ARY y(B(1,4)))

and from this the desired result is immediate.

QED. O

As we remarked above, Witness2{® is a Zg"'(8)-formula whenever A is a
L *(6)-formula. The next proposition specifies the computational complexity of Witness2{'®.

Proposition 7: Let A(@,&) be a £,%(8)-formula. Then Witness?}’a(v,ﬁ,a') represents a predi-
cate in PSPACE(y,a).

Proof: This is an immediate consequence of the fact that Witness,?}’a contains no second order
quantifiers. O

Lemma 8: Let A(d,3,8) be a £4*(6)-formula and let B(¢,4,&) be a Tq*(6)-formula, where the
free variables of A and B are as indicated. Furthermore, 8 is a k-ary predicate variable and
€ is a vector of k first order variables. Let U be the abstract {Z}B(Z,4,@) and let A*(d,a) be

the formula A(@,a,U). Then ﬁ21(6) and {}21(5) prove

Witness?2 A'_" P (v,2,@8,U)+ Witness?2 Aila(v,ﬁ’,&').

Proof: This is easily proved by induction on the complexity of A. O

The final lemma of this section is not directly concerned with the Witness2 metafor-
mula, but it will be useful in the proofs of the theorems of §10.5 and §10.6. Intuitively, it states
that if A(a) is a bounded formula then the truth value of A(a) does not depend on all of a’s
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values but only on « restricted to some bounded domain.

Lemma 9: Let A(a,?z’,'_y') be a bounded formula with all free variables as indicated. For nota-
tional simplicity, further suppose « is a unary predicate variable. Then there is a term s 4(@)

such that 821(5) and 921(5) prove

(Vz<s4(@))al(2)+ B(2))> [AleT,7)~ A(B,37)).

Proof: This is readily proved by induction on the complexity of A. D

As in Chapter 5, we adopt the convention that conjunction and disjunction associate
from right to left. We also extend our use of the < - - - >> notation to apply to predicates.
So

L ap, .0 S>>

denotes <L a;, < @y, ..., < 0y, > > >

10.5. Only PSPACE is Ei’b-deﬁnable in Ul.

In this section, the converse to Theorem 4 is proved. This establishes that a function f
of polynomial growth rate is ©;"’~definable in U, iff f is computed by some polynomial space
bounded (PSPACE) Turing machine. The main theorem of this section is:

Theorem 10: Suppose A(¢,d) is a £,"*(6)-formula where € and d are all the free variables of A.
Also suppose 821(5)|—(V5’)(3y)A('i’,y). Then there is a A"4(86)-formula B, a term ¢ and a func-

tion f so that
1) DA6)F (V2)(Vy)(B(Z,¥)2A(Z.9))
2) O2(6)- (v2)3y<t)B(Z,y)

(1)
(2)
(3) UH(6)- (Y2)(Vy)(V2)(BE YNB(Z,2)>y=2)
(4) For all %, N = B(#,f(7))
(5) f is a PSPACE function

Hence, f is a PSPACE function which is £,"(6)-definable in U2(8) and for all , AR f(R)) is
true.
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The converse of Theorem 4 is an immediate corollary of Theorem 10:

Corollary 11: Suppose A(<,d) is a Ell'b—formula where © and d are all the free variables of A.
Also suppose Ugt(VZ)(y)A(Z,y). Then there is a PSPACE function f such that for all 7,
N A(7,(7)).

Proof: of Corollary 11 from Theorem 10:
By Lemma 9.6 and Theorem 9.5, we can assume without loss of generality that AEf)ll’b

and that D} (V2)(3y)A(Z,y). But UX(6) is an extension of U3, so U(8)1-(VZ)(3y)A(Z,y) and
Theorem 10 states that the desired function f exists. O

We shall prove Theorem 10 by proving a more general theorem:

Theorem 12: Suppose 821(5)|—I‘,H—>A,A and each formula in TUA is a Z*(8)-formula and
each formula in TIUA is a Hll'b(é)—formula. Let ¢y,...,¢; and 7y, . . . ,7, be the free variables
in [ TI—>A,A. Let X and Y be the ;" ~formulae

X = (ADAA{-C : CeA}
and
Y = (VAWV{-C: cen}.

Then there is a PSPACE(a,7) predicate M so that

(1) M is A"*(6)-defined by 821(5) and

(2) UX6)- Witness2 (a2 7)> Witness2E({z}M(z,2,a,7),8,7).

Proof: of Theorem 10 from Theorem 12:

The hypothesis of Theorem 10 is that 821(5)|-(V?)(3y)A(?,y). By the extension of
Parikh’s theorem to second order Bounded Arithmetic, there is a term ¢ such that

&}(5)]—(V?:')(Bygt(?))A(?,y). We now apply Theorem 12 with A={(Jy<#(¢))A(<,y)} and with
I'=I1=A=@. Theorem 12 asserts that there is a PSPACE predicate M which is A;"%(§)-defined

by O(6) so that
U3(6)1- Witness2y,, ({2 }M(z,2),%).
By the definition of Witness2, this means that

U2(6)- (Fy<t(2)) Witnessg 58 o ({2} M(2,),,9).
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Now define

f(2) = (ny)Witness2{(% ({2} M(2,2),%,y)

and

B(¢,d) <= Witness23 ,({s}M(2,2),¢,d)A
NVy < d)(~Witness2 {5 ;({2}M(=,2),2,)).

Since WztnessQA(_c, o(@C,d) is a PSPACE(a) predicate and since {z}M(z,2) is a PSPACE predi-
cate, f is readily seen to be polynomial space computable. Also, since Witness2? A(_c. d) is a
Eol'b-formula and M is a A"%(6)-defined predicate, B is a A,"*(8)-formula.

It now follows from Theorem 9.15(b) that conditions (1)-(5) of Theorem 10 hold.

QED. O

Theorem 9.13 showed that an inductive definition similar to but stronger than limited

recursion could be defined in 821(6). Before we can prove Theorem 10, we need a lemma about
the computational complexity of the inductive definition of Theorem 9.13.

Lemma 13: Let A(a,¢,y) and B(a,b;2,0,7) be A} (8)formulae of 821(6) where o is a unary
predicate variable. Let {(b,¢) be a term. Let K(a,b,¢,7) be defined from A and B as in
Theorem 9.13 by

A(a27) if =0 and a<t(b,c)
=1 it a>1(b,7)
B(a,b,¢,{z}K(z,|1b],¢/5),y)  otherwise

K(abeq) = [ 0

Then K(a,b c,71') is A"%(8)definable by ﬁl(ts) Furthermore, if A4 is in PSPACE(A) and B is
in PSPACE(a,7) then K is a PSPACE(Y) predicate.

Proof: The fact that K(a,b,?,jy') is AL 5(5) defined by 8 (6) is proved by the proof of Theorem
9.13. So we must prove K is in PSPACE(7). To do this we specify an algorithm to compute
K(a,b,c,7)

Suppose b#0 and a<t(b,¢), then to compute K(a,b,c,_’) we begin by computing
B(a,b,¢,0,) with a PSPACE machine My with oracles for a and 7. However, we modify Mg so
that whenever Mp would have queried the oracle of a(z), instead Mp saves its current state and
begins to compute K(a:,]_%b_l,‘c’,'_y'). This process iterates until we wish to compute K(z,O,E’,ry.) for
some z. Then we just compute A(z,?:’Fy’) and return its value.
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It is straightforward to verify that this algorithm uses only polynomial space.

QED. O

Proof: of Theorem 12:

By Theorem 9.20 there is a 821(5)—proof P of T II—> A A such that P is free cut free
and in free variable normal form. Hence, by Corollary 9.21, every formula in P is in
TSI ().

The proof P will generally contain a number of relational symbols é,, ...,6;. These
relationals are introduced with defining equations 6,(3,@)— A (3 a) where A,€X,"%(6). Thus the
proof P requires auxiliary proofs Py, .. .,P; of equivalences A; b B)HB ﬁ,) where each Bjis a
I1,"%(6)formula. These auxiliary proofs may themselves use further relational symbols and
require their own auxiliary proofs. However, eventually this process must stop and there are
proofs P,,...,P; such that for every relational symbol 6; appearing in any of P,Py,... P,
which is deﬁned by 6,3 a)HA( ) there is a I1,"(6)- formula B; and there are two proofs
among Py, ...,P; of A 3)—)3 5,8) and B(b 3)%Aj(b B). In addition, we may assume
that each proof P.P,, ..., P, is free cut free and that every formula appearing in P,P,, ... ,P,
is in X M8(S)UIT,(8).

The proof of Theorem 12 is by induction on the total number of sequents in the proofs
P.,P,,...,P;. The argument splits into cases depending on the final inference of P.

First consider the case where P has no inferences and P consists of a single initial
sequent. The only difficult case is where P is a defining axiom for a relational, say P is the ini-
tial sequent

where F={6J-(Ts',77')} and A={Aj(§’,77’)}. Then by assumption there is a proof P; of
where BjEI'Ill'b((S). By the induction hypothesis, applied to P, there is a PSPACE(f) predicate
G which is AY*(6)-defined by 821(5) such that
U2(6)r Witness2}#(B(1,{z}G(2,8,8)),8,B)v
v Witnesse §(B(2,{z} G(z,5,8)),5.8).

Since

-

8’;(6)&— Witness f A (a,b ﬁ)DﬁB,( B)

and 821(5)+——-Bj3—-AJ-, we have
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O(6)r 8,(8.7)> Witness2{P(B(1,{2}G(2,5,B))F B).

So set M to be the PSPACE(7) predicate defined by M(z,b,0,8)<=> G(<1,2>,b,8). Now
since 61'(?9’3) is atomic, we have

7 2 (8) Witnesseaf('%m(a,?ﬁ):) Witness2 ,:;G,?)({z}M (2,3,2,9),37)

This proves the theorem for the case where P is a single initial sequent of the form
51-(79’,;)—>AJ-(79’,77’). The other cases for P a single sequent are similar or easier.

Note that the argument above shows that, no matter how many inferences are in P,
every relational symbol §,(3,7) appearing in P is a PSPACE(y) predicate.

Next we consider the case where P does contain one or more inferences. We shall hen-
ceforth make the simplifying assumption that I and A are the empty cedent. As in the proof of
Theorem 5.5 this involves no loss of generality since (—:left) and (—:right) inferences can be used
to move formulae from side to side and since each inference has a dual. The argument splits
into 16 cases depending on the last inference of P.

We shall number the cases as in the proof of Theorem 5.5. We shall omit many of the
cases since the argument parallels that of Theorem 5.5 very closely.

Cases (1)-(2): Omitted.
Case (8): (v:left). Suppose the last inference of P is

BI'*—= A Cr*—sA
BvCT*—>A

Let D be the formula BA(AT™), let E be CA(AT*) and let F' be (BvC)A(Al™).
The induction hypothesis is that there are PSPACE(:;) predicates G and H which are
AM*(8)-defined by 821(6) such that

U (8)r Witness25 (e, 3)> Witnessti ({2} G(z,2,0,7),2 )
821( 8)F Witness2g(a,2,7)> Witn ess?&,ﬁ({x }H(z,2,0,7),2,7).

Define M by
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G(z,¢, < ﬂ(l,ﬂ(l,a)),ﬂ@,a) >r:;)_‘_‘
if Witness2g(B(1,8(1,2)),2,7)
H(z2, < B(2.B(1,0)).B(2,0) > )

otherwise

M(z,2,a,7) <=

Clearly M is a PSPACE(a,7) predicate and is A"*(§)-definable by ﬁzl(é) since G, H and
Witness25" are. It is now easy to see that

821(5)1— Witness2g (0, 8,7)D WitnessQ\El.g( {2}M(z,2,0,7),2 7).

Cases (4)-(18): Omitted.

Case (14): (second order J:left). Suppose the last inference of P is

B(B)IT*—A
(3¢)B(¢)*—> A

where # and ¢ are k-ary predicate variables and @ is the eigenvariable and must not
appear in the lower sequent.

Let D be the formula B(3)A(/Al'*) and let E be (3¢)B(¢)A(/AT'*). The induction
hypothesis is that there is a PSPACE(a,3,7) predicate G which is A"%(6)-defined by
821( 0) such that

UR(6)F Witness2f (¢ ,8,7)> Witnessagii({z} G(2,2,0,8.7),¢ 7).

Note we can omit B from the superscript on the lefthand side of this implication since 3
does not appear in A.

Let M be the predicate A*(6)~defined by
M(z,2,07) <= G(z,¢,0(2,0),ARY(B(1,0))7).

Clearly, M is in PSPACE(q,7) since G is in PSPACE(a,8,7). Furthermore it is easy to
see that

821(5) - Witness,?g"(a,?,:y’):) Witness?{if({z}M(z,?,a,Ty’),E’,Ty’).
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Case (15): (second order J:right). Suppose the last inference of P is

I—s B(V),A*
I—>(3¢)B(¢),A*

where ¢ is a k-ary predicate variable and V is the abstract {y,, ..., yz}A(yy, . .. U6 €A)
where A is a £¢"*(6)-formula.

Let D be the formula B(V)v(VA*) and let E be (3)B(¢)v(VA*). The induc-
tion hypothesis is that there is a PSPACE(q,7) predicate G which is A;"*(6)defined by
821(5) such that

B3(6)- Witness2(a,2,7) Witness2Z ({x} G(z,2,0,7),¢7).

Let M be the predicate A,"*(8)-defined in 321(5) by

G(zx?ra)’—i) if 1'=<2,z>
M(z2,07) <> { A(YE7) if 2=<1,<yy,...y0>>
0=1 otherwise

In other words, {z}M is equal to < DEARY  ({J}A){z}G >. It now follows from
Lemma 8 that

321(5) - Witness2,'—’\‘i,:”(a,_c’,77')3 WitnessB,};({z}M (2,2,07),2,7).

It remains to show that M is a PSPACE(a,'—f) predicate. Since G is a
PSPACE(a,7) predicate by the induction hypothesis, it suffices to show that A is a
PSPACE(7) predicate. But this follows from the fact that A is in $o"*(8) and, as we
remarked earlier, every relational appearing in A is a PSPACE(;) predicate.

Case (16). (£*(8)-PIND ). Suppose the last inference of P is

B([1a})I*—> B(a),A*
B(0),I'*—> B(t),A*

where B is a $,"*(8)-formula and a is the eigenvariable and does not appear in the lower

sequent. We shall assume that B(0) is in I and B(t) is in A. The other cases are easier
and are omitted.
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Let D be the formula B(|1a])A(Al'*), and let E(Z,a) be B(a)v(VA*), let F be
B(0O)A(Ar'*) and let A be B(t)v(VA*). The induction hypothesis is that there is a

PSPACE(a,q) predicate G such that G is A;"*(6)-defined by ﬁzl(é) and such that

-

ﬁ21(5)|— Witnessé‘g’“’ (0,2,a,7)D Witnesseg'“"’({x}G(z,‘c’,a,a,'_y’),_c',aﬁ).

By Lemma 9, there is a term s(¢,a) such that

OH8)- (Vz<s(2,a))(ef2) B(2))D

> [WitncssB}“"’(a,’c’,aﬁ)c—» Witness?}“"’(ﬂ,’c‘,aﬁ)] .

By Lemma 13, there is a A;"*(6)-definable predicate K of &}(5) which satisfies

(

0=1 it 2>s(7,a)
afz) if b=0A2<s(7,a)

K(2,2,0,077) <= | K(2,3,|1a],,7)

if 2<s(¢,a)A Witness?vA.(ﬂ@, {z}K(z,c | 1a] ,,7)),8,7)

G(z,2,0, < P(1{z}K(2% | 3a],07)),B(2,0) > 7)

otherwise

\

Furthermore, by Lemma 13, K is in PSPACE(a,f_y'). From the definition of K it is readily
seen that

821(5) - WitnessEF—f. "’(a,E',;)A Witness,?g *({z}K (2,2, [La] ,a,f_y’) ., I_%aj,f_y') )

D Witness?lg"";({z}K (z,¢,8,0,7),%,8,7).
Hence it follows by £"%(8)~PIND that
821(5)|— Wa'tness?ﬁ;(a,?,_q.)g Witness?f'—’.({z}K (z,2,t,2,7),¢,7).

So we define M(z,2,0,7) by
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M(z2,a7) <> K(2,2,t,a79)

and M satisfies the conditions of Theorem 12.

QED. O

10.6. Only EXPTIME is E}’b-deﬁnable in V;.

Theorem 1 asserted that every EXPTIME function of polynomial growth rate is
¥ 1 definable by V4. The converse is also true. Since the proof of the converse to Theorem 1

is very similar to the arguments in §10.5 concerning X;"’~definable functions of Uj and 821(6)
we shall merely state the results without giving detailed proofs.

Theorem 14: Suppose A(T,d) is a Z,"%(8)-formula where ¢ and d are all the free variables of A.
Also suppose 1921(5)|—(V3‘)(3y)A(3’,y). Then there is a A"*(§)-formula B, a term ¢ and a func-

tion f so that
(1) PX6)F (V2)(Vy)(BE 9)>A(Z,v))
@) VX6)- (v2)3y<1)B(Z,y)

)
)
(3) VX(8)r (v2)(Vy)(V2)(B(Z,y)\B(Z,2) D y=>2)
(4) For all %, N = B(7,f(7))

(5) f is an EXPTIME function

Hence, f is an EXPTIME function which is Z;"*(6)-definable in 621(6) and for all @, A(%,f(7))

is true.

The converse to Theorem 1 is an immediate corollary of Theorem 14:

Corollary 15: Suppose A(?,d) is a ¥,"*~formula where © and d are all the free variables of A.

Also suppose V2 (VZ)(3y)A(Z,y). Then there is an EXPTIME function f such that for all @,
N = A(7,/(7)).

As before, the proof of Theorem 14 is based on a more complicated theorem:

Theorem 16: Suppose 9}(5)!— I'NI—>A,A and each formula in TUA is a E,"*(§)-formula and
each formula in TIUA is a Hll’b(é)—formula. Let ¢y, ...,c, and 7y, . . . ,7, be the free variables
in [,JI—>A,A. Let X and Y be the Z;"*~formulae
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X = (AD)AA{-C : CeA}
and

Y = (VayV{-~c: cenmy}.
Then there is an EXPTIME(a,7) predicate M so that

(1) M is AM¥(8)-defined by P}(6) and

(2) 821( o)+ Witness2§7(a,?,77)j Witness2$’7( {2}M(2,2,27),2 7).

The proof of Theorem 16 is almost exactly like the proof of Theorem 12. The only
substantive difference is in Case (16), where the last inference of P is a ,"*(6)-IND inference.
In this case, instead of using Lemma 13 we use Lemma 17:

Lemma 17: Let A(a,¢,7) and B(a,b,C,a,7) be A}*(8)formulae of 1921(5) where o« is a unary
predicate variable. Let ¢(b,¢) be a term with only the free variables b and ¢ as indicated.
Let K(a,b,2,7) be defined from A and B as in Theorem 9.14 by:

A(a,27) if b=0 and a<t(b,?)
K(a,b%q) <> { 0=1 if a>t(b,%)
B(a,b,¢,{z}K(z,b=1,2,7),7) otherwise

Then K(a,b,27) is A"*~definable by ‘921(5). Furthermore, if A is in EXPTIME(7) and B is
in EXPTIME(a,7) then K is in EXPTIME(®Y).

Proof: The proof of Theorem 9.14 shows that K(a,b,¢,7) is A"}(8)-defined by VA(8). If A is
EXPTIME(v) computable an(l B is EXPTIME(a,~) computable, then the straightforward algo-
rithm for computing K(a,b,¢,7) is an EXPTIME(7)-algorithm.

QED. O

10.7. A Corollary about NEXPTIMEN co-NEXPTIME.

Definition: NEXPTIME is the set of predicates which are recognized by a non-deterministic

exponential time Turing machine. The set co-NEXPTIME is the set of predicates whose
complements are in NEXPTIME.
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Proposition 18: A predicate Q(2) is in NEXPTIME iff there is a formula A€X? such that

Q@) <> N—A®).

Proof: By Corollary 9.17, every le'b—formula. A(Z) is equivalent to a formula of the form
(34)B(d,¢) where BEX"®. By Lemma 9, there is a term sp(z) so that the value of B(Z,¢) only
depends on the values of #(y) for y<sp(Z). Thus a £;"*~formula A(Z) can be evaluated in non-
deterministic exponential time by first guessing the values of ¢(y) for all y<sg(Z) and then
evaluating B(Z,¢).

Conversely, it follows from the methods of §10.1 that every NEXPTIME predicate
Q(2) can be expressed by a I"’—formula A(Z). If M is a nondeterministic Turing machine
which computes Q(Z) in time 2907V, let A(Z) be (IN")Run y,(\",29(F) 7).

QED. o

Corollary 19:

(a) If A(Z) is any formula and Ug proves A(%Z) is equivalent to a ¥;"’~ and a I1;"*—formula
then A(Z) represents a predicate in PSPACE. In other words, if U proves A is in
NEXPTIMENco-NEXPTIME then A€PSPACE.

(b) If A(Z) is any formula and V] proves A(%) is equivalent to a £’ and a IT;"*~formula
then A(Z) represents a predicate in EXPTIME. In other words, if V3 proves A is in
NEXPTIMENco-NEXPTIME then A€EXPTIME.

Proof: This is just a restatement of Corollaries 11 and 15. The proof is similar to the proof of
Theorem 5.9 and Corollary 5.10. O

Corollary 19 also holds for the theories 821 and 921.

10.8. Variations, Complications and Open Questions.

Some questions concerning second order Bounded Arithmetic which have not been
resolved include:

(1) Is V4 equivalent to U}?

(2) Is (721 equivalent to 821? Is ‘721 equivalent to ‘0721?
(3) Is U4 or V4 a conservative extension of S,?

(4) Is U or V4 a conservative extension of S§?

The author conjectures that the answers to questions (1), (3) and (4) are “no”. In particular, if
(1) has an affirmative answer, then PSPACE=EXPTIME.




§10.8 Variations, Complications and Open Questions 209

Corollary 20: If UJ=V, then PSPACE=EXPTIME. Also, if 821(5)5921(5) then
PSPACE=EXPTIME.

Proof: By Theorems 1, 4, 10 and 14. O

However, there seems to be no reason why Uy could not be a conservative extension of
S}, There is no evidence that this would imply P=PSPACE, for instance.

A topic for further research would be to investigate the theories U, and V' for i>1.
It would be nice to establish what functions can be £}**-defined in these theories. It appears
that the ¥;’—defined functions of V2‘ are precisely the functions at the i-th level of the
exponential time hierarchy. That is, V# can E«}"’—deﬁne precisely the functions which can be
computed by an exponential time Turing machine using an oracle for a NEXPTIME-complete
predicate, etc. The situation for Uy is not quite as clear. First of all, computer scientists do
not recognize a polynomial space hierarchy: a well known theorem of Savitch [24] states that
PSPACE=NPSPACE. Instead we expect that U, can ¥;*—defined precisely the function
which can be computed by a polynomial space bounded Turing machine using an oracle from
the i-th level of the exponential time hierarchy. For example, we expect that Ug can
T4'*—define precisely the functions which can be computed by a polynomial space bounded Tur-
ing machine with an oracle for a NEXPTIME-complete predicate.

A variation of second order Bounded Arithmetic is to restrict all predicate and function
variables to have bounded domains. A predicate ¢ has bounded domain iff there is a z such
that when z;>2z for some z; then ¢(F) does not hold. Likewise, a function ¢ has bounded
domain iff there is a z such that when some z;>z, ¢(i)=0.

We change the second order language so that the second order predicate variables are
o and ¢;° and the second order function variables are ¢* and \;* where s and ¢ are arbitrary

terms. Let 7 be a list of new variables not appearing in s. Then second order Bounded Arith-
metic contains the new axioms

(VZ2)(Ve)(Vz;>5)>-¢{(2))
(VZYYN ) (V> 8)o ) (2)=0)

(V)N INS WM (@) <)

Thus the axioms force all predicate and function variables to range over bounded domain predi-
cates and functions.

We also change the comprehension axioms for bounded domains. The bounded domain
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comprehension axioms (the £g"*~BCA axioms) are

(V)N VA)IN) VTN (@)= AT Z 87

where A€, The T'*-BFCA, the bounded domain function comprehension axioms are
defined similarly. We leave it to the reader to formulate the bounded domain comprehension
inferences.

Let UJ(BD) and V(BD) be the theories which use bounded domain predicate and
function variables, have the £*—~PIND and E;M*-IND (respectively) axioms, and have the
Ti"*—comprehension axioms. So UF(BD) and VJ(BD) are similar to U and V§ except they are
restricted to using only bounded domain second order variables. It turns out that the same
functions are X,"*—definable in UJ(BD) and V,(BD) as in U and V' respectively; namely the
PSPACE and EXPTIME functions (respectively). This is true because the proofs of Theorems 1
and 4 only used functions with bounded domain.

The theories (72'(BD) and 172"(BD) are defined to be Uj(BD) and V§(BD), respectively,
restricted to contain only second order predicate variables and no second order function'vari-
ables. Of course, the analogues of Theorem 9.5 and Lemma 9.6 hold, so U3(BD) and V3 (BD)

are conservative extensions of 62‘(BD) and Vj(BD), respectively.

As a final topic we discuss the predicativity of second order Bounded Arithmetic. Ed
Nelson [19] defines a theory to be predicative if it can be interpreted in R. Robinson’s
induction-free, open theory of arithmetic @. Independently, A. Wilkie and E. Nelson have
shown that bounded induction is predicative; in particular, the theories S5 and S, are predica-
tive.

Second order bounded domain Bounded Arithmetic is also predicative. To show this it
suffices to interpret Up(BD) in the first order theory S;. So let M be a model of Sy we con-

struct from M a model N for ﬁé‘l)(BD). N will consist of two parts N; and N,; both N, and
N, are subsets of the universe of M and N is the first order part of N and N, is the second
order elements of N. If a€N, and ZEN, then we interpret ofZ) in S, as

B(<Z>,a)7#0
where <Z> is the sequence coding z,, . ..,z, and satisfies
UnigSeq(<2>)AB(0,<Z>)=nA(Vi<n)(f(i+1,<2>)=z;).
By the results of Chapter 2, it is clear that for each n>0 the map 7> <Z> is Elb—deﬁned by

Sy, Hence the interpretation of ofz) is well-defined.

Next define I(z) to specify an initial segment of M satisfying
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Iz) <= (32)3Fy)(|2|=yAly|=2).

We let I denote the elements m of M satisfying I(m). So if M is closed under exponentiation
I=M. Otherwise I is the initial segment of M containing all the m such that 22" exists in M.
Since, 22‘+l=(22’)2, I is inductive; that is, if m€l then m+1€l. Using techniques due originally
to R. Solovay and independently to E. Nelson, we can find another definable initial segment NV,
of M such that N;CI and N, is closed under successor, addition, multiplication, and smash (#).
We let No=M.

We claim that N=<N;,Ny;> is a model of 52_1)(BD). This is because the Eg"*~BCA
comprehension axioms can be proved using the L,"*~IND axioms of So. Since this is straight-
forward, we omit the proof.

The above shows that ﬁe_,(‘l)(BD) can be interpreted in S,. It remains to show that
Uy(BD) is interpretable in Ui Y(BD). The fact that UBD) can be locally interpreted in
(72(‘1)(BD) follows again by the techniques of Solovay and Nelson. (A theory H is locally inter-
pretable in another theory G iff any subtheory generated by a finite subset of the axioms of H is
interpretable in G.) The fact that ﬁz(BD) can be globally interpreted in (72(‘1)(BD) follows from
a technique due to Wilkie, see Pudlak [22].

If M is not closed under exponentiation, the above construction will actually yield a
model N of U,. Hook [16] uses the assumption (Jy)(Vz)(|2|<<y) as a predicative assumption.

Hence, if we accept Hook’s axiom as predicative, the (unbounded domain) second order theories
U, of Bounded Arithmetic are predicative.

As a corollary to the above discussion we deduce that the PSPACE and EXPTIME
functions can be predicatively defined.
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POSTSCRIPT

Since the original version of this dissertation appeared, a year ago as of this writing, a
number of further developments in Bounded Arithmetic have occurred.

A. Wilkie in a handwritten manuscript titled “A model theoretic proof of Buss’s char-
acterization of the polynomial time computable functions” has given a model theoretic proof of
a variant of the Main Theorem 5.2 for the case +=1. His method of proof readily extends to all
1>1.

J. P. Ressayre in a handwritten manuscript titled “A conservation result for systems of
Bounded Arithmetic” has examined a strong form of the ¥ '-replacement axioms and investi-
gated its strength relative to the axioms investigated in Chapter 2 above.

In a paper “The polynomial hierarchy and intuitionistic Bounded Arithmetic” in Struc-
ture in Complezity Theory, Springer-Verlag Lecture Notes in Computer Science #223, I have
extended the Main Theorem of Chapter 5 to intuitionistic theories.

Peter Clote and Gaisi Takeuti in a paper titled “Exponential time and Bounded Arith-
metic” in the same volume have extended the Theorems 10.1 and 10.14 to functions which are
n-fold exponential time computable. They utilized many-sorted theories of Bounded Arithmetic
rather than higher order theories to obtain a more elegant formulation.

However, none of the major open problems concerning Bounded Arithmetic have been
solved in the past year. It is hoped that further research will be able to resolve some of them.

213



214



[1]
2]

3]
[4]

6]

[7]

8]
[9]

[10]
[11]
[12]
[13]

[14]

15
16
17

[18]

19)

BIBLIOGRAPHY

A. V. Aho, J. E. Hopcraft, J. D. Ullman, The design and analysis of computer
algorithms, Addison-Wesley, 1974.

T. Baker, J. Gill, R. Solovay, “Relativizations of the P=?NP question,” SIAM Journal
of Computing 4 (1975) 431-442.
James Bennet, On Spectra, Ph.D. dissertation, Princeton University, 1962.

Ashok K. Chandra, Dexter C. Kozen, Larry J. Stockmeyer, “Alternation,” Journal
of the ACM 28 (1981) 114-133.

Alan Cobham, “The intrinsic computational difficulty of functions,” in Logic,
Methodology and Philosophy of Science II, Jerusalem 1964, pp. 24-30. Edited by Y. Bar-
Hillel, North-Holland 1965.

Stephen Cook, “Feasibly constructive proofs and the propositional calculus,” Seventh
ACM Symp. on Theory of Computing (1975) 83-97.

Steven A. Cook, Robert Reckhow, “On the lengths of proofs in the propositional
calculus,” Proc. Sixth ACM Symposium on Theory of Computing, 1974 pp. 135-148.

Martin Dowd, personal communication.

S. Feferman, “Arithmetization of metamathematics in a general setting,” Fundamenta
Mathematicae 49 (1960) 35-92.

Harvey Friedman, “On the consistency, completeness and correctness problems,”
unpublished manuscript, June 1979.

M. Furst, J.B. Saxe, M. Sipser, “Parity, circuits, and the polynomial-time hierarchy,”
Proc. 22nd Annual Symp. on the Foundations of Computer Science (1981) 260-270.

Micheal R. Garey, David S. Johnson, Computers and Intractability, A guide to the
theory of NP-completeness, W. H. Freeman, 1979.

Gerhard Gentzen, “Untersuchungen iiber das logische Schliessen,” Mathematische
Zeitschrift 39 (1935) 176-210, 405-431. English translation in [27].

C. A. Goad, “Proofs as descriptions of computations,” in Fifth Conference of Automated
Deduction, Les Arcs, France 1980, pp. 39-52. Springer-Verlag Lecture Notes in Computer
Science 87, edited by W. Bibel and R. Kowalski.

Andrzej Grzegorczyk, Some classes of recursive functions, Rozprawy Matematyczne 4
(1953).

Jay Hook, A many-sorted approach to predicative mathematics, Ph.D. dissertation,
Princeton University, 1983.

Clarence F. Kent, Bernard R. Hodgson, “An arithmetical characterization of NP,”
Theoretical Computer Science 21 (1982) 255-267.

G. Kreisel, “Some uses of proof theory for finding computer programmes,” Collogue
International de Logique, Clermont-Ferrand, 1975, pp. 123-134. Colloques Internationaux
de Centre National de la Recherche Scientifique no. 249 (1977).

Edward Nelson, Predicative Arithmetic, manuscript (to appear).

215



216

[20]
[21]
22]

(23]

(24]
(28]
[26]
27]
[28]
[29]

[30]

31]

32]

[33]

Rohit J. Parikh, “Existence and feasibility in arithmetic,” Journal of Symbolic Logic 36
(1971) 494-508.

Jeff Paris, L.A.S. Kirby, “Y, collection schemes in arithmetic,” in Logic Colloquium ’77,
North-Holland, 1978, pp. 199-210.

Pavel Pudlak, “Some prime elements in the lattice of interpretability types,”
Transactions of the A.M.S. 280 (1983) 255-275.

Pavel Pudlak, “On the length of proofs of finitistic consistency statements in first order
theories,” Logic Colloquium 84, Proc. of an ASL Conference in Manchester, England,
North-Holland (to appear).

W. J. Savitch, “Relationship between nondeterministic and deterministic tape
complexities,” Journal of Computer and System Sciences 4 (1970) 177-192.

Raymond M. Smullyan, Theory of Formal Systems, Annals of Mathematics Studies, no.
47, Princeton University Press, 1961.

Larry J. Stockmeyer, “The polynomial-time hierarchy,” Theoretical Computer Science 3
(1976) 1-22.

M. E. Szabo, The collected papers of Gerhard Gentzen, North-Holland 1969.
Gaisi Takeuti, Proof Theory, North-Holland 1975.

L. G. Valiant, “The complexity of computing the permanent,” Theoretical Computer
Science 8 (1979) 189-201.

Alex Wilkie, a talk at Logic Colloquium ’84, the ASL European Summer Meeting,
Manchester, England, July 1984.

Alex Wilkie, Jeff Paris, “On the scheme of induction for bounded arithmetic formulas,”
Logic Colloquium 84, Proc. of an ASL Conference in Manchester, England, North-Holland
(to appear).

George Wilmers, “Bounded existential induction,” Journal of Symbolic Logic 50 (1985)
72-90.

Celia Wrathall, “Complete sets and the polynomial time hierarchy,” Theoretical
Computer Science 3 (1976) 23-33.



|=|
#
L]
[a]
N

B

B+

I
PTC(C)
P
PRED(C)
PBY(C)
PB3(C)
LBY(C)
LB3(C)
af

Y 4

¢

2, 28

@ W ~1 NN

9, 23

13, 22
13, 24
13, 24
14
14
14
14
14
14
14
20, 29
20, 29
20, 29
22
22
22
22
29
22
25
25
25
25
25
28
28
29
29

SYMBOL INDEX

217

BASIC 30
V-IND 31,72
V-PIND 31, 72
V-LIND 32, 72
Si 32, 72
S, 32
T 32, 72
T, 32
SV 32
¥, —define 33
=(f) 33
() 33
AQ(f) 33
A} 35
Power? 39
Ezp 39
Mod2 40
LSP 40
MSP 40
Bit 41
(F#z<t)( - ) 46
(py<t)(-- ) 47
SqBd 50
- 51
T2(AS) 53
IA(AS) 53
V-MIN 56
V-LMIN 56
LK 71
LKB 71
o 77
Witness j’? 86
\'" 89
A 89
K-> 89
771},’# 100
PHP(f) 102
PV 104



218

Ll <l

Lpy
S3(Lpy)
S3(PV)
PV
n}(Pv)
WITNESS F
MINWIT
WITSIZE §
Sub
ProofBQ}
ProofBD }
ProofFCF }
PrfBQ}
PrfBD}
PrfFCF}
ThmBQ}
ThmBD }
ThmFCF}
Num

FSub

ba ,
ConFCF;
ConBQ/}
ConBD }
Con(R)
FCFCon(R)
BDCon(R)
BQCon(R)
Prfp

Thmpg
PrfBDR
PrfFCF g,

BD

I_
IW

Conp(z)
ConBD p(x)
R

E,‘l’b

H,‘l’b

106

106
107
107
108
109
109
109
110
110
130
134
134
134
134
134
134
134
134
134
135
135
143
143
143
143
144
144
144
144
144
144
144
144
147
150
154
154
157
160
160
160
161

161

T, ~defined

B

< “« .. >
ARY,
DEARY,
A _defined
b5(6)
z(8)
H:‘l’b(‘s)
20)

40

20)
All’b(‘s)
F[V]
EXPTIME
EXPTIME(J)
Neaxt,
Inity,
Runy,
PSPACE
PSPACE(4)
Witness?lf"—;

L >

161
162
163
163
164
164
165
165
165
165
166
166
166
166
167
167
169

169

170
174
177
177
178
178
180

180
180
180

181
181

181
181
182
186
186
187
188
188
189
189
195
198



NEXPTIME
Yo’-BCA
o*~-BFCA
U3(BD)
V$(BD)
U5(BD)
V5(BD)

207
210
210
210
210
210

210

219



abstract 162
alternative sense

ancestor 74

antecedent 67
arithmetic formula
arity 22, 180
atomic abstract
atomic formula
auxiliary formula

bound variable

53

19

163
66, 127

70

67, 160

bounded counting
bounded domain
bounded formula

bounded proof

71

bounded quantifier
bounded sequent
bounded theory
bounding axiom

cedent 67,1
closed formula
closed term

collapses 15

31

46, 190
209
20, 29, 71, 160

20, 29, 160

71
152

1

66

66
closed under substitution

00

comprehension axiom
comprehension rule

counting, length-bounded
70

cut formula
cut free proof

descendant
direct ancestor

74

75

74

direct descendant
distance 171

eigenvariable

70, 72, 161

elimination inference

endsequent

70

74

163

SUBJECT INDEX

163, 164, 210
163, 164

75

46

220

equality axiom 70
essentially proves 110
exponentiation 32, 39

father 117

feasible function 2
first order formula 160
formula 66, 128

free cut 74

free cut free proof 75
free formula 74

free mix 171

free variable 67, 160
free variable normal form 76
function oracle 22
function space 22, 101
functional 22

grade 171

induction axiom 31, 176
induction inference 72
inessential cut 75
inference 67, 70

initial sequent 70, 72

jump 157

left rank 171

length-bounded counting 46

level 171

limited iteration 8, 23

limited iteration on notation 104
limited recursion 191
logarithmically bounded quantification
logical axiom 70

logical inference 70

minimization axiom 56, 176

13



mix inference 171
multitree 117

open formula 66
oracle 22
p-inductive definition 119, 125
p-inductive proof 123

parameter variables 75

pigeon-hole principle 102

polynomial growth rate 9, 22, 153
polynomial hierarchy 14

polynomial time closure 9, 23
polynomially bounded quantification 13
predicate 13

predicate oracle 22

predicative 210

principal abstract 164, 165

principal formula 70

proof 70, 132

proper 15

propositional inference 70
protosequences 44

quantifier inference 70

rank 172

relational 180

replacement axiom 53, 178
restricted by parameter variables 77
right rank 171

second order variable 160
semiformula 128
semiterm 127

sequent 67, 131

sharply bounded quantifier 20, 29, 160
son 117

space bound 8

structural inference 70

substitution instance 72, 170, 183

succedent 67
successor 73
suitable polynomial 8

221

term 66, 127
time bound 8
tree 117

unbounded quantifier
uniform 23

20, 29, 160

weak free variable normal form 75



Discard this page





