
Bounded Arithmetic

Samuel R. Buss
Department of Mathematics

University of California, Berkeley

(EJ Copyright 1985, 1986

TABLE O F CONTENTS

0 . Introduction ..
1 . T h e Polynomial Hierarchy ..

1.1. Limited Iteration ..
1.2. Polynomial-time Computations ...
1.3. Bounded Quantifiers ..
1.4. T h e Polynomial Hierarchy ...
1.5. Eliminating P T C ..
1.6. Bounded Arithmetic Formulae ..
1.7. Relativization of the Polynomial Hierarchy ..
1.8. Appendix ..

2 . Foundations of Bounded Arithmetic ..
2.1. T h e Language of Bounded Arithmetic ..

... 2.2. Axiomatizations of Bounded Arithmetic
... 2.3. Introducing Function and Predicate Symbols

2.4. Bootstrapping S: - Phase 1 ..
1 2.5. Bootstrapping S2 - Phase 2 ..

... 2.6. Bootstrapping T:
.. 2.7. Replacement Axioms

2.8. Minimization Axioms ...
.. 2.9. Summary of Axiomatizations of Bounded Arithmetic

.. 3 . Definability of Polynomial Hierarchy Functions

4 . First-Order Natural Deduction Systems ...
... 4.1. Syntax and Rules of Natural Deduction

4.2. Bounded Arithmetic ...
... 4.3. C u t Elimination

4.4. Further Normal Forms for Proofs ...
4.5. Restricting by Parameter Variables ..
4.6. Polynomial Size, Induction Free Proofs ...
4.7. Parikh's Theorem ...

5 . Computational Complexity of Definable Functions ...
5.1. Witnessing a Bounded Formula ...
5.2. T h e Main Proof ..
5.3. T h e Main Theorem for First Order Bounded Arithmetic
5.4. Relativization ...

6 . Cook's Equational Theory P V ..
6.1. Preliminaries for P V and PV1 ...
6.2. S: and the Language of P V ...

iii

6.3. Witnessing a CPFormula ..
6.4. T h e Main Proof, revisited ..

7 . Godel Incompleteness Theorems ...
7.1. Trees ...
7.2. Inductive Definitions ..
7.3. T h e Arithmetization of Metamathematics ..
7.4. When Tru th Implies Provability ...
7.5. Godel Incompleteness Theorems ..
7.6. Further Incompleteness Results ...

8 . A Proof-Theoretic Statement Equivalent to NP=co-NP ..
9 . Foundations of Second Order Bounded Arithmetic ...

9.1. T h e Syntax of Second Order Bounded Arithmetic ...
9.2. Comprehension Axioms and Rules ..

.. 9.3. Axiomatizations of Second Order Bounded Arithmetic

.. 9.4. The C u t Elimination Theorem for Second Order Logic
... 9.5. C;tb-~efined Functions and n;fb-Defined Predicates

... 9.6. ~ ~ ~ ~ - ~ e ~ l a c e m e n t
....................................... 9.7. Cut Elimination in the Presence of ~ : * ~ - ~ o m ~ r e h e n s i o n

... 10 . Definable Functions of Second Order Bounded Arithmetic
.. 10.1. EXPTIME functions are C;tb-definable in V i

.. 10.2. PSPACE functions are zipb-definable in U i
.. 10.3. Deterministic PSPACE Turing machines

... 10.4. Witnessing a ormula mula la
.. 10.5. Only PSPACE is C:lb-definable in Ui

10.6. Only EXPTIME is ~ i j ~ - d e f i n a b l e in V; ...
10.7. A Corollary about NEXPTIMEn c-NEXPTIME ...
10.8. Variations, Complications and Open Questions ..

.. Postscript
References ...

... Symbol Index
Subject Index ..

ACKNOWLEDGEMENTS

Th i s book is a reprinting of my Ph.D. dissertation submitted t o the Department
of Mathematics a t Princeton University in May 1985; a number of minor corrections have
been made.

I benefited greatly from frequent conversations with my advisor, Simon Kochen.
He helped me learn mathematical logic by giving me a "guided tour" of the literature and
sparked my interest in formal theories of arithmetic.

I wish t o thank Ed Nelson for sharing his insights in to predicative arithmetic and
for giving me access t o his unpublished work.

In addition, Richard Lipton, Alex Wilkie, Pave1 Pudlak, Steve Cook, Harvey
Friedman and Martin Dowd each made suggestions or asked questions which led t o
additions t o this dissertation.

I am grateful t o John Lafferty for proofreading a preliminary copy of the
dissertation and an earlier extended abstract.

John Doner, Bob Solovay, Gaisi Takeuti and Osamu Watanabe made suggestions
for corrections t o the original version of the dissertation which have been made in this
reprinting.

My greatest debt is t o my wife, Teresa, who patiently lived through my
dissertation and provided much support , emotional and otherwise. She also helped with
proofreading and by writing computer programs to aid in t he typesetting. This
dissertation is dedicated t o her.

T h e National Science Foundation and the Sloane Foundation partially supported
me while this dissertation was being written. Princeton University supplied computer
facilities for the original typing and printing of this dissertation and the Mathematical
Sciences Research Institute provided facilities t o re-typeset my dissertation in book format.

Introduction

T h e fundamental questions of theoretical computer science ask what are the most
efficient methods t o compute a given function. A variety of computational models are used
including the Chomsky hierarchy, time and/or space bounded Turing machines, alternating
Turing machines, array processors and many others. T h e functions o r decision problems
considered by computer scientists are almost always combinatorial or numerical in nature.

Mathematical logic has also long studied problems in computability theory. However
the aims and scope of mathematical logic and computational complexity have been quite
different. Classically, mathematical logic has considered general recursive functions as its
principal model for computability, whereas computer science likes t o deal with functions which
are actually computable in the real world. Mathematical logic has rarely considered classes of
functions simpler than the primitive recursive functions, while computer science seldom treats
problems which are not elementary recursive in the sense of Kalmar.

However, the problems of theoretical computer science can often be stated in terms
familiar t o mathematical logic. For concreteness, suppose we are given a function f . Frequently
we can, without loss of generality, reduce f t o a decision problem. By suitably encoding
instances of the decision problem we can reduce the problem of computing j t o the problem of
recognizing a formal language A!. Now we can show t h a t j is computable (relative t o a given
model of computation) if and only if the language Af is definable in a certain formal way (which
obviously depends on the model of computation). T h u s we have restated a question about the
computability of j as a question about the definability of A!.

Questions about the most efficient o r simplest means of defining an object have long
been considered by mathematical logic. For instance, quantifier elimination has been
investigated for many formal systems. T h u s the problem of how the formal language A! can be
defined may legitimately be considered par t of mathematical logic.

This dissertation uses methods from mathematical logic t o examine issues related t o
computational complexity. T h e kind of question dealt with is as follows: Given a formal theory
R , what functions can R define? Or , what function symbols may be introduced in R ?

We say t h a t R can define a function j when R proves (Vz)(3!y)A(z,y) and j is defined
t o satisfy A(z,f(z)) for all z. In other words, a proof of (Vz)(3!~)A(z,y) provides an implicit
definition of t he function y=f(z).

A constructive proof of (Vz)(3y)A(z1y) by definition contains an algorithm for
computing f . T h u s a constructive proof gives us an effective way (at least in principle) t o
compute j; t h a t is to say, a constructive proof specifies a recursive algorithm t o compute y from
Z.

Introduction

However, a recursive function may be computable only in a theoretical sense: t he time
required t o compute it may be far larger than the lifespan of t he universe. We are more

interested in jecrsibly computable functions, which can be calculated by today's (or tomorrow's)
computers. I t is generally accepted t h a t the correct formal definition for a feasible function is
tha t the function be computable in polynomial time; i.e., t h a t the runtime of some Tur ing
machine computing the function be bounded by a polynomial in t he length of t he input .

Accordingly, we are interested in the question of when the existence of a proof of
(Vz)(ZIy)A(z,y) implies the existence of a feasible algorithm which, given z, computes y. A
natural condition to pu t on a proof is t h a t it be a valid proof of a certain formal theory (indeed
this is unavoidable). W e can also pu t conditions on the formula A . T h e main results of this
dissertation show t h a t certain restrictions of these types on a proof of (Vz)(3y)A (z,y) imply the
existence of a function j such t h a t (Vz)A(z,j(z)) and such t h a t j has a certain computational
complexity. In particular, we may be able t o deduce t h a t j is polynomial time computable, j is
a t a certain level of t he polynomial hierarchy, j is polynomial space computable, or j is
exponential time computable.

W e shall discuss exclusively a family of formal theories called Bounded Arithmetic,
which are weak fragments of Peano arithmetic. T h e language of Bounded Arithmetic includes
the following function and predicate symbols:

0 zero constant symbol

S successor

+ addition

multiplication

lf 4 "shift right" function, i.e., divide by two and round down

1x1 = rlogz(z+l)l, the length of the binary representation of x

Z#Y = 21zl'Iul, the "smash" function

I less than or equal t o

(The notations l a J and [a1 denote the greatest integer < a and the least integer 2 a .)

In Bounded Arithmetic, quantifiers of the form (Vz) or (32) are called unbounded
quantifiers. W e also use bounded quantifiers which are of the form (V z s t) or (3z1t) where t is
any term not involving z. T h e meanings of (Vz5 t)A and (3 z i t) A are (Vz)(x<t>A) and
(3z) (z<thA) , respectively. A formula is bounded if and only if i t contains no unbounded
quantifiers. T h e principal difference between Bounded Arithmetic and Peano arithmetic is tha t
in theories of Bounded Arithmetic the induction axioms are restricted t o bounded formulae.

A special kind of bounded quantifiers are the sharply bounded quantifiers, which are
those of the form (V z l l t l) or (3z<(t J) , where t is a term not involving z. W e classify the
bounded formulae in a hierarchy zob, c/, n / , c:, l l i , . . . by counting alternations of
bounded quantifiers, ignoring the sharply bounded quantifiers. Th i s is analogous t o the

Introduction 3

definition of the arithmetic hierarchy since formulae are classified in the arithmetic hierarchy by
counting alternations of unbounded quantifiers, ignoring bounded quantifiers. Hence, in
Bounded Arithmetic, the roles of bounded and sharply bounded quantifiers are analogous t o the
roles of unbounded and bounded quantifiers, respectively, in Peano arithmetic.

T h e most important axioms for Bounded Arithmetic are the induction axioms. The

induction axioms are restricted t o certain subsets of the bounded formulae. We are most
interested in a modified induction axiom called C~~-PIND. T h e xi)-PIND axioms are the
formulae

where A is a c?-formula. We define in Chapter 2 a hierarchy of theories s2', s2', s ~ ~ , . . . SO

that S; is a theory of Bounded Arithmetic axiomatized by a few simple open axioms and by
C t-PIND.

If R is a theory of Bounded Arithmetic we say tha t the function f is c:-definable in R
iff there is a xi)-formula A(z,y) such tha t

(a) For all z, A(zf(z)) is true.
(b) R t (vz)(3Y)A(z,Y)
(c) R t (~ ~) (~ Y) (~ ~) (A (z , Y) A A (z,z)> y=t.)

We shall be mostly interested in functions which are xi)-definable in 5';.

T h e Meyer-Stockmeyer polynomial hierarchy is a hierarchy of predicates on the
nonnegative integers which can be computed in polynomial time by a generalized version of a
Turing machine. T h e smallest class of the polynomial hierarchy is P , the se t of predicates
computable in polynomial time by some Turing machine. One s tep up is the class CIP, or N P ,
the set of predicates computable by a non-deterministic polynomial time Turing machine. I t is
an important open question whether P=NP. T h e classes in the polynomial hierarchy are P,
z p , n p , X I , n1, - . .

We can extend the polynomial hierarchy to a hierarchy of functions by defining
= P T C (C t) , the Polynomial-Time Closure of C,J', t o be the set of functions which can be

computed by a polynomial time Turing machine (i.e. a transducer) with an oracle for a

predicate in C t .

I t is well known (and we prove i t again in Chapter 1) t ha t the predicates in C P are
precisely the predicates which can be expressed by a xi)-formula. Th i s fact provides a link
between computational complexity and the quantifier structure of formulae.

The principal theorem of this dissertation states tha t any function which is
c:-definable in ~2 is a Ot-function, and conversely tha t every Ut-function is zib-definable in
s;. (See Theorem 5.6 for the strongest version of this theorem.) This provides a characterization
of the functions which are xi)-definable in S; in terms of computational complexity.

Introduction

T h e hardest part of this theorem is showing tha t every c:-definable function is in 0:.
An extremely brief outline of the proof is as follows: Let A be a C:-formula and suppose S;
proves (Vz)(3y)A(z1y). By Gentzen's cut elimination theorem there is a free cu t free proof of
(Y ~) (3 ~) A (z , y) . By examining the allowable inferences of natural deduction we discover tha t
this free cu t free proof contains an explicit 0:-algorithm for computing y from z . This method
of proof is reminiscent of Kreisel [18] and Goad [14], in tha t one of the important ideas is t ha t a
free cut free proof can be "unwound" to yield an algorithm. T h e proof is carried out in detail in
Chapter 5.

A corollary to the main theorem is tha t sz]. can Cf-define precisely the polynomial
time functions and SZ2 can Ci-define precisely the functions in PTC(NP) .

T h e import of this theorem is twofold. On one hand, i t provides a characterization of
the Or-functions in terms of their definability by the formal theory S; of arithmetic. On the
other hand, i t s tates tha t the proof-theoretic strength of the formal theory S; is closely linked
t o the computational complexity of 0:-functions.

Another way t o s ta te the main theorem is as follows: if AEC: and BEII; and if
s ? ~ A * B, then the predicate defined by A and B is in PTC(C{,). In particular, any predicate
which S; can prove is equivalent t o both a Cp- and a IIp-formula is in P; in other words,
since Cp- and II:-formulae represent NP and co-NP predicates, the class of predicates which
Sz]. proves are in N P n c o - N P is the class P of polynomial time predicates. (It is an open
question whether N P n c o - N P is equal t o P.)

In Chapters 9 and 10 we discuss second-order theories of Bounded Arithmetic. We
define two theories U; and V; of second-order Bounded Arithmetic which have the property
tha t the functions c:'*-definable in Uz]. (respectively, v;) are precisely the functions which are
computable by some polynomial space Turing machine (respectively, by some exponential time
Turing machine). This provides a characterization of the PSPACE and EXPTIME functions in
terms of definability in second-order Bounded Arithmetic.

Chapter 7 discusses improved versions of Giidel incompleteness theorems for Bounded
Arithmetic. I t is shown tha t the theory ~2 is strong enough t o carry out the arithmetization of
metamathematics. T h u s there is a formula FCFCO~(S;) which asserts t ha t there is no free cut
free ~ i - ~ r o o f of a contradiction. Also, there is a formula BDCO~(S;) which asserts tha t there
is no ~ i - ~ r o o f P of a contradiction such tha t every formula in P is bounded. W e show that ,
for i> l , S; can not prove either FCFCO~(S;) o r BDCO~(S,').

One of our most important open questions is whether the hierarchy of theories s;, s;,
s ~ ~ , . . . is proper. Of course this is analogous t o the open problem of whether the polynomial
hierarchy is proper. In Chapter 7 we make an unsuccessful a t tempt t o prove t h a t this hierarchy
of theories is proper.

Chapter 8 builds upon the work of Chapter 7; the main theorem of Chapter 8 is a
restatement of the N P = ? c o - N P problem in proof-theoretic terms. I t turns o u t tha t NP is
equal t o co-NP iff there is a bounded theory R of arithmetic satisfying a certain "anti-
reflection" property. See Theorem 8.6 for the precise statement.

Introduction 5

T h e prerequisites for reading this dissertation are some knowledge of computational
complexity and of first order logic. Garey & Johnson [12] is a good introduction t o
computational complexity; in addition, the polynomial hierarchy is defined in detail in Chapter
1 below. Takeut i [28] is the best source for the proof theory t h a t we use; in particular, our
t reatment of the cut elimination theorem is taken directly from Takeuti . For the reader who
has studied first order logic but not proof theory, Chapter 4 has an introduction t o proof theory
and the cu t elimination theorem.

Chapter 1

The Polynomial Hierarchy

This first chapter defines the polynomial hierarchy and explains the link between the
computer science definition and the mathematical logic definition. W e begin by defining the
polynomial hierarchy by using limited iteration and we prove tha t this definition is equivalent t o
the usual definition in terms of Turing machines. We then discuss how the polynomial hierar-
chy can be defined without using limited iteration. The main result of interest t o us is Theorem
8 which states tha t the polynomial hierarchy corresponds t o a hierarchy of bounded formulae of
Bounded Arithmetic.

T h e results of this chapter are equivalent t o the original work of Cobham [5], Stock-
meyer [26] and Wrathall (331, but they are stated and proved in a different form. Some of the
results are due originally t o Ken t-Hodgson [17].

1.1. Limited Iteration.

An important class of functions is the class of functions which can be computed in
polynomial time. By polynomial time, we mean tha t the number of s teps in some program
which computes the function is bounded by a polynomial of the length of the input. T h e con-
cept of polynomial time is invariant for Turing machines and modern day sequential program-
ming languages, as well as for other models of computation such as Random Access Machines
(RAM'S). For example, if a RAM program runs in time p(n) on inputs of length n , a multitape
Turing machine can simulate the action of the RAM program in time ~ ((p (n)) ~) , (see [I]).
Hence if p (n) is bounded by a polynomial, so is the running time of the Turing machine.

Instead of defining polynomial time computations directly in terms of Turing
machines, we will define an operation called limited iteration for obtaining new functions. By
start ing with a base set of functions and taking its closure under composition and limited itera-
tion, we can construct all polynomial time computable functions.

W e adopt the convention tha t all functions have domain N~ and codomain N for the
rest of this dissertation where N denotes the natural numbers. Another approach which is
often used is t ha t functions have domain and range the set of strings of symbols from a finite
alphabet. These two approaches are essentially equivalent; indeed, an integer can be considered
as a string of zeros and ones, namely a s its binary representation. However we find it advanta-
geous t o use integers since it allows us t o relate the polynomial hierarchy t o formal theories of
arithmetic (in later chapters).

51.1 Limited Iteration

Definition: B is the following set of functions from N t o N

(I) 0, (the constant zero function)

(2) x w S x , (the successor function)

(3) x w Lf XI , (the shift right function)

(4) XB 2.2, (the shift left function)

B will be the base set of functions from which we will obtain the polynomial time func-
tions. T h e first operation we can use t o obtain new functions is composition. Composition is
best defined by a few examples:

Ezamples:
(1) Logical operations. We will use the conventions t h a t if x > 0 then x represents True and if

x=0 then x represents False.

Negation: (l x) = x<O = Choice(z,O,l)
And: (XA y) = Choice(z,y,O)
Or: (xvy) = Choice(x,l,y)
Xor: (x @ y) = (- X A Y) V (X A ~ Y)

I t is important t o note tha t for the time being 7, A, v and @ are numerical opera-
tions. Later we will use 7, A and v extensively as logical operators.

(2) Equality and Inequality:

(3) Arithmetic modulo 2:

(x%2) is equal t o zero if x is even and one if x is odd.

We also need t o define functions for handling finite sequences of numbers. We will
code our sequences by values called Godel numbers. T h e Godel number for the sequence
alla2, . . . ,ak is constructed as follows. First write the a i l s in binary notation so we have a

8 The Polynomial Hierarchy

string of O's, 1's and commas. Then write the string in reverse order and replace each 0 by
"lo", each 1 by "11" and each comma by "00". The resulting string of zeros and ones is the
binary representation of the Gadel number <al , . . . , a k > For example the Godel number of
3,4,5 is (11101100101011001111)2 or 969,423. The empty sequence has Godel number < >=O.

Definition: B+ is the set of functions which contains all the functions in B plus the following
functions:

T h e value of P may be defined arbitrarily when the second argument is not a valid
Godel number for a sequence or if i > n .

Again, the values of the functions Truncate and * have not been specified for argu-
ments which are not Gadel numbers of sequences; it makes no difference how they are defined
for arguments other than those above.

Definition: We define the unary function 1x1 to be rlog2(x+l)l, or the length of the binary
representation of x. Note that)01=0.

If ?i? is a vector of numbers xl, , . . ,xn then 131 denotes the vector lxll, . . . ,Ixnl.

Definition: p is a suitable polynomial iff p has nonnegative integer coefficients.

Definition: Let k20 and let g : ~ k + ~ and ~ : N ~ + ~ + N be arbitrary functions and let p and g
be suitable polynomials. We say that f:Nk-+N is defined by limited iteration from g and h
with time bound p and space bound q iff the following holds:

Let r:Nk+'-+N be defined a s

Then we must have

and j(2) is defined by

Limited Iteration

Our definition for limited iteration is very similar t o what Grzegorczyk [15] and Cob-
ham [5] call "limited recursion".

Definition: A function ~ : N ~ + N has polynomial growth rate iff there is a suitable polynomial p
such tha t for all 3 , we have If(Z'))<p(lZ'I). Let C be a se t of functions of polynomial growth
rate. T h e Polynomial-time closure of C , P T C (C) , is the smallest class of functions which (1)
contains C and B and (2) is closed under composition and definition by limited iteration.

Theorem 1: P TC(0) T) B+ .

Proof.- This is a technical result and the proof is in the appendix t o this chapter. fl

As an illustration of how limited recursion is used, we show t h a t addition is in PTC(0) .
We first define fl(x,y) by limited recursion from gl and h l with bounds p l and ql, where

and where

Note t h a t in the definition of gl, the formula l*O*x*y*O means l*(O*(x*(y*O))) which is
<l,O,x,y>. Similar considerations apply t o the definition of h l and for the rest of Chapter 1
we follow the convention t h a t * associates from right t o left.

Intuitively, fl(x, y)= < FlippedSum(x, y),O,O,0>, where FlippedSum(x, y) is a number
whose binary expansion contains the binary expansion of x+y in reverse order immediately fol-
lowing the high order bit. For example, f1(4,8)=<(10011000)210,0,0>. Since g l and h l are
defined by composition from functions in B+, Theorem 1 says t h a t gl, h l€PTC(0) . Hence
f l€PTC(0) .

Secondly, we define f2(x) by limited iteration from g2 and h, with bounds p 2 and q,,
where

T h e Polynomial Hierarchy

We now define Flip(x) using composition by

and finally we can define addition as

1.2. Polynomial-time Computations.

In this section, we show t h a t the operation of limited iteration can be used t o define
the concept of polynomial time computation.

Theorem 2: Let C be a set of functions with polynomial growth rate. Then f € P T C (C) iff there
is a finite set {hl, . . . , h k) s C and a Turing machine M, with oracles for hl, . . . ,hk so tha t
M, computes f in polynomial time.

Note t h a t we are allowing M, t o use oracles for functions hi. In order t o be defined
properly i t is required tha t when the oracle is consulted, the elapsed time reflect the length of
the input t o and/or the output from the oracle. Garey and Johnson [12] define this concept as
Oracle Turing machines with a correction t o the definition at the end of their book (the first
edition). Another way t o define function oracles is t o count an oracle invocation as a simple
time unit and t o put an a priori restriction on the amount of space used by the Turing machine.
Thus if we limit both the time and the space we get a correct definition of a Turing machine
which uses function oracles.

Definition: P is the set of functions computable by polynomial time Tur ing machines.

Corollary 9: PTC(0) = P.

Prooj: of Theorem 2 .

+ First we show tha t f € P T C (C) implies tha t the desired M, exists. T h e proof is by induc-
tion on the complexity of the definition of f . T o s tar t the proof by induction we note tha t i f f
is in B u C the result is obvious. If f is defined by composition from functions in P T C (C) the
induction step is easy.

s1.2 Polynomial-time Computations 11

Suppose j is defined by limited iteration from g and h with time bound p and space
bound q. T h e induction hypothesis is tha t there are Turing machines M, and Mh which com-
pute g and h and have runtimes bounded by suitable polynomials p, and p h respectively. Let
Mf be the Turing machine which uses M, and Mh as "subprograms" t o compute j in a straight-
forward manner. Then the runtime of Mf is approximately bounded by

This bound is approximate since it does not provide for the overhead of Mf invoking M, and
Mh; however, clearly MI is polynomial time.

+ Let M be a polynomial-time Turing machine with oracles hl, . . . , h k € C and runtime
bounded by the polynomial p. Let q(n) be a polynomial bounding the total amount of tape
space used by M on inputs of length n . We want t o show tha t the function M computes is in
PTC(C) . Let the states of M be go, . . . , q ~ +) where qo is the initial s t a t e and q ~ + i is the oracle
s ta te for hi. We assume without loss of generality t h a t M has two tapes with alphabet
bo, . . . , b, where J22 and bo is the blank symbol. An ID (instantaneous description) of M is
given by the following items:

(1) T h e contents of the work tape (current head position is a t btJ:

(2) T h e contents of the oracle tape (current head position is a t bUo):

(3) T h e current s t a t e q,.

W e assume tha t the input and output of M are coded as a binary string with bl coding
0 and b2 coding 1. M is presumed t o s t a r t with the worktape positioned on the leftmost bit of
the input and t o halt on the leftmost bit of the output . T h e inputs and outputs for the oracles
are coded similarly. T h e convention for invoking an oracle is tha t upon entering s ta te q ~ + ~ , the
oracle for h i is invoked with input value coded by the string bUo . . - ban; the value output by

the oracle is coded as a binary string and written on the oracle tape as the string bao - . b,;.
After invoking an oracle the next s ta te M enters is qN.

W e will code an ID of M by (the Giidel number of) the sequence

We define j by the following procedure: we first define functions Init, N e z t , and Decode, then
define j3 by limited iteration from Init and Nez t , and finally define j (z) = Decode(/3(3,j3(x))).

T h e Polynomial Hierarchy

Init is the function computing the initial s ta te of M with input x. We first define jl(x)
by limited iteration from gl and h l with bound p l and ql, where

Then define Encode(x)=P(l,jl(x)) and Init(x)=O*O*Encode(x)*0*0*0.

We define Decode t o be the inverse of Encode as follows: define j2 by limited iteration
from g2 and h2 with bounds p2 and q2, where

Then define Decode(x)=P(2 f 2(x)).

Next is the function which maps the Godel number of an ID of M t o the G d e l
number of the next ID of M. We sketch how Next is defined using composition only (no
further use of limited iteration). First note that to, 80 and u are given by

T h e oracle queries are given by (for i=1,2, . . . ,k):

I t should now be clear tha t Next can be defined by the use of many Choice functions and sim-
ple composition from the above functions and the functions in B'.

W e finally define j3 by limited iteration from Init and Next with time bound p and
space bound q3. Recall p is the bound on the runtime of M. q3 is the polynomial
q3(n) = 8.(1N+k+J+2l).(q(n)+l). So q3 bounds the length of the Godel numbers of ID'S of M.
Now define

Polynomial-time Computations

f (4 = Decode(P(3,f3(x))),

and j is the function M computes and by construction j is in P T C (C) .

Q.E.D.

1.3. Bounded Quantifiers.

Quantification is a construction which forms an n-ary predicate from an (n+l)-ary
predicate. For this chapter only we adopt the convention tha t a predicate is a function with
range {0,1) where 0 denotes False and 1 denotes True.

Definition: Let C be a set of functions. Then PRED(C) is the set of predicates in C, i.e., the
functions in C with range {0,1).

Definition: Let Q and R be functions. Then ('dy<Q(Z'))R(Z',y) is the predicate (i.e., function of
2) which has value 1 iff for all y< Q(Z') the value of R(2,y) is nonzero. Similarly,
(3y<Q(2))R(Z',y) is the predicate which has value 1 iff for some y<Q(Z) the value of R(Z',y)
is nonzero. (Note t h a t this definition applies even if R is not a predicate.)

We will be interested only in bounded quantification, t ha t is t o say, in quantifiers of
the form (V x s t) o r (3 x 5 t). Indeed, if we used unbounded quantification the construction below
would just give the arithmetic hierarchy since the class A,j' defined below includes a version of
the Kleene T predicate.

W e define two kinds of bounded quantification which are distinguished by the size of
the bound. Polynomially Bounded Quantification allows bounds of the form 2p(lt1), where p is a
polynomial; whereas Logarithmically Bounded Quantification allows only bounds of the form

~ (l t l) .

Definition: Let C be a set of functions closed under composition. Then P B 3 (C) is the set of
predicates Q such tha t

(1) Q:N'+N for some i e N ;
(2) There is an R€PRED(C) and a suitable polynomial p such t h a t for all 2,

PBV is defined similarly with a universal quantifier replacing the existential quantifier in (2).
Note tha t PBV(C) and P B 3 (C) always contain PRED(C) .

14 T h e Polynomial Hierarchy

Definition: Let C be a se t of functions closed under composition. Then LB3(C) is the se t of
predicates Q such t h a t

(1) Q:N'+N for some i € N ;
(2) There is an R€PRED(C) and a suitable polynomial p such t h a t for all 2,

LBV is defined similarly with a universal quantifier replacing the existential quantifier in (2) .
Note t h a t LBV(C) and LB3(C) always contain PRED(C).

In later chapters we will define bounded quantification in a different setting. Loga-
rithmically bounded quantification corresponds t o what we later call sharply bounded
quantification. Our definition of logarithmically bounded quantification is closely related t o
what Bennet (3) called "part of" quantification and polynomially bounded quantification
corresponds t o wha t he called "finite" quantification.

1.4. The Polynomial Hierarchy.

We are now in a position t o define the polynomial hierarchy. We will differ from the
usual definitions in t h a t we define a hierarchy of functions as well as a hierarchy of predicates.

Definition: (by induction on k)

(1) 08 is the smallest set of functions containing B and closed under composition, LB3 and
LBV.

T h e sets of predicates A?, Ef and llf are well known t o computer scientists and are
called P , NP and c o - N P respectively. Figure 1 shows a diagram of the hierarchy of predicates
A;, Ef' and llf'.

The Polynomial Hierarchy

The Polynomial Hierarchy
Figure 1

Proposition 4: = PTC(IIf) for all k>O.

Proof: This is easy and is left as an exercise for the reader.

There are many open problems concerning the polynomial hierarchy. We say the
hierarchy collapses if there is a k such that Cf=Cf+l. Otherwise we say that the hierarchy is
proper. Things which we do not know include:

(1) Does P = N P ?

(2) Does NP = co- N P ?

(3) Does the polynomial hierarchy collapse?

(4) Does Af = c f n n f ? In particular, does P = N P n c o - N P ?

Most computer scientists are of the opinion that all these questions have negative answers, espe-
cially the first two. However, over a decade of determined efforts has failed to resolve these
questions.

T h e Polynomial Hierarchy

One question we can answer is whether A{ = A)':

Proposition 5: A 8 # A f .

Proofi Let Parity :N+ N be the function defined as

Numones(z) = # of ones in the binary representation of z

Parity (z) = Numones(z)%2.

Clearly, Parity E A ~ = P . S o i t suffices t o show t h a t Parity $!A{.
I t is easy t o show tha t if f€A{ then j has polynomial size, unbounded fan-in circuits of

constant depth. This is proved by induction on the complexity of the definition o f f : the only
two cases are composition and logarithmically bounded quantification and both are straightfor-
ward. Bu t Furs t , Saxe and Sipser [ll] have shown tha t Parity does not have constant depth,
polynomial size circuits.

Proposition 5 is somewhat unsatisfactory as i t depends on the fact t h a t the initial
functions in B all have constant depth polynomial size circuits. Indeed if multiplication had
been included in B it would n o longer be true t h a t all functions in B have constant depth poly-
nomial size circuits. I t would be desirable t o establish a more general version of Proposition 5
(if, in fact, a more general version is true.)

1.5. Eliminating PTC.

In defining the polynomial hierarchy we alternately applied PTC (polynomial time clo-
sure) and PB3 (polynomially bounded quantification). I t tu rns out t h a t the use of PTC is
unnecessary and t h a t t he classes Cf' and llf' can be defined without using PTC and hence
without using either Tur ing machines o r limited iteration.

Lemma 6:
(a) For all k>O, A; is closed under logarithmically bounded quantification (LBV and LB3) ,

conjunction, disjunction and negation.
(b) For all k>O, llf' and Cf' are closed under L B 3 , LBV, conjunction and disjunction.

Prooj:

(a) Th i s is immediate from the definition of Af' except for showing closure under LBV
and L B 3 when k > l . Suppose t h a t REAP and Q is defined by

We can define Q(3) by limited iteration from g and h with bounds p and q, where

Eliminating P T C

Since g and h are in A{, so is Q . This shows A{ is closed under LBV and a similar argument
shows it is closed under L B 3 .

(b) Since Cob = IId = A:, (b) is just a special case of (a) when k=O. So suppose k 2 l .
T h e closure of II{ and C{ under conjunction and disjunction follows easily from (a). T o show
tha t C{ is closed under LBV it suffices t o show tha t if REA{-~ and if p and q are suitable poly-
nomials, then

is in C{. But S(3) is equivalent t o

where r(Z) = 2.(q(Zlp(Z))+2).(p(Z)+l). T h u s S(3) is in C i . A similar argument shows I I i is
closed under L B 3 .

Q.E.D.

T h e next theorem shows how P T C can be eliminated from the definition of the polyno-
mial hierarchy.

Theorem 7: (Meyer-Stockmeyer-Wrathall).
(a) For all k > l , = PB3(II{) and = PBV(C{).

(b) Let B* be the smallest set containing Bf which is closed under LBV, L B 3 , and composi-

tion. Then c/=PB~(B*) and II/=PBV(B*).

Proof: In order t o prove (a) and (b) simultaneously, we define Dk+l to be Hi+, and Ek+, t o be

C{+l, and Do = Eo t o be B*. T h e theorem asserts t ha t = PB3(Dk) and 11{+1 = PBV(Ek)
for all k 2 0 . I t suffices t o show tha t = PB3(Dk) since II/+l = PBV(Ek) is an immediate
consequence of this.

Let k be a fixed nonnegative integer. Directly from the definitions we have
X{+12PB3(Dk). We need t o show the reverse inclusion also holds. Let Co be D k . Define Ci* to
be the set of functions definable by a single use of limited iteration from functions in Ci. Set
Ci+l equal t o the closure of Ci* under composition.

We will show tha t for all i , PB3(Dk)Z>PB3(Ci). Since UCi=Oi+l, this suffices t o
prove the theorem. W e will show by induction on i t ha t for any Q€Ci ,

T h e Polynomial Hierarchy

is in PB3(Dk) . (This may seem like an unusual definition for S b u t it makes the induction
argument work well.) This is easily seen t o be true when i=O since Co is Dk and by Lemma 6(b)
D k is closed under PBV. So assume i>O. Without loss of generality we may assume Q has the
form

where G is in Dk and each Fi is in c~*_~. (If this is not the case we can find a formula equivalent
t o Q in this form. For example, Q(3)=G(F1(F2(3))) is equivalent t o the formula
(~ V ~ ~ ~ (~)) (V = F ~ (~ ~ ~) A G (F ~ (V))) , where q is a suitable polynomial which bounds the function
F2. T h e extra existential quantifier introduced by this may be eliminated from S by first inter-
changing i t with the logarithmically bounded quantifier in S by using the trick of the proof of
Lemma 6(b), and then combining i t with the original existential quantifier of S by using the
pairing function. Note t h a t the /3 function is always in Dk and hence i t is permissible for G t o
involve the pairing function.)

Let each Fj be defined by limited iteration from G, and Hi with time bound pi and
space bound qj, where G, and Hi are in Ci-l.

W e informally define ValidComp (w,3) t o be True iff

(1) w is a sequence <wl, . . . ,wn> and
(2) Each wj codes a sequence <w,,~, . . . ,wj n . > which codes the computation of Fj(3).

' I

A precise definition is:

k

ValidComp (~ ~ 3) = P(o,w)=nh A (W ~ , ~ = G ~ (~)) A
] =l

where we used the abbreviations w j for P(j,w) and wj,, for p(m,@(j,w)).

Now we can easily find a suitable polynomial r large enough s o t h a t Q(3) is equivalent
t o

T h e only quantifiers in ValidComp are logarithmically bounded quantifiers, so we may rewrite
this last equation as

Eliminating P T C

where R E C ~ - ~ . So S(d) is equivalent t o

Now we can use the method of the proof of Lemma 6(b) t o interchange the order of the second
and third quantifiers. W e then can use the P function as a pairing function to contract adjacent
like quantifiers (since the P function is in Dk). Hence S(3) is equivalent t o

where s and t are suitable polynomials and R * E C ~ - ~ . By the induction hypothesis, S(d) is in
PB3(Dk) , which completes the induction s tep and the proof.

Q.E.D.

T h e point of Theorem 7 is t h a t we now can characterize the classes Cb and Ilb of the
polynomial hierarchy in a purely syntactic way. We s t a r t with the initial set B+ of functions

and take its closure under composition and logarithmically bounded quantification t o obtain B*.
We apply polynomially bounded quantification repeatedly t o obtain Cb and IIb. (A somewhat
stronger result is obtained by Kent-Hodgson [17] .)

Hence the question of whether the polynomial hierarchy collapses is the question of
whether there is a "quantifier elimination" theorem for polynomially bounded quantifiers.

1.6. Bounded Arithmetic Formulae.

An arithmetic jormula is a formula of first order logic which may contain the logical
symbols A , V, 1 , 3, V, >, and = and the non-logical symbols 0, S, +, ., #, 1x1, LIxJ, and 2 .

T h e non-logical symbols have the following meanings:

0 zero constant symbol

S successor

+ addition

multiplication

Lf 4 "shift right1' function

1.1 = r log2(x+l)~, the length of the binary representation of x

T h e Polynomial Hierarchy

Z#Y = 21~l'l~I, the "smash" function

< - less than or equal t o

A bounded quantifier is one of the form (' d x s t) or (3 x s t) where t can be any term. A sharply
bounded quantifier is one of the form ('dxsl t l) or (3 x i l t l) . Note t h a t if p is any suitable poly-
nomial then the #, ., and Ltxj functions can be used t o form a term equal t o 2~(p I) . T h u s

bounded and sharply bounded quantifiers correspond precisely t o the polynomially and loga-
rithmically bounded quantifiers, respectively.

An unbounded quantifier is a regular quantifier of the form (Yx) or (32). An arithmetic
formula is bounded iff it contains n o unbounded quantifiers.

We define a hierarchy of bounded arithmetic formulae as follows:

Definition: T h e following sets of formulae are defined by induction on the complexity of formu-
lae:

(1) II,b = ~ , b = A: is the set of formulae all of whose quantifiers are sharply bounded.

(2) is defined inductively by:

(a) ~ / + l X k b
(b) If A is in ~ k b , ~ then so are (3 x s t) A and (' d x s 1tl)A.
(c) If A,BEC/+~ then A A B and A v B are in ~ t b , ~ .
(d) If AEC/+~ and B E I I ~ ~ then 1 B and B > A are in

(3) IIAl is defined inductively by:

(a) n /+12xlP
(b) If A is in then so are ('dx5t)A and (3xs l t l)A .
(c) If A,BEII/+~ then AAB and A v B are in J3/+l.
(d) If AEII/+, and BEE/+, then 1 B and B > A are in II/+,.

(4) and n/+, are the smallest se ts which satisfy (1)-(3).

Th i s hierarchy of bounded formulae is in many respects analogous t o the arithmetic
hierarchy. T h e classes and IIi are defined by counting alternations of bounded quantifiers,
ignoring the sharply bounded quantifiers. T h e arithmetic hierarchy is defined by counting alter-
nations of unbounded quantifiers, ignoring the bounded quantifiers. We are using bounded and
sharply bounded quantifiers in a manner analogous t o the use of unbounded and bounded
quantifiers (respectively) in the arithmetic hierarchy.

Theorem 8: Let k > l . C P (respectively, IIp) is the class of predicates which are defined by for-
mulae in C/ (respectively, II:).

Proofi By Theorem 7, Lemma 6, and the definition of the bounded arithmetic hierarchy, it
suffices t o prove the theorem for the case k= l .

$1.6 Bounded Arithmetic Formulae 21

First we show Cf' contains all predicates defined by C: formulae. All the nonlogical
symbols of bounded arithmetic can be computed in polynomial time and hence are in Of'. Since
Of' is closed under composition and since Cf' is closed under conjunction, disjunction and loga-
rithmically bounded quantification, the desired result is established. T h e same argument also
shows that llf' contains all predicates defined by ll: predicates.

For the reverse inclusion, let R be an arbitrary predicate in Cf'. By Theorem 7, R can
be written in the form

with SeDo, where, as in the proof of Theorem 7, Do is the smallest set of functions containing
B+ and closed under composition and logarithmically bounded quantification. In other words, S
is expressible by a formula which uses functions from B+ and logarithmically bounded
quantification.

So t o show R is definable by a c:-formula, it will suffice t o show that S is definable
by a c/-formula. T o show that , we have to show that every occurrence of Choice, Truncate, *
and p can be replaced by an equivalent arithmetic formula.

T h e simplest case is eliminating Choice from S. Suppose S is F(Choice(a,b,c)). Then
S is equivalent t o

By repeated transformations of this type, all occurrences of Choice can be eliminated from S.

Eliminating Truncate, P, and * is a little more difficult. We shall show in great detail
in Chapter 2 tha t S is in fact equivalent t o a Clb-formula. In particular, see Theorem 2.2 in $2.3
and also see $2.4 and $2.5. So we omit the proof here.

Since the lli predicates are the negations of the C{ predicates and the ll;-formulae
are equivalent to the negations of the Cl,b-formulae, we have immediately from the above that
the llf' predicates are precisely the predicates definable by ll;-formulae (when k > l) .

Q.E.D.

1.7. Relativization of the Polynomial Hierarchy.

T h e polynomial hierarchy can be relativized by allowing Turing machines to query ora-
cles. Recall tha t we already defined in $1.2 what i t means for a Turing machine to use a func-
tion oracle.

The Polynomial Hierarchy

Definition: A junction oracle Cl is a function of polynomial growth rate whose domain is N~ for
some k > l and range is N. A predicate oracle is a function oracle which has range (0,l).

Definition: Let Cll, . . . ,ak be a sequence of function oracles. T h e following classes of functions
and predicates are defined inductively on i:

The definition above gives us a relativization of the polynomial hierarchy for each fixed
sequence of oracles fll, . . . ,ak. We shall also need a more general coecept of relativizing with
respect to an arbitrary set of oracles. We do this by the definitions below.

Definition: Let j be a positive integer and let p(xl, . . . ,xi) be a suitable polynomial. Then w! is
equal to the set of all j-ary function oracles fl satisfying If l(Z)l<~(lZl) for a11 ZEN^.

Definition: A junctional j is a function with domain

and range N where i > 0 and each k j > l and each p i is a suitable polynomial. Thus a func-
tional maps a tuple of ko integers and i function oracles to a nonnegative integer. Such a
functional is called krary.

T h e functional j has polynomial growth rate iff there is a suitable polynomial r(2)
k

such tha t for all ZEN O and all function oracles fll, . . . ,ai with flj€w{~ for l<j<i we have

We next need to relativize the definitions of P T C , PRED, PBV and P B 3 .

Definition: Let C be a set of functionals. Then PRED(C) is the set of members of C which
have range (0,l).

51.7 Relativization of the Polynomial Hierarchy

Definition: Let g and h be functionals such tha t the domain of g is

and the domain of h is

Let p and q be k-ary suitable polynomials. Then j is defined b y limited iteration from g and
h with time bound p and space bound q iff the following holds:

Let r be the functional with domain

p ; Nk+' X w:: x . . . x wni

so tha t for all oracles Ql, . . . ,Qi with q ~ w a for l ~ j s i and for all 3 % ~ " ~ r is defined by

7(x1, . . . , X ~ , O , Q ~ , . . . ,ai) = g(xl , , . . , x ~ ~ Q ~ , . . . ,Qi)

r (x l , . . . ,xk,n+l1Q1, . . . ,Qi) = h(x l , . . . ,xk1n,r(x1, . . . ,xk,n,Q1, . . . ,Qi),Q1, . . . ,Qi).

And we must have t h a t for all 2, n and a as above

l ~ (z > n , a) l 5 q(Izl)

and

P i Definition: Let C be a set of functionals. We say tha t C is uniform iff there exists w:, . , . p,,,

such t h a t every functional ~ E C has domain

for some k, which depends on f .

Definition: Let C be a uniform set of functionals of polynomial growth rate . T h e domain of
each functional in C is of the form

T h e Polynomial Hierarchy

P
P i T h e Polynomial-time closure, P T C (C) , of C is the smallest uni- for some fixed wnll, . . . ,wni.

form set of functionals containing C such the following hold:

(1) For each n-ary function ~ E B , there is an n-ary functional g € P T C (C) such tha t
for all 3 and all 6,

g(216) = f (3) .

(2) For each l s j s i , the functional Pi defined by

Pj (z l , . . . ,xnJin1, . . . = nj(x1, . - - ,znJ)

is in C.

(3) C is closed under composition and under definition by limited iteration.

Definition: Let C be a se t of functionals. Then P B 3 (C) is the set of functionals Q such t h a t Q
has range {0,1) and domain

and such t h a t there exists a suitable polynomial p and an R € P R E D (C) with domain

Nk+' X w;;X X w:

P such t h a t for all ill, . . . ,ni with njEwn; for l<j< i, we have

PB'd(C) is defined similarly except t ha t a bounded universal quantifier (~ y < 2 ~ (p I)) is used
instead of the bounded existential quantifier.

We next define a polynomial hierarchy of functionals:

P Definition: Let wn:, . . . ,w: be a sequence of function oracles. T h e classes defined below are

uniform sets of functionals which have domains of the form

$1.7 Relativization of t he Polynomial Hierarchy

T h e definition is by induction on j :

P Proposition 10: Let wn:, . . . ,wf: be a sequence of function oracles and let nl, . . . ,ni be oracles

so t h a t n j ~ w : for all l<j<i . Let k>1. Then for all functions j, j€O{(nl, . . . ,ai) iff there

exists a functional g€O{(w::, . . . ,w:,') such t h a t for all P,

Similar s tatements hold for A{(n l , . . . ,ai), C{(nl , . . . ,ni) and l I{(a1, . . . ,ai).

T h e proof of Proposition 10 is not too difficult and we omit i t .

1.8. Appendix.

W e prove Theorem 1 in this appendix.

Theorem 1: PTC(O)?B+.

Proo) W e define the functions of B f by limited iteration from functions in B.

(1) Define B ~ ~ : N ~ + N by limited iteration from g l and hl with bounds pl and q l , where

S o if t he binary representation of z is z,-l . . . xo then Bit(i,z) is equal t o zi.

26 The Polynomial Hierarchy

(2) Define j2 :N2+N by limited iteration from g 2 and h2 with bounds p2 and q2, where

Set a*w = Choice (a=O12(S(2 -2~2w)) , j 2 (a ,w)) .

(3) Define j3 :N+N by limited iteration from g3 and h3 with bounds p 3 and q3, where

Set Truncate(w) = V 3 (w) / 4 J .

(4) Define T R (i , w) : ~ ' - + N by limited iteration from g 4 and h4 with bounds p4 and q4, where

So TR (i , w) is Truncate applied i ~ 1 times t o w .

(5) Define j5:N2+N by limited iteration from g 5 and h5 with bounds p5 and 95, where

1 if IP(l,w)l<i
otherwise

$1.8 Appendix 27

(6) Define f6:N+N by limited iteration from g6 and h6 with bounds p6 and q6, where

So f6(w) = P (l , w) , the value of the first element in the sequence w .

(7) Define f7:N+N by limited iteration from g7 and h7 with bounds p7 and 97, where

So f7(w) = P(O,w), the number of elements in the sequence w .

(8) Define P : N ~ + N by

p(i ,w) = Choice(i , f6(TR (i ,w)) , f7(w)) .

Q.E.D.

Chapter 2

Foundations of Bounded Arithmetic

Bounded Arithmetic is a weak fragment of Peano arithmetic and is of interest t o us
because of its connections t o the polynomial hierarchy. I t will take us a fair amount of work t o
establish the relationship between Bounded Arithmetic and the polynomial hierarchy. This
chapter is devoted t o establishing the foundations of Bounded Arithmetic; in particular, we
define some useful axiomatizations of fragments of Bounded Arithmetic.

2.1. The Language of Bounded Arithmetic.

T h e first order language of Bounded Arithmetic contains all the usual logical symbols
A , V, 7, 3, =, 3, t/ and parentheses and the nonlogical function symbols S , 0, +, ., lzl, L+],

and # and the nonlogical predicate symbol 5. These nonlogical symbols are intended t o be
applied t o nonnegative integers; from now on, we use "integer" or "number" t o mean nonnega-
tive integer. S , 0, +, ., and 5 are the successor function, the zero constant, addition, multipli-
cation, and the less-than-or-equal-to relation. 1x1 denotes the length of the binary represent*
tion of z; i.e. 1x1 = [log2(z+l)l. For example, 101 = 0. liz] denotes t he greatest integer less

than or equal t o 212. z#y is defined t o be 2121'1rl.

W e will frequently abbreviate z .y as z y . Also A - B is an abbreviation for the for-
mula (A >B)A(B>A). So * is not a symbol in our first order logic.

We are using a larger se t of non-logical symbols than is usually used for Peano arith-
metic. Th i s is partly t o make it easy t o define axiomatizations of fragments of Bounded Arith-
metic. However, the # function (pronounced "smash", see Nelson [19]) has a more important
role. T h e growth ra te of # is exactly what we need t o define functions in the polynomial
hierarchy. Since 1#2=21'1 and ~ ~ ~ (z # y)] l = 1 ~ 1 . l y l , we can use #, Ltz], and . t o write the term

2p(I21) where p is any polynomial with non-negative coefficients. As we saw in Chapter 1, this is
important for defining the polynomial hierarchy. Conversely, the value of any term of Bounded
Arithmetic is bounded above by 2p(I21) for some suitable polynomial p .

W e could generalize # as follows (see Hook (161). Define #2 = #. For i 2 2 , define
#i+l t o be the binary function satisfying

We could now add #; t o the language of arithmetic. Clearly, doing so would give us functions
which have a larger than polynomial growth rate. In fact we could replace # by #; everywhere
in this dissertation and obtain analogous results except t h a t instead of using polynomial time

52.1 T h e Language of Bounded Arithmetic 29

Turing machines, we would use Turing machines with runtime bounded by terms involving #i.
However we will not d o this and we d o not include #3, #,4,. . . in the language of Bounded
Arithmetic.

Using 0, S , +, and . we can construct terms t o denote natural numbers. For example,
both SSSO and (SSO)+(SO) are terms which denote the number 3. There are two canonical for-
mats for terms which denote numbers. First, s (~)o is the term with k applications of the succes-
sor function t o 0; this term has value k. Second, Ik is a term with value k defined inductively

by

Note tha t the length of the term Ik is proportional to the length Ikl of the binary representation
of k; this is not t rue of dk)O. This will be important later when we arithmetize the syntax of
Bounded Arithmetic in Chapter 8.

W e shall frequently use integers in formulae. T h e integer is intended t o be replaced by
any closed term with value equal to the integer. Usually it makes no difference which term is
used.

Definition: Quantifiers of the form (Vz) and (32) are called unbounded quantifiers. A bounded
quantifier is one of the form (V z s t) or (3 z s t) where t is any term not involving x. A sharply
bounded quantifier is a bounded quantifier of the form (Vzs l t l) or (3z<lt l) where again t is
any term not involving z.

For the time being we will implicitly enlarge the syntax of first order logic t o incor-
porate bounded quantifiers. In Chapter 4 we shall give an explicit and precise description of
how bounded quantifiers are treated in first order logic. We shall do this by defining a natural
deduction system with inferences for bounded quantifiers. T h e main result of Chapter 4 will be
a cut elimination theorem which allows us t o eliminate unbounded quantifiers from proofs of
bounded formulae. T h u s our main interest will be in first order logic without unbounded
quantifiers.

A bounded formula is a formula with no unbounded quantifiers. We define a hierarchy
of bounded formulae as follows:

Definition: T h e following se ts of formulae are defined by induction on the complexity of formu-
lae:

(I) ll; = C; = A: is the set of formulae all of whose quantifiers are sharply bounded.

(2) z /+~ is defined inductively by:
3 n b (a) Ck+l- k

(b) If A is in c;+~ then so are (3 x s t) A and (Vx<ltl)A.
(c) If A,BEcIP,~ then A A B and A v B are in EL,.

Foundations of Bounded Arithmetic

(d) If AEC/+~ and BEII/+~ then -B and B > A are in

(3) IIAl is defined inductively by:

(4 nk",12ci
(b) If A is in IIAl then so are (Vz5 t)A and (3 z < (t () A .
(c) If A , B E I I ~ , ~ + ~ then A A B and A v B are in II/+l.
(d) If A E ~ / + , and BEC/+~ then -B and B > A are in II:+l.

(4) and lli+l are the smallest sets which satisfy (1)-(3).

T h u s C/ and IIi are defined analogously t o the arithmetic hierarchy C i and II; with
bounded and sharply bounded quantifiers playing the roles of unbounded and bounded
quantifiers respectively. T h a t is, we count the alternations of bounded quantifiers ignoring the
sharply bounded quantifiers. Bounded quantifiers have the following quantifier &change pro-
perty: let A be any formula, then

Essentially, w is a sequence which codes the values of y for each value of z. We have not yet
defined the /3 function in Bounded Arithmetic and obviously the quantifier bound for w depends
on the precise definition of P; however, the use of the # function is unavoidable. T h e # func-
tion has precisely the growth rate necessary t o make this quantifier exchange property hold; this
is par t of the reason we feel tha t using the # function in Bounded Arithmetic is natural and
elegant .

2.2. Axiomatisations of Bounded Arithmetic.

Peano arithmetic is normally axiomatized by a small number of open axioms and an
induction schema. W e shall form the axioms for Bounded Arithmetic by increasing the number
of open axioms and severely restricting the induction axioms.

Definition: BASIC is a finite se t of t rue open formulae of arithmetic which are sufficient t o
define the simple properties relating the function and predicate symbols of Bounded Arith-
metic. BASIC consists of the following 32 formulae:

Axiomatizations of Bounded Arithmetic

(We are using 1 and 2 as abbreviations for the terms S O and SSO.) Except for the results of
Chapter 6, the precise definition of BASIC is not too important; any sufficiently large set of
t rue open formulae would suffice. However, for the sake of definiteness, BASIC is defined t o
be the above 32 axioms. I t will be important in Chapters 7 and 8 tha t BASIC is a finite set
(or a t least a polynomial time recognizable set).

In addition t o the axioms in BASIC, we have various types of induction axioms.

Definition: Let \k be a set of formulae. T h e W I N D axioms are:

A (o)~(Vz)(A(z) 3 A (S X)) ~ (Vz)A (z)

where A is any formula in \k.

T h e 9-PIND axioms are:

32 Foundations of Bounded Arithmetic

where A is any formula in 9.
T h e 9-LIND axioms are:

where A is any formula in 9.

A little reflection yields t he intuitive feeling tha t 9-IND is stronger than 9-PIND.
For example, suppose we know A(0) is true and we wish t o deduce t h a t A(100) is true. If we
use 9- IND we will deduce A (l) from A(O), then A(2) from A(1), and so on for 100 steps. On
the other hand, 9-PIND deduces A(1), then A(3), A(6), A(12), A(25), A(50), and finally
A(100). T h u s the 9-IND axiom "automated" 100 inferences, whereas the 9-PIND automated
only 7 inferences. Since the conclusions of 9-IND and 9-PIND are the same we conclude tha t
the hypothesis of 9-PIND is stronger than the hypothesis of 9-IND and hence we feel t ha t
the 9-PIND axioms are weaker than the W-IND axioms. We shall prove this properly below.

This is a good place t o mention explicitly t h a t we d o not have the function z w 2' in
Bounded Arithmetic. Hence the conclusion (Vz)A (1x1) of W-LIND is weaker than (Vz)A(z).
Indeed, in a nonstandard model for Bounded Arithmetic the function z w 2' may not be total
and hence z w 1x1 may not be onto.

Definition: T h e following theories are fragments of Bounded Arithmetic. Each theory has the
language of arithmetic defined in 52.1.

(1) S; has axioms:
(a) BASIC axioms
(b) c;-PIND axioms.

(2) T~~ has axioms:
(a) BASIC axioms
(b) c;-IND axioms.

(3) S2 is US;.
t

(4) T2 is U Ti .
i

(5) s$-') is the theory with only the BASIC axioms. T4-l) is t he same theory.

Later we shall show tha t T ~ F s~~ and ~~~t Ti-' where i > O . T h e theories we are most
interested in are s;, as these fragments of Bounded Arithmetic have the nicest properties. Most
of this dissertation is concerned with the theories S;. T h e subscript "2" denotes t he presence of
the # function. In general, for k ~ 1 , S; is defined like S; bu t with the function symbols #, for
all 2 < j < k and with their defining axioms.

$2.2 Axiomatizations of Bounded Arithmetic

Proposition 1: 9-IND ==+ 9-LIND.

Proof: T h e hypotheses of 9-IND and 9-LIND are the same and the conclusion of 9- IND is
stronger than the conclusion of 9-LIND.

2.3. Introducing Function and Predicate Symbols.

Bounded Arithmetic is powerful enough t o define many functions besides the six func-
tions in the formal language. I t is generally true tha t whenever a theory can define a function,
a conservative extension is obtained by augmenting the language t o include a new function sym-
bol for the defined function. W e shall be especially interested in introducing function symbols
which can be used in formulae in induction axioms.

Definition: Let R be a fragment of Bounded Arithmetic. Suppose A is a c:-formula and t h a t

and

Then we say tha t R can xib-define the function j such t h a t (Vd)A(Z,f(?)) is satisfied. (It
should be noted tha t the above definition makes sense only if d and y are all t he free vari-
ables of A ; if not, enlarge Z t o include the rest of them.)

Definition: Let j be a new function symbol. We define Aob(j), C:(j) and n;(j) t o be sets of
bounded formulae in the language of Bounded Arithmetic plus the symbol j. These sets of
formulae are defined by counting alternations of bounded quantifiers, ignoring the sharply
bounded quantifiers, exactly as in the definition of sob, C: and nib.

If p is a new predicate symbol we define A ~ ~ (~) , Cib(p) and IIib(p) similarly.

Theorem 2: Let R be a fragment of Bounded Arithmetic. Suppose R can CP-define the func-

tion j. Let R* be the theory obtained from R by adding j as a new function symbol and
adding the defining axiom for j. Then, if i>O and B is a Cib(j)- (or a nib(j)-) formula, there

is a B* E C? (or nibl respectively) such tha t R * t B**B.

Proof: T h e defining axiom for j is

where A is a Clb-formula. Let B be a bounded formula containing the symbol f. W e first
define the formula B1 as follows: suppose j occurs in a term which bounds a quantifier, say
(Q x 5 s) D is a subformula of B where the term s involves j. Replace each occurrence of j(7) in

34 Foundations of Bounded Arithmetic

s by the term t(7). (t is t he bound in the cP-definition of j , see the definition above.) This
yields a term s'. Now, (3 z < s) D is provably equivalent t o (3 z < s ') (z < s ~ D) and (V z 5 s) D is
provably equivalent t o (Vz<s ') (z<s>D) . By repeating this procedure, we can form B1 so t h a t

(1) R * t B* B1, and

(2) B1 does not contain j appearing in any term which bounds a quantifier.

We next obtain a formula B2 in prenex normal form by applying prenex operations t o B1 so

t h a t R * t B24+ B1. Furthermore, if B is a c;)- (or a II;)-) formula, then s o are B1 and B2.

Let the mantissa of B2 be D ; tha t is t o say, suppose

where D is an open formula. Let j (3) be a term appearing in D. Obtain D' by replacing j(3)
everywhere in D by a new variable z . Define

and

Let D' and D~ be their respective prenex normal forms. Then D' is a ll:(f)-formula and D3 is
a CP(j)-formula, and

Define B3 from B2 by replacing the mantissa D by either D' or D ~ , whichever is
appropriate. We can d o this so tha t B3 has the same alternation of (non-sharply) bounded
quantifiers as B2. Also,

B3 was formed from B2 so t h a t all occurrences of the term j(?) were eliminated. By iterating
this procedure, we obtain B4 from B3, B5 from B4, and so on, until all occurrences of j have

been eliminated. We let B * be the Bi such t h a t i 2 2 and j does not appear in Bi .

Q.E.D.

82.3 Introducing Function and Predicate Symbols 35

Corollary 9: Let R be one of the theories S; or T; (where i 2 l) . Suppose fl, . . . ,fk are func-
tions cP-definable by R . Let R be the theory obtained from R by including new function
symbols fl, . . . ,fk and their defining axioms and including all c,"@-PIND axioms or

c,"@-IND axioms (respectively). Then R is a conservative extension of R .

Proof: Form R * by adjoining fl, . . . ,fk and adding their defining axioms. I t is well known tha t

R* is a conservative extension of R . Now, by Theorem 2, each ~,"(fi-formula is provably (in

R*) equivalent t o a c,"-formula. T h u s R * k c:@-PIND (or Cib@-IND respectively). Hence

RER*.

T h e upshot of t he last theorem is t h a t we may freely adjoin cP-definable functions t o
any fragment of Bounded Arithmetic and use these function symbols without restriction in
induction formulae.

We can also define a similar condition for introducing new relation symbols:

Theorem 4: Let R be a fragment of Bounded Arithmetic. Suppose A and B are C: and Il: for-

mulae, respectively. Also suppose R k A * B . Let R * be the theory obtained from R by
adjoining a new predicate symbol p and the defining axiom

(2 must include all the free variables of A.)

Then R * is a conservative extension of R and if i2l and C is any c:(~)- or

Il,"(p)-formula then there is a xi)- or Il,"-formula C* (respectively) such t h a t R*F C* c*.

Proof: Similar t o the proof of Theorem 2.

I t is convenient t o have a name for predicates which satisfy the conditions of Theorem
4:

Definition: Let R be a theory and A be any formula. W e say t h a t A is A," with respect t o the
theory R iff there are formulae BEE," and C E ~ , " such t h a t R k A * B and R k A* C.

When i t is clear which theory R is being discussed, we shall merely say A is Aib
when we mean A is Aib with respect t o R .

I t follows immediately from Theorem 4 t h a t if A is a A:-formula, then a new predi-
cate symbol p can be introduced with the defining axiom p(Z)*A(3) and tha t p can be used
freely in formulae in induction axioms. T h u s we have established conditions for introducing
new function and predicate symbols into a fragment of Bounded Arithmetic, so t h a t t he new
symbols can be used in induction axioms.

36 Foundations of Bounded Arithmetic

Ezample: We define the binary subtraction function as

We show t h a t 1- can be c:-defined in Ti. T o do this we have t o show tha t T; can prove

and

where M(z,y,z) is the formula on the righthand side of t he defining axiom for A .

T h e second formula t o be proved is the uniqueness condition. This follows directly
from the BASIC axioms without the use of any induction axioms.

T o prove the existence condition, we will need t o use the induction axioms. I t is not
hard t o prove the following formulae in T::

From these two formulae we use Clb-IND t o derive

T h u s the subtraction function can be defined in T:.

We will later show by a much more complicated argument t h a t the - function can be
c:-defined in S2' as well.

As an application of the above example, we show t h a t t he theory T~~ can derive the
IIib-IND axioms.

Theorem 5: T h e nib-~ND axioms are theorems of T; if i2l.

Proof.- Let A be a nib-formula. We want t o show

Let B(z , y) be the Cib-formula -A(y.-z). Then

Introducing Function and Predicate Symbols

or, equivalently,

From this we can readily derive

T i t A(O)h('dz)(A(z)>A(Sz))>A(y).

Taking the universal closure of this last formula proves the desired induction axiom.

Q.E.D.

2.4. Bootstrapping S: - P h s ~ 1.

T h e term "bootstrapping" is a computer term which describes the process of s tar t ing
the operations of a computer. I t used t o be common t o power up a computer with only a small
amount of software loaded, say about 80 bytes, the amount of d a t a which fits on a Hollerith
card. Th i s small amount of software would be responsible for reading from tape o r cards the
entire operating system, thus making the computer fully operational. Th i s process was called
"bootstrapping" from the analogy of "lifting oneself by the bootstraps."

Similarly we need t o bootstrap s;. T h a t is, we shall have t o d o a lot of work to define
some simple functions and predicates in Si (for example, subtraction). Once we have completed
the bootstrapping i t will be easy t o show t h a t S; is actually a fairly strong system which can
define a variety of functions and predicates.

T o a certain extent, our bootstrapping of S; is recapitulating the work of Ed Nelson
[19], Wilkie-Paris [31] and Wilmers 1321. However, [I91 and [31] work in the theory S2 not s;,
and they are consequently only concerned about defining functions and predicates with arbi-
trary bounded formulae. For us, i t is very important t h a t functions be zlb-defined and predi-
cates be A/-defined. Wilmers [32] does use a very weak fragment of Sp bu t his work does not
seem t o apply t o s;.

Before we begin the bootstrapping of S2' we show t h a t the c/-LIND axioms can be
derived in 5';.

Theorem 6: Let i20. T h e c:-LIND axioms are theorems of S;

Proof: Let A be a zib-formula. W e want t o show t h a t

38 Foundations of Bounded Arithmetic

Let B(z) be the formula A(1z)). Then

and

sit A (o) ~ B(O)

si t (Vz)(A (z) >A (Sz)) >(Vz)(B(Lf XI) 3 B(z)).

But B is a xib-formula so by the use of the xi"-PIND axiom for B we get

sit A(o)A(vx)(A(~)>A(sx))>(vx)B(~)

which is what we wanted t o show.

Q.E.D.

W e bootstrap ,921 by showing tha t the following functions and predicates are
c/-definable in s2' and are A/ with respect t o s;, respectively.

(a) W e introduce one predicate and two functions by:

T h e uniqueness and existence conditions for these functions follow easily from
the BASIC axioms without any use of induction. Since the defining formula for a < b is
open it is trivially A:.

(b) T h e predecessor function is an inverse t o the successor function defined by

T h e uniqueness condition for this definition follows easily from the BASIC axioms
without any use of induction axioms. For existence, let M(a,b) be the defining equation
for P(a)=b; then we can prove

and

from the BASIC axioms again without any use of induction axioms. Finally, c/-PIND

yields

Bootstrapping S: - Phase 1

This predicate symbol is clearly A/ with respect t o s;. Moreover, S; can prove many
nice properties of Power2. In particular, s2' can prove the following formulae:

For example, the fourth formula follows from the open formula

which in turn can be proved in ~2 (without the use of any induction axioms.) We leave
t o the reader the verification of our claim tha t the other four formulae are also theorems
of s;.

(d) We can define an exponentiation function with restricted range by:

or informally, Exp(a,b) = 2 min(lbl,a)

Let M(a,b,c) be the formula on the righthand side of the definition of Exp.
Then, by the properties of Power2 discussed above,

Also,

S i t M (~ , Y , ~) A x < I Y I ~ M (S ~ , Y , ~ ~)

s:t M (~ , Y , ~) ~ ~ ~ I Y I ~ M (S ~ , Y , ~ .)

S ~ ~ - M (X , Y , ~) > ~ < ~ Y + ~

From this we get

Foundations of Bounded Arithmetic

sit (3z~2y+l)M(z,y,z)~(3z12y+l)M(Sz,y,~).

Hence,

On the other hand, S i t (Vy)M(~ ,y , l) so by c/-LIND with respect t o the variable u
(remember, we don't count sharply bounded quantifiers):

sit (~ Z I IY~)(~~S~Y+~)(~<IYI~M(~,Y,~))
and hence

sit (vzSIY()(32.12Y+l)M(z,~,~).

And since z~lyl~M(lyl,y,z)>M(z,y,z), we have

This is what we needed t o demonstrate t h a t Ezp is properly defined in s:.
I t is important t o note tha t we have not defined exponentiation, bu t only a res-

tricted exponentiation. Indeed, in the formula

the argument y is a "dummy variable" whose sole purpose is t o restrict the range of the
function. Frequently we shall simplify our notation and write 2' as a function when it is
provably well defined; for instance, we would write (tli<lxl)B(2') instead of the more
correct (~ i l l z l) ~ (2 ~ ~ (' ~ l ~ I)) .

(e) b=Mod2(a) +=+ b+2.L+aJ=a

Mod2(a) is either zero or one depending on whether a is even or odd, respec-
tively. We can easily prove the necessary uniqueness and existence conditions from the
BASIC axioms.

(f) We define functions for obtaining the "less significant part" and the "more significant part"
by defining the following predicate and functions:

Bootstrapping S: - Phase 1

Clearly, Decornp is A/-defined. Also, is not difficult t o see tha t

This establishes the uniqueness conditions for both MSP and LSP .

I t remains t o show tha t the existence conditions hold; namely, t ha t

Since S; t ~ e c ~ r n ~ (a , ~ , ~ , a) , we know tha t

Also, the following are provable in s;:

and

D e c o m p (a , b , c , d) ~ c < a ~ d < a .

I t follows readily tha t

From this, by use of c/-LIND

Since ~ ~ ~ ~ z > J a (~ D e c o m p (a ~ z ~ a ~ O) , this suffices t o prove the existence condition.

(g) c=Bit(b,a) c=Mod2(MSP(a1b))

So Bit(b,a) is the value of the bit in the 2' position of the binary representation
of a . Since Bit is defined a s the composition of functions already introduced in S; it is
clear tha t Bit is zlb-defined.

An important property which is provable in S; is:

T h a t is, i t is provable tha t the binary representation of a number uniquely determines

Foundations of Bounded Arithmetic

the number. This can be proved in Si by using c/-LIND with respect t o the variable
u on the formula

T h e details are left t o the reader.

Further note t h a t S; can prove all the simple relationships between Bit, M S P
and LSP; for example,

(h) Before we can define the subtraction function, we need a restricted version of subtraction:

So LENMINUS(a,b) is equal t o lall-b, o r in other words, LENMINUS is a subtraction
function with domain restricted t o very small numbers. T h e uniqueness condition is easy
t o prove from the BASIC axioms. Because the function is restricted we are able to
prove the existence condition with induction on ~ ~ ~ - f o r m u l a e . I t will suffice t o show tha t

sit- (~ z I l a o (3 ~ l l a l) (z + ~ = l a l) .

Now,

sit x < I ~ (A x + ~ = I ~ I > s (x) + P (~) = I ~ I

By Ct-LIND we obtain the desired result.

(i) Finally, we show t h a t subtraction can be c/-defined in S;

T h e uniqueness condition for subtraction is immediate from the BASIC axioms.
T h e existence condition is not too hard now tha t we have defined MSP and LENMINUS;
we will use c/-LIND on the formula M(a,b,u) defined as

52.4 Bootstrapping S: - Phase 1

Here we are using (a J l u as an abbreviation for LENMINUS(a,u). Now,

So ~ (a , b , 0) . Also, s2'k ~ (a , b , u) > M (a , b , S u) can be proved without too much
difficulty; this follows from the fact that S2' can prove all of the following:

(i) b~a~MSP(b,z)<MSP(a,z)v(MSP(b,z)=MSP(a,z)hLSP(b,z)~LSP(a,z))

(ii) b < ~AX+MSP(~,S~)=MSP(~,S~)AB~~(~, a)=Bit(z, b) 3
>2z+MSP(b,z)=MSP(a,z)

(iii) b 5 a ~ z + M s P (b , S z)=MSP(a,Sz)h Bit(z,a)> Bit(z, b) 3

3(2z+l)+MSP(b,z)=MSP(a,z)

(iv) b l U A X + M S P (~ , S ~)=MSP(a,Sz)hBit(z,a)<Bit(t.,b)>
3(2z.- l)+MSP(b,z)=MSP(a,z)

By c/-LIND, S ; k ~ (a , b , (a l) , which is equivalent to the existence condition for the
definition of subtraction since S;F MSP(Z,O)=Z.

(j) QuoRem(a,b,c,d) (b=Ohc=Ohd=O)v(d< bha=c. b+d)

c=La/bJ (3d<b)QuoRem(alb,c,d)

d=Rem(a,b) ++ (3 c ~ a) Q u o R e m (a , b , c , d)

The uniqueness conditions are easily proved. The existence conditions can be
proved by induction on the length of a ; we leave this as an exercise for the reader. (Hint:

a how do you compute the quotient and remainder for - if you know them for [fa] /b ?)
b

(k) b 1 a Rem(a,b)=Ohb#O

44 Foundations of Bounded Arithmetic

(m) Comma(b,a) Even(b)~Bit(b,a)=l~Bit(Sb,a)=~

Comma and Digit are immediately seen t o be A/-definable and c/-definable
by s;. They will be useful for defining an encoding for sequences. I t is important t o note
tha t we will not be using the same encodings for sequences as we used in Chapter 1.

These functions and relations define protosequences, and give us a primitive
method of encoding sequences. Protosequences have the restriction tha t each element of
the protosequence is coded by a fixed length code; if necessary, leading zeros are added to
the element t o pad it out t o the required length. PSqSL(a,b,c) asserts t ha t a encodes a
protosequence of c numbers, each of which is coded as a b-bit number and is preceded by
a comma. T h e fact tha t a is such a protosequence can be verified by checking the posi-
tions of the "commas" in a . Note tha t there is no protosequence for the empty sequence.

W e leave it t o the reader t o prove tha t ProtoLen and Protosize can be
c/-defined in S; and tha t PSqSL and ProtoSeq are A/ with respect t o S&

So if a = < a l , . . . ,ak> then Protop(i ,a)=ai . Note tha t (unlike the sequences
used in Chapter 1) the numbers are not coded in bit-reversed order. T h e sequence is
coded with a l coded by the low order bits of the binary representation of a and with a k
coded by the high order bits.

T h e uniqueness condition for P ro top is a consequence of the fact t ha t the binary
representation of a number uniquely determines the number, which as we noted earlier is
provable in S;.

I t is important t o note t h a t since ~ ~ ~ t ~ r o t o S i z e (a) < J a J , the quantifier
(Vy<ProtoSize(a)) can be replaced by a sharply bounded quantifier. Th i s makes it pos-
sible t o prove the existence condition for P ro top by using c/-LIND with respect t o the
variable u on the formula

Bootstrapping S: - Phase 1

s2' also proves tha t protosequences exist. Indeed, it can be shown by induction
on the length of a tha t

ProtoStar(a, b) is the Gijdel number for the protosequence obtained by adding b
as an additional element to the end of the protosequence coded by a . If b is too large to
fit into the protosequence, only the less significant part of b is used.

W e omit the proofs of the uniqueness and existence conditions for Protos tar .
T h e reader may supply them if desired.

2.6. Bootstrapping S: - Phase 2.

For the second phase of bootstrapping s2' we wish t o define sequences with variable
length elements; these sequences will supercede the protosequences defined above. Some of the
functions and predicates we wish t o define are:

Seq(w) true iff w is a valid sequence

Size(w) the maximum of the lengths of entries of w

Len(w) the number of elements in w

P(i,w) the value of the i-th value of w

* a function which adds a new element t o the end of a sequence

** a function which concatenates two sequences

I t is not difficult t o define Seq, Size, * and ** since each of these can be defined by "local"
operations. However, Len(w) and p are harder to define. Computing Len(w) involves counting
the number of Comma's in w and hence is a "globaln operation. Likewise, t o calculate p(i,w), it
is necessary to locate the i-th entry of w and this again requires counting.

Foundations of Bounded Arithmetic

Hence we are led t o the following:

Definition: Let A(a, y,3) be any formula. T h e function f(y,3) is defined by length bounded count-
ing from A iff f satisfies

where (# a s t)(. -) means "the number of a s t such tha t . . . ".

Of course, we can define bounded counting in a similar way, except t h a t the bound t
need not be a length. Bounded counting has been investigated by Valiant [29] and i t is an open
problem whether functions defined by bounded counting are always in the polynomial hierarchy.
Of course, any function which is definable by a bounded formula is in the polynomial hierarchy
and thus we are not able t o use bounded counting in (a t least a t our present s t a t e of
knowledge). However, functions defined by bounded counting are computable by polynomial-
space bounded Turing machines and in 510.2 we discuss how bounded counting may be defined
in a second-order theory of Bounded Arithmetic.

Theorem 7: Let A(z,y,3) be A/ with respect t o s;. Let f be the function defined by length
bounded counting from A. Then f can be c/-defined in S&

Proofi W e introduce a new (k+l)-ary function symbol g defined by

T h e existence and uniqueness conditions from g are readily proved in sZ1. For the existence
condition we use c/-LIND with respect t o u on the formula

Note t h a t we needed the fact t h a t A is A/ in order t o c/-define g.

W e define the function Numones, which computes t he number of ones in the binary
representation of a number a , by

T h e uniqueness and existence conditions for Numones are provable in s2' by induction on the
length of a - we omit the details. Note t h a t the use of t he # function is required t o express the
bound on w in the defining equation of Numones; this is the first time we have used the #

52.5 Bootstrapping S: - Phase 2

function for bootstrapping s;.
We can now define j as

Q.E.D.

Theorem 8: S; proves the following:

Prooj: I t is not hard t o prove this using cP-LIND. This depends on the fact t ha t S; can prove
simple properties about Bit, M S P and LSP; see §2.4(g).

Theorem 9: T h e following functions are CP-definable in S; and hence can be introduced as
defined function symbols.

where s and t are terms and A is a A/-formula. T h e free variables of s are the % the free
variables of t and of A may include y and 2. T h e terms s and t may involve Clb-defined
function symbols.

Proof: T h e existence and uniqueness conditions for jl and j2 can be proved easily by using
Clb-LIND on the length of s. We can define j3 in terms of Numones by

Lemma 10: Let j l , j2, and j3 be the function symbols introduced in Theorem 9. Then S;
proves the following:

48 Foundations of Bounded Arithmetic

Proof: This is actually what we proved in Theorem 9. Note we have defined f 3 so tha t if

(Vysls1)-A(y) then f3(2)=Is(+1.

We are now ready t o introduce function and predicate symbols in S2' for handling gen-
eral sequences. W e leave the provability of the necessary uniqueness and existence conditions t o
the reader.

(a) b=Substring(a,i,j) b=MSP(LSP(a,j),i)

So the binary representation of b is t ha t portion of a's binary representation
starting with the 2j-I bit and ending with the 2i bit. For example, if a=1310=11012 then
S~bstrin~(a,0,3)=101~=5~~ and Substring(a, l,3)=102=210.

(b) Seq(w) (Vz< Iw I) [Even(i)>Cornrna(i, w)~Dig i t (i ,w)< l]~(Cornrna(O, W)V w=O)

So a sequence is any number whose binary representation codes a string of O's,
1's and commas, provided tha t the two low order bits code a comma (also, the number 0
codes a sequence). We are requiring tha t the two lowest order bits code a comma so tha t
we can treat the empty and non-empty sequences uniformly.

(c) a=Len(w) (-Seq(w)Aa=O)~(Seq(w)Aa=(#i< I wJ)Cornrna(i, w))

(d) b=Decode(a) (~=OA-ProtoSeq(a))~(ProtoSeq(a)~b=Proto~(l,a))

b=Encode(a) PSqSL(b,laJ,l)~a=Protop(l, b)

T h e existence condition for Encode follows from the remark made in §2.4(0)
above.

$2.5 Bootstrapping S: - Phase 2

(e) a=Startp(i,w) (a=OA-Seq(w))v(Seq(w)A

Aa=(pz< I w1+1) [~en(Substrin~(w,~,x))=i~Even(x)])

Note the /3 function is defined so that P(O,w)=Len(w).

(f) Site(w) = max{L3(End/3(il w)I StartP(i,w))J : i<Len(w))

(h) a * b = a**(4.Encode(b)+l)

Note that unlike the conventions in Chapter 1, <al , . . . , an>*an+l is
<al , . . . ,an+,>. Also, from now on, * associates from left to right.

So Subseq(w,i,j) is the subsequence <P(i,w), . . . ,P(j.-l,w)> of w.

(j) UniqSeq(w) Seq(w)~Digit()wl.- 2,w)#O~

A l (3 i s 1 wl) (Dig i t (i ,w)=~~ Comma(i+2, w))

UniqSeq(w) asserts that w is a sequence and tha t all entries in w are coded
without any extraneous leading zeros. The reason we are interested in UniqSeq is that
S; proves

UniqSeq(a)~ UniqSeq(b)h(Vi< Len(a))(P(i, a)=P(i, b)) 3 a= b
and

s e q (a) 3 (3 w)(Uniqseq(w)A(Vi<Len(a))(P(i, a)=P(i, w))).

(k) SqBd(a,b) = (2b+1)#(4.(2.~+1)~)

Foundations of Bounded Arithmetic

SqBd is useful since

S ~ F UniqSeq(w)l\Len(w)< I b I + l h (~ i < L e n (w)) (P (S (w) < a)> w<SqBd(a, b).

2.6. Bootatmapping T: .
Now t h a t we have completed the bootstrapping of s:, we want t o bootstrap T i . For-

tunately we will need t o d o much less work t o bootstrap T i . Indeed, once we have defined a
few simple functions, we will be able t o show tha t T: proves all the c:-PIND axioms. Hence
T:~s: and all the functions defined in the last two sections can be introduced into T:.

W e begin by showing t h a t the following functions may be introduced in T i :

(a) a < b a l b h a f b

c=max(a,b) (c > a l \ c = b) v (c > b ~ c = a)

(b) b=P(a) (a=Ol\ b=O)vSb=a

W e showed in an example earlier t ha t subtraction is c:-definable in T i . So we
can define P (a) = a l l .

When we introduced Power2 as a defined predicate symbol of S: we showed
t h a t s2' can prove many basic properties of the Power2 predicate. T h e same comments
apply t o T i .

(d) c=Ezp(a, b) +=+ Power2(c)hIc~=l+min(l bl,a)

i.e., ~ z ~ (a , b) = 2 " ' ~ " (l ~ ~ ~ ~) .

Let M(a,b,c) be the righthand side of the defining equation for Ezp. Then,

and

Hence,

$2.6 Bootstrapping T:

Since T i t ~ (x , 0 , 1) , we can use Ct-IND t o obtain

which is the existence condition for the definition of Exp.

(e) Decomp(a,b,c,d) (j lcl< b ~ (d . 2 ~ ~ " (l ~ l ~ ') + c = a)

c=LSP(a,b) ~ (3 d < a) D e c o m p (a , b , c , d)

d=MSP(a,b) ~ (3 c ~ a) D e c o m p (a , b , c , d)

I t is easy t o see tha t Decomp may be introduced as a nib-defined predicate
symbol of T i . Also, the uniqueness conditions for L S P and MSP follow from the
BASIC axioms. I t will suffice therefore to show tha t

T i t (3 x 1 a)(3y<a)Decomp(alb,~,y).

But

T i t ~ e c o m ~ (a , b , c , d)hc+l <2min(b'lal)> Decomp(a+l, b, c+l ,d)

and

T i t ~ e c o m ~ (a , b , c , d) ~ c + l ~ 2 ~ ~ " (~ ~ ~ ~ ~) ~ ~ e c o m ~ (a + l , b , 0 , d + l) .

Hence we can use c/-IND t o prove the existence condition.

Definition: When Q and R are theories, we write Q t R t o mean t h a t every theorem of R is a
theorem of Q .

Theorem 11: Let i2l. T; proves the c:-PIND axioms. Hence T,'F s,'

Prooj: Let A be any c:-formula. We want to show tha t

(where a is a free variable which appears only as indicated.) Let B(a ,u) be the formula
A(MSP(a,la(.- u)). Then

Foundations of Bounded Arithmetic

Now, from c;-LIND on B , we have

But ,

T i t ~ (l a I) > ~ (a) .

Q.E.D.

If we examine the proof of Theorem 11, we note tha t only zib-LIND is used, not
c?-IND. Hence what we have proved is:

Theorem 18: Let R i be the theory S: plus the zib-LIND axioms. Then R i is equivalent t o s ~ ~ .

Proof: R i t s;' is proved by the proof of Theorem 11. Theorem 6 implies t h a t sit R ~ .

Q.E.D.

Theorem 19: Let i>O. Then
(a) s;+c:-LIND is equivalent t o s~+c:-PIND.
(b) s~+c;-IND is equivalent t o s~+II;-IND.
(c) s:+c:-LIND is equivalent t o Si+IIib-LIND.
(d) s~+c:-PIND is equivalent t o s,'+II,~-PIND.

Proof: T h e inclusion of S i means t h a t we can use all of t he c/-defined function symbols of S2'
freely.
(a) By Theorem 12.
(b) One half of this is Theorem 5. T h e other direction is proved by exactly the same idea of

"reversing" the direction of the induction.
(c) Th i s is proved by an argument similar t o the proof of (b).
(d) By (a) and (c) it suffices t o show t h a t s ~ + I I ~) - L I N D is equivalent t o S;+W-PIND.

s~'+II:-PIND =+-II:-LIND follows from the proof of Theorem 6 modified so tha t
A E I I : instead of c:. Likewise, the proof of Theorem 11 modified so tha t A m i b shows
t h a t s;+II;-LIND ==+ II:-PIND.

Q.E.D.

Replacement Axioms

2.7. Replacement Axioms.

An important property of the natural numbers is the replacement axiom, also called
the collection axiom. This axiom is (VXI a)(3y)Ae*(3t)(Vzs a)(% t)A. One of the reasons
this axiom is useful is t h a t i t shows t h a t unbounded quantifiers may be moved outside the scope
of bounded quantifiers. In the classical setting, it is t he unbounded quantifiers which are most
important and the bounded quantifiers are generally ignored, and the replacement axioms s ta te
t h a t the order of bounded and unbounded quantifiers may be exchanged.

In ou r setting, however, bounded quantifiers are important and the sharply bounded
quantifiers are generally ignored. A natural question is whether there is a version of the replace-
ment axiom for our setting. T h e answer is partly yes, in t h a t bounded quantifiers may be
moved outside sharply bounded quantifiers.

Definition: T h e c;-replacement axioms are the formulae of t he form

where s and t are arbitrary terms and A is any c;-formula, and other free variables may
appear in A .

Theorem 14: Let i>l. Then the c;-replacement axioms are theorems of s;.

Proofi Let A be any c;-formula. Let Y and Z be the formulae

We want t o show sit Ye* Z(l tl). Now, s2jt Z((t l)> Y is obvious. Also,

and

Q.E.D.

Definition: T h e sets C;(AS) and ~I;(As) are defined inductively by:

(1) C ~ (A S) is the se t of lI:-formulae which are A: with respect t o the theory s:. Similarly,
~I:(As) is the se t of C:-formulae which are A: with respect t o t he theory s:.

54 Foundations of Bounded Arithmetic

(2) Ci t l (AS) is the smallest set satisfying:
(a) c ~ ~ , ~ (A s) ~ I I ~ ~ (A s) and
(b) If A E C ~ ~ , ~ (A S) then (3 x 5 t)A is in C;~+~(AS).

(3) l l i b , l (~ ~) is the smallest set satisfying:
(a) l I A 1 (A ~) 2 C i b (A ~) and
(b) If A E ~ A ~ (A S) then (Vxs t)A is in n ib , l (~S) .

T h e (AS) means alternative sense. Note that C: is a proper subset of C:(AS) and that
CA1(AS) is a proper subset of zLl.

Let R i be the theory S: plus the c;-replacement axioms.

Corollary 15: If A is a Cib- or a nib-formula, then there is a *(AS)- or a nib(AS)-formula B
(respectively) which is provably equivalent to A in the theory R;.

Corollary 15 is easily proved by induction on the complexity of A . Note that we are
using the fact that the function p is zlb-definable. Theorem 14 asserts tha t S i t R;. Although
we don't know if the converse is true, we do have the following theorem:

Theorem 16: R i+l t S;

Proof: by induction on i. For i=l it is obvious. So assume i 2 2 and R i + l t S2i-l. By Theorem
13 it suffices to show that Ri+l proves every c:-LIND axiom.

Let A be any c:-formula. We want to show

By Corollary 15, there is a C:(AS)-formula B such that R i tA(x) -B(x) . Let B have the form

where CEII~!~. We assume without loss of generality that the terms t i do not include the vari-
ables yl, . . . ,yn. Of course x will generally appear in ti. For notational simplicity we assume
that n = l for the rest of the proof and write t(x) instead of tl(x).

Let D be the formula

Let u be a new variable. Then, by prenex operations,

52.7 Replacement Axioms 55

Let j be the Clb-definable function satisfying

Thus,

Since D E I I ; ! ~ , we can use I I i 6 1 - ~ ~ ~ ~ , to get

Note that we are justified in using I I i ! l - ~ ~ ~ ~ by our induction hypothesis and by Theorem 13.
Fin ally,

Q.E.D.

2.8. Minimization Axioms.

We next introduce two new axiom schemas which can be used to axiomatize Bounded
Arithmetic.

56 Foundations of Bounded Arithmetic

Definition: Let 9 be a set of formulae. The 9-MIN axiom schema consists of the axioms

where A is any formula in 9.
The 9-LMIN axioms are given by the schema

where again A E 9 .

Theorem 17: Let i> 1. In the theory s;,
(a) c:-MIN is equivalent to nib-IND , and
(b) c:-LMIN is equivalent t o lI:-PIND.

ProoJ- T h e proofs of (a) and (b) are almost identical, so we will prove only (b).

First, we show that c:-LMIN ===3 lI:-PIND. Let AE~I:. Then by c:-LMIN ,

and thus

7(Vz)A (x)AA(O) > (~ X) (A (L $ X J) A ~ A (z))

which is what we needed to show.

Secondly, we show lit-PIND ===3 c:-LMIN. Let A(z) be a c:-formula. Let B(z) be
the formula (Vy<z)(lA(y)). Now, by lI:-PIND ,

and since A(u)>7B(u) , we have

Since the BASIC axioms imply y < z > LjyJ5 L$zJ we get

The LMIN axiom for A is an immediate consequence of this.

Minimization Axioms

Q.E.D.

By the previous theorem, we can use the minimization axioms instead of induction
axioms to axiomatize Bounded Arithmetic. In a more classical setting, Paris and Kirby [21]
have studied how minimization axioms can be used to axiomatize fragments of Peano arith-
metic. Paris and Kirby have shown that c:-MIN and II:-MIN are equivalent with respect to
a simple open theory P-. However in Bounded Arithmetic we have a different situation.

Theorem 18: Let i> 1. s~+II:-MIN is equivalent to s~+c~~,~-MIN.

Proof: Since II:~c:+~, one direction is trivial. We need t o show that II:-MIN + C:+~-MIN
in the presence of s;. We begin by showing that s~+II:-MIN proves the c~~,~(As)-MIN
axioms.

Let AEC/+~(AS). So A(z) has the form

where BE^: (since i > l) . We can assume without loss of generality that the terms t i do not

include the variables yj. Let B*(X,Y~, . . . ,yn) be the formula

Let C(w,a) be the formula

By Theorem 2, C is ~ i - ~ r o v a b l ~ equivalent to a nib-formula. C asserts that w is a protose-
quence coding values for z and y; which witness that (3z)A(z) is true. Now,

Since protosequences code entries as fixed length codes,

So by applying ~:-MIN, we get a minimum value for w which satisfies C(w,a) (a is held con-
stant) . But now Protop(n+l,w) gives a minimum value for z satisfying A(z). This completes
the proof that s~+II~-MIN proves the C~~~(AS)-MIN axioms.

T o finish the proof of our current theorem, we must show that s~+c/+,(As)-MIN
proves the c~~,~-MIN axioms. It will suffice to show that s~+c~~(As)-MIN proves the

b Ci+l-replacement axioms, since by Corollary 15 a Ckl-formula is equivalent to a

58 Foundations of Bounded Arithmetic

b formula via Xi+l-replacement. The proof of Theorem 17(a) shows that
Xib,,(AS)-MIN + II;+,(AS)-IND. Also, s~+~~;+~(As)-IND + C i b , l (~ ~) - ~ ~ ~ can be shown
by using the proof of Theorem 5 (this depends on the fact that the defining equation for sub-
traction () does not contain any sharply bounded quantifiers.) Clearly,
Xib,,(AS)-IND =+ C~+,(AS)-LIND. Hence it suffices t o prove the following lemma.

Lemma 19: Let i>O. s~+c~~,~(As)-LIND =+ C;:l-replacement.

ProoJ- For i=O, this lemma is a consequence of Theorem 14. For i>l, by Theorems 14 and
13(a) it suffices t o show tha t s~'.+c~(As)-LIND proves tha t every g l - f o r m u l a is equivalent
t o a Xib,,(As)-formula. The proof of this lemma is a more complicated version of the proof of
Corollary 15 which we omitted earlier.

Suppose, for the sake of contradiction, tha t 2 < j < i + l and tha t j is the least value for
which there exists a CI-formula which is not provably equivalent t o a C;(AS)-formula by
s;+c~:,(As)-LIND.

We shall now show that if BEE! then B is provably equivalent t o a c](As)-formula.
I t suffices to assume tha t

where A~ll~!,, as multiple adjacent existential quantifiers in B can be combined by use of the /3
function and multiple sharply bounded universal quantifiers can be handled by iterating this
argument below.

We prove tha t B is equivalent t o the formula Z(lt1) where Z(u) is the formula

We use the proof of Theorem 14 t o prove this. The crucial point of the proof of Theorem 14
used XI-LIND on the formula Z(u). But how can we use LIND on Z? Well, by our choice of
j and since AEII~!~, s;+c~~,~(As)-LIND proves that Z is equivalent t o a X?(AS)-formula.
Hence we are justified in using LIND on the formula Z.

This completes the proof of the lemma and of Theorem 18.

Q.E.D.

(Remark: In the original version of this dissertation we erroneously claimed t o have
proved Theorems 18 and 20 for i 2 0 instead of i2 1.)

An important theorem about the minimization axioms is the following.

Theorem 20: Let i>l. The c:-MIN axioms are theorems of s;+'.

82.8 Minimization Axioms

Prooj: Let A(z) be any formula. Let B(a,b,c) be

Clearly,

We also claim tha t

S i t ~ (a) ~ a # 0 ~ b < ~ a ~ ~ (~ x ~ a) ~ (a , b , x) ~ (3 x < a) ~ (a , ~ b , x) .

This is t rue because

S i t b < I ~ ~ A B (a , b , c) ~ (3 ~ < 2 1 ' 1 ~ (~ + ~)) A (c + ~) 3 B (a , S b , c)

and

~ 2 ' t b < l a l ~ B (a , b , c) ~ (V y < 2 1 ~ ~ (~ + ~))(-A(c+y))>B(a,~b,c+2I~I~(~+l)).

These last two results follow from the bit manipulation techniques developed while bootstrap-
ping s;. Finally, from the definition of B we have

Put t ing the above results together proves the claim.

Since B is a ~ i : ~ - f o r m u l a , we can use C~~,~-LIND on the formula (3x<a)B(a ,b ,z) t o

get

From this the C~:~-MIN axiom for A is immediate.

Q.E.D.

Corollary 21: If i 2 0 , s;+' t T;.

Prooj: For i l l , this follows from Theorems 20, 17(a) and 13(b). For i=O, this is a corollary t o
the next theorem. 0

60 Foundations of Bounded Arithmetic

The next theorem provides a direct proof of the previous corollary; in fact i t is some-
what stronger. Furthermore, the proof does not depend on any of the earlier theorems in this
section. Recall that the A: formulae are those provably equivalent to both a c:- and a
II>-formula.

Theorem 22: Let i>l. The Aib-IND axioms are theorems of s;. (A> means with respect to
s; .)

Proof.- (according to M . Dowd [8], the case i=l is independently due to R. Statman)

Let A be a formula such that there are formulae A' in C: and A~ in IIib such that
S ~ F A - A ' and S ~ F A - A ~ . Let B(x,z) be the formula

so B is provably equivalent to a n;b-formula. We claim that

sit (V.5 C)B(X,[+~J)>(VZ~C)B(X,~)

where c and d are new free variables. This is because A(x.-y)>A(x) follows from
A(x: y) ~ A (z l [$ ~ J) and A(x- [fYJ)>A(x). SO by ~>-PIND ,

But clearly, (Vx< c)B(x, c)>(A (O)>A(c)) and (Vx)(A(x)>A(Sx))>(Vxi c)B(x,O) are provable in
s;. Hence, S; proves

and the desired induction axiom for A follows immediately by a V-introduction, since c is a free
variable which occurs only as indicated in the last formula.

Q.E.D.

2.9. Summary of Axiomatizations of Bounded Arithmetic.

We briefly summarize some of the results of this chapter.

$2.9 Summary of Axiomatizations of Bounded Arithmetic

Theorem 13: For all i 2 0 , T;+'+ s;+' and s~~+'+ T; .

Proof: by Theorem 11 and Corollary 21.

Theorem 14: Let i 2 0 . In the presence of s2', we have the following implications:

(b) C&MIN ~ ~ , - M I N

(c) ~ & ~ - r e ~ l a c e m e n t + Ci)-PIND + Ci)-replacement.

Proof: By Theorems 5 , 6, 11, 13, 14, 16, 17, and 18 and Corollary 21.

Chapter 3

Definability of Polynomial Hierarchy Functions

T h e previous chapter investigated several different ways to axiomatize Bounded Arith-
metic. W e will now be concerned exclusively with the fragments of Bounded Arithmetic
axiomatized by PIND axioms, t h a t is to say, with the theories S;.

I t t u rns o u t t h a t using PIND is a very natural way to define Bounded Arithmetic.
Indeed, there is a very close relationship between the theories S; and the polynomial hierarchy.
W e discuss par t of the relationship in this chapter. T h e rest is established in Chapter 5.

In Chapter 1, we defined a polynomial hierarchy of both predicates and functions. T h e
classes of predicates were C i , I l i and A i l where Cf is NP and A f is P. In Chapter 1, we
considered a predicate to be a function with range {0,1) with the value 0 denoting "false" and 1
denoting "true". W e will no longer follow this convention; instead, we think of a predicate in
the usual sense as a property of natural numbers.

T h e classes Ob formed the polynomial hierarchy of functions. T h e functions in O i are
the functions which are computable in polynomial t ime by a Tur ing machine (for computer
scientists, a transducer) with an oracle for a predicate in E L l . Fo r example, is the set of
functions computable in polynomial time.

Theorem 1: Let k 2 l . Let j be an m-ary Ob-function. Let t(2) be a term (in the language of
Bounded Arithmetic) so t h a t for all 2 € N m , j(Z')<t(Z'). Then there is a Ci-formula A such
t h a t

(2) ~ 2 % (v2)(vY)(vt.)(~(Z' ,Y)~~(Z'lt .)>~=z)

(3) Fo r all ?i?€Nm, A(?i?,j(Z')) is true.

Theorem 1 says t ha t the theory S: can cP-define all of the functions which are poly-
nomial time computable relative to the predicates. W e will prove the converse of this in
Chapter 5.

Prooj: Firs t we examine the condition of the term t bounding j . Suppose t h a t (1)-(3) hold and
t h a t s (2) is another term such tha t for all 2 € N m , j(2)<s(Z'). Let B be the formula

§ 3

Then,

Definability of Polynomial Hierarchy Functions

E true. and for all ?ENm, B(Z',j(?)) '

T h u s it will suffice t o prove tha t if j€U{ then there exists some term t such t h a t (1)-(3)
hold. We prove this by induction on the complexity of t he definition of j. T o begin the induc-
tion argument we consider functions j in the se t B defined in Chapter 1. In the induction step
we will consider separate cases for j defined by composition, limited iteration, o r bounded
quantification from previously defined functions.

Case (I) : Suppose jEB. Clearly j can be c/-defined by s2'.
Case (2): Suppose j is defined by composition as j(?)=g(hl(?), . . . ,hn(?)) where g,

hl, . . . , h n are functions in Op and t h a t s2f can c;-define g, hl, . . . , hn with the formulae

respectively. Let A(?,z) be the formula

Then AEC; and for all z;fN, A(z',j(?)) is true. Let t(2) be the term s(r l , . . . ,r,). Then con-
ditions (1)-(3) of the theorem hold.

Case (3): Suppose j is defined from g by bounded existential quantification (i.e. P B 3) .
T h a t is t o say,

{ 1 if (3u55)(g(u,39+0)
I('))= 0 otherwise

Suppose also t h a t g is ~cb_~-def inable by 27l-l with the defining condition

where A g is a CL1-formula. Let A(?,z) be

64 Definability of Polynomial Hierarchy Functions

Then for all values of 2 , A(Z,j(2)) is true. Also A is clearly A;. Let t(B) be the constant term
1. Then conditions (1)-(3) are satisfied.

Case (4): Suppose j is defined by limited iteration from g and h with time bound p
and space bound q . Also suppose g and h are c:-defined by 5': by the defining conditions

Define B(w,u) t o be the formula

So B(w,u) asserts t ha t w codes the first u s teps of the computation of j from g and h , where we
are adopting the convention tha t if the next iteration step would violate the space bound q,
then the computation of j is aborted. I t is not hard t o see tha t

Note tha t B is a c;-formula since the quantifier (Vi<u) is equivalent t o a sharply bounded
quantifier. S o by c/-PIND ,

Also, 5': proves tha t this sequence w is unique by the use of c/-LIND on the length of w. S o
let A(3,y) be the formula

Let t(2) be 2'l(PI). Then conditions (1)-(3) hold.

Q.E.D.

W e have a similar theorem regarding the definability of A g predicates in 5':.

Theorem 2: Let k > 1. Let Q be an m-ary A{ predicate. Then there are formulae A and B in
C / and ll:, respectively, so t h a t

(1) 5':t (v2)(A(2)*B(2))
(2) For all SEN m, A (S) e B (? i) Q(S).

§ 3 Definability of Polynomial Hierarchy Functions

Proof.- Let f be the O{ function defined by

Let t(2) be the constant term 1. Let Af be a xi-formula satisfying (1)-(3) of Theorem 1.
Define A and B t o be

Then A E C ~ and BE^: and the theorem is proved.

Q.E.D.

If we consider the case k=l , we get

Corollary 3: Every polynomial time computable function and polynomial time computable predi-
cate can be introduced in 5'; with a defined function or predicate symbol and used freely in
induction formulae (if i> 1).

Proof.- By Theorems 1 and 2 above and Theorems 2.2 and 2.4. 13

Chapter 4

First-Order Natural Deduction Systems

This chapter introduces the use of natural deduction systems for first-order Bounded
Arithmetic. Up t o now we have not been specific about the syntax for our framework of first-
order logic; but in order t o obtain further results we shall have to make a precise definition of
our first-order syntax and rules of deduction. The system we adopt is a modified version of
Gentzen's natural deduction calculus LK [13]. An excellent reference for this system is the first
half of Takeuti [28]. Several of our proofs will refer to details of proofs in Takeuti 1281.

Natural deduction systems provide a very elegant framework for proof-theoretic argu-
ments; they are especially advantageous for proofs which utilize Gentzen's cut elimination
theorem.

4.1. Syntax and Rules of Natural Deduction.

Natural deduction uses the following types of symbols:

(I) Constants; for example, 0.

(2) Relations; for example, 5 and =.
(3) Functions; for example, S , + , . , # , ~ ~ z] , and 1x1.

(4) Free variables; denoted by a,b ,c , . . .
(5) Bound variables; denoted by z,y,z, . . .
(6) Propositional connectives; A,V,>, and 1.

(7) Bounded quantifiers; V 5 and 35.
(8) Unbounded quantifiers; V and 3 .
(9) Parentheses.

(10) Sequent connective;

(11) Comma.

Terms are built up from constants, free variables and functions. Formulae are defined
as usual. An atomic formula is a formula which contains no quantifiers or propositional connec-
tives. An open formula is one which contains no quantifiers. A term or formula is closed iff it
contains no free variables.

$4.1 Syntax and Rules of Natural Deduction 67

A series of formulae separated by commas is called a cedent. If r and A are cedents
then r + A is a sequent. T h e antecedent and succedent of r + A are r and A respectively.
T h e intended meaning of r + A is t h a t the conjunction of t he formulae in r implies the dis-
junction of the formulae in A. Although their meanings are similar, 1 and -+ have very
different syntactic roles.

I t should be noted there is a distinction between bound and free variables. T h e set of
variables which may appear free in a formula is disjoint from the set of variables which may
appear bound in a formula. Th i s is different from the usual conventions of first-order logic, but
it does make the syntax more elegant. We use a,b,c, . . . and z,y,x, . . . both as variables and
a s metavariables.

An inference is the deduction of a sequent from a set of sequents. An inference is
denoted pictorially by

which means t h a t A is deduced from B or from B and C (each of A , B and C is a sequent).

T h e rules of natural deduction are listed below. r', I l l A and A are used t o denote
(parts of) cedents, A and B are arbitrary formulae and s and t are arbitrary terms.

(3) (Con traction:left)

(4) (Con tractionxight)

First-Order Natural Deduction Systems

(9) (A:left)

and

(12) (v:right)

and

Syntax and Rules of Natural Deduction

(1 6) (V: righ t)

where a is a free variable which may not appear in the lower sequent of the infer-
ence.

where a is a free variable which may not appear in the lower sequent of the infer-
ence.

where a is a free variable which may not appear in the lower sequent of the infer-
ence.

First-Order Natural Deduction Systems

where a is a free variable which may not appear in the lower sequent of the infer-
ence.

T h e inferences (1)-(6) are called structural injerences. Rules (7)-(22) are the logical
injerences: (7)-(14) are the propositional injerences and (15)-(22) are the quantifier injerences.
T h e formula A in the cut inference is called the cut jormula. T h e variable a in inferences (16),
(17), (20) and (21) is the eigenvariable of the inference. T h e eigenvariable of an inference must
appear only as indicated, or equivalently, must not appear in the conclusion of the inference.

In inferences (7)-(22), the lower sequent contains a newly formed formula which did not
appear in the upper sequent. This new formula is called the principal jormula of the inference.
T h e principal formula of an inference is always formed by using one o r more formulae from the
upper sequent(s) and by using either a logical symbol o r a quantifier. T h e formula(e) in the
upper sequent(s) from which the principal formula is constructed is (are) called the auxiliary
jormula(e). For example, -A and (3x<s)A(x) are the principal formulae of inferences (7) and
(22) respectively and their auxiliary formulae are A and A(t) respectively.

A logical aziom is a sequent of the form A-A where A must be an atomic formula.
An equality axiom is a sequent of the form -+ t l=t l ,

where the ti's and st's are arbitrary terms and j or p is any n-ary function or predicate symbol.

A proof is a tree of sequents written so tha t the root of the tree is a t the bottom. The
leaves of the tree are called initial sequents and must be either equality axioms o r logical
axioms. Every other sequent in the tree together with the sequents immediately above it must
form a valid inference. T h e root of the tree is called the endsequent and i t is the formula
proved by the proof.

$4.1 Syntax and Rules of Natural Deduction 7 1

Definition: The natural deduction described above is called LKB. (Gentzen's original system
LK was defined similarly to LKB except without equality axioms and without bounded
quantifiers.)

Definition: A bounded jormula is one which contains no unbounded quantifiers. A bounded
sequent is a sequent which contains only bounded formulae. A bounded proojis a proof which
contains only bounded sequen ts.

Proposition 1: LKB is consistent, sound and complete.

Proof: T h e soundness and consistency are obvious. We know tha t LK is complete so it will
suffice to show that all properties of bounded quantifiers are theorems of LKB.

I t is easy t o show tha t for all formulae A , LKB proves A + A . So consider the fol-
lowing two LKB -proofs:

and

a < t , a < t > A (a) + A (a)

a < t,(Vz)(z< t>A(z))+A(a)
(Vz)(z I t 3 A (z)) + (Vz < t)A (z)

So LKB proves (Vz)(z<t>A(z))*(Vz<t)A(z) . By similar proofs, LKB proves that
(3 x 5 t)A(z) is equivalent t o (2z)(z< t ~ A (z)) . But now since LK is complete, so is LKB.

Q.E.D.

4.2. Bounded Arithmetic.

We next define how systems of Bounded Arithmetic are handled by natural deduction.
We must specify how axioms are treated and we must define additional rules of inference.

72 First-Order Natural Deduction Systems

Definition: T h e induction inferences are:

(1) c:-IND inference.

where A is any c:-formula, t is any term and a is the eigenvariable and must not
appear in the lower sequent.

(2) C;b-PIND inference.

with the same provisos as above.

(3) c:-LIND inference.

r ,A(a)+ A(Sa) ,A

rlA(o)-+A(ltl)lA

where, again, the same provisos apply.

If 9 is any set of formulae, we define the W I N D , 9-PIND and 9-LIND inference rules in
the same manner.

Definition: Let A(al , . . . , ak) be a formula with all of A ' s free variables as indicated. We say B
is a substitution instance of A iff B=A(tl, . . . , tk) for some terms t,, . . . , tk .

Definition: When working in a theory with axioms, we enlarge the notion of proof t o allow ini-
tial sequents of the form + A where A is any substitution instance of an axiom.

Definition:
(a) S; is the natural deduction theory with the BASIC axioms and the C i b - ~ I N D induction

inferences.
(b) T ; is the natural deduction theory with the BASIC axioms and the Cib-IND induction

inferences.

Theorem 2: (i20) . T h e c:-IND (respectively, c:-PIND , c:-LIND) rule is equivalent t o the
c:-IND (respectively, c:-PIND , c:-LIND) axioms. Hence the new definitions of S; and
Tz) agree with the definitions given earlier in Chapter 2.

Proofi I t suffices t o show tha t the induction axioms are consequences of the corresponding
induction rule (the converse is obvious). We show tha t the c:-IND rule can derive the
c:-IND axiom and leave the other cases to the reader.

84.2 Bounded Arithmetic 73

Let A be any formula, and let a and b be any free variables not appearing in A .
Then we can derive the IND axiom for A by:

A(a)-+A(a) A(Sa)-+ A (Sa)
A(a)>A(Sa),A(a)-+ A(Sa)

(Vz) (A(z)>A(Sz)) ,A(a) -+A(Sa)
(Vz)(A(z)>A(Sz)) ,A(O)-+A(b)
(Vz)(A (z)>A(Sz)),A(O)+ (Vz)A(z)

A (O) A (V ~) (A (~) ~ A (S ~)) , A (O) - + (Vz)A(z)
A (O) , A (O) A (V ~) (A (~) > A (S ~)) + (Vz)A(z)

A(O)A(V~)(A(~)>A(S~)),A(O)A(V~)(A(~)>A(S~))-+ (Vz)A(z)
A(O)A(V~)(A(X)>A(SX))-+ (Vz)A(z)

-+ A(O)A(VZ)(A(X) >A (Sz))>(Vz)A(z)

Q.E.D.

As the above proof shows, natural deduction proofs often can be quite awkward t o
write out in complete detail. Generally, we shall find it easier t o argue informally when we wish
to show t h a t a statement is provable.

However, the advantage of natural deduction is tha t it provides an elegant framework
for proof by induction on the complexity of proofs. Generally speaking, natural deduction sys-
tems are not a good system with which to prove a theorem; but they are very good for showing
tha t certain things are not provable.

One extremely useful property of natural deduction systems is t ha t proofs can always
be pu t in a normal form. T h e most important normal form is Gentzen's Hauptsatz, the cut-
elimination theorem, which is discussed in the next section.

4.3. Cut Elimination.

T h e cut elimination theorem is the most fundamental property of natural deduction
systems. T h e cut elimination theorem was first proved by Gentzen [13] and is sometimes
referred to as Gentzen's Hauptsatz.

Before we can s ta te the cu t elimination theorem in its most general form, we need
some more definitions:

Definition: Suppose C is a formula which appears in a given sequent in a proof. T h e successor
of C is a formula in the sequent directly below the sequent C appears in. T h e successor of C
is defined according t o the following cases:

(1) If C is in the endsequent of the proof or if C is the cut formula of a cu t inference, then
C has no successor.

74 First-Order Natural Deduction Systems

(2) If C is the auxiliary formula of an inference, then the principal formula of the inference
is the successor of C.

(3) If C is one of the formulae A o r B in an exchange inference, the successor of C is the
formula denoted by the same letter in the lower sequent of the inference.

(4) If C is the k-th formula in a sub-cedent r, A , II or A of the upper sequent of an infer-
ence, then the successor of C is the k-th formula in the corresponding sub-cedent of
the lower sequent of the inference.

(5) If C is the auxiliary formula on the right o r left side of an induction inference, then the
successor of C is the principal formula on the right o r left side respectively.

Definition: Let C and D be occurrences of formulae appearing in a proof. Then C is an ances-
tor of D if there are occurrences C1, . . . ,C, of formulae in the proof such tha t C1 is C , each
Ci+l is the successor of Ci and D is the successor of C,.

We say tha t C is the direct ancestor of D iff C is an ancestor of D and C and D are
occurrences of the same formula. This means tha t in the sequence of successors linking C t o
D l the formulae are never modified by an inference.

If C is an ancestor of D l then we call D a descendant of C. If C is a direct ancestor
of D then D is a direct descendant of C.

Definition: A formula C appearing in a proof is free iff i t is not the case tha t C has a direct
ancestor which either is a principal formula of an induction inference o r is in an initial
sequent.

A cut inference is free iff both of the cut formulae in the upper sequents are free.

Remark: We have defined ('free cut" somewhat differently from the way Takeuti [28] does.
However, the effect of our definition is the same since we required the logical axioms t o be
atomic. T h e advantage of our definition is t ha t it allows us t o discuss theories which have
non-logical axioms which are not open. We shall discuss such theories briefly in Chapter 8.

We are now ready to state the cut elimination theorem:

Theorem 8: (Gentzen) Suppose I'+ A is provable in S; or T; by a proof P . Then there is a

proof P* of I ' j A in the same theory such tha t P* does not have any free cuts. Further-
more each principal formula of an induction inference in P* is a substitution instance of a
principal formula of an induction inference in P .

Proofi This is proved by exactly the same proof as in Takeuti 1281, pp. 22-29, 111-112. All tha t
is needed is t o add additional cases for the bounded quantifier inferences. This is straightfor-
ward and we omit it .

$4.3 C u t Elimination 75

Corollary 4: (Gentzen) Suppose r + A is provable in LKB. Then l?+A is provable by a
proof P such tha t every cut formula in P is atomic.

Definition: A proof is cut free iff no cut inferences appear in the proof. A proof is free cut free
iff i t has no free cuts.

T h e proof of Theorem 3 is constructive and gives an effective method of finding P*
from P. In fact, the algorithm which accepts P as input and constructs P* is primitive recur-
sive. However, it is not elementary recursive.

Corollary 5: Let i 2 0 . Let r and A be cedents of c;- and nib-formulae and suppose r + A is
provable in S; or Ti. Then there is a proof P of l?+A in S; or T; (respectively) such
t h a t every formula in P is in CtUlIib.

Proof: We pick P t o be a free cu t free proof of r + A . Suppose C is a formula in P and tha t
CeCibuIIib. Then C can not have been either the principal formula of an induction inference or
a direct descendant of a formula in an initial segment. Hence C is free and all of the descen-
dan t s of C must be free. Since P is free cut free, some descendant of C must appear in the
endsequent. However no descendant of C can be in C t u l I i b and this contradicts the hypotheses
of the theorem. T h u s all formulae in P must be in Cibunib.

Definition: A cu t inference is inessential iff i ts cut formula is atomic.

W e shall sometimes use an inessential cu t in the construction of a free cu t free proof.
This is always permissible since the cut formula is atomic and any atomic formula in a proof
must be introduced either by an axiom or by a (Weak:left) o r a (Weakxight) inference. In the
first case the inessential cut is a free cut. In the second case the inessential cu t is superfluous in
tha t the proof can be simplified by removing the inessential cut; this is done by deleting the
Weak inferences which introduced the cut formula and then replacing the inessential cu t by
Weak inferences.

Hence we can, without loss of generality, allow arbitrary inessential cu ts t o appear in
free cu t free proofs.

4.4. Further Normal Forms for Proofs.

W e define some more syntactic properties of proofs.

Definition: Let P be a proof with endsequent r + A . T h e free variables in r + A are called
the parameter variables of P.

W e say t h a t P is in weak free variable normal form iff for each free variable a in P
there is an elimination inference such tha t

(1) a is in t he upper sequent(s) of i ts elimination inference,

First-Order Natural Deduction Systems

(2) a appears in P only above its elimination inference, and

(3) if a appears in a sequent S of P , then a appears in every sequent between S and a's
elimination inference,

with the exception tha t if a is a parameter variable, then we think of the elimination infer-
ence for a as being an imaginary inference directly below the endsequent of P .

An alternative, equivalent definition is t ha t P is in weak free variable normal form iff
for each free variable a in P , the inferences of P which contain a in an upper sequent form a
connected subtree of P .

Proposition 6: Let P be a proof in weak free variable normal form and let a be a free variable in
P which is not a parameter variable. Then the elimination inference of a must be a (b':right),
(b'<:right), @:left), (3<:left), (V:left), (3:right), or Cut inference.

Prooj: This is immediate from the syntax of the inferences for Bounded Arithmetic.

In fact, we can further require t h a t the elimination inference is not a (b':left), (3:right))
or Cut inference:

Proposition 7: Let P be a proof in weak free variable normal form. Suppose a is a free variable
in P and the elimination inference for a is a C u t , (V:left) or (3:right) inference. Then if we
replace every occurrence of the free variable a in P by the constant symbol 0 (zero), we still
have a valid proof of the same endsequent.

Proofi Examination of the syntax of the inference rules shows t h a t when we carry ou t the
replacement of a by 0, the altered proof is still a valid proof.

Definition: A proof P is in free variable normal form iff P is in weak free variable normal form
and for every free variable a appearing in P , the elimination inference for a is not a C u t ,
(V:left) or (3:right) inference.

Proposition 8:

(a) Suppose P is a proof of r + A . Then there is a proof P* of r + A such t h a t P* is in
free variable normal form.

(a) Suppose P is a proof of r + A . Then there is a proof P* of r + A such t h a t P* is in
free variable normal form and P* is free cu t free.

Prooj:
(a) P can be transformed t o the desired P* by renaming free variables and using Proposition

7.
(b) First use the cu t elimination theorem t o obtain a free cu t free proof Q of r+ A. Then

obtain P* by renaming free variables and using Proposition 7.

Q.E.D.

$4.4 Further Normal Forms for Proofs

4.5. Restricting by Parameter Variables.

T h e results of this section are somewhat technical in nature. They will be used only in

the two sections of Chapter 4 immediately following.

Definition: Let P be a proof. We say tha t an induction inference in P is restricted b y parameter
variables iff i t has the form

where the only free variables in the term t are parameter variables of P.
W e say P is restricted b y parameter variables iff every induction inference in P is

restricted by parameter variables.

Theorem 9: Let r + A be a bounded sequent which is provable in one of the theories S2 or T2.
Then there is a bounded proof of r + A in the same theory which has no free cuts, is in free
variable normal form and is restricted by parameter variables.

Before proving Theorem 9, we introduce a new metafunction a which lets the proof
apply t o slightly more general theories. As a bonus, the use of a may make the proof somewhat
easier t o understand.

Let R be any theory of arithmetic. W e define a metafunction a which maps terms of
the language of R t o terms. Suppoee t l , . . . ,tk are terms with variables a l , . . . ,a,. Then
a [t l , . . . ,tk] is a term with the same variables. Furthermore, if l < i < k ,

must be provable from the axioms of R without the use of any induction inferences.

Obviously the metafunction a depends on the theory R, and indeed, for a given theory
R there are many a's satisfying the above conditions. T h e exact choice for a is not too impor-
tant , but a should be as simple and as constructive as possible.

If R is one of the theories S2 or T2, we have a particularly simple definition for a.
Define

First-Order Natural Deduction Systems

a [t] = t

This definition works since each function symbol of Bounded Arithmetic is nondecreasing in
each of i t s variables.

If we enlarge S2 o r T2 t o include function symbols for polynomial hierarchy functions,
we can still define a. T h e defining equation for a function of t he polynomial hierarchy must
include an explicit bound on the size of the function. These bounds can be used to define a.

Theorem 9 is s tated only for S2 and T2; however our use of the o metafunction means
the proof holds for theories with a larger language.

Proof: of Theorem 9.

We shall give the proof for t he theory S2. Minor modifications are all t h a t is needed t o
handle T2 and we leave them t o the reader.

By Proposition 8, there is a proof P of I'+A with no free cu ts and in free variable
normal form. We shall modify P t o be restricted by parameter variables.

Let t he parameter variables of P be c l , . . . , c p . Let bl , . . . ,bn be the other free vari-
ables in P. Since P is in free variable normal form, each bi has a unique elimination inference;
we assume without loss of generality t h a t if the elimination inference for bi is below the elimina-
tion inference for bj then i < j (if not, reorder the hi's), Note t h a t two variables can not have
the same elimination inference since we are assuming P is in free variable normal form.

W e define u l , . . . ,un t o be terms s o t h a t the free variables of ui are the parameter
variables t. We define ui by induction on i according t o the following two cases.

(1) Suppose the elimination inference Ji of bi is (V<:right) o r @<:left). T h a t is, Ji is either

where the term s i may contain the free variables bl , . . . ,bi-l and may also contain the
parameter variables c l , . . . , c p . Then define ui = a [s i] (u l , . . . , u ~ - ~) .

$4.5 Restricting by Parameter Variables

(2) Suppose the elimination inference Ji of b i is an induction inference. S o Ji is

Again, define u i = u[s i] (u l , . . . ,uiM1).

P will be modified t o obtain a proof P * with the same endsequent which is restricted
by parameter variables. We will d o this in two steps: first we form P' by changing each sequent

in P ; however, P' may not be a valid proof so we fix up the illegal inferences in P' t o get P* .

P' will have exactly the same structure as P and each sequent in P' is built from the
corresponding sequent in P. Let n + A be a sequent in P. Let bil, . . . ,bim be the free vari-

ables of P which have elimination inference below n+A. Let B be the cedent

T h e sequent in P' corresponding to n-+A is E,n+A. So P' is formed from P by adding
bi<ui t o every sequent above the elimination inference of bi, for i=l, . . . ,m. T h u s the endse-
quent of P' is the same as the endsequent of P.

W e now modify P' t o obtain a valid proof P* . I t is easy t o verify t h a t there are
exactly five ways in which P' fails t o be a proof:

(I*) T h e initial sequents of P' are not valid initial sequents. An initial sequent of P' has the
form

where n + A is a valid initial sequent. In P * , this initial sequent is replaced by the ini-
tial sequent l l+A and m (Weak:left) inferences.

(2*) Let I be a cut inference in P. T h e corresponding inference P in P' will be of the form

Unless B is the empty cedent, this is not a valid inference. In P * th is inference is
replaced by I*:

First-Order Natural Deduction Systems

where the double bar denotes a sequence of (Exchange:left) and (Contraction:left) infer-
ences.

(3*) Let b i be a free variable in P with a (V<:right) elimination inference J;. T h e correspond-
ing inference J f in P' is

where 5; is the cedent containing the formulae b j<uj for all bj with elimination inference

below J; in P. Clearly, J f is not a valid inference. In P * we replace Ji by J::

T h e first inference is a Cut inference. T h e sequent B;,b;<s;-+ b iLu i is provable by the
definition of the a metafunction. T h e double bar between the second and third sequents
indicates a sequence of inferences; in this case, a sequence of contraction and exchange
inferences.

Since the cut inference is inessential it may be assumed without loss of general-
ity t o be free (since if not, it could be eliminated from the proof).

(4*) Suppose b; is a free variable in P with a (]<:left) inference as i ts elimination inference J i .

We construct Jf as the corresponding inference in P * by a construction similar t o Case

(3*).

(5 *) Let bi be a free variable in P with an induction inference J; as its elimination inference.
T h e corresponding inference J f in P' is:

Clearly this is not a valid inference and in P * we replace it by Jf:

Restricting by Parameter Variables

where d i is a new free variable and the sequents (P), (r) , and (6) used in the Cut infer-
ences are:

Note t h a t these cuts are free since the cut formula is a direct descendent of an induction
inference o r of a formula appearing in an initial sequent. Also note t h a t the PIND
induction in P* is restricted by parameter variables since the only free variables in ui are
C1, . . . , C p .

This completes the construction of the desired proof P*.

Q.E.D.

I t is not a t all obvious tha t Theorem 9 holds for the theories S; and T; instead of S2
and T2. In fact, i t almost certainly does not hold for S: and T:. However, it does hold for S;
and T; when i l l . The author surmises (without proof) t ha t it holds for S: and T i , bu t t o
prove this seems t o require a more careful treatment of the foundations of Bounded Arithmetic
than we gave in Chapter 2. A t any rate, Theorem 9 as stated above suffices for our purposes in
Chapter 7.

82 First-Order Natural Deduction Systems

4.6. Polynomial Size, Induction Free Proofs.

This section establishes the following result: Suppose A(Z) is a bounded formula prov-
able in S2 where Z indicates all the free variables of A . Then there is a deterministic po lyne
mial time algorithm P such tha t for all 3 € N P , P (3) is the Godel number of a proof of
(I . . . , Inp), w e e the proof P (t) is bounded and contains no induction inferences. T o

restate this informally, we can say t h a t if A is bounded and if S2 t (VZ)A(Z) then for each n
there is a "short," bounded, induction free proof of A@).

T h e results of this section are interesting in their own right; however, we wish t o apply
them in Chapter 7 t o Godel incompleteness theorems. Accordingly, it is important t o note tha t
all the proof theoretic arguments below are constructive and part of these arguments can be for-
malized in s;.

Theorem 10: Let I'+A be a bounded sequent provable in S2. Let al, . . . , ap be the free vari-
ables in r + A . Then there is a p-ary polynomial time function j such tha t for all 3eNPJ
j(X) is the Godel number of an So-proof of F(In1, . . . , Inp)+A(Inl , . . . , Inp) which is

bounded, does not contain any induction inferences and is in free variable normal form.

Recall t ha t I, is a term with value n such tha t the length of I, is proportional t o In[.
T h e theorem would certainly be false if ~ (" b were used instead of I, since the length of ~("10 is
exponential in the length of n .

Proof: By Theorem 9 there is a bounded proof P of I'+A which is restricted by parameter
variables and is in free variable normal form. The idea behind the theorem is tha t given values
nl, . . . , np for al l . . . ,ap, we can expand each induction inference in P into a series of cuts.

The proof of Theorem 10 is by induction on the number of inferences of P. T h e only
interesting case t o consider is when the final inference of P is an induction inference; so let the
final inference in P have the form

where the only free variables in t are the d. We eliminate the induction inference by replacing
i t with 2.lt(?i)l.-l Cut inferences. Specifically, if m is the value of t (t) , form the Inal+l terms
I,, . . . ,IMSp(,,i), . . . ,Im. By the induction hypothesis, there is a deterministic polynomial time
function h(d,b) which computes the Gijdel number for an induction free, bounded proof in free
variable normal form of r , A (L ~ I b]) - 3 A (I b) , A . By invoking h repeatedly we can obtain proofs

of each of the sequents

I t is also easy t o construct a proof of A(IMsp(m,i+l))-+=A(L~IMsp(m,i)J) for a11 i . Then we join

$4.6 Polynomial Size, Induction Free Proofs 83

these sequents together with 2 . (m (l l cuts (and a lot of exchanges and contractions) t o obtain a
proof of I',A(O)-A(Im),A. Since for every term t there is a polynomial p t such tha t
pr(lZl)21t(Z)l for a11 Z , this procedure is a polynomial time procedure.

I t is also important t o see tha t if t is any term, then there is a deterministic polyno-
mial time function g t such tha t gt(?t) is the G d e l number of an induction free proof of
Im=t(Inl , . . . ,Inp). W e shall prove this last sentence as part of Lemma 7.5. Thus there is a

polynomial time procedure which produces an induction free proof of

We combine this with the proof of I',A(O)-A(I,),A obtained above. This yields an induction
free, bounded proof of I',A(O)-A(t(Inl, . . . ,Inp)),A. By renaming free variables we can ensure

tha t the proof is in free variable normal form.

Q.E.D.

4.7. Parikh's Theorem.

T h e next theorem is originally due t o Parikh [20]. Parikh gave a proof-theoretic proof
and, later, a simpler model-theoretic proof was found. However, we present a proof theoretic
proof here since we have already developed most of the necessary machinery anyway.

If a theory proves (Vz)(3y)A(z1y) we regard this as a proof tha t there is a total func-
tion j such tha t for all z , A (z f(z)) holds. Parikh's theorem states tha t a function defined in
this way can be bounded by a term of Bounded Arithmetic, provided tha t A is a bounded for-
mula.

Theorem 11: (Parikh) Let i>O. Suppose tha t A is a bounded formula and tha t S; or T ;
proves ('~5?)(3y)A(Z',~). Then there is a term r(Z') such tha t the same theory proves

(V a g Y 5r (Z))A(21~) .

Prooj: By Proposition 8 there must be a free cut free proof P in free variable normal form of
the sequent + (3y)A(Tly). I t is easily seen tha t every formula in P is either (3y)A(Zly) or is
bounded. Furthermore, every occurrence of (3y)A(Z,y) is in the antecedent. T h u s the only
inferences in P involving unbounded quantifiers are (3:right) inferences which introduce the for-

mula (3Y)A(t,Y).
W e modify the proof P as follows:

Step (1): First, we will mimic the proof of Theorem 9 t o obtain a proof P". Let all notation be
as in the proof of Theorem 9. T h e construction of P' can be carried ou t on P since the
only unbounded quantifier inferences of P are @:right) inferences and since P is in free

variable normal form. P" is obtained from P' in much the same way as P* is. Recall tha t

84 First-Order Natural Deduction Systems

P * was defined by the Cases (I*)-(5*). P" is defined from P' by Cases (1")-(5"). Cases

(1")-(4") are the same as (I*)-(4*). T h e fifth case is:

(5") Suppose the inference Ji in P' is:

Clearly this is not a valid inference and in P" we replace i t by Ji ' :

where (7) is the sequent A i(O)+ L+o] 5 u i>A i(L+O]) and (6) represents

I t is easy t o verify t h a t P" is free cu t free and in free variable normal form and t h a t the
endsequent of P" is the same as the endsequent of P.

Step (2): Wherever a (3:right) inference occurs in P", of t he form

W e replace this inference with:

E,r+ A , A (~ , t(g))
E- t($)<a [t] (2) t(a)<a [t] (g) . ~ , r ~ ~ , (3 y < ~ [t] (i i)) ~ (~ , y)

S,B,I'+ A,(3y<a [t] (?f))A(t,y)

B,r+ A1(3y<a [t] (g))A(Z, y)

Parikh's Theorem 85

We also replace all the descendants of (3y)A(t ,y) in P" by (3y<a[t] (J))A(t1y) as far down
as possible: which means all the descendants either down to the end of P" or down t o a
contraction inference with (3y)A(Z,y) as principal formula.

Step (3): After doing Step (2) as often as possible, we handle contractions. Suppose the

modified proof contains

We replace this by first deriving

and

We now use two cuts and a contraction to get:

We now replace the descendants of the original formula (3y)A(t1y) as far down as possible
in the proof, just as we did in Step (2).

We iterate Step (3) as often as possible.

The end result of the above construction is a proof of (gy<r)A(Z,y) for some term r .

Q.E.D.

The restriction in Parikh's theorem that A be a bounded formula is necessary as the
following counterexample shows. Let A be the formula

Then LKB proves (Vz)(3y)A(zly). But there is no term r of Bounded Arithmetic such that
(Vx)(3y< r)A(x,y) is true.

Chapter 5

Computational Complexity of Definable Functions

This chapter is concerned with establishing the converse t o Theorem 3.1, which stated
t h a t any function in O/=PTC(C,P_l) can be xib-defined in s;. Theorem 3.1 was proved by a
straightforward construction of t he c:-formula from the definition of a 0:-function. T h e con-
verse is a deeper result and i ts proof depends strongly on the cut-elimination theorem.

Th i s chapter deals only with first order theories of arithmetic. Second order theories of
arithmetic are treated in Chapters 9 and 10.

Theorem 1: (The Main Theorem). Let i2l. Suppose S ~ ~ (V Z ') (~ ~) A (Z ' , ~) where A(Z',y) is a
xi)--formula and Z' and y are t he only free variables of A . Then there is a term t(3), a
c:-formula B and a function g in 0: so tha t

(1) sit (~Z')(~Y)(B(Z',Y)~A(Z',Y))
(2) sit (W)(~Y)(V~.) (B(~,Y)AB(~,~ .)~ y=t.)

(3) sit (v 3) (3 ~ 1 t) ~ (d , Y)
(4) Fo r all 3 , N + B(S,g(?i)).

Corollary 8: Suppose j is a function zib-definable by s;. Then j is a 0:-function

Corollary 2 is an immediate consequence of Theorem 1. T h e proof of Theorem 1 is the
rest of this chapter.

5.1. Witnessing a Bounded Formula.

Before we can prove Theorem 1, we need some preliminary definitions.

Definition: Suppose i2l and A is a ~ i) - fo rmula and d is a vector of free variables which
includes all t he variables free in A . We define below a formula witness%'(w,d) which is A:
with respect t o SL T h e definition is by induction on the complexity of A .

b (1) If A is a or a nibl-formula, then we define

55.1 Witnessing a Bounded Formula

(2) If A is BA C, then we define

witness;.'(w , ~) w witnessj '(~1, W) ,Z)A witnessg'(p(2, w) , ~)

(3) If A is BvC, then we define

Witness;.'(w ,a) WitnessJ'(p(1, W) , X) V Witness jZ(/3(2, w),X)

6 (4) If A is not in c ~ - ~ u I I ~ ~ ~ and A(d) is (Vz< (s(d)l)B(X,z), then we define

Witness f"(w,d) Seq(w)ALen(w)=ls(d)l+lA

n(Vz< ls(d)l) ~itness,$$,:)(p(z+l, w),d,z)

T h u s w witnesses A(d) iff w=<wo, . . . ,wlel> and each wi witnesses B(d,i).

(5) If A is not in c ~ ! ~ u I I ~ ~ ~ and A is (3x<t(d))B(d,x), then we define

witnessJz(w,a) ,L". Seq(w)hLen(w)=2Ap(l , w)< t(3)A

A ~itness,.@:)(~(2, w) , d . ~ (l , w))

So w witnesses A iff w=< n,v> where n<t and v witnesses B(d,n).

(6) If A is not in E~!~uII~!~ and A is -B, then we define witness;.' by using logical
prenex operations to transform A so tha t i t can be handled by cases (1)-(5).
Specifically, if A is -(-B), -(BAC), -(BvC), -(Vz< t)B or -(3z< t)B then let A* be
B, (-B)v(-C), (~ B) A (- C), (3x5 t)(-B) or (Vz< t)(-B) respectively. Then

T h e idea behind defining witnessi' is t ha t having a w such tha t ~l tnes s~~ ' (w ,d) is a

canonical way of verifying tha t A(2) is true. I t is not difficult to see tha t (3w) Witness ft'(w,Z)
is equivalent t o A(d) when A E C ; ~ . Indeed, this is provable by s ~ ~ :

Proposition 3: Let i>l . Let A be any c:-formula with free variables among 3. Then:

(a) S: F Witnessj'(w,d) >A (3)

(b) There is a term tA such tha t

88 Computational Complexity of Definable Functions

(c) Furthermore, there is a OI-function g~ which is C/-definable in S: such tha t

Proof..
(a) Th i s is easy t o show by induction on the complexity of A .
(b) This is also proved by induction on the complexity of A . Cases (1)-(3) and (6) of the

definition of Witnessi' are easily handled. T h e other two cases are as follows:

Case (5): A@CibluIIibl and A is (3z<t)B(d,z) . W e argue informally in S; Suppose
B(d,z) holds with z < t . By the induction hypothesis, we know t h a t there exists a . +

v such t h a t ~ i t n e s s ~ ~ ~ , : ~ (v , a , z) . S o let w=<z,v>. Then W i t n e ~ s ~ ~ (w , Z) holds.
We can define

and we are guaranteed tha t w l tA(3).

Case (4): A$CibluIIibl and A is (VZ<(S(Z)()B(~,Z). T h e induction hypothesis is tha t

Since the CP-replacement axioms are theorems of S; (by Theorem 2.14)) i t follows
tha t

sit- A (a')> (3w 5 SQB~(O [tB] (a , ls(),s)) ~itncssi'(w,Z').

(c) This is easily proved by induction on the complexity of A . T h e essential idea is tha t
sequences can be coded efficiently.

Q.E.D.

Another crucial property of Witness is tha t i t is relatively easy t o tell whether
~ i t n e s s ~ ~ w , ~) holds for arbitrary w and 2. This is formalized by the next proposition.

Proposition 4: Let i> l and A(z)Ec~~. Let p be the predicate defined by

55.1 Witnessing a Bounded Formula

Then p is a At-predicate (of the polynomial hierarchy).

Pro08 This is easily proved by induction on the complexity of A .

In particular, when i=l p(w, t) is a polynomial time predicate. This should not be
surprising since if A is a fixed Clb-formula i t is certainly reasonable tha t a polynomial time algm
rithm can check whether w and t code an instantiation for A which satisfies A . Of course, this
polynomial time algorithm depends on A .

If r is a cedent we write AI' (respectively, \Sllr) t o denote the conjunction (respectively,

disjunction) of the formulae in r. W e adopt the convention tha t conjunction and disjunction
associate from right t o left. Thus , if r is A , B , C then Ar means AA(BAC). W e use the nota-

tion

t o denote < a l , < a 2 , . . . ,<an- l ,an> ' . a >>.
These conventions allow us t o conveniently discuss witnessing a cedent. For example,

suppose r is Al, . . . , A n and tha t w=<<wl, . . . ,ton>>. Then ~ i t n e s s g (i (w , ~) holds iff

~ i t n e s s k ! (w ~ , ~) holds for each positive j< n .

5.2. The Main Proof.

W e shall prove Theorem 1 by proving a more general theorem:

Theorem 5: Let i2l. Suppose S ~ F I ' , I ~ ~ A , A and tha t each formula in FUA is a c?-formula
and each formula in IlUA is a Il?-formula. Let c l , . . . ,c, be the free variables in
r , I l j A , A . Let G and H be the xi)-formulae

and

Then there is a function j which is c?-definable in S; such t h a t

(1) j is a 0,"-function, and

(2) S; F witness $7 w , t) > witnessA2(j(w , t) , - ~) .

90 Computational Complexity of Definable Functions

Proof: of Theorem 1 from 5:
T h e hypothesis of Theorem 1 is tha t s;'+ (3 y) ~ (Z , y). Hence, by Theorem 4.11 there is

a term t (t) such tha t s i t (3 y < t) ~ (t , y) . We now apply Theorem 5 by letting A be

(3y <t)A(Z, y) and letting r=II=A=B. Theorem 5 asserts t ha t there is an j satisfying (I) and
(2). Furthermore this j is c(-definable in S; by j(Z)=d A f (t , d) for some AEC; such

tha t

We need t o find B and g satisfying (1)-(4) of Theorem 1. We define

and

I t now follows immediately from the definition of Witness and Proposition 3 that g
and B satisfy the conclusions of Theorem 1. Note tha t g is a 0:-function since j is.

Q.E.D.

Prooj: of Theorem 5.

By Proposition 4.8, there is an Si-proof P of r , I I+A,A such tha t P is free cut free
and in free variable normal form. In particular, since every formula in the endsequent of P is in
c;IJII(, so is every formula appearing anywhere in P . Since all induction inferences in P are
c?-PIND inferences, the principal formula of each cut inference in P is a for formula.

T o simplify notation and terminology we shall henceforth assume tha t II and A are the
empty cedent. W e can always fulfill this requirement by using (-:left) and (-:right) inferences
t o move formulae from side t o side. Furthermore, no essential cases are ignored under this
assumption since each inference has a dual; for example, (3s: lef t) is dual t o (V5:right) and
 fo right) is dual t o (v:left).

T h e proof of Theorem 5 is by induction on the number of inferences in the proof P of
r-i+ A where P is assumed to be free cut free and in free variable normal form.

T o begin, consider the case where P has no inferences and consists of a single sequent.
Then r-i+A must be either a BASIC axiom, a logical axiom or an equality axiom. In either
case every formula in r-i+A is open. The definition of Witness was tha t

whenever A is open. Thus, conditions (1) and (2) of Theorem 5 are satisfied if we choose j t o be
the constant zero function.

55.2 T h e Main Proof 9 1

T h e argument for the induction s tep splits into thirteen cases depending on what the
last inference of P is:

Case (1): Suppose the last inference of P is (1:left) or (-:right). These are "cosmetic" infer-
ences: see the discussion above about assuming tha t II and A are empty.

Case (2): (A:left). Suppose the last inference of P is

Let D be the formula B A (~ *) and let E be (B A C) A (~ *) . T h e induction hypothesis is

t ha t there is a Up-function g such tha t g is c!-definable by s~~ and

Let h be the function defined by

Then h ~ O f and

follows immediately from the definition of Witness. S o define j (w , t) t o be g(h(w),Z). Then
jeO,J', j is c:-definable and

s;' F Witness k'(w , t) 1 Wit nessGz(j (w ,z),T)

which is what we needed t o show.

Case (3): (v:left). Suppose the last inference of P is

Let D be the formula B A (~ *) , let E be c ~ (A r *) and let F be (B v C) n (m *) . By

the induction hypothesis, there are &'-definable functions g and h in 0,J'such t h a t

92 Computational Complexity of Definable Functions

and

We define j as

g (<f l l1P(l1 w))A2,w)> K) if ~itness~~(P(l.P(l~w))~~)
j (w73) = h(<P(2,P(l1 w)),P(2,w)> , t) otherwise

T h e idea is t h a t if w witnesses (Bvc)A(&'*) then either P(1,/3(l1w)) witnesses B or

,B(2,,B(llw)) witnesses C. In the former case, g is used t o find a witness for V A ; in the

lat ter case, h is used. Th i s can easily be formalized in Sal so

Now j is a 0:-function since g and h are and by Proposition 4. Also, j is c:-definable by . +

s;' since g and h are and since WitnessJc is a A:-predicate.

Case (4): @<:left). Suppose the last inference of P is

Of course, a is an eigenvariable and must not appear in the lower sequent. Let D be the
formula a < t h (~ (a) A (m *)) , and let E be (3 z < t) B (z) ~ (m *) . By the induction hypothesis,

there is a c:-definable function g ~ 0 : such t h a t

(Note tha t we can omit the variable a f rom the superscript on the righthand side of the
implication since a does not appear free in A.)

First consider the case where (3 z < t) B is not in c&~. Define the function h by

By the definition of Witness we have

55.2 T h e Main Proof

S: c ~ i t n e s s ~ ~ (w , t) ~ Witnesspa(h(w)f,/3(1 , ~ (l , w))).

S o d e f i n e f b y

T h u s f is a 0:-function, f is cP-definable by S; and

T h e case where (~ x < ~) B € c ~ ! , is even easier. We now let

and

Note f€O,J' since (p z l t) B (z) can be computed either by using a binary search or, when
(3 x s t) is a sharply bounded quantifier, by an exhaustive search.

Case (5): (V5:left). Suppose the last inference of P is

We shall assume tha t s<_ t is in I' (a similar argument works for s s t in n.) Let D
be the formula B (s) A (~ *) , and let E be s<t~(Vx<t)B(z)h(AI '*) . T h e induction

hypothesis is tha t there is a c:-definable function g in 0: such tha t

First consider the case where (Vzs t)B(z) is not in Then (V z s t) must
be a sharply bounded quantifier with t=(rl for some term r . Define the function h by

By the definition of Witness, we have

So define f(w,Z)=g(h(w,t),Z). I t is straightforward t o see tha t f satisfies the desired condi-
tions of Theorem 5.

94 Computational Complexity of Definable Functions

T h e case where (' ~ x ~ ~) B (x) E c ~ ! ~ u ~ ~ is easier. W e now set h(w,i?) equal t o
<O1/3(2,/3(2,w))> and otherwise proceed as before.

Case (6): (>:left) and (>:right). We omit these cases: see (v:left) and (v:right).

Case (7): (v:right). Suppose the last inference of P is

Let D be the formula B V (~ A *) . By the induction hypothesis, there is a

c;-definable function g in 0;such tha t

Define h by

h(w) = < <P(l,w),O> ,/3(2,w)>

and let f(w,Z)=h(g(w,c)). Then it is easy t o see tha t f satisfies all the desired conditions.

Case (8): (h:right). Suppose the last inference of P is

Let D be the formula B V (~ A *) , let E be C V (~ A *) and let F be (B A C) V (~ A *) .
T h e induction hypothesis is t h a t there are 0;-functions g and h which are c;-definable by
S; such tha t

W e define the function k as

v if ~ i t n e s s $ i , (v , ~)

w otherwise

55.2 T h e Main Proof 9 5

. +

By Proposition 4, k is a 0,"-function; also, k is C;-definable by S; since witness^^* is a

A;-formula. Now define j by

Clearly j is &*-definable by S; and is in Of , since g, h, and k are. Also, i t is easy t o see
tha t

Case (9): (35:right). Suppose the last inference of P is

We shall assume t h a t s s t is in r (a similar argument works for s s t in ll). Let D
be the formula B (s) v (~ A *) , let E be s_<t~(&'*) and let F be (~ X ~ ~) B (X) V (~ A *) . T h e

induction hypothesis is tha t there is a 0:-function g which is c;-definable in S; such t h a t

By the definition of Witness,

S o define j t o be

Then j is c;-definable by s;, j is a 0:-function and

Case (10): (t/<:right). Suppose the last inference of P is

where a is the eigenvariable and does not appear free in the lower sequent. Let D be the

96 Computational Complexity of Definable Functions

formula a < _ t h (k) , let E be B(a)v(VA*) and let F(Z,d) be (V X < _ ~) B (X) V (~ A *) . T h e

induction hypothesis is tha t there is a 17;-function g such tha t

First, consider the case where (Vx<t)B(x) is not in c ~ ! ~ u I I ~ ~ _ ~ . So (V X ~ t) is shar-
ply bounded with t=lrl for some term r . W e define the function k by

W e define f by the following limited iteration scheme:

By Proposition 4, k~17; and hence j€U;. I t is straightforward t o see tha t

I t follows by xi)-LIND t ha t

Hence,

sit witnessg(w,i?)> ~ i t n e s s ~ $, ~ ~ (j (w , t) , i ?)

which is wha t we needed t o show.

Second, consider the case where (Vx<t)B(x) is in C{,&JIIi". If A (t , a) is any one
of the formulae a i t , B (a) or (b'x<t)B(x) then W i t n e ~ s ~ ~ ~ ' ~ (w , t , a) is defined t o be
equivalent t o A(i?,a) itself. Let h (w , t) be the 17:-function (p x i t) B (x) and let

$5.2 T h e Main Proof

j (w,t)=g(<O,w>,t ,h(w,t)) . Then j satisfies the desired conditions.

Case (11): (Cut). Suppose the last inference of P is

Since P is free cut free, B must be a Ct-formula. Let D be the formula BV(WA) and let E
be BA(AI'). T h e induction hypothesis is t ha t there are CI;P-functions g and h which are

c:-defined by S; such tha t

and

We define the function j as

. +

By Proposition 4, j€CI,J', and since Witness$: is A: with respect t o s;, j is c:-defined by

s ~ ~ . Also, i t is easy t o see tha t

Case (12): (c:-PIND). Suppose the last inference of P is

where a is an eigenvariable and must not appear in the lower sequent. We shall only con-
sider the case where B(0) is in I' and B (t) is in A . (If this is not the case, then
BEC~!,UII~!, and the argument is much simpler.)

T h e general idea of the argument for Case (12) is t o t rea t the c:-PIND inference
as if i t were Itl.-l cuts. So, in effect, Case (12) is handled by iterating the method of Case

(11).
Let D be the formula ~(Ljal)h(AI'*), let E be B (~) v (~ A *) , let F be B(o)A(AI'*)

and let A (t , d) be B (~) V (~ A *) . T h e induction hypothesis is t ha t there is a O;P-function g

98 Computational Complexity of Definable Functions

such tha t

We define Ot-functions k and h by

. +

v if W i t n e s s ~ ~ , (v , t)
k(v,w,t) = w otherwise

By Proposition 3(c) there is a term tA and a Up-function q which is c/-definable in S;
such tha t

Now define j* by the following limited iteration scheme:

This is a valid limited iteration definition since the use of the function q gives a provable

polynomial space bound on p; namely, p (w, t ,m)<a[tA] (t , t) . T h u s j* is a Ut-function
which is c:-definable in s;.

Now i t is easy to see tha t

sit witness$'(w,t)> ~ i t n e s s ~ ~ ~ (j * (w , t , 0) , t , 0)

and
i zd * sit ~ i t n e s S j ' (w , t) ~ WitnessA. (j (w , t , ~ j u J),Z,MSP(~,I (1; ~ ~ t u J I)) ~

3 ~ i t n e s s ~ ~ ~ ~ (j * (w , ~ , u ~) ~ t ~ ~ ~ ~ (t , ~ t 1; lul)).

So by c:-PIND with respect t o u,

55.2 T h e Main Proof

S o define j(w,t)=j*(w,t,t) and we are done.

Case (13): (Structural inference). T h e cases where the last inference of P is a weak inference,
an exchange inference or a contraction inference are all trivial and we omit their proofs.

Q.E.D.

5.3. The Main Theorem for First Order Bounded Arithmetic.

Combining Theorem 1 with Theorem 3.1 we get:

Theorem 6: Let i2 1. Suppose A is a c:-formula and tha t sit (V??)(3y)~(~,y) . Then there is a
term t , a c:-formula B and a function j€CI,P such t h a t

(1) sit (V Z) (~ Y ~ ~)B(z ,Y)
(2) sit (V~)(~Y)(B(~,Y)>A(Z',Y))
(3) s,' t (v?)(vY)(v2)(B(Z1 Y) ~ B (z ~ 2) 3 Y = Z)

(4) For all X , N F B(X,j(X))

Conversely, if j ~ 0 / , then there is a term t and a c:-formula B such t h a t (I) , (3) and (4)
hold.

Corollary 7: Let i21. A function j is c:-definable in 5'2 iff j60,P.

For the special case i=l, we have

Corollary 8: T h e c:-definable functions of S: are precisely the polynomial time computable
functions.

W e can restate Theorem 6 in terms of predicates instead of functions as follows:

Theorem 9: Let 1 Suppose A is a c:-formula, B is a nib-formula and tha t
s ~ ~ A (x) * B (~) . Then there is a predicate QEA! such t h a t for all it,

Computational Complexity of Definable Functions

Conversely, if QEA?, then there are formulae A and B so t h a t all of the above
holds.

Prooj: This is an immediate consequence of Theorem 6. I t is proved by noting tha t the function

0 if A(2)
1 otherwise

is c?-definable in s2' by the equation

Thus fEOf and hence A represents a predicate in P.

Recall t ha t in Chapter 1 we characterized the NP predicates as those expressible by
c/-formulae and the co-NP predicates as those expressible by ll?-formulae. Hence in the
case i= l , Theorem 9 becomes:

Corollary 10: Let A(3) be a formula such t h a t S: proves A is equivalent t o a c/- and t o a
ll:-formula (i.e., S i proves tha t A E N P ~ c O - N P) . Then A(d) is a polynomial time predi-
cate (i.e., A is in P) .

So any predicate which is ~ i - ~ r o v a b l ~ in N P n c o - N P is in P.

5.4. Relativization.

T h e results proved above can be relativized by introducing oracles. For this two things
must be done: firstly, enlarge the language of Bounded Arithmetic t o include new function sym-
bols for oracles, and secondly, use oracle Turing machines for computations.

We relativize the theories S; in the following way:

Definition: Let k > l and let p(nl , . . . ,nk) be a suitable polynomial. For each j 20 , q l k is a k-
ary function symbol. T h e bounding aziorn for qLk is

P Definition: Let qj,,i1, . . . ,1),I>% be a sequence of function symbols. We write if as an abbrevib

tion for tha t sequence. T h e theory si(if) is defined t o be the theory with the language of
P Bounded Arithmetic plus the symbols t)ilj,, . . . ,ql)kn and with the following axioms:

Relativization

(1) the BASIC axioms

(2) for each 15 t < n , the bounding axiom: ~ q ~ ~ k ~ ~) ~ < p t (~ ~ ~)

(3) the c;~($)-PIND axioms.

Recall tha t in Chapter 1 w{ was defined to be the set of k-ary functions with growth
rate bounded by the polynomial p .

Definition: If q,Pk is a function symbol then the junction space associated with q,Pk is w{

We can relativize Theorem 1 as follows:

P Theorem 11: Let if be a vector of function symbols and let 3=wr11, . . . ,win be the vector of

function spaces associated with the q's. Let i>l be fixed.

Suppose ~~($)~(VZ') (3y)A(zt ,y) where A is a xib(if)-formula and Z' and y are the
only free variables in A(Z',y). Then there is a term t(Z'), a x;b($)-formula B and a functional
g in Cl,J'(Sj) so that

(1) ~zi(if) t (v-i')(~Y)(B(-j',~)>~(-j'lY))

(2) Szi(?i) t (~ ~) (~ Y) (\ J Y) (B (~ , Y) A B (Z " ~ .) > y=a)

(3) ~ 2 ~ ($) t - (~ Z) (~ Y L ~ (~)) B (Z , Y)

(4) For all SEN" and all oracles Rl, . . . ,an with Cli~u{' for all l < i < n ,

Proof: The entire proof of Theorem 1 including Theorem 5 can be relativized. This yields a
proof of Theorem 11.

Corollary 12: Suppose A and B are A:-formulae with respect t o 5'2, q is a suitable polynomial
and tha t

Then there is a functional g~Of ' (uf) such tha t whenever RE^ f ,

102 Computational Complexity of Definable Functions

Recall t ha t the condition tha t g€OP(wj) means tha t g can be computed by a deter-
ministic, polynomial-time, oracle Turing machine M, where the function oracle f l used by M, is
required t o satisfy Ifl(x)l<q(lxI) for a11 x.

Prooj: By the hypothesis of the corollary,

Then, by Theorem 11 there is a g€OP(wf) such tha t , for all x and all f l€wj , g(x,fl) is equal t o
either a y such t h a t A(x,y) holds o r a y such t h a t B(y,fl(y)) fails.

Q.E.D.

Definition: Let j be a unary function symbol. Then P H P (j) is an abbreviation for the formula

af O W Y < 2 a) (j (y) < a) > (3 ~ <2a) (3 ~ < 2 a) (j (y) = j (a) ~ y # a).

S o P H P (j) expresses a pigeon hole principle s tat ing tha t 2.a pigeons can not sit in a holes.
Note t h a t a appears as a free variable in PHP(j) .

Corollary 13: S i (j) I+ PHP(j) .

Of course, ~ ; (j) means the theory extending S; with the new function symbol j and
the ~:(j)-PIND axioms.

Prooj: Suppose the corollary is false, then let q be the polynomial q(n)=n. Then

Hence,

So by Theorem 11 there is an j€Of'(wj) such tha t for all a € N and all oracles f l ~ w f ,
j (a , f l)=<y,a> where y and a satisfy the above condition.

Bu t this is absurd. f is computed by a polynomial time, oracle Turing machine Mf, so
Mf(x,fl) has run time <p(lxl) for all z and some polynomial p . Choose zo large enough so tha t
zo>p(lxoJ)+2. Then define flo so tha t the following conditions hold:

Relativization 103

If Mf(xo,Ro) first queries its oracle for the value of Ro(m) on the n-th step where
m<2.zo, then set Ro(m) t o be equal t o the greatest number j<min(m,zo-3)
such tha t no earlier oracle query of Mf(xo,RO) yielded the answer j . Such a j
will always exist.

If M/(xo,Ro)=<yo,zo> and if Ro(yo) and/or RO(zO) have not yet been defined, set
Ro(yo)=xO-1 and/or set Ro(zo)=xo-2.

For all other values of m , set Ro(m)=O.

Q.E.D.

Corollary 13 states t ha t S;(j) can not prove the pigeon hole principle PHP(j) . On the
other hand, Alex Wilkie [30] showed tha t Sz(j) can prove PHP(j) . Examining Wilkie's proof
closely yields the following theorem:

Theorem 14: (Wilkie [30]). T;(~)I- PHP(j) .

Combining Wilkie's theorem and Corollary 13 gives

Corollary 15: T;(j) is not equivalent t o s;(j).

I t is an open question whether S; is equivalent t o T; or even if S; is equivalent t o S2.

Chapter 6

Cook's Equational Theory PV

P V is an equational theory of polynomial time functions introduced by Cook [6]. P V
contains a schema which allows function symbols t o be introduced for each polynomial time
function and an induction schema which is essentially equivalent t o t he P I N D axioms applied
t o open formulae of P V .

O u r earlier results have shown t h a t s2' can Clb-define precisely the polynomial time
functions. T h u s i t is not too surprising tha t S2' and P V are closely related. W e shall see below
tha t , after making allowances for the fact t h a t they have different languages, S; and P V have
the same CP-formulae as theorems.

8.1. Preliminaries for PV and PV1.

Like S;, the universe of P V is the nonnegative integers. P V codes integers by dyadic
coding, as used by Smullyan [25]. An integer n is represented by the string dkdk-l . . do where

k
n= C 2'.di and each di is either 1 or 2.

i 4

P V has two unary functions 81 and $2 which are helpful for handling dyadic notation.
They are defined by

i.e., si(z)=2z+i.

P V has other initial function symbols in addition t o sl and s2, see [6] for details. P V
can also introduce new function symbols by a schema which Cook calls limated recursion on
notation, but in the terminology of this dissertation is more appropriately called limited itera-
tion on notation. Suppose g, hl, h2, kl and k2 have already been introduced as PV-function
symbols. Then we can define a new PV-function symbol f by

provided t h a t P V proves

Preliminaries for P V and PV1

for i=1,2. Here we are introducing Jxld as a function whose value is equal t o the length of the
dyadic code for x, namely Ixld=Llogz(x+l)J. T h e fact t h a t this inequality is expressible in P V is
proved by Cook [6].

I t is clear t ha t limited iteration on notation as defined above is similar t o the limited
iteration defined in Chapter 1. Hence, by Cobham [5], a function symbol for each polynomial
time function can be introduced in P V .

P V has only one predicate symbol, namely = (equality). However, we shall follow the
convention tha t a function symbol can be interpreted as a predicate by letting a nonzero value
denote True and a zero value denote False. For example, Cook [61 defines the function
P R O O F so tha t

1 if m is the Gijdel number of an equation and
P R O O F (m,n) = n is the Gijdel number of a PV-proof of m .

0 otherwise

In [6] i t is asserted tha t many function symbols can be introduced in P V . In addition
t o the function symbols defined there, P V has symbols for the functions S , +, a , #, 1x1 and LixJ

as well as functions for handling sequences; namely, P(i ,w) , the pairing function

and the sequence extension function *

(Our
from
ular,

definition for * conflicts with the notation in (61. O u r function * is completely distinct
Cook's.) Furthermore, P V can prove all the simple properties of these functions; in partic-
P V can prove all the BASIC axioms.

T h e syntax of P V can be expanded t o allow quantifier free logical formulae instead of
just equations. Cook [6] gives a detailed description of how this may be done and he calls the
enlarged theory P V 1 . W e shall not distinguish between P V and P V 1 notationally and we
shall continue t o refer t o the enlarged system as P V .

W e also enlarge the syntax of P V to allow the'predicate symbol 5. Of course this is
just an extension by definitions: x s y denotes the formula LE(z ,y) f0 where LE is the
PV-function symbol defined in [6] so t h a t LE(z,y)=l if XI y and otherwise LE(x,y)=o.

In addition t o the binary length function lxl, P V can define the dyadic length function
lxld by limited iteration on notation:

Cook's Equational Theory PV

P V can prove the simple properties of length functions including the formulae
1x1<1~1~+1, and 1x+11=1~1~+1.

P V defines function symbols corresponding to the logical operators:

0 if z=Oor y=O

otherwise

We can, in effect, use sharply bounded quantifiers in P V by introducing new function
symbols which have a similar effect:

Definition: Let P(z ,3) and F(3) be PV-function symbols. Then

is a PV-function symbol so that

if (\Jz< IF(3)l)(0#P(z13))
otherwise

Q(3) is defined by the following limited iteration on notation scheme:

-
Also, (3z<IF(Z')I)P(z,Z') is defined to be the PV-function symbol

NOT((V~I I F (~) J) N O T (P (~ , ~))) .

56.1 Preliminaries for P V and PV1 107

Proposition I: Let G(3,y) be any PV-function symbol. Then there is a PV-function symbol
F(3,y) so tha t

Proposition 1 states tha t P V satisfies an analogue of the A/-replacement property, in
tha t the value of F(Zly) is <G(3,0), . . . ,G(Z,lyl)>.

Proofi Let H(Z,y,z) be the PV-function symbol defined by the following limited iteration on
notation:

Now set F(Zly)=H(3,y,sl(y)).

0.2. S: and the Language of PV.

In order to s ta te the conservation results concerning S; and P V , we must enlarge the
language of S: t o include the language of P V . First we note:

Proposition 2: S; can cp-define all the functions of P V .

Proof: Th i s is proved just like Theorem 3.1. Indeed, there is no substantive difference between
limited iteration and limited iteration on notation.

Definition: LpV is the set of non-logical symbols of P V . Let S ; (L ~ ~) be the theory containing
S; and the language LPV. In addition, for each function symbol F in LpV, S$(LPV) has a
cP-defining axiom for F which defines F in terms of its limited iteration definition.

In other words, s i (L p V) is s2' plus symbols for the cP-defined functions of P V .
Proposition 2 guarantees tha t s;(LpV) can be so defined.

I t is immediately obvious tha t s;(LpV) is a stronger theory than P V . Th i s is because
the axioms of P V are all theorems of S ~ ~ (L ~ ~) . In particular, the induction on notation axioms
of P V are A:-PIND axioms of S ; (L ~ ~) .

W e shall need the following axiomatization of s i (LpV) :

108 Cook's Equational Theory PV

Definition: S ~ (P V) is the theory with the same language as S$(LpV) and with the following
axioms:

(1) T h e open BASIC axioms of s;,

(2) T h e C;(L~~)-PIND axioms,

(3) T h e following axioms defining the initial function symbols of P V (compare with

s1(z)=2z+l
s2(z)=2z+2
TR(O)=O
TR(s i(z))=z
zceO=z
Z@ si(y)=s i (z ~ y)
z@O=O
z @ ~ i (~) = z e (z @ ~)
LESS (z,O)=z
LESS (z,si(y))= TR(LESS (z , y))

where i=1,2 and where we are using e t o denote Cook's function * since *
has already been used for other purposes.

(4) Whenever j is a defined function symbol of P V , introduced by equations (2.2)-
(2.4) of Cook [6], S i (P V) includes the axioms

Proposition 3: S;(Lpv) and S ~ (P V) are equivalent theories.

Proof: It is clear t h a t Si(LpV) is stronger than s~(Pv) . For the converse, it is necessary to
show tha t s ~ (P V) proves tha t every j€LpV satisfies the c:-defining axiom j (Z) = y e A f(Z, y)
by which j is defined in s2'(LpV). This is easily shown as follows: we can introduce a new func-
tion jr in s$(PV) by defining f r t o satisfy the c:-defining axiom j'(?)=y-Af(3?, y). Then
this theory s i (P V , j 3 is a conservative extension of S i (P V) . I t is now easy t o prove by PIND
tha t (K?)(j(3)=j'(3)), and hence j satisfies the defining equation for j'.

We next s ta te the main theorem of this chapter. (This theorem was independently
conjectured by Stephen Cook.)

$6.2 S: and the Language of PV 109

Theorem /: Let t=u be any equation of P V . Then S2'(PV) t t=u iff P V t t=u.

One direction of this theorem is immediate from our remark above tha t S:(Lpv) is
stronger than P V . T o prove the converse we shall show below t h a t the results of Chapter 5 can
be partially formalized in P V .

6.3. Witnessing a c:- orm mu la.
For the sake of avoiding excessive subscripts, we use C:(PV) and ~ I ~ (P v) as

synonyms for C:(Lpv) and I l ~ (L p V) from now on.

In order t o handle c~(Pv)-formulae in the theory P V , we need a way for P V t o
assert t h a t a given c~(Pv)-formula is true.

Definition: Let A be a c/(Pv)-formula and d be a vector of k free variables containing all the
free variables of A . WITNESS^ is a (k+l)-ary function symbol of P V defined by induction
on the complexity of A as follows:

(1) If A is atomic,

(4) If A is (Vz<Itl)B(x17t) where B (~ , ~) E c ~ ~ (P v) , then

(5) If A is (3x<t)B(x ,d) where BEC!(PV), then

(6) If A is -B then we transform A by logical operations so t h a t Cases (1)-(5) apply.
Specifically, if A is -(-B), -(BvC), -(BAC), -(Vx<t)B or - (3x<t)B, then let

A* be B , (-B)A(-C), (-B)v(lC) , (3x<t)(-B) or (Vx<t)(-B) respectively.

Cook's Equational Theory P V

Then

Definition: Let A (3) be a c/(Pv)-formula. We say that P V essentially proves (VZ)A(?i') iff
there is a PV-function symbol F such that

We shall see below that if AEC/(PV) and s ~ (P v) ~ (w)A(Z) then P V essentially
proves (VZ)A (3).

Proposition 5: Let A(b,d) be a C;(PV)-formula and let B(d) be A(t(d),d) for some term t .
Then P V proves

ProoJ by induction on the complexity of A .

Propoeition 6: Let A be a Clb(PV)-formula and let d be a vector of free variables containing all
the free variables of A . Then there are functions MINWIT~ and WIT SIZE,^ definable by
P V such that

PVF MINWIT~(V)~ WIT SIZE^(^)
and

PVF WITNESS^(w,a)#o 3 WITNESS~(MINWIT~(~)~~)+O.

So MINWIT~ maps any witness for A(d) to a minimal witness; the Giidel number of
the minimal witness is bounded uniformly by WIT SIZE^((^).

The proof of Proposition 6 is by induction on the complexity of A . T h e crucial point
of the proof is to show that sequences can be coded efficiently. For example, any sequence
<nl , . . . ,n,> has some Gijdel number less than tm(nl, . . . ,n,) for some fixed term t,.
Although we have not specified the details of PV's P function, for any reasonable definition of
the p function Proposition 6 is valid.

T h e Main Proof, revisited

6.4. The Main Proof, revisited.

We next s ta te and prove a slightly stronger version of Theorem 5.5. All the conven-
tions of 55.2 apply here; in particular, S$(PV) is a natural deduction theory.

Theorem 7: Suppose S$(PV) proves the sequent r,ll-+A,A and tha t each formula in r U A is a
c:(Pv)-formula and each formula in llUA is a ll:(Pv)-formula. Let c,, . . . ,c, be the free
variables in r , l l+A,A. Let X and Y be the formulae

Then there is a PV-function symbol F such tha t

I t is immediately obvious tha t Theorem 4 follows from Theorem 7, since when A is
atomic,

Proofi of Theorem 7.

By Proposition 4.8, there is a free cut free ~ ~ ~ (P V) - ~ r o o f P of r , l l + h , A which is in
free variable normal form. Every formula of P is in c:(Pv)u~~/(Pv) and each cu t formula of
P is a c/(Pv)-formula. As in the proof of Theorem 5.5, we assume without loss of generality
tha t ll and A are empty. T h e proof is by induction on the number of inferences in P.

T o begin the proof, suppose P has no inferences. Then P contains a single sequent
which must be either (a) an equality axiom, (b) a BASIC axiom, o r (c) one of the axioms of
s2'(PV) defining an initial or defined function symbol of P V . Since all of these axioms are open
and are theorems of P V , i t is easy t o see tha t the theorem holds in this case.

Now suppose tha t Theorem 7 holds for proofs with I n inferences and tha t P has n+l
inferences. T h e argument splits into many cases depending on the last inference of P . We shall
number the cases as in the proof of Theorem 5.5. Since the proof parallels closely the proof of
Theorem 5.5 we shall omit a lot of the cases.

Case (I): (-:left) and (1:right). These are "cosmetic" inferences.

112 Cook's Equational Theory PV

Case (2): (A:left). Suppose the last inference of P is:

Let D be the formula B A (~ ' *) and let E be (B A C) A (~ *) . T h e induction

hypothesis is t ha t for some PV-function symbol G ,

Let H be the PV-function symbol defined so tha t H(w)=<P(l ,P (l ,w)) ,P (2 ,w)> and let
F(w,Z)=G(H(w),i?). Then

P v WITNESS:(w ,i?)#o 3 WITNESS;(H(w),z)#o
and

P V k WITNESS^(w B)#o> WITNESS&(F(W ,Z)) , ~) # 0

which is what we wanted to show.

Cases (5)-(7): Omitted.

Case (8): right). Suppose the last inference of P is:

Let D be the formula B V (~ A *) , let E be C V (~ A *) and let F be (BAC)V(VA*) .
T h e induction hypothesis is t ha t there are PV-functions G and H such t h a t

PV k WITNESS,$(, ~) # 0 3 WITNESS;(G(w,z) l i?)#~
and

P v k WITNESS&(w,Z)#O> WITNESS~(H(W , Z) , Z) # O .

Define the PV-function K so tha t

v if W I T N E S S ~ ~ . (~ , ~) # O
K(v,w,Z) = w otherwise

$6.4 The Main Proof, revisited

and F so that

I t is easy to see tha t

Case (9): (3s:r ight) . Omitted.

Case (lo): (V<:right). Suppose the last inference of P is:

where a is the eigenvariable and must not appear in the lower sequent. Let D be the for-

mula a < l r l ~ (n I ') , let E be B(a)v(VA*) and let C be (Vz<l r l)B(z)v (V~*) . By the induc-

tion hypothesis there is a PV-function G so that

By Proposition 1, there is a PV-function H such tha t P V proves

We define the PV-function symbol J as follows by limited iteration on notation:

J (w , ~ , z) if WITNESS&.(J(w , t , z) , t) j c ~
J(w,2,si(z)) =

/?(2,G(w,Z,Is;(z)ld)) otherwise

Then define F (w , 2) = < H (w l t) , J (w , t , s l (r (~))) > . P V can use an induction on notation
argument t o prove

114 Cook's Equational Theory PV

Case (11): (Cut). Omitted.

Case (12): (cP-PIND). Suppose the last inference of P is

B(L+aj),I'*+ B(a),A*

where the eigenvariable a must not appear in the lower sequent. We only consider the case
where B(0) is in I' and B(t) is in A.

Let D be the formula ~ (L f a j) ~ (m *) , let E be B (~) v (~ A *) , let C be B (o) A (~ *)

and let A be ~ (t) v (v A *) . By the induction hypothesis, there is a PV-function G such

that

Let T R M be the PV-function satisfying TRM(z,i)=MSP(z,lzl-.d). Let
J(v ,w)=</3(1 ,~) , /3 (2 ,v)> . Let H be the PV-function defined by the following limited
iteration on notation:

\ otherwise

This is a valid limited iteration on notation definition since

because MINWIT,$" was used in the definition of H. By using induction on notation, P V
can prove

So define F(w,Z)=H(w,t,sl(t(Z))) and then

56.4 The Main Proof, revisited 115

Q.E.D.

Corollary 8: Let A(2) be a ~ ~ ~ (P ~) - f o r m u l a . If s ~] - (P v) ~ (V ~) A (~) then P V essentially proves
(V3)A (2).

Proof: This is immediate from the definition of "essentially proves" and Theorem 7.

Chapter 7

Giidel Incompleteness Theorems

We next take up the subject of Godel incompleteness results. We shall see that the
first and second incompleteness theorems hold for S i . We shall also prove strengthened versions
of the incompleteness theorems which apply to the consistency of bounded proofs and of free
cut free proofs.

Before proving incompleteness results, we must show that the syntax of
metamathematics can be coded in Si. Of course, it is well known tha t the syntax of first-order
logic can be recognized and manipulated by polynomial time algorithms and as we showed ear-
lier, S; can c/-define any polynomial time algorithm. This might appear to be an a priori
argument tha t the arithmetization of metamathematics can be carried out in S;. However, as
Feferman [9] emphasizes, the arithmetization of metamathematics must be carried out in an
intensional manner and this does not follow from our a priori argument.

We begin by giving a general framework for making inductive definitions in s2' and
using this framework to outline how the arithmetization of metamathematics in Si can be car-
ried out intensionally.

7.1. Trees.

As a preliminary we need to give a method for coding trees in s;. Trees will be coded
by sequences. An example of a tree and its coding are given in Figure 2. A tree is coded by a
sequence with two special symbols "[" and "1" for denoting the structure of the tree.

Following the notations and conventions of 52.42.5 we define the following
c/-definable functions and A/-predicates of s;.

(a) RBracket = 0
LBracket = 1
Node(%) 2 2 2

(b) Balanced (w)
[(#j< Len(w))(LBracket=P(Sj, w)) = (# j< Len(w))(RBracket=P(Sj,w))] A

A (Vi<Len(w)) [(# j ~ i) (R B r a c k e t = P (S j , w)) 5 (#j<i)(LBracket=P(Sj,w))]

Note tha t the counting operations are all equivalent to length bounded count-
ing and hence by Theorem 2.7, Balanced is a A:-definable predicate. We shall use
length bounded counting freely without comment from now on.

$7.1 Trees 117

i j k

A tree is coded by a sequence which enumerates the tree in depth first
order. T w o special symbols, "[" and "I" are used t o denote movement down and
up the tree. T h e tree shown has two roots, labeled a and b.

Figure 2

(d) MultiTree(w) Seq(w)~Len(w)#O~Balanced (w) ~ L B r a c k e t # P (l , w) ~

~ (t l i < Len(w))(LBracket=P(i+l,w)> Node(P(i+2, w)))

MultiTree(w) is t rue iff w codes a tree, which may have more than one root.

(e) Tree(w) M u l t i T r e e (w) ~ ~ (~ i < L e n (w)) (~ > O ~ N o d e (P (S 3 ~ w) = O)

(f) Leaj(i,w) MultiTree(w)~Node(P(i,w))~LBracket#P(Si,w)

So Leaf(i,w) is true iff P(i,w) codes a leaf of the tree w. T h e father of a node
is the node directly above it; the sons of a node are the nodes directly below it. We
define Father and Son so tha t if Father(i,w)=k then the node P(k,w) is the father of
the node P(i,w), and so tha t Son(n j ,w)= i iff P(i,w) is the n-th son of the node p(j,w).

(p j < ;)Balanced (Subseq(wlj+2,i)) if Node(;, w)
(g) Father(i,w) = otherwise

W e use Len(w)+l as the alternative value for the function Father since Len(w)+l is
never a node and hence never a valid father.

if Father(;, w)#j
(h) SonPos (i j ,w) =

(#z< i.- j) [Father(j+z,w)= j] otherwise

Gijdel Incompleteness Theorems

Note tha t the father of a root of a multitree is 0 and tha t the roots of a multitree are
the sons of an imaginary node a t the zeroth position of the sequence coding the multi-
tree.

(i) Valence (j,w) = (#z<Len(w))(Father(z ,w)=j)

(j) SonP(k,j,w) = P(Son(k1jlw),w)-2

FatherB(i,w) = P(Father(i, w) ,w) l2

We subtract 2 so tha t the values of the node labels are distinct from the codes for
brackets, namely 0 and 1 for "[" and "I".

(k) W e also define a function for extracting subtrees of trees:

SubTree(i,w) = Subseq(i ,max{j~Len(w)+l : Tree(Subseq(i,j,w))),w).

T h e above encoding of trees is intensional in the sense of Feferman [9]. T h e skeptical
reader may verify tha t , for instance, S: can prove

Mul t iTree (w)~ Node(P(j,w))>(Leaf(j, w)* Valence (j , w)=O)

Mul t iTree (w)~ Node(P(i,w))> Depth(Father(i,w),w)=Depth(i,w).- 1

MultiTree(w)~Node(i ,w)> Tree(SubTree(i,w)).

7.2. Inductive Definitions.

W e show in this section tha t S: is capable of defining predicates and functions by
inductive definitions, provided tha t the inductive definitions give a straightforward deterministic
polynomial time algorithm for expanding the inductive definition. Theorem 2 shows tha t such
an inductive definition is intensional and allows proofs in S: t o be carried out by induction on
the complexity of an inductive definition. We later use the constructions of this section t o
argue tha t can arithmetize metamathematics.

$7.2 Inductive Definitions 119

Definition: T h e n predicates Po, . . . ,Pn-l are defined by a p-inductive definition iff they are
defined by the following:

(a) k is a non-negative integer,

(b) For each s <k there is a number i,>O and a formula Q,:

where the following conditions hold:

(i) each RUj is Pi or -Pi for some i < n ,

(ii) each j, is a 8:-definable function of s:,

(iii) for each j s i , , sit z#O>VUj(z)l<lzl,

(iv) Si t Ife,o(z)l+ . +Vu,i,(z)l~ 1x1.

(c) For each i < n there is a function gi which is 8:-definable in S: such tha t

sit (vz)(gi(z)sk).

(d) For each i < n , either Pi(0) or -Pi(0) is true by explicit definition.

(e) For each i < n , Pi is inductively defined by

Because of the decreasing length condition of (b.iii) above, a p-inductive definition
uniquely defines the value of P i (z) for all i and z. In fact, a p-inductive definition gives a poly-
nomial time deterministic algorithm for checking whether Pi (z) holds. T h a t this algorithm can
be formalized in S: is the content of the next theorem.

Theorem I : Let Po, . . . ,Pn-, be defined as in the p-inductive definition above. Then each
predicate Pi is A:-definable in s:.

Proof.- In order to A:-define the predicates Pi in S: we must (a t least implicitly) specify an
algorithm for determining when Pi (z) holds. This is done by constructing a tree which demon-
strates tha t either P i (z) or -Pi(z) holds. Each node of the tree will be labeled as < P m , y > or
<-Pm,y> which denote the assertions tha t Pm(y) or -Pm(y) holds, respectively. T h e sons of
such a node must provide evidence tha t Pm(y) o r -Pm(y) (respectively) is valid. For example, if
gm(y)=s, then the sons of < P m , y > must be l+i, nodes labeled <RUj ,juj(y)> for j<i,. T h e
leaves of the tree must be labeled either <Pm,O> o r <-Pm,O> as allowed by clause (c) of the
p-inductive definition. T h e root of the tree will be labeled either < P i , z > o r < lPi ,z>.

W e begin by writing ou t a formal definition for a "demonstration tree" for Pi(z) . Let
CUj, c u d , Bej, and D i be fixed terms defined by:

Godel Incompleteness Theorems

BUj = Ii where R,; is -Pi or Pi

(Recall t ha t Ij is a term with value j .) T h e leaves of a "demonstration tree" must satisfy the
leaf condition:

or, in words, a leaf must be labeled <Di,O> for some i. T h e non-leaf nodes of the "demonstr*
tion tree" must satisfy the following condition:

DTNC2(u1w) P(l,NodeP(u, w))<2n~P(2,NodeP(u, w))#OA
k n-1

A A A [Rem(P(11N~deP(u,w)),n)=i~gi(P(2,NodeP(u,w)))=s >
8 4 i=O

i s

Valence (u , w)=i,+lA A j, j(/3(2,Node/3(u, w)))=/3(2,~on~(~j,u,w))~
i-0

i s

~ (o (1 , NodeP(u, w))> n v CUj=P(1 , ~ o n P (~ j , u , w)))] .
i=O

We combine both these requirements in

So a "demonstration tree" which proves Pi (z) o r -Pi(z) must satisfy

We will introduce Pi in S: as a alb-defined predicate symbol by:

57.2 Inductive Definitions

Thus it will suffice to establish that s2' proves

and
~ e m o ~ r e e ~ (w , z) ~ ~ e m o T r e e j (v l z)>P (l lRootP (~))=P (l ,RootP (v)) .

Since it is easier, we first show that S i proves the uniqueness condition. We argue
informally inside the theory s;. Suppose w and v are DemoTree's for P i (z) and/or - P i (z) .
Let A (w , v , b) be the formula

I t follows from the definition of DemoTree tha t A (w , v , b) > A (w , v , S b) . Hence, by c:-LIND,
A(w,v ,Len(v)) and A(w,v ,Len(w)) and hence Len(w)=Len(v). Now let B (w , v , b) be the formula

Now it follows that B (w , v , b) ~ B (w , v , S b) so by g-LIND, B(w,v ,Len(w)) . But this immedi-
ately tells us tha t

This completes the ~ ~ l - ~ r o o f of the uniqueness condition.

T h e rest of the proof of Theorem 1 is devoted to establishing the existence condition
for DemoTreei. I t is tempting to just argue by induction on the length of z tha t a DemoTreei
exists. Unfortunately, this argument would use IT/-PIND and we can not carry this out in S i .
Instead we must use a more sophisticated argument to construct the DemoTree. What we will
do is formalize a breadth first algorithm which constructs the demonstration tree and then
labels the nodes appropriately. We first define:

PD TNC2(u , w) P(1, NodeP(u , w)) < nA@(2,Nodep(u ,w))# O A
k n-1

A A A [P(l ,NodeP(u, w))= iAg i (P (2 ,NodeP(u1w)))=s3
8 4 i=O

i a

3 Valence (u,w)=i,+lA j, j (~(2 ,Node/3(u, w))) = P (2 , ~ o n P (S j , u , w)) ~
j+

Gi5del Incompleteness Theorems

where we explain SizeBounds below. So PDTi(w ,x ,b) asserts t ha t w is a tree containing the
first b+l levels of the construction of a demonstration tree. T h e SizeBounds is a formula
which bounds the size of w . What we wish t o show is

for some term t ; the SizeBound.9 formula must contain enough information t o do this. We
argue informally how t (z , b) may be found. First, we count the non-leaf nodes u, which are
labeled < i , y > with y#O. T h e number of bits used to code such a node can be required t o be
not more than 2(2.li1+2.(y)+4)+2 which is <4.(n1+4-ly1+10. We add on an adjustment allow-
ing for the bits needed t o code two brackets and conclude tha t each node can be coded by
<4-ln(+18+4.)y(bits. Consider the non-leaf nodes which are of depth c< b ; there are a t most
1x1 of them and their total length is 5) ~) . Hence the total number of bits used t o code the
nodes a t depth c is bounded by

Since the tree has depth b, the total number of bits required t o code the non-leaf nodes of the
tree is <(b+l).lzl,(4.ln1+22).

W e must also consider the nodes labeled <i,O>. Let i,, be max{i, : s=O, . . . ,k).
There are < b-1x1 non-leaf nodes on the first b levels of the tree and below them are
<l+b- lz (. (i , ,+ l) leaf nodes. (The extra 1 is for the case z=0) . Since a label <i,O> and its
surrounding brackets can be coded by <4.ln)+18 bits, the total number of bits used t o code
these nodes is bounded by

So the length)wl of w is bounded by

Since b will be restricted t o be 51x1 we can define the term t (z , b) t o be equal t o 2'('pb). This is

Inductive Definitions

the desired bound on w.
T h e formula SizeBounds should be a formula containing all of t he information used

above in establishing the bound on Iwl. I t is rather complicated t o actually write ou t
SizeBounds, so we leave it as an exercise for the skeptical reader. Given t h a t SizeBounds is
properly formulated, i t is now straightforward for S: t o prove

So by c:-LIND , ~ z] . t (3 w ~ t (z , l z l)) ~ ~ ~ ~ (w , z , l z l) . Finally, we need t o show t h a t

So let C(w,v,b) be the formula

I t is quite easy t o see t h a t P D T ~ (W , X , ~ ~ ~) > (~ V < W)C(W,V,O) and

Hence, by c:-LIND ,

~ z] . t ~ ~ T ~ (w , z , l z J) > (3 v ~ ~ . 2 ~ ' l " I ' ~ ~ " ("))C(w,v,Len(w))

from which S ~ F (3v)DemoTreei(v,z) is immediate.

Q.E.D.

Theorem 1 s ta tes t h a t sz]. can A:-define predicates which have p-inductive definitions.
We also wan t S; to be able t o prove theorems involving p-inductively defined predicates.
Accordingly we need t o know t h a t certain kinds of inductive proofs can be formalized in Sz]..

Definition: Let Po, . . . ,Pn-l be defined p-inductively as above. We say t h a t the 2 n formulae

Godel Incompleteness Theorems

have a p-inductive proof iff the following hold:

(a) Each Bi and Ci is alb with respect to s;.
(b) For O<s<k, O < j < i 8 , RUj is as in clause (b) of the p-inductive definition for

Po, . . . ,Pn-l. Let Q, be the formula Bi if RUj=Pi or the formula Ci if RUj=-Pi.

Define g8 dually to be Bi if R, ,j=-Pi and to be C i if R , j=Pi.

(c) For i=O, . . . ,n-1, and O<s<k, S; proves

Theorem 8: Given (a), (b), (c) as above, sz]. proves

for O<i<n.

Proofi Let A(w,a,b) be the formula

n-1

A A [P(l,NodeP(Su ,w))=i+n> Ci(P(2,NodeP(Su, w)))]).
i4

Clearly, s ;~A(w,~ ,o) . Also, because of clause (c) of the p-inductive proof, sz]. proves
A(w,a,b)>A(w,a,Sb). Hence, by c/-LIND , ~ i t ~ (w , a , ~ e n (w)) . By Theorem 1,
~ ; t (3 w) ~ e r n o T r e e ~ (w , a) and since the root node of such a demonstration tree must be <;,a>
or < i+n , a> we have the desired result.

Q.E.D.

87.2 Inductive Definitions 125

Definition: T h e function F is defined by a p-inductive definition iff F is defined by the following:

(a) k is a fixed nonnegative integer.

(b) For each s s k there is an is-ary function G, and i, unary functions f , ,~ , . . . ,f,,i8 satisfy-

ing

(i) G, and each f S j are c:-definable functions of s:.
(ii) ~ ~ t z f O > ~ , ~ (z) l < l z l for all jsi,.

(iii) sit Vs,l(z)l+ . . +Vs,ijz)l<IzI.

(c) There is a function g C:-definable by S: so tha t ~ i t (V z) (~ (x) < k) .

(d) F (z) is defined inductively by

(e) There is a term t(z) (which will bound F(z)) so tha t for all s < k ,

Theorem 3: Let F be defined by the p-inductive definition above. Then F is c:-definable in
5'2. Furthermore, the definition of F in S; is intensionally correct in tha t properties of F can
be proved in S; by the use of induction.

Proof: This is proved in a manner very similar t o the proofs of Theorems 1 and 2, and we omit
the proof.

7.3. The hithmetization of Metamathematics.

In order t o establish the G d e l incompleteness theorems for Bounded Arithmetic, we
need t o introduce c:-defined function symbols and A:-defined predicate symbols for handling
G d e l numberings for metamathematical concepts such as "formula", "proof', etc. With the aid
of p-inductive definitions we demonstrate such an arithmetization below.

We begin by introducing G d e l numbers for all the syntactic symbols of Bounded
Arithmetic. Each symbol is assigned a number as listed below.

G a e l Incompleteness Theorems

Logical Symbols

v - 0 v - 5
3 - 1 (- 6
7 - 2) - 7
3 - 3 1 - 8
A - 4 + - 9

Non-logical symbols

Constants: 0 - 16
Unary Functions: S - 20, 1x1 - 24, LfzJ - 28
Binary Functions: + - 32, - 36, # - 40
Binary Relations: = - 18, - < - 22

Free Variables Bound Variables
a l - 19 2 1 - 17
02 - 23 2 2 - 21
a , - 27 z3 - 25

Corresponding t o this assignment of G d e l numbers we introduce the following predi-
cate symbols in

AQuant(z)
EQuant(z)
Not(%)
Implies(z)
And(z)

04 4
LParen(z)
RParen(z)
Sep ar (z)
Arrow(z)

Quant(z) AQuant(z)vEQuant(z)
Conn 2(z) Impl ies(z)~And(z)~Or(z)
Funcl(z) Succ(z)~Log&(z)~Div&(z)
Func&(z) Plus(z)v Times(z)vSmash(z)
Rel&(z) Equals(z)vLE(z)
FVar(z) z>16~Rem(z,4)=3
BVar(z) z>16~Rem(z,4)=1
Var(z) FVar(z)vBVar(z)

(Note t h a t we used "Separ" since "Comma" has already been used.) We will abbreviate con-

s t an t s by using a bar over the name of the constant. For example, AQuant denotes the

$7.3 T h e Arithmetization of Metamathematics

constant 0, LParen denotes 6, and denotes 22.

Definition: Semiterm and Term are unary predicates which are A:-defined in Si by the follow-
ing inductive definition:

(a) iSemiterm(0)

(b) If Seq(w) and Len(w)=l and V a r (~ (l , w)) v Z e r o (P (l , w)) then Semiterm(w).

(c) If Semiterm(w) and Func l (z) then Semiterm((O*LParen*z)**(w*RParen)).

(d) If Semiterm(w), Semiterm(v) and Func,!?(z) then

(e) Anything which is not required t o be a semiterm by the above conditions is not a
semiterm.

I t is easy t o see tha t the definition of semiterm can be formulated as a p-inductive
definition.

A term is defined t o be a semiterm without any bound variables:

We next define semiformulae and formulae. We shall adopt conventions on free and
bound variables which are slightly unusual but which make the inductive definitions more
manageable. We first define atomic formulae and atomic semiformulae by:

We also define what i t means for a bound variable t o appear bound in a semiformula:

Because of the way we have defined Bound and Free we will not allow semiformulae in which a

128 Gijdel Incompleteness Theorems

bound variable is both bound and free. For example, (Vz)(z#O)>z#O is not a valid semifor-
mula.

W e define SemiFmla (w) by the following inductive definition:

(a) If ASemiFmla(w) then SemiFmla (w).
-

(b) If SemiFmla (v) then SemiFmla ((O*LParen*Not)**(v*RParen)).

(c) If SemiFmla (vl), SemiFmla (v2) and Conn 2(z) and if Compat(vl,v2) then

SemiFmla ((O*LParen)**(vl*z)**(v 2* RParen)) .

(d) If SemiFmla (vl), Quant(z), BVar(y), Semiterm(v2), Free(y,vl) and Compat(vl,v2)
and (Vu < Len(v2))(/3(Su,v2)#y) then

SemiFmla ((~ * ~ + ~ * z * ~ * ~) * * (v ~ * ~ ~ a r e n) * * (v ~ * ~))

and
SemiFmla ((~ * L P a r e n * L P a r e n * ~ * ~ * ~) * * (v ~ * ~ ~ a r e n)) .

(e) SemiFmla (w) is true only as required by the above clauses.

We define Fmla(w) t o mean tha t w codes a formula; tha t is t o say, w is a semiformula and no
bound variable appears free in w:

Fmla(w) SemiFmla (w)h(Vu<Len(w))(BVar(/3(Sulw))>Bound(P(Su ,w),w))

W e next define how to count the alternation of bounded quantifiers in a formula. This
allows S: t o recognize c!-formulae. We first must be able t o distinguish sharply bounded
from non-sharply bounded quantifiers. We define LTerm (z) t o be true iff z codes a term of the
form It/:

L Term (z) Semitern?(z)~Len(z)> lhLog!?(/3(2,z)).

QCount(w) is a function classifying the formula w by i ts alternation of quantifiers.
QCount(w)=<O,i> means WEE:, QCount(w)=< 1 , i > means w~ll:, and QCount(w)=<2,i>
means w~C:nll:. QCount is defined by the following p-inductive definition:

(a) If 1SemiFmla (w) then QCount(w)=O.

(b) If ASemiFmla(w) then QCount(w)=<2,0>.

(c) If w = (~ * L P a r e n * ~) * * (v * R P a r e n) then

The Arithmetization of Metamathematics

<O,i> if QCount(v)=< l,i>

<l,i> if QCount(v)=<O,i>
Q C o u n t (~) = if QCount(v)=<2,i>

otherwise

(d) Suppose w=(0*LParen)**(vl*z)**(v2*RParen), where Conn 2(z) , SemiFmla (v l) ,
SemjFmla (v2) and Compat(vl,v2). If QCount(vl)=O or QCount(v2)=0 then
QCount(w)=O. Otherwise, define

QImp(~1) = < 1~/3(1,Q~0~nt(~~)),/3(2,&C0~nt(v~))> 1 otherwise

and let il1jl,i2,j2 be SO that QImp(vl)=<il,jl> and QCount(v2)=<i2,j2>.
Then

(<2,il+l> otherwise

(e) Suppose SemiFmla (w) , Semiterm(v2), SemiFmla (v l) , Quant(z) and BVar(y) where

w = (~ * ~ * L P a r e n * z * ~ * ~) * * (v ~ * R P a r e n) * * (v ~ * R P a r e n) . If QCount(vl)=O
then QCount(w)=O. Otherwise define

QCount (v l) if L Term (v2)~ /3 (l ,QCount (v1))=QType(z)

< Q Ty~e(z) ,P(2 , QCount(v1)) >
QCount(w) = if 1LTerm (v2)A/3(1,&Count(vl))=2

< QType(z),l+P(2, QCount(vl))>
otherwise

if z=EQuant
where QType(z) = otherwise

--
(f) If w=(~*LParen*LParen*z*y*RParen)**(v~RParen) where Quant(z), BVar(y), and

SemiFmla (v l) , then QCount(w)=O.

That completes the definition of QCount.

130 Gijdel Incompleteness Theorems

Another important operation we need t o c/-define in S$ is the substitution of a term
into a formula o r term. First define

We define Sub(w,x,v) t o be the function satisfying:

so Sub(w,x,v) is the result of substituting the term v for the variable x in w. We leave t o the
reader the proof tha t Sub is a c/-defined function of S$ (the existence and uniqueness condi-
tions for the above defining equation must be proved in S2'.) W e also claim tha t

This is proved by a p-inductive proof.

In addition t o the Sub function, we need a function for performing the simultaneous
substitution of a vector of terms for a vector of variables. W e define

So VSubOK(w,x,v) is true iff x is a vector of distinct variables, v is a vector of semiterms, no
variable in x appears in any of the semiterms in v and if there are no bound variable conflicts
which arise when the semiterms of v are substituted for the variables of x in w. W e can now
define VSub by:

$7.3 T h e Arithmetization of Metamathematics

z=VSU~(W,Z,V) (~VSU~OK(W,X,U)AZ=O)V

V(VSU~OK(W,X,U)A Uniqseq (Z)A

~ (3 ~ 5 SqBd(w#u,z)) [Seq(y)~Len(y)=Len(z)+l A

~(Vi<Len(z))(P(i+2,y)=Sub(P(i+l,y),P(i+l,z),P(i+l,u)))~

hP(l ,y)=w~z=P(Len(z)+1,~)])

We will omit proving the existence and uniqueness conditions for VSub, since the proof is
straightforward with the machinery developed above and in Chapter 2.

We define cedents by the following p-inductive definition:

(a) Cedent(0) (this is t he empty cedent).

(b) If Fmla(w) then Cedent(w).

(c) If Fmla(v,), Cedent(u2) and u2#0 then Cedent((ul*Separ)**v2).

(d) Cedent(w) holds only as required by clauses (a)-(c).

Next we define a couple of functions for manipulating cedents:

if Len(w)=O
CedentLen(w) = l+(#i<Len(w))Separ(P(Si ,w)) otherwise

S o CedentP(a,w) is equal t o the a-th formula of the cedent w, unless a=O in which case it is
equal t o t he number of formulae in w. Sequents are defined by

if -Sequent(w)
Antecedent(w) = otherwise

if iSequent(w)
Succedent(w) = otherwise

132 Gijdel Incompleteness Theorems

W e define QClass and QBded as a function and predicate which count the number of
alternations of quantifiers in sequents (and later in proofs). They are defined p-inductively by:

(a) If Fmla(w) then

QClass(w) = p(2, QCount(w))

(b) If Cedent(w) and w=(vl*Separ)**v2, then

(c) If Sequent(w) then

So QBded(w) is true iff w includes no unbounded quantifiers. QClass(w) is equal t o the least i
such tha t every formula in w is either a c:- or a ll:-formula.

W e are now ready t o metamathematically define what a proof is. A Godel number of a
proof codes a tree of sequents labeled precisely as t o how the rules of inference are applied.
Each node of the tree is labeled by an ordered pair <z ,w> where w is a formula and z codes
the rule of inference used t o deduce w from the sons of w (the sons of w are the sequents
directly above w in the proof tree).

First, we define what the initial sequents of a proof may be. Let LAziom(v) be a predi-
cate defined t o be true iff v=<O,w> where w is a logical axiom of one of the following forms:

(a) A j A where A is an atomic formula.

(b) -+- t= t where t is any term.

(c) t = s j j (t)=j(s) where s and t are terms and j is one of the functions S , LizJ, or

1x1.

(d) t l = s l , t 2 = s 2 j j(tllt2)=j(s1,s2) where each si and ti is a term and j is one of the
functions +, -, or #.

(e) tl=sl,t2=s2,p(tl,t2)--+p(s1,~2) where each si and t i is a term and p is one of the
relations 5 or =.

Let cu be any unary c:-definable function of Sh We use a t o enumerate a list of non-logical

57.3 The Arithmetization of Metamathematics 133

axioms and define NLAziorn,(v) to be true iff (1) v=<<vo,vl,v2,v3>,v4>, (2) either v3 is the
Gijdel number of one of the finite number of BASIC axioms or a(v2)=v3 and (3) the following
four conditions hold: (a) vO=<zl,. . . , zn> and vl=<yl , . . . ,y,>, (b) for l s i l n , BVar(zi)
and Term(yi), (c) ~ ~ = V S u b (~ ~ , v ~ , v ~) , and (d) Frnla(v4). Thus the non-logical axioms are
instances of formulae from BASIC axioms or formulae in the range of a. Note there is no
conflict of variables in (c) since all variables in yi are free variables and each z; is a bound vari-
able.

We are using a for additional generality; since every recursively enumerable set is the
range of a polynomial time function, we can have any recursively enumerable set which includes
the BASIC axioms as the set of axioms.

We now informally describe how proofs are arithmetized. A proof P is coded by a tree
w. The root of w corresponds to the endsequent of P. T h e leaves of w correspond to the initial
sequents of P. Each node of w corresponds to a sequent I',+A, of P. The sons of a node n
of w correspond to the upper sequents of the inference in P which yielded I',+A,. Accord-
ingly, the valence of each node of w is not greater than two. The label on each node of w is
<z,,v,> where u, is a G a e l number of the sequent r,+A, and z, is a code detailing the
inference used t o derive that sequent. We already explained in detail what z, is for initial
sequents. For non-initial sequents, it suffices to take 2,523 to be equal to the number of the
inference as described in Chapter 4 or zn=24 for a PIND inference.

T o define proofs as metamathematical objects in s;, we shall of course use a p
inductive definition. This is done by simultaneously defining the following predicates p
inductively.

Proof,(w) e++ "w codes a proof with non-logical axioms specified by NLAziorn,
and all inductions in w are A:-PIND 's."

ProofFCF,(w) "Proof,(w) and there are no free cuts in w."

QBded(w) e "All quantifiers in w are bounded."

QClass(w) e "i is the least number such that all formulae in w are in CibulTib."

FreeForrn(w,O,i) "the i-th formula of the antecedent of the endsequent of w is
a free formula."

FreeForm(w,l,i) ++ "the i-th formula of the succedent of the endsequent of w is a
free formula."

i=INDType(w) "i2l is the least number such tha t all induction inferences in
w are C~!~-PIND inferences, or i=O and there are no
induction inferences in w."

These can all be defined in a long but straightforward way by a p-inductive definition. Since it
would not be very interesting to write out the definitions precisely, we omit them.

Gijdel Incompleteness Theorems

Some further useful predicates are:

P ~ O O ~ B Q ~ Proof8(w)h QClass(w)<ih IND Type(w)<i+l
P ~ O O ~ B Q ; - Prooj,(w)h QClass (w) i i A INDType(w)<i+l
ProojBD1(w) - ProojO(w)h QBded(w)hIND Type(w)< i+l
~ r o o j ~ ~ j (w) Prooj,(w)h QBded(w)hINDType(w)< i+l
p r o o j ~ ~ ~ ' (w) ProojFCFO(w)~IND Type(w)< i f 1
P ~ O O ~ F C F ~ (W) ProojFCF,(w)~INDType(w)<i+l

When we use 8 as a subscript, i t denotes any function with range contained in the se t of Godel
numbers of BASIC axioms. T h u s ~ r o o j ~ ~ ' (w) , ProojBQi(w) and P ~ O O ~ F C F ' (W) each imply
tha t w is a proof in the theory ~ 1 . Also, ~ r o o J B ~ (' ') (w) , ~ r o o j ~ ~ (- l) (w) and ~ r o o j ~ ~ ~ (- l) (w)
mean t h a t w has no induction inferences a t all. T h e difference between P ~ O O ~ B D ~ and P ~ O O ~ B Q '
is t h a t P ~ O O ~ B D ' (W) means t h a t w codes a bounded ~ i - ~ r o o f whereas ~ r o o j B Q ' (w) means tha t
w codes a bounded roof and t h a t all the formulae in w are xib- or nib-formulae.

Define the function Endsequent (w) t o be /3(2,Root/3(w)). Also define P r j as

Prj(w,a) a=EndSequent (w)~(O*Arrow)**a=EndSequent (w) .

So Prj(w,a) is t rue iff a is the Gijdel number of the sequent or formula proved by the proof w.
We further define:

T h e last nine predicates are definitely not alb with respect t o S! because of the unbounded
quantifier (3 w) . Hence they can not be used in principal formulae of induction inferences.

$7.4 When Truth Implies Provability 135

7.4. When Truth Implies Provability .
The main point of this section is to establish a crucial lemma for the Godel incomplete-

ness theorems.

Definition: Num(z) is a function Ct-defined in S; so that Num(z) is the Godel number of the
term I,. We know tha t Num(z) can be cP-defined in 5'; since it is easy to give a p-inductive
definition for Num.

From now on we will use rX1 to denote the Gijdel number of a term, formula, sequent,

or prmf X. If n c N then r n l denotes r1.1 or Num(n).

We will write F s u b (r ~ l , r a l , t) to mean ~ u b (r ~ l , r a l , ~ u m (t)) ; in other words,

F S u b (r A 7 , m 1 t) is the formula obtained by replacing all occurrences of the free variable a in
the formula A by the term I f . If d is an n-tuple of free variables and d is an n-tuple of terms
then we write

~ g u b (r A 1 rid 3)
as an abbreviation for

T o improve readability, we shall frequently use FSub implicitly in the following way.

Let A (a l . . . , a) be a formula. Then A 8 1 . . . , 1 8) is an abbreviation for

&ub(rA(d)l1rdl,3). For example, we shall write

as an abbreviation for

The next theorem is very important for establishing the Godel incompleteness
theorems.

Theorem /:
(a) Let A be any c:-formula in the language of Bounded Arithmetic. Let al, . . . ,a, be all

the free variables of A . Then there is a term tA(d) such that

136 Gadel Incompleteness Theorems

(b) Let A be of the form (3x)B(Z,x) where B is a c/-formula in the language of Bounded
Arithmetic. Let al , . . . , ap be all the free variables of A . Then

S o Theorem 4 asserts t ha t for any CP-formula A(Z), S i proves t h a t for all values it
such tha t A(Z) is t rue there is an induction free, free cut free proof of A(Inl , . . . , Int) .

T h e proof of Theorem 4 is, of course, by induction on the complexity of A . T h e single
hardest par t t o prove is Lemma 5:

Lemma 5: Let t be any term with free variables al , . . . ,ak. Then

Proofi by induction on the complexity of t

(a) Suppose t is the constant term 0. Then S i t T ~ ~ F c F (- ~) (~ o = o ~) is immediate from the
equality axioms.

(b) Suppose t is a variable symbol a . Then sit T ~ ~ F c F (- ') (~ I ~ = I ~ ~) is immediate from the
equality axioms.

(c) Suppose t is S(r) . By the induction hypothesis, Si proves tha t for all S there exists a proof
tha t r(Inl , . . . ,In,)=I,(t). So i t suffices t o show t h a t

This is proved by c/-PIND with respect t o 6. Since there is a proof of S(Io)=Il, it is
clearly true for 6=O. T o deal with the induction step, we argue informally inside s;. T h e
induction hypothesis is tha t there is a free cut free ~ J - l) - ~ r o o f of S(Il~bl)=Is(l;bJ). We

divide the argument into two cases. First, suppose 6 is even. Then s2(-l) proves immedi-
ately tha t S(Ib)=Ib+SO and since I b + S O is identical t o Is, this case is done. Second, sup-
pose 6 is odd. Then sJ-') proves immediately tha t S(Ib)=2'IlLb1+2=2'(S(ILLbJ)) and by

2 2

combining tha t proof with the proof of S (I l b J)=I s l~bJ we obtain, by an inessential cut, a
1, 2

proof of S(Ib)=Isb.

T o apply c/-PIND we must find a uniform bound ts so tha t the proof of
S(Ib)=Isb is coded by a Gadel number s t s (6) . This is readily done, since in either case of
the argument for the induction step, the difference in size of the proof of S(Ib)=Isb over the
size of the proof of S (I l ;b~)=Is (l~ r~) is bounded by an amount proportional t o the size 16) of

2

6. T h u s the size of the free cut free ~z(- ') -~roof of S(Ib)=Isb is quadratic in the size of 6.

$7.4 When T r u t h Implies Provability

(d) Suppose t is r+e . As in (c), i t will suffice t o show t h a t

Let b, and c, abbreviate MSP(b,u) and MSP(c,u) respectively. Let D(u) be the Godel
number of the formula

We will show tha t

and
s,' t ThmFCF(-')(D(u))> T ~ ~ F c F (- ') (D (~ ~ - I)).

Then s,' can use g-LIND to conclude T~~FCF(-')(D(o)), which is what we need to
show, as bo=b and co=c.

We argue informally inside s,'. Let v=min(lcl,lbl); we want t o show tha t sJ-')
proves D(v). Suppose without loss of generality tha t v=lcl. Then c,=O, s o D(0) is

~ I ~ ~ + ~ = I ~ ~ + ~ ~ , and this is easily proved in ~ 2 (- ') by an equality axiom as Ibv and Ibv+o are
the same term. We next argue the induction step. T h e induction hypothesis is t ha t there
is a free cu t free roof of Ib,+IC,=Ib,+,, and tha t u>O. We want t o show tha t there
is an ~d- ') -~ roof of Ib8-l+Ic,-l=Ib .-I Note tha t bu=L+bu-J and cU=~$cu-J . There are
two cases t o consider. First suppose tha t one of b,-' and c,-1 is even and thus there is no
carry from the rightmost bit position when they are added together. Then i t is easy t o add
a small &mount t o the proof of Ib,+Ie,=Ib,+,, to get a proof of Ib,-l+Ic,-l=Ib,-l+C,-l.
Second, suppose tha t both b,-' and c,-' are odd. Then Sd-') can prove immediately from
the BASIC axioms t h a t I b 8 ~ l + I c , ~ l = 2 ~ (I b , + I c , + l) . We combine tha t with the ~2(- ')-~roof
of I~,+I,,=I~,+,, using an inessential cu t t o get an ~ J - l) - ~ r o o f of I, .-I +I, ,-I =2.(1~,+,,+1).

By (c), there is an ~ J - l) - ~ r o o f of Ib8+c,+1=Ib,+,,+1. From this we can use another inessen-

tial cu t t o obtain an ~2(- ')-~roof of Ib,-l+Ic,-l=2~Ib,+c,+l. Now we are done, since

2'1b,+c,+1 and Ib,-l+c8-l are the same term.

To apply c:-LIND to conclude tha t T~~FCF(-')(D(o)) we must find a term t+

which bounds the size of the ~z(- ')-~roofs constructed above. Because of the size bound
established in (c), we know tha t the increase in size of the proof of D(u1-1) over the size of
the proof of D(u) is bounded by an amount quadratic in the size of b,+c,. Hence the size
of the free cu t free ~2(-')-~roof of Ib+I,=Ib+, is bounded by a cubic polynomial of the sizes
Ibl and I c I of b and c .

138 Gijdel Incompleteness Theorems

(e) Suppose t is r . 8 . As before, i t suffices t o show t h a t S: proves

We shall prove this by using c:-PIND with respect t o t he variable b .

W e argue informally inside S;. First we consider the case b=O; we want t o show
t h a t sJ-'1 proves Io.Ic=Io. Th i s is easily proved in ~1-l) from the BASIC axioms, with a
free cu t free proof with size proportional t o the size Icl of c . W e next d o the induction
step. T h e induction hypothesis is t h a t there is an ~d- ') -~ roof of IILbl-Ic=IlLbI., and we

2 2

want t o show t h a t there is an sJ-') proof of Ib.Ic=Ib.c. There are two cases. First, if b is
even then I, is 12.L~bl and Ib., is 12.Libl.c. Hence the proof of IL~bl~Ic=IL~bl.c is easily

2

extended t o a proof of Ib.IC=Ib.,. Second, if b is odd then 2 . l :b J+l= b and ~ 2 (- ') can prove

from the BASIC axioms t h a t Ib ' Ic=2 ' I lbl.Ic+Ic. W e combine this with the proof of 15
I ~ ~ ~ . I , = I ~ ~ ~ ~ . ~ using an inessential cut t o get an ~. j- ') -~roof of 12.1Lbl.c+Ic=Ib'Ic. BY (dl,

there is a free cut free ~2(-lLproof of 12.11b].cfI,'lb.c and we can use this and an inessen-

tial cu t t o get t he desired ~d- ') -~ roof of Ib+Ic=Ib .c , which completes t he induction step.

Since we used (d) in the induction step argument, t he size of t he free cu t free
~J - ') -~ roof of Ib- IC=Ib . , constructed above is bounded by a quartic polynomial of the sizes
(bl and Icl of b and c .

(f) Suppose t is r#s . I t suffices t o show t h a t S2' proves

First, it is clear t h a t if b=O there is an Sd-')-proof of this using the BASIC axioms. We
shall prove the case b>O in two parts. First, we show by c:-PIND with respect t o c tha t
there is a free cut free roof of I1#IC=Il#, for all c; second, we use c:-PIND with
respect t o b t o prove t h a t there is a free cu t free ~2(- ')-~roof of Ib#IC=Ibxc for all b and c .
We shall argue informally inside s:.

First, it is clear tha t there is an ~d- ') -~ roof of 11#11=12 (since 1#1=2). S o sup-
pose there is a free cut free ~J - ') -~ roof of 11#111 =IIXL~cJ where c > l . From the BASIC

2 2

axioms, ~ 2 (- ') proves Il#Ic=2.11#l~cJ, thus there is a free cu t free ~2(- ') -~roof of

Il#Ic=2.11Xl~cl. B u t 2-11#l;c1 is the same term as IIXc and we are done.
2

Second, suppose there is a free cu t free ~ i ") - ~ r o o f of Il~b]#Ic=IL~b]#c and b t 2 .

From the BASIC axioms, ~ 2 (- ') proves I b # I c = (I L ~ b I # I c) ~ (~ # I c) . T h u s ~ 2 (- ') proves

Ib#Ic=IL;bl#c-Il#c. Hence, by (e), there is a free cut free ~J - ') -~ roof of Ib#IC=Ib#,.

T h e size of the free cu t free Sa-')-proof constructed above is bounded by a fifth-
order polynomial of the lengths Ibl and Icl of b and c .

57.4 When T r u t h Implies Provability

(g) Suppose t is LisJ or t is Is(. I t suffices t o show tha t

and

These are easily proved by using c/-PIND with respect t o b . W e omit the details.

Q.E.D.

W e are now prepared t o prove Theorem 4.

Proof: of Theorem 4 is by induction on the complexity of the formula A . We use separate cases
depending on the outermost connective of A .

(a) Suppose A is an atomic formula o r the negation of an atomic formula. A must be t=s,
+=s, t < s , or - t < s . By Lemma 5, s,' proves tha t t(Ial, . . . ,Ia,)=It(al, .,,,I and

s(Ial) . - -)Iat)=I~(al , . . . ,at). So i t will suffice t o show t h a t Si proves the following four for-
mulae:

b=c T ~ ~ F C F (- ') (~ I ~ = I , ~)

These are readily proved by induction on the lengths of b and c . T h e sizes of the free cut
free ~z(- ')-~roofs are bounded by a quadratic polynomial of the lengths 161 and Icl of b and
C .

(b) Suppose A is B(d)vC(Ti) and tha t Theorem 4 has already been established for B and C.
Thus,

S,' k B (~) I I (3 w < t B) ~ r j ~ ~ ~ (- l) (w ,F.'%b(r~l, rdl ,a))

and

S,'k C(d)11(3v< tC)~rj~~~(-')(v,~~ub(rCl,r~)).

But i t is easy for S2' t o prove tha t , given such a proof v o r w, adding an (v:right) inference
gives a roof of A(Iol, . . . ,I,,). T h e bounding term tA is easily obtained from tB and

t c.

140 Giidel Incompleteness Theorems

(c) Suppose A is BA C. The argument for this case is similar t o the argument for (b).

(d) Suppose A is ('dx<lsl)B(a,x). By the induction hypothesis, S: proves

We let t(d)=a[tB](d,pl). Then by use of C~~-LIND with respect t o u, S: proves

where r (d , ~) = 2 ~ # (7 . t) , where 7 is a suitable constant. This is because the proofs of
B(Ial , . . . ,I,,,Ib) for b < u can be put together via inessential cut inferences t o obtain a free

cut free ~ , (- ') -~ rmf of b< I,+ B(Ia1, . . . ,I,,, b).

By Lemma 5, S; proves

By using a ('d5:right) inference and another inessential cut, we can combine the proofs of
II,I=ls(I,l, . . . ,I,J1 and of b~I1 , l+B(I , l , . . . ,I,,,b) to get a free cut free roof of

A(Ial, . . . ,I,,). T h e bounding term tA is easily obtained from r and t,.

(e) Suppose A is (3 x ~ s) B (d , x) . By the induction hypothesis, S: proves

T h u s S; proves

We argue informally in Si. Suppose A@). Then we have just shown that there are an
x j s and a w so that w codes a free cut free ~A-')-~roof of B(Ia1, . . . ,Iak,I,). By Case (a),

there is a free cut free ~2(- ') -~rmf of Iz<s(Ia l , . . . , I) We can combine these two proofs

using an inessential cut and a @<:right) inference to get a free cut free ~.J- ')-~roof of

which is what we needed t o show.

(f) Suppose A is (3x)B(d,x). The proof for this case is similar t o and slightly simpler than the
proof for (e).

Q.E.D.

When T r u t h Implies Provability 141

I t is important t o recall t ha t all formulae we are using in our arithmetization of
metamathematics only use the original seven nonlogical symbols of Bounded Arithmetic; they d o
not contain any new g -de f ined functions o r A/-defined predicates. But of course any

A:-formula A which may include c:-defined function symbols and &:-defined predicate sym-
bols is equivalent, provably in s,', t o two formulae A' and A" where A' and A" are in C/ and
n/ respectively and contain only the original seven nonlogical symbols of Bounded Arithmetic.
This gives the following corollary t o Theorem 4:

Corollary 6:
(a) Let A be any A/-formula of S$ T h a t is, there are c:-formulae A l and A 2 such tha t

s 2 t A * A 1 and S 2 t A * 1 A 2 . Then,

S; t 1 A (a) 3 ThrnF~F(-')(Fgub (r 1 A J, rZl ,Z)) .

(b) Let A be any A:-formula of S2'. Then

Note t h a t in (b), ThmBD1 is used instead of T~~FcF(- ') . Unlike Theorem 4 and
Lemma 5, Corollary 6(b) would still hold if we enlarged the syntax of our metamathematics t o
include symbols for C/-defined functions and A/-defined predicates.

Corollarjr 7: Let A (b) be one of the formulae Thm ,(b), T h m B ~ i (b) , ThmBD '(b), Thml?Di(b),
etc. Then

7.5. GGdel Incompleteneee Theorems.

Now t h a t we have arithmetized the syntarx of Bounded Arithmetic and, in particular,
have proved Corollary 7, it will be straightforward t o establish the Godel incompleteness
theorem. Wha t we prove is somewhat stronger than the usual s tatements of the incompleteness
results since we use ThmFCF instead of Thm; tha t is, we shall consider the consistency of free
cut free proofs only, rather than of general proofs.

142 Gijdel Incompleteness Theorems

Lemma 8: (Godel Diagonalization Lemma). Let $(a) be any formula with one free variable a .
Then there is a sentence such tha t

sit- 4-flr47).

Furthermore, if 1C, is a ll:-formula, then so is 4. If 1C, is provably equivalent to a c:-formula
(resp. nib-formula) then so is 4.

Proof: Since Sub and Num are c/-defined function symbols of s;, Theorem 2.2 states that

there is a formula ~ (a) which is ~ i - ~ r o v a b l ~ equivalent to $ (S ~ b (a , r a l , N ~ m (a))) such that if 1C,
is a xib- (respectively, nib-) formula then so is X. Define 4 to be the sentence x(IrXl). So

By the definition of 4 and the results of $7.4, we certainly have

which shows that s;I- 4- $(r41).

The fact that the quantifier structure of 4 is the same as that of t,b is immediate from
the fact tha t 4 is a substitution instance of t,b and from Theorem 2.2.

For added generality, we will work in theories stronger than s;.

Definition: Let u be a unary c:-defined function of s:. We define s:, to be the theory such
that

(a) T h e language of S;, is the language of Bounded Arithmetic.

(b) The axioms of s;, are the BASIC axioms plus all formulae with Godel number
in the range of a.

(c) s;, has all the C&PIND inference rules.

Ezample: Let P A be Peano arithmetic. Define P by

r a = a l if n is not a Gijdel number of a PA-proof
if n codes a PA-proof of the sequent with Godel number m

Then S2,B is equivalent to PA

5'7.5 G a e l Incompleteness Theorems 143

Definition: Let a be as above and fix i> 1. Since P~JFCF: is A: with respect t o s:, we can
choose some formula A E ~ : such tha t ~ ~ t - ~ (w , a) * ~ ~ r j ~ ~ ~ ~ (w , a) . Now let $ be the for-
mula (Vw)A(w,a). Define d,' t o be the formula whose existence is guaranteed by Lemma 8
such tha t

Note tha t 4: is a l7:-formula of the form (Vw)B where B is a l7,b-formula which is
A: with respect t o s:. Also,

Theorem 9: (G a e l ' s First Incompleteness Theorem). Let a, s;, and 4: be as above, with i2l.
Suppose s;, is consistent. Then,

Proof: (by contradiction).

Suppose si,t-d&. Then by the cu t elimination theorem (Theorem 4.3)' there is a free
cu t free ~ l , - ~ r o o f of 4;. Hence, by Corollary 7,

From the assumption tha t sifftq5; and the definition of 4:,

and since s~,_>s;, this contradicts the consistency of s;,.

Q.E.D.

Definition: T h e following predicates assert the consistency of various natural deduction proof
systems:

Con,' - T h r n & (r - + l)

CO~BQ; - ThrnB&:(r+l)

C ~ ~ B Q ' - T h r n ~ Q ' (r + l)

CO~BD; - ~ h r n B D d (r + l)

ConBD, 7 ThrnBD,(r+l)

G d e l Incompleteness Theorems

For example, CO~FCF' asserts that there is no formula A such that both A and i A
have free cut free ~ : - ~ r o o f s . I t is necessary for our purposes that we define ConFCF in this
way; since Gentzen's cut elimination theorem can not be proved by Bounded Arithmetic, the
fact tha t A and -A have free cut free proofs does not provably imply that there is a free cut
free proof of the empty sequent. Of course, a proof of the empty sequent is a proof of a con-
tradiction, since the (Weak:right) inference may be used to infer anything from the empty
sequent.

Definifion: Let R be any axiomatizable theory of arithmetic. We write Con(R), BDCon(R),
BQCon(R) and FCFCon(R) to denote formulae expressing various consistency properties of
R . Thus, for example, we have:

c o n (5';) c o n i
CO~(S;,) con:
BQCO~(S;) w CO~BQ'
BDCon(S2,,) ConBD?
BDCon(Si) ConBD'
FCFCon(S2,,) ConFCF,
FCFCon(S$) CO~FCF'

More generally, when R is any axiomatizable theory such that R~S: , let cu be a
c/-defined function of S: such that the range of a is equal to the set of G d e l numbers of
theorems of R . Then Con(R), BDCon(R) and FCFCon(R) are defined to be Con(szf,),
BDCO~(S~~,) and FCFCO~(S~,), respectively .

In addition, the formulae PrfRl ThmR, PrfBDR and PrfFCFR will be used as alter-
native names for the formulae Prj:, Thm:, P r j B ~ d and PrjFcF;, respectively.

Theorem 10: (Gde l ' s Second Incompleteness Theorem). Let a, 4: and S& be as above, with
i 2 l . Then,

and hence, if S& is consistent,

$7.5 G d e l Incompleteness Theorems 145

Proofi Because 4; is a lip-formula of the form (tlw)A where A is a ll:-formula which is A:
with respect t o s;, we have by Theorem 4 t h a t

S i t 1462 T ~ ~ F c F (- ') (~ ~ ~ J I) .

Also, by the definition of 4:,

I t is also immediate from the definitions tha t

Put t ing these three formulae together, we get, from the definition of FCFCO~(S&), t ha t

Thus ,

By the First Incompleteness Theorem, s;,+ d;, and hence

Q.E.D.

In Theorem 10 we only proved tha t s ~ ~ c o ~ F c F ~ > ~ : ; we did not prove tha t
sit ~~;>co~FcF:. In the s tandard treatments of G d e l ' s incompleteness theorem, Con, is
used instead of ConFCF,. Then if is defined using Thm; in the same way tha t 4,' was
defined from ThmFCF,', we have

(see Theorem 5.6 of Feferman (91). However, the author doubts t h a t i t is true t h a t

since we are only considering free cut free proofs.

146 G d e l Incompleteness Theorems

Since a free cut free proof with bounded initial sequents and bounded endsequent is a
bounded proof, we have the following immediate corollary t o the Second Incompleteness
theorem.

Corollary 11: (i2 1).

(a) S; v FCFCO~(S;)

(b) S;V BDCO~(S,')

(4 s;,v on(^,,.)
(d) If all axioms of ~ 2 , are bounded, then s;, v BQCO~(S;,)

(e) If all axioms of S& are bounded, then S;,K BDCO~(S;,~)

Corollary 12: (G d e l) .
(a) Let P A be Peano arithmetic. Then P A v Con(PA).
(b) If R is an axiomatizable theory which is stronger than S i , then R v Con(R).

Prooj: First note (b) implies (a). Let a be a unary function CP-definable in S; such tha t the
range of a is equal t o the set of G d e l numbers of theorems of R . Then szf, is equivalent t o R .
T h u s (b) follows immediately from Corollary 11.

7.6. Further Incompleteness Results.

In the author's opinion, the most important open question concerning Bounded Arith-
metic is whether the hierarchy s;,s~~, . . . of theories is proper. T h e results of this section were
motivated by a desire t o answer this question.

Let P A k denote the subsystem for Peano arithmetic (PA) obtained by restricting
induction t o c:- and IIi-formulae. I t is a classical result t ha t PAk+lt- Con(PAk). This can be
proved by showing t h a t PA1 can formalize the proof of the cut elimination theorem and tha t
PAk+' can define a t ru th valuation on c;- and IIt-formulae. Consequently, PAk+'t- Con(PAk).
From this, it follows immediately t h a t PAk+' is strictly stronger t h a t P A k since by the Godel
incompleteness theorem, P A kt/ Con(PA k).

One way we might prove tha t S; is not equivalent t o s;+' would be t o adapt the
proof tha t P A k is not equivalent t o PAk+'. Now i t is certainly false tha t s;+'t- CO~(S;);
indeed, Szv Con(&), where Q is Robinson's open, induction free subtheory of P A , (this is shown
by Nelson [19] and Wilkie-Paris (311.) But instead, we might try t o show tha t
s;+' t- BDCO~(S;) o r s;+' t- FCFCO~(S;). This would certainly suffice, since by Corollary 11,
S; does not prove either of these. However, as we show below, i t is not t rue t h a t for all i > l ,
s;+'~-BDco~(s;). T h e author does not know whether ~ ~ ~ + ' t - FCFCO~(S;), but he conjectures
tha t it is not the case.

57.6 Further Incompleteness Results 147

Definition: In order t o improve readability, we shall use the symbols p t o denote "proves by
bounded proof'. This symbol will only be used metamathematically. For example, if V is a
bounded formula,

s;, F'V

denotes the formula

(3 W) P ~ ~ B D ~ (W , r - 1)

which is a formula tha t asserts t ha t there is a bounded roof of V.

If V is not a bounded formula, we can still sometimes define a formula s ; , ~ V .
Namely, if V is (Yz)A(z), let a be a new free variable. Then ~ i , p (Y z) ~ (z) is defined t o be
the formula

where a is a new free variable not appearing in A . If V is (3y)A(y) and A is a bounded for-
mula then s ; , ~ Y is defined t o be the formula

where b is a new free variable not appearing in A . In particular, we shall frequently have
V=(Yz)(jy)A(z,y) and in this case S ; , ,~V is the formula which asserts t ha t there is a term
t and a bounded ~ ; , - ~ r o o f P such tha t P is a proof of (j y s t (a)) A (a , y) , where a is a new
free variable.

Proposition 14: Let @(a) be any bounded formula. Suppose S2k (Yz)V(z). Then

s; k (Yz) [s J - l) p V (~ ~)] .

By our conventions for abbreviating formulae, the conclusion of Proposition 14 is an
abbreviation for

From now on, we shall use such abbreviation without comment and let the reader supply the
translations.

148 G d e l Incompleteness Theorems

Proof: This is proved by formalizing the proof of Theorem 4.10 inside s;. We s tar t with a
bounded proof P with endsequent +@(a). By Theorem 4.9, P may be assumed to be res-
tricted by parameter variables. s2' can prove that , for any given value n for a , the induction
inferences of P may be expanded to give an induction free proof of @(In).

One subtle point to notice is that this procedure is not provably uniform. T h a t is, Si
does not prove "Given a proof P of (Vz)@(z) and given a number n , there is an induction free
proof of @(I,)." Instead, given a proof P of (Vz)\Ir(z), S: proves "given a number n , there is
an induction free proof of \Ir(In)."

Q.E.D.

Dcjinition: s:+BDc~~(s~-')) is the theory S: plus the bounded axiom i ~ r f B ~ (- ') (a , r - + l) .
Since s~+BDco~(s~(-')) is axiomatized by bounded formulae, it makes sense to discuss
bounded proofs of that theory. We define

to be the formula expressing the bounded consistency of S ~ + B D C ~ ~ (S ~ (- ')) .

Theorem 15: If A(al, . . . ,ak) is a IIP-formula and if S 2 t A then s~+BDco~(s~- '))~-A.

Proofi We assume without loss of generality that k= l . Since A(a) is a lllb-formula and
S2t A(a), Proposition 14 implies that

On the other hand, by Theorem 4,

s2 t [-A (a) 3 (S~-')-L,P~A (I.))] .

Hence,

Q.E.D.

Corollary 16: s2 t+ BDCO~(S~+BDCO~(S~(-'I)).

Proofi By G d e l ' s Second Incompleteness Theorem, s~+BDco~(s~(-')) does not prove its own
bounded consistency. Since B D C O ~ (S ~ ' . + B D C ~ ~ (S ~ (- '))) is ~ 2 - ~ r o v a b l ~ equivalent to a
lip-formula, Corollary 16 is an immediate consequence of Theorem 15.

Q.E.D.

57.6 Further Incompleteness Results

Corollary 17: Either S2'y BDCO~(S~(-')) or S2 y BDCO~(S;).

Proof: Suppose s~~~BDco~(s?(- ')) . Then S2F [s ;~BDc~~(s~(- '))] , and thus

So by Corollary 16, s 2 y BDCO~(S;).

Corollary 18: Let j be the least number (if any) such tha t S ~ F BDCO~(S?(-'1). Then

(a) s l y BDCO~(S[), for all I < j and all k .

(b) S ~ W B D C O ~ (S ~) , for all i2 j .

Proof: (a) is obvious. (b) is proved in the same way as Corollary 17.

Corollary 19: There is a t most one i > O such t h a t sit- BDCO~(S;-').

As we remarked a t the outset of this section, these results were motivated by a desire
t o show tha t S; and s;+' are distinct theories. From this viewpoint, Corollary 19 is a negative
result in t ha t i t s tates t h a t the formula BDCO~(S;) can not be used t o separate the theories S;
and s;+'.

There are weaker formulae we could a t tempt t o use to separate S; and s;+'. For
example, it is an open question whether s;+' can prove BQCO~(S;) o r FCFCO~(S;). T h e
author conjectures t ha t neither of BQC~~(S~(- ')) and FCFCO~(S~(-')) is provable by S2.

Chapter 8

A Proof-Theoretic Statement Equivalent to NP=co-NP

This chapter presents a reformulation of the NP=co-NP question in a proof-
theoretic setting. I t turns out tha t NP=co-NP is equivalent t o the existence of a theory of
Bounded Arithmetic satisfying a certain "anti-reflection" property.

Definition: Let &(a, b,c) be the formula

Note t h a t 4 is a lit-formula, hence 4 represents a co-NP predicate. I t is not difficult
t o see tha t 4 is co-NP complete.

Definition: Suppose NP=co-NP. Let $J denote some fixed c:-formula so tha t

Definition: Suppose N P = c o - N P . Let 4 and $J be as above. Then W is the theory with the
same language as S: and all the axioms of S; plus the additional axioms:

Strictly speaking, W depends on the choice of $J and a better notation for this theory
might be W$. However, we shall keep $J fixed and suppress the subscript.

Definition: Let 3 be a vector al, . . . ,a,. Then Iz denotes the vector Ial, . . . ,I,*.

T h e next proposition formalizes the claim tha t 4 is co-NP complete.

$8 A Proof-Theoretic Statement Equivalent t o NP=co-NP

Proposition 1: Suppose NP=co-NP. Let W be as above. Then

(a) W is a consistent extension of s;.
(b) For every bounded formula A(Z), there is a z:-formula A x and a Il:-formula

A n such tha t

Proofi
(a) Since all axioms of W are true (under the assumption t h a t NP=co-NP) W must be con-

sistent.

(b) Begin by supposing A E ~ / . Since the Ct-replacement axioms are theorems of S: and by
Corollary 2.15, there is a formula B which is A; with respect t o Si and a term s(2) such
t h a t

By Corollary 7.6(b), there are terms rl(d,b) and r2(d,b) such tha t

s: t ~(~,b)>(3t.<rl)~rjB~'(r,r~(1, ,1b)1)
and

S: t -B(d1b)>(3z~r2)~rjB~'(z,r-B(1, ,1,fl).

Since W has an axiom asserting BDCO~(S;), we have

Let t(d,b) be the term a [r2] . Then

In other words,

Let C (n be the formula $(~(T,s(z)),~-B(I, .vfl,s(z)). Then CEC: and W t A* C. This
establishes (b) for the case A E H ~ .

A Proof-Theoretic Statement Equivalent t o NP=co-NP

If AEC;, apply the above construction t o -A to find CEC: such that
W t A - 1 C . So (b) holds for AEC;.

I t is now easy t o prove (b) for all bounded formulae A by induction on the
quantifier complexity of A .

Q.E.D.

Corollary 2: Suppose N P = c o - N P and let W be as above. Then for every bounded formula A ,

Proofi Let A E be as in Proposition 1. Then

w t [W p (A (d) * ~ c (d))] .

Also, since A ~ E C ; and by Theorem 7.4,

w t [A 3 W P A c(1,)I

Hence,

Q.E.D.

Proposition 3: Suppose R is a consistent theory extending s;. Let A(d) be any bounded for-
mula in the language of s:. If R t(K?)A(Z) then N p (K?)A(zt).

Proof: Suppose Rt(V?)A(zt) but N k - A (3) for some fixed vector of integers X . Then
s;~-A(Z) since -A@) is a closed, bounded, t rue formula. But since R is an extension of s;,
R must be inconsistent and we have arrived a t a contradiction! 0

Corollary 4: Suppose R is a consistent extension of Si and R is axiomatized by bounded formu-
lae. Then every theorem of R is true for N.

Definition: R is a bounded theory iff R is axiomatized by bounded formulae. T h e axioms of R
may contain free variables.

So by Corollary 4, every bounded, consistent extension of S; has only true theorems.

5 8 A Proof-Theoretic Statement Equivalent t o NF'=co-NF' 153

Definition: Let R be a theory such t h a t the language of R includes the language of Bounded
Arithmetic. Then R is of polynomial growth rate iff whenever A is a bounded formula and
R t (W)(ily)A(-i',y) there is a term t(3) such t h a t

and such t h a t t is a term in the language of Bounded Arithmetic.

Proposition 5: Let R be a bounded extension of s:. Then R is of polynomial growth rate.

Proofi This is an immediate consequence of Parikh's theorem.

W e are now ready t o s t a t e and prove the main theorem of this chapter.

Theorem 6: T h e following are equivalent:

(a) NP=co-NP.

(b) There is a bounded extension R of S: such t h a t R is consistent and finitely axiomatized
and such t h a t for every bounded formula A ,

(c) There is a consistent, axiomatizable extension R of S2' which is of polynomial growth rate
such t h a t for every AEII;,

R t (v z) [A (z) 3 R t A (I ,)] .

(d) There is a consistent extension R of S: such t h a t for some polynomial p(nl,n2,n3),

N [+ (~ , ~ , C) ~ (~ ~ ~ ~ P (~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~)) P ~ ~ ~ (~ , ~ + (I ~ , I ~ , I ~ ~)] .

Proofi
(a)=+(b): Let R be the theory W as in Corollary 2.

(b)+ (c): Th i s is immediate from Proposition 5.

(c)+ (d): This is easily proved by noting tha t +€lIlb, using the definition of polynomial growth
rate and applying Proposition 3.

(d)+(a): Suppose (d) holds. Since +(a,b,c) is co-NP complete, i t will suffice t o show tha t
+(a,b,c) is in NP. By Proposition 3, if R t +(nl,n2,n3) then N F +(nl,n2,n3). Hence

A Proof-Theoretic Statement Equivalent t o NP=co-NP

T h e righthand side of this equivalence is a C/ formula and hence represents an NP predi-
cate. T h u s d(a,b,c) is in NP.

Q.E.D.

T h e importance of Theorem 6 is tha t i t gives a reformulation of the N P = c o - N P
question in purely proof theoretic terms. T h e most striking equivalence is t ha t of (a) and (b).
T h e property expressed in (b) is a kind of "anti-reflection)' property. So N P = c o - N P is
equivalent t o the existence of a bounded theory with a certain "anti-reflection" property.

Trying t o prove o r disprove the statement (b) is a possible approach to resolving the
NP vs. co-NP question. This approach does not suffer from the relativization results of
Baker-Gill-Solovay [2] for the following reason: Consider a function j of polynomial growth rate
such tha t NPf=co-NPf. If we have j as a new function symbol in R i t may not be possible t o
axiomatize R so tha t there is a polynomial p such tha t

Theorem 6 inspires us t o try some sort of self-referential formula A(z) such tha t A(z)
is bounded and such tha t the theory R does not prove the existence of a proof o r a disproof of
A(z). A natural choice for A is the formula ConR(z) which is defined as follows:

Definition: Let R be any axiomatizable theory. Then ConR(z) is defined t o be the formula

If R is furthermore a bounded theory, then ConBDR(z) is defined t o be

T h e question is whether there are "short" R-proofs of ConR(%) o r conBDR(z) for some
bounded theory R . For example, if we could show tha t for all bounded, consistent, axiomatiz-
able extensions R of S: there is no term t(z) such tha t

N (W 3 Y I t) ~ r j ~ ~ R (Y , r ~ o n R (~ ~) l)

then we would have shown t h a t NPf co-NP. Unfortunately, we have the following result:

$8 A Proof-Theoretic Statement Equivalent t o N P = c e N P 155

Prqoaition 7: Let R be any bounded, consistent, axiomatizable extension of S;. Then there is a
bounded, consistent, axiomatizable extension Q of R such tha t

Proposition 7 soundly destroys any hope of proving N P f c o - N P with the formula
ConQ since i t is immediate tha t

Proofi Let Qo,Q1,Q2, . . . be the following theories:

Let Q be the theory UQi.
i

I t is important t o analyze exactly how Qo,Q1,Q2, . . . are axiomatized. T h e theory Qi
is defined in a straightforward manner t o have the axioms of R plus i additional axioms. Each
miom Con(Qr) is a formula with G d e l number Gi such tha t 22 i2~ i52* . i for each i and some
constant 6. For each i>O, S; can metamathematically discuss Q i and S; can define formulae
such as Con(Qi).

sz]. can also metamathetically define the theory Q in a straightforward manner. In
particular, there is a A:-predicate of S; which recognizes the axioms of Q.

Since each theory Q,Qo,Ql, . . . contains R , they each admit c:-PIND inferences.

Now suppose we wish t o find a Q-proof of ConQ(In) for some n E N . Let j, be equal
t o the length of the length of n , i.e., jn=l(ln()J. Then for all m>j , , the axiom Con(Qm) has
G d e l number G,>n. Hence, no axioms Con(Qm) where m > j , can appear in a Q-proof with
GMel number S n . Thus , a Q-proof with G d e l number < n is in fact a Qjn-proof. S; can for-

malize this argument and hence

S: I- Con(Qin)> Con Q(n).

But now Q ~ S ; and Q has Con(Qjm) as an axiom, so QI- ConQ(n). T h e size of the ~ i - ~ r o o f of
Con(Qjn)>ConQ(n) is proportional t o the length In1 of n and the size IGjnl of the axiom

Con(Qjn) is 526'jn<(l+~n1)6. Hence there is a polynomial, independent of n , such tha t the

G d e l number of the Q-proof of ConQ(n) is less than ~ P (I ~ I) .

156 A Proof-Theoretic Statement Equivalent t o NP=co-NP

Furthermore, S: and hence Q can formalize the reasoning of the above paragraph.
Thus

Q.E.D.

Regarding Proposition 7 it should be noted (see Pudlak [23]) t ha t

However, the author doubts tha t

Wha t Proposition 7 asserts is t ha t for eome bounded extension R of s;,

There are lower bounds known for the length of any R-proof of ConR(x) . They were
originally proved by H. Friedman [lo] and later by Pudlak [23]. Their techniques can be
extended t o give a lower bound on the size of bounded R-proofs of ConBDR(x). Namely, we
have:

Proposition 8: Let R be a bounded, consistent extension of s:. Then for any term r there is a
term q of the language of Bounded Arithmetic such t h a t for all n c N there is no bounded
R-proof of C o d D R (q (I n)) with G a e l number less than r (n) .

Proofi by the method of H. Friedman [lo] and Pudlak [23].

Unfortunately, the lower bound of Proposition 8 is not good enough t o show that
NPf co-NP and by Proposition 7 there is no way it can be improved significantly.

Proposition 7 destroyed our hope of using A(x)=ConR(x) t o prove N P f c o - N P . So
what else can we try? Well, one possibility is t o pick A (x) t o be some co-NP complete predi-
cate. However, this is somewhat unsatisfactory; i t would be preferable t o find an A (x) which is

§8 A Proof-Theoretic Statement Equivalent to NP=co-NP 157

true for all z , since such a formula might be easier t o manipulate.

Let PA and ZF denote the theories of Peano Arithmetic and Zermelo-Fraenkel set
theory. H. Friedman has asked whether there are short PA-proofs of ConZF (x). In an at tempt
to generalize his question, consider the following definition:

Definition: Let R be a consistent, bounded theory of arithmetic. Then the theory R', called the
jump of R is defined so that

(1) The language of R' is the language of R plus a new predicate symbol T .

(2) All the axioms of R are axioms of R'.

(3) For every formula A(x,S) in the language of R, the following is an axiom of R':

(4) In addition, R' has the axiom

It is clear that R' is an axiomatizable extension of R . T h e intended interpretation of
the predicate T(a) is "a is the G d e l number of a valid R-formula." As every axiom of R' is
true for this interpretation, R' must be consistent.

We now consider the possibility of using A(z)=Conff(z) t o prove NP#co-NP. In
this case we d o not have the difficulties that arose in Proposition 7; namely, it is not the case
that

Indeed, it is not the case that

This is because R' I- [(R Con ,p(I,))> ConRt(a)] and by Godel's second incompleteness theorem
R' I+ (Vx)Con ff(z).

This inspires us to make the following conjecture:

Conjecture: For every bounded, consistent, axiomatized extension R of s2',

R I+ (Vx) [Con ,(z) R P Con ff(I,)].

A Proof-Theoretic Statement Equivalent t o NP=co-NP

It should be difficult t o prove this conjecture as an affirmative resolution of the conjec-
ture would be a proof tha t NPfco-NP.

Chapter 9

Foundations of Second Order Bounded Arithmetic

Second order arithmetic is an extension of the first order theories discussed so far. In
second order logic, we enlarge the formal system of logic t o allow discussing functions and predi-
cates directly. New second order variables refer t o functions and predicates and allow
quantification over functions and predicates.

Second order Bounded Arithmetic is different from the usual systems of second order
arithmetic. There are restrictions on the functions used by second order Bounded Arithmetic;
namely, the functions must have a polynomial growth rate. Also, the axioms of second order
Bounded Arithmetic are much weaker tha t those of the usual second order theories of arith-
metic. In particular, second order Bounded Arithmetic is not stronger than Peano arithmetic.

S o why are we interested in such weak theories of Bounded Arithmetic? T h e classical
second order theories have been motivated partially by a desire t o develop mathematics on a
logical basis more secure than set theory. Likewise, it is an interesting question how much of
mathematics can be developed in second order Bounded Arithmetic; Nelson [19] and Hook [16]
have worked on a closely related problem. However, we are interested in second order Bounded
Arithmetic because we will establish results about the definability of functions which are analo-
gous t o our earlier theorems for first order Bounded Arithmetic. W e shall define second order
theories V i and U; such tha t a function j is ~ t ~ ~ - d e f i n a b l e in U i iff j is computable by a
polynomial space bounded Turing machine (i.e., j€PSPACE); similarly, j is ~ t ~ ~ - d e f i n a b l e in
v2' iff f is computable by an exponential time Turing machine (i.e., ~ E E X P T I M E) .

This chapter defines the syntax and axioms of second order Bounded Arithmetic. We
examine the question of using predicates versus functions as second order objects. Comprehen-
sion axioms and new induction axioms are introduced. Finally, the cut-elimination theorem is
extended t o second order theories of arithmetic. For cut-elimination, we must use natural
deduction systems and accordingly we will define comprehension and induction rules as well as
axioms.

In Chapter 10, the results relating second order Bounded Arithmetic t o PSPACE and
EXPTIME are obtained.

9.1. The Syntax of Second Order Bounded Arithmetic.

Although the reader should be somewhat familiar with second order logic, we shall
review all the necessary syntax and terminology. For the most part , we follow the conventions
of Chapter 3 of Takeuti [28].

160 Foundations of Second Order Bounded Arithmetic

T h e language of second order Bounded Arithmetic includes the first order language
defined in Chapters 2 and 4. In addition, there are the following second order variables:

(1) Free and bound second order variables for predicates. For all i , j € N , cuj is a free j-ary
second order predicate symbol and q5/' is a bound j-ary second order predicate symbol.
W e shall use cu,/3,7, . . . and q5,x1$, . . . as metavariables for free and bound predicate
variables, respectively.

(2) Free and bound second order variables for functions with polynomial growth rate. For
every term t of the first order theory S2 and for all i j E N , 4 is a free second order j-
ary function variable and A& is a bound second order j-ary function variable. W e use

1 1 1 ~ ,qL ,B1 , . . . and X ,p ,v , . . . as metavariables for free and bound second order function
variables, respectively. These symbols range over functions j such t h a t j is bounded
by t; i.e., for all ~ E N J , j (2)<t(2) .

Second order quantifiers are of t he form (Vq5), (34), (VX') and (3 ') . First order
quantifiers are t he same as before. T h e adjectives sharply bounded, bounded and unbounded are
used t o describe first order quantifiers only. W e shall occasionally not adhere precisely t o the
distinction between bound and free variables.

Definition: A first order formula is one with n o second order quantifiers. Second order free vari-
ables may appear in a first order formula.

W e classify second order formulae in a hierarchy of sets c;", of formulae:

Definition: A second order formula is bounded iff it contains n o unbounded, first order
quantifiers. T h e following sets of bounded second order formulae are defined inductively by:

(1) cd'b = =;lb = A;)' is the set of formulae which contain n o second order quantifiers and

no unbounded quantifiers (i.e., t he set of bounded, first order formulae).

(2) c:;! is t he se t of formulae such t h a t

(a) n,'lb s cc,';;
(b) If A is in ~i';!, so are (Vz<t)A, (3z< t)A , (3q5)A and (3 ~ 7 ~ .

(c) If A and B are in c:;:, so are A A B and A v B .

(d) If AEC~';: and ~ ~ l l i l / : , then 1B and B 3 A are in c;;!.

(3) ll,';! is the set of formulae such t h a t

(a) IIn,';!

(b) If A is in II,';:, so are (Vz<t)A, (3 z < t) A , (Vq5)A and (VX')A

(c) If A and B are in ll;;!, so are A A B and A v B .

(d) If ~€ll:;: and BEC,~;:, then -B and B 3 A are in lli;!.

59.1 T h e Syntax of Second Order Bounded Arithmetic

(4) and I I ; ' p b are the smallest sets satisfying (1)-(3).

S o zdjb is the set of bounded first order formulae which may contain second order free
variables b u t n o second order quantifiers. ztpb and IIttb are defined by counting alternations of
second order quantifiers ignoring first order bounded quantifiers.

I t will be convenient to sometimes work in a theory which does not contain second

order function variables. Accordingly, we define i d ' b , 5 tpb and fit2b t o be the subsets of A ; , ~ ,
z:pb and IIr'b, respectively, containing just the formulae which contain n o free o r bound second
order function variables.

In order t o manipulate the second order variables and quantifiers in a natural deduc-
tion system we need additional inference rules:

(1) (second order V:left):

and

(2) (second order V:right):

and

where o! and { are the eigenvariables of the inferences and must not appear in the
lower sequent.

(3) (second order 3:left):

Foundations of Second Order Bounded Arithmetic

and

where a and ct are the eigenvariables of the inferences and must not appear in the
lower sequent.

(4) (second order]:right):

and

Definition: Let A be a formula, bl, . . . ,bm be free first order variables and yl, . . . ,ym be
bounded first order variables. Then {yl, . . . ,ym)A(yl, . . . ,ym) is a meta-expression called
the abstract of A(bl, . . . ,bm). I t is important to note that {?J)A(?J) is a meta-expression, so
"{" and ")" are not symbols in the syntax of second order logic.

The idea of an abstract is that {?J)A(?J) specifies a predicate which is true for those ?J
such tha t A(3) holds. If F (a) is a formula containing the free second order predicate variable a,
we use F({?J)A(?J)) to denote the formula obtained by replacing every a(3) in F by A(3). We
will use metavariables V,U, . . . to denote abstracts. T h e formal definition of what F (V) means
is as follows:

Definition: If a is an n-ary predicate variable, F (a) is a formula and
V={yl, . . . ,yn)A(yl, . . . ,yn) is an abstract, then F (V) is the formula obtained by substitut-
ing V into F for a. F (V) is defined by induction on the complexity of F:

(1) If a does not appear in F then F (V) is F.

(2) If F(a)=a(X), then F (V) is A(3).

(3) If F is -B, BAC, B v C or B 3 C . Then F (V) is -B(V), B(V)AC(V), B(V)vC(V) or
B(V) 3 C(V) respectively.

(4) Suppose F (a) is (Vx)B(a) or (3x)B(a). If x appears in A , we obtain A' by renaming
the variable x in A to avoid conflict of variables. Then F(V) is (tIx)B({J)A'(?J)) or
(3x)B({?J)A' (?J)), respectively.

(5) Suppose F (a) is (V4)B(a) or (34)B(a). If 4 appears in A , we obtain A' by renaming

The Syntax of Second Order Bounded Arithmetic 163

the variable 4 in A to avoid conflict of variables. Then F(V) is (V+)B({$)A'($)) or
(34)B({g)A' (g)), respectively .

Proposition 1: Let F be a formula and U and V be abstracts. Any second order theory of arith-
metic proves the sequent

Proof.- This is Proposition 15.13 of Takeuti [28] and is easily proved by induction on the com-
plexity of the formula F.

Definition: Let V={jj)A(J) be an abstract. V is atomic iff A is atomic.

9.2. Comprehension Axioms and Rules.

The comprehension axiom of second order logic is fundamentally different from the
axioms we used for first order Bounded Arithmetic. We define below comprehension rules as
well as comprehension axioms.

Definition: Let 9 be a set of formulae. A +-abstract is one of the form {g)A($) where A is in
9. 9 is closed under substitution iff for every formula A in 9 and every @-abstract V, A(V)
is a formula in 9.

We first define the comprehension axiom and rule for second order predicate symbols.

Definition: Let 9 be a set of formulae closed under substitution. T h e 9 comprehension azioms,
9-CA, are given by the axiom scheme:

where A must be in 9 .

Definition: Let 9 be a set of formulae closed under substitution. The 9 comprehension rules,
9-CR, are inferences of the forms:

164 Foundations of Second Order Bounded Arithmetic

(2) (a-CR;V:left)

where in both (1) and (2), V must be a @-abstract. V is called the principal abstract of the
inference.

Ezample: Let F (a) be the formula (3 y< a)(y.y=a)++ a(a) . Then if A is (3 y< a)(y.y=a), F (A) is
the formula

Since A E C ~ ~ ~ , we can use c:,~-cR t o infer:

T h a t is t o say, ~ d ~ ~ - c o m ~ r e h e n s i o n implies tha t there is a predicate 4 which is t rue precisely
for the perfect squares.

Propoeition 2: Let @ be a set of formulae closed under substitution. Then the comprehension
axioms @-CA are equivalent t o the comprehension rules 4'-CR.

Proof: This is Theorem 15.16 of Takeuti (28). One direction is easy. T h e example above pro-
vides the hint on how to prove the other direction, which is also easy.

W e next define the comprehension axiom and rules for function symbols.

Definition: Let be a set of formulae closed under substitution. T h e @ function comprehension
azioms, a -FCA, are given by the following axiom scheme:

where A is any formula in @ and t is any term.

Definition: Let be a se t of formulae closed under substitution. T h e function comprehension
rules, @-FCR, are inferences of the form:

Comprehension Axioms and Rules

where for both (1) and (2), t is any term, U must be an abstract of the form {~) (3z< t)A(z ,$)
and V must be the abstract {$)A(x'($),$), and A is required t o be a formula in 3. V is
called the principal abstract of the inference.

Proposition 9: Let be a se t of formulae closed under substitution. T h e 9-FCR rules are
equivalent t o the 9-FCA axioms.

Proofi
+ . First we show tha t 9-FCR+ 9-FCA. Let A€@. Using (9-FCR;3:right) we can infer

From this, the first and second order (V:right) inferences give the a-FCA axiom for A .

+. T h e reverse implication is even easier.

Q.E.D.

9.3. Axiomatizations of Second Order Bounded Arithmetic.

T h e weakest second order theories of Bounded Arithmetic are obtained by enlarging
the first order theories S; and T ; t o include second order variables.

Definition: W e define a hierarchy, ~:(cr,q) and llib(cr,q) of the second order formulae which con-
tain no second order quantifiers. T h e definition of Cib(cr,q) and llt(cr,q) is completely analo-
gous t o the definition of C: and ll: in $2.1, the only difference being tha t free second order
variables may appear without restriction in the formulae. T h e sets g (a) and ll;(cr) contain
those formulae of Ct(cr,q) and llt(cr,q), respectively, which have no second order function
variables.

166 Foundations of Second Order Bounded Arithmetic

Definition: S;(cu,$) is the second order theory with second order function and predicate variables
and the following axioms:

(1) BASIC axioms,
(2) For each function variable $ill the axiom (K?)(d(?2)<t(?2)),
(3) T h e c~(~~,$)-PIND axioms.

S;(CY) is the second order theory with only second order predicate variables (but no
second order function variables). T h e axioms for S;(CY) are:

(1) BASIC axioms,
(2) T h e C;(cu)-PIND axioms.

S2(cu) is the union of the theories S;(cu) and S2(alq) is the union of the theories S;(CV,$).

~/(cu,$), ~ i (c u) , T2(cu,$) and T2(cu) are defined similarly using the IND axioms
instead of the PIND axioms.

All of our earlier work on S; can be relativized to ~;(cu,$). For example, the relativiza-
tion of Theorem 2.6 holds and, for all i 2 1 , S;(cu,$) proves the c ~ (~ , ~) - L I N D axioms. Another
result which carries over is Theorem 2.7: by essentially the same proof as before we can show
that ~ ~ ' (0) can C:(cu)-define the function

Also S;(cu,$) is an extension of the theories we used to discuss the relativized polynomial hierar-
chy in 55.4. In fact, i t is now clear the function symbols qLk of 55.4 were syntactically
equivalent t o second order function variables. Thus the theories ~;(cu) and ~ ; (a , $) satisfy a
relativized version of the Main Theorem 5.6.

Definition: U; is the second order theory of Bounded Arithmetic which has second order predi-
cate variables and function variables and which has the following axioms:

(1) All axioms of S2(cu,$),
(2) ~ d ~ ~ - c o m ~ r e h e n s i o n axioms, (c ~ ~ ~ - c A and c ~ ~ ~ - F c A) ,
(3) C~*~-PIND axioms.

U2 is the theory U U2).
i

Definition: @i is a second order theory of Bounded Arithmetic with predicate variables but no

function variables. The axioms of 6; are

Axiomatizations of Second Order Bounded Arithmetic

(1) All axioms of S2(a), -
(2) g&b-comprehension axioms (c~ '~ -cA) ,
(3) ~?Y~-PIND axioms.

fi2 is the theory ufi.
i

Definition: v., , V2 and p2 are defined exactly like u;, c i , U2 and fi2 (respectively) except
tha t IND axioms are used instead of PIND axioms.

Proposition 4: (i t 1). V ~ F U; and ?;c c . .

Proof: C:pb-IND + C:J~-LIND is trivial. C:'~-LIND + C ~ ~ ~ - P I N D is readily established
by using the method of the proof of Theorem 2.11. These implications show tha t V ~ F u;.
7 . k fi; is proved by the same argument.

T h e next theorem states tha t we can dispense with second order function variables if
desired and just work with second order predicate variables.

-
Theorem 5: U; is a conservative extension of fii. V; is a conservative extension of v.~.

Theorem 5 is proved by a series of lemmas. T h e most important one is Lemma 6:

Lemma 6: Let A be a ~ t ~ ~ - f o r m u l a with no free second order function variables. Then there is
a Eftb-formula A * such t h a t

Proof: T h e idea is t ha t function variables in A can be replaced by predicate variables which
encode the value of the function variables. We define a metaformula G such tha t (Vg)G(ct,a)
asserts t h a t the predicate a encodes the values of the function 4. When I' is k-ary, a must be
(k+l)-ary and we define G (t , a) t o be the formula

So (V g) ~ (t , a) says tha t for all z<lt(g)(, a(z13f) is true iff the z-th bi t of the binary expression
for t (~) is 1. Since t(g)f)lt($) for all 3 , a does indeed code the values of t. G is a metaformula
rather than a formula since the definition of ~ ((, a) depends on the term t and on the arity of

t -
Note tha t G (t , a) is a ~ d . ~ - f o r m u l a (in fact, G (t , n) is a ~/(a,c)-formula.) T h e

c ~ ~ ~ - c A axioms prove

Foundations of Second Order Bounded Arithmetic

hence, u:t (vXt)(34)(v3)G(X',4).
Conversely, since s:(~,s)c u:, we can introduce a new C;(a,<)-defined function sym-

bol j$ in U: satisfying

By the C ~ * ~ - F C A axioms, U: can prove

Let ~ (f , a) be the metaformula $t(a)=min(t(3f),j,'(3)). I t is now immediate tha t

and since U2't G(ct,a)> ~ (f ,a) ,

W e are now ready t o construct the desired formula A* equivalent t o A . For every
t

second order function variable Xi ' in A we use a new second order predicate variable l(lij. We
t t

replace each (VXj ') or (3Xj1) by (Yl(lij) or (31(lij), respectively. Let h i j be the C;(a)-defined
function such tha t

Wherever X:'(?j) appears in A we replace it by hij($). After all these replacements have been

carried o u t we have the formula A*. T h e C:(a)-defined function symbols hid can be removed
by replacing them by their defining formulae.

I t is clear t h a t A* is a E:lb-formula and tha t u.$A*A*.

Q.E.D.

Dejinition: $; is the theory 6; extended t o include second order function variables and

~ , , l ~ ~ - c o m ~ r e h e n s i o n . (However, 6. does not include all the C:vb-pIND axioms.)

?; is the theory v; extended t o include second order function variables and
~ d ' ~ - c o m ~ r e h e n s i o n (but not all the C:~~-IND axioms.)

59.3 Axiomatizations of Second Order Bounded Arithmetic

Lemma 7:
A . -

(a) Ui is a conservative extension of Ui. -
(b) pi is a conservative extension of v..

Proof- By the proof of Lemma 6, for every formula A there is a formula A * such tha t

U ~ O F A* A* (even if A is not bounded). Furthermore, if A E C ~ ~ ~ then A * E E ~ I * . We claim tha t

for all formulae A , if 6 i k A then filk A*. This will suffice t o prove Lemma 7 as A* is equal t o
A when A contains no second order function variables.

A .

T h e claim is proved by induction on the number of inferences in a Ui-proof of A . The -.
only nontrivial case t o consider is the C ~ ~ ~ - F C R comprehension rules. However, Ui can emu-
late C:*~-FCR by using the c:~~-cR comprehension rule. W e leave the details t o the reader.

Lemma 8:
A

(a) T h e C:~~-PIND axioms are theorems of Ui.
A

(b) T h e C?*~-IND axioms are theorems of v;.

P r oof-
(a) This is immediate from Lemma 6 and the fact t ha t 6. has the E;.~-PIND axioms.
(b) is proved by the same argument.

Prooj: of Theorem 5:
A . A .

By Lemma 8, U i = U j and v .=v~ . Hence, by Lemma 7, U; is a conservative exten- - .
sion of fi. and V j is a conservative extension of Vi.

Q.E.D.

In addition t o the theories defined above, there are two more theories, 82 and p i ,
which are in some respects more natural choices for second order Bounded Arithmetic.

Definition: Let R be a second order theory of Bounded Arithmetic and let A be any formula.
Then A is with respect to the theory R iff there are formulae B E C ~ J ~ and d ~ l l l * ~ such
tha t R k A * B and R k A - C.

When i t is clear what theory is being discussed we shall merely say A is t o
mean tha t A is ailpb with respect t o R .

Definition: 8; is a second order theory of Bounded Arithmetic with second order predicate vari-

ables bu t no function variables. T h e axioms of 8; are

(1) All axioms of fi;
(2) 6~*b-comprehension axioms (6;lb-CA).

170 Foundations of Second Order Bounded Arithmetic

B2 is the theory U 8.2.
i

Definition: 82 and B2 are defined analogously to 8.. and d2. SO 82 and 8 2 are the theories fi
and f2 (respectively) plus the h:lb-C~ axioms.

It is an immediate consequence of Lemma 6 tha t second order function variables may

be added t o the syntax of 8.; or 8; to obtain a conservative extension. Of course when we add
second order function variables we may also use the A{J~-CA axioms and the C~*~-PIND or
the C ~ ~ ~ - I N D (respectively) axioms. However, for our purposes in $10.5 and $10.6, it is more

convenient to work with the theories 82 and without second order function variables.

9.4. The Cut Elimination Theorem for Second Order Logic.

We next prove tha t Gentzen's cut elimination theorem holds for fi2 and f2. We will

show in $9.7 t h a t 8 2 and 8 2 also satisfy a version of Gentzen's cut elimination theorem.

Definition: Let A(a l , . . . ,ak,cul,. . . , an) be a formula with all free variables as indicated. We
say tha t B is a substitution instance of A iff B is A(tl, . . . ,tk,V1, . . . ,Vn) where each ti is an
arbitrary term and each Vi is a ~ d ' ~ - a b s t r a c t .

Lemma 9: (i20 .)
(a) If A is a C;lb- (IIfpb-) formula then every substitution instance of A is a c{"- (respec-

tively, II,'tb-) formula.

(b) Suppose P is a fi.-proof (respectively, a fi-proof) of r-+A and tha t every principal
formula of a free cut inference in P is a first order formula. Then there is a free cut free
- .
Ui-proof (respectively, v;-proof) P * of I'-+ A .

(c) Suppose P is a free cut free fii-proof (respectively, fi-proof) of r + A and tha t cu is a
free variable appearing in r + A . Further suppose V is a ~,-,l'~-abstract. Let r (V) and
A(V) denote the cedents obtained by substituting V for every occurrence of cu in the for-

mulae in r and A. Then F(V)-+A(V) has a free cut free fii-proof (respectively, -
v.-proof).

Proofi

(a) is easily proved by induction of the complexity of A .
(b) is proved by exactly the same proof as the free cut elimination theorem for first

order logic. We omit the proof here, the reader may refer t o Takeut i [28], pp. 22-29, 112.

T o prove (c), we may assume without loss of generality tha t P is in free variable nor-
mal form and t h a t V has no bound variables in common with P. Let P (V) denote the proof
obtained from P by substituting V for every occurrence of cu in formulae in P. It is easy to see

by examining the allowable inferences tha t every inference in P (V) is a valid inference of fii

59.4 T h e C u t Elimination Theorem for Second Order Logic 171

(respectively, v .) . In particular, (a) guarantees t h a t *"-PIND or c ~ ' ~ - I N D , and C ~ ' ~ - C R
inferences are still valid after the substitution of V for a.

However, P (V) may fail t o be a proof in t h a t there may be initial sequents of P (V) of
the form

where V={Z')A(Z'). However, sequents of this form are easy t o prove without free cuts. S o we
merely tack onto P (V) free cut free proofs of these initial sequents and thus obtain a proof Q of
I'(V)+A(V).

Q is not necessarily free cu t free, as Q may contain free cu ts with principal formula
A(3). B u t since V is a first order abstract, every free cut inference in Q has a first order princi-
pal formula. Hence, by (b), there is a free cut free proof of I'(V)--+A(V).

-
Theorem 10: (Cut Elimination Theorem). Let P be a firproof o r a VTproof. Then there is a

proof P * in the same theory such tha t P * has the same endsequent as P and there are no free
cu ts in P * . Furthermore, each principal formula of an induction inference in P * is a substitu-
tion instance of a principal formula of an induction inference in P and each principal abstract

of a comprehension inference in P * is a substitution instance of a principal abstract of a

comprehension inference in P. Hence, for all i 2 0 , if P is a fii- (or vi-) proof then so is P*.

Proofi We shall modify Takeuti 's exposition on pages 22-29, 112, 143-144 of [28]. T h e reader
should have [28] available as he reads the proof.

Following [28], we define the grade of a formula A t o be the number of logical symbols
in A . T h e level of A is the number of second order quantifiers in A .

A mix inference with principal formula A is of the form

where l l* and A * are obtained from rI and A by removing all occurrences of A . A mix infer-
ence is free iff all of the occurrences of A in A and II are free. Since a mix inference and a cut
inference are so similar, i t suffices t o prove Theorem 10 for proofs which use mix inferences
instead of cu t inferences.

Suppose P is a proof whose last inference is a mix with principal formula A as shown
above. Define the distance of a sequent in P t o be the number of inferences separating i t from
the endsequent of P. T h e right rank of P is defined t o be the maximum distance of a sequent
containing a direct ancestor of an occurrence of A in the cedent ll. T h e left rank of P is the
maximum distance of a sequent containing a direct ancestor of an occurrence of A in the cedent

172 Foundations of Second Order Bounded Arithmetic

A . T h e rank of P is the sum of the right rank and left rank.

I t suffices t o consider P with a single mix inference as the last inference. T h e proof is
by ordinal induction on

where level(P) and grade(P) are the level and grade of the principal formula of t he final mix of
P, and w is the first infinite ordinal.

T h u s it suffices t o show tha t if P is a proof with no free mixes except for the final
inference of P and if Theorem 10 is satisfied for all proofs P' with ord(P')<ord(P) , then P
satisfies Theorem 10. W e modify the proof of Lemma 5.4 of Takeut i [28]:

Case (1): rank(P)=2.

Cases (1 .I)-(1.5. ii): Similar t o pages 2 4 2 7 of [28].

Case (1.5.iii): Suppose A=(V+)B(q5) and the last inferences of P are

where V is a ~ d ~ ~ - a b s t r a c t , and since rank(P)=f the indicated occurrences of (V+)B(+)
are the only ones. By Lemma 9(c), we can obtain a free mix free proof of r- A,B(V)
from the free mix free proof of I'-+A,B(cr). T h u s we have a proof Q such t h a t the
only free mix in Q is i ts last inference:

where II# and A# are II and A minus all occurrences of B(V).

By the induction hypothesis, there is a free mix free proof Q* of
~,II#-A#,A since ord(Q)<ord(P). By adding weak inferences t o the end of Q* we

obtain the desired proof P* .

Case (1.5. i~) : Suppose A=(34)B(4). This case is very similar t o Case (1.5.iii).

Case (2): rank(P) >2.

Case (2.1): T h e right rank of P is >l.

Cases (2.1.1)-(2.1.9. ii): Similar t o 1281.

T h e C u t Elimination Theorem for Second Order Logic 173

Case (2.1.J.iii): Suppose A=(V4)B(4), V is a ~:p~-abstract and the last inferences of P
are:

where now A and II, b u t not r , may contain occurrences of (Vc$)B(4). T h e cedents TI*
and A* are II and A minus all occurrences of (V+)B(c$). Modify the end of P t o obtain
a proof P1 which ends as

T h e right rank of P1 is one less than the right rank of P so by the induction
hypothesis there is a free mix free proof Pg of the endsequent of P I . Now consider the
proof which ends

T h e right rank of this is one, so by the induction hypothesis and some exchanges and

contractions we obtain a free mix free proof of r , n * + A*,A.

T h e rest of the cases are similar.

Q.E.D.

9.5. C:yb-Defined Functions and A:yb-Defined Predicates.

T h e second order theories of Bounded Arithmetic are in many respects analogous t o
the first order theories s~~ and T;. One of the most fundamental properties of second order
Bounded Arithmetic is t ha t new function and predicate symbols may be introduced into the
language of Bounded Arithmetic; under certain conditions, these new function and predicate
symbols may be used freely in the principal formulae of induction axioms and comprehension
axioms.

174 Foundations of Second Order Bounded Arithmetic

Definition: Let R be a second order theory of Bounded Arithmetic. Suppose A(2,y) is a

 formula with all free variables indicated and tha t

Then we say t h a t R can define the function j such t h a t N t= ('d$)A(Z',j($)).

T h e ~ t) ~ - d e f i n e d function symbols and the Atpb-defined predicate symbols play the
same role in the second order theories of Bounded Arithmetic as the C:-defined function sym-
bols and the A/-defined predicate symbols d o in the first order theories Si and T;'. In particu-
lar, the analogues of Theorems 2.2, 2.3 and 2.4 hold for second order Bounded Arithmetic.

Definition: Let 7 and ji be new function and predicate symbols. T h e sets C,'tb(7,ji) and
ll,'*b(7,j?) are sets of bounded formulae in the language of second order Bounded Arithmetic
plus the symbols f' and ji. These sets are defined by counting alternations of second order
quantifiers ignoring the first order, bounded quantifiers.

Theorem 11: Let R be a second order theory of Bounded Arithmetic. Suppose R can

C;lb-define each of the functions f' and can define each of the predicates ji. Let R * be
the theory obtained from R by adjoining the new symbols 7 and j3 and their defining axioms.

Then, if i > O and B is a C;'lb(7,j?)- (or a Il,'lb@,j?)-) formula, then there is a formula B*Ec;'~~

(or II,'pb, respectively) such t h a t R * t B** B.

T h e proof of Theorem 11 is similar t o the proofs of Theorems 2.2 and 2.4.

Definition: Let R be a theory of Bounded Arithmetic and let 7 be a vector of defined function
symbols of R and j3 be a vector of defined predicate symbols. Then ~(7, j i) is the conservative
extension of R obtained by enlarging the language t o include 7 and 3 and including the
defining axioms for these symbols.

Corollary 12: (i 2 1):
(a) Let f' be a vector of ~ t * ~ - d e f i n e d function symbols of U; (respectively, v;) and let ji be a

vector of At*b-defined predicate symbol-. of u;' (respectively, v;'). Then U;@,j3) (respec-
tively, vfl,j?)) has as theorems the E : ~ ~ ~ , ~ ~) - P I N D axioms (respectively, the
c,"~(~!,~~)-IND axioms).

(b) Let 7 be a vector of C:rb-defined function symbols of fi; (respectively, F;') and let ji be a

vector of A:.b-defined predicate symbols of 6; (respectively,) Then fi;'(],j?) (respec-

tively, ?i@,j?)) has as theorems the E:I*(~!,~I)-PIND axioms (respectively, the

E,'P~@,~~)-IND axioms).

(c) Let f' be a vector of C:lb-defined function symbols of 8; (respectively, 8;:) and let j? be a

vector of A:rb-defined predicate symbols of 8; (respectively,) Then 8i(],jI)

s9.5 zipb-Defined Functions and airb-Defined Predicates 175

(respectively,) has as theorems the E:V~-PIND v , a) axioms (respectively, the -
c~'~~-IND (7,jJ) axioms) and the i :9b(7,$)-~~ axioms.

Corollary 12 tells us t h a t C:~~-defined function symbols and a:1b-defined predicate
symbols may be used freely in the principal formulae of induction inferences. Furthermore, if

we are working in the theory 82 or 82 we may use such function and predicate symbols freely
in principal abstracts of comprehension inferences.

T h e next two theorems give an application of ~ : ~ ~ - c o m ~ r e h e n s i o n t o show t h a t 82
and 8: can define the iteration of defined predicates. I t is an open question whether these
theorems hold for the theories U; and v;.

Theorem 18: Let ~(a,i?,?) and ~ (a , b,t,a:,q) be formulae of 8:, where a: is a unary
predicate variable. Let t (b , t) be a term which contains only the free variables b and t. Then
the predicate ~ (a , b,i?,;) which satisfies

if b=O and a < t (b , t)

~ (a , b , t , <) if a > t (b , t)

B (~ , b , t , {z}K(z, [;b ~, t , ; j) ,3 otherwise

Proofi T h e idea, of course, is t o define K (a , b , t , 3 by induction on the length of b . Let
B*(a, b , t , c u ~ , ~) be the formula

and let D(u ,4) be the formula

I t is easy t o see t h a t

and

Hence, by C:~~-PIND , 821- (vz) (~~)D(z ,)) . I t is also not difficult t o use C:~~-PIND t o prove

176 Foundations of Second Order Bounded Arithmetic

tha t

Hence, 8: can A:vb-define K by

and by the provably equivalent

Q.E.D.

Note tha t i t is important t o the proof of Theorem 13 tha t the support of K was
bounded by the requirement tha t a < t (b , t) ; otherwise the formula D(u,4) could not be bounded.
Theorem 13 is false without this restriction.

A similar use of ~ : ~ ~ - c o m ~ r e h e n s i o n can be made by 8.:

Theorem 14: Let A(a , t ,% and ~ (a , b , 7 , a ~ , ~ be formulae of 8: where n: is a unary
predicate variable. Let t (b , t) be a term with the free variables indicated. Then the predicate
K(a,b,t,;;) which satisfies

if b=O and a<t(b,Z)

K(a,b,t,<) if a > t (b , t)

~ (a , b,t,{z)K(z,b.- l , i ? , ~) , ~ otherwise

T h e formulae are in some respects more akin t o the Ad~~- fo rmulae than to the
12:lb- and ll:'b-formulae. For example, we have the following theorem:

Theorem 15:
(a) T h e A:rb-IND axioms and the A:*~-MIN axioms are theorems of U; and v..
(b) T h e A:~~-IND axioms and the A:pb-MIN axioms are theorems of 8; and 8..

$9.5 ~ i p ~ - ~ e f i n e d Functions and A;*b-Defined Predicates 177

Proof.- It is obvious that the A/J~-IND axioms are theorems of V i . The fact that the

A/*~-IND axioms are theorems of U; is proved just like Theorem 2.22.

Now we claim that the A ~ ~ ~ - M I N axioms follow from the A/lb-IND axioms. Indeed,
the minimization axiom for a A/~~- fo rmula A can be proved by using induction on the
~ / ~ ~ - f o r r n u l a ('d y< z)(-A(y)). This proves (a).

(b) is proved similarly.

Q.E.D.

The replacement axioms of second order Bounded Arithmetic are analogous to
the c:-replacement axioms of first order Bounded Arithmetic. The ~ f * ~ - r e ~ l a c e m e n t axioms
provide us with the ability to interchange the order of second order quantifiers and first order
bounded quantifiers.

T o state the definition of the ~ f ~ ~ - r e ~ l a c e r n e n t axioms, we need first t o define an
analogue of the Gijdel beta function which operates on predicates.

Definition: Let a be a second order unary predicate variable. We write f l (b ,a) as an abbrevia-
tion for the atomic abstract {z}a(<b,z>).

The motivation behind this definition of fl is that it can be used as a Gijdel beta func-
tion operating on predicate variables. One simple application of fl is as a pairing function.
Thus, we can think of the predicate variable a coding the two predicates ~ = f l (l , a) and
7=fl(2,a). Conversely, given two unary predicates variables P and 7, the ~d~~-cornprehens ion
axioms guarantee the existence of a predicate a such tha t

if z = < l , y >

if z=<2,y>
otherwise

and thus ~ = f l (l , a) and 7=fl(2,a).

Definition: We write < P l y > to denote the predicate a defined as above. More precisely,
< 71172 > is an abbreviation for the abstract

{x} [(3%~~)((~=<1,%>~71(%))~(~=<2,t.>~7~~)))] .

178 Foundations of Second Order Bounded Arithmetic

As Theorem 16 below shows, f l can be used for more sophisticated purposes than just
as a pairing function.

Definition: The ~ : * ~ - r e ~ l a c e m e n t axioms are the formulae of the form

where t is any term, 4 is a unary predicate variable, and A is any formula. Other first
and second order free variables may appear in A as parameters.

Theorem 16: Let izl. Then ~ : * ~ - r e ~ l a c e m e n t axioms are theorems of both U; and V;

Proofi Let A(b ,a) be a re^l formula. Since V; is a stronger theory than U; (by Proposition 4),
it will suffice to show that U; proves the replacement axiom for A .

One direction is easy:

The other direction is more tricky. Let D be the formula (vz<t)(34)A(z14). Let B(c) be the
formula

Then it is obvious that U~FD>B(O) . Also it is straightforward to prove that
U ~ F DAB(c)>B(c+~) by use of the ~ o f ~ ~ - c o m ~ r e h e n s i o n axioms.

Since B is a formula, u ;FD>B((~~) follows from C:'~-LIND. Finally, it is clear
that

Hence the theorem is proved.

Q.E.D.

Two more mebpredicates which are useful when used in conjunction with f l are
ARYk and DEARYk.

Definition: Let cr be a second order unary predicate variable. We write ARYk(cr) as an abbrevi-
ation for the abstract {zl, . . . ,zk)cr(<zl, . . . , zk>) .

Let 7 be a k-ary predicate variable. We write DEARYk(7) for the abstract
{z}dP(l7z), . . a ,P(k7z)).

Hence AR Yk(DEAR Yk(r)) is the same predicate as 7. However, DEAR Yk(AR Yk(a)) is
not in general the same as a.

As an example of how ARYk and DEARYk can be used, consider the following more
general form of the ~ ~ ' ~ - r e ~ l a c e m e n t :

where 4; and 4: are unary and k-ary, respectively. Of course this more general form of the
~ , . l>~- re~ lace rnen t axiom is a consequence of the less general form presented above.

Corollary 17: Let i2l. If A is a ~ ~ ~ f ~ - f o r m u l a then there is a formula B of the form (34)C such
t h a t C is a IIi!f-formula and such tha t U; and V; prove tha t A is equivalent t o B.

-
Proof: By Lemma 6 we may assume without loss of generality tha t A is a ~ i ' l~ - fo r rnu la . Now
we may use prenex operations and the ~ i ' ' ~ - r e ~ l a c e r n e n t axioms to transform A into the prov-
ably equivalent form

with DEII,.!~. T h e n second order existential quantifiers may be combined by use of the f l
function, giving B equal to

Q.E.D.

9.7. Cut Elimination in the Preaence of ~ : l ~ - ~ o m ~ r e h e n s i o n .

In this section we investigate cut elimination theorems for 8; and 8;. Although
Gentzen's free cut elimination theorem holds for these theories, the proof is quite difficult and
non-constructive. For our purposes, i t will be sufficient t o show tha t certain conservative exten-

sions of 82 and 82 satisfy cut elimination.

One difficulty with proving the cut elimination theorem for 82 and is t ha t it is pos-
sible for A (a) t o be a re formula and U t o be a abstract and yet A(U) is not a

Cf~~-forrnula . T h u s Lemma 9(c) is not readily provable for 8; and 8; when V is a
 re f abstract.

A second and more serious difficulty arises when we try t o prove the cut elimination
theorem by induction on ord(P) as in the proof of Theorem 10. In Case (1.5.iii) we transformed
a mix inference with principal formula (Vb)B(b) t o one with principal formula B(V). Now if V

180 Foundations of Second Order Bounded Arithmetic

is merely a ~ : l ~ - a b s t r a c t i t is quite likely t h a t the level of B(V) is not less t han the level of

(V4)B(4). However, without decreasing the level of t he mix inference we can not apply the
induction hypothesis in the proof by induction on ord(P).

T o circumvent these difficulties we shall define below theories 8;(6) and (6) by

enlarging the languages of 8; and pi. I t will turn ou t t ha t the constructive proof of the cut

elimination used above in 59.4 can be extended t o these expanded theories 8;(6) and pj(6).

Definition: A relational 6 is a predicate which acts on integers and predicates. More precisely, a
ko-ary relational 6 is a subset of

where n 2 0 and each k i > l and w: denotes the set of all k-ary predicates on the natural
numbers.

Definition: Let R be a second order theory of Bounded Arithmetic. A relational 6 is introduced
by a definition in R iff the following hold:

(1) A(d ,8) is a formula, B(d,b) is a ll:lb-formula and d and 8 indicate all of the
free variables in A and B.

(2) R k A (d,8)* B(d,8).

(3) T h e defining equation for 6 is

W e will say tha t 6 is defined by R if the above holds and we write R6 t o denote the
theory R enlarged t o include the new symbol 6 and its two defining equations:

(a) S(d,b)--+ A (d ,b)

(b) A (d13)--+ 6(d13)

These two defining equations are valid initial sequents of the natural deduction system for R6.

Definition: T h e theory 8 . (6) is the following natural deduction system:

(1) T h e BASIC axioms are initial sequents of 8;(6). Also, logical axioms and equality

axioms are valid initial sequen t s of 8;(6).

(2) C:lb(6) and Il/pb((6) are the sets of formulae of the language of 8 . (6) defined in the
usual way by counting alternations of bounded quantifiers, ignoring sharply bounded
quantifiers.

$9.7 C u t Elimination in the Presence of ~ : * ~ - ~ o m ~ r e h e n s i o n 181

(3) If A E C , ' ~ ~ (~) and BEII;~~(S) and RkA(d,6)*B(d,6) , then the relational 6 defined by

is a symbol of the language of 8;'(6). T h e two defining equations for 6 are initial

sequents of the natural deduction system for 82(6).

(4) T h e c:*~((~)-PIND inferences are valid inferences of 82(6).

(5) T h e E ~ * ~ (~) - c R comprehension inferences are valid inferences of 8;(6).

82(6) is the theory U82(6).
i

Dejinition: @;(a) and P2(6) are defined similarly t o 0;(6) and 8 4 6) except using C:~~((I)-IND
instead of c~'~~(G)-PIND.

Dejinition: Let R be one of the theories 82(6), 82(6), @2(6) or @2(6). A formula A is A:lb(6)
with respect t o R iff there is a ~: '~(6)-formula B and a I I~~b(6)- formula C such tha t
R k A * B and R k A o C .

So, in effect, 8;'(6) and Pi(6) are the same as the theories 82 and except tha t all
the ~;>~(S)-def ined relationals are included in the language and only c,-,~'~(~)-cR comprehension
is allowed.

Proposition 18:

(a) 82(6) is a conservative extension of 8;.
(b) Pi(6) is a conservative extension of Pi.

Proofi

(a) W e begin by showing tha t &(6) is an extension of 8;. For this it suffices t o show

tha t ~ : ~ ~ - c o m ~ r e h e n s i o n is a derived rule of 82(6). S o suppose AEC:.~, BBE>:." and

8 2 (6) k ~ * ~ . Let V be the abstract {P)A(P,~,B) where P, 6 and 6 indicate all the free vari-

ables of A and suppose tha t 8;(6) proves the sequent

Let 6 be the relational of 8/(6) which is A:*b-defined by

182 Foundations of Second Order Bounded Arithmetic

Let V6 be the abstract {1)6(1,$,~). Then there is a &(6)-prmf which ends

since V6 is a C;pb((6)-abstract (in fact, i t is an atomic abstract).

Hence 8 . (6) is an extension of 8;. T h e fact t h a t 8 . (6) is conservative over 8. is
proved just like Corollary 12(c).

(b) is proved similarly to (a).

Q.E.D.

Because of the way we have defined the languages of 8 . (6) and &(6) there will exist
formulae F (a) such tha t F (V) is not defined for V an arbitrary abstract. In particular, if F is
6(a) for some relational 6, then 6(V) is not a formula and F (V) is not defined. T h u s we only
allow c:'~((~)-cR comprehension to be applied in those cases of the form

where F (a) is a formula such tha t F (V) is defined. Of course, F (V) is defined iff a is not an
argument t o any all'b-defined relational in F (a) .

W e shall also need the capability to substitute a ~ :p~-abs t r ac t V for a in an arbitrary
formula F (a) . Accordingly, we make the following definition:

Definition: Let R be one of the theories 8.(4 or vt(6). Let a be an n-ary predicate variable,
F (a) be a formula in the language of R , and V be the abstract {yl, . . . ,y,}A(~,$,p) where A
is a C;pb(G)-formula of R . Then F [V] is defined by induction on the complexity of F:

(1) If a does not appear in F , then F [V] is F.

(2) If F (a) is a(3), then F [V] is A (3,$,p).

(3) If F (a) is 6c(i?,a,~) where C is a ~ , ' ~ ~ (6) - f o r m u l a of the theory R and 6c is the rela-
tional with defining axiom

then F [V] is 6(t,;) where 6 is the relational defined by

C u t Elimination in the Presence of ~ : ~ ~ - C o m ~ r e h e n s i o n

Here C [V] is the result of substituting V for a in C. Notice tha t since A is a
~ d ' ~ (6) - f o r m u l a and C is ~ 1 " ~ (6) with respect t o R , so is C [V] .

(4) Suppose F is TB, B A C , BvC or B > C . Then F [V] is -B[V] , B [V] A C [V] ,
B [V] v C [V] or B [V] 3 C [V], respectively.

(5) Suppose F (a) is ('dz)B(a) or (3z)B(a) . If z appears in A , we obtain A' by renaming
the variable z in A t o avoid conflict of variables. Then F [V] is (Vz)B[{$)A'($)] or
(3z)B [{$)A' ($)I, respectively.

(6) Suppose F (a) is (V+)B(a) or (34)B(a). Since A has no second order quantifiers, the
bound variable 4 does not appear in A . So F [V] is (Vq5)B[{$)A($)] or
(34)B [{$)A(?)], respectively.

Definition: Let A(al , . . . ,a,,al, . . . , am) be a formula where the a's and a's indicate all of the
free variables in A . B is a substitution instance of A iff B is of the form
A [V1, . . . ,V,](tl, . . , , tm) where each Vi is a ~ d l ~ (b) - a b s t r a c t and is substituted in for ai
and each t i is a term substituted in for ai.

T h e next lemma is analogous t o Lemma 9. I t will be exactly what we need to carry

out the proof of the cut elimination theorem for 82(6) and &(6).

Lemma 19: Let id0 and let R be one of the theories 8 . (6) or @.(6).

(a) If B is a formula (respectively, a lli'1b(6)-formula), then every substitution
instance of B is a ~ ~ " ~ (G) - f o r m u l a (respectively, a lli '~~(6)-formula).

(b) Suppose P is an R-proof of r j A and tha t every free cu t in P has a first order formula
as i ts principal formula. Then there is a free cut free R-proof of r j A .

(c) Suppose P is a free cut free R-proof of r - + A and tha t a is a free variable appearing in
A . Further suppose V is a Cdpb(6)-abstract. Let r [V] and A [V] denote the
cedents obtained by substituting V for every occurrence of a in the formulae in r and A .
Then r [V] j A [V] has a free cut free R-proof.

(a) is easily proved by induction on the complexity of A .

(b) is proved exactly like the free cut elimination theorem for first order logic (Theorem
4.3). Refer t o Takeuti [28], pp. 22-29, 112 for details.

T o prove (c), we may assume without loss of generality tha t P is in free variable nor-
mal form and t h a t V has no bound variables in common with P. Let P [V] denote the proof
obtained from P by substituting V for every occurrence of a in formulae in P. I t is easy t o see

by examining the allowable inferences tha t every inference in P [V] is a valid inference of 8 . (6)

(respectively, @2(6)). In particular, (a) guarantees tha t c ~ ~ ~ (~) - P I N D or c:J~((~-IND and

184 Foundations of Second Order Bounded Arithmetic

C ~) ~ (G) - C R inferences are still valid after the substitution of V for a.

If P contains any initial sequents which are defining axioms for some relational 6, say

then in P [V] this initial sequent becomes

where 6* is b [V] . This is a defining axiom for 6* and hence is a valid initial sequent.

However, P [V] may fail t o be a proof in tha t there may be initial sequents of P [V] of
the form

where A is not atomic. However, sequents of this form are easy t o prove without free cuts. So
we merely tack onto P [V] free cu t free proofs of these initial sequents and thus obtain a proof
Q of I'[V]--+A[V].

Q is not necessarily free cu t free since Q may contain free cu ts with principal formulae
of the form B [V] where B is atomic. But each B [V] is first order and so by (b) there is a free
cut free R-proof of I'[V] --+ A [V] .

Theorem PO: Let R be one of the theories 8:(6) o r 8:(6) where i t O . Let P be an R-proof.
Then there is an R-proof P * such tha t P * has the same endsequent a s P and there are no
free cuts in P* . Furthermore, each principal formula of an induction inference in P * is a sub-
stitution instance of a principal formula of an induction inference in P and each principal
abstract of a comprehension inference in P * is a substitution instance of a principal abstract
of a comprehension inference in P .

Proof.. T h e proof follows the proof of Theorem 10 (and Takeut i [28]) almost exactly. We define
the order ord(P) of P as before and proceed by induction on the ord(P). T h e only difference is
tha t in Case (1.5.iii) we use Lemma 19(c) instead of Lemma 9(c).

Q.E.D.

CoroUary PI: Let R be one of the theories 8;(6) or 8;(6) where i t l . Suppose R proves the
sequent I'+A and t h a t every formula in I'UA is a ~;"~(6)-forrnula or a II~'b(6)-formula.
Then there is an R-proof P of I'+A such tha t every formula in P is in C!lb(6) o r in
lIillb(6).

$9.7 C u t Elimination in the Presence of A:*b-Comprehension 185

Proof: By Theorem 20 there is a free c u t free proof P of r + A . If A is the principal formula
of a c u t in P , then A must be a direct descendant of either a principal formula of a n induction
inference o r of a formula in an initial sequent. In the first case, A must be a C:pb((S)-formula
since only c:*~(S)-PIND (or c:~~(~)-IND) inferences are allowed. In the second case, we claim
tha t A is in C;pb(S). Th i s is because each initial sequent must either (a) be an equality or
BASIC axiom and contain only atomic formulae o r (b) be a defining equation for a relational.

Now i t is clear t h a t every formula in P must be in C/tb(6) o r ll/lb(6) since a formula
can only be removed via a c u t inference and no other kind of inference can reduce the alterna-
tions of second order quantifiers in a formula. In particular, note t h a t since only c ~ ' ~ (~) - c R
comprehension inferences are allowed, any comprehension inference of the form

will have A€c:~~(s) if (3 4) ~ (4) € ~ ; ~ ~ (6) .

Q.E.D.

Corollary 21 is exactly wha t we need to prove the main theorems of Chap te r 10.

Chapter 10

Definable Functions
of

Second Order Bounded Arithmetic

This chapter investigates the question of what functions are z:pb-definable in the
second order theories U: and V: of Bounded Arithmetic. I t turns out tha t a function f with

polynomial growth rate is z:lb-definable in U: (or in 8:) iff f is computable by a polynomial
space bounded Turing machine, i.e., iff f is in PSPACE. In addition, f is c:'~-definable in V:

(or in 8.) iff f is computable by an exponential time bounded Turing machine, i.e., iff f is in
EXPTIME .

10.1. EXPTIME functions are Zitb-definable in VZ.

Definition: EXPTIME is the set of functions f of polynomial growth rate which can be com-
puted by a Turing machine MI such tha t there is a polynomial p (3) so tha t the runtime of
M, on input P is always less than 2~(1'1).

Our definition of EXPTME differs from the usual definition used by computer scien-
tists. Usually EXPTIME is taken t o be a set of predicates; however, we are using it as a set of
functions with polynomial growth rate. We shall also talk about predicates being in EXPTIME:
if P is a predicate, then we define P is in EXPTIME t o mean tha t the characteristic function of
P is in EXPTIME.

W e shall also need the concept of exponential time functionals, which are defined
analogously t o the polynomial hierarchy of functionals of Chapter 1. Recall t ha t w,' is equal t o
the set of n-ary predicates on the natural numbers.

Definition: Let bl , . . . ,q5, be predicate variables of a second order theory of Bounded Arith-
metic, where each 4; is kt-ary. Then EXPTIME(q51, . . . ,4,) is the uniform set of functionals f
such tha t the following hold:

(1) f has polynomial growth rate.

(2) For some kf 2 1, f has domain

EXPTIME functions are ?jb-definable in Vk 187

(3) There is an oracle Turing machine Mf with r oracles such t h a t for l < i < r , the i-
th oracle is kt-ary and such tha t for all R1, . . . ,Or with R;EW~,,

where Mf(Z,Rl, . . . ,Or) denotes the value ou tpu t by Mf on input 2 with oracles
Rl, . . . ,Rr .

(4) For some polynomial p(il), the runtime of Mf(Z,Rl, . . . ,Or) is less than P(M) for
all 3 and all Rl, . . . ,Or.

(5) For all 3 and Rl, . . . ,Or, M,-(3!,Rl, . . . , a r) uses no more than p(I-i'l) tape squares
on each of its oracle tapes. O r equivalently, Mf(?,Rl, . . . ,Or) only queries its
oracles about Ri(3) for 3 < 2 ~ (P ') .

W e will also denote EXPTIME(q51, . . . ,4,) by EXPTIME(U&, . . . ,wi,).

Condition (5) in the definition above is somewhat unusual in tha t it bounds the size of
the oracle queries of Mf. This is, however, actually a very natural condition since i t means tha t
if REEXPTIME and M(z , ~) E E X P T I M E (~) then M(x,R)EEXPTIME. Without condition (5) this
would not necessarily be true.

Theorem 1: Let j be a function of polynomial growth rate in EXPTIME. Then j is
C/pb-definable in v2'.

Proofi Let us assume without loss of generality tha t j is a unary function and M is a single tape
Turing machine which runs in time less tha t 2q(P1) for each input z, where q is a suitable poly-
nomial. Let the alphabet of M be I' where the cardinality II'l of I' is a t least 3, and suppose
tha t the symbols "b" , 'Y)" and "1" are included in I'. Let the states of M be go, . . . ,qlv with
go the initial state. W e let $ be a new symbol not in I'. We assign arbitrarily Gijdel numbers t o

the states qi, the symbols in I' and t o '3" ; we denote these GGdel numbers by r q , l , r b l , r $ l ,
etc. Let n be the maximum number used as a Gijdel number.

An ID (instantaneous description) is an encoding of a s ta te of M and is a sequence

where each vi is in I' and qi is the current s ta te of M I the current tape head position is a t rk+l ,
and the $ I s denote the immovable ends of the tape. T o encode ID'S of M in the theory v;, we
shall use a second order function symbol q" with values less than or equal t o n.

Let NeztM(al,a2,as1a4,b) be a predicate which is t rue when al,a2,a3,a4 codes four con-
secutive values of an ID for M and b is the value which replaces a 2 in the next ID of M. For
example, b must equal a 2 unless a l l a%, o r a3 is a Godel number of a s ta te of M . When
al,a2,a3,a4 d o not code valid consecutive values for an ID of M then NextM(al,a2,a3,a4,b) is true

188 Definable Functions of Second Order Bounded Arithmetic

iff b = r $ l . I t is easy t o see t h a t NextM is c/-definable in V; (in fact, NextM is easily seen t o
be c/-definable in s;.)

Define r (z) t o be equal t o 2'(1'1)+121+2; then r(z) is expressible by a term of Bounded
Arithmetic. We can assume without loss of generality t ha t on input z , each ID of M is of
length exactly r(z) . We code the run of M on input z by the function f s o tha t for all
jIr(z)-2q(lzl), f (j) is equal t o the (Rem(j,r(z))+l)-th number in the (Ij/r(z)]+l)-th ID of the
run of M on input z.

Accordingly, we define a predicate InitM as:

T h u s InitM(f,z) asserts t h a t the values of (" for i < r (z) code the ID

where aj is equal t o 0 or 1 depending on the i-th bit of the binary representation of z.
(Without loss of generality, we may assume the input t o M conforms t o the format expressed by
InitM.)

We define RunM((,i,z) t o mean tha t (codes i steps of the running of M(z):

I t is easy t o see, by use of c~].*~-FcA, t h a t

Then, by an application of C~"~-IND,

510.1 EXPTIME functions are Zitb-definable in Vi

Furthermore, the uniqueness condition is also provable, so

W e can easily Z/jb-define the functional ValueM such tha t if f satisfies
~unM(f ,2q(l~l) ,x) , then ValueM(f,x) is equal t o the output of M which is coded in the last ID
coded by f . Value is in fact polynomial time (relative to a function oracle for f) and can be
c:($)-defined.

We are now ready to give the desired formula AM(x,y) which defines the function j
computed by M. T h e formula AM(z,y) is defined by

Because Value M is polynomial time, we can assume without loss of generality tha t there is a
term tM(x) such tha t V i proves tha t (VXn)(Value M(Xn,x)<tM(x)). Then,

We can now Z/lb-define j with the defining axiom

10.2. PSPACE functions are C:.b-definable in U:.

Definition: PSPACE is the set of functions j of polynomial growth rate which can be computed
by a Turing machine M, such t h a t there is a polynomial p(3) so t h a t the total number of
tape squares used by M, on input 3 is always less than p(ldt'J).

Definition: Let . . . ,q5, be predicate variables of a second order theory of Bounded Arithmetic
where each bi is k,-ary. Then PSPACE(q51,. . . ,q5,) is the uniform set of functionals j such
t h a t the following hold:

(1')-(3'): Conditions (1)-(3) of the definition of EXPTIME(q51, . . . ,q5,) hold, and

(4') For some polynomial p(Z), the total tape space used by Mf(?i?,fll, . . . , a r) is less
than p(1dt'J) for all d and all a l , . . . ,a,.

PSPACE(U~~, . . . ,m i) is another name for PSPACE(q51, . . . ,q5,).

190 Definable Functions of Second Order Bounded Arithmetic

There is no condition (5') in t he definition above since condition (4') implies the condi-
tion (5) of the definition of EXPTIME(~).

Before proving the assertion made by the title of this section we will give an illuminat-
ing example. Recall t ha t Theorem 2.7 showed t h a t length bounded counting is cP-definable in
s;. A more general concept is t h a t of bounded counting: a function j is defined by bounded
counting from A if j(y)=(#z<y)A(z). Clearly, if A is a PSPACE predicate, then j is a
PSPACE function and thus bounded counting should be definable in u;.

W e shall use the following scheme to express bounded counting: 8 will be a function
variable satisfying

8(2z, y)+8(2z+l, y) if z<2lY'
if ~ (z z 21'1) and 21'15 ~ < 2 1 ' l + ~
otherwise

Then 8(l ,y) is equal t o the number of z< y such t h a t A (z) holds.

Proposition 2: Let A be a Cdvb-formula and let t (z) be any term. Then the function

Proof: First we define RDEF(<,z,y) t o be the formula asserting t h a t d z , y) satisfies a condition
similar t o the definition of I9 above; namely, RDEF(<,z,y) is

Define B(i ,z) t o be the formula

An easy application of C:.~-FCR shows tha t U;t B(0,z). Similarly, u ; ~ B (~ , z) ~ B (s ~ , ~) . By
C,'>~-LIND ,

u i t B(Itl+l,z).

Thus ,

PSPACE functions are C:gb-definable in Ui

S: ('dy)(3v521tl)(3e"l) [~ = ~ ~ ' ~ (l , y) ~ (V z <21tlf ')RDEF(~~",x, y)] .

This partially proves Proposition 2. We leave i t for the reader t o show tha t U: can prove tha t
the y is unique, and tha t the bound 21'1 on y can be sharpened t o t .

Q.E.D.

T h e general idea of the proof of Proposition 2 is a "divide and conquer" strategy. In
order to compute d l) , the problem is divided into the two subproblems of computing 5(2) and
d3). These subproblems are further divided into subproblems, etc. T h u s to find (#y<t)A(y)
we first find (#y<21t1z1)~(y) and (#y<t~21tI")~(y+21tlA1) and compute the sum. This divide
and conquer strategy can be generalized t o the concept of limited recursion.

Definition: Let g and h be functions with polynomial growth rate and let p and q be suitable
polynomials. We say t h a t f is defined by limited recursion from g and h with time bound p

and space bound q iff the following holds. Let f* be defined inductively by

Then, for all y and 2, we must have V*(Z'ly)J<_q(l?i?l) and f must satisfy the defining equation

T h e definition of limited recursion is somewhat similar t o tha t of limited iteration,
however, the two concepts are substantially different. T h e time bound p of limited recursion
does not correspond to the runtime of a conventional Turing machine. Instead, p is a measure
of the maximum depth of recursion. I t will be seen tha t limited recursion is similar t o the
action of an alternating Turing machine (ATM) and tha t p is a measure similar t o the runtime
of an ATM.

T h e next theorem states tha t limited recursion is definable in u:.

Theorem 3: Suppose tha t g and h are ,Edlb-definable in U; and tha t p and q are suitable poly-
nomials. Further suppose tha t f is defined by limited recursion from g and h with bounds p
and q. Then f is ,E;~~-definable in u:.

Proof: T h e proof is similar t o the proof of Proposition 2. We first define RDEF2($,2,y) t o be
the formula

Definable Functions of Second Order Bounded Arithmetic

S o (V~<~P(PI))RDEF~(~,Z',~) asserts t h a t the c function is equal t o t he j * function of the
definition of limited recursion. Note t h a t the min function is used in the definition of RDEFZ
t o explicitly prevent the possibility of an overflow; t h a t is t o say, the possibility t h a t some value

of j*(P,y) is too large.

W e used g and h as function variables in the definition of RDEF2; since g and h are
zipb-definable, RDEFZ is a zdb-formula. Let s(Z) be the term 2q(l'I) and define B(i,?i,c) t o be
the formula

I t is easy t o see using ~ ~ ~ ~ - c o m ~ r e h e n s i o n t h a t

and

So by C:~~-PIND , U ~ F (3X")B(p(lZ'I),?i,X8).

W e also need t o show t h a t U: proves t h a t the X8 is unique; t h a t is, we need t o show
t h a t

For this purpose, let C(i,Z',f,Oe) be the formula

and let D(Z,<,08) be the formula

Then it is clear t h a t

and

from which the desired uniqueness condition is obtained by an application of C~*~-PIND.

510.2 PSPACE functions are qlb-definable in Ui

Let A(2, y) be the formula

So U j t (~ 2) (3 ! y< e(?!))~(2, y). Also, for all 2, A(2, j(2)) is true. Since A is a C:~b-formula, j is
by definition C:jb-definable.

Q.E.D.

W e are now ready t o prove tha t all PSPACE functions can be defined in u;.

Theorem/: Let j be a function with polynomial growth rate in PSPACE. Then j is
C:~~--definable in Uz]..

Proof: Chandra, Kozen and Stockmeyer [4] show tha t the PSPACE predicates are precisely the
predicates which can be recognized by polynomial time alternating Turing machines. This is
also true for PSPACE functions with polynomial growth rate: if j is of polynomial growth rate
then jEPSPACE iff there is a polynomial time alternating Turing machine (i.e., a transducer)
which computes j.

But polynomial time alternating Turing machines are easily defined by limited recur-
sion from polynomial time functions g and h . By Theorem 3.1, g and h are definable in
u;. Theorem 3 thus implies tha t every PSPACE function of polynomial growth rate can be
C,'pb-defined in U;.

Q.E.D.

10.3. Deterministic PSPACE Turing machines.

Theorem 4 established t h a t Uz]. can define the PSPACE functions; however, the
proof of Theorem 4 used Chandra, Kozen and Stockmeyer's [4] representation of PSPACE func-
tions by alternating polynomial time Turing machines. An interesting question is whether U;
can prove directly tha t any polynomial space bounded, deterministic Turing machine will run t o
completion.

T h a t is, let M be a PSPACE Turing machine for which there is a term r(x)=lt(x)l
with r(x)_>lxl+3 for all x so tha t M is constrained by tape markers t o run in space r(x) on
input x. Let RunM be defined exactly as in 510.1. Then our question is whether

where q is any polynomial. T h e answer t o this question is affirmative:

194 Definable Functions of Second Order Bounded Arithmetic

Theorem 5: Let M be a deterministic Turing machine constrained by tape markers t o run in
space r(x)=lt(x)l on input x, as above. Then

Proof: Let R u n M and InitM be defined as in 510.1. We need the ability to code a state by an
integer, s o we introduce the following functional:

(Recall t ha t n bounds the Gadel numbers of symbols used t o code states.) T h u s
S T A T E d c n , i , a) is equal t o a number which codes the i-th s ta te of the run coded by f .

Let PRunM be the formula

So PRunM($,i,a) asserts t ha t codes i+l states of a run of M except tha t no conditions are put
on the initial s ta te coded by $. Compare the definition of PRunM with the definition of RunM.

Let Dlw(c,a) be the formula

D d c , a) asserts tha t for all possible initial s tates there is a f which codes c + l s ta tes of a run of
M beginning with tha t state. Note tha t because M is polynomially space bounded, a first order
bounded quantifier can be used t o quantify over all possible initial s tates z. I t is clear tha t

Also, we claim t h a t

T o prove the claim we argue informally in u,'. Suppose D d L a c J) is true and tha t

codes a s ta te for M. Then there exists a X: such tha t z=STATEdX:,O,a) and such tha t
PRunM(X,",LtcJ,a). So let z2=STATElw(X,",L+cJ,a) and let XF be such tha t

$10.3 Deterministic PSPACE Turing machines 195

x2=STATEM(A{,0,a) and such tha t PRunM(A{,l$cJ,a). Define A n by putting A: and A2n

together so tha t x=STA TEM(An,O,a) and PRunM(An,2.1$c J,a). If c is even, we are done. If c is

odd we easily add one more state t o the end of the run coded by A n t o get the desired result.
This proves the claim.

Since D M is a formula, we can use C~''~-PIND t o deduce tha t

From this Theorem 5 follows easily.

Q.E.D.

10.4. Witnessing a ~ : y ~ - ~ o r m u l a .

Our next main goal is t o prove the converses of Theorems 1 and 4; this will be accom-
plished by a proof similar t o the proof of Theorem 5.5. This section establishes some prelim-
inary definitions and propositions needed for the proofs in $10.5 and 510.6.

For the next three sections, we shall work exclusively in the theories 8 . (4 and 82(6).

We define Witness2 below analogously t o the way Witness was defined in 55.1. When
A is a ~ ~ l ~ ~ (G) - f o r m u l a with free first order variables d and with free second order variables b ,
we define ~ i t n c s s 2 ~ ~ ' (~ , ~ , b) t o be a c~*~((B)-formula which asserts t ha t 7 is a predicate which
"witnesses" the t ru th of A(d,b).

Although WitnessZA could readily be defined for arbitrary bounded formulae A , we
shall forsake the added generality and restrict A t o be a c,"~(G)-formula.

Definition: Suppose A is a ~:'~(G)-forrnula. Let the free first order variables of A be among d
and the free second order (predicate) variables of A be among 5. T h e Co].vb(G)-formula

++

W i t n e ~ s 2 ~ ~ ~ (7 , d , &) is defined below, where 7 is a unary predicate variable. T h e definition is
by induction on the complexity of A .

(1) If A is a Co].vb(S)-formula, then define

(2) If A is B A C , define

196 Definable Functions of Second Order Bounded Arithmetic

(3) If A is BvC, define

(4) If A is (Vx<t)B(x), then define

+ +

~itnessZT'(-(,3,d) Y (Vx < t) ~ i t n e s s 2 ~ ~ ~ ~ ~ (f l x + l ,7)ldl x ,d)

(5) If A is (3z<t)B(z), then define

+ 4

witness~T'(~,a,Z) (32 < t) W i t n e ~ s 2 ~ ~ " ~ (~ , a ~ z ,d)

(6) If A is (3 4 k) ~ (4 k) where bk is a k-ary predicate variable, then define

~ i t n e s s 2 ~ " (~ , a , d) Y ~itness2,$~~(fl2,~),?i,Z,~ R yk(@(1 .?)))

++

(7) If A is -B and A $! c ~ J ~ (~) , then define Witness2i9'by using prenex operations to
transform A so tha t it can be handled by Cases (1)-(6). Specifically, if A is -(-B),
-(BAC), -(BvC), - (Vzst)B, -(3x<t)B o r -(V4)B; let A* be B, (-B)v(-C), (-B)A(-C),
(3x5 t)(-B), (Vx< t)(-B) o r (34)(-B). Then define

Proposition 6: Let A(a,d) be any ~ :~~(6) - fo rmula . Then 8:(6) and @(6) prove

Proof: by induction on the complexity of A . T h e only nontrivial cases are (4) and (6) in the
definition of Witness2.

Case (4): Suppose A is (Vz<t)B(z). T h e induction hypothesis is t ha t 8:(6) and @:(6)
prove

By ~ : > ~ - r e ~ l a c e m e n t (Theorem 9.16), 82(6) and 8.(6) prove

Witnessing a X i ~ ~ - F o r m u l a

from which the desired result is immediate.

Case (6): Suppose A is (34)B(4) and t h a t 82(6) and e2(6) prove

where 4 is a k-ary predicate variable. From the definition of f l and ARYk, we

have immediately t h a t &(6) and V..(6) prove

and from this the desired result is immediate.

Q.E.D.

++

As we remarked above, Witness2i9" is a Cdpb(6)-formula whenever A is a
- 4

~)~~((S)- for rnula . T h e next proposition specifies the computational complexity of Witness2;~".

++

Proposition 7: Let A@,$) be a ~) ~ ~ (S) - f o r m u l a . Then Witness2i1"(rld,d) represents a predi-
cate in PSPACE(7,Z).

++

Proof: This is an immediate consequence of the fact t ha t Witness2i1" contains no second order
quantifiers.

Lemma 8: Let A(d,Z,P) be a ~ ~ ~ ~ (G) - f o r r n u l a and let B(i?,d,Z) be a Xdtb(6)-formula, where the
free variables of A and B are as indicated. Furthermore, P is a k-ary predicate variable and
t is a vector of k first order variables. Let U be the abstract {3')B(2,d1Z) and let A*(Z,d) be

the formula A(a f ,U) . Then @(6) and P . (6) prove

Proof: This is easily proved by induction on the complexity of A . EI

T h e final lemma of this section is not directly concerned with the Witness2 metafor-
mula, bu t i t will be useful in the proofs of the theorems of 510.5 and $10.6. Intuitively, i t s tates
tha t if A (a) is a bounded formula then the t ru th value of A (a) does not depend on all of a's

198 Definable Functions of Second Order Bounded Arithmetic

values bu t only on cu restricted to some bounded domain.

Lemma 9: Let A(cu,d,?) be a bounded formula with all free variables as indicated. For nota-
tional simplicity, further suppose cu is a unary predicate variable. Then there is a term sA(d)

such tha t 8:(6) and @..(6) prove

Prooj: This is readily proved by induction on the complexity of A .

As in Chapter 5, we adopt the convention that conjunction and disjunction associate
from right to left. We also extend our use of the << . . - >> notation t o apply to predicates.
So

10.5. Only PSPACE is X:~~-definable in UZ.

In this section, the converse to Theorem 4 is proved. This establishes tha t a function f
of polynomial growth rate is c/J~-definable in U; iff j is computed by some polynomial space
bounded (PSPACE) Turing machine. T h e main theorem of this section is:

Theorem 10: Suppose A(Z,d) is a ~ / ~ ~ (6) - f o r m u l a where t and d are all the free variables of A .

Also suppose 8 ~ (6) t (E 1 ?) (3 ~) ~ (2 , ~) . Then there is a ~ : ~ ~ ((d - f o r m u l a B , a term t and a func-
tion f so that

(1) 8:(6) t (~ ~) (V Y) (B (~ ~ Y) ~ A (~ , Y))

(2) f k (6) t (~ 3 x 3 ~ 5 t)B(3,~)

(3) 8 ~ 6) ~ (@) (v Y) (v ~) (B (~ ~ Y) A B (~ ' ~ ~) ~ Y=Z)

(4) For all ii, N k B(Tf,f(ii))

(5) j is a PSPACE function

Hence, j is a PSPACE function which is ~:~((s)-definable in 82(6) and for all 3, A (3 J(3)) is
true.

Cj10.5 Only PSPACE is qgb-definable in U: 199

T h e converse of Theorem 4 is an immediate corollary of Theorem 10:

Corollary 11: Suppose A(Z,d) is a C:vb-formula where Z and d are all the free variables of A .
Also suppose u ~ ~ (V Z ') (~ ~) A (Z ' , ~) . Then there is a PSPACE function j such tha t for all 2,
N k A (Zlj(7-9.

Proof: of Corollary 11 from Theorem 10:

By Lemma 9.6 and Theorem 9.5, we can assume without loss of generality that A E ~ ; . ~

and that 62;'~ (VZ)(3y)A(Z,y). But 8:(6) is an extension of 6;, so @(6) t- (VZ)(3y)A(Zl y) and
Theorem 10 states tha t the desired function j exists.

We shall prove Theorem 10 by proving a more general theorem:

Theorem 1% Suppose &(~)FI',II+A,A and each formula in I'UA is a ~ :~~(6) - fo rmula and
each formula in IIUA is a ll:*b(6)-formula. Let cl, . . . ,c, and 71, . . . , rq be the free variables
in I',ll+A,A. Let X and Y be the formulae

and
Y = (W A) V W { ~ C : CEII).

Then there is a PSPACE(~U,;;) predicate M so that

(1) M is A:lb(6)-defined by 8:(6) and

Proof: of Theorem 10 from Theorem 12:

The hypothesis of Theorem 10 is that 8 ~ (6) ~ (~) (3 y) ~ (, y) . By the extension of
Parikh's theorem to second order Bounded Arithmetic, there is a term t such that

8 i (6) ~ (b G) (3 y j t (Z)) ~ (~ , y) . We now apply Theorem 12 with A={(3yjt(t))A(Z1y)} and with
I'=n=A=B. Theorem 12 asserts that there is a PSPACE predicate M which is ~ :~~(6) -de f ined

by 8:(6) so that

By the definition of Witness2, this means that

200 Definable Functions of Second Order Bounded Arithmetic

Now define

j (t) = (r y) witness2~$,,)({z)~(z~t),~~~)

and

Since ~i tness24$, ,) (a ,2 ,d) is a PSPACE(a) predicate and since {z)M(z,i?) is a PSPACE predi-

cate, j is readily seen t o be polynomial space computable. Also, since witness21i$,,) is a

C~V'-formula and M is a a;lb(6)-defined predicate, B is a ~ ;*~(6) - fo rmula .

I t now follows from Theorem 9.15(b) tha t conditions (1)-(5) of Theorem 10 hold.

Q.E.D.

Theorem 9.13 showed tha t an inductive definition similar t o b u t stronger than limited

recursion could be defined in 8:(6). Before we can prove Theorem 10, we need a lemma about
the computational complexity of the inductive definition of Theorem 9.13.

Lemma 18: Let A (a , t 1 3 and ~ (a , b , t , a , ; j) be ~:~*(6)-forrnulae of 8:(6) where a is a unary
predicate variable. Let t(b,-d) be a term. Let K(a,b,t,;) be defined from A and B as in
Theorem 9.13 by

if b=O and a < t (b , t)

K (a , b , t , ~ if a > t (b , t)

~ (a , b , t , {z}K(z,L$bJ,Z',~),~) otherwise

Then K(a,b,i?,~) is ~ :~ ' (l) -def inable by 82(6). Furthermore, if A is in PSPACE(;) and B is
in P S P A C E (~ , ~) then K is a PSPACEG) predicate.

Prod: T h e fact t ha t K(a,b,~,;) is ~>'(6)-defined by 8:(6) is proved by the proof of Theorem
9.13. So we must prove K is in PSPACE(:). T o do this we specify an algorithm t o compute

K(a,b,t,:).
Suppose b#O and a < t (b , t) , then t o compute K(a,b,t,;j) we begin by computing

~ (a , b , Z , a , ~) with a PSPACE machine ME with oracles for o. and ;. However, we modify ME so
tha t whenever MB would have queried the oracle of a(z) , instead ME saves its current s ta te and
begins t o compute ~ (x , L t b J , t , ~) . This process iterates until we wish t o compute K (~ , o , z , ~) for

some z. Then we just compute A(z,i?,;) and return its value.

510.5 Only PSPACE is Cisb-definable in Ui

I t is straightforward to verify that this algorithm uses only polynomial space.

Q.E.D.

Proof- of Theorem 12:

By Theorem 9.20 there is a &(6)-proof P of r ,n+A,A such that P is free cut free
and in free variable normal form. Hence, by Corollary 9.21, every formula in P is in
~ , ' ~ ~ (s) u n , ' ~ ~ (s) .

The proof P will generally contain a number of relational symbols 61, . . . ,Si. These
relationals are introduced with defining equations Sj(3,6)*Aj(3,6) where A .EC:J~(~). Thus the
proof P requires auxiliary proofs PI, . . . ,Pi of equivalences A ~ (x , ~) * B ~ (x , ~) where each B, is a
n:tb(6)-formula. These auxiliary proofs may themselves use further relational symbols and
require their own auxiliary proofs. However, eventually this process must stop and there are
proofs PI, . . . ,Pk such that for every relational symbol bj appearing in any of PIP1, . . . ,PI
which is defined by 6,(3,6)*Aj(3,6) there is a ll:*b(6)-formula Bj and there are two proofs
among PI, . . . ,PI of Aj(X1p)+ Bj(X,P) and Bj(XJp)+~j(X,p). In addition, we may assume
that each proof P,P1, . . . ,Pk is free cut free and that every formula appearing in P,P1, . . . ,Pk
is in C:'~(S)U~:*~(G).

T h e proof of Theorem 12 is by induction on the total number of sequents in the proofs
P,P1, . . . ,Pk. The argument splits into cases depending on the final inference of P.

First consider the case where P has no inferences and P consists of a single initial
sequent. The only difficult case is where P is a defining axiom for a relational, say P is the ini-
tial sequent

where r={6j(3,$} and A={Aj(3,;)). Then by assumption there is a proof Pj of

where B ~ E ~ , ' J ~ ((~) . By the induction hypothesis, applied to Pj, there is a PSPACE(~) predicate

G which is A:pb(6)-defined by 8 . (6) such that

Since

and 8 . (6) t - l B j > l A j , we have

Definable Functions of Second Order Bounded Arithmetic

So set M t o be the PSPACE(<) predicate defined by M (X , X , ~ , ~) = ~ (< l , z > , X , p) . Now
since bj(3,<) is atomic, we have

Th i s proves the theorem for t he case where P is a single initial sequent of the form
$(3,3-+~~(3,<). T h e other cases for P a single sequent are similar or easier.

Note t h a t the argument above shows tha t , no matter how many inferences are in P ,
every relational symbol b j (3 ,3 appearing in P is a PSPACE(<) predicate.

Next we consider the case where P does contain one o r more inferences. We shall hen-
ceforth make the simplifying assumption tha t ll and A are the empty cedent. As in the proof of
Theorem 5.5 this involves no loss of generality since (-:left) and (-:right) inferences can be used
to move formulae from side t o side and since each inference has a dual. T h e argument splits
into 16 cases depending on the last inference of P.

We shall number the cases as in the proof of Theorem 5.5. We shall omit many of the
cases since the argument parallels t ha t of Theorem 5.5 very closely.

Cases (1)-(2): Omitted.

Case (9): (v:left). Suppose the last inference of P is

Let D be the formula BA(&'*), let E be en(&*) and let F be (B v c) ~ (A r *) .

T h e induction hypothesis is tha t there are PSPACE(<) predicates G and H which are

~ : r~(b) -def ined by 82(6) such t h a t

Define M by

Only PSPACE is C:lb-definable in Ui

G(zlZ1 < P(l l~ l l f f)) lP(21ff) > 1 3

if ~ i tness2$; (f l l ,p(l ,a))f,;i)
~(~,3,ff~;i) G+

~ (z , t , < 8 (2 1 P (1 1 4) 1 P (2 1 ~) > 3)
otherwise

Clearly M is a PSPACE(~,:) predicate and is ~:*~((s)-definable by &(6) since G , H and
+-

Witness2ipr are. I t is now easy t o see tha t

Cases (4)-(19): Omitted.

Case (14): (second order 3:left). Suppose the last inference of P is

where /3 and 4 are k-ary predicate variables and P is the eigenvariable and must not
appear in the lower sequent.

Let D be the formula B (P) A (~ *) and let E be (3 4) B (4) ~ (m *) . T h e induction

hypothesis is tha t there is a PSPACE(~Y,/~,~) predicate G which is ~ /*~(S) -de f ined by

8:(6) such tha t

Note we can omit p from the superscript on the lefthand side of this implication since /3
does not appear in A .

Let M be the predicate ~ / '~(S)-def ined by

Clearly, M is in P S P A C E (~ , ~) since G is in PSPACE(~Y,/~,~). Furthermore it is easy t o
see tha t

204 Definable Functions of Second Order Bounded Arithmetic

Case (15): (second order]:right). Suppose the last inference of P is

where is a k-ary predicate variable and V is the abstract {yl, . . . ,yk)A(yl, . . . , y k l ~ 1 3
where A is a Co].tb(6)-formula.

Let D be the formula B (v) v (~ A *) and let E be (3 4) ~ (4) v (V A *) . The induc-

tion hypothesis is tha t there is a PSPACE(~,;) predicate G which is A;tb(6)-defined by

f i (6) such that

Let M be the predicate A:pb((mdefined in 8:(6) by

if z=<2,z>

~ (z , ~ , ~ , ?) if z = < l , < y l , . . . ,yk>>

otherwise

In other words, {z)M is equal to < DEARYk({$)A),{z)G >. It now follows from
Lemma 8 that

It remains to show that M is a P S P A C E (~ , ~) predicate. Since G is a
P S P A C E (~ , ~ predicate by the induction hypothesis, i t suffices to show that A is a
P S P A C E (~ predicate. But this follows from the fact tha t A is in Cd"(6) and, as we
remarked earlier, every relational appearing in A is a PSPACE(~) predicate.

Case (16): (c;~~(~)-PIND). Suppose the last inference of P is

where B is a ~;*~(G)-forrnula and a is the eigenvariable and does not appear in the lower
sequent. We shall assume that B(0) is in r and B(t) is in A. The other cases are easier
and are omitted.

510.5 Only PSPACE is C:rb-definable in Ui 205

Let D be the formula B(LfaJ)h(m*), and let E (l , a) be B (~) V (~ A *) , let F be

B(o)A(AI'*) and let A be B (~) v (~ A *) . The induction hypothesis is tha t there is a

P S P A C E (~ , ~ predicate G such that G is A:rb(6)-defined by 8:(6) and such that

By Lemma 9, there is a term s(3,a) such that

8:(6)t (v ~ ~ s (3 , a)) (a (2) * ~ (2)) 3 - - + -
3 [~ i t n e s ~ 2 ~ ~ ' ~ ~ (a , t , a13* ~ i t n e s s 2 ~ ~ ' ~ (~ , 3 , a,?)] .

By Lemma 13, there is a A:rb(6)-definable predicate K of 8:(6) which satisfies

G(zltla7 < f l (l l { z) ~ (z l t l L f a J1~ ,3) ,P (2 ,c r) > ,;;I
otherwise

Furthermore, by Lemma 13, K is in P S P A C E (~ , ~) . From the definition of K it is readily
seen tha t

Hence it follows by c;'~(~)-PIND that

So we define ~ (x , t , a , ~ by

206 Definable Functions of Second Order Bounded Arithmetic

and M satisfies the conditions of Theorem 12.

Q.E.D.

10.8. Only EXPTIME is Zitb-definable in V:.

Theorem 1 asserted tha t every EXPTIME function of polynomial growth rate is
~: t~-def inable by v;. T h e converse is also true. Since the proof of the converse to Theorem 1

is very similar t o the arguments in $10.5 concerning C:lb-definable functions of U i and #i((6)
we shall merely s ta te the results without giving detailed proofs.

Theorem 14: Suppcxe A(i?,d) is a ~;*~(G)-forrnula where i? and d are all the free variables of A .

Also suppose 8;(4 t (~?i?)(3y)~(?i?,y) . Then there is a ~ :~~((6) - fo rmula B , a term t and a func-
tion f so tha t

(1) Pi(6)t- (~ ~) (~ Y) (B (~ ~ Y) > A (~ ~ Y))

(2) 8 i (s) t - (v 2) (3 y < t) ~ (f , y)

(3) @:(w (W) (~ Y) (~ ~) (~ (~ , Y) A B (~ > ~) ~ y=z)

(4) For all 3 , N k B(3,f(?i))

(5) f is an EXPTIME function

Hence, f is an E W T I M E function which is ~:.~((6)-definable in @(6) and for all i f , A(?flf(ii))
is true.

T h e converse t o Theorem 1 is an immediate corollary of Theorem 14:

Corollary 15: Suppose A (t , d) is a formula where i? and d are all the free variables of A .
Also suppose v ~ ~ (B) (~ ~) A (P , ~) . Then there is an EXPTIME function f such tha t for all Z,
N k A (Z l f (3) .

As before, the proof of Theorem 14 is based on a more complicated theorem:

Theorem 16: Suppose @ ~ (~) c I ' , ~ + A , A and each formula in I'UA is a ~ ~ ~ ~ ((s) - f o r m u l a and
each formula in nUA is a n:3b((stformula. Let el , . . . ,c, and 71, . . . ,yq be the free variables
in r,n-A,A. Let X and Y be the C:~~-forrnulae

510.6 Only EXPTIME is C:jb-definable in Vi

and
Y = (VA)vV{-c : C€rI).

Then there is an EXPTIME(~U,~) predicate M so tha t

(1) M is A:pb(6)-defined by Pi (6) and

(2) P i (6) ~ ~ i t n e a a 2 ~ ; (a , t , 3 ~ ~itneas2~~~({z)~(z,t,rr,~,Z,~;).

T h e proof of Theorem 16 is almost exactly like the proof of Theorem 12. T h e only
substantive difference is in Case (16), where the last inference of P is a c:~~(~)-IND inference.
In this case, instead of using Lemma 13 we use Lemma 17:

Lemma 17: Let ~ (a , t , 3 and ~ (a , b , t , a , ~ be ~ : ~ ~ (b) - f o r m u l a e of P i (6) where rr is a unary
predicate variable. Let t(b,7') be a term with only the free variables b and 7' as indicated.
Let K(a ,b ,7 ' ,~) be defined from A and B as in Theorem 9.14 by:

if b=O and a < t (b , t)

K (a , b , t , ~) if a > t (b , t)
+- - B (a , b , ~ , { z) K (x , b ~ l , c , r) , r) otherwise

Then ~ (a , b , t , ~ is A:*b-definable by Pi(6). Furthermore, if A is in EXPTIME(;) and B is
in EXPTIME(~~,;;) then K is in EXPTIME(;~).

Prooj: T h e proof of Theorem 9.14 shows t h a t ~ (a , b , t , ~ is A:rb(6)-defined by f?#(6). If A is
EXPTIME(;) computable and B is EXPTIME(~,;) computable, then the straightforward algo-
rithm for computing K(a,b,t,;) is an E ~ ~ ~ I M E (; j) - a l ~ o r i t h m .

Q.E.D.

10.7. A Corollary about NEXPTIMEn co-NEXPTIME.

Definition: NEXPTIME is the set of predicates which are recognized by a non-deterministic
exponential time Turing machine. T h e set co-NEXPTIME is the set of predicates whose
complements are in NEXPTIME.

208 Definable Functions of Second Order Bounded Arithmetic

Proposition 18: A predicate Q(2) is in NEXPTIME iff there is a formula AEC[J~ such t h a t

Proof: By Corollary 9.17, every ~ : ~ ~ - f o r r n u l a A(P) is equivalent t o a formula of the form
(34)B(d,4) where B E C ~ ~ ~ . By Lemma 9, there is a term sB(z) so tha t t he value of B(3!,4) only
depends on the values of +(y) for y<sB(3!). T h u s a ~ ~ l ~ ~ - f o r m u l a A(3) can be evaluated in non-
deterministic exponential time by first guessing the values of +(y) for all y<sB(Z') and then
evaluating B(Z',4).

Conversely, it follows from the methods of $10.1 tha t every NEXPTIME predicate
Q(3) can be expressed by a C:~~-formula A(3). If M is a nondeterministic Turing machine
which computes Q(P) in time 2q(PI), let A(P) be (3Xn)~unM(Xn,2q(PI),P).

Q.E.D.

Corollary 19:
(a) If A(?) is any formula and 11; proves A(P) is equivalent t o a c ~ ~ ' ~ - and a I'I:*b-formula

then A(Z') represents a predicate in PSPACE. In other words, if 11; proves A is in
NEXF'TIMEnc*NEXPTIME then A EPSPACE.

(b) If A(2) is any formula and V; proves A(2) is equivalent t o a C:rb- and a n:~~-formula
then A(P) represents a predicate in EXPTIME. In other words, if V: proves A is in
NEXF'TIMEnco-NEXPTIME then A EEXF'TIME.

Proof: This is just a restatement of Corollaries 11 and 15. T h e proof is similar t o t he proof of
Theorem 5.9 and Corollary 5.10. CI

Corollary 19 also holds for t he theories 8. and 8:.

10.8. Variations, Complications and Open Queetions.

Some questions concerning second order Bounded Arithmetic which have not been
resolved include:

(1) Is V. equivalent t o u:?

(2) IS 6: equivalent t o 8;? IS i?; equivalent t o P.1

(3) Is U: or V: a conservative extension of S2?

(4) Is U: or V; a conservative extension of s:?

T h e author conjectures t h a t the answers t o questions (I) , (3) and (4) are "no". In particular, if
(1) has an affirmative answer, then PSPACE=EXPTUIE.

$10.8 Variations, Complications and Open Questions 209

Corollary PO: If U:I V: then PSPACE=EXPTIME. Also, if @ (6) ~ 8:(6) then
PSPACE=EXPTIME.

Proof- By Theorems 1, 4, 10 and 14.

However, there seems t o be no reason why U: could not be a conservative extension of

There is no evidence tha t this would imply P=PSPACE, for instance.

A topic for further research would be t o investigate the theories U; and v~~ for i> 1.
It would be nice t o establish what functions can be zflb-defined in these theories. I t appears
tha t the defined functions of V; are precisely the functions a t the i-th level of the
exponential time hierarchy. T h a t is, v~~ can define precisely the functions which can be
computed by an exponential time Tur ing machine using an oracle for a NEXPTIMEcomplete
predicate, etc. T h e situation for U; is not quite as clear. First of all, computer scientists d o
not recognize a polynomial space hierarchy: a well known theorem of Savitch 1241 states tha t
PSPACE=NPSPACE. Instead we expect t ha t u,' can zillb-defined precisely the function
which can be computed by a polynomial space bounded Tur ing machine using an oracle from
the i-th level of t he exponential time hierarchy. For example, we expect t ha t u~~ can
C2'lb-define precisely the functions which can be computed by a polynomial space bounded Tur-
ing machine with an oracle for a NEXPTIME-complete predicate.

A variation of second order Bounded Arithmetic is t o restrict all predicate and function
variables t o have bounded domains. A predicate 4 has bounded domain iff there is a ,z such
tha t when x i > z for some xi then 4(3) does not hold. Likewise, a function c has bounded
domain iff there is a z such t h a t when some xi>z, $(i)=0.

We change the second order language so tha t the second order predicate variables are
cr: and 4: and the second order function variables are cil' and X ~ J ' where s and t are arbitrary
terms. Let Z' be a list of new variables not appearing in s. Then second order Bounded Arith-
metic contains t he new axioms

(V3)(VX i ' * ') (X i 'e8((z ') l t) .

T h u s the axioms force all predicate and function variables t o range over bounded domain predi-
cates and functions.

We also change the comprehension axioms for bounded domains. T h e bounded domain

210 Definable Functions of Second Order Bounded Arithmetic

comprehension axioms (the Cds6-BCA axioms) are

where A E C ~ J ' . The C~~'-BFCA, the bounded domain function comprehension axioms are
defined similarly. We leave it to the reader t o formulate the bounded domain comprehension
inferences.

Let U ~ (B D) and V~(BD) be the theories which use bounded domain predicate and
function variables, have the C~~'-PIND and C~"'-IND (respectively) axioms, and have the
c~J'-comprehension axioms. So U~(BD) and V~(BD) are similar t o U; and V; except they are
restricted t o using only bounded domain second order variables. I t turns ou t tha t the same
functions are C~"-definable in Ui(BD) and V ~ (B D) as in U i and V i respectively; namely the
PSPACE and EXPTIME functions (respectively). This is true because the proofs of Theorems 1
and 4 only used functions with bounded domain.

T h e theories @(BD) and ~;(BD) are defined to be U;(BD) and v~(BD), respectively,
restricted to contain only second order predicate variables and no second order function vari-
ables. Of course, the analogues of Theorem 9.5 and Lemma 9.6 hold, so U~(BD) and V~(BD)

are conservative extensions of C~(BD) and V~(BD), respectively.

As a final topic we discuss the predicativity of second order Bounded Arithmetic. Ed
Nelson 1191 defines a theory to be predicative if it can be interpreted in R. Robinson's
induction-free, open theory of arithmetic Q. Independently, A. Wilkie and E. Nelson have
shown tha t bounded induction is predicative; in particular, the theories S$ and S2 are predica-
tive.

Second order bounded domain Bounded Arithmetic is also predicative. T o show this it

suffices to interpret C2(BD) in the first order theory S2. So let M be a model of S2; we con-

struct from M a model N for ~J-')(BD). N will consist of two parts N1 and N2; both N1 and
N2 are subsets of the universe of M and N1 is the first order part of N and N2 is the second
order elements of N. If a € N 2 and EN^ then we interpret a(3) in S2' as

where <3> is the sequence coding zl, . . . ,z, and satisfies

By the results of Chapter 2, i t is clear that for each n>O the map 2- <Z> is C,b-defined by
Si. Hence the interpretation of a(z) is well-defined.

Next define I(z) t o specify an initial segment of M satisfying

Variations, Complications and Open Questions

We let I denote the elements rn of M satisfying I(m). S o if M is closed under exponentiation
I=M. Otherwise I is the initial segment of M containing all the m such t h a t 22m exists in M.
Since, 22't1=(22')2, I is inductive; t ha t is, if m € I then m + l € I . Using techniques due originally
t o R. Solovay and independently t o E. Nelson, we can find another definable initial segment N1
of M such t h a t NIGI and N1 is closed under successor, addition, multiplication, and smash (#).
We let N,=M.

W e claim tha t N=<N1,N2> is a model of fi.-')(BD). This is because the C ~ J ~ - B C A
comprehension axioms can be proved using the C~J~- IND axioms of S2. Since this is straight-
forward, we omit the proof.

T h e above shows tha t fi.-')(BD) can be interpreted in S2. I t remains t o show tha t -
U2(BD) is interpretable in fi$-')(BD). T h e fact tha t fi2(BD) can be locally interpreted in

6.-')(BD) follows again by the techniques of Solovay and Nelson. (A theory H is locally inter-
pretable in another theory G iff any subtheory generated by a finite subset of t he axioms of H is

interpretable in G.) T h e fact t h a t ~ ~ A B D) can be globally interpreted in C~-')(BD) follows from
a technique due t o Wilkie, see Pudlak [22].

If M is not closed under exponentiation, the above construction will actually yield a

model N of f12. Hook [16] uses the assumption (3y)(Vz)(lzl< y) as a predicative assumption.
Hence, if we accept Hook's axiom as predicative, t he (unbounded domain) second order theories
uzi of Bounded Arithmetic are predicative.

As a corollary t o the above discussion we deduce tha t the PSPACE and EXPTIME
functions can be predicatively defined.

POSTSCRIPT

Since the original version of this dissertation appeared, a year ago as of this writing, a
number of further developments in Bounded Arithmetic have occurred.

A. Wilkie in a handwritten manuscript titled "A model theoretic proof of Buss's char-
acterization of the polynomial time computable functions" has given a model theoretic proof of
a variant of the Main Theorem 5.2 for the case i=l. His method of proof readily extends to all
d > 1.

J. P. Ressayre in a handwritten manuscript titled "A conservation result for systems of
Bounded Arithmetic" has examined a strong form of the ~,b-replacement axioms and investi-
gated its strength relative to the axioms investigated in Chapter 2 above.

In a paper "The polynomial hierarchy and intuitionistic Bounded Arithmetic" in Struc-
ture in Complezity Theory, Springer-Verlag Lecture Notes in Computer Science #223, I have
extended the Main Theorem of Chapter 5 to intuitionistic theories.

Peter Clote and Gaisi Takeuti in a paper titled "Exponential time and Bounded Arith-
metic" in the same volume have extended the Theorems 10.1 and 10.14 to functions which are
n-fold exponential time computable. They utilized many-sorted theories of Bounded Arithmetic
rather than higher order theories to obtain a more elegant formulation.

However, none of the major open problems concerning Bounded Arithmetic have been
solved in the past year. I t is hoped that further research will be able t o resolve some of them.

BIBLIOGRAPHY

[I] A. V. A h o , J. E. H o p c r a f t , J. D. Ullrnan, The design and analysis of computer
algorithms, Addison-Wesley , 1974.

[2] T. Baker, J. Gill, R. Solovay, "Relativizations of the P=?NP question," SIAM Journal
of Computing 4 (1975) 431-442.

[3] James B e n n e t , On Spectra, Ph.D. dissertation, Princeton University, 1962.

[4] A s h o k K. Chandra, Dexter C. Kozen , Larry J. S tockmeyer , "Alternation," Journal
of the ACM 28 (1981) 114133.

[5] A l a n C o b h a m , "The intrinsic computational difficulty of functions," in Logic,
Methodology and Philosophy of Science II, Jerusalem 1964, pp. 24-30. Edited by Y. Bar-
Hillel, North-Holland 1965.

[6] S t e p h e n C o o k , "Feasibly constructive proofs and the propositional calculus," Seventh
ACM Symp. on Theory of Computing (1975) 83-97.

[7] Steven A. C o o k , Robert R e c k h o w , "On the lengths of proofs in the propositional
calculus," Proc. Sixth ACM Symposium on Theory of Computing, 1974 pp. 135-148.

[8] M a r t i n D o w d , personal communication.

[9] S. F e f e r m a n , "Arithmetization of metamathematics in a general setting," Fundamenta
Mathematicae 49 (1960) 35-92.

[lo] H a r v e y F r i e d m a n , "On the consistency, completeness and correctness problems,"
unpublished manuscript, June 1979.

[ll] M. F u r o t , J.B. Saxe, M. Sipeer, "Parity, circuits, and the polynomial-time hierarchy,"
Proc. 22nd Annual Symp. on the Foundations of Computer Science (1981) 266270.

[12] Michea l R. Garey, David S. J o h n s o n , Computers and Intractability, A guide to the
theory of NP-completeness, W. H. Freeman, 1979.

[13] Gerhard G e n t z e n , "Untersuchungen iiber das logische Schliessen," Mathematische
Zeitschrift 39 (1935) 176-210, 405431. English translation in [27].

[14] C. A. G o a d , "Proofs as descriptions of computations," in Fifth Conference ojAutomated
Deduction, Les Arcs, France 1980, pp. 39-52. Springer-Verlag Lecture Notes in Computer
Science 87, edited by W. Bibel and R. Kowalski.

[15] A n d r z e j Grzegorczyk , Some classes of recursive junctions, Rozprawy Matematyczne 4
(1953).

[16] Jay Hook , A many-sorted approach to predicative mathematics, Ph.D. dissertation,
Princeton University, 1983.

[17] C l a r e n c e F. K e n t , B e r n a r d R. Hodgson, "An arithmetical characterization of NP,"
Theoretical Computer Science 21 (1982) 255267.

[18] G. Kreiael, "Some uses of proof theory for finding computer programmes," Colloque
International de Logique, Clermont-Ferrand, 1975, pp. 123-134. Colloques Internationaux
de Centre National de la Recherche Scientifique no. 249 (1977).

[I91 E d w a r d Neleon, Predicative Arithmetic, manuscript (to appear).

[20] R o h i t J. P a r i k h , "Existence and feasibility in arithmetic," Journal of Symbolic Logic 36
(1971) 494-508.

[21] Jeff Paris, L.A.S. K i r b y , "C, collection schemes in arithmetic," in Logic Colloquium '77,
North-Holland, 1978, pp. 199-210.

[22] Pavel P u d l a k , "Some prime elements in the lattice of interpretability types,"
Transactions of the A.M.S. 280 (1983) 255-275.

[23] Pavel P u d l a k , "On the length of proofs of finitistic consistency statements in first order
theories," Logic Colloquium '84, Proc. of an ASL Conference in Manchester, England,
North-Holland (to appear).

[24] W. J. S a v i t c h , "Relationship between nondeterministic and deterministic tape
complexities," Journal of Computer and System Sciences 4 (1970) 177-192.

[25] R a y m o n d M. S m u l l y a n , Theory of Formal Systems, Annals of Mathematics Studies, no.
47, Princeton University Press, 1961.

[26] L a r r y J. S t o c k m e y e r , "The polynomial-time hierarchy," Theoretical Computer Science 3
(1976) 1-22.

[27] M. E. S s a b o , The collected paper8 of Gerhard Gentzen, North-Holland 1969.

[28] Ga i s i T a k e u t i , Proof Theory, North-Holland 1975.

[29] L. G . V a l i a n t , "The complexity of computing the permanent," Theoretical Computer
Science 8 (1979) 189-201.

[30] Alex Wilkie, a talk a t Logic Colloquium '84, the ASL European Summer Meeting,
Manchester, England, July 1984.

[31] Alex Wilkie, Jeff Paris, "On the scheme of induction for bounded arithmetic formulas,"
Logic Colloquium '84, Proc. of an ASL Conference in Manchester, England, North-Holland
(to appear).

[32] G e o r g e Wilmers, "Bounded existential induction," Journal of Symbolic Logic 50 (1985)
72-90.

[33] Celia W r a t h a l l , "Complete sets and the polynomial time hierarchy," Theoretical
Computer Science 3 (1976) 23-33.

SYMBOL INDEX

BASIC 30
'#- IND 31, 72
'#-PIND 31, 72
'#-L IND 32, 72
s;' 32, 72

s2 32

aob(5)
Ai)
Power2
E ~ P
Mod2
LSP
MSP
Bit
(#.st)(. - .)
b y s t) (.)
SqBd
t
 AS)
 AS)
'#- MIN
'#-LMIN
LK
LKB

-
v -
3
L PV

s:(L P V)

s:(p V)
c ,~(Pv)
~ ? (P v)
 WITNESS^
MIN WIT^
WIT SIZE,^
Sub
Prooj~Qg'
ProojBD ,'
ProojF~F&
P ~ ~ B Q ;
P ~ ~ B D &
P ~ ~ F C F ;
T ~ ~ B Q ;
ThmBD,'
T ~ ~ F C F &
Num
FSu b
4:
C O ~ F C F ;
C O ~ B Q :
ConBD,'
Con(R)
FCFCon(R)
BDCon(R)
BQCon(R)
P ~ R
Thm
PrjBD
PrjFCF,
F'
I3
C O ~ R (~)
ConBDR(x)
H
~ ; l b

K; ,b

F(V)
a- CA
a- CR
a-FCA
a-FCR
Cib(a16)
~ ,b (a16)
~ i b (a)
n,b(a)
s;(a16)
s;(4
u;
fi.
v;
F;

8.
6 .
C;lb-defined

s
< - . . >

AR Yk
DEAR Yk
 defined

8.(4
C i ' ~ ~ (6)
n;tb(6)

82V)
f!,i(6)

82(6)
A ; J ~ (~)

F[Vl
EXPTIME
EXPTIME($)
NextM
Init,
RunM
PSPACE
PSPACE($) ++

Witness2ila

<< ' . . >>

NEXPTIME 207
c,$*-BCA 210
C;J~-BFCA 210
U;(BD) 210
v,'(BD) 210

@(BD) 210

@(BD) 210

SUBJECT INDEX

abstract 162
alternative sense 53
ancestor 74
antecedent 67
arithmetic formula 19
arity 22, 180
atomic abstract 163
atomic formula 66, 127
auxiliary formula 70

bound variable 67, 160
bounded counting 46, 190
bounded domain 209
bounded formula 20, 29, 71, 160
bounded proof 71
bounded quantifier 20, 29, 160
bounded sequent 71
bounded theory 152
bounding axiom 100

cedent 67, 131
closed formula 66
closed term 66
closed under substitution 163
collapses 15
comprehension axiom 163, 164, 210
comprehension rule 163, 164
counting, length-bounded 46
cut formula 70
cut free proof 75

descendant 74
direct ancestor 74
direct descendant 74
distance 171

eigenvariable 70, 72, 161
elimination inference 75
endsequent 70

equality axiom 70
essentiallyproves 110
exponentiation 32, 39

father 117
feasible function 2
first order formula 160
formula 66, 128
f reecut 74
free cut free proof 75
free formula 74
free mix 171
free variable 67, 160
free variable normal form 76
function oracle 22
function space 22, 101
functional 22

grade 171

induction axiom 31, 176
induction inference 72
inessential cu t 75
inference 67, 70
initial sequent 70, 72

jump 157

left rank 171
length-bounded counting 46
level 171
limited iteration 8, 23
limited iteration on notation 104
limited recursion 191
logarithmically bounded quantification 13
logical axiom 70
logical inference 70

minimizationaxiom 56, 176

mix inference 171
multitree 117

open formula 66
oracle 22

p-inductive definition 119, 125
p-inductive proof 123
parameter variables 75
pigeon-hole principle 102
polynomial growth rate 9, 22, 153
polynomial hierarchy 14
polynomial time closure 9, 23
polynomially bounded quantification 13
predicate 13
predicate oracle 22
predicative 210
principal abstract 164, 165
principal formula 70
proof 70, 132
proper 15
propositional inference 70
protosequences 44

quantifier inference 70

rank 172
relational 180
replacement axiom 53, 178
restricted by parameter variables 77
rightrank 171

second order variable 160
semiformula 128
semiterm 127
sequent 67, 131
sharply bounded quantifier 20, 29, 160
son 117
space bound 8
structural inference 70
substitution instance 72, 170, 183
succedent 67
successor 73
suitable polynomial 8

term 66, 127
time bound 8
tree 117

unbounded quantifier 20, 29, 160
uniform 23

weak free variable normal form 75

Discard this page

