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Abstract

A model of two competing predators sharing one prey in homoge-
neous environment with Holling type-II functional response is intro-
duced. It is cast as a Kolmogorov-type system of differential equations.
The stability of the equilibrium points of the system is studied and dis-
cussed. The conditions of coexistence and extinction of the predators
in the case of non-periodic solution are obtained in terms of efficiency
of predator conversion of prey biomass into predator offspring.
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1 Introduction

Systems of differential equations have, to a certain extent, successfully de-
scribed the interactions between species. The basic system is the Lotka-
Volterra model, which model the interaction between a predator and a prey.
There exists a huge literature documenting ecological and mathematical results
from this model. In particular, various dynamical relations between predators
and their prey in ecology and mathematical ecology have been studied [9].
Parameters involved in the Lotka-Volterra system include birth rate of prey,
death rate of predator, encounter rate and biomass conversion rate. This in
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turn gives the functional and numerical responses, when combined with the
prey and predator population.

The systems of interactions involving more than two species have been
proposed for certain ecological phenomena. Three species interactions show
very complex dynamical behavior [7, 10, 14, 15, 17]. The interactions of species
involving persistence and extinction have been studied by some researchers
[1, 6, 8, 10]. In addition, the coexistence and extinction in three species systems
have been studied. Most of these systems can be written as a Kolgomorov-type
equation [2], where a certain number of conditions must be satisfied in order
a number of dynamical properties to be true.

In this paper, a mathematical model of two competing predators sharing
one prey is proposed and investigated. The motivation is to answer the ques-
tion of persistence of the system and extinction of one the predators based
on the efficient conversion of prey biomass. It is explained analytically and
numerically in the case of non periodic solution.

2 Mathematical Model

The dynamical interactions of a three species food chain model is presented,
where two predators competing on one prey. The growth rates of prey and two
predators are described by logistic law which the carrying capacity of predators
depend on available amount of prey. The Holling type-II functional response
is used to describe feeding of the two predators y and z on prey x. The model
can be written as:

dx

dt
= rx(1− x

k
)− αxy

1 + h1αx
− βxz

1 + h2βx
,

dy

dt
= −uy + R1y

(
1− y

ky

)
− c1yz, (1)

dz

dt
= −wz + R2z

(
1− z

kz

)
− c2yz,

The initial conditions of system are:

x(0) = x0, y(0) = y0, z(0) = z0

The intrinsic growth rate of prey is r; α and β measure efficiency of the search-
ing and the capture of predators y, z respectively. h1 and h2 represents handling
and digestion rates of predators. In the absence of prey x constants, u and w
are the death rates of predators y, z respectively. R1 = αxe1

1+h1αx
, R2 = βxe2

1+h2βz

; R1 and R2 represent numerical responses of the predators y, z respectively,
which describe change in the population of predators by prey consumption.
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e1and e2 represent efficiency of converting consumed prey into predator births.
The carrying capacities ky=a1x, kz= a2x are proportional to the available
amount of prey, as first proposed by Leslie [5]. c1 and c2 measure interspe-
cific competition factors that are interference competition of the predator z
on predator y and vice versa. All the parameters and initial conditions of the
model are assumed positive values.

The model can be written in non-dimensional form to reduce the number of
parameters. This makes the mathematical analysis less complicated. We write

t = rt, x = x
k
, y = y

a1k
, z = z

a2k
, α = ka1α

r
, β = ka2β

r
, e1 = e1

a1
, e2 =

e2

a2
, u = u

r
, w = w

r
, h1 = rh1

a1
, h2 = rh2

a2
, c1 = a2kc1

r
, c2 = a1kc2

r

By removing the bar from all parameters, then the system become

dx

dt
= x (1− x)− αxy

1 + h1αx
− βxz

1 + h2βx
= x L(x, y, z),

dy

dt
= −uy +

e1αxy

1 + h1αx
− e1α

(1 + h1αx)
y2−c1yz = y M1(x, y, z) (2)

dz

dt
= −wz +

e2βxz

1 + h2βx
− e2β

(1 + h2βx)
z2−c2yz = z M2(x, y, z),

The functions L, Mi; i = 1, 2 are smooth continuous functions on R3
+ =

{(x, y, z) ∈ R3 : x ≥ 0, y ≥ 0, z ≥ 0}.

Equations (2) are of Kolgomorov type.

Theorem 2.1 The solution of the system in R3
+ for t ≥ 0 is bounded.

Proof. The first equation of the system that represents the prey equation is
bounded through

dx

dt
≤ x(1− x) (3)

The solution of the equation is x(t) = 1
1+be−t , b = 1

x0−1
is the constant of

integration.
then x(t) ≤ 1 ∀t > 0.

The solutions of y, z are bounded, since the boundedness follows the bound-
edness of x.
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3 Kolmogorov analyses and equilibrium anal-

ysis

the Kolmogorov theorem contains many conditions; however it is applicable to
a two-dimensional system only [2]. the system (2) is divided into two subsys-
tems to use the Kolgomorov conditions.
The first subsystem is obtained by assuming the absence of second predator z.

dx

dt
= x((1− x)− αy

1 + h1αx
))

dy

dt
= y(−u +

e1αx

1 + h1αx
− e1α

(1 + h1αx)
y) (4)

By applying the Kolmogorov theorem, we have the condition

0 <
u

e1α− uh1α
< 1 (5)

The subsystem (4) has three non-negative equilibrium points. The equilibrium
point E40 = (0, 0) always exists and it is saddle point. The equilibrium point
E41= (1, 0) always exists and it is locally asymptotically stable point with the
following condition

u >
e1α

1 + h1α
(6)

If the condition is violated then the equilibrium point E41is a saddle point.The
equilibrium point E42(x̃, ỹ) of subsystem is given where x̃ is obtained through
the positive root of the quadratic equation

x̃2 +
(

1

h1

− u

e1

− 1 +
1

h1α

)
x̃− (

1

h1α
+

u

e1h1α
) = 0 (7)

and

ỹ =
1

α
(1− x̃) (1 + h1αx̃) (8)

The equilibrium point E42(x̃, ỹ) is locally asymptotically stable if it satisfies
the following conditions:

x̃ +
e1αỹ

1 + h1αx̃
>

h1α
2ỹx̃

(1 + h1αx̃)2
(9)

By assuming the absence of the first predator y, the second subsystem is ob-
tained.

dx

dt
= x((1− x)− βz

1 + h2βx
)
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dz

dt
= z(−w +

e2βx

1 + h2βx
− e2β

(1 + h2βx)
z) (10)

Similarly, by applying the Kolmogorov theorem to the subsystem , we have

0 <
w

e2β − wh2β
< 1 (11)

There are three non-negative equilibrium points of the subsystem (10) . The
equilibrium point E100 = (0, 0) always exists and it is a saddle point. The
equilibrium point E101= (1, 0) always exists and it is locally asymptotically
stable with the following condition

w >
e2β

1 + h2β
(12)

But, if the condition is violated then the equilibrium point E101 is a saddle
point.
The equilibrium point E102 (x̂, ẑ) of subsystem is given, where x̂ is specified
by the positive root of the quadratic equation

x̂2 +

(
1

h2

− w

e2

− 1 +
1

h2β

)
x̂− (

1

h2β
+

w

e2h2β
) = 0 (13)

and

ẑ =
1

β
(1− x̂) (1 + h2βx̂) (14)

The equilibrium point E102 (x̂, ẑ) is locally asymptotically stable, provided the
following condition holds:

x̂ +
e2βẑ

1 + h2βx̂
>

h2β
2ẑx̂

(1 + h2βx̂)2
(15)

4 Equilibrium Points and Stability Analysis

of Three Dimension System

It is observed that the system (2) has five nonnegative equilibrium points. E0 =
(0, 0, 0) and E1 = (1, 0, 0) exist obviously (i.e. they exist without conditions
on parameters). On the coordinate axis y or z there are no equilibrium points.
There are two equilibrium points for the two species, the equilibrium point
E2 = (x̃, ỹ, 0) where x̃ and ỹ are given according to equations (7) and (8).
The equilibrium point E2 exists in the interior of positive quadrant of x − y
plane if condition (5) holds and

0 < x̃ < 1 (16)
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The equilibrium point E3 = (x̂, 0, ẑ) , where x̂ and ẑ are specified by the
equations (13) and (14). The equilibrium point E3 exists in the interior of
positive quadrant of x− z plane if it holds condition (11) and

0 < x̂ < 1 (17)

The local dynamical behavior of equilibrium points are investigated where the
results are obtained by computing the variational matrices corresponding to
each equilibrium point.
The equilibrium point E0 is an unstable manifold along x-direction, but it is a
stable manifold along y-direction and along z-direction because the eigenvalue
of x-direction is positive, while the eigenvalues of y-direction and z-direction
is negative; consequently the equilibrium point E0 is saddle point. The equi-
librium pointE1 = (1, 0, 0) is locally asymptotically stable, if the conditions
(6) and (12) hold.However, if one of the conditions or both (6) and (12) are
not satisfied then the equilibrium point E1is a saddle point because it is stable
in the x-direction (the eigenvalue of x-direction is negative in all cases).
The equilibrium point E2 = (x̃, ỹ, 0) has the same stability behaviour of the
equilibrium point E42(x̃, ỹ) of subsystem (4) inside x − y plane; in the z-
direction (i.e. orthogonal direction to the x − y direction) is stable provided
the following condition holds

w + c2ỹ >
e2βx̃

1 + h2βx̃
(18)

The equilibrium point E3 = (x̂, 0, ẑ) has the same stability of the equilibrium
point E102 (x̂, ẑ) of subsystem (10) in x − z , while in the y-direction (i.e.
orthogonal direction to the x− z plane) is stable with following condition

u + c1ẑ >
e1αx̂

1 + h1αx̂
(19)

For non-trivial equilibrium points E4 = (x, y, z), it is given through the
positive solution of system of algebraic solution as follows:

(1− x)− αy

1 + h1αx
− βz

1 + h2βx
= 0

−u +
e1αx

1 + h1αx
− e1α

1 + h1αx
y−c1z = 0

−w +
e2βx

1 + h2βx
− e2β

(1 + h2βx)
z−c2y = 0 (20)

The variational matrix of E4 is

=




x(−1 + h1α2y

(1+h1αx)2
+ h2β2z

(1+h2βx)2
) −x( α

1+h1αx
) −x( β

1+h2βx
)

y( e1α+h1e1α2y

(1+h1αx)2
) −y( e1α

1+h1αx
) −c1y

z( e2β+e2h2β2z

(1+h2βx)2
) −c2z −z( e2β

1+h2βx
)






Two predators-one prey model 949

=




h11 h12 h13

h21 h22 h23

h31 h32 h33




where

h11 = x(−1+
h1α

2y

(1 + h1αx)2 +
h2β

2z

(1 + h2βx)2 ), h12 = −x(
α

1 + h1αx
), h13 = −x(

β

1 + h2βx
)

h21 = y(
e1α + h1e1α

2y

(1 + h1αx)2 ), h22 = −y(
e1α

1 + h1αx
), h23 = −c1y

h31 = z(
e2β + e2h2β

2z

(1 + h2βx)2 ), h32 = −c2z, h33 = −z(
e2β

1 + h2βx
),

The characteristic equation of the variational matrix D4 is

λ3 + H1λ
2 + H2λ + H3 = 0

H1 = − (h11 + h22 + h33)

H2 = ( h11h22 + h11h33 + h22h33 − h12h21 − h13h31 − h23h32)

H3 = (h13h31h22 + h12h21h33 + h11h23h32 − h12h23h31 − h13h21h32 − h11h22h33)

According to Routh-Hurwitz criterion, E4 = (x, y, z) is locally asymptotically
stable if it holds the following conditions.

H1 > 0 (21)

H3 > 0 (22)

H1H2 > H3 (23)

We have thus proved the following theorem.

Theorem 4.1 (i) The equilibrium point E0 = (0, 0, 0) is a saddle point
with locally stable manifold in the y−z plane and with locally unstable manifold
in the x-direction.

(ii) The positive equilibrium point E1 = (1, 0, 0)is locally asymptotically sta-
ble in x-direction, but it is locally asymptotically stable in y−z plane if it holds
the conditions (6) and (12). The equilibrium point E1 is a saddle point if the
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conditions (6) and/or (12) are not satisfied.

(iii) The equilibrium points E2 = (x̃, ỹ, 0) and E3 = (x̂, 0, ẑ) are positive
under the conditions (16) and (17) respectively. The equilibrium point E2 is
locally asymptotically stable provided the conditions (9) and (18) hold, while
the equilibrium point E3 is locally asymptotically stable provided the conditions
(15) and (19) hold.

(iv)The non-trivial positive equilibrium point E4 = (x, y, z) is given through
the positive solution of system (20); it is locally asymptotically stable provided
the conditions (21), (22), and (23) hold.

Corollary. The equilibrium points E2 and E3 are unstable the in z -direction
(i.e. orthogonal direction to the x − y plane) and in the y-direction (i.e.
orthogonal direction to the x–z plane) respectively, if the condition (18) of E2

and the condition (19) of E3 are not satisfied.

5 Theoretical Approach of Persistence and Ex-

tinction

The analysis of persistence was carried by Freedman and Waltman [3] for equa-
tions of Kolgomorov type. The persistence is defined as follows: if x(0) > 0
and lim inft→∞ x (t) > 0 , x (t) persist. The system is said to persist if each
component of the system persists. The analysis for non periodic solution (i.e.
no limit cycles) is presented, where the system (2) has non periodic solution
under conditions (9) and (15) of planar equilibriums in respective planes. The
boundedness of the system (2) was proved (theorem 1). The stability in posi-
tive orthogonal directions of x−y plane, x−z plane are given by the conditions
(17), (18) respectively.
(C1) x is a prey population and y,z are competing predators, living exclusively
on the prey, i.e.

∂L

∂yi

< 0,
∂Mi

∂x
> 0,Mi (0, y, z) < 0,

∂Mi

∂yj

≤ 0 i, j = 1, 2.

(C2) In the absence of predators, the prey species x grows to carrying capacity,
i.e.

L (0, 0, 0) > 0,
∂L

∂x
(x, y, z) = −1 ≤ 0,

∃ k > 0 3 J (k, 0, 0) = 0 . Here k = 1.
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(C3) There are no equilibrium points on the y or z coordinate axes and no
equilibrium point in y − z plane.

(C4) The predator y and the predator z can survive on the prey; this means
that there exist points Ẽ : (x̃, ỹ, 0) and Ê : (x̂, 0, ẑ) such that L (x̃, ỹ, 0) =M1 (x̃, ỹ , 0) =
0 and L (x̂, 0, ẑ) =M2 (x̂, 0, ẑ) = 0, x̃, ỹ, x̂, ẑ > 0 and x̃ < k, x̂ < k.
If the above hypotheses hold, there is no limit cycles and if in addition

M1 (x̂, 0 , ẑ) > 0,M2 (x̃, ỹ, 0) >0 (24)

then system (2) persists.

Inequalities (24) implies that

−u +
e1αx̂

1 + h1αx̂
−c1ẑ > 0

⇒ e1 >
(u + c1ẑ)(1 + h1αx̂)

αx̂
(25)

−w +
e2βx̃

1 + h2βx̃
− c2ỹ > 0

⇒ e2 >
(w + c2ỹ)(1 + h2βx̃)

βx̃
(26)

The necessary conditions for (24) include the following [4]

M1 (x̂, 0 , ẑ) ≥ 0,M2 (x̃, ỹ, 0) ≥ 0 (27)

If the conditions (25) and (26) are satisfied then the system (2) persists. In
case the condition (25) is satisfied and on the other hand the condition (26)
is not satisfied, then the second predator z will tend to extinct, while the first
predator y survives. In the same manner, if the condition (26) is satisfied but
the condition (25) is not satisfied, then the first predator y will tend to extinct
while the second predator z survives.

6 Numerical simulations

By considering different values of the parameters e1and e2, it can be shown nu-
merically the existence or extinction of one of the predators in a non-periodic
solution (i.e. no limit cycles). The parameters e1 and e2 are important pa-
rameters because are contained in the functional and numerical responses that
formed the main components of prey predator models [13]; in addition, they
are involved in determining intraspecific competition coefficients in our model.
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Figure 1: Time series of dynamical behaviour of the system (2) at e1 = 0.8

The functional responses play an important role in interactions between prey
and predator [12]. e1, e2 measure the efficiency converting of predators.

The values of parameters are chosen to satisfy the stability conditions (9)
and (15) in a non-periodic solution (i.e. no limit cycles). The other parameters
are fixed as follows:

α = 1.41, β = 1.5, u = 0.55, h1 = 0.005, h2 = 0.004, c1 = 0.08, c2 =
0.05, w = 0.65, x(0) = 0.5, y(0) = 0.2, z(0) = 0.2.

Two different sets of numerical simulations were executed. In the first set,
the value of e2 are fixed at 0.79, while e1 is changed to show the effects of
the efficiency of biomass conversion on existence and extinction of one the
predators. It is observed that in Fig. 1.1 there is coexistence of three species
when the values of e1 (e1 = 0.8), and e2 are near to each other. However, if the
value of e1 (e1 = 1.8)is increased, the predator z tends to extinct, as shown
in figure 1.2. In another case, when the value of e1 (e1 = 0.45) is decreased,
the predator y goes to extinction, as shown in figure 1.3. The results show the
important role of efficiency of conversion on predators’ survival.

In the second set, different values of e2 are used while the value of e1 are
fixed at 0.68. There are corresponding results for survival and extinction of
predators depending on efficiency of conversion; coexistence of three species
when the values of e1, and e2 (e2 = 0.72) are near to each other, as shown in
figure 2.1. On increasing the value of e2 (e2 = 1.45), the predator y tends to
extinction, while on decreasing the value of e2 (e2 = 0.45), the predator z goes
to extinction, as observed in figure 2.2, and figure 2.3 respectively.

The reasons that may affect the conversion efficiency are the metabolic
conversion efficiency of predators, in addition to proportion of the kill preys
which may be consumed by predators [11]. Other reason that may affect the
conversion efficiency is body size of prey [18]. More ideas from biology are
needed to properly model biomass conversion.
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Figure 2: Time series of dynamical behaviour of the system (2) at e1 = 1.8

Figure 3: Time series of dynamical behaviour of the system (2) at e1 = 0.45

Figure 4: Time series of dynamical behaviour of the system (2) at e2 = 0.72
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Figure 5: Time series of dynamical behaviour of the system (2) at e2 = 1.45

Figure 6: Time series of dynamical behaviour of the system (2) at e2 = 0.45
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7 Conclusions

In this paper, a mathematical model of continuous time of interactions two
competing predators sharing one prey is introduced. The model is divided
into two subsystems, consequently Kolmogorov conditions of the subsystems
were found and the stability of equilibrium points of the two subsystems was
discussed. The conditions of existence of equilibrium points and their stability
of equilibrium points of the three dimension system (2) were obtained. Theo-
retical analysis of persistence the system and extinction one of predators was
presented.

Numerical simulations have illustrated that the three species can coexist,
when the values of efficiency conversion for the two predators are near to each
other. However, the extinction of one predator depend on the value of effi-
ciency conversion in the two predators, where if the value efficiency conversion
of first predator is less than the other then the first predator go to extinction,
while the other survive and vice versa.
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